The
Pragmatic
rogrammers

Dave Thomas,
with Chad Fowler and Andy Hunt

Developers the world over talk about
Programming Ruby and the Ruby language...

“Ruby is a wonderfully powerful and useful language, and whenever I'm working
with it, this book is at my side.”
» Martin Fowler, Chief Scientist, ThoughtWorks

“If your world revolves around Java, as mine did, then you need this outstanding book
to learn all the wonderful things you’re missing. There’s just one catch: you’ll be
spoiled from then on. Indeed, after reading just a few pages of Programming Ruby,
programming in any language other than Ruby will feel like you’re pushing rope.”

» Mike Clark, Author and Consultant

“Ruby is smart, elegant, and fun, and it deserves a book that’s smart, elegant, and fun.
The first edition of Programming Ruby was such a book; the second edition is even
better.”

» James Britt, Administrator, http://ruby-doc.org

“The best reason to learn a new programming language is to learn to think differently.

The best way to learn to think the Ruby way is to read Programming Ruby. Several

years ago, with the first edition of this book, I did just that. Since then, I've had a

constant stream of enjoyable Ruby programming experiences. This is due in no

insignificant part to the quality of the source from which I learned the language. I'm

not the only person I’ve heard say that every language should have a book like this.”
» Chad Fowler, Codirector, Ruby Central, Inc.

“The PickAxe got me started on Ruby. It is still the first book I turn to.”
» Ryan Davis, Founder, Seattle.rb

“This book changed my life. Sounds rather clichéd, but it’s the truth. After six years
and 300,000 lines of Java code, I needed a change. That change occurred upon reading
the first edition of this book. With the support of a solid community and ever-growing
foundation of superb libraries, I founded a company that largely profits from applying
Ruby to solve real-world problems. Ruby is ready for prime time, and this new
version of the PickAxe will show a waiting world what a gem Ruby really is.”

» Rich Kilmer, President and CEO, InfoEther LLC

“The first edition of PickAxe has been a desk-side companion for years. The second
edition will be an eagerly awaited replacement.”
» Tom Enebo, JRuby Developer

http://ruby-doc.org

“The first edition of Programming Ruby brought about no less than the introduction of
Ruby on a large scale outside of Japan, in the process becoming the de facto standard
published language reference and an oft-cited model of clear, effective technical
writing. The appearance of the second, expanded edition is exciting for Ruby
programmers around the world and will no doubt attract a fresh wave of newcomers to
this elegant, versatile language.”

» David A. Black, Ph.D., Codirector, Ruby Central, Inc.

“Ruby is my definite choice for all scripting and prototyping issues, and this book will
help you to discover its usefulness as well as its beauty. Apart from that, it’s really fun
to read!”

» Robert Klemme

“I bought the first edition of this book the day it was released and had a fantastic time
using it to learn Ruby. I eventually bought a second copy to keep at home. But Ruby
has changed since then. I'm delighted that this second edition of Programming Ruby
is available to help a new round of programmers learn about this fantastic, beautiful
language. And it’s not just good news for Ruby newbies, of course—like me, most
Ruby developers will want a copy (no, make that two) so that all of the details about
today’s Ruby will be close at hand.”

» Glenn Vanderburg, Software Architect, Countrywide Financial

“Ruby is one of those great languages that takes an afternoon to start using and years

(maybe a lifetime) to master. In C, I'm always having to work around the limitations

of the language; in Ruby, I'm always discovering a neater, cleaner, more efficient way

to do things. Programming Ruby is the essential reference to the Ruby language. More

than just teaching you the syntax, it teaches you the spirit and the feel of the language.”
» Ben Giddings

“Confucius said, “What you hear, you forget.” He also said, “What you do you
understand.” But it’s not easy to actually “do” things unless you’re using a great
language with strength in quick and clean prototyping. In my case, this language is
Ruby! Thank you!”

» Michael Neumann

Programming Ruby
The Pragmatic Programmers’ Guide

Second Edition

Dave Thomas

with Chad Fowler
and Andy Hunt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC, was aware
of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility
for errors or omissions or for damages that may result from the use of information (including program
listings) contained herein.

This book is a heavily revised version of the book Programming Ruby, originally published by Addison
Wesley. This book is printed with their permission.

Our Pragmatic courses, workshops, and other products can help you and your team create better software
and have more fun. For more information, as well as the latest Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2005 The Pragmatic Programmers, LLC. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-5-5

Text printed on acid-free paper.
First Printing, October 2004
Version: 2004-9-30

http://www.pragmaticprogrammer.com

Contents

FOREWORD TO THE FIRST EDITION xvii
FOREWORD TO THE SECOND EDITION xix
PREFACE XX
ROAD MAP XXVi

PART I—FACETS OF RUBY

1 GETTING STARTED 2
InstallingRuby 2
RunningRuby 4
Ruby Documentation: RDocandri 7

2 RUBY.NEW 9
Ruby Is an Object-Oriented Language 9
Some BasicRuby 11
ArraysandHashes L 14
Control Structures e 16
Regular Expressions e 17
Blocks and Iteratorso 19
Readingand 'Riting 21
Onwardand Upward 22

3 CLASSES, OBJECTS, AND VARIABLES 23
Inheritance and Messageso 25
Objects and Attributes Lo 27
Class Variables and Class Methods 31
AccessControl L 35
Variables L 37

Prepared exclusively for Yeganefar \'

CONTENTS

4 CONTAINERS, BLOCKS, AND ITERATORS 40
Containers o v i e e e e e e e e e e 40
Blocks and Iterators 46
Containers Everywhere 54

S STANDARD TYPES 55
Numbers e e e e e 55
Srings e 57
Ranges e 62
Regular Expressions 64

6 MORE ABOUT METHODS 74
DefiningaMethod 74
CallingaMethod. e 76

7 EXPRESSIONS 81
Operator EXpressions v v v v v i it e e e 82
Miscellaneous EXpressions v v v v i vt 83
Assignment . .ol 84
Conditional Execution, 87
Case EXpressions v v vt it e e e e e e 92
Loops. o e 94
Variable Scope, Loops,and Blocks 99

8 EXCEPTIONS, CATCH, AND THROW 101
The ExceptionClass 101
Handling Exceptions 102
Raising Exceptions. e 106
Catchand Throw o e 108

9 MODULES 110
NamMEeSPACES .« v v v v v e e e e e e e e e e e e e e e e e e e 110
MIXINS . . v v o e e e e e e e e e e e e 111
Iterators and the Enumerable Module 113
ComposingModules oL o 113
Including Other Files 116

10 BASIC INPUT AND OUTPUT 119
What IsanIO Object? 119
Openingand Closing Files 120
Reading and Writing Files L. 121
Talkingto Networks 125

Prepared exclusively for Yeganefar

CONTENTS

11 THREADS AND PROCESSES 127
Multithreading 127
Controlling the Thread Scheduler 132
Mutual Exclusion 133
Running Multiple Processes 139

12 UNIT TESTING 143
Test::Unit Framework 144
Structuring Tests o o e e 148
Organizing and Running Tests 151

13 WHEN TROUBLE STRIKES 155
Ruby Debugger 155
Interactive Ruby 156
Editor Support 157
ButltDoesn’tWork! 159
ButIt’'s TooSlow! 162

PART II—RUBY IN ITS SETTING

14 RuUBY AND ITS WORLD 167
Command-Line Arguments 167
Program Termination 170
Environment Variables 171
Where Ruby Finds Its Modules 172
Build Environment e 173

15 INTERACTIVE RUBY SHELL 174
CommandLine. e 174
Configuration e e e 179
Commands e e e e e 183
Restrictions e 185
rtags and XMP . . . v o o e e e e e e e e e e e e e e 185

16 DOCUMENTING RUBY 187
AddingRDoctoRubyCode 187
Adding RDocto CEXxtensionso v v v v v v v .. 195
RunningRDoc oo 199
Displaying Program Usage 200

Prepared exclusively for Yeganefar

CONTENTS viii

17 PACKAGE MANAGEMENT WITH RUBYGEMS 203
Installing RubyGems 204
Installing ApplicationGems 204
Installing and Using Gem Libraries 206
Creating Your Own Gems o v v v v v i et e 211

18 RUBY AND THE WEB 222
Writing CGI Scripts o o e 222
Cookies 231
Improving Performance 234
Choice of Web Servers. 234
SOAPand Web Services L 236
More Information oL 240

19 RuBY TK 241
Simple Tk Application e 241
Widgets e e e e e e 242
BindingEvents o oL 246
Canvas e e e e 247
Scrolling e e 249
Translating from Perl/Tk Documentation 251

20 RUBY AND MICROSOFT WINDOWS 253
Getting Ruby for Windows 253
Running Ruby Under Windows 254
Win32APL 254
Windows Automation 255

21 EXTENDING RUBY 261
Your First Extension L 261
Ruby ObjectsinC e 264
The Jukebox Extension 270
Memory Allocation oL 279
Ruby Type System 280
Creating an Extension, 282
Embedding a Ruby Interpreter 287
Bridging Ruby to Other Languages 290
Ruby CLanguage APT, 291

Prepared exclusively for Yeganefar

CONTENTS

PART III—RUBY CRYSTALLIZED

22 THE RUBY LANGUAGE 302
Source Layout e 302

The Basic Types 304
Names e 313
Variables and Constants 315
Predefined Variables 318
EXpressions e 323
Boolean Expressionso 326

if andunless Expressions 328

case Expressions oo 328
LoopConstructs v v v v i s e e e e 329

Method Definition oL 330
InvokingaMethod oL oL 333
Aliasing e 336
Class Definition ittt 337
Module Definitions 339
AccessControl e e 341
Blocks, Closures, and Proc Objects 341
EXceptions e e e 345
Catchand Throw e 347

23 Duck TYPING 349
Classes Aren’t Types v v v v i s e e e e e 350
CodinglikeaDuck oo 354
Standard Protocols and Coercions 355
Walk the Walk, Talkthe Talk 361

24 CLASSES AND OBJECTS 362
How Classes and Objects Interact 362
Class and Module Definitions 370
Top-Level Execution Environment 376
Inheritance and Visibilityo 376
Freezing Objects e 377

25 LOCKING RUBY IN THE SAFE 379
SafeLevels e 380
Tainted Objects e e e 381

Prepared exclusively for Yeganefar

CONTENTS X

26 REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY 384

Lookingat Objects v v v v i e e e e 385
LookingatClasses i 386
Calling Methods Dynamically 388
System Hooks 391
Tracing Your Program’s Execution 393
Marshaling and Distributed Ruby 395
Compile Time? Runtime? Anytime! 400

PART IV—RUBY LIBRARY REFERENCE

27 BUILT-IN CLASSES AND MODULES 402
Alphabetical Listing 403
ATTAY . . o o e e e e 406
Bignum 420
Binding 423
Class i e 424
Comparable 426
Continuation i i i e e 427
Dir . . e 428
Enumerable e 433
Errno e 439
Exception 440
FalseClass i v i it e e e e e 443
File e 444
File::Stat e 456
FileTest e e e 462
Fixnum e e 463
Float e 466
O 470
Hash e 471
Integer o i e e e e e 480
IO . e 482
Kernel e 495
Marshal e 514
MatchData e 516
Math e 519
Method e 522
Module e 524
NilClass o i e e e e e 540
Numeric e e 541

Prepared exclusively for Yeganefar

CONTENTS

Object e e 546
ObjectSpace e e 557
Proc e e e e 559
Process e e e e 562
Process::GID i e 568
Process::Status 570
Process::iSysS e e 573
Process::UID i i i it e e 575
Range 576
Regexp e 579
Signal 583
String 585
STruCt e e e e e e e e e e 605
Struct::Tms e 609
Symbol e 610
Thread e 612
ThreadGroup i 619
Time e e e e e e 621
TrueClass e 629
UnboundMethod 630
28 STANDARD LIBRARY 632
Abbrev e e 634
Baseb64 e 635
Benchmark 636
BigDecimal 637
CGI . . . e 638
CGIL::SeSSioN v i v i i e e e e e e e e e e e e 640
Complex e 641
CSV . e 642
CUTSES . . v o o e e e e e e e e e e e e 643
Date/DateTime v v v e e e 644
DBM . . . e 645
Delegator e 646
Digest e 647
DL . . o e e 648
dRuby 649
English e 650
Enumerator e 651
erb . .. e e e e 652
Etc . . . e 654
EXPECE . . i e e e e 655
Fentl e 656

Prepared exclusively for Yeganefar

CONTENTS

FileUtils e 657
Find e e 658
Forwardable 659
ftools e 660
GDBM e e e e e e 661
Generator e e e e e 662
GetoptLong 663
GSETVET o e e e e e e e 664
ICONV o e e e e e e e 665
IO/Wait 666
IPAAAr e 667
jecode 668
Logger e 669
Mail e e e 670
mathn e 671
Matrix e e e e e 673
Monitor e e e 674
MUteX e e e e e 675
Mutex_m e e e 676
Net::FTP e e e 677
Net::HTTP e e e e e e e 678
Net::IMAP e e e e 680
Net::POP e e e e 681
Net::SMTP e e e 682
Net::Telnet i 683
NKF . . e e e 684
Observable e 685
OPEN-UTL . . v v v v v e e e e e e e e e e e e e e 686
Opend e e e 687
OpenSSL e 688
OpenStruct e 689
OptionParSer v v it e e e 690
ParseDate e 692
Pathname 693
PP . e 694
PrettyPrint 695
Profile e 696
Profiler__ e 697
PStore e 698
PTY . . . e e e 699
Rational 700
readbytes 701
Readline e 702

Prepared exclusively for Yeganefar

CONTENTS xiii

ReSOLV e e 703
REXML e e e e e e e e 704
Rinda e 706
RSS . e 707
Scanf 708
SDBM o e 709
Set ..o 710
Shellwords e 711
Singleton 712
SOAP e 713
Socket 714
StringT0 e 715
StringScanner 716
SYNC . . . e e e e e 717
Syslog 719
Tempfile e 720
Test::Unit e 721
thread 722
ThreadsWait, 723
Time e 724
Timeout e e e e 725
TR . e e e e e 726
tmpdir e 727
Tracer o i i i e e e e e e e e 728
TSOTt o e e e e e e 729
UN .ot e 730
URL . . . e e e 731
WeakRef e 732
WEBrick e 733
Win32API e e 734
WIN320LE e e e e e e 735
XMLRPC e e e e e e e 736
YAML e e e e e e e 737
Z1ib . . . e 738

Prepared exclusively for Yeganefar

CONTENTS Xiv

PART V—APPENDIXES

A SOCKET LIBRARY 740
BasicSocket 741

Socket e 743
IPSocket e 747
TCPSocket e 748
SOCKSSocket 749
TCPServer e e e e 750
UDPSocket e 751
UNIXSocket v i e 753
UNIXServer i i i i i e e e e e e 754

B MKMPF REFERENCE 755
mkmf . .. e 755

C SUPPORT 758
Web Sites e 758
Download Sites e 759
Usenet Newsgroup o e 759
Mailing Lists 759

D BIBLIOGRAPHY 761
INDEX 762
SUMMARY TABLES 797

Prepared exclusively for Yeganefar

List of Tables

2.1
5.1
7.1
11.1
13.1
14.1
15.1
17.1
18.1
21.1
22.1
22.2
22.3
22.4
25.1
27.1
27.2
27.3
27.4
27.5
27.6
27.7
27.8
27.9
27.10
27.11
27.12
27.13
27.14
27.15
28.1
28.2

Example variable and classnames 15
Character class abbreviationso 68
Common comparison OPerators v v v v v v v e e e 89
Two threads inarace condition 135
Debuggercommands 0oL L 165
Environment variablesusedby Ruby 172
irb command-lineoptions 175
Version operators oo e 206
Command-line options forerb 230
C/Ruby data type conversion functions and macros 266
General delimited input L oL 304
Substitutions in double-quoted strings L. 306
Reservedwords L 314
Ruby operators (high to low precedence) 324
Definition of the safe levels, 383
Class Array: pack directives o 414
Class File: match-mode constants 447
Class File: path separators 449
Class File: open-modeconstants 451
Class File: lock-mode constants 455
Class I0: mode strings 483
Module Kernel: sprintf flag characters 510
Module Kernel: sprintf fieldtypes 511
Module Kernel: file tests with a single argument 512
Module Kernel: file tests with two arguments 512
Class Numeric: methods and subclasses 543
Class Numeric: divmod, modulo, and remainder 544
Class String: backslash sequences in substitution strings 593
Class String: unpack directives 603
Class Time: strftime directives 627
Class ERB: inline directives 653
Class OptionParser: option definitions 691

Prepared exclusively for Yeganefar

List of Figures

3.1

4.1

8.1

12.1
12.2
13.1
13.2
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
17.1
18.1
18.2
19.1
21.1
21.2
22.1
24.1
24.2
243
24.4
27.1
27.2

Variables hold object references. 39
How arraysareindexed 42
Ruby exception hierarchy 103
Roman numerals generation (withbugs) 145
Test::Unit assertions o . v v Lo e e e e 154
Sampleirbsession. 158
Comparing variable access costs using benchmark 163
Browse RDoc output for class counter 188
Browse RDoc output when source has comments 189
Using ri to read documentation 190
Document for class Proc generated by RDoc/ri 191
Ruby source file documented withRDoc 196
C source file documented withRDoc 198
Sample program using RDoc:iusage 201
Help generated by sample program 202
MomLog package structure 220
Sample CGIForm 225
Erb processing a file withloops 232
DrawingonaTk Canvas 248
Wrapping objects around C datatypes 272
Buildinganextension oL oL 283
State transitions for booleanrange L. 327
A basic object, with its class and superclass 363
Adding a metaclass to Guitar 364
Adding a virtual classtoan object 367
An included module and its proxyclass 369
Standard exception hierarchy, 441
Method#arityinaction 523

Prepared exclusively for Yeganefar

Foreword to the
First Edition

Man is driven to create; I know I really love to create things. And while I'm not good
at painting, drawing, or music, I can write software.

Shortly after I was introduced to computers, I became interested in programming lan-
guages. [believed that an ideal programming language must be attainable, and I wanted
to be the designer of it. Later, after gaining some experience, I realized that this kind of
ideal, all-purpose language might be more difficult than I had thought. But I was still
hoping to design a language that would work for most of the jobs I did everyday. That
was my dream as a student.

Years later I talked with colleagues about scripting languages, their power and possi-
bility. As an object-oriented fan for more than fifteen years, it seemed to me that OO
programming was very suitable for scripting too. I did some research on the ’net for a
while, but the candidates I found, Perl and Python, were not exactly what I was look-
ing for. I wanted a language more powerful than Perl and more object-oriented than
Python.

Then, I remembered my old dream and decided to design my own language. At first I
was just toying around with it at work. But gradually it grew to be a tool good enough
to replace Perl. I named it Ruby—after the precious red stone—and released it to the
public in 1995.

Since then a lot of people have become interested in Ruby. Believe it or not, Ruby is
actually more popular than Python in Japan right now. I hope that eventually it will be
just as well received all over the world.

I believe that the purpose of life is, at least in part, to be happy. Based on this belief,
Ruby is designed to make programming not only easy but also fun. It allows you to
concentrate on the creative side of programming, with less stress. If you don’t believe
me, read this book and try Ruby. I'm sure you’ll find out for yourself.

I’m very thankful to the people who have joined the Ruby community; they have helped
me a lot. I almost feel like Ruby is one of my children, but in fact, it is the result of the

Prepared exclusively for Yeganefar XVii

FOREWORD XViii

combined efforts of many people. Without their help, Ruby could never have become
what it is.

I am especially thankful to the authors of this book, Dave Thomas and Andy Hunt.
Ruby has never been a well-documented language. Because I have always preferred
writing programs over writing documents, the Ruby manuals tend to be less thorough
than they should be. You had to read the source to know the exact behavior of the
language. But now Dave and Andy have done the work for you.

They became interested in a lesser-known language from the Far East. They researched
it, read thousands of lines of source code, wrote uncountable test scripts and e-mails,
clarified the ambiguous behavior of the language, found bugs (and even fixed some of
them), and finally compiled this great book. Ruby is certainly well documented now!

Their work on this book has not been trivial. While they were writing it, I was modi-
fying the language itself. But we worked together on the updates, and this book is as
accurate as possible.

It is my hope that both Ruby and this book will serve to make your programming easy
and enjoyable. Have fun!

Yukihiro Matsumoto, ak.a. “Matz”
FOHLE WEVA
Japan, October 2000

Prepared exclusively for Yeganefar

Foreword to the
Second Edition

No one in 1993 would have believed that an object-oriented language created by a
Japanese amateur language designer would end up being used worldwide and that the
language would become almost as popular as Perl. It was insane. I admit that. I didn’t
believe it either.

But it happened, far exceeding my expectations. It was caused—at least in part—by
the first edition of this book. The famous Pragmatic Programmers chose a dynamic
language that was virtually unknown to anyone outside of Japan and wrote a good
book about it. It was just like a miracle.

That’s now history. The future starts now. We have the second edition of Programming
Ruby, which is better than the first one. It’s no longer a miracle. This time, the grown-
up Ruby community helped to develop the book. I just needed to sit and watch the
community working together.

I really appreciate the Pragmatic Programmers, Dave Thomas and Andy Hunt, and
other people from the community who helped with this book (guys, sorry for not nam-
ing you personally). I love the friendliness of the Ruby community. It’s the best soft-
ware community I have ever seen. I also appreciate every programmer in the world who
uses Ruby.

The stone has started rolling. It will became a great mountain and fill the whole earth.

Yukihiro Matsumoto, a.k.a. “Matz”
FO0HE WEVAH
Japan, August 2004

Prepared exclusively for Yeganefar

Preface

This book is the second edition of the PickAxe, as Programming Ruby is known to
Rubyists. It is a tutorial and reference for the Ruby programming language. If you have
the first edition, you’ll find that this version is a significant rewrite.

When Andy and I wrote the first edition, we had to explain the background and appeal
of Ruby. Among other things, we wrote “When we discovered Ruby, we realized that
we’d found what we’d been looking for. More than any other language with which we
have worked, Ruby stays out of your way. You can concentrate on solving the problem
at hand, instead of struggling with compiler and language issues. That’s how it can help
you become a better programmer: by giving you the chance to spend your time creating
solutions for your users, not for the compiler.”

That belief is even stronger today. Four years later. Ruby is still our language of choice:
T use it for client applications, I use it to run our publishing business, and I use it for all
those little programming jobs I do just to get things running smoothly.

In those four years, Ruby has progressed nicely. A large number of methods have been
added to the built-in classes and modules, and the size of the standard library (those
libraries included in the Ruby distribution) has grown tremendously. The community
now has a standard documentation system (RDoc), and RubyGems may well become
the system of choice for packaging Ruby code for distribution.

This change has been wonderful, but it left the original PickAxe looking a tad dated.
This book remedies that: like its predecessor, it is written for the very latest version of
Ruby.

Ruby Versions

This version of the PickAxe documents Ruby 1.8 (and in particular covers changes
incorporated into Ruby 1.8.2).!

1. Ruby version numbering follows the same scheme used for many other open-source projects. Releases
with even subversion numbers—1.6, 1.8, and so on—are stable, public releases. These are the releases that
are prepackaged and made available on the various Ruby Web sites. Development versions of the software

Prepared exclusively for Yeganefar

PREFACE

Exactly what version of Ruby did I use to write this book? Let’s ask Ruby.

% ruby -v
ruby 1.8.2 (2004-08-24) [powerpc-darwin7.5.0]

This illustrates an important point. Most of the code samples you see in this book
are actually executed each time I format the book. When you see some output from a
program, that output was produced by running the code and inserting the results back
into the book.

Changes in the Book

Apart from the updates to support Ruby 1.8, you’ll find that the book has changed
somewhat from the original edition.

In the first half of the book, I've added six new chapters. Getting Started is a more
complete introduction to getting up-and-running with Ruby than we had in the first
book. The second new chapter, Unit Testing, reflects a growing emphasis on using
testing among Rubyists. Three new chapters cover tools for the Ruby programmer: irb
for experimenting with Ruby, RDoc for documenting your code, and RubyGems for
packing code for distribution. Finally, a new chapter covers duck typing, that slightly
slippery philosophy of programming that fits in so well with the ideas behind Ruby.

That’s not all that’s new. You’ll also find that the chapter on threads has been extended
significantly with a discussion on synchronization and that the chapter on writing Ruby
extensions has been largely rewritten. The chapter on Web programming now discusses
alternative templating systems and has a section on SOAP. The language reference
chapter has been significantly extended (particularly when dealing with the new rules
for blocks, procs, breaks, and returns).

The next quarter of the book, which documents the built-in classes and modules, has
more than 250 significant changes. Many of them are new methods, some are depre-
cated old methods, and some are methods with significant new behavior. You'll also
find a number of new modules and classes documented.

Finally, the book includes a section on the standard library. The library has grown
extensively since Ruby 1.6 and is now so big that I couldn’t document it to any level
of detail without making the book thousands of pages long. At the same time, the
Ruby Documentation project has been busy adding RDoc documentation to the library
source itself. (I explain RDoc in Chapter 16 on page 187.) This means that you will
increasingly be able to get accurate, up-to-date documentation on a library module

have odd subversion numbers, such as 1.7 and 1.9. These you’ll have to download and build for yourself, as
described on page 3.

Prepared exclusively for Yeganefar

PREFACE XXii

using the ri utility that comes with your Ruby distribution. As a consequence of all
this, I decided to change the style of the library documentation—it is now a road map
to available libraries, showing code samples and describing the overall use. I'll leave
the lower-level details to RDoc.

Throughout the book I've tried to mark changes between 1.6 and 1.8 using a small

E/ symbol in the margin, like the one here. One change I didn’t make: I decided to continue
to use the word we when talking about the authors in the body of the book. Many of the
words there come from the first edition, and I certainly don’t want to claim any credit
for Andy’s work on that book.

In all, this book is a significant overhaul of the first version. I hope you find it useful.

Resources

Visit the Ruby Web site http://www.ruby-lang.org to see what’s new. Chat with
other Ruby users on the newsgroup or mailing lists (see Appendix C).

And I"d certainly appreciate hearing from you. Comments, suggestions, errors in the
text, and problems in the examples are all welcome. E-mail us at

rubybook@pragmaticprogrammer . com
If you tell us about errors in the book, I'll add them to the errata list at
http://www.pragmaticprogrammer.com/titles/ruby/errata.html
You’ll find links to the source code for almost all the book’s example code at

http://www.pragmaticprogrammer.com/titles/ruby

Acknowledgments

For the second edition of the PickAxe, I asked on the Ruby mailing list if anyone would
consider helping review the text. I was overwhelmed with the response: almost one
hundred people volunteered. To keep it manageable, I had to restrict the list on a first-
come basis. Even so, my wonderful reviewers produced more than 1.5Mb of review
text. These folks picked on everything, from misplaced commas to missing methods. I
couldn’t have gotten better help. So a big “thank you” to Richard Amacker, David A.
Black, Tony Bowden, James Britt, Warren Brown, Mike Clark, Ryan Davis (thanks for
the Japanese PDF!), Guy Decoux, Friedrich Dominicus, Thomas Enebo, Chad Fowler,
Hal Fulton, Ben Giddings, Johan Holmberg, Andrew Johnson, Rich Kilmer, Robert
Klemme, Yukihiro Matsumoto, Marcel Molina Jr., Roeland Moors, Michael Neumann,

Prepared exclusively for Yeganefar

http://www.ruby-lang.org
http://www.pragmaticprogrammer.com/titles/ruby/errata.html
http://www.pragmaticprogrammer.com/titles/ruby

PREFACE XXiii

Paul Rogers, Sean Russell, Hugh Sasse, Gavin Sinclair, Tanaka Akira, Juliet Thomas,
Glenn Vanderburg, Koen Vervloesem, and Austin Ziegler.

Chad Fowler wrote the chapter on RubyGems. In fact, he wrote it twice. The first time,
he was on vacation in Europe. On his way home, his Powerbook was stolen, and he lost
all his work. So, when he got back, he cheerfully sat down and did it all again. I can’t
thank him enough.

Kim Wimpsett had the unenviable job of copyediting the book. She did a tremendous
job (and in record time), which was made even more amazing by both the volume of
jargon in the book and by my inability to string together more than two words without
breaking one or more rules of grammar. Ed Giddens did a great job creating the cover,
which nicely blends the old with the new. Thanks to you both!

Finally, I'm still deeply indebted to Yukihiro “Matz” Matsumoto, the creator of Ruby.
Throughout this period of growth and change, he has remained helpful, cheery, and
dedicated to polishing this gem of a language. The friendly and open spirit of the Ruby
community is a direct reflection of the person at its center.

Thank you all. Domo arigato gozaimasu.

Dave Thomas
THE PRAGMATIC PROGRAMMERS
http://www.pragmaticprogrammer.com

Prepared exclusively for Yeganefar

http://www.pragmaticprogrammer.com

PREFACE XXiv

Notation Conventions

Throughout this book, we use the following typographic notations.

Literal code examples are shown using a typewriter-like font.

class SampleCode
def run
#...
end
end

Within the text, Fred#do_something is a reference to an instance method (in this case
do_something) of class Fred, Fred.new?” is a class method, and Fred: : EOF is a class
constant. The decision to use a hash character to indicate instance methods was a tough
one: it isn’t valid Ruby syntax, but we thought that it was important to differentiate
between the instance and class methods of a particular class. When you see us write
File.read, you know we’re talking about the class method read. When instead we
write File#read, we’re referring to the instance method read.

The book contains many snippets of Ruby code. Where possible, we’ve tried to show
what happens when they run. In simple cases, we show the value of expressions on the
same line as the expression. For example:

a=1

b =2

a+b — 3
Here, you can see that the result of evaluating a + b is the value 3, shown to the right
of the arrow. Note that if you simply run this program, you wouldn’t see the value 3
output—you’d need to use a method such as puts to write it out.

At times, we’re also interested in the values of assignment statements, in which case
we’ll show them.

a=1 — 1
b=2 — 2
a+b — 3

If the program produces more complex output, we show it below the program code.
3.times { puts "Hello!" }

produces:

Hello!
Hello!
Hello!

2. In some other Ruby documentation, you may see class methods written as Fred: :new. This is perfectly
valid Ruby syntax; we just happen to think that Fred.new is less distracting to read.

Prepared exclusively for Yeganefar

PREFACE

In some of the library documentation, we wanted to show where spaces appear in the
output. You’ll see these spaces as “_,” characters.

Command-line invocations are shown with literal text in a Roman font, and parameters
you supply are shown in an italic font. Optional elements are shown in large square
brackets.

ruby [flags ...] [progname] [arguments ...]

Prepared exclusively for Yeganefar

Road Map

The main text of this book has four separate parts, each with its own personality, and
each addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with some notes on getting
Ruby running on your system followed by a short chapter on some of the terminology
and concepts that are unique to Ruby. This chapter also includes enough basic syntax
so that the other chapters will make sense. The rest of the tutorial is a top-down look
at the language. There we talk about classes and objects, types, expressions, and all
the other things that make up the language. We end with chapters on unit testing and
digging yourself out when trouble strikes.

One of the great things about Ruby is how well it integrates with its environment.
Part I, Ruby in Its Setting, investigates this. Here you’ll find practical information on
using Ruby: using the interpreter options, using irb, documenting your Ruby code, and
packaging your Ruby gems so that others can enjoy them. You’ll also find tutorials on
some common Ruby tasks: using Ruby with the Web, creating GUI applications using
Tk, and using Ruby in a Microsoft Windows environment (including wonderful things
such as native API calls, COM integration, and Windows Automation). And you’ll
discover just how easy it is to extend Ruby and to embed Ruby within your own code.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll find all the
gory details about the language, the concept of duck typing, the metaclass model,
tainting, reflection, and marshaling. You could probably speed-read this the first time
through, but we think you’ll come back to it as you start to use Ruby in earnest.

The Ruby Library Reference is Part IV. It’s big. We document more than 950 methods
in more than 48 built-in classes and modules (up from 800 methods in 40 classes and

E/ modules in the previous edition). On top of that, we now document the library modules
that are included in the standard Ruby distribution (98 of them).

So, how should you read this book? Well, depending on your level of expertise with
programming in general, and OO in particular, you may initially want to read just a few
portions of the book. Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep
the library reference close at hand as you start to write programs. Get familiar with

Prepared exclusively for Yeganefar XXVi

PREFACE XXVil

the basic classes such as Array, Hash, and String. As you become more comfortable
in the environment, you may want to investigate some of the more advanced topics in
Part III.

If you’re already comfortable with Perl, Python, Java, or Smalltalk, then we suggest
reading Chapter | on page 2, which talks about installing and running Ruby, followed
by the introduction in Chapter 2. From there, you may want to take the slower approach
and keep going with the tutorial that follows, or you can skip ahead to the gritty details
starting in Part III, followed by the library reference in Part IV.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the
language reference in Chapter 22, which begins on page 302, skim the library reference,
then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way
through page by page.

And don’t forget, if you run into a problem that you can’t figure out, help is available.
See Appendix C, beginning on page 758, for more information.

Prepared exclusively for Yeganefar

Part |

Facets of Ruby

Chapter 1

Getting Started

Before we start talking about the Ruby language, it’d be useful if we helped you get
Ruby running on your computer. That way you can try sample code and experiment on
your own as you read along. We’ll also show you some different ways to run Ruby.

Installing Ruby

Quite often, you won’t even need to download Ruby. It now comes preinstalled on many
Linux distributions, and Mac OS X includes Ruby (although the version of Ruby pre-
installed on OS X is normally several minor releases behind the current Ruby version).
Try typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system, or if you’d like to upgrade to a newer
version, you can install it pretty simply. But first, you have a choice to make: go for a
binary distribution, or build Ruby from source?

Binary Distributions

A binary distribution of Ruby simply works out of the box. You install it, and it runs.
Binary distributions are prebuilt for a particular operating environment and are conve-
nient if you don’t want to mess around with building Ruby from source. The downside
of a binary distribution is that you have to take it as given: it may be a minor release
or two behind the leading edge, and it may not have the optional libraries that you
might want. If you can live with that, you’ll need to find a binary distribution for your
operating system and machine architecture.

For RPM-based Linux systems, you can search on http://www.rpmfind.net for a
suitable Ruby RPM. Enter ruby as a search term, and select from the listed version
numbers, architectures, and distributions. For example, ruby-1.8.2.1386 is a binary
distribution of Ruby 1.8.2 for Intel x86 architectures.

Prepared exclusively for Yeganefar 2

http://www.rpmfind.net

INSTALLING RUBY

For Debian dpkg-based Linux systems, you can use the apt-get system to find and
install Ruby. You can use the apt-cache command to search for Ruby packages.

apt-cache search ruby interpreter

libapache-mod-ruby - Embedding Ruby in the Apache web server
liberb-rubyl.6 - Tiny eRuby for Ruby 1.6

liberb-rubyl.8 - Tiny eRuby

ruby - An interpreter of object-oriented scripting language Ruby
rubyl.7 - Interpreter of object-oriented scripting language Ruby
rubyl.8 - Interpreter of object-oriented scripting language Ruby

You can install any of these packages using apt-get.

apt-get install rubyl.8

Reading Package Lists... Done

Building Dependency Tree... Done

The following extra packages will be installed:
librubyl.8

Suggested packages:
rubyl.8-examples

The following NEW packages will be installed:
librubyl.8 rubyl.8

Note that you have to have superuser access to install global packages on a Unix or
Linux box, which is why we show the prompt as a #.

If you’re running on Microsoft Windows, you’ll find the home page of the One-Click
Installer at http://rubyinstaller.rubyforge.org.

Building Ruby from Source

Because Ruby is an open-source project, you can download the source code to the inter-
preter and build it on your own system. Compared to using a binary distribution, this
gives you a lot more control over where things go, and you can keep your installation
totally up-to-date. The downside is that you’re taking on the responsibility of managing
the build and installation process. This isn’t onerous, but it can be scary if you’ve never
installed an open-source application from source.

The first thing to do is to download the source. This comes in three flavors, all from
http://www.ruby-lang.org.

1. The stable release in tarball format. A tarball is an archive file, much like a zip
file. Click the Download Ruby link, and then click the stable release link.

2. The stable snapshot. This is a tarball, created nightly, of the latest source code in
Ruby’s stable development branch. The stable branch is intended for production
code and in general will be reliable. However, because the snapshot is taken daily,
new features may not have received thorough testing yet—the stable tarball in
item (1) will be generally more reliable.

Prepared exclusively for Yeganefar

http://rubyinstaller.rubyforge.org
http://www.ruby-lang.org

II!!lIlII!!!!!!IIIIIIIII!IIIIIIIIIIIIIIII

3. The nightly development snapshot. This is again a tarball, created nightly. Unlike
the stable code in (1) and (2), this code is leading edge, as it is taken from the head
of the development branch. Expect things to be broken in here.

If you plan on downloading either of the nightly snapshots regularly, it may be easier
to subscribe to the source repository directly. The sidebar on the next page gives more
details.

Once you’ve loaded a tarball, you’ll have to expand the archive into its constituent
files. Use the tar command for this (if you don’t have tar installed, you can try using
another archiving utility, as many now support tar-format files).

% tar xzf snapshot.tar.gz
ruby/

ruby/bcc32/
ruby/bcc32/Makefile.sub
ruby/bcc32/README . bcc32

This installs the Ruby source tree in the subdirectory ruby/. In that directory you’ll find
a file named README, which explains the installation procedure in detail. To summa-
rize, you build Ruby on POSIX-based systems using the same four commands you use
for most other open-source applications: ./configure, make, make test, and make
install. You can build Ruby under other environments (including Windows) by using
a POSIX emulation environment such as cygwin' or by using native compilers—see
README.win32 in the distribution’s win32 subdirectory as a starting point.

Source Code from This Book

We’ve made the source code from this book available for download from our web site
athttp://pragmaticprogrammer.com/titles/ruby/code. Sometimes, the listings
of code in the book correspond to a complete source file. Other times, the book contains
just a part of the source in a file—the program file may contain additional scaffolding
to make the code compile.

Running Ruby

Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled
languages, you have two ways to run Ruby—you can type in code interactively, or you
can create program files and run them. Typing in code interactively is a great way to
experiment with the language, but for code that’s more complex, or that you will want
to run more than once, you’ll need to create program files and run them.

1. See http://www.cygwin.com for details.

Prepared exclusively for Yeganefar

http://pragmaticprogrammer.com/titles/ruby/code
http://www.cygwin.com

II!!lIlII!I!!I!!IIIIIIII!IIIIIIIIIIIIIIII

The Very Latest Ruby

For those who just have to be on the very latest, hot-off-the-press
and untested cutting edge (as we were while writing this book), you
can get development versions straight from the developers’ working
repository.

The Ruby developers use CVS (Concurrent Version System, freely
available from https://www.cvshome.org) as their revision control
system. You can check files out as an anonymous user from their
archive by executing the following CVS commands:

% cvs -z4 -d :pserver:anonymous@cvs.ruby-lang.org:/src

>
login

(Logging in to anonymous@cvs.ruby-lang.org)

CVS password:

% cvs -z4 -d :pserver:anonymous@cvs.ruby—lang.org:/srcé_g

checkout ruby

The complete source code tree, just as the developers last left it, will
now be copied to a ruby subdirectory on your machine.

This command will check out the head of the development tree. If you
want the Ruby 1.8 branch, add -r ruby_1_8 after the word checkout
in the second command.

If you use the CVSup mirroring utility (conveniently available from
http://www.cvsup.org), you can find Ruby supfiles on the ruby-1lang
site at http://cvs.ruby-lang.org/cvsup/.

Interactive Ruby

One way to run Ruby interactively is simply to type ruby at the shell prompt. Here
we typed in the single puts expression and an end-of-file character (which is Ctrl+D
on our system). This process works, but it’s painful if you make a typo, and you can’t
really see what’s going on as you type.

% ruby

puts "Hello, world!"
AD

Hello, world!

For most folks, irb—Interactive Ruby—is the tool of choice for executing Ruby inter-
actively. irb is a Ruby Shell, complete with command-line history, line-editing capabil-
ities, and job control. (In fact, it has its own chapter beginning on page 174.) You run
irb from the command line. Once it starts, just type in Ruby code. It will show you the
value of each expression as it evaluates it.

Prepared exclusively for Yeganefar

https://www.cvshome.org
http://www.cvsup.org
http://cvs.ruby-lang.org/cvsup/

RUNNING RuBY

% irb

irb(main):001:0> def sum(nl, n2)
irb(main):002:1> nl + n2
irb(main):003:1> end

=> nil

irb(main):004:0> sum(3, 4)

=7

irb(main) :005:0> sum("cat", "dog")
=> "catdog"

We recommend that you get familiar with irb so you can try some of our examples
interactively.

There’s a trick when you want to use irb to try our example code that’s already in a file.
Say, for example, you wanted to try the Fibonacci module listed on page 196. You can
do this from within irb by loading in the program file and then calling the methods it
contains. In this case, the program file is in code/rdoc/fib_example.rb.

% irb

irb(main):001:0> load "code/rdoc/fib_example.rb"

=> true

irb(main):002:0> Fibonacci.upto(20)

= [1, 1, 2, 3, 5, 8, 13]

Ruby Programs

You can run a Ruby program from a file as you would any other shell script, Perl
program, or Python program. Simply run the Ruby interpreter, giving it the script name
as an argument.

% ruby myprog.rb

You can also use the Unix “shebang” notation as the first line of the program file.>
#!/usr/local/bin/ruby -w
puts "Hello, world!"

If you make this source file executable (using, for instance, chmod +x myprog.rb),

Unix lets you run the file as a program.

% ./myprog.rb
Hello, world!

You can do something similar under Microsoft Windows using file associations, and
you can run Ruby GUI applications by double-clicking their names in Explorer.

2. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using
#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

Prepared exclusively for Yeganefar

RuBY DOCUMENTATION: RDOC AND RI

Ruby Documentation: RDoc and ri

As the volume of the Ruby libraries has grown, it has become impossible to docu-
ment them all in one book; the standard library that comes with Ruby now contains
more than 9,000 methods. Fortunately, an alternative to paper documentation exists for
these methods (and classes and modules). Many are now documented internally using
a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and
converted into HTML and ri formats.

Several sites on the Web contain a complete set of the RDoc documentation for Ruby,
but http://www.ruby-doc.org is probably the best known. Browse on over, and
you should be able to find at least some form of documentation for any Ruby library.
They’re adding new documentation all the time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby
distributions now also install the resources used by the ri program.

To find the documentation for a class, type ri ClassName. For example, the following
lists the summary information for the GC class. (For a list of classes with ri documenta-
tion, type ri -c.)

% ri GC

Class: GC
The GC module provides an interface to Ruby's mark and sweep
garbage collection mechanism. Some of the underlying methods are
also available via the ObjectSpace module.

Class methods:
disable, enable, start

Instance methods:
garbage_collect

For information on a particular method, give its name as a parameter.

% ri enable
GC::enable

GC.enable => true or false

Enables garbage collection, returning true if garbage collection
was previously disabled.

GC.disable #=> false

GC.enable #=> true
GC.enable #=> false

Prepared exclusively for Yeganefar

http://www.ruby-doc.org

RuBY DOCUMENTATION: RDOC AND RI

If the method you pass to ri occurs in more than one class or module, ri will list all of
the alternatives. Reissue the command, prefixing the method name with the name of
the class and a dot.

% ri start

More than one method matched your request. You can refine
your search by asking for information on one of:

Date#new_start, Date#start, GC::start, Logger::Application#start,
Thread: :start

% ri GC.start
GC::start

GC.start => nil
gc.garbage_collect => nil
ObjectSpace.garbage_collect => nil

Initiates garbage collection, unless manually disabled.

For general help on using ri, type “ri --help”. In particular you might want to experi-
ment with the “--format” option, which tells ri how to render decorated text (such as
section headings). If your terminal program supports ANSI escape sequences, using
“--format ansi” will generate a nice, colorful display. Once you find a set of options
you like, you can set them into the RI environment variable. Using my shell (zsh), this
would be done using:

% export RI="--format ansi --width 70"

If a class or module isn’t yet documented in RDoc format, ask the friendly folks over
at suggestions@ruby-doc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you’re not a regular visitor
to the shell prompt. But, in reality, it isn’t that difficult, and the power you get from
being able to string together commands this way is often surprising. Stick with it, and
you’ll be well on your way to mastering both Ruby and your computer.

Prepared exclusively for Yeganefar

Chapter 2

Ruby.new

When we originally designed this book, we had a grand plan (we were younger then).
We wanted to document the language from the top down, starting with classes and
objects and ending with the nitty-gritty syntax details. It seemed like a good idea at the
time. After all, most everything in Ruby is an object, so it made sense to talk about
objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write
examples of classes. Throughout our top-down description, we kept coming across
low-level details we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing).
We’d still describe Ruby starting at the top. But before we did that, we’d add a short
chapter that described all the common language features used in the examples along
with the special vocabulary used in Ruby, a kind of minitutorial to bootstrap us into the
rest of the book.

Ruby Is an Object-Oriented Language

Let’s say it again. Ruby is a genuine object-oriented language. Everything you manip-
ulate is an object, and the results of those manipulations are themselves objects. How-
ever, many languages make the same claim, and their users often have a different inter-
pretation of what object-oriented means and a different terminology for the concepts
they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that
we’ll be using.

Prepared exclusively for Yeganefar 9

RuBY Is AN OBJECT-ORIENTED LANGUAGE

When you write object-oriented code, you’re normally looking to model concepts from
the real world in your code. Typically during this modeling process you’ll discover
categories of things that need to be represented in code. In a jukebox, the concept of
a “song” could be such a category. In Ruby, you’d define a class to represent each of
these entities. A class is a combination of state (for example, the name of the song) and
methods that use that state (perhaps a method to play the song).

Once you have these classes, you’ll typically want to create a number of instances
of each. For the jukebox system containing a class called Song, you’d have separate
instances for popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String
of Pearls,” “Small Talk,” and so on. The word object is used interchangeably with
class instance (and being lazy typists, we’ll probably be using the word object more
frequently).

In Ruby, these objects are created by calling a constructor, a special method associated
with a class. The standard constructor is called new.

songl = Song.new("Ruby Tuesday")
song?2 = Song.new("Enveloped in Python")
and so on

These instances are both derived from the same class, but they have unique charac-
teristics. First, every object has a unique object identifier (abbreviated as object ID).
Second, you can define instance variables, variables with values that are unique to
each instance. These instance variables hold an object’s state. Each of our songs, for
example, will probably have an instance variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of func-
tionality that may be called from within the class and (depending on accessibility con-
straints) from outside the class. These instance methods in turn have access to the
object’s instance variables and hence to the object’s state.

Methods are invoked by sending a message to an object. The message contains the
method’s name, along with any parameters the method may need.! When an object
receives a message, it looks into its own class for a corresponding method. If found,
that method is executed. If the method isn’t found. .. well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is
very natural. Let’s look at some method calls.

"gin joint".length — 9
"Rick".index("c") — 2
-1942.abs — 1942
sam.play(song) — "duh dum, da dum de dum ..."
1. This idea of expressing method calls in the form of messages comes from Smalltalk.

Prepared exclusively for Yeganefar

SOME BASIC RuBY

(Remember, in the code examples in this book, the arrows show the value of an expres-
sion. The result of executing -1942.abs is 1942. If you just typed this code into a
file and ran it using Ruby, you’d see no output, because we didn’t tell Ruby to display
anything. If you’re using irb, you’d see the values we show in the book.)

Here, the thing before the period is called the receiver, and the name after the period is
the method to be invoked. The first example asks a string for its length, and the second
asks a different string to find the index of the letter c¢. The third line has a number
calculate its absolute value. Finally, we ask Sam to play us a song.

It’s worth noting here a major difference between Ruby and most other languages. In
(say) Java, you’d find the absolute value of some number by calling a separate function
and passing in that number. You could write

number = Math.abs(number) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take
care of the details internally. You simply send the message abs to a number object and
let it do the work.

number = number.abs

The same applies to all Ruby objects: in C you’d write strlen(name), butin Ruby it’s
name.length, and so on. This is part of what we mean when we say that Ruby is a
genuine object-oriented language.

Some Basic Ruby

Not many people like to read heaps of boring syntax rules when they’re picking up a
new language, so we’re going to cheat. In this section we’ll hit some of the highlights—
the stuff you’ll just have to know if you’re going to write Ruby programs. Later, in
Chapter 22, which begins on page 302, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We’ll write a method that returns a cheery,
personalized greeting. We’ll then invoke that method a couple of times.

def say_goodnight (name)

result = "Good night, " + name
return result
end

Time for bed...
puts say_goodnight("John-Boy")
puts say_goodnight("Mary-Ellen")

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends
of statements as long as you put each statement on a separate line. Ruby comments
start with a # character and run to the end of the line. Code layout is pretty much up to

Prepared exclusively for Yeganefar

SOME BASIC RuBY

you; indentation is not significant (but using two-character indentation will make you
friends in the community if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this
case, say_goodnight) and the method’s parameters between parentheses. (In fact, the
parentheses are optional, but we like to use them.) Ruby doesn’t use braces to delimit
the bodies of compound statements and definitions. Instead, you simply finish the body
with the keyword end. Our method’s body is pretty simple. The first line concatenates
the literal string "Good night, " and the parameter name and assigns the result to the
local variable result. The next line returns that result to the caller. Note that we didn’t
have to declare the variable result; it sprang into existence when we assigned to it.

Having defined the method, we call it twice. In both cases we pass the result to the
method puts, which simply outputs its argument followed by a newline (moving on to
the next line of output).

Good night, John-Boy
Good night, Mary-Ellen

The line puts say_goodnight ("John-Boy") contains two method calls, one to the
method say_goodnight and the other to the method puts. Why does one call have its
arguments in parentheses while the other doesn’t? In this case it’s purely a matter of
taste. The following lines are both equivalent.

puts say_goodnight("John-Boy")
puts(say_goodnight("John-Boy"))

However, life isn’t always that simple, and precedence rules can make it difficult to
know which argument goes with which method invocation, so we recommend using
parentheses in all but the simplest cases.

This example also shows some Ruby string objects. You have many ways to create
a string object, but probably the most common is to use string literals: sequences of
characters between single or double quotation marks. The difference between the two
forms is the amount of processing Ruby does on the string while constructing the literal.
In the single-quoted case, Ruby does very little. With a few exceptions, what you type
into the string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions—
sequences that start with a backslash character—and replaces them with some binary
value. The most common of these is \n, which is replaced with a newline character.
When a string containing a newline is output, the \n forces a line break.

puts "And good night,\nGrandma"

produces:

And good night,
Grandma

Prepared exclusively for Yeganefar

SOME BASIC RuBY

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{expression} is replaced by the value of expression.
We could use this to rewrite our previous method.

def say_goodnight(name)
result = "Good night, #{name}"
return result

end

puts say_goodnight('Pa')

produces:

Good night, Pa
When Ruby constructs this string object, it looks at the current value of name and
substitutes it into the string. Arbitrarily complex expressions are allowed in the #{. . .}

construct. Here we invoke the capitalize method, defined for all strings, to output
our parameter with a leading uppercase letter.

def say_goodnight(name)

result = "Good night, #{name.capitalize}"
return result
end

puts say_goodnight('uncle')

produces:
Good night, Uncle

As a shortcut, you don’t need to supply the braces when the expression is simply a
global, instance, or class variable (which we’ll talk about shortly).

$greeting = "Hello" # $greeting is a global variable
@name = "Prudence" # @name is an instance variable
puts "#$greeting, #@name"

produces:

Hello, Prudence

For more information on strings, as well as on the other Ruby standard types, see Chap-
ter 5, which begins on page 55.

Finally, we could simplify this method some more. The value returned by a Ruby
method is the value of the last expression evaluated, so we can get rid of the temporary
variable and the return statement altogether.

def say_goodnight(name)

"Good night, #{name}"

end

puts say_goodnight('Ma')
produces:

Good night, Ma

Prepared exclusively for Yeganefar

ARRAYS AND HASHES

We promised that this section would be brief. We’ve got just one more topic to cover:
Ruby names. For brevity, we’ll be using some terms (such as class variable) that we
aren’t going to define here. However, by talking about the rules now, you’ll be ahead of
the game when we actually come to discuss class variables and the like later.

Ruby uses a convention to help it distinguish the usage of a name: the first characters of
a name indicate how the name is used. Local variables, method parameters, and method
names should all start with a lowercase letter or with an underscore. Global variables
are prefixed with a dollar sign ($), and instance variables begin with an “at” sign (@).
Class variables start with two “at” signs (@ @). Finally, class names, module names,
and constants must start with an uppercase letter. Samples of different names are given
in Table 2.1 on the next page.

Following this initial character, a name can be any combination of letters, digits, and
underscores (with the proviso that the character following an @ sign may not be a digit).
However, by convention multiword instances variables are written with underscores
between the words, and multiword class names are written in MixedCase (with each
word capitalized).

Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of objects,
accessible using a key. With arrays, the key is an integer, whereas hashes support any
object as a key. Both arrays and hashes grow as needed to hold new elements. It’s more
efficient to access array elements, but hashes provide more flexibility. Any particular
array or hash can hold objects of differing types; you can have an array containing an
integer, a string, and a floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements by
supplying an index between square brackets, as the next example shows. Note that
Ruby array indices start at zero.

a=1[1, 'cat', 3.14] # array with three elements
access the first element

a[0] — 1

set the third element
al[2] = nil

dump out the array

a — [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many
languages, the concept of nil (or null) means “no object.” In Ruby, that’s not the case;
nil is an object, just like any other, that happens to represent nothing. Anyway, back
to arrays and hashes.

Prepared exclusively for Yeganefar

ARRAYS AND HASHES

Table 2.1. Example variable and class names

Variables Constants and
Local Global Instance Class Class Names
name $debug @name @@total PI
fish_and_chips $CUSTOMER @point_1 @@symtab FeetPerMile
X_axis $_ @X @@N String
thx1138 $plan9 @_ @@x_pos MyClass
_26 $Global @plan9 @@SINGLE JazzSong

Sometimes creating arrays of words can be a pain, what with all the quotes and com-
mas. Fortunately, Ruby has a shortcut: %w does just what we want.

a=['"ant', 'bee', '
a[0] — "ant"

a[3] — "dog"

this is the same:

a = %w{ ant bee cat dog elk }
al[0] "ant"

al[3] "dog"

cat', 'dog', 'elk']

1l

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.
The literal must supply two objects for every entry: one for the key, the other for the
value.

For example, you may want to map musical instruments to their orchestral sections.
You could do this with a hash.

inst_section = {

'cello’ => 'string',
'clarinet’' => 'woodwind',
"drum' => 'percussion',
'oboe’ => 'woodwind',
'trumpet’ => 'brass',
'violin' => 'string'

}

The thing to the left of the => is the key, and that on the right is the corresponding value.
Keys in a particular hash must be unique—you can’t have two entries for “drum.” The
the keys and values in a hash can be arbitrary objects—you can have hashes where the
values are arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays.

inst_section['oboe'] — "woodwind"
inst_section['cello'] — "string"
inst_section['bassoon'] — nil

Prepared exclusively for Yeganefar

CONTROL STRUCTURES

As the last example shows, a hash by default returns nil when indexed by a key it
doesn’t contain. Normally this is convenient, as nil means false when used in condi-
tional expressions. Sometimes you’ll want to change this default. For example, if you’re
using a hash to count the number of times each key occurs, it’s convenient to have the
default value be zero. This is easily done by specifying a default value when you create
a new, empty hash.

histogram = Hash.new(0)

histogram['keyl'] — 0

histogram['keyl'] = histogram['keyl'] + 1

histogram['keyl'] — 1
Array and hash objects have lots of useful methods: see the discussion starting on
page 40, and the reference sections starting on pages 406 and 471, for details.

Control Structures

Ruby has all the usual control structures, such as if statements and while loops. Java,
C, and Perl programmers may well get caught by the lack of braces around the bodies
of these statements. Instead, Ruby uses the keyword end to signify the end of a body.

if count > 10

puts "Try again"
elsif tries ==

puts "You lose"
else

puts "Enter a number"
end

Similarly, while statements are terminated with end.

while weight < 100 and num_pallets <= 30
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions.
For example, the method gets returns the next line from the standard input stream or
nil when end of file is reached. Because Ruby treats nil as a false value in conditions,
you could write the following to process the lines in a file.

while line = gets

puts line.downcase
end

Here, the assignment statement sets the variable 1ine to either the next line of text or
nil, and then the while statement tests the value of the assignment, terminating the
loop when it is nil.

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

Ruby statement modifiers are a useful shortcut if the body of an if or while statement
is just a single expression. Simply write the expression, followed by if or while and
the condition. For example, here’s a simple if statement.

if radiation > 3000
puts "Danger, Will Robinson"
end

Here it is again, rewritten using a statement modifier.

puts "Danger, Will Robinson" if radiation > 3000

Similarly, a while loop such as

square = 2

while square < 1000
square = squarexsquare

end

becomes the more concise

2
square*square while square < 1000

square
square

These statement modifiers should seem familiar to Perl programmers.

Regular Expressions

Most of Ruby’s built-in types will be familiar to all programmers. A majority of lan-
guages have strings, integers, floats, arrays, and so on. However, regular expression
support is typically built into only scripting languages, such as Ruby, Perl, and awk.
This is a shame: regular expressions, although cryptic, are a powerful tool for working
with text. And having them built in, rather than tacked on through a library interface,
makes a big difference.

Entire books have been written about regular expressions (for example, Mastering Reg-
ular Expressions [Fri02]), so we won’t try to cover everything in this short section.
Instead, we’ll look at just a few examples of regular expressions in action. You’ll find
full coverage of regular expressions starting on page 64.

A regular expression is simply a way of specifying a pattern of characters to be matched
in a string. In Ruby, you typically create a regular expression by writing a pattern
between slash characters (/pattern/). And, Ruby being Ruby, regular expressions are
objects and can be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or
the text Python using the following regular expression.

/Perl|Python/

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

The forward slashes delimit the pattern, which consists of the two things we’re match-
ing, separated by a pipe character (|). This pipe character means “either the thing on
the right or the thing on the left,” in this case either Perl or Python. You can use paren-
theses within patterns, just as you can in arithmetic expressions, so you could also have
written this pattern as

/P(erl|ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an
a followed by one or more b’s, followed by a c¢. Change the plus to an asterisk, and
/abxc/ creates a regular expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common exam-
ples are character classes such as \'s, which matches a whitespace character (space, tab,
newline, and so on); \d, which matches any digit; and \w, which matches any character
that may appear in a typical word. A dot (.) matches (almost) any character. A table of
these character classes appears on page 68.

We can put all this together to produce some useful regular expressions.

/\d\d:\d\d:\d\d/ # a time such as 12:34:56

/Perl.+Python/ # Perl, zero or more other chars, then Python
/Perl Python/ # Perl, a space, and Python

/Perl +Python/ # Perl, zero or more spaces, and Python

/Perl +Python/ # Perl, one or more spaces, and Python
/Perl\s+Python/ # Perl, whitespace characters, then Python

/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Once you have created a pattern, it seems a shame not to use it. The match operator
=~ can be used to match a string against a regular expression. If the pattern is found in
the string, =~ returns its starting position, otherwise it returns nil. This means you can
use regular expressions as the condition in if and while statements. For example, the
following code fragment writes a message if a string contains the text Perl or Python.

if line =~ /Perl|Python/
puts "Scripting language mentioned: #{line}"
end

The part of a string matched by a regular expression can be replaced with different text
using one of Ruby’s substitution methods.

line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby’
line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby’

You can replace every occurrence of Perl and Python with Ruby using
line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

Blocks and Iterators

This section briefly describes one of Ruby’s particular strengths. We’re about to look
at code blocks: chunks of code you can associate with method invocations, almost as
if they were parameters. This is an incredibly powerful feature. One of our reviewers
commented at this point: “This is pretty interesting and important, and so if you weren’t
paying attention before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anony-
mous inner classes), to pass around chunks of code (but they’re more flexible than C’s
function pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do. . . end.

{ puts "Hello" } # this is a block

do ###
club.enroll(person) # and so is this
person.socialize #

end ###

Why are there two kinds of delimiter? It’s partly because sometimes one feels more
natural to write than another. It’s partly too because they have different precedences:
the braces bind more tightly than the do/end pairs. In this book, we try to follow what
is becoming a Ruby standard and use braces for single-line blocks and do/end for
multiline blocks.

Once you’ve created a block, you can associate it with a call to a method. You do this
by putting the start of the block at the end of the source line containing the method call.
For example, in the following code, the block containing puts "Hi" is associated with
the call to the method greet.

greet { puts "Hi" }
If the method has parameters, they appear before the block.

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield
statement. You can think of yield as being something like a method call that calls out
to the block associated with the method containing the yield.

The following example shows this in action. We define a method that calls yield twice.
We then call this method, putting a block on the same line, after the call (and after any
arguments to the method).”

2. Some people like to think of the association of a block with a method as a kind of parameter passing.
This works on one level, but it isn’t really the whole story. You may be better off thinking of the block and
the method as coroutines, which transfer control back and forth between themselves.

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

def call_block
puts "Start of method"
yield
yield
puts "End of method"
end

call_block { puts "In the block" }

produces:

Start of method
In the block
In the block
End of method

See how the code in the block (puts "In the block") is executed twice, once for
each call to yield.

You can provide parameters to the call to yield: these will be passed to the block.
Within the block, you list the names of the arguments to receive these parameters
between vertical bars ().

def call_block
yield("hello", 99)

end \ \

call_block {|str, num| ... }

Code blocks are used throughout the Ruby library to implement iterators: methods that
return successive elements from some kind of collection, such as an array.

animals = %w(ant bee cat dog elk) # create an array
animals.each {|animal| puts animal } # iterate over the contents

produces:

ant
bee
cat
dog
elk

Let’s look at how we could implement the Array class’s each iterator that we used
in the previous example. The each iterator loops through every element in the array,
calling yield for each one. In pseudo-code, this may look like

within class Array...
def each
for each element # <-- not valid Ruby
yield(element)
end
end

Prepared exclusively for Yeganefar

READING AND 'RITING

Many of the looping constructs that are built into languages such as C and Java are
simply method calls in Ruby, with the methods invoking the associated block zero or

more times.
['cat', 'dog', 'horse'].each {|name| print name, " " }
5.times { print "+" }
3.upto(6) {|i| print i }
('a'..'"e").each {|char| print char }
produces:
cat dog horse x##xx3456abcde

Here we ask the object 5 to call a block five times and then ask the object 3 to call a
block, passing in successive values until it reaches 6. Finally, the range of characters
from a to e invokes a block using the method each.

Reading and ’Riting

Ruby comes with a comprehensive I/O library. However, in most of the examples in this
book we’ll stick to a few simple methods. We’ve already come across two methods that
do output. puts writes its arguments, adding a newline after each. print also writes
its arguments, but with no newline. Both can be used to write to any I/O object, but by
default they write to standard output.

Another output method we use a lot is printf, which prints its arguments under the
control of a format string (just like printf in C or Perl).

printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")

produces:

Number: 1.23,
String: hello

In this example, the format string "Number: %5.2f,\nString: %s\n" tells printf
to substitute in a floating-point number (allowing five characters in total, with two after
the decimal point) and a string. Notice the newlines (\n) embedded in the string; each
moves the output onto the next line.

You have many ways to read input into your program. Probably the most traditional is
to use the routine gets, which returns the next line from your program’s standard input
stream.

line = gets
print line

Prepared exclusively for Yeganefar

ONWARD AND UPWARD

Ruby Escapes Its Past

In the old days Ruby borrowed a lot from the Perl language. One of
these features is a certain “magic” when it comes to global variables,
and probably no global is more magical than $_. For example, the
gets method has a side effect: as well as returning the line just read,
it also stores it into $_. If you call print with no argument, it prints the
contents of $_. If you write an if or while statement with just a regular
expression as the condition, that expression is matched against $_.
As a result of all this magic, you could write the following program to
look for all lines in a file containing the text Ruby.

while gets
if /Ruby/
print
end
end

However, this style of Ruby programming is rapidly falling out of fash-
ion with purists. As one of these purists happens to be Matz, you'’ll
now find that Ruby issues warnings for many of these special uses:
expect to see these features go away in the future.

That doesn’t mean you have to write more verbose programs. The
“Ruby way” to write this would be to use an iterator and the predefined
object ARGF, which represents the program’s input files.

ARGF.each {|line| print line if line =~ /Ruby/ }
You could write it even more concisely.
print ARGF.grep(/Ruby/)

In general, there’s a move away from some of the Perlisms in the
Ruby community. If you run your programs with the -w flag to enable
warnings (you do run with warnings enabled, don’t you?), you'll find
the Ruby interpreter catches most of them.

Onward and Upward

That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby.
We’ve had a look at objects, methods, strings, containers, and regular expressions, seen
some simple control structures, and looked at some rather nifty iterators. We hope this
chapter has given you enough ammunition to be able to attack the rest of this book.

Time to move on, and up—up to a higher level. Next, we’ll be looking at classes and
objects, things that are at the same time both the highest-level constructs in Ruby and
the essential underpinnings of the entire language.

Prepared exclusively for Yeganefar

Chapter 3

Classes, Objects, and
Variables

From the examples we’ve shown so far, you may be wondering about our earlier asser-
tion that Ruby is an object-oriented language. Well, this chapter is where we justify
that claim. We’re going to be looking at how you create classes and objects in Ruby
and at some of the ways in which Ruby is more powerful than most object-oriented lan-
guages. Along the way, we’ll be implementing part of our next billion-dollar product,
the Internet Enabled Jazz and Bluegrass jukebox.

After months of work, our highly paid Research and Development folks have deter-
mined that our jukebox needs songs. So it seems like a good idea to start by setting
up a Ruby class that represents things that are songs. We know that a real song has a
name, an artist, and a duration, so we’ll want to make sure that the song objects in our
program do, too.

We’ll start by creating the basic class Song,! which contains just a single method,

initialize.
class Song
def initialize(name, artist, duration)
@name = name
@artist = artist
@duration = duration
end
end

initialize is a special method in Ruby programs. When you call Song . new to create
a new Song object, Ruby allocates some memory to hold an uninitialized object and

1. As we mentioned on page 14, class names start with an uppercase letter, and method names normally
start with a lowercase letter.

Prepared exclusively for Yeganefar

then calls that object’s initialize method, passing in any parameters that were passed
to new. This gives you a chance to write code that sets up your object’s state.

For class Song, the initialize method takes three parameters. These parameters act
just like local variables within the method, so they follow the local variable naming
convention of starting with a lowercase letter.

Each object represents its own song, so we need each of our Song objects to carry
around its own song name, artist, and duration. This means we need to store these
values as instance variables within the object. Instance variables are accessible to all
the methods in an object, and each object has its own copy of its instance variables.

In Ruby, an instance variable is simply a name preceded by an “at” sign (@). In our
example, the parameter name is assigned to the instance variable @name, artist is
assigned to @artist, and duration (the length of the song in seconds) is assigned to
@duration.

Let’s test our spiffy new class.

song = Song.new("Bicylops", "Fleck", 260)
song.inspect — #<Song:0xlc7ca8 @name="Bicylops", @duration=260,
@artist="Fleck">

Well, it seems to work. By default, the inspect message, which can be sent to any
object, formats the object’s ID and instance variables. It looks as though we have them
set up correctly.

Our experience tells us that during development we’ll be printing out the contents of
a Song object many times, and inspect’s default formatting leaves something to be
desired. Fortunately, Ruby has a standard message, to_s, that it sends to any object it
wants to render as a string. Let’s try it on our song.

song = Song.new("Bicylops", "Fleck", 260)
song.to_s — "#<Song:0x1lc7ec4>"

That wasn’t too useful—it just reported the object ID. So, let’s override to_s in our
class. As we do this, we should also take a moment to talk about how we’re showing
the class definitions in this book.

In Ruby, classes are never closed: you can always add methods to an existing class.
This applies to the classes you write as well as the standard, built-in classes. Just open
a class definition for an existing class, and the new contents you specify will be added
to whatever’s there.

This is great for our purposes. As we go through this chapter, adding features to our
classes, we’ll show just the class definitions for the new methods; the old ones will
still be there. It saves us having to repeat redundant stuff in each example. Obviously,
though, if you were creating this code from scratch, you’d probably just throw all the
methods into a single class definition.

Prepared exclusively for Yeganefar

INHERITANCE AND MESSAGES

Enough detail! Let’s get back to adding a to_s method to our Song class. We’ll use the
character in the string to interpolate the value of the three instance variables.

class Song
def to_s
"Song: #@name--#@artist (#@duration)"
end
end
song = Song.new("Bicylops", "Fleck", 260)
song.to_s — "Song: Bicylops--Fleck (260)"
Excellent, we’re making progress. However, we’ve slipped something subtle into the
mix. We said that Ruby supports to_s for all objects, but we didn’t say how. The answer
has to do with inheritance, subclassing, and how Ruby determines what method to run
when you send a message to an object. This is a subject for a new section, so....

Inheritance and Messages

Inheritance allows you to create a class that is a refinement or specialization of another
class. For example, our jukebox has the concept of songs, which we encapsulate in
class Song. Then marketing comes along and tells us that we need to provide karaoke
support. A karaoke song is just like any other (it doesn’t have a vocal track, but that
doesn’t concern us). However, it also has an associated set of lyrics, along with timing
information. When our jukebox plays a karaoke song, the lyrics should flow across the
screen on the front of the jukebox in time with the music.

An approach to this problem is to define a new class, KaraokeSong, that is just like
Song but with a lyric track.

class KaraokeSong < Song
def initialize(name, artist, duration, lyrics)
super (name, artist, duration)
@lyrics = lyrics
end
end

The “< Song” on the class definition line tells Ruby that a KaraokeSong is a sub-
class of Song. (Not surprisingly, this means that Song is a superclass of KaraokeSong.
People also talk about parent-child relationships, so KaraokeSong’s parent would be
Song.) For now, don’t worry too much about the initialize method; we’ll talk about
that super call later.

Let’s create a KaraokeSong and check that our code worked. (In the final system, the
lyrics will be held in an object that includes the text and timing information.) To test
our class, though, we’ll just use a string. This is another benefit of dynamically typed
languages—we don’t have to define everything before we start running code.

Prepared exclusively for Yeganefar

INHERITANCE AND MESSAGES

song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")
song.to_s — "Song: My Way--Sinatra (225)"

Well, it ran. But why doesn’t the to_s method show the lyric?

The answer has to do with the way Ruby determines which method should be called
when you send a message to an object. During the initial parsing of the program source,
when Ruby comes across the method invocation song. to_s, it doesn’t actually know
where to find the method to_s. Instead, it defers the decision until the program is run.
At that time, it looks at the class of song. If that class implements a method with the
same name as the message, that method is run. Otherwise, Ruby looks for a method in
the parent class, and then in the grandparent, and so on up the ancestor chain. If it runs
out of ancestors without finding the appropriate method, it takes a special action that
normally results in an error being raised.”

Back to our example. We sent the message to_s to song, an object of class Karaoke-
Song. Ruby looks in KaraokeSong for a method called to_s but doesn’t find it. The
interpreter then looks in KaraokeSong’s parent, class Song, and there it finds the to_s
method that we defined on page 24. That’s why it prints out the song details but not the
lyrics—class Song doesn’t know anything about lyrics.

Let’s fix this by implementing KaraokeSong#to_s. You have a number of ways to do
this. Let’s start with a bad way. We’ll copy the to_s method from Song and add on the
lyric.
class KaraokeSong
...
def to_s
"KS: #@name--#@artist (#@duration) [#@lyrics]"
end
end

song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")
song.to_s — "KS: My Way--Sinatra (225) [And now, the...]"

We’re correctly displaying the value of the @lyrics instance variable. To do this, the
subclass directly accesses the instance variables of its ancestors. So why is this a bad
way to implement to_s?

The answer has to do with good programming style (and something called decoupling).
By poking around inside our parent’s internal structure, and explicitly examining its
instance variables, we’re tying ourselves tightly to its implementation. Say we decided
to change Song to store the duration in milliseconds. Suddenly, KaraokeSong would
start reporting ridiculous values. The idea of a karaoke version of “My Way” that lasts
for 3,750 minutes is just too frightening to consider.

2. In fact, you can intercept this error, which allows you to fake out methods at runtime. This is described
under Object#method_missing on page 551.

Prepared exclusively for Yeganefar

OBJECTS AND ATTRIBUTES

We get around this problem by having each class handle its own implementation details.
When KaraokeSong#to_s is called, we’ll have it call its parent’s to_s method to get
the song details. It will then append to this the lyric information and return the result.
The trick here is the Ruby keyword super. When you invoke super with no arguments,
Ruby sends a message to the parent of the current object, asking it to invoke a method
of the same name as the method invoking super. It passes this method the parameters
that were passed to the originally invoked method. Now we can implement our new
and improved to_s.

class KaraokeSong < Song

Format ourselves as a string by appending

our lyrics to our parent's #to_s value.

def to_s

super + " [#@lyrics]"

end
end
song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")
song.to_s — "Song: My Way--Sinatra (225) [And now, the...]"

We explicitly told Ruby that KaraokeSong was a subclass of Song, but we didn’t spec-
ify a parent class for Song itself. If you don’t specify a parent when defining a class,
Ruby supplies class Object as a default. This means that all objects have Object as
an ancestor and that Object’s instance methods are available to every object in Ruby.
Back on page 24 we said that to_s is available to all objects. Now we know why; to_s
is one of more than 35 instance methods in class Object. The complete list begins on
page 546.

So far in this chapter we’ve been looking at classes and their methods. Now it’s time to
move on to the objects, such as the instances of class Song.

Objects and Attributes

The Song objects we’ve created so far have an internal state (such as the song title and
artist). That state is private to those objects—no other object can access an object’s
instance variables. In general, this is a Good Thing. It means that the object is solely
responsible for maintaining its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then
you can’t do anything with it. You’ll normally define methods that let you access and
manipulate the state of an object, allowing the outside world to interact with the object.
These externally visible facets of an object are called its attributes.

For our Song objects, the first thing we may need is the ability to find out the title and
artist (so we can display them while the song is playing) and the duration (so we can
display some kind of progress bar).

Prepared exclusively for Yeganefar

OBJECTS AND ATTRIBUTES

Inherit | Mixi

Some object-oriented languages (such as C++) support multiple
inheritance, where a class can have more than one immediate par-
ent, inheriting functionality from each. Although powerful, this tech-
nique can be dangerous, as the inheritance hierarchy can become
ambiguous.

Other languages, such as Java and C#, support single inheritance.
Here, a class can have only one immediate parent. Although cleaner
(and easier to implement), single inheritance also has drawbacks—in
the real world objects often inherit attributes from multiple sources (a
ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you
the simplicity of single inheritance and the power of multiple inheri-
tance. A Ruby class has only one direct parent, so Ruby is a single-
inheritance language. However, Ruby classes can include the func-
tionality of any number of mixins (a mixin is like a partial class defi-
nition). This provides a controlled multiple-inheritance-like capability
with none of the drawbacks. We’'ll explore mixins more beginning on
page 111.

class Song
def name
@name
end
def artist
@artist
end
def duration
@duration
end
end
song = Song.new("Bicylops", "Fleck", 260)
song.artist — "Fleck"
song.name — "Bicylops"
song.duration — 260

Here we’ve defined three accessor methods to return the values of the three instance
variables. The method name (), for example, returns the value of the instance variable
@name. Because this is such a common idiom, Ruby provides a convenient shortcut:
attr_reader creates these accessor methods for you.

class Song

attr_reader :name, :artist, :duration
end

Prepared exclusively for Yeganefar

OBJECTS AND ATTRIBUTES

song = Song.new("Bicylops", "Fleck", 260)

song.artist — "Fleck"

song.name — "Bicylops"

song.duration — 260
This example has introduced something new. The construct :artist is an expression
that returns a Symbol object corresponding to artist. You can think of :artist as
meaning the name of the variable artist, and plain artist as meaning the value
of the variable. In this example, we named the accessor methods name, artist, and
duration. The corresponding instance variables, @name, @artist, and @duration,
will be created automatically. These accessor methods are identical to the ones we
wrote by hand earlier.

Writable Attributes

Sometimes you need to be able to set an attribute from outside the object. For example,
let’s assume that the duration that is initially associated with a song is an estimate
(perhaps gathered from information on a CD or in the MP3 data). The first time we
play the song, we get to find out how long it actually is, and we store this new value
back in the Song object.

In languages such as C++ and Java, you’d do this with setter functions.

class JavaSong { // Java code
private Duration _duration;

public void setDuration(Duration newDuration) {
_duration = newDuration;

}

}
s = new Song(....);
s.setDuration(length);

In Ruby, the attributes of an object can be accessed as if they were any other variable.
We’ve seen this above with phrases such as song.name. So, it seems natural to be able
to assign to these variables when you want to set the value of an attribute. In Ruby you
do that by creating a method whose name ends with an equals sign. These methods can
be used as the target of assignments.

class Song

def duration=(new_duration)

@duration = new_duration

end
end
song = Song.new("Bicylops", "Fleck", 260)
song.duration — 260
song.duration = 257 # set attribute with updated value
song.duration — 257

Prepared exclusively for Yeganefar

OBJECTS AND ATTRIBUTES

The assignment song.duration = 257 invokes the method duration= in the song
object, passing it 257 as an argument. In fact, defining a method name ending in an
equals sign makes that name eligible to appear on the left side of an assignment.

Again, Ruby provides a shortcut for creating these simple attribute-setting methods.

class Song
attr_writer :duration
end
song = Song.new("Bicylops", "Fleck", 260)
song.duration = 257

Virtual Attributes

These attribute-accessing methods do not have to be just simple wrappers around an
object’s instance variables. For example, you may want to access the duration in min-
utes and fractions of a minute, rather than in seconds as we’ve been doing.

class Song
def duration_in_minutes
@duration/60.0 # force floating point
end
def duration_in_minutes=(new_duration)
@duration = (new_duration#60).to_1i
end
end
song = Song.new("Bicylops", "Fleck", 260)
song.duration_in_minutes — 4.33333333333333
song.duration_in_minutes = 4.2
song.duration — 252

Here we’ve used attribute methods to create a virtual instance variable. To the out-
side world, duration_in_minutes seems to be an attribute like any other. Internally,
though, it has no corresponding instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Con-
struction [Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding
the difference between instance variables and calculated values, you are shielding the
rest of the world from the implementation of your class. You're free to change how
things work in the future without impacting the millions of lines of code that use your
class. This is a big win.

Attributes, Instance Variables, and Methods

This description of attributes may leave you thinking that they’re nothing more than
methods—why’d we need to invent a fancy name for them? In a way, that’s absolutely
right. An attribute is just a method. Sometimes an attribute simply returns the value
of an instance variable. Sometimes an attribute returns the result of a calculation. And

Prepared exclusively for Yeganefar

CLASS VARIABLES AND CLASS METHODS

sometimes those funky methods with equals signs at the end of their names are used to
update the state of an object. So the question is, where do attributes stop and regular
methods begin? What makes something an attribute, and not just a plain old method?
Ultimately, that’s one of those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how
that state is to appear on the outside (to users of your class). The internal state is
held in instance variables. The external state is exposed through methods we’re call-
ing attributes. And the other actions your class can perform are just regular methods.
It really isn’t a crucially important distinction, but by calling the external state of an
object its attributes, you’re helping clue people in to how they should view the class
you’ve written.

Class Variables and Class Methods

So far, all the classes we’ve created have contained instance variables and instance
methods: variables that are associated with a particular instance of the class, and meth-
ods that work on those variables. Sometimes classes themselves need to have their own
states. This is where class variables come in.

Class Variables

A class variable is shared among all objects of a class, and it is also accessible to
the class methods that we’ll describe later. Only one copy of a particular class variable
exists for a given class. Class variable names start with two “at” signs, such as @@count.
Unlike global and instance variables, class variables must be initialized before they
are used. Often this initialization is just a simple assignment in the body of the class
definition.

For example, our jukebox may want to record how many times each song has been
played. This count would probably be an instance variable of the Song object. When
a song is played, the value in the instance is incremented. But say we also want to
know how many songs have been played in total. We could do this by searching for all
the Song objects and adding their counts, or we could risk excommunication from the
Church of Good Design and use a global variable. Instead, we’ll use a class variable.

class Song

@@plays = 0

def initialize(name, artist, duration)
@name = name
@artist = artist
@duration = duration
@plays =0

end

Prepared exclusively for Yeganefar

CLASS VARIABLES AND CLASS METHODS

def play
@plays += 1 # same as @plays = @plays + 1
@@plays += 1
"This song: #@plays plays. Total #@@plays plays."
end
end

For debugging purposes, we’ve arranged for Song#play to return a string containing
the number of times this song has been played, along with the total number of plays for
all songs. We can test this easily.

sl = Song.new("Songl", "Artistl", 234) # test songs..
s2 = Song.new("Song2", "Artist2", 345)
sl.play — "This song: 1 plays. Total 1 plays."
s2.play — "This song: 1 plays. Total 2 plays.
sl.play — "This song: 2 plays. Total 3 plays.
sl.play — "This song: 3 plays. Total 4 plays."
Class variables are private to a class and its instances. If you want to make them acces-
sible to the outside world, you’ll need to write an accessor method. This method could
be either an instance method or, leading us neatly to the next section, a class method.

Class Methods

Sometimes a class needs to provide methods that work without being tied to any par-
ticular object. We’ve already come across one such method. The new method creates a
new Song object but is not itself associated with a particular song.

song = Song.new(....)

You’ll find class methods sprinkled throughout the Ruby libraries. For example, objects
of class File represent open files in the underlying file system. However, class File
also provides several class methods for manipulating files that aren’t open and there-
fore don’t have a File object. If you want to delete a file, you call the class method
File.delete, passing in the name.

File.delete("doomed.txt")

Class methods are distinguished from instance methods by their definition; class meth-
ods are defined by placing the class name and a period in front of the method name (but
also see the sidebar on page 34).

class Example

def instance_method # instance method
end
def Example.class_method # class method
end

end

Prepared exclusively for Yeganefar

CLASS VARIABLES AND CLASS METHODS

Jukeboxes charge money for each song played, not by the minute. That makes short
songs more profitable than long ones. We may want to prevent songs that take too long
from being available on the SongList. We could define a class method in SongList
that checked to see if a particular song exceeded the limit. We’ll set this limit using
a class constant, which is simply a constant (remember constants? They start with an
uppercase letter) that is initialized in the class body.

class Songlist
MAX_TIME = 5+%60 # 5 minutes

def Songlist.is_too_long(song)
return song.duration > MAX_TIME

end
end
songl = Song.new("Bicylops", "Fleck", 260)
SongList.is_too_long(songl) — false
song2 = Song.new("The Calling", "Santana", 468)
Songlist.is_too_long(song?2) — true

Singletons and Other Constructors

Sometimes you want to override the default way in which Ruby creates objects. As an
example, let’s look at our jukebox. Because we’ll have many jukeboxes, spread all over
the country, we want to make maintenance as easy as possible. Part of the requirement
is to log everything that happens to a jukebox: the songs played, the money received,
the strange fluids poured into it, and so on. Because we want to reserve the network
bandwidth for music, we’ll store these log files locally. This means we’ll need a class
that handles logging. However, we want only one logging object per jukebox, and we
want that object to be shared among all the other objects that use it.

Enter the Singleton pattern, documented in Design Patterns [GHIV95]. We’ll arrange
things so that the only way to create a logging object is to call MyLogger.create, and
we’ll ensure that only one logging object is ever created.

class MyLogger
private_class_method :new
@@logger = nil
def MyLogger.create
@@logger = new unless @@logger
@@logger
end
end

By making MyLogger’s new method private, we prevent anyone from creating a log-
ging object using the conventional constructor. Instead, we provide a class method,
MyLogger.create. This method uses the class variable @@logger to keep a reference

Prepared exclusively for Yeganefar

CLASS VARIABLES AND CLASS METHODS

Class Method Definiti

Back on page 32 we said that class methods are defined by putting
the class name and a period in front of the method name. That was
actually a simplification (but one that works all the time).

In fact, you can define class methods in a number of ways, but under-
standing why those ways work will have to wait until Chapter 24. For
now, we’'ll just show you the idioms that people use, in case you come
across them in Ruby code.

The following all define class methods within class Demo.

class Demo
def Demo.methl
...
end
def self.meth2
...
end

class <<self
def meth3
...
end
end
end

to a single instance of the logger, returning that instance every time it is called.> We
can check this by looking at the object identifiers the method returns.

MyLogger.create.id — 936550
MyLogger.create.id — 936550

Using class methods as pseudo-constructors can also make life easier for users of your
class. As a trivial example, let’s look at a class Shape that represents a regular polygon.
Instances of Shape are created by giving the constructor the required number of sides
and the total perimeter.

class Shape
def initialize(num_sides, perimeter)
...
end
end

3. The implementation of singletons that we present here is not thread-safe; if multiple threads were
running, it would be possible to create multiple logger objects. Rather than add thread safety ourselves,
however, we’d probably use the Singleton mixin supplied with Ruby, which is described on page 712.

Prepared exclusively for Yeganefar

ACCESS CONTROL

However, a couple of years later, this class is used in a different application, where the
programmers are used to creating shapes by name and by specifying the length of one
side, not the perimeter. Simply add some class methods to Shape.

class Shape
def Shape.triangle(side_length)
Shape.new(3, side_length=3)
end
def Shape.square(side_length)
Shape.new(4, side_length=4)
end
end

Class methods have many interesting and powerful uses, but exploring them won’t get
our jukebox finished any sooner, so let’s move on.

Access Control

When designing a class interface, it’s important to consider just how much access to
your class you’ll be exposing to the outside world. Allow too much access into your
class, and you risk increasing the coupling in your application—users of your class will
be tempted to rely on details of your class’s implementation, rather than on its logical
interface. The good news is that the only easy way to change an object’s state in Ruby
is by calling one of its methods. Control access to the methods, and you’ve controlled
access to the object. A good rule of thumb is never to expose methods that could leave
an object in an invalid state. Ruby gives you three levels of protection.

* Public methods can be called by anyone—no access control is enforced. Methods
are public by default (except for initialize, which is always private).

* Protected methods can be invoked only by objects of the defining class and its
subclasses. Access is kept within the family.

 Private methods cannot be called with an explicit receiver—the receiver is always
self. This means that private methods can be called only in the context of the
current object; you can’t invoke another object’s private methods.

The difference between “protected” and “private” is fairly subtle and is different in
Ruby than in most common OO languages. If a method is protected, it may be called
by any instance of the defining class or its subclasses. If a method is private, it may
be called only within the context of the calling object—it is never possible to access
another object’s private methods directly, even if the object is of the same class as the
caller.

Prepared exclusively for Yeganefar

ACCESS CONTROL

Ruby differs from other OO languages in another important way. Access control is
determined dynamically, as the program runs, not statically. You will get an access
violation only when the code attempts to execute the restricted method.

Specifying Access Control

You specify access levels to methods within class or module definitions using one or
more of the three functions public, protected, and private. You can use each func-
tion in two different ways.

If used with no arguments, the three functions set the default access control of subse-
quently defined methods. This is probably familiar behavior if you're a C++ or Java
programmer, where you’d use keywords such as public to achieve the same effect.

class MyClass
def methodl # default is 'public'

#...
end
protected # subsequent methods will be 'protected'
def method2 # will be 'protected'
#...
end
private # subsequent methods will be 'private'
def method3 # will be 'private'
#...
end
public # subsequent methods will be 'public'
def method4 # and this will be 'public'
#...
end

end

Alternatively, you can set access levels of named methods by listing them as arguments
to the access control functions.

class MyClass
def methodl

end
... and so on
public :methodl, :method4
protected :method2
private :method3
end

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this
rule, we’ll make the methods that do the debits and credits private, and we’ll define our
external interface in terms of transactions.

Prepared exclusively for Yeganefar

VARIABLES

class Accounts

def initialize(checking, savings)
@checking = checking

@savings = savings
end
private
def debit(account, amount)
account.balance -= amount
end

def credit(account, amount)
account.balance += amount

end

public

#...

def transfer_to_savings(amount)
debit(@checking, amount)
credit(@savings, amount)

end

#...

end

Protected access is used when objects need to access the internal state of other objects
of the same class. For example, we may want to allow individual Account objects to
compare their raw balances but may want to hide those balances from the rest of the
world (perhaps because we present them in a different form).
class Account
attr_reader :balance # accessor method 'balance'
protected :balance # and make it protected

def greater_balance_than(other)
return @balance > other.balance
end
end

Because the attribute balance is protected, it’s available only within Account objects.

Variables

Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t
lose them. Variables are used to keep track of objects; each variable holds a reference
to an object.

Let’s confirm this with some code.

person = "Tim"

person.id — 936870
person.class — String
person — "Tim"

Prepared exclusively for Yeganefar

VARIABLES

On the first line, Ruby creates a new String object with the value “Tim.” A reference to
this object is placed in the local variable person. A quick check shows that the variable
has indeed taken on the personality of a string, with an object ID, a class, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference
to an object. Objects float around in a big pool somewhere (the heap, most of the time)
and are pointed to by variables.

Let’s make the example slightly more complicated.

personl = "Tim
person2 = personl

personl[0] = 'J'

personl — "Jim
person2 — "Jim

What happened here? We changed the first character of personl, but both personl
and person2 changed from “Tim” to “Jim.”

It all comes back to the fact that variables hold references to objects, not the objects
themselves. The assignment of personl to person2 doesn’t create any new objects;
it simply copies personl’s object reference to person2 so that both personl and
person2 refer to the same object. We show this in Figure 3.1 on the following page.

Assignment aliases objects, potentially giving you multiple variables that reference the
same object. But can’t this cause problems in your code? It can, but not as often as
you’d think (objects in Java, for example, work exactly the same way). For instance,
in the example in Figure 3.1, you could avoid aliasing by using the dup method of
String, which creates a new String object with identical contents.

personl = "Tim
person2 = personl.dup
personl[0] = "J"

personl — "Jim
person2 — "Tim"

You can also prevent anyone from changing a particular object by freezing it (we talk
more about freezing objects on page 377). Attempt to alter a frozen object, and Ruby
will raise a TypeError exception.

personl = "Tim"
person2 = personl
personl.freeze # prevent modifications to the object

person2[0] = "J"
produces:

prog.rb:4:in "[]=": can't modify frozen string (TypeError)
from prog.rb:4

Prepared exclusively for Yeganefar

VARIABLES

~
Figure 3.1. Variables hold object references.
personl :
personl = "Tim" I-
personl :
person2 = personl I-
person2
personl :
personl[0] = "J"
person2 “
S J

That concludes our look at classes and objects in Ruby. This material is important;
everything you manipulate in Ruby is an object. And one of the most common things
we do with objects is create collections of them. But that’s the subject of our next

chapter.

Prepared exclusively for Yeganefar

Chapter 4

Containers, Blocks,
and Iterators

A jukebox with one song is unlikely to be popular (except perhaps in some very, very
scary bars), so pretty soon we’ll have to start thinking about producing a catalog of
available songs and a playlist of songs waiting to be played. Both of these are contain-
ers: objects that hold references to one or more other objects.

Both the catalog and the playlist need a similar set of methods: add a song, remove
a song, return a list of songs, and so on. The playlist may perform additional tasks,
such as inserting advertising every so often or keeping track of cumulative play time,
but we’ll worry about these things later. In the meantime, it seems like a good idea to
develop some kind of generic SongList class, which we can specialize into catalogs
and playlists.

Containers

Before we start implementing, we’ll need to work out how to store the list of songs
inside a SongList object. We have three obvious choices. We could use the Ruby
Array type, use the Ruby Hash type, or create our own list structure. Being lazy, for
now we’ll look at arrays and hashes and choose one of these for our class.

Arrays

The class Array holds a collection of object references. Each object reference occupies
a position in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A
literal array is simply a list of objects between square brackets.

Prepared exclusively for Yeganefar

CONTAINERS

a = [3.14159, "pie", 99]

a.class — Array
a.length — 3

alo] — 3.14159
a[l] — "pie"
al[2] — 99

a[3] — nil

b = Array.new

b.class — Array

b.length — 0

b[0] = "second"

b[1l] = "array"

b — ["second", "array"]
Arrays are indexed using the [] operator. As with most Ruby operators, this is actu-
ally a method (an instance method of class Array) and hence can be overridden in
subclasses. As the example shows, array indices start at zero. Index an array with a
non-negative integer, and it returns the object at that position or returns nil if nothing
is there. Index an array with a negative integer, and it counts from the end.

a=1[1,3,5, 7,91

al[-1] — 9
al[-2] — 7
al[-99] — nil

This indexing scheme is illustrated in more detail in Figure 4.1 on the following page.

You can also index arrays with a pair of numbers, [start, count]. This returns a
new array consisting of references to count objects starting at position start.

a=1[1,3,5 7,91

a[l, 3] — [31 5! 7]

afs, 11 — [7]

a[-3, 2] — [5, 7]
Finally, you can index arrays using ranges, in which start and end positions are sepa-
rated by two or three periods. The two-period form includes the end position, and the
three-period form does not.

a=1[1,3,5,7,9]1

a[1..3] — [3, 5, 7]
a[l...3] — [3, 5]
a[3..3] — [7]
a[-3..-11 — [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the
array. If used with a single integer index, the element at that position is replaced by
whatever is on the right side of the assignment. Any gaps that result will be filled with
nil.

Prepared exclusively for Yeganefar

CONTAINERS

~
Figure 4.1. How arrays are indexed
Positive — 0 1 2 3 4 5 6 Negative
indices -7 —6 -5 —4 -3 —2 —1 « indices
a=| “ant’ | “oat’ | “cat’ | “dog” | “elk” | “fly” | “gnu” |
at2)
al-3) -
all..3] — [“bat’ | “cat’ [“dog”
a[-3..-1] — [el [fy” | “gnu” |
al4..-2] —
4 J

a=1[1,3,5,7,9]1]
a[l] = ’bat’

a[-3] = ’cat’

a[3l =[9, 81
a[6] = 99

[1, 3, 5, 7, 9]

[1, "bat", 5, 7, 9]

[1, "bat", "cat", 7, 9]

[1, "bat", "cat", [9, 8], 9]

[1, "bat", "cat", [9, 8], 9, nil, 99]

Ll

If the index to []= is two numbers (a start and a length) or a range, then those elements
in the original array are replaced by whatever is on the right side of the assignment.
If the length is zero, the right side is inserted into the array before the start position;
no elements are removed. If the right side is itself an array, its elements are used in
the replacement. The array size is automatically adjusted if the index selects a different
number of elements than are available on the right side of the assignment.

a=1[1,3,5,7,9]1]
a[2, 2] = ’cat’

al[2, 0] = ’dog’

all, 11 =19, 8, 71
al0..3] =[]

a[5..6] = 99, 98

[1, 3, 5, 7, 9]

[1, 3, "cat", 9]

[1, 3, "dog", "cat", 9]

[1, 9, 8, 7, "dog", "cat", 9]
["dog", "cat", 9]

["dog", "cat", 9, nil, nil, 99, 98]

LLEL L

Arrays have a large number of other useful methods. Using these, you can treat arrays
as stacks, sets, queues, dequeues, and fifos. A complete list of array methods starts on
page 406.

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to
arrays in that they are indexed collections of object references. However, while you
index arrays with integers, you can index a hash with objects of any type: strings,
regular expressions, and so on. When you store a value in a hash, you actually supply

Prepared exclusively for Yeganefar

CONTAINERS

two objects—the index, normally called the key, and the value. You can subsequently
retrieve the value by indexing the hash with the same key. The values in a hash can be
objects of any type.

The example that follows uses hash literals: a list of key => value pairs between braces.

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length — 3

h['dog'] — '"canine"

h['cow'] = 'bovine'

h[12] = 'dodecine’

h['cat'] = 99

h — {"cow"=>"bovine", "cat"=>99, 12=>"dodecine",
"donkey"=>"asinine", "dog"=>"canine"

Compared with arrays, hashes have one significant advantage: they can use any object
as an index. However, they also have a significant disadvantage: their elements are not
ordered, so you cannot easily use a hash as a stack or a queue.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A
full list of the methods implemented by class Hash starts on page 471.

Implementing a SongList Container

After that little diversion into arrays and hashes, we’re now ready to implement the
jukebox’s SongList. Let’s invent a basic list of methods we need in our SongList.
We’ll want to add to it as we go along, but this will do for now.

append(song) — list
Append the given song to the list.

delete_first() — song
Remove the first song from the list, returning that song.

delete_last() — song
Remove the last song from the list, returning that song.

[index] — song
Return the song at the integer index.

with_title(title) — song
Return the song with the given title.

This list gives us a clue to the implementation. The ability to append songs at the end,
and remove them from both the front and end, suggests a dequeue—a double-ended
queue—which we know we can implement using an Array. Similarly, the ability to
return a song at an integer position in the list is supported by arrays.

Prepared exclusively for Yeganefar

CONTAINERS

However, you also need to be able to retrieve songs by title, which may suggest using
a hash, with the title as a key and the song as a value. Could we use a hash? Well,
possibly, but this causes problems. First, a hash is unordered, so we’d probably need to
use an ancillary array to keep track of the list. A second, bigger problem is that a hash
does not support multiple keys with the same value. That would be a problem for our
playlist, where the same song may be queued for playing multiple times. So, for now
we’ll stick with an array of songs, searching it for titles when needed. If this becomes
a performance bottleneck, we can always add some kind of hash-based lookup later.

We’ll start our class with a basic initialize method, which creates the Array we’ll
use to hold the songs and stores a reference to it in the instance variable @songs.

class SongLlist
def initialize
@songs = Array.new
end
end

The SongList#append method adds the given song to the end of the @songs array. It
also returns self, a reference to the current SongList object. This is a useful convention,
as it lets us chain together multiple calls to append. We’ll see an example of this later.

class Songlist
def append(song)
@songs.push(song)
self
end
end

Then we’ll add the delete_first and delete_last methods, trivially implemented
using Array#shift and Array#pop, respectively.

class Songlist
def delete_first
@songs.shift
end
def delete_last
@songs.pop
end
end

So far, so good. Our next method is [], which accesses elements by index. These
kind of simple delegating methods occur frequently in Ruby code: don’t worry if your
code ends up containing a bunch of one- or two-line methods—it’s a sign that you’re
designing things correctly.
class SongList
def [](index)
@songs[index]
end
end

Prepared exclusively for Yeganefar

CONTAINERS

At this point, a quick test may be in order. To do this, we’re going to use a testing
framework called TestUnit that comes with the standard Ruby distributions. We won’t
describe it fully yet (we do that in the Unit Testing chapter starting on page 143). For
now, we’ll just say that the method assert_equal checks that its two parameters are
equal, complaining bitterly if they aren’t. Similarly, the method assert_nil complains
unless its parameter is nil. We’re using these assertions to verify that the correct songs
are deleted from the list.

The test contains some initial housekeeping, necessary to tell Ruby to use the TestUnit
framework and to tell the framework that we’re writing some test code. Then we create
a SongList and four songs and append the songs to the list. (Just to show off, we use
the fact that append returns the SongList object to chain together these method calls.)
We can then test our [] method, verifying that it returns the correct song (or nil) for a
set of indices. Finally, we delete songs from the start and end of the list, checking that
the correct songs are returned.
require 'test/unit'
class TestSonglist < Test::Unit::TestCase
def test_delete
list = Songlist.new
sl = Song.new('titlel', 'artistl', 1)
s2 = Song.new('title2', 'artist2', 2)
s3 = Song.new('title3', 'artist3', 3)
s4 = Song.new('title4', 'artist4', 4)
list.append(sl).append(s2).append(s3).append(s4)

assert_equal(sl, list[0])
assert_equal(s3, list[2])
assert_nil(1list[9])
assert_equal(sl, list.delete_first)
assert_equal(s2, list.delete_first)
assert_equal(s4, list.delete_last)
assert_equal(s3, list.delete_last)
assert_nil(list.delete_last)
end
end

produces:

Loaded suite -
Started

Finished in 0.002314 seconds.

1 tests, 8 assertions, 0 failures, 0O errors

The running test confirms that eight assertions were executed in one test method, and
they all passed. We’re on our way to a working jukebox!

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

Now we need to add the facility that lets us look up a song by title. This is going to
involve scanning through the songs in the list, checking the title of each. To do this, we
first need to spend a couple of pages looking at one of Ruby’s neatest features: iterators.

Blocks and Iterators

Our next problem with SongList is to implement the method with_title that takes
a string and searches for a song with that title. This seems straightforward: we have an
array of songs, so we’ll go through it one element at a time, looking for a match.

class SongLlist
def with_title(title)
for i in 0...@songs.length
return @songs[i] if title == @songs[i].name
end
return nil
end
end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What
could be more natural?

It turns out there is something more natural. In a way, our for loop is somewhat too
intimate with the array; it asks for a length, and it then retrieves values in turn until it
finds a match. Why not just ask the array to apply a test to each of its members? That’s
just what the find method in Array does.

class Songlist
def with_title(title)
@songs.find {|song| title == song.name }
end
end

The method find is an iterator—a method that invokes a block of code repeatedly.
Iterators and code blocks are among the more interesting features of Ruby, so let’s
spend a while looking into them (and in the process we’ll find out exactly what that
line of code in our with_title method actually does).

Implementing Iterators

A Ruby iterator is simply a method that can invoke a block of code. At first sight, a
block in Ruby looks just like a block in C, Java, C#, or Perl. Unfortunately, in this
case looks are deceiving—a Ruby block is a way of grouping statements, but not in the
conventional way.

First, a block may appear only in the source adjacent to a method call; the block is
written starting on the same line as the method call’s last parameter (or the closing

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

parenthesis of the parameter list). Second, the code in the block is not executed at the
time it is encountered. Instead, Ruby remembers the context in which the block appears
(the local variables, the current object, and so on) and then enters the method. This is
where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using
the yield statement. Whenever a yield is executed, it invokes the code in the block.
When the block exits, control picks back up immediately after the yield.! Let’s start
with a trivial example.

def three_times
yield
yield
yield
end
three_times { puts "Hello" }

produces:

Hello
Hello
Hello

The block (the code between the braces) is associated with the call to the method
three_times. Within this method, yield is called three times in a row. Each time, it
invokes the code in the block, and a cheery greeting is printed. What makes blocks inter-
esting, however, is that you can pass parameters to them and receive values from them.
For example, we could write a simple function that returns members of the Fibonacci
series up to a certain value.’

def fib_up_to(max)

i1, i2 =1, 1 # parallel assignment (il = 1 and i2 = 1)
while il <= max
yield il
il, 12 = i2, il+i2
end
end
fib_up_to(1000) {|f| print £, " " }
produces:

1123581321 34 55 89 144 233 377 610 987

1. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the
yield function in Liskov’s language CLU, a language that is more than 20 years old and yet contains features
that still haven’t been widely exploited by the CLU-less.

2. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent
term is the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in
analyzing natural phenomena.

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

In this example, the yield statement has a parameter. This value is passed to the asso-
ciated block. In the definition of the block, the argument list appears between vertical
bars. In this instance, the variable f receives the value passed to the yield, so the block
prints successive members of the series. (This example also shows parallel assignment
in action. We’ll come back to this on page 85.) Although it is common to pass just one
value to a block, this is not a requirement; a block may have any number of arguments.

If the parameters to a block are existing local variables, those variables will be used as
the block parameters, and their values may be changed by the block’s execution. The
same thing applies to variables inside the block: if they appear for the first time in the
block, they’re local to the block. If instead they first appeared outside the block, the
variables will be shared between the block and the surrounding environment.?

In this (contrived) example, we see that the block inherits the variables a and b from
the surrounding scope, but c is local to the block (the method defined? returns nil if
its argument is not defined).

a=[1, 2]

b = 'cat'

a.each {|b] ¢ = b * a[l] }
a — [1, 2]

b - 2
defined?(c) — nil

A block may also return a value to the method. The value of the last expression evalu-
ated in the block is passed back to the method as the value of the yield. This is how the
find method used by class Array works.* Its implementation would look something
like the following.

class Array
def find
for i in 0...size
value = self[i]
return value if yield(value)
end
return nil
end
end

[1, 3, 5, 7, 9].find {|v] v*v > 30 } — 7

This passes successive elements of the array to the associated block. If the block returns
true, the method returns the corresponding element. If no element matches, the method
returns nil. The example shows the benefit of this approach to iterators. The Array

3. Although extremely useful at times, this feature may lead to unexpected behavior and is hotly debated
in the Ruby community. It is possible that Ruby 2.0 will change the way blocks inherit local variables.

4, The find method is actually defined in module Enumerable, which is mixed into class Array.

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

class does what it does best, accessing array elements, leaving the application code to
concentrate on its particular requirement (in this case, finding an entry that meets some
mathematical criteria).

Some iterators are common to many types of Ruby collections. We’ve looked at find
already. Two others are each and collect. each is probably the simplest iterator—all
it does is yield successive elements of its collection.

[1, 3,5, 7, 9 J.each {|i| puts i }

produces:
1

3
5
7
9

The each iterator has a special place in Ruby; on page 97 we’ll describe how it’s used
as the basis of the language’s for loop, and starting on page 113 we’ll see how defining
an each method can add a whole lot more functionality to your class for free.

Another common iterator is collect, which takes each element from the collection
and passes it to the block. The results returned by the block are used to construct a new
array. For instance:

["H", "A", "L"].collect {|x| x.succ } — ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in
the Fibonacci example, an iterator can return derived values. This capability is used by
Ruby input/output classes, which implement an iterator interface that returns successive
lines (or bytes) in an I/O stream. (This example uses do...end to define a block. The
only difference between this notation and using braces to define blocks is precedence:
do...end binds lower than {... }. We discuss the impact of this on page 341.)

f = File.open("testfile")

f.each do |line]

puts line

end
f.close

produces:

This is line one
This is line two
This is line three
And so on...

Let’s look at just one more useful iterator. The (somewhat obscurely named) inject
L/ method (defined in the module Enumerable) lets you accumulate a value across the

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

members of a collection. For example, you can sum all the elements in an array, and
find their product, using code such as

[1,3,5,7].inject(0) {|sum, element| sum+element} — 16
[1,3,5,7].inject(1l) {|product, element| productxelement} — 105

inject works like this: the first time the associated block is called, sum is set to
inject’s parameter and element is set to the first element in the collection. The second
and subsequent times the block is called, sum is set to the value returned by the block
on the previous call. The final value of inject is the value returned by the block the
last time it was called. There’s one final wrinkle: if inject is called with no parameter,
it uses the first element of the collection as the initial value and starts the iteration with
the second value. This means that we could have written the previous examples as

[1,3,5,7].inject {|sum, element| sum+element} — 16
[1,3,5,7].inject {|product, element| productxelement} — 105

Internal and External Iterators

It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of lan-
guages such as C++ and Java. In the Ruby approach, the iterator is internal to the
collection—it’s simply a method, identical to any other, that happens to call yield
whenever it generates a new value. The thing that uses the iterator is just a block of
code associated with this method.

In other languages, collections don’t contain their own iterators. Instead, they generate
external helper objects (for example, those based on Java’s Iterator interface) that
carry the iterator state. In this, as in many other ways, Ruby is a transparent language.
When you write a Ruby program, you concentrate on getting the job done, not on
building scaffolding to support the language itself.

It’s probably also worth spending a paragraph looking at why Ruby’s internal itera-
tors aren’t always the best solution. One area where they fall down badly is where you
need to treat an iterator as an object in its own right (for example, passing the iter-
ator into a method that needs to access each of the values returned by that iterator).
It’s also difficult to iterate over two collections in parallel using Ruby’s internal iter-

2-9, ator scheme. Fortunately, Ruby 1.8 comes with the Generator library (described on
page 662), which implements external iterators in Ruby for just such occasions.

Blocks for Transactions

Although blocks are often the target of an iterator, they also have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run under some kind of trans-
actional control. For example, you’ll often open a file, do something with its contents,
and then want to ensure that the file is closed when you finish. Although you can do this

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

using conventional code, an argument exists for making the file responsible for closing
itself. We can do this with blocks. A naive implementation (ignoring error handling)
could look something like the following.

class File

def File.open_and_process(*args)
f = File.open(*args)
yield f
f.close()

end

end

File.open_and_process("testfile", "r") do |file]|

while line = file.gets
puts line
end

end

produces:

This is line one
This is line two
This is line three
And so on...

open_and_process is a class method—it may be called independently of any particu-
lar file object. We want it to take the same arguments as the conventional File.open
method, but we don’t really care what those arguments are. To do this, we speci-
fied the arguments as wargs, meaning “collect the actual parameters passed to the
method into an array named args.” We then call File.open, passing it «args as
a parameter. This expands the array back into individual parameters. The net result
is that open_and_process transparently passes whatever parameters it received to
File.open.

Once the file has been opened, open_and_process calls yield, passing the open file
object to the block. When the block returns, the file is closed. In this way, the responsi-
bility for closing an open file has been passed from the user of file objects back to the
files themselves.

The technique of having files manage their own life cycle is so useful that the class
File supplied with Ruby supports it directly. If File.open has an associated block,
then that block will be invoked with a file object, and the file will be closed when
the block terminates. This is interesting, as it means that File.open has two different
behaviors: when called with a block, it executes the block and closes the file. When
called without a block, it returns the file object. This is made possible by the method
Kernel.block_given?, which returns true if a block is associated with the current
method. Using this method, you could implement something similar to the standard
File.open (again, ignoring error handling) using the following.

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

class File
def File.my_open(+args)
result = file = File.new(*args)
If there's a block, pass in the file and close
the file when it returns
if block_given?
result = yield file
file.close
end

return result
end
end

This has one last twist: in the previous examples of using blocks to control resources,
we haven’t addressed error handling. If we wanted to implement these methods prop-
erly, we’d need to ensure that we closed files even if the code processing that file some-
how aborted. We do this using exception handling, which we talk about later (starting
on page 101).

Blocks Can Be Closures

Let’s get back to our jukebox for a moment (remember the jukebox?). At some point
we’ll be working on the code that handles the user interface—the buttons that people
press to select songs and control the jukebox. We’ll need to associate actions with
those buttons: press and the music starts. It turns out that Ruby’s blocks are
a convenient way to do this. Let’s start by assuming that the people who made the
hardware implemented a Ruby extension that gives us a basic button class. (We talk
about extending Ruby beginning on page 261.)

start_button = Button.new("Start")
pause_button = Button.new("Pause")
...

What happens when the user presses one of our buttons? In the Button class, the hard-
ware folks rigged things so that a callback method, button_pressed, will be invoked.
The obvious way of adding functionality to these buttons is to create subclasses of
Button and have each subclass implement its own button_pressed method.

class StartButton < Button
def initialize
super("Start") # invoke Button's initialize
end
def button_pressed
do start actionms...
end
end

start_button = StartButton.new

Prepared exclusively for Yeganefar

BLOCKS AND ITERATORS

This has two problems. First, this will lead to a large number of subclasses. If the
interface to Button changes, this could involve us in a lot of maintenance. Second, the
actions performed when a button is pressed are expressed at the wrong level; they are
not a feature of the button but are a feature of the jukebox that uses the buttons. We can
fix both of these problems using blocks.

songlist = Songlist.new
class JukeboxButton < Button
def initialize(label, &action)

super (label)
@action = action
end

def button_pressed
@action.call(self)
end
end
start_button = JukeboxButton.new("Start") { songlist.start }
pause_button = JukeboxButton.new("Pause") { songlist.pause }

The key to all this is the second parameter to JukeboxButton#initialize. If the last
parameter in a method definition is prefixed with an ampersand (such as &action),
Ruby looks for a code block whenever that method is called. That code block is con-
verted to an object of class Proc and assigned to the parameter. You can then treat
the parameter as any other variable. In our example, we assigned it to the instance
variable @action. When the callback method button_pressed is invoked, we use the
Proc#call method on that object to invoke the block.

So what exactly do we have when we create a Proc object? The interesting thing is that
it’s more than just a chunk of code. Associated with a block (and hence a Proc object)
is all the context in which the block was defined: the value of self and the methods,
variables, and constants in scope. Part of the magic of Ruby is that the block can still
use all this original scope information even if the environment in which it was defined
would otherwise have disappeared. In other languages, this facility is called a closure.

Let’s look at a contrived example. This example uses the method 1ambda, which con-
verts a block to a Proc object.

def n_times(thing)
return lambda {|n| thing * n }
end

pl = n_times(23)

pl.call(3) — 69

pl.call(4) — 92

p2 = n_times("Hello ")

p2.call(3) — "Hello Hello Hello "

Prepared exclusively for Yeganefar

CONTAINERS EVERYWHERE

The method n_times returns a Proc object that references the method’s parameter,
thing. Even though that parameter is out of scope by the time the block is called, the
parameter remains accessible to the block.

Containers Everywhere

Containers, blocks, and iterators are core concepts in Ruby. The more you write in
Ruby, the more you’ll find yourself moving away from conventional looping constructs.
Instead, you’ll write classes that support iteration over their contents. And you’ll find
that this code is compact, easy to read, and a joy to maintain.

Prepared exclusively for Yeganefar

Chapter 5

Standard Types

So far we’ve been having fun implementing pieces of our jukebox code, but we’ve been
negligent. We’ve looked at arrays, hashes, and procs, but we haven’t really covered
the other basic types in Ruby: numbers, strings, ranges, and regular expressions. Let’s
spend a few pages on these basic building blocks now.

Numbers

Ruby supports integers and floating-point numbers. Integers can be any length (up to a
maximum determined by the amount of free memory on your system). Integers within a
certain range (normally —230 to 230 — 1 or —262 to 262 — 1) are held internally in binary
form and are objects of class Fixnum. Integers outside this range are stored in objects
of class Bignum (currently implemented as a variable-length set of short integers). This
process is transparent, and Ruby automatically manages the conversion back and forth.

num = 81
6.times do
puts "#{num.class}: #{num}"
num *= num
end
produces:
Fixnum: 81

Fixnum: 6561

Fixnum: 43046721

Bignum: 1853020188851841

Bignum: 3433683820292512484657849089281

Bignum: 11790184577738583171520872861412518665678211592275841109096961

You write integers using an optional leading sign, an optional base indicator (0 for
octal, 0d for decimal [the default], 0x for hex, or Ob for binary), followed by a string
of digits in the appropriate base. Underscore characters are ignored in the digit string
(some folks use them in place of commas in larger numbers).

Prepared exclusively for Yeganefar

NUMBERS

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
Oxaabb => 43707 # Fixnum - hexadecimal

0377 => 255 # Fixnum - octal

-0b10_1010 => -42 # Fixnum - binary (negated)

123_456_789_123_456_789 => 123456789123456789 # Bignum

Control characters can be generated using ?\C-x and ?\cx (the control version of x is
x & 0x9f). Metacharacters (x | 0x80) can be generated using ?\M-x. The combination of
meta and control is generated using and ?\M-\C-x. You can get the integer value of a
backslash character using the sequence ?\\.

?a = 97 # ASCII character

?\n => 10 # code for a newline (0x0Oa)
?\C-a =1 # control a = ?A & 0x9f = 0x01
?\M-a => 225 # meta sets bit 7

?\M-\C-a => 129 # meta and control a

?\C-? = 127 # delete character

A numeric literal with a decimal point and/or an exponent is turned into a Float object,

E/ corresponding to the native architecture’s double data type. You must both precede
and follow the decimal point with a digit (if you write 1.0e3 as 1.e3, Ruby will try to
invoke the method e3 in class Fixnum).

All numbers are objects and respond to a variety of messages (listed in full starting on
pages 420, 463, 466, 480, and 541). So, unlike (say) C++, you find the absolute value
of a number by writing num. abs, not abs (num).

Integers also support several useful iterators. We’ve seen one already: 6.times in the
code example on the preceding page. Others include upto and downto, for iterating up
and down between two integers. Class Numeric also provides the more general method
step, which is more like a traditional for loop.

3.times { print "X " }

1.upto(5) {li| print i, " " }

99.downto(95) {|i| print i, " " }

50.step(80, 5) {|i| print i, " " }
produces:

XXX1234599 9897 96 95 50 55 60 65 70 75 80

Finally, we’ll offer a warning for Perl users. Strings that contain just digits are not
automatically converted into numbers when used in expressions. This tends to bite
most often when reading numbers from a file. For example, we may want to find the
sum of the two numbers on each line for a file such as

34
56
78

Prepared exclusively for Yeganefar

STRINGS

The following code doesn’t work.

some_file.each do |line]

vl, v2 = line.split # split line on spaces
print vl + v2, " "
end
produces:
34 56 78

The problem is that the input was read as strings, not numbers. The plus operator con-
catenates strings, so that’s what we see in the output. To fix this, use the Integer
method to convert the string to an integer.

some_file.each do |line]

vl, v2 = line.split

print Integer(vl) + Integer(v2),
end

produces:
7 11 15

Strings

Ruby strings are simply sequences of 8-bit bytes. They normally hold printable charac-
ters, but that is not a requirement; a string can also hold binary data. Strings are objects
of class String.

Strings are often created using string literals—sequences of characters between delim-
iters. Because binary data is otherwise difficult to represent within program source,
you can place various escape sequences in a string literal. Each is replaced with the
corresponding binary value as the program is compiled. The type of string delimiter
determines the degree of substitution performed. Within single-quoted strings, two con-
secutive backslashes are replaced by a single backslash, and a backslash followed by a
single quote becomes a single quote.

'escape using "\\"' — escape using "\"

'That\'s right' — That's right
Double-quoted strings support a boatload more escape sequences. The most common
is probably \n, the newline character. Table 22.2 on page 306 gives the complete list. In
addition, you can substitute the value of any Ruby code into a string using the sequence
#{ expr }. If the code is just a global variable, a class variable, or an instance variable,
you can omit the braces.

"Seconds/day: #{24+60%60}" — Seconds/day: 86400
"#{'Ho! '#3}Merry Christmas!" — Ho! Ho! Ho! Merry Christmas!
"This is line #$." — This is line 3

Prepared exclusively for Yeganefar

STRINGS

E/ The interpolated code can be one or more statements, not just an expression.

puts "now is #{ def the(a)
'the ' + a
end
the('time")
} for all good coders..."

produces:

now is the time for all good coders...
You have three more ways to construct string literals: %q, %Q, and here documents.

%q and %Q start delimited single- and double-quoted strings (you can think of %q as a
thin quote ', and %Q as a thick quote ").

%q/general single-quoted string/ — general single-quoted string
%Q!general double-quoted string! — general double-quoted string
%Q{Seconds/day: #{24+60%60}} — Seconds/day: 86400

The character following the g or Q is the delimiter. If it is an opening bracket “[”, brace

“{”, parenthesis “(”, or less-than sign “<”, the string is read until the matching close

symbol is found. Otherwise the string is read until the next occurrence of the same
E/ delimiter. The delimiter can be any nonalphanumeric or nonmultibyte character.

Finally, you can construct a string using a here document.

string = <<END_OF_STRING
The body of the string
is the input lines up to
one ending with the same
text that followed the '<<'
END_OF_STRING

A here document consists of lines in the source up to, but not including, the terminating
string that you specify after the << characters. Normally, this terminator must start in
the first column. However, if you put a minus sign after the << characters, you can
indent the terminator.
print <<-STRING1l, <<-STRING2
Concat
STRING1
enate
STRING2
produces:

Concat
enate

Note that Ruby does not strip leading spaces of the contents of the strings in these
cases.

Prepared exclusively for Yeganefar

STRINGS

Working with Strings

String is probably the largest built-in Ruby class, with more than 75 standard methods.
We won’t go through them all here; the library reference has a complete list. Instead,
we’ll look at some common string idioms—things that are likely to pop up during day-
to-day programming.

Let’s get back to our jukebox. Although it’s designed to be connected to the Internet, it
also holds copies of some popular songs on a local hard drive. That way, if a squirrel
chews through our "net connection, we’ll still be able to entertain the customers.

For historical reasons (are there any other kind?), the list of songs is stored as rows in

a flat file. Each row holds the name of the file containing the song, the song’s duration,

the artist, and the title, all in vertical bar—separated fields. A typical file may start
/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'

/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many methods
to extract and clean up the fields before we create Song objects based on them. At a
minimum, we’ll need to

¢ break each line into fields,
 convert the running times from mm:ss to seconds, and
* remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#split will do the job nicely.
In this case, we’ll pass split a regular expression, /\s+*\|\s*/, that splits the line
into tokens wherever split finds a vertical bar, optionally surrounded by spaces. And,
because the line read from the file has a trailing newline, we’ll use String#chomp to
strip it off just before we apply the split.
File.open("songdata") do |song_file|
songs = SongList.new

song_file.each do |line]
file, length, name, title = line.chomp.split(/\s=*\]|\s*/)
songs.append(Song.new(title, name, length))

end

puts songs[1]
end

produces:

Song: Wonderful World--Louis Armstrong (2:58)

Unfortunately, whoever created the original file entered the artists’ names in columns,
so some of them contain extra spaces. These will look ugly on our high-tech, super-
twist, flat-panel, Day-Glo display, so we’d better remove these extra spaces before

Prepared exclusively for Yeganefar

STRINGS

we go much further. We have many ways of doing this, but probably the simplest is
String#squeeze, which trims runs of repeated characters. We’ll use the squeeze!
form of the method, which alters the string in place.
File.open("songdata") do |song_file|
songs = SongList.new

song_file.each do |line]
file, length, name, title = line.chomp.split(/\s=*\|\s*/)
name.squeeze! (" ")
songs.append(Song.new(title, name, length))

end

puts songs[1]
end

produces:

Song: Wonderful World--Louis Armstrong (2:58)

Finally, we have the minor matter of the time format: the file says 2:58, and we want
the number of seconds, 178. We could use split again, this time splitting the time field
around the colon character.

mins, secs = length.split(/:/)

Instead, we’ll use a related method. String#scan is similar to split in that it breaks
a string into chunks based on a pattern. However, unlike split, with scan you specify
the pattern that you want the chunks to match. In this case, we want to match one or
more digits for both the minutes and seconds component. The pattern for one or more
digits is /\d+/.
File.open("songdata") do |song_file|
songs = SongList.new
song_file.each do |line]
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze! (" ")
mins, secs = length.scan(/\d+/)

songs.append(Song.new(title, name, mins.to_i«60+secs.to_i))
end

puts songs[1]
end
produces:

Song: Wonderful World--Louis Armstrong (178)

Our jukebox has a keyword search capability. Given a word from a song title or an
artist’s name, it will list all matching tracks. Type in fats, and it may come back with
songs by Fats Domino, Fats Navarro, and Fats Waller, for example. We’ll implement
this by creating an indexing class. Feed it an object and some strings, and it will index
that object under every word (of two or more characters) that occurs in those strings.
This will illustrate a few more of class String’s many methods.

Prepared exclusively for Yeganefar

STRINGS

class WordIndex
def initialize
@index = {}
end
def add_to_index(obj, =*phrases)
phrases.each do |phrase]
phrase.scan(/\w[-\w']+/) do |word| # extract each word
word.downcase!
@index[word] = [] if @index[word].nil?
@index[word].push(obj)
end
end
end
def lookup(word)
@index[word.downcase]
end
end

The String#scan method extracts elements from a string that match a regular expres-
sion. In this case, the pattern \w[-\w'’]+ matches any character that can appear in a
word, followed by one or more of the things specified in the brackets (a hyphen, another
word character, or a single quote). We’ll talk more about regular expressions beginning
on page 64. To make our searches case insensitive, we map both the words we extract
and the words used as keys during the lookup to lowercase. Note the exclamation mark
at the end of the first downcase! method name. As with the squeeze! method we used
previously, this is an indication that the method will modify the receiver in place, in
this case converting the string to lowercase.'

We’ll extend our SongList class to index songs as they’re added and add a method to
look up a song given a word.

class SongLlist
def initialize
@songs = Array.new
@index = WordIndex.new
end
def append(song)
@songs.push(song)
@index.add_to_index(song, song.name, song.artist)
self
end
def lookup(word)
@index.lookup (word)
end
end

1. This code sample contains a minor bug: the song “Gone, Gone, Gone” would get indexed three times.
Can you come up with a fix?

Prepared exclusively for Yeganefar

Finally, we’ll test it all.

songs = Songlist.new

song_file.each do |line]
file, length, name, title = line.chomp.split(/\s=*\]|\s*/)
name.squeeze! (" ")
mins, secs = length.scan(/\d+/)
songs.append(Song.new(title, name, mins.to_i«60+secs.to_i))

end

puts songs.lookup("Fats")

puts songs.lookup("ain't")

puts songs.lookup("RED")

puts songs.lookup("WoR1D")

produces:

Song: Ain't Misbehavin'--Fats Waller (225)
Song: Ain't Misbehavin'--Fats Waller (225)
Song: Texas Red--Strength in Numbers (249)
Song: Wonderful World--Louis Armstrong (178)

In the preceding code, the lookup method returns an array of matches. When we pass
an array to puts, it simply writes each element in turn, separated by a newline.

We could spend the next 50 pages looking at all the methods in class String. However,
let’s move on instead to look at a simpler data type: the range.

Ranges

Ranges occur everywhere: January to December, O to 9, rare to well-done, lines 50
through 67, and so on. If Ruby is to help us model reality, it seems natural for it to
support these ranges. In fact, Ruby goes one better: it actually uses ranges to implement
three separate features: sequences, conditions, and intervals.

Ranges as Sequences

The first and perhaps most natural use of ranges is to express a sequence. Sequences
have a start point, an end point, and a way to produce successive values in the sequence.

[T3EEL)

In Ruby, these sequences are created using the *“..” and “...” range operators. The two-
dot form creates an inclusive range, and the three-dot form creates a range that excludes
the specified high value.

1..10

[} [}

a'..'z
my_array = [1, 2, 3]
0...my_array.length

Prepared exclusively for Yeganefar

RANGES

In Ruby, unlike in some earlier versions of Perl, ranges are not represented internally

as lists: the sequence 1..100000 is held as a Range object containing references to two

Fixnum objects. If you need to, you can convert a range to a list using the to_a method.
(1..10).to_a — [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
('bar'..'bat').to_a — ["bar", "bas", "bat"]

Ranges implement methods that let you iterate over them and test their contents in a

variety of ways.

digits = 0..9

digits.include?(5) — true
digits.min — 0

digits.max — 9
digits.reject {|i| i < 5 } — [5, 6, 7, 8, 9]
digits.each {|digit| dial(digit) } — 0..9

So far we’ve shown ranges of numbers and strings. However, as you’d expect from
an object-oriented language, Ruby can create ranges based on objects that you define.
The only constraints are that the objects must respond to succ by returning the next
object in sequence and the objects must be comparable using <=>. Sometimes called
the spaceship operator, <=> compares two values, returning —1, 0, or +1 depending
on whether the first is less than, equal to, or greater than the second.

Here’s a simple class that represents rows of # signs. We may want to use it as a text-
based version of the jukebox volume control.

class VU
include Comparable

attr :volume

def initialize(volume) # 0..9
@volume = volume
end

def inspect
'#' + @volume
end

Support for ranges
def <=>(other)

self.volume <=> other.volume
end

def succ
raise(IndexError, "Volume too big") if @volume >= 9
VU.new(@volume.succ)
end
end

Because our VU class implements succ and <=>, it can participate in ranges.
medium_volume = VU.new(4)..VU.new(7)
medium_volume.to_a — [, HHE, HHEE, #E]
medium_volume.include?(VU.new(3)) — false

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

Ranges as Conditions

As well as representing sequences, ranges may also be used as conditional expressions.
Here, they act as a kind of toggle switch—they turn on when the condition in the first
part of the range becomes true, and they turn off when the condition in the second
part becomes true. For example, the following code fragment prints sets of lines from
standard input, where the first line in each set contains the word start and the last line
contains the word end.

while line = gets
puts line if line =~ /start/ .. line =~ /end/
end

Behind the scenes, the range keeps track of the state of each of the tests. We’ll show
some examples of this in the description of loops that starts on page 94.

In older versions of Ruby, bare ranges could be used as conditions in if, while, and
L/ similar statements. You could, for example, have written the previous code fragment as

while gets
print if /start/../end/
end

This is no longer supported. Unfortunately, no error is raised; the test will simply suc-
ceed each time.

Ranges as Intervals

A final use of the versatile range is as an interval test: seeing if some value falls within

the interval represented by the range. We do this using ===, the case equality operator.
(1..10) === 5 — true
(1..10) === 15 — false
(1..10) === 3.14159 — true
('a'.."j") === "c' — true
('a'.."j") === "z' — false

The example of a case expression on page 92 shows this test in action, determining a
jazz style given a year.

Regular Expressions

Back on page 59 when we were creating a song list from a file, we used a regular
expression to match the field delimiter in the input file. We claimed that the expression
line.split(/\s*\|\s*/) matched a vertical bar surrounded by optional whitespace.
Let’s explore regular expressions in more detail to see why this claim is true.

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

Regular expressions are used to match patterns against strings. Ruby provides built-
in support that makes pattern matching and substitution convenient and concise. In this
section we’ll work through all the main features of regular expressions. We won’t cover
some details here: have a look at page 309 for more information.

Regular expressions are objects of type Regexp. They can be created by calling the
constructor explicitly or by using the literal forms /pattern/ and %r{pattern}.

a = Regexp.new('A\sx[a-z]') — /A\sx[a-z]/
b = /M\sx[a-z]/ — /Msx[a-z]/
¢ = %r{Ar\s=[a-z]} — /Msx[a-z]/

Once you have a regular expression object, you can match it against a string using
Regexp#match(string) or the match operators =~ (positive match) and !~ (negative
match). The match operators are defined for both String and Regexp objects. At least

21-9, one operand of the match operator must be a regular expression. (In previous versions
of Ruby, both could be strings, in which case the second operand was converted into a
regular expression behind the scenes.)

name = "Fats Waller"
name =~ /a/ — 1
name =~ /z/ — nil
/a/ =~ name — 1

The match operators return the character position at which the match occurred. They
also have the side effect of setting a whole load of Ruby variables. $& receives the part
of the string that was matched by the pattern, $° receives the part of the string that
preceded the match, and $' receives the string after the match. We can use this to write
a method, show_regexp, that illustrates where a particular pattern matches.

def show_regexp(a, re)

if a =~ re
"H{S T I<<#{$&I>>#{$"}"
else
"no match"
end
end
show_regexp('very interesting', /t/) — very in<<t>>eresting
show_regexp('Fats Waller', /a/) — F<<a>>ts Waller
show_regexp('Fats Waller', /11/) — Fats Wa<<ll>>er
show_regexp('Fats Waller', /z/) — no match

The match also sets the thread-global variables $~ and $1 through $9. The variable
$~ is a MatchData object (described beginning on page 516) that holds everything you
may want to know about the match. $1, and so on, hold the values of parts of the match.
We’ll talk about these later. And for people who cringe when they see these Perl-like
variable names, stay tuned. There’s good news at the end of the chapter.

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

Patterns

Every regular expression contains a pattern, which is used to match the regular expres-
sion against a string.

Within a pattern, all characters except ., I, ,), [, 1, {, }, +, \, A, $, *, and ? match
themselves.

show_regexp('kangaroo', /angar/) — k<<angar>>o00

show_regexp (' !@%&-_=+"', /%&/) — 1@<<%&>>-_=+
If you want to match one of these special characters literally, precede it with a back-
slash. This explains part of the pattern we used to split the song line, /\s*\|\s+*/.
The \ | means “match a vertical bar.” Without the backslash, the | would have meant
alternation (which we’ll describe later).

show_regexp('ves | no', /\I|/) — yes <<|>> no
show_regexp('yes (no)', /\(no\)/) — yes <<(no)>>
show_regexp('are you sure?', /e\?/) — are you sur<<e?>>

A backslash followed by an alphanumeric character is used to introduce a special match
construct, which we’ll cover later. In addition, a regular expression may contain #{. . .}
expression substitutions.

Anchors

By default, a regular expression will try to find the first match for the pattern in a string.
Match /iss/ against the string “Mississippi,” and it will find the substring “iss” starting
at position one. But what if you want to force a pattern to match only at the start or end
of a string?

The patterns A and $ match the beginning and end of a line, respectively. These are often
used to anchor a pattern match: for example, /Aoption/ matches the word option only
if it appears at the start of a line. The sequence \A matches the beginning of a string,
and \z and \Z match the end of a string. (Actually, \Z matches the end of a string unless
the string ends with a \n, it which case it matches just before the \n.)

show_regexp("this is\nthe time", /Athe/)
show_regexp("this is\nthe time", /is$/)
show_regexp("this is\nthe time", /\Athis/)
show_regexp("this is\nthe time", /\Athe/)

this is\n<<the>> time
this <<is>>\nthe time
<<this>> is\nthe time

N
_
N
— no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries,
respectively. Word characters are letters, numbers, and underscores.

show_regexp("this is\nthe time", /\bis/) — this <<is>>\nthe time
show_regexp("this is\nthe time", /\Bis/) — th<<is>> is\nthe time

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

Character Classes

A character class is a set of characters between brackets: [characters] matches any
single character between the brackets. [aeiou] will match a vowel, [, . :;!?] matches
punctuation, and so on. The significance of the special regular expression characters—
. O[{+2$x?—is turned off inside the brackets. However, normal string substitution
still occurs, so (for example) \b represents a backspace character and \n a newline
(see Table 22.2 on page 306). In addition, you can use the abbreviations shown in
Table 5.1 on the following page so that (for example) \s matches any whitespace char-
acter, not just a literal space. The POSIX character classes in the second half of the
table correspond to the ctype(3) macros of the same names.

Pr<<i>>ce $12.
Price<< >>$12.
Price $<<1>>2.
Price<< >>$12.
Pr<<i>>ce $12.

show_regexp('Price $12.', /[aeiou]/)
show_regexp('Price $12.', /[\sl/)
show_regexp('Price $12.', /[[:digit:]11/)
show_regexp('Price $12.', /[[:space:]11/)
show_regexp('Price $12.', /[[:punct:]aeioul/)

bl

Within the brackets, the sequence c;-co represents all the characters between ¢; and ca,

inclusive.
a = 'see [Design Patterns-page 123]'
show_regexp(a, /[A-F]/) — see [<<D>>esign Patterns-page 123]
show_regexp(a, /[A-Fa-f]/) — s<<e>>e [Design Patterns-page 123]
show_regexp(a, /[0-9]/) — see [Design Patterns-page <<1>>23]
show_regexp(a, /[0-9][0-9]/) — see [Design Patterns-page <<12>>3]

If you want to include the literal characters] and - within a character class, they must
appear at the start. Put a A immediately after the opening bracket to negate a character
class: [~a-z] matches any character that isn’t a lowercase alphabetic.

a = 'see [Design Patterns-page 123]'

show_regexp(a, /[11/) — see [Design Patterns-page 123<<]>>
show_regexp(a, /[-1/) — see [Design Patterns<<->>page 123]
show_regexp(a, /[*a-z]/) — see<< >>[Design Patterns-page 123]
show_regexp(a, /[*a-z\s]/) — see <<[>>Design Patterns-page 123]

Some character classes are used so frequently that Ruby provides abbreviations for
them. These abbreviations are listed in Table 5.1 on the next page—they may be used
both within brackets and in the body of a pattern.

show_regexp('It costs $12.', /\s/) — It<< >>costs $12.
show_regexp('It costs $12.', /\d/) — It costs $<<I>>2.

Finally, a period (.) appearing outside brackets represents any character except a new-
line (though in multiline mode it matches a newline, too).

a = 'It costs $12.°'

show_regexp(a, /c.s/) — It <<cos>>ts $12.

show_regexp(a, /./) — <<I>>t costs $12.
show_regexp(a, /\./) — It costs $12<<.>>

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

Table 5.1. Character class abbreviations

Sequence As]|...

1

Meaning

\d
\D
\s
\S
\w
\W

9]

~0-9]

Ms\t\r\n\f]
A-Za-70-9_]
NA-Za-20-9_]

[0-
[
[\s\t\r\n\f]
[
[
[

Digit character

Any character except a digit
Whitespace character

Any character except whitespace
Word character

Any character except a word character

POSIX Character Classes

ralnum:
:alpha:
:blank:
rentrl:
rdigit:
:graph:
:lower:
:print:
rpunct:
:space:
rupper:

L B T s T e T e T s B s Y e T s Y e B |

[:xdigit:

e e e) e e b ed b

Alphanumeric

Uppercase or lowercase letter

Blank and tab

Control characters (at least 0x00-0x1f, 0x7f)
Digit

Printable character excluding space
Lowercase letter

Any printable character (including space)

Printable character excluding space and alphanumeric

Whitespace (same as \s)
Uppercase letter
Hex digit (0-9, a—f, A-F)

Repetition

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we
wanted to match a vertical bar surrounded by an arbitrary amount of whitespace. We
now know that the \'s sequences match a single whitespace character, so it seems likely
that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk is one of a

number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then

r#*
r+

r?
r{m,n}
r{m,}
r{m}

These repetition constructs have a high precedence—they bind only to the immediately
preceding regular expression in the pattern. /ab+/ matches an a followed by one or

Prepared exclusively for Yeganefar

matches zero or more occurrences of r.
matches one or more occurrences of r.
matches zero or one occurrence of r.

matches at least “m” and at most

“ 2

occurrences of r.

matches at least “m” occurrences of r.
matches exactly “m” occurrences of r.

REGULAR EXPRESSIONS

more b’s, not a sequence of ab’s. You have to be careful with the * construct too—the
pattern /a*/ will match any string; every string has zero or more a’s.

These patterns are called greedy, because by default they will match as much of the
string as they can. You can alter this behavior, and have them match the minimum, by
adding a question mark suffix.

a = "The moon is made of cheese"
show_regexp(a, /\w+/)
show_regexp(a, /\s.x*\s/)
show_regexp(a, /\s.*?\s/)
show_regexp(a, /[aeiou]{2,99}/)
show_regexp(a, /mo?o/)

<<The>> moon is made of cheese
The<< moon is made of >>cheese
The<< moon >>is made of cheese
The m<<oo>>n is made of cheese
The <<moo>>n is made of cheese

A

Alternation

We know that the vertical bar is special, because our line-splitting pattern had to escape
it with a backslash. That’s because an unescaped vertical bar (|) matches either the
regular expression that precedes it or the regular expression that follows it.

a = "red ball blue sky"

show_regexp(a, /dle/) — r<<e>>d ball blue sky
show_regexp(a, /all|lu/) — red b<<al>>1 blue sky
show_regexp(a, /red ball|angry sky/) — <<red ball>> blue sky

There’s a trap for the unwary here, as | has a very low precedence. The last example
above matches red ball or angry sky, not red ball sky or red angry sky. To match red
ball sky or red angry sky, you’d need to override the default precedence using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within
the group is treated as a single regular expression.

show_regexp('banana', /an*/) — b<<an>>ana
show_regexp('banana', /(an)*/) — <<>>banana
show_regexp('banana', /(an)+/) — b<<anan>>a

a = 'red ball blue sky'
show_regexp(a, /blue|red/)
show_regexp(a, /(blue|red) \w+/)
show_regexp(a, /(red|blue) \w+/)
show_regexp(a, /red|blue \w+/)

<<red>> ball blue sky
<<red ball>> blue sky
<<red ball>> blue sky
<<red>> ball blue sky

L

show_regexp(a, /red (ball|angry) sky/) — no match

a = 'the red angry sky'

show_regexp(a, /red (ball|angry) sky/) — the <<red angry sky>>
Parentheses also collect the results of pattern matching. Ruby counts opening parenthe-
ses, and for each stores the result of the partial match between it and the corresponding
closing parenthesis. You can use this partial match both within the rest of the pattern

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

and in your Ruby program. Within the pattern, the sequence \1 refers to the match of
the first group, \2 the second group, and so on. Outside the pattern, the special variables
$1, $2, and so on, serve the same purpose.

"12:50am" =~ /(\d\d): (\d\d)(..)/ — 0

"Hour is #$1, minute #$2" — "Hour is 12, minute 50"
"12:50am" =~ /((\d\d):(\d\d))(..)/ — 0

"Time is #$1" — "Time is 12:50"

"Hour is #$%$2, minute #$3" — "Hour is 12, minute 50"
"AM/PM is #$4" — "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for
various forms of repetition.

match duplicated letter

show_regexp('He said "Hello"', /(\w)\1l/) — He said "He<<1ll>>0"
match duplicated substrings

show_regexp('Mississippi', /(\w+)\1/) — M<<ississ>>ippi

You can also use back references to match delimiters.

show_regexp('He said "Hello"', /(["']).*?\1/) — He said
<<"Hello">>

show_regexp("He said 'Hello'", /(["']).*?\1/) — He said
<<'Hello'>>

Pattern-Based Substitution

Sometimes finding a pattern in a string is good enough. If a friend challenges you to
find a word that contains the letters a, b, ¢, d, and e in order, you could search a word
list with the pattern /a.*b.=*c.*d.*e/ and find abjectedness, absconded, ambuscade,
and carbacidometer, among others. That has to be worth something.

However, sometimes you need to change things based on a pattern match. Let’s go
back to our song list file. Whoever created it entered all the artists’ names in lowercase.
When we display them on our jukebox’s screen, they’d look better in mixed case. How
can we change the first character of each word to uppercase?

The methods String#sub and String#gsub look for a portion of a string matching
their first argument and replace it with their second argument. String#sub performs
one replacement, and String#gsub replaces every occurrence of the match. Both rou-
tines return a new copy of the String containing the substitutions. Mutator versions
String#sub! and String#gsub! modify the original string.

= "the quick brown fox"
.sub(/[aeioul/, '=')
.gsub(/[aeioul/, '*")
.sub(/\s\S+/, '")
.gsub(/\s\S+/, '")

"th* quick brown fox"
"th# g#+ck brswn fx"
"the brown fox"

"the"

LLld

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

The second argument to both functions can be either a String or a block. If a block is
used, it is passed the matching substring, and the block’s value is substituted into the
original string.

a = "the quick brown fox"

a.sub(/A./) {|Imatch| match.upcase }
a.gsub(/[aeiou]/) {|vowel| vowel.upcase }

— "The quick brown fox"
— "thE qUIck brOwn fOx"
So, this looks like the answer to converting our artists’ names. The pattern that matches
the first character of a word is \b\w—Ilook for a word boundary followed by a word

character. Combine this with gsub, and we can hack the artists’ names.

def mixed_case(name)
name.gsub(/\b\w/) {|first| first.upcase }

end
mixed_case("fats waller") — "Fats Waller"
mixed_case("louis armstrong") — "Louis Armstrong"

mixed_case("strength in numbers") — "Strength In Numbers"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the pattern,
standing for the nth group matched so far. The same sequences are available in the
second argument of sub and gsub.
"fred:smith".sub(/(\w+):(\w+)/, '\2, \1') — "smith, fred"
"nercpyitno".gsub(/(.)(.)/, "\2\1") — "encryption"
Additional backslash sequences work in substitution strings: \& (last match), \+ (last

matched group), \ " (string prior to match), \' (string after match), and \\ (a literal
backslash).

It gets confusing if you want to include a literal backslash in a substitution. The obvious
thing is to write

str.gsub(/\\/, "\\\\")

Clearly, this code is trying to replace each backslash in str with two. The programmer
doubled up the backslashes in the replacement text, knowing that they’d be converted
to \\ in syntax analysis. However, when the substitution occurs, the regular expression
engine performs another pass through the string, converting \\ to \, so the net effect
is to replace each single backslash with another single backslash. You need to write
gsub(/\\/, "\\\\\\\\))!

str = 'a\b\c' — "a\b\c"

str.gsub(/A\\/, "\\\\\\\\') — "a\\b\\c"

However, using the fact that \& is replaced by the matched string, you could also write

str = 'a\b\c' — "a\b\c"
str.gsub(/\\/, "\&\&') — "a\\b\\c"

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

If you use the block form of gsub, the string for substitution is analyzed only once
(during the syntax pass) and the result is what you intended.

str = 'a\b\c' — "a\b\c"

str.gsub(/A\/) { "\\\\" } — "a\\b\\c¢"
Finally, as an example of the wonderful expressiveness of combining regular expres-
sions with code blocks, consider the following code fragment from the CGI library
module, written by Wakou Aoyama. The code takes a string containing HTML escape
sequences and converts it into normal ASCII. Because it was written for a Japanese
audience, it uses the n modifier on the regular expressions, which turns off wide-
character processing. It also illustrates Ruby’s case expression, which we discuss start-
ing on page 92.

def unescapeHTML(string)

str = string.dup

str.gsub! (/&(.%?);/n) {
match = $1.dup

case match
when /\Aamp\z/ni then '&'
when /\Aquot\z/ni then '"'
when /\Agt\z/ni then '>'
when /\Alt\z/ni then '<'
when /\A#(\d+)\z/n then Integer($1).chr
when /\A#x([0-9a-f]+)\z/ni then $1.hex.chr
end

}

str

end

puts unescapeHTML("1<2 && 4>3")
puts unescapeHTML(""A" = A = A")
produces:

1<2 && 4>3
MAY — A = A

Object-Oriented Regular Expressions

We have to admit that while all these weird variables are very convenient to use, they
aren’t very object oriented, and they’re certainly cryptic. And didn’t we say that every-
thing in Ruby was an object? What has gone wrong here?

Nothing, really. It’s just that when Matz designed Ruby, he produced a fully object-
oriented regular expression handling system. He then made it look familiar to Perl
programmers by wrapping all these $-variables on top of it all. The objects and classes
are still there, underneath the surface. So let’s spend a while digging them out.

We’ve already come across one class: regular expression literals create instances of
class Regexp (documented beginning on page 579).

Prepared exclusively for Yeganefar

REGULAR EXPRESSIONS

re = /cat/

re.class — Regexp
The method Regexp#match matches a regular expression against a string. If unsuc-
cessful, the method returns nil. On success, it returns an instance of class MatchData,
documented beginning on page 516. And that MatchData object gives you access to
all available information about the match. All that good stuff that you can get from the
$-variables is bundled in a handy little object.

re = /(\d+):(\d+)/ # match a time hh:mm
md = re.match("Time: 12:34am")

md.class — MatchData

md[0] #==$& — "12:34"

md[1] #==8%1 — "12"

md[2] #==82 — "34"
md.pre_match # ==$ — "Time: "
md.post_match # == $' — "am"

Because the match data is stored in its own object, you can keep the results of two
or more pattern matches available at the same time, something you can’t do using the
$-variables. In the next example, we’re matching the same Regexp object against two
strings. Each match returns a unique MatchData object, which we verify by examining
the two subpattern fields.

re = /(\d+):(\d+)/ # match a time hh:mm
mdl = re.match("Time: 12:34am")

md2 = re.match("Time: 10:30pm")

mdl[1, 2] — ["12", "34"]

md2[1, 2] — ["10", "30"]

So how do the $-variables fit in? Well, after every pattern match, Ruby stores a refer-
ence to the result (nil or a MatchData object) in a thread-local variable (accessible
using $~). All the other regular expression variables are then derived from this object.
Although we can’t really think of a use for the following code, it demonstrates that all
the other MatchData-related $-variables are indeed slaved off the value in $~.

re = /(\d+):(\d+)/

mdl = re.match("Time: 12:34am")

md2 = re.match("Time: 10:30pm")

[$1, $2 1 # last successful match — ["10", "30"]

$~ = mdl

[$1, $2 1 # previous successful match — ["12", "34"]

Having said all this, we have to ’fess up. We normally use the $-variables rather than
worrying about MatchData objects. For everyday use, they just end up being more
convenient. Sometimes we just can’t help being pragmatic.

Prepared exclusively for Yeganefar

Chapter 6

More about Methods

So far in this book, we’ve been defining and using methods without much thought. Now
it’s time to get into the details.

Defining a Method

As we’ve seen, a method is defined using the keyword def. Method names should begin
with a lowercase letter.! Methods that act as queries are often named with a trailing ?,
such as instance_of?. Methods that are “dangerous,” or modify the receiver, may
be named with a trailing !. For instance, String provides both a chop and a chop!.
The first one returns a modified string; the second modifies the receiver in place. And
methods that can be assigned to (a feature we discussed on page 29) end with an equals
sign (=). 7, !, and = are the only “weird” characters allowed as method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some
parameters. These are simply a list of local variable names in parentheses. (The paren-
theses are optional around a method’s arguments; our convention is to use them when
a method has arguments and omit them when it doesn’t.)

def my_new_method(argl, arg2, arg3) # 3 arguments
Code for the method would go here

end

def my_other_new_method # No arguments
Code for the method would go here

end

Ruby lets you specify default values for a method’s arguments—values that will be used
if the caller doesn’t pass them explicitly. You do this using the assignment operator.

1. You won’t get an immediate error if you use an uppercase letter, but when Ruby sees you calling the
method, it will first guess that it is a constant, not a method invocation, and as a result it may parse the call
incorrectly.

Prepared exclusively for Yeganefar

DEFINING A METHOD

def cool_dude(argl="Miles", arg2="Coltrane", arg3="Roach")
"#{argl}, #{arg2}, #{arg3}."
end

"Miles, Coltrane, Roach."
"Bart, Coltrane, Roach."
"Bart, Elwood, Roach."
"Bart, Elwood, Linus."

cool_dude

cool_dude("Bart")

cool_dude("Bart", "Elwood")
cool_dude("Bart", "Elwood", "Linus")

Ll

The body of a method contains normal Ruby expressions, except that you may not
define a nonsingleton class or module within a method. If you define a method inside

E/ another method, the inner method gets defined when the outer method executes. The
return value of a method is the value of the last expression executed or the result of an
explicit return expression.

Variable-Length Argument Lists

But what if you want to pass in a variable number of arguments or want to capture
multiple arguments into a single parameter? Placing an asterisk before the name of the
parameter after the “normal” parameters does just that.

def varargs(argl, =rest)
"Got #{argl} and #{rest.join(', ')}"

end

varargs("one") — "Got one and "
varargs("one", "two") — "Got one and two"
varargs "one", "two", "three" — "Got one and two, three"

In this example, the first argument is assigned to the first method parameter as usual.
However, the next parameter is prefixed with an asterisk, so all the remaining arguments
are bundled into a new Array, which is then assigned to that parameter.

Methods and Blocks

As we discussed in the section on blocks and iterators beginning on page 46, when a
method is called, it may be associated with a block. Normally, you simply call the block
from within the method using yield.

def take_block(pl)
if block_given?
yield(pl)
else
pl
end
end

take_block("no block™) — "no block"
take_block("no block"™) {|s| s.sub(/no /, '') } — "block"

Prepared exclusively for Yeganefar

CALLING A METHOD

However, if the last parameter in a method definition is prefixed with an ampersand,
any associated block is converted to a Proc object, and that object is assigned to the
parameter.

class TaxCalculator
def initialize(name, &block)
@name, @block = name, block
end
def get_tax(amount)
"#@name on #{amount} = #{ @block.call(amount) }"
end
end

tc = TaxCalculator.new("Sales tax") {|amt| amt % 0.075 }

tc.get_tax(100) — "Sales tax on 100
tc.get_tax(250) — "Sales tax on 250

7.5"
18.75"

Calling a Method

You call a method by specifying a receiver, the name of the method, and optionally
some parameters and an optional block.

connection.download_MP3("jitterbug") {|p| show_progress(p) }

In this example, the object connection is the receiver, download_MP3 is the name
of the method, "jitterbug" is the parameter, and the stuff between the braces is the
associated block.

For class and module methods, the receiver will be the class or module name.

File.size("testfile") — 66
Math.sin(Math::PI/4) — 0.707106781186548

If you omit the receiver, it defaults to self, the current object.

self.class — Object
self.frozen? — false
frozen? — false
self.id — 967900
id — 967900

This defaulting mechanism is how Ruby implements private methods. Private methods
may not be called with a receiver, so they must be methods available in the current
object.

Also, in the previous example we called self.class, but we could not call the method
class without a receiver. This is because class is also a keyword in Ruby (it intro-
duces class definitions), so its stand-alone use would generate a syntax error.

Prepared exclusively for Yeganefar

CALLING A METHOD

The optional parameters follow the method name. If no ambiguity exists, you can omit
the parentheses around the argument list when calling a method.”? However, except in
the simplest cases we don’t recommend this—some subtle problems can trip you up.?
Our rule is simple: if you have any doubt, use parentheses.

a = obj.hash # Same as

a = obj.hash() # this.

obj.some_method "Argl", arg2, arg3 # Same thing as
obj.some_method("Argl", arg2, arg3) # with parentheses.

Older Ruby versions compounded the problem by allowing you to put spaces between
the method name and the opening parenthesis. This made it hard to parse: is the paren-

E/ thesis the start of the parameters or the start of an expression? As of Ruby 1.8 you get
a warning if you put a space between a method name and an open parenthesis.

Method Return Values

Every called method returns a value (although no rule says you have to use that value).
The value of a method is the value of the last statement executed during the method’s
execution. Ruby has a return statement, which exits from the currently executing
method. The value of a return is the value of its argument(s). It is idiomatic Ruby
to omit the return if it isn’t needed.

def meth_one
"one"
end

meth_one — one

def meth_two(arg)
case
when arg > 0
"positive"
when arg < 0
"negative"
else
"zero"
end
end

meth_two(23) — "positive"

meth_two(0) — "zero"
2. Other Ruby documentation sometimes calls these method calls without parentheses commands.
3. In particular, you must use parentheses on a method call that is itself a parameter to another method

call (unless it is the last parameter).

Prepared exclusively for Yeganefar

CALLING A METHOD

def meth_three
100.times do |num|
square = num#num
return num, square if square > 1000
end
end
meth_three — [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns
them in an array. You can use parallel assignment to collect this return value.
num, square = meth_three

num — 32
square — 1024

Expanding Arrays in Method Calls

Earlier we saw that if you put an asterisk in front of a formal parameter in a method
definition, multiple arguments in the call to the method will be bundled into an array.
Well, the same thing works in reverse.

When you call a method, you can explode an array, so that each of its members is taken
as a separate parameter. Do this by prefixing the array argument (which must follow all
the regular arguments) with an asterisk.

def five(a, b, c, d, e)
"I was passed #{a} #{b} #{c} #{d} #{e}"

end

five(1, 2, 3, 4, 5) — "I was passed 1 2 3 4 5"
five(1, 2, 3, *['a"', 'b']) — "I was passed 1 2 3 a b"
five(*(10..14).to_a) — "I was passed 10 11 12 13 14"

Making Blocks More Dynamic

We’ve already seen how to associate a block with a method call.

list_bones("aardvark") do |bone|
...
end

Normally, this is perfectly good enough—you associate a fixed block of code with a
method in the same way you’d have a chunk of code after an if or while statement.

Sometimes, however, you’d like to be more flexible. For example, we may be teaching
math skills.* The student could ask for an n-plus table or an n-times table. If the student

4. Of course, Andy and Dave would have to learn math skills first. Conrad Schneiker reminded us that
there are three kinds of people: those who can count and those who can’t.

Prepared exclusively for Yeganefar

CALLING A METHOD

asked for a 2-times table, we’d output 2, 4, 6, 8, and so on. (This code does not check
its inputs for errors.)

print "(t)imes or (p)lus:
times = gets
print "number:
number = Integer(gets)
if times =~ /At/

puts((1..10).collect {|n| n*number }.join(", "))
else

puts((1..10).collect {|n| n+number }.join(", "))
end

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if state-
ment. If would be nice if we could factor out the block that does the calculation.

print "(t)imes or (p)lus:
times = gets
print "number:
number = Integer(gets)
if times =~ /At/

calc = lambda {|n| n*number }
else

calc = lambda {|n| n+number }
end
puts((1..10).collect(&calc).join(", "))

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it
is a Proc object. It removes it from the parameter list, converts the Proc object into a
block, and associates it with the method.

Collecting Hash Arguments

Some languages feature keyword arguments—that is, instead of passing arguments in a
given order and quantity, you pass the name of the argument with its value, in any order.
Ruby 1.8 does not have keyword arguments (making us liars, because in the previous
version of this book we said it would have. Perhaps in Ruby 2.0). In the meantime,
people are using hashes as a way of achieving the same effect. For example, we could
consider adding a more powerful named-search facility to our SongList.

Prepared exclusively for Yeganefar

CALLING A METHOD

class Songlist
def create_search(name, params)

...
end
end
list.create_search("short jazz songs",
{
'genre' => "jazz",
'duration_less_than' => 270
b

The first parameter is the search name, and the second is a hash literal containing search
parameters. The use of a hash means we can simulate keywords: look for songs with a
genre of “jazz” and a duration less than 4% minutes. However, this approach is slightly
clunky, and that set of braces could easily be mistaken for a block associated with the
method. So, Ruby has a shortcut. You can place key => value pairs in an argument list, as
long as they follow any normal arguments and precede any array and block arguments.
All these pairs will be collected into a single hash and passed as one argument to the
method. No braces are needed.

list.create_search('short jazz songs',
'genre’ = 'jazz',
'duration_less_than' => 270)
Finally, in idiomatic Ruby you’d probably use symbols rather than strings, as symbols
make it clearer that you’re referring to the name of something.
list.create_search('short jazz songs',
:genre => :jazz,
:duration_less_than => 270)

A well-written Ruby program will typically contain many methods, each quite small,
so it’s worth getting familiar with the options available when defining and using Ruby
methods.

Prepared exclusively for Yeganefar

Chapter 7

Expressions

So far we’ve been fairly cavalier in our use of expressions in Ruby. After all, a=b+c is
pretty standard stuff. You could write a whole heap of Ruby code without reading any
of this chapter.

But it wouldn’t be as much fun ;-).

One of the first differences with Ruby is that anything that can reasonably return a value
does: just about everything is an expression. What does this mean in practice?

Some obvious things include the ability to chain statements together.

a=b=c=0 -~ 0
[3,1, 7, 0].sort.reverse — [7, 3, 1, 0]

Perhaps less obvious, things that are normally statements in C or Java are expressions
in Ruby. For example, the if and case statements both return the value of the last
expression executed.

song_type = if song.mp3_type == MP3::Jazz
if song.written < Date.new(1935, 1, 1)
Song: :TradJazz

else
Song::Jazz
end
else
Song: :Other
end

rating = case votes_cast
when 0...10 then Rating::SkipThisOne
when 10...50 then Rating::CouldDoBetter
else Rating: :Rave
end

We’ll talk more about if and case starting on page 90.

Prepared exclusively for Yeganefar

OPERATOR EXPRESSIONS

Operator Expressions

Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A
complete list of the operators, and their precedences, is given in Table 22.4 on page 324.

In Ruby, many operators are actually implemented as method calls. For example, when
you write axb+c you’re actually asking the object referenced by a to execute the
method +, passing in the parameter b. You then ask the object that results from that
calculation to execute the + method, passing c as a parameter. This is equivalent to
writing

(a.*(b)).+(c)

Because everything is an object, and because you can redefine instance methods, you
can always redefine basic arithmetic if you don’t like the answers you’re getting.

class Fixnum
alias old_plus +

Redefine addition of Fixnums. This
is a BAD IDEA!
def +(other)

old_plus(other).succ

end
end
1+ 2 — 4
a=3
a+= 4 — 8

a+a+a — 26

More useful is that classes you write can participate in operator expressions just as if
they were built-in objects. For example, we may want to be able to extract a number
of seconds of music from the middle of a song. We could do this using the indexing
operator [] to specify the music to be extracted.

class Song
def []J(from_time, to_time)
result = Song.new(self.title +
self.artist,
to_time - from_time)
result.set_start_time(from_time)

[extract]",

result
end

end

This code fragment extends class Song with the method [], which takes two parameters
(a start time and an end time). It returns a new song, with the music clipped to the given
interval. We could then play the introduction to a song with code such as

song[0, 15].play

Prepared exclusively for Yeganefar

MISCELLANEOUS EXPRESSIONS

Miscellaneous Expressions

As well as the obvious operator expressions and method calls, and the (perhaps) less
obvious statement expressions (such as if and case), Ruby has a few more things that
you can use in expressions.

Command Expansion

If you enclose a string in backquotes (sometimes called backticks), or use the delimited
form prefixed by %x, it will (by default) be executed as a command by your underlying
operating system. The value of the expression is the standard output of that command.
Newlines will not be stripped, so it is likely that the value you get back will have a
trailing return or linefeed character.

‘date” — "Thu Aug 26 22:36:31 CDT 2004\n"
“1s”.split[34] — "book.out"
%x{echo "Hello there"} — "Hello there\n"

You can use expression expansion and all the usual escape sequences in the command

string.
for i in 0..3
status = ‘dbmanager status id=#{i}"
...
end

The exit status of the command is available in the global variable $?.

Redefining Backquotes

In the description of the command output expression, we said that the string in back-
quotes would “by default” be executed as a command. In fact, the string is passed to
the method called Kernel. " (a single backquote). If you want, you can override this.

alias old_backquote °
def " (cmd)
result = old_backquote(cmd)
if $? 1= 0
fail "Command #{cmd} failed: #$?"
end
result
end
print ‘date’
print ‘data’

produces:

Thu Aug 26 22:36:31 CDT 2004

prog.rb:10: command not found: data

prog.rb:5:in " ': Command data failed: 32512 (RuntimeError)
from prog.rb:10

Prepared exclusively for Yeganefar

ASSIGNMENT

Assighment

Just about every example we’ve given so far in this book has featured assignment.
Perhaps it’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the lvalue) to
refer to the value on the right (the rvalue). It then returns that value as the result of the
assignment expression. This means you can chain assignments, and you can perform
assignments in some unexpected places.

a=b=1+2+3

a — 6

b — 6
a=(b=1+2)+3
a — 6

b — 3

File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference to a
variable or constant. This form of assignment is hardwired into the language.

instrument = "piano"
MIDDLE_A = 440

The second form of assignment involves having an object attribute or element reference
on the left side.

song.duration 234
instrument["ano"] = "ccolo"

These forms are special, because they are implemented by calling methods in the
Ivalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method
name ending in an equals sign. This method receives as its parameter the assignment’s
rvalue.

class Song
def duration=(new_duration)
@duration = new_duration
end
end

These attribute-setting methods don’t have to correspond with internal instance vari-
ables, and you don’t need an attribute reader for every attribute writer (or vice versa).

class Amplifier
def volume=(new_volume)
self.left_channel = self.right_channel = new_volume
end
end

Prepared exclusively for Yeganefar

ASSIGNMENT

In older Ruby versions, the result of the assignment was the value returned by the
L/ attribute-setting method. In Ruby 1.8, the value of the assignment is always the value
of the parameter; the return value of the method is discarded.

class Test
def val=(val)
@val = val
return 99
end
end
t = Test.new
a=t.val =2

a — 2

In older versions of Ruby, a would be set to 99 by the assignment, and in Ruby 1.8 it
will be set to 2.

Parallel Assignment

During your first week in a programming course (or the second semester if it was a
party school), you may have had to write code to swap the values in two variables.

int a = 1;
int b = 2;
int temp;
temp = a;
a = b;

b = temp;

You can do this much more cleanly in Ruby.
a, b=>b, a

Ruby assignments are effectively performed in parallel, so the values assigned are not
affected by the assignment itself. The values on the right side are evaluated in the order
in which they appear before any assignment is made to variables or attributes on the left.
A somewhat contrived example illustrates this. The second line assigns to the variables
a, b, and c the values of the expressions x, x +=1, and x +=1, respectively.

x =0 — 0

a, b, c = x, x+=1), x+=1) — [0, 1, 2]
When an assignment has more than one Ivalue, the assignment expression returns an
array of the rvalues. If an assignment contains more lvalues than rvalues, the excess
Ivalues are set to nil. If a multiple assignment contains more rvalues than lvalues, the
extrarvalues are ignored. If an assignment has just one lvalue and multiple rvalues, the
rvalues are converted to an array and assigned to the lvalue.

Prepared exclusively for Yeganefar

ASSIGNMENT

Using 2 ithin a CI

Why did we write self.left_channel in the example on page 847
Well, writable attributes have a hidden gotcha. Normally, methods
within a class can invoke other methods in the same class and its
superclasses in functional form (that is, with an implicit receiver of
self). However, this doesn’t work with attribute writers. Ruby sees
the assignment and decides that the name on the left must be a local
variable, not a method call to an attribute writer.

class BrokenAmplifier
attr_accessor :left_channel, :right_channel
def volume=(vol)
left_channel = self.right_channel = vol
end
end

ba = BrokenAmplifier.new
ba.left_channel = ba.right_channel = 99
ba.volume = 5

ba.left_channel — 99
ba.right_channel — 5

We forgot to put “self.” in front of the assignment to left_channel,
so Ruby stored the new value in a local variable of method volume=;
the object’s attribute never got updated. This can be a tricky bug to
track down.

You can collapse and expand arrays using Ruby’s parallel assignment operator. If the
last lvalue is preceded by an asterisk, all the remaining rvalues will be collected and
assigned to that lvalue as an array. Similarly, if the last rvalue is an array, you can
prefix it with an asterisk, which effectively expands it into its constituent values in
place. (This is not necessary if the rvalue is the only thing on the right side—the array
will be expanded automatically.)

a=1[1, 2, 3, 4]

b, c=a — b ==1, c == 2

b, #c = a — b =1, c == [2, 3, 4]

b, ¢=99, a — b==299, c¢==1[1, 2, 3, 4]
b, *c =99, a — b==299, c¢==1[[1, 2, 3, 4]]
b, ¢=99, *a — b==299, c ==

b, *¢ =99, *a — b ==99, c¢==[1, 2, 3, 4]

Nested Assignments

Parallel assignments have one more feature worth mentioning. The left side of an
assignment may contain a parenthesized list of terms. Ruby treats these terms as if they

Prepared exclusively for Yeganefar

CONDITIONAL EXECUTION

were a nested assignment statement. It extracts the corresponding rvalue, assigning it
to the parenthesized terms, before continuing with the higher-level assignment.

b, (¢, d), e =1,2,3,4 — b==1, ¢ == 2, d == nil, e == 3
b, (c, d), e = [1,2,3,4] — b ==1, ¢ == 2, d == nil, e == 3
b, (c, d), e =1,[2,3],4 — b==1, c ==2, d==3, e ==4
b, (¢, d), e =1,[2,3,4],5 — b==1, c ==2, d == 3, e ==75
b, (c,*d), e = 1,[2,3,4],5 — b=1, c =2, d==1[3, 4], e == 5

Other Forms of Assignment

In common with many other languages, Ruby has a syntactic shortcut: a=a +2 may be
written as a += 2.

The second form is converted internally to the first. This means that operators you have
defined as methods in your own classes work as you’d expect.

class Bowdlerize
def initialize(string)
@value = string.gsub(/[aeiou]/, '=')
end
def +(other)
Bowdlerize.new(self.to_s + other.to_s)
end
def to_s
@value
end
end

a = Bowdlerize.new("damn ") — dsmn
a += "shame" — d#mn sh=m*

Something you won’t find in Ruby are the autoincrement (++) and autodecrement (--)
operators of C and Java. Use the += and-= forms instead.

Conditional Execution

Ruby has several different mechanisms for conditional execution of code; most of them
should feel familiar, and many have some neat twists. Before we get into them, though,
we need to spend a short time looking at boolean expressions.

Boolean Expressions

Ruby has a simple definition of truth. Any value that is not nil or the constant false
is true. You’'ll find that the library routines use this fact consistently. For example,
I0#gets, which returns the next line from a file, returns nil at end of file, enabling
you to write loops such as

Prepared exclusively for Yeganefar

CONDITIONAL EXECUTION

while line = gets
process line
end

However, C, C++, and Perl programmers sometimes fall into a trap. The number zero
is not interpreted as a false value. Neither is a zero-length string. This can be a tough
habit to break.

Defined?, And, Or, and Not

Ruby supports all the standard boolean operators and introduces the new operator
defined?.

Both and and && evaluate to true only if both operands are true. They evaluate the sec-
ond operand only if the first is true (this is sometimes known as shortcircuit evaluation).
The only difference in the two forms is precedence (and binds lower than &&).

Similarly, both or and | | evaluate to true if either operand is true. They evaluate their
second operand only if the first is false. As with and, the only difference between or
and | | is their precedence.

Just to make life interesting, and and or have the same precedence, and && has a higher
precedence than | |.

not and ! return the opposite of their operand (false if the operand is true, and true if
the operand is false). And, yes, not and ! differ only in precedence.

All these precedence rules are summarized in Table 22.4 on page 324.

The defined? operator returns nil if its argument (which can be an arbitrary expres-
sion) is not defined; otherwise it returns a description of that argument. If the argument
is yield, defined? returns the string “yield” if a code block is associated with the
current context.

defined? 1 — "expression"
defined? dummy — nil

defined? printf — "method"

defined? String — "constant"
defined? $_ — "global-variable"
defined? Math::PI — "constant"
defined? a = 1 — "assignment"
defined? 42.abs — "method"

In addition to the boolean operators, Ruby objects support comparison using the meth-
ods ==, ===, <=>, =~, eql?, and equal? (see Table 7.1 on the next page). All but <=>
are defined in class Object but are often overridden by descendents to provide appro-
priate semantics. For example, class Array redefines == so that two array objects are
equal if they have the same number of elements and corresponding elements are equal.

Prepared exclusively for Yeganefar

CONDITIONAL EXECUTION

Table 7.1. Common comparison operators

Operator Meaning

== Test for equal value.

=== Used to compare the each of the items with the target in the when clause
of a case statement.

<=> General comparison operator. Returns —1, 0, or +1, depending on
whether its receiver is less than, equal to, or greater than its argument.

<, <=,>=,> Comparison operators for less than, less than or equal, greater than or
equal, and greater than.

=~ Regular expression pattern match.

eql? True if the receiver and argument have both the same type and equal
values. 1 == 1.0 returns true, but 1.eql?(1.0) is false.
equal? True if the receiver and argument have the same object ID.

Both == and =~ have negated forms, !=and !~. However, these are converted by Ruby
when your program is read. a !=b is equivalent to ! (a==b), and a !~b is the same
as ! (a=~b). This means that if you write a class that overrides == or =~ you get a
working !=and !~ for free. But on the flip side, this also means that you cannot define
!=and !~ independent of == and =~, respectively.

You can use a Ruby range as a boolean expression. A range such as expl. .exp2 will
evaluate as false until expl becomes true. The range will then evaluate as true until
exp2 becomes true. Once this happens, the range resets, ready to fire again. We show
some examples of this on page 94.

E/ Prior to Ruby 1.8, you could use a bare regular expression as a boolean expression. This
is now deprecated. You can still use the ~ operator (described on page 580) to match
$_ against a pattern.

The Value of Logical Expressions

In the text, we said things such as “and evaluates to true if both operands are true.” But
it’s actually slightly more subtle than that. The operators and, or, && and | | actually
return the first of their arguments that determine the truth or falsity of the condition.
Sounds grand. What does it mean?

Take the expression “vall and val2”. If vall is either false or nil, then we know
the expression cannot be true. In this case, the value of vall determines the overall
value of the expression, so it is the value returned. If vall has some other value, then
the overall value of the expression depends on val2, so its value is returned.

Prepared exclusively for Yeganefar

CONDITIONAL EXECUTION

nil and true — nil
false and true — false
99 and false — false
99 and nil — nil
99 and "cat" — "cat"

Note that despite all this magic, the overall truth value of the expression is correct.
The same evaluation takes place for or (except an or expression’s value is known early
if vall is not false).

false or nil — nil
nil or false — false
99 or false — 99

A common Ruby idiom makes use of this.

words[key] [[= []
words[key] << word

The first line is equivalent to words[key] = words[key] || [].If the entry in the
hash words for key is unset (nil), the value of || will be the second operand, a new,
empty array. Thus, this line of code will assign an array to a hash element that doesn’t
already have a value, leaving it untouched otherwise. You’ll sometimes see this written
on one line:

(words[key] ||= []) << word

If and Unless Expressions

An if expression in Ruby is pretty similar to “if”’ statements in other languages.

if song.artist == "Gillespie" then
handle = "Dizzy"

elsif song.artist == "Parker" then
handle = "Bird"

else
handle = "unknown"

end

If you lay out your if statements on multiple lines, you can leave off the then keyword.

if song.artist == "Gillespie"
handle = "Dizzy"

elsif song.artist == "Parker"
handle = "Bird"

else
handle = "unknown"

end

However, if you want to lay out your code more tightly, you can separate the boolean
expression from the following statements with the then keyword.

Prepared exclusively for Yeganefar

CONDITIONAL EXECUTION

if song.artist == "Gillespie" then handle = "Dizzy"
elsif song.artist == "Parker" then handle = "Bird"
else handle = "unknown"
end

E/ You can get even terser and use a colon (:) in place of the then.
if song.artist == "Gillespie": handle = "Dizzy"
elsif song.artist == "Parker": handle = "Bird"
else handle = "unknown"
end

You can have zero or more elsif clauses and an optional else clause.

As we’ve said before, if is an expression, not a statement—it returns a value. You don’t
have to use the value of an if expression, but it can come in handy.

handle = if song.artist == "Gillespie" then
"Dizzy"
elsif song.artist == "Parker" then
"Bird"
else
"unknown"
end

Ruby also has a negated form of the if statement.

unless song.duration > 180

cost = 0.25
else

cost = 0.35
end

Finally, for the C fans out there, Ruby also supports the C-style conditional expression.

cost = song.duration > 180 ? 0.35 : 0.25

A conditional expression returns the value of either the expression before or the expres-
sion after the colon, depending on whether the boolean expression before the question
mark evaluates to true or false. In this case, if the song duration is greater than three
minutes, the expression returns 0.35. For shorter songs, it returns 0.25. Whatever the
result, it is then assigned to cost.

If and Unless Modifiers

Ruby shares a neat feature with Perl. Statement modifiers let you tack conditional state-
ments onto the end of a normal statement.

mon, day, vear = $1, $2, $3 if date =~ /(\d\d)-(\d\d)-(\d\d)/
puts "a = #{a}" if debug
print total unless total.zero?

Prepared exclusively for Yeganefar

CASE EXPRESSIONS

For an if modifier, the preceding expression will be evaluated only if the condition is
true. unless works the other way around.

File.foreach("/etc/fstab") do |line|

next if line =~ /A#/ # Skip comments
parse(line) unless line =~ /A$/ # Don't parse empty lines
end

Because if itself is an expression, you can get really obscure with statements such as

if artist == "John Coltrane"
artist = "'Trane"
end unless use_nicknames == "no"

This path leads to the gates of madness.

Case Expressions

The Ruby case expression is a powerful beast: a multiway if on steroids. And just to
make it even more powerful, it comes in two flavors.

The first form is fairly close to a series of if statements: it lets you list a series of con-
ditions and execute a statement corresponding to the first one that’s true. For example,
leap years must be divisible by 400, or divisible by 4 and not by 100.

leap = case
when year % 400 == 0: true
when year % 100 == 0: false
else year % 4 ==
end

The second form of the case statement is probably more common. You specify a target
at the top of the case statement, and each when clause lists one or more comparisons.

case input_line

when "debug"
dump_debug_info
dump_symbols

when /p\s+(\w+)/
dump_variable($1)

when "quit", "exit"

exit
else

print "Illegal command: #{input_line}"
end

As with if, case returns the value of the last expression executed, and you can use a
then keyword if the expression is on the same line as the condition.

Prepared exclusively for Yeganefar

CASE EXPRESSIONS

kind = case year
when 1850..1889 then "Blues"
when 1890..1909 then "Ragtime"
when 1910..1929 then "New Orleans Jazz"
when 1930..1939 then "Swing"
when 1940..1950 then "Bebop"
else "Jazz"
end

E/ As with if statements, you can use a colon (:) in place of the then.

kind = case year
when 1850..1889: "Blues"
when 1890..1909: "Ragtime"
when 1910..1929: "New Orleans Jazz"
when 1930..1939: "Swing"
when 1940..1950: "Bebop"
else "Jazz"
end

case operates by comparing the target (the expression after the keyword case) with
each of the comparison expressions after the when keywords. This test is done using
comparison === target. As long as a class defines meaningful semantics for === (and
all the built-in classes do), objects of that class can be used in case expressions.

For example, regular expressions define === as a simple pattern match.

case line

when /title=(.%*)/
puts "Title is #$1"

when /track=(.*)/
puts "Track is #$1"

when /artist=(.%*)/
puts "Artist is #$1"

end

Ruby classes are instances of class Class, which defines === to test if the argument
is an instance of the class or one of its superclasses. So (abandoning the benefits of
polymorphism and bringing the gods of refactoring down around your ears), you can
test the class of objects.

case shape
when Square, Rectangle
...
when Circle
...
when Triangle
...
else
...
end

Prepared exclusively for Yeganefar

Loops

Don’t tell anyone, but Ruby has pretty primitive built-in looping constructs.

The while loop executes its body zero or more times as long as its condition is true.
For example, this common idiom reads until the input is exhausted.

while line = gets
...
end

The until loop is the opposite; it executes the body until the condition becomes true.

until play_list.duration > 60
play_list.add(song_list.pop)
end

As with if and unless, you can use both of the loops as statement modifiers.

=1

%= 2 while a < 100

-= 10 until a < 100
— 98

0o oo

On page 89 in the section on boolean expressions, we said that a range can be used as
a kind of flip-flop, returning true when some event happens and then staying true until
a second event occurs. This facility is normally used within loops. In the example that
follows, we read a text file containing the first ten ordinal numbers (“first,” “second,”
and so on) but print only the lines starting with the one that matches “third” and ending
with the one that matches “fifth.”

file = File.open("ordinal")
while line = file.gets

puts(line) if line =~ /third/ .. line =~ /fifth/
end

produces:

third
fourth
fifth

You may find folks who come from Perl writing the previously example slightly differ-
ently.

file = File.open("ordinal™)

while file.gets

print if ~/third/ .. ~/fifth/
end

produces:

third
fourth
fifth

Prepared exclusively for Yeganefar

This uses some behind-the-scenes magic behavior: gets assigns the last line read to
the global variable $_, the ~ operator does a regular expression match against $_, and
print with no arguments prints $_. This kind of code is falling out of fashion in the
Ruby community.

The elements of a range used in a boolean expression can themselves be expressions.
These are evaluated each time the overall boolean expression is evaluated. For example,
the following code uses the fact that the variable $. contains the current input line
number to display line numbers one through three and those between a match of /eig/
and /nin/.
File.foreach("ordinal") do |line]
if (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)
print line

end
end

produces:

first
second
third
eighth
ninth

You’ll come across a wrinkle when you use while and until as statement modifiers.
If the statement they are modifying is a begin/end block, the code in the block will
always execute at least one time, regardless of the value of the boolean expression.

print "Hello\n" while false

begin

print "Goodbye\n"

end while false

produces:

Goodbye

lterators

If you read the beginning of the previous section, you may have been discouraged.
“Ruby has pretty primitive built-in looping constructs,” it said. Don’t despair, gentle
reader, for we have good news. Ruby doesn’t need any sophisticated built-in loops,
because all the fun stuff is implemented using Ruby iterators.

For example, Ruby doesn’t have a “for” loop—at least not the kind you’d find in C,
C++, and Java. Instead, Ruby uses methods defined in various built-in classes to provide
equivalent, but less error-prone, functionality.

Let’s look at some examples.

Prepared exclusively for Yeganefar

3.times do

print "Ho! "
end
produces:
Ho! Ho! Ho!

It’s easy to avoid fence-post and off-by-one errors; this loop will execute three times,
period. In addition to times, integers can loop over specific ranges by calling downto
and upto, and all numbers can loop using step. For instance, a traditional “for” loop
that runs from O to 9 (something like i=0; i < 10; i++) is written as follows.

0.upto(9) do |x]|
print x, " "
end

produces:
0123456789
A loop from 0 to 12 by 3 can be written as follows.
O0.step(12, 3) {Ix| print x, " " }
produces:

036912

Similarly, iterating over arrays and other containers is made easy using their each

method.

[1, 1, 2, 3, 5]J.each {|val| print val, " " }
produces:

11235

And once a class supports each, the additional methods in the Enumerable module
(documented beginning on page 433 and summarized on pages 113—113) become avail-
able. For example, the File class provides an each method, which returns each line of
a file in turn. Using the grep method in Enumerable, we could iterate over only those
lines that meet a certain condition.

File.open("ordinal").grep(/d$/) do |line|

puts line
end

produces:

second
third

Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator
called loop.

Prepared exclusively for Yeganefar

loop do
block ...
end

The loop iterator calls the associated block forever (or at least until you break out of
the loop, but you’ll have to read ahead to find out how to do that).

For... In

Earlier we said that the only built-in Ruby looping primitives were while and until.
What'’s this for thing, then? Well, for is almost a lump of syntactic sugar. When you
write

for song in songlist
song.play
end

Ruby translates it into something like

songlist.each do |song]|
song.play
end

The only difference between the for loop and the each form is the scope of local
variables that are defined in the body. This is discussed on page 99.

You can use for to iterate over any object that responds to the method each, such as
an Array or a Range.
for i in ['fee', 'fi', 'fo', 'fum']
print i, " "
end
for i in 1..3
print i, " "
end
for i in File.open("ordinal").find_all {|line| line =~ /d$/}
print i.chomp, " "
end

produces:

fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop to traverse
its objects.

class Periods

def each
yield "Classical"
yield "Jazz"
yield "Rock"
end
end

Prepared exclusively for Yeganefar

periods = Periods.new
for genre in periods

print genre,
end

produces:

Classical Jazz Rock

Break, Redo, and Next

The loop control constructs break, redo, and next let you alter the normal flow
through a loop or iterator.

break terminates the immediately enclosing loop; control resumes at the statement
following the block. redo repeats the loop from the start, but without reevaluating the
condition or fetching the next element (in an iterator). next skips to the end of the loop,
effectively starting the next iteration.

while line = gets
next if line =~ /A\s=#/ # skip comments
break if line =~ /AEND/ # stop at end
substitute stuff in backticks and try again
redo if line.gsub!(/ (.=%?) /) { eval($l) }
process line ...
end

These keywords can also be used with any of the iterator-based looping mechanisms.

i=0
loop do
i+=1
next if i < 3
print i
break if i > 4
end

produces:
345

E/ As of Ruby 1.8, break and next can be given arguments. When used in conventional
loops, it probably makes sense only to do this with break (as any value given to next
is effectively lost). If a conventional loop doesn’t execute a break, its value is nil.

result = while line = gets

break(line) if line =~ /answer/
end

process_answer(result) if result

If you want the nitty-gritty detail of how break and next work with blocks and procs,
have a look at the reference description starting on page 343. If you are looking for a

Prepared exclusively for Yeganefar

VARIABLE SCOPE, LOOPS, AND BLOCKS

way of exiting from nested blocks or loops, have a look at Kernel.catch, described
on pages 347 and 498.

Retry

The redo statement causes a loop to repeat the current iteration. Sometimes, though,
you need to wind the loop right back to the very beginning. The retry statement is just
the ticket. retry restarts any kind of iterator loop.

for i in 1..100
print "Now at #{i}. Restart? "
retry if gets =~ /Ay/i

end

Running this interactively, you may see

Now at 1. Restart? n
Now at 2. Restart? y
Now at 1. Restart? n

retry will reevaluate any arguments to the iterator before restarting it. Here’s an exam-
ple of a do-it-yourself until loop.
def do_until(cond)
break if cond
yield
retry
end

i=0
do_until(i > 10) do
print i, " "
i+=1
end
produces:

012345678910

Variable Scope, Loops, and Blocks

The while, until, and for loops are built into the language and do not introduce new
scope; previously existing locals can be used in the loop, and any new locals created
will be available afterward.

The blocks used by iterators (such as loop and each) are a little different. Normally,
the local variables created in these blocks are not accessible outside the block.

Prepared exclusively for Yeganefar

VARIABLE SCOPE, LOOPS, AND BLOCKS 100

[1, 2, 3]J.each do |x]|
yv=x+1

end

[x, v1

produces:

prog.rb:4: undefined local variable or method “x' for
main:0bject (NameError)

However, if at the time the block executes a local variable already exists with the same
name as that of a variable in the block, the existing local variable will be used in the
block. Its value will therefore be available after the block finishes. As the following
example shows, this applies both to normal variables in the block and to the block’s
parameters.
nil
= nil
[1, 2, 3].each do |x]|

y=x+1
end
[x,v]1 — [3, 4]

X

Note that the variable need not have been given a value in the outer scope: the Ruby
interpreter just needs to have seen it.

if false
a=1
end
3.times {|i] a =1 }

a — 2

The whole issue with variable scope and blocks is one that generates considerable dis-
cussion in the Ruby community. The current scheme has definite problems (particularly
when variables are unexpectedly aliased inside blocks), but at the same time no one has
managed to come up with something that’s both better and acceptable to the wider com-
munity. Matz is promising changes in Ruby 2.0, but in the meantime, we have a couple
of suggestions to minimize the problems with local and block variables interfering.

* Keep your methods and blocks short. The fewer variables, the smaller the chance
that they’ll clobber each other. It’s also easier to eyeball the code and check that
you don’t have conflicting names.

 Use different naming schemes for local variables and block parameters. For exam-
ple, you probably don’t want a local variable called “i,” but that might be perfectly
acceptable as a block parameter.

In reality, this problem doesn’t arise in practice as often as you may think.

Prepared exclusively for Yeganefar

Chapter 8

Exceptions,
Catch, and Throw

So far we’ve been developing code in Pleasantville, a wonderful place where nothing
ever, ever goes wrong. Every library call succeeds, users never enter incorrect data, and
resources are plentiful and cheap. Well, that’s about to change. Welcome to the real
world!

In the real world, errors happen. Good programs (and programmers) anticipate them
and arrange to handle them gracefully. This isn’t always as easy as it may sound. Often
the code that detects an error does not have the context to know what to do about it.
For example, attempting to open a file that doesn’t exist is acceptable in some circum-
stances and is a fatal error at other times. What’s your file-handling module to do?

The traditional approach is to use return codes. The open method returns some specific
value to say it failed. This value is then propagated back through the layers of calling
routines until someone wants to take responsibility for it.

The problem with this approach is that managing all these error codes can be a pain.
If a function calls open, then read, and finally close, and each can return an error
indication, how can the function distinguish these error codes in the value it returns to
its caller?

To a large extent, exceptions solve this problem. Exceptions let you package informa-
tion about an error into an object. That exception object is then propagated back up the
calling stack automatically until the runtime system finds code that explicitly declares
that it knows how to handle that type of exception.

The Exception Class

The package that contains the information about an exception is an object of class
Exception or one of class Exception’s children. Ruby predefines a tidy hierarchy of

Prepared exclusively for Yeganefar

HANDLING EXCEPTIONS 102

exceptions, shown in Figure 8.1 on the next page. As we’ll see later, this hierarchy
makes handling exceptions considerably easier.

When you need to raise an exception, you can use one of the built-in Exception
classes, or you can create one of your own. If you create your own, you may want
to make it a subclass of StandardError or one of its children. If you don’t, your
exception won’t be caught by default.

Every Exception has associated with it a message string and a stack backtrace. If you
define your own exceptions, you can add additional information.

Handling Exceptions

Our jukebox downloads songs from the Internet using a TCP socket. The basic code is
simple (assuming that the filename and the socket are already set up).

op_file = File.open(opfile_name, "w")

while data = socket.read(512)
op_file.write(data)

end

What happens if we get a fatal error halfway through the download? We certainly don’t
want to store an incomplete song in the song list. “I Did It My *click*.”

Let’s add some exception-handling code and see how it helps. To do exception han-
dling, we enclose the code that could raise an exception in a begin/end block and use
one or more rescue clauses to tell Ruby the types of exceptions we want to handle. In
this particular case we’re interested in trapping SystemCallError exceptions (and, by
implication, any exceptions that are subclasses of SystemCallError), so that’s what
appears on the rescue line. In the error-handling block, we report the error, close and
delete the output file, and then reraise the exception.

op_file = File.open(opfile_name, "w")
begin
Exceptions raised by this code will
be caught by the following rescue clause
while data = socket.read(512)
op_file.write(data)
end
rescue SystemCallError
$stderr.print "IO failed: " + $!
op_file.close
File.delete(opfile_name)
raise
end

When an exception is raised, and independent of any subsequent exception handling,
Ruby places a reference to the associated Exception object into the global variable $!

Prepared exclusively for Yeganefar

HANDLING EXCEPTIONS 103

(,
Figure 8.1. Ruby exception hierarchy

Exception
\— fatal (used internally by Ruby)
M NoMemoryError
M ScriptError
LoadError

NotImplementedError

SyntaxError
M SignalException
Interrupt
— StandardError
M ArgumentError
~— IOError
__ EOFError
IndexError
LocalJumpError
NameError
__ NoMethodError
RangeError
_ FloatDomainError
RegexpError
RuntimeError
SecurityError
SystemCallError
- system-dependent exceptions (Errno::xxx)
M ThreadError
— TypeError
\— ZeroDivisionError
M SystemExit
— SystemStackError

[rrf

(1T

(the exclamation point presumably mirroring our surprise that any of our code could
cause errors). In the previous example, we used the $! variable to format our error
message.

After closing and deleting the file, we call raise with no parameters, which reraises
the exception in $!. This is a useful technique, as it allows you to write code that
filters exceptions, passing on those you can’t handle to higher levels. It’s almost like
implementing an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can
specify multiple exceptions to catch. At the end of each rescue clause you can give

Prepared exclusively for Yeganefar

HANDLING EXCEPTIONS 104

Ruby the name of a local variable to receive the matched exception. Many people find
this more readable than using $! all over the place.
begin
eval string
rescue SyntaxError, NameError => boom

print "String doesn't compile: " + boom
rescue StandardError => bang
print "Error running script: " + bang

end

How does Ruby decide which rescue clause to execute? It turns out that the processing
is pretty similar to that used by the case statement. For each rescue clause in the
begin block, Ruby compares the raised exception against each of the parameters in
turn. If the raised exception matches a parameter, Ruby executes the body of the rescue

E/ and stops looking. The match is made using parameter===$!. For most exceptions,
this means that the match will succeed if the exception named in the rescue clause
is the same as the type of the currently thrown exception, or is a superclass of that
exception.! If you write a rescue clause with no parameter list, the parameter defaults
to StandardError.

If no rescue clause matches, or if an exception is raised outside a begin/end block,
Ruby moves up the stack and looks for an exception handler in the caller, then in the
caller’s caller, and so on.

Although the parameters to the rescue clause are typically the names of Exception
classes, they can actually be arbitrary expressions (including method calls) that return
an Exception class.

System Errors

18,

System errors are raised when a call to the operating system returns an error code. On
POSIX systems, these errors have names such as EAGAIN and EPERM. (If you’re on a
Unix box, you could type man errno to get a list of these errors.)

Ruby takes these errors and wraps them each in a specific exception object. Each is
a subclass of SystemCallError, and each is defined in a module called Errno. This
means you’ll find exceptions with class names such as Errno: : EAGAIN, Errno: :EIO,
and Errno: :EPERM. If you want to get to the underlying system error code, Errno
exception objects each have a class constant called (somewhat confusingly) Errno that
contains the value.

1. This comparison happens because exceptions are classes, and classes in turn are kinds of Module. The
=== method is defined for modules, returning true if the class of the operand is the same as or an ancestor
of the receiver.

Prepared exclusively for Yeganefar

HANDLING EXCEPTIONS 105

Errno: :EAGAIN: :Errno —
Errno: :EPERM: :Errno — 1
Errno::EIO: :Errno — 5
Errno: :EWOULDBLOCK: :Errno — 35

Note that ENOULDBLOCK and EAGAIN have the same error number. This is a feature of the
operating system of the computer used to produce this book—the two constants map to
the same error number. To deal with this, Ruby arranges things so that Errno: :EAGAIN
and Errno: :EWOULDBLOCK are treated identically in a rescue clause. If you ask to
rescue one, you'll rescue either. It does this by redefining SystemCallError#=== so
that if two subclasses of SystemCallError are compared, the comparison is done on
their error number and not on their position in the hierarchy.

Tidying Up

Sometimes you need to guarantee that some processing is done at the end of a block of
code, regardless of whether an exception was raised. For example, you may have a file
open on entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains
a chunk of code that will always be executed as the block terminates. It doesn’t matter
if the block exits normally, if it raises and rescues an exception, or if it is terminated by
an uncaught exception—the ensure block will get run.

f = File.open("testfile")
begin

.. process
rescue

.. handle error
ensure

f.close unless f.nil?
end

The else clause is a similar, although less useful, construct. If present, it goes after the
rescue clauses and before any ensure. The body of an else clause is executed only
if no exceptions are raised by the main body of code.

f = File.open("testfile")
begin
.. process
rescue
.. handle error
else
puts "Congratulations-- no errors!"
ensure
f.close unless f.nil?
end

Prepared exclusively for Yeganefar

RAISING EXCEPTIONS 106

Play It Again

Sometimes you may be able to correct the cause of an exception. In those cases, you
can use the retry statement within a rescue clause to repeat the entire begin/end
block. Clearly, tremendous scope exists for infinite loops here, so this is a feature to
use with caution (and with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, have a look at the following, adapted
from Minero Aoki’s net/smtp.rb library.

@esmtp = true
begin
First try an extended login. If it fails because the
server doesn't support it, fall back to a normal login

if @esmtp then
@command . ehlo(helodom)
else
@command . helo(helodom)
end

rescue ProtocolError
if @esmtp then
@esmtp = false
retry
else
raise
end
end

This code tries first to connect to an SMTP server using the EHLO command, which
is not universally supported. If the connection attempt fails, the code sets the @esmtp
variable to false and retries the connection. If this fails a second time, the exception
is raised up to the caller.

Raising Exceptions

So far we’ve been on the defensive, handling exceptions raised by others. It’s time
to turn the tables and go on the offensive. (Some say your gentle authors are always
offensive, but that’s a different book.)

You can raise exceptions in your code with the Kernel.raise method (or its somewhat
judgmental synonym, Kernel.fail).

raise
raise "bad mp3 encoding"
raise InterfaceException, "Keyboard failure", caller

Prepared exclusively for Yeganefar

RAISING EXCEPTIONS 107

The first form simply reraises the current exception (or a RuntimeError if there is no
current exception). This is used in exception handlers that need to intercept an excep-
tion before passing it on.

The second form creates a new RuntimeError exception, setting its message to the
given string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument and the stack trace to the third argument. Typically
the first argument will be either the name of a class in the Exception hierarchy or a
reference to an object instance of one of these classes.” The stack trace is normally
produced using the Kernel.caller method.

Here are some typical examples of raise in action.

raise
raise "Missing name" if name.nil?

if i >= names.size
raise IndexError, "#{i} >= size (#{names.size})"
end

raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is
often useful in library modules. We can take this further: the following code removes
two routines from the backtrace by passing only a subset of the call stack to the new
exception.

raise ArgumentError, "Name too big", caller[1l..-1]

Adding Information to Exceptions

You can define your own exceptions to hold any information that you need to pass out
from the site of an error. For example, certain types of network errors may be transient
depending on the circumstances. If such an error occurs, and the circumstances are
right, you could set a flag in the exception to tell the handler that it may be worth
retrying the operation.

class RetryException < RuntimeError
attr :ok_to_retry
def initialize(ok_to_retry)
@ok_to_retry = ok_to_retry
end
end

2. Technically, this argument can be any object that responds to the message exception by returning an
object such that object.kind_of?(Exception) is true.

Prepared exclusively for Yeganefar

CATCH AND THROW 108

Somewhere down in the depths of the code, a transient error occurs.

def read_data(socket)
data = socket.read(512)
if data.nil?
raise RetryException.new(true), "transient read error"
end
.. normal processing
end

Higher up the call stack, we handle the exception.

begin
stuff = read_data(socket)
.. process stuff

rescue RetryException => detail
retry if detail.ok_to_retry
raise

end

Catch and Throw

While the exception mechanism of raise and rescue is great for abandoning execu-
tion when things go wrong, it’s sometimes nice to be able to jump out of some deeply
nested construct during normal processing. This is where catch and throw come in
handy.
catch (:done) do
while line = gets
throw :done unless fields = line.split(/\t/)
songlist.add(Song.new(+fields))
end
songlist.play
end

catch defines a block that is labeled with the given name (which may be a Symbol or
a String). The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch
block with a matching symbol. When it finds it, Ruby unwinds the stack to that point
and terminates the block. So, in the previous example, if the input does not contain
correctly formatted lines, the throw will skip to the end of the corresponding catch,
not only terminating the while loop but also skipping the playing of the song list. If the
throw is called with the optional second parameter, that value is returned as the value
of the catch.

The following example uses a throw to terminate interaction with the user if ! is typed
in response to any prompt.

Prepared exclusively for Yeganefar

CATCH AND THROW

def prompt_and_get(prompt)
print prompt
res = readline.chomp
throw :quit_requested if res ==
res
end

catch :quit_requested do
name = prompt_and_get("Name: ")

age = prompt_and_get("Age: ")
sex = prompt_and_get("Sex: ")
..
process information

end

As this example illustrates, the throw does not have to appear within the static scope
of the catch.

Prepared exclusively for Yeganefar

Chapter 9

Modules

Modules are a way of grouping together methods, classes, and constants. Modules give
you two major benefits.

1. Modules provide a namespace and prevent name clashes.

2. Modules implement the mixin facility.

Namespaces

As you start to write bigger and bigger Ruby programs, you’ll naturally find your-
self producing chunks of reusable code—Ilibraries of related routines that are generally
applicable. You’ll want to break this code into separate files so the contents can be
shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set
of interrelated classes) into a file.

However, there are times when you want to group things together that don’t naturally
form a class.

An initial approach may be to put all these things into a file and simply load that file
into any program that needs it. This is the way the C language works. However, this
approach has a problem. Say you write a set of the trigonometry functions sin, cos,
and so on. You stuff them all into a file, trig.rb, for future generations to enjoy.
Meanwhile, Sally is working on a simulation of good and evil, and she codes a set of
her own useful routines, including be_good and sin, and sticks them into moral.rb.
Joe, who wants to write a program to find out how many angels can dance on the head
of a pin, needs to load both trig.rb and moral.rb into his program. But both define
a method called sin. Bad news.

Prepared exclusively for Yeganefar

MIXINS 111

The answer is the module mechanism. Modules define a namespace, a sandbox in
which your methods and constants can play without having to worry about being
stepped on by other methods and constants. The trig functions can go into one module

module Trig
PI = 3.141592654
def Trig.sin(x)
..
end
def Trig.cos(x)
..
end

end

and the good and bad “moral” methods can go into another.

module Moral

VERY_BAD = 0
BAD =1
def Moral.sin(badness)
...
end
end

Module constants are named just like class constants, with an initial uppercase letter.
The method definitions look similar, too: these module methods are defined just like
class methods.

If a third program wants to use these modules, it can simply load the two files (using the
Ruby require statement, which we discuss on page 116) and reference the qualified
names.

require 'trig'

require 'moral'’

y = Trig.sin(Trig::PI1/4)

wrongdoing = Moral.sin(Moral: :VERY_BAD)

As with class methods, you call a module method by preceding its name with the mod-
ule’s name and a period, and you reference a constant using the module name and two
colons.

Mixins
Modules have another, wonderful use. At a stroke, they pretty much eliminate the need

for multiple inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed by the module name. If this made you think of class methods, your next
thought may well be “what happens if I define instance methods within a module?”

Prepared exclusively for Yeganefar

MIXINS 112

Good question. A module can’t have instances, because a module isn’t a class. How-
ever, you can include a module within a class definition. When this happens, all the
module’s instance methods are suddenly available as methods in the class as well. They
get mixed in. In fact, mixed-in modules effectively behave as superclasses.

module Debug
def who_am_i?
"#{self.class.name} (\##{self.id}): #{self.to_s}"
end
end
class Phonograph
include Debug
...
end
class EightTrack
include Debug
...
end
ph = Phonograph.new("West End Blues")
et = EightTrack.new("Surrealistic Pillow")

ph.who_am_i? — "Phonograph (#935520): West End Blues"
et.who_am_i? — "EightTrack (#935500): Surrealistic Pillow"

By including the Debug module, both Phonograph and EightTrack gain access to the
who_am_1i? instance method.

We’ll make a couple of points about the include statement before we go on. First,
it has nothing to do with files. C programmers use a preprocessor directive called
#include to insert the contents of one file into another during compilation. The Ruby
include statement simply makes a reference to a named module. If that module is in a
separate file, you must use require (or its less commonly used cousin, load) to drag
that file in before using include. Second, a Ruby include does not simply copy the
module’s instance methods into the class. Instead, it makes a reference from the class
to the included module. If multiple classes include that module, they’ll all point to the
same thing. If you change the definition of a method within a module, even while your
program is running, all classes that include that module will exhibit the new behavior.'

Mixins give you a wonderfully controlled way of adding functionality to classes. How-
ever, their true power comes out when the code in the mixin starts to interact with code
in the class that uses it. Let’s take the standard Ruby mixin Comparable as an example.
You can use the Comparable mixin to add the comparison operators (<, <=, ==, >=, and
>), as well as the method between?, to a class. For this to work, Comparable assumes
that any class that uses it defines the operator <=>. So, as a class writer, you define one
method, <=>, include Comparable, and get six comparison functions for free. Let’s

1. Of course, we’re speaking only of methods here. Instance variables are always per object, for example.

Prepared exclusively for Yeganefar

ITERATORS AND THE ENUMERABLE MODULE 113

try this with our Song class, by making the songs comparable based on their duration.
All we have to do is include the Comparable module and implement the comparison
operator <=>.

class Song

include Comparable
def initialize(name, artist, duration)

@name = name

@artist = artist

@duration = duration
end

def <=>(other)
self.duration <=> other.duration
end
end

We can check that the results are sensible with a few test songs.

songl = Song.new("My Way", "Sinatra", 225)
song?2 = Song.new("Bicylops", "Fleck", 260)
songl <=> song2 — -1

songl < song2 — true

songl == songl — true

songl > song2 — false

Ilterators and the Enumerable Module

You’ve probably noticed that the Ruby collection classes support a large number of
operations that do various things with the collection: traverse it, sort it, and so on.
You may be thinking, “Gee, it’d sure be nice if my class could support all these neat-o
features, too!” (If you actually thought that, it’s probably time to stop watching reruns
of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins
and module Enumerable. All you have to do is write an iterator called each, which
returns the elements of your collection in turn. Mix in Enumerable, and suddenly your
class supports things such as map, include?, and find_all?. If the objects in your
collection implement meaningful ordering semantics using the <=> method, you’ll also
get methods such as min, max, and sort.

Composing Modules

Back on page 49 we discussed the inject method of Enumerable. Enumerable is
another standard mixin, implementing a bunch of methods in terms of the host class’s

Prepared exclusively for Yeganefar

COMPOSING MODULES 114

each method. Because of this, we can use inject in any class that includes the Enum-
erable module and defines the method each. Many built-in classes do this.

[1, 2, 3, 4, 5].inject {|v,n| v+tn } — 15
('a'..'m").inject {|v,n| v+n } — "abcdefghijklm"

We could also define our own class that mixes in Enumerable and hence gets inject
support.

class VowelFinder
include Enumerable
def initialize(string)
@string = string
end
def each
@string.scan(/[aeiou]/) do |vowel|
yield vowel
end
end
end

vf = VowelFinder.new("the quick brown fox jumped")

vf.inject {|v,n| v+n } — "euiooue"

Notice that we’ve used the same pattern in the call to inject in these examples—we’re
using it to perform a summation. When applied to numbers, it returns the arithmetic
sum, when applied to strings it concatenates them. We can use a module to encapsulate
this functionality too.

module Summable

def sum
inject {|v,n| v+n }

end

end

class Array
include Summable

end

class Range
include Summable

end

class VowelFinder
include Summable

end
[1, 2, 3, 4,5].sum — 15
('a'..'m").sum — "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")
vf.sum — "euiooue"

Prepared exclusively for Yeganefar

COMPOSING MODULES 115

Instance Variables in Mixins

People coming to Ruby from C++ often ask us, “What happens to instance variables
in a mixin? In C++, I have to jump through some hoops to control how variables are
shared in a multiple-inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question, we tell them. Remember how instance
variables work in Ruby: the first mention of an @-prefixed variable creates the instance
variable in the current object, self.

For a mixin, this means that the module you mix into your client class (the mixee?) may
create instance variables in the client object and may use attr_reader and friends to
define accessors for these instance variables. For instance, the Observable module in
the following example adds an instance variable @observer_list to any class that
includes it.

module Observable
def observers
@observer_list ||= []
end

def add_observer(obj)
observers << obj
end

def notify_observers
observers.each {|o| o.update }
end
end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash
with those of the host class or with those of other mixins. The example that follows
shows a class that uses our Observer module but that unluckily also uses an instance
variable called @observer_list. At runtime, this program will go wrong in some
hard-to-diagnose ways.

class TelescopeScheduler

other classes can register to get notifications
when the schedule changes
include Observable
def initialize
@observer_list = [] # folks with telescope time
end
def add_viewer(viewer)
@observer_list << viewer
end
...
end

For the most part, mixin modules don’t try to carry their own instance data around—
they use accessors to retrieve data from the client object. But if you need to create

Prepared exclusively for Yeganefar

INCLUDING OTHER FILES 116

a mixin that has to have its own state, ensure that the instance variables have unique
names to distinguish them from any other mixins in the system (perhaps by using the
module’s name as part of the variable name). Alternativly, the module could use a
module-level hash, indexed by the current object ID, to store instance-specific data
without using Ruby instance variables.

module Test
State = {}
def state=(value)
State[id] = value
end
def state
State[id]
end
end

class Client
include Test
end

cl = Client.new
c2 = Client.new
cl.state = 'cat'
c2.state = 'dog'

cl.state — "cat"
c2.state — "dog"

Resolving Abmiguous Method Names

One of the other questions folks ask about mixins is, how is method lookup handled?
In particular, what happens if methods with the same name are defined in a class, in
that class’s parent class, and in a mixin included into the class?

The answer is that Ruby looks first in the immediate class of an object, then in the
mixins included into that class, and then in superclasses and their mixins. If a class has
multiple modules mixed in, the last one included is searched first.

Including Other Files

Because Ruby makes it easy to write good, modular code, you’ll often find yourself
producing small files containing some chunk of self-contained functionality—an inter-
face to x, an algorithm to do y, and so on. Typically, you’ll organize these files as class
or module libraries.

Prepared exclusively for Yeganefar

INCLUDING OTHER FILES 117

Having produced these files, you’ll want to incorporate them into your new programs.
Ruby has two statements that do this. The load method includes the named Ruby
source file every time the method is executed.

load 'filename.rb'

The more commonly used require method loads any given file only once.”

require 'filename'

Local variables in a loaded or required file are not propagated to the scope that loads or
requires them. For example, here’s a file called included.rb.

1
b

a
de

N Hh ol

end

And here’s what happens when we include it into another file.

a = "cat"

b = "dog"

require 'included'
a — "cat"
b — "dog"
b)) — 2

require has additional functionality: it can load shared binary libraries. Both routines
accept relative and absolute paths. If given a relative path (or just a plain name), they’1l
search every directory in the current load path ($:, discussed on page 173) for the file.

Files loaded using load or require can, of course, include other files, which include
other files, and so on. What may not be obvious is that require is an executable
statement—it may be inside an if statement, or it may include a string that was just
built. The search path can be altered at runtime as well. Just add the directory you want
to the array $:.

Since load will include the source unconditionally, you can use it to reload a source
file that may have changed since the program began. The example that follows is (very)
contrived.

2. This is not strictly true. Ruby keeps a list of the files loaded by require in the array $". However, this
list contains just the names of files as given to require. It’s possible to fake Ruby out and get the same file
loaded twice.

require '/usr/lib/ruby/1.9/English.rb’

require '/usr/lib/ruby/1.9/rdoc/../English.rb'

$" — ["/usr/lib/ruby/1.9/English.rb", "/usr/lib/ruby/1.9/rdoc/../English.rb"]
In this case, both require statements ended up pointing at the same file but used different paths to load it.
Some consider this a bug, and this behavior may well change in later releases.

Prepared exclusively for Yeganefar

INCLUDING OTHER FILES 118

5.times do |i]
File.open("temp.rb","w") do |f|
f.puts "module Temp"

f.puts " def Temp.var"
f.puts " #{i"
f.puts " end"
f.puts "end"

end

load "temp.rb"

puts Temp.var
end
produces:

0

AW N R

For a less contrived use of this facility, consider a Web application that reloads compo-
nents while running. This allows it to update itself on the fly; it needn’t be restarted for
new version of the software to be integrated. This is one of the many benefits of using
a dynamic language such as Ruby.

Prepared exclusively for Yeganefar

Chapter 10

Basic Input and Output

Ruby provides what at first sight looks like two separate sets of I/O routines. The first
is the simple interface—we’ve been using it pretty much exclusively so far.

print "Enter your name:
name = gets

A whole set of I/O-related methods is implemented in the Kernel module—gets,
open, print, printf, putc, puts, readline, readlines, and test—that makes it
simple and convenient to write straightforward Ruby programs. These methods typi-
cally do I/O to standard input and standard output, which makes them useful for writing
filters. You’ll find them documented starting on page 495.

The second way, which gives you a lot more control, is to use I0 objects.

What Is an 10 Object?

Ruby defines a single base class, IO, to handle input and output. This base class is
subclassed by classes File and BasicSocket to provide more specialized behavior,
but the principles are the same. An I0 object is a bidirectional channel between a Ruby
program and some external resource.' An I0 object may have more to it than meets the
eye, but in the end you still simply write to it and read from it.

In this chapter, we’ll be concentrating on class I0 and its most commonly used subclass,
class File. For more details on using the socket classes for networking, see the section
beginning on page 740.

1. For those who just have to know the implementation details, this means that a single I0 object can
sometimes be managing more than one operating system file descriptor. For example, if you open a pair of
pipes, a single I0 object contains both a read pipe and a write pipe.

Prepared exclusively for Yeganefar

OPENING AND CLOSING FILES 120

Opening and Closing Files

As you may expect, you can create a new file object using File.new.

file = File.new("testfile", "r")
... process the file
file.close

You can create a File object that is open for reading, writing, or both, according to the
mode string. (Here we opened testfile for reading with an "r". We could also have
used "w" for write or "rw" for read-write. The full list of allowed modes appears on
page 483.) You can also optionally specify file permissions when creating a file; see the
description of File.new on page 449 for details. After opening the file, we can work
with it, writing and/or reading data as needed. Finally, as responsible software citizens,
we close the file, ensuring that all buffered data is written and that all related resources
are freed.

But here Ruby can make life a little bit easier for you. The method File.open also
opens a file. In regular use, it behaves just like File.new. However, if a block is asso-
ciated with the call, open behaves differently. Instead of returning a new File object,
it invokes the block, passing the newly opened File as a parameter. When the block
exits, the file is automatically closed.

File.open("testfile", "r") do |file|
... process the file
end

This second approach has an added benefit. In the earlier case, if an exception is raised
while processing the file, the call to file.close may not happen. Once the file variable
goes out of scope, then garbage collection will eventually close it, but this may not
happen for a while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside
the block, the file is closed before the exception is propagated on to the caller. It’s as if
the open method looks like the following.

class File
def File.open(xargs)
result = f = File.new(+*args)
if block_given?
begin
result = yield f
ensure
f.close
end
end

return result
end
end

Prepared exclusively for Yeganefar

READING AND WRITING FILES 121

Reading and Writing Files

The same methods that we’ve been using for “simple” I/O are available for all file
objects. So, gets reads a line from standard input (or from any files specified on the
command line when the script was invoked), and file.gets reads a line from the file
object file.

For example, w could create a program called copy.rb.

while line = gets
puts line
end

If we run this program with no arguments, it will read lines from the console and copy
them back to the console. Note that each line is echoed once the return key is pressed.
(In this and later examples, we show user input in a bold font.)

% ruby copy.rb
These are lines
These are lines
that I am typing
that I am typing
AD

We can also pass in one or more filenames on the command line, in which case gets
will read from each in turn.

% ruby copy.rb testfile
This is line one

This is line two

This is line three

And so on...

Finally, we can explicitly open the file and read from it.

File.open("testfile") do |[file|
while line = file.gets
puts line
end
end

produces:

This is line one
This is line two
This is line three
And so on...

As well as gets, I/O objects enjoy an additional set of access methods, all intended to
make our lives easier.

Prepared exclusively for Yeganefar

READING AND WRITING FILES 122

Iterators for Reading

As well as using the usual loops to read data from an IO stream, you can also use
various Ruby iterators. IO#each_byte invokes a block with the next 8-bit byte from
the I0 object (in this case, an object of type File).
File.open("testfile") do |[file|
file.each_byte {|ch| putc ch; print "." }
end
produces:

T.h.i.s. .i.s. .l.i.n.e. .o.n.e.

[

.h.i.s. .
.h.i.s. .i.s. .l.i.n.e. .t.h.r.e.e.

>
5 5o
a

»

o

o

=

I0o#each_line calls the block with each line from the file. In the next example, we’ll
make the original newlines visible using String#dump, so you can see that we’re not
cheating.

File.open("testfile") do |[file|

file.each_line {|line| puts "Got #{line.dump}" }
end

produces:

Got "This is line one\n"
Got "This is line two\n"
Got "This is line three\n"
Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will
break up the input accordingly, returning the line ending at the end of each line of data.
That’s why you see the \n characters in the output of the previous example. In the next
example, we’ll use the character e as the line separator.

File.open("testfile") do |[file|
file.each_line("e") {|line| puts "Got #{ line.dump }" }
end

produces:

Got "This is line"

Got " one"

Got "\nThis is line"

Got " two\nThis is line"
Got " thre"

Got "e"

Got "\nAnd so on...\n"

Prepared exclusively for Yeganefar

READING AND WRITING FILES 123

If you combine the idea of an iterator with the autoclosing block feature, you get
I0.foreach. This method takes the name of an I/O source, opens it for reading, calls
the iterator once for every line in the file, and then closes the file automatically.

10.foreach("testfile") {|line| puts line }

produces:

This is line one
This is line two
This is line three
And so on...

Or, if you prefer, you can retrieve an entire file into a string or into an array of lines.

read into string

str = I0.read("testfile")

str.length — 66

str[0, 30] — "This is line one\nThis is line

read into an array

arr = I0.readlines("testfile")

arr.length — 4

arr[0] — "This is line one\n"
Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised
on most errors, and you should be ready to rescue them and take appropriate action.

Writing to Files

So far, we’ve been merrily calling puts and print, passing in any old object and
trusting that Ruby will do the right thing (which, of course, it does). But what exactly
is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts
and print is converted to a string by calling that object’s to_s method. If for some
reason the to_s method doesn’t return a valid string, a string is created containing the
object’s class name and ID, something like #<ClassName:0x123456>.

The exceptions are simple, too. The nil object will print as the string “nil,” and an array
passed to puts will be written as if each of its elements in turn were passed separately
to puts.

What if you want to write binary data and don’t want Ruby messing with it? Well,
normally you can simply use IO#print and pass in a string containing the bytes to be
written. However, you can get at the low-level input and output routines if you really
want—Ilook at the documentation for I0#sysread and I0#syswrite on page 493.

And how do you get the binary data into a string in the first place? The three common
ways are to use a literal, poke it in byte by byte, or use Array#pack.

Prepared exclusively for Yeganefar

READING AND WRITING FILES 124

strl = "\001\002\003" — "\001\002\003"
str2 = ""

str2 << 1 << 2 << 3 — "\001\002\003"
[1, 2, 3 J.pack("c*") — "\001\002\003"

But | Miss My C++ iostream

Sometimes there’s just no accounting for taste. ... However, just as you can append an
object to an Array using the << operator, you can also append an object to an output
I0 stream.

endl = "\n"
STDOUT << 99 << " red balloons" << endl

produces:
99 red balloons

Again, the << method uses to_s to convert its arguments to strings before sending them
on their merry way.

Although we started off disparaging the poor << operator, there are actually some good
reasons for using it. Because other classes (such as String and Array) also implement
a << operator with similar semantics, you can quite often write code that appends to
something using << without caring whether it is added to an array, a file, or a string.
This kind of flexibility also makes unit testing easy. We discuss this idea in greater
detail in the chapter on duck typing, starting on page 349.

1.8, Doing I/O with Strings

There are often times where you need to work with code that assumes it’s reading from
or writing to one or more files. But you have a problem: the data isn’t in files. Perhaps
it’s available instead via a SOAP service, or it has been passed to you as command-line
parameters. Or maybe you’re running unit tests, and you don’t want to alter the real file
system.

Enter StringIO objects. They behave just like other I/O objects, but they read and
write strings, not files. If you open a StringIO object for reading, you supply it with a
string. All read operations on the StringIO object then read from this string. Similarly,
when you want to write to a StringIO object, you pass it a string to be filled.

require 'stringio'

StringIO0.new('"now is\nthe time\nto learn\nRuby!")
StringIO.new("", "w"

ip
op

w")

ip.each_line do |line]
op.puts line.reverse
end
op.string — "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

Prepared exclusively for Yeganefar

TALKING TO NETWORKS 125

Talking to Networks

Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set
of classes in the socket library (documented starting on page 740). These classes give
you access to TCP, UDP, SOCKS, and Unix domain sockets, as well as any additional
socket types supported on your architecture. The library also provides helper classes to
make writing servers easier. Here’s a simple program that gets information about the
“mysql” user on our local machine using the finger protocol.

require 'socket'

client = TCPSocket.open('127.0.0.1"', 'finger')
client.send("mysgl\n", 0) # 0 means standard packet
puts client.readlines

client.close

produces:
Login: mysql Name: MySQL Server
Directory: /var/empty Shell: /usr/bin/false
Never logged in.
No Mail.
No Plan.

At a higher level, the 1ib/net set of library modules provides handlers for a set of
application-level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are
documented starting on page 677. For example, the following program lists the images
that are displayed on the Pragmatic Programmer home page.

require 'net/http’
h = Net::HTTP.new('www.pragmaticprogrammer.com', 80)
response = h.get('/index.html', nil)

if response.message == "OK"
puts response.body.scan(/<img src="(.*?)"/m).uniq
end
produces:

images/title_main.gif
images/dot.gif
/images/Bookshelf_1.5_in_green.png
images/sk_all_small. jpg
images/new. jpg

Although attractively simple, this example could be improved significantly. In particu-
lar, it doesn’t do much in the way of error handling. It should really report “Not Found”
errors (the infamous 404), and should handle redirects (which happen when a web
server gives the client an alternative address for the requested page).

Prepared exclusively for Yeganefar

TALKING TO NETWORKS 126

We can take this to a higher level still. By bringing the open-uri library into a pro-
gram, the Kernel.open method suddenly recognizes http:// and ftp:// URLs in
the filename. Not just that: it also handles redirects automatically.

require 'open-uri'

open('http://www.pragmaticprogrammer.com') do |f]|
puts f.read.scan(/<img src="(.*?)"/m).uniq

end

produces:
images/title_main.gif
images/dot.gif
/images/Bookshelf_1.5_in_green.png
images/sk_all_small. jpg
images/new. jpg

Have a look at Chapter 18 on page 222 for more information on using Ruby on the
Internet.

Prepared exclusively for Yeganefar

Chapter 11

Threads and Processes

Ruby gives you two basic ways to organize your program so that you can run different
parts of it “at the same time.” You can split up cooperating tasks within the program,
using multiple threads, or you can split up tasks between different programs, using
multiple processes. Let’s look at each in turn.

Multithreading

Often the simplest way to do two things at once is by using Ruby threads. These
are totally in-process, implemented within the Ruby interpreter. That makes the Ruby
threads completely portable—they don’t rely on the operating system. At the same
time, you don’t get certain benefits from having native threads. What does this mean?

You may experience thread starvation (that’s where a low-priority thread doesn’t get a
chance to run). If you manage to get your threads deadlocked, the whole process may
grind to a halt. And if some thread happens to make a call to the operating system that
takes a long time to complete, all threads will hang until the interpreter gets control
back. Finally, if your machine has more than one processor, Ruby threads won’t take
advantage of that fact—because they run in one process, and in a single native thread,
they are constrained to run on one processor at a time.

All this sounds scary. In practice, though, in many circumstances the benefits of using
threads far outweigh any potential problems that may occur. Ruby threads are an effi-
cient and lightweight way to achieve parallelism in your code. You just need to under-
stand the underlying implementation issues and design accordingly.

Creating Ruby Threads

Creating a new thread is pretty straightforward. The code that follows is a simple exam-
ple. It downloads a set of Web pages in parallel. For each URL that it is asked to down-
load, the code creates a separate thread that handles the HTTP transaction.

Prepared exclusively for Yeganefar

MULTITHREADING

require 'net/http’

pages = %w(www.rubycentral.com slashdot.org www.google.com)
threads = []

for page_to_fetch in pages
threads << Thread.new(page_to_fetch) do |url|
h = Net::HTTP.new(url, 80)
puts "Fetching: #{url}"
resp = h.get('/', nil)
puts "Got #{url}: #{resp.message}"
end
end

threads.each {|thr| thr.join }

produces:

Fetching: www.rubycentral.com
Fetching: slashdot.org
Fetching: www.google.com

Got www.google.com: OK

Got www.rubycentral.com: OK
Got slashdot.org: OK

Let’s look at this code in more detail, as a few subtle things are happening.

New threads are created with the Thread.new call. It is given a block that contains
the code to be run in a new thread. In our case, the block uses the net/http library
to fetch the top page from each of our nominated sites. Our tracing clearly shows that
these fetches are going on in parallel.

When we create the thread, we pass the required URL as a parameter. This parameter
is passed to the block as url. Why do we do this, rather than simply using the value of
the variable page_to_fetch within the block?

A thread shares all global, instance, and local variables that are in existence at the
time the thread starts. As anyone with a kid brother can tell you, sharing isn’t always
a good thing. In this case, all three threads would share the variable page_to_fetch.
The first thread gets started, and page_to_fetch is set to "www.rubycentral.com".
In the meantime, the loop creating the threads is still running. The second time around,
page_to_fetch gets set to "slashdot.org". If the first thread has not yet finished
using the page_to_fetch variable, it will suddenly start using this new value. These
kinds of bug are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—
each thread will have its own copy of these variables. In our case, the variable url will
be set at the time the thread is created, and each thread will have its own copy of the
page address. You can pass any number of arguments into the block via Thread. new.

Prepared exclusively for Yeganefar

MULTITHREADING 129

Manipulating Threads

Another subtlety occurs on the last line in our download program. Why do we call join
on each of the threads we created?

When a Ruby program terminates, all threads are killed, regardless of their states. How-
ever, you can wait for a particular thread to finish by calling that thread’s Thread#join
method. The calling thread will block until the given thread is finished. By calling join
on each of the requestor threads, you can make sure that all three requests have com-

E/ pleted before you terminate the main program. If you don’t want to block forever, you
can give join a timeout parameter—if the timeout expires before the thread terminates,
the join call returns nil. Another variant of join, the method Thread#value, returns
the value of the last statement executed by the thread.

In addition to join, a few other handy routines are used to manipulate threads. The
current thread is always accessible using Thread. current. You can obtain a list of all
threads using Thread. list, which returns a list of all Thread objects that are runnable
or stopped. To determine the status of a particular thread, you can use Thread#status
and Thread#alive?.

In addition, you can adjust the priority of a thread using Thread#priority=. Higher-
priority threads will run before lower-priority threads. We’ll talk more about thread
scheduling, and stopping and starting threads, in just a bit.

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.
Variables local to the block containing the thread code are local to the thread and are
not shared.

But what if you need per-thread variables that can be accessed by other threads—
including the main thread? Class Thread features a special facility that allows thread-
local variables to be created and accessed by name. You simply treat the thread object
as if it were a Hash, writing to elements using []= and reading them back using []. In
the example that follows, each thread records the current value of the variable count
in a thread-local variable with the key mycount. To do this, the code uses the string
"mycount" when indexing thread objects. (A race condition' exists in this code, but
we haven’t talked about synchronization yet, so we’ll just quietly ignore it for now.)

1. A race condition occurs when two or more pieces of code (or hardware) both try to access some shared
resource, and where the outcome changes depending on the order in which they do so. In the example here,
it is possible for one thread to set the value of its mycount variable to count, but before it gets a chance
to increment count, the thread gets descheduled and another thread reuses the same value of count. These
issues are fixed by synchronizing the access to shared resources (such as the count variable).

Prepared exclusively for Yeganefar

MULTITHREADING

count = 0
threads = []
10.times do |i]
threads[i] = Thread.new do
sleep(rand(0.1))
Thread.current["mycount"] = count
count += 1
end
end
threads.each {|t| t.join; print t["mycount"], ", "™ }
puts "count = #{count}"

produces:
4,1, 0,8,7,9, 5,6, 3, 2, count =10

The main thread waits for the subthreads to finish and then prints out the value of count
captured by each. Just to make it more interesting, we have each thread wait a random
time before recording the value.

Threads and Exceptions

What happens if a thread raises an unhandled exception? It depends on the setting of
the abort_on_exception flag (documented on pages 612 and 615) and on the setting
of the interpreter’s debug flag (described on page 168).

If abort_on_exception is false and the debug flag is not enabled (the default con-
dition), an unhandled exception simply kills the current thread—all the rest continue
to run. In fact, you don’t even hear about the exception until you issue a join on the
thread that raised it.

In the following example, thread 2 blows up and fails to produce any output. However,
you can still see the trace from the other threads.

threads = []
4.times do |number |
threads << Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"
end
end
threads.each {|t| t.join }

produces:

0

1

3

prog.rb:4: Boom! (RuntimeError)
from prog.rb:8:in “join'

from prog.rb:8

from prog.rb:8:in “each’

from prog.rb:8

Prepared exclusively for Yeganefar

MULTITHREADING

We can rescue the exception at the time the threads are joined.

threads = []
4.times do |number |
threads << Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"
end
end
threads.each do |t]
begin
t.join
rescue RuntimeError => e
puts "Failed: #{e.message}"
end
end

produces:

0
1
3
Failed: Boom!

However, set abort_on_exception to true, or use —d to turn on the debug flag, and
an unhandled exception kills all running threads. Once thread 2 dies, no more output is
produced.

Thread.abort_on_exception = true
threads = []
4.times do |number |
threads << Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"
end
end
threads.each {|t| t.join }

produces:

0

1

prog.rb:5: Boom! (RuntimeError)
from prog.rb:4:in “initialize'
from prog.rb:4:in “new'

from prog.rb:4

from prog.rb:3:in “times'

from prog.rb:3

This code also illustrates a gotcha. Inside the loop, the threads use print to write out
the number, rather than puts. Why? Because behind the scenes, puts splits its work
into two chunks: it writes its argument, and then it writes a newline. Between these
two, a thread could get scheduled, and the output would be interleaved. Calling print
with a single string that already contains the newline gets around the problem.

Prepared exclusively for Yeganefar

CONTROLLING THE THREAD SCHEDULER 132

Controlling the Thread Scheduler

In a well-designed application, you’ll normally just let threads do their thing; building
timing dependencies into a multithreaded application is generally considered to be bad
form, as it makes the code far more complex and also prevents the thread scheduler
from optimizing the execution of your program.

However, sometimes you need to control threads explicitly. Perhaps the jukebox has a
thread that displays a light show. We may need to stop it temporarily when the music
stops. You may have two threads in a classic producer-consumer relationship, where
the consumer has to pause if the producer gets backlogged.

Class Thread provides a number of methods to control the thread scheduler. Invoking
Thread. stop stops the current thread, and invoking Thread#run arranges for a par-
ticular thread to be run. Thread.pass deschedules the current thread, allowing others
to run, and Thread#join and Thread#value suspend the calling thread until a given
thread finishes.

We can demonstrate these features in the following, totally pointless program. It creates
two child threads, t1 and t2, each of which runs an instance of class Chaser. The chase
method increments a count but doesn’t let it get more than two higher than the count
in the other thread. To stop it getting higher, the method issues a Thread.pass, which
allows the chase in the other thread to catch up. To make it interesting (for some minor
definition of interesting), we have the threads suspend themselves initially and then
start a random one first.

class Chaser
attr_reader :count
def initialize(name)
@name = name
@Qcount = 0
end
def chase(other)
while @count < 5
while @count - other.count > 1
Thread.pass
end
@count += 1
print "#@name: #{count}\n"
end
end
end
cl = Chaser.new("A")
c2 = Chaser.new("B")
threads = [
Thread.new { Thread.stop; cl.chase(c2) },
Thread.new { Thread.stop; c2.chase(cl) }
1

Prepared exclusively for Yeganefar

MUTUAL EXCLUSION 1l&58)

start_index = rand(2)

threads[start_index].run
threads[1 - start_index].run

threads.each {|t| t.join }

produces:

[o~]

> > W > w > w
LD T W R NWR N R

However, using these primitives to achieve synchronization in real-life code is not
easy—race conditions will always be waiting to bite you. And when you’re working
with shared data, race conditions pretty much guarantee long and frustrating debugging
sessions. In fact, the previous example includes just such a bug; it is possible for count
to be incremented in one thread, but before that count can be output, the second thread
gets scheduled and outputs its count. The resulting output will be out of sequence.

Fortunately, threads have one additional facility—the idea of mutual exclusion. Using
this, we can build a number of secure synchronization schemes.

Mutual Exclusion

The lowest-level method of blocking other threads from running uses a global thread-
critical condition. When the condition is set to true (using the Thread.critical=
method), the scheduler will not schedule any existing thread to run. However, this does
not block new threads from being created and run. Certain thread operations (such as
stopping or killing a thread, sleeping in the current thread, and raising an exception)
may cause a thread to be scheduled even when in a critical section.

Using Thread.critical= directly is certainly possible, but it isn’t terribly conven-
ient. In fact, we strongly recommend you don’t use it unless you have a black belt in
multithreading (and a penchant for long debugging sessions). Fortunately, Ruby comes
packaged with several alternatives. Right now we’ll look at one of these, the Monitor
library. You may also want to look at the Sync library (on page 717), the Mutex_m
library (beginning on page 676), and the Queue class implemented in the thread library
(on page 722).

Prepared exclusively for Yeganefar

MUTUAL EXCLUSION 134

Monitors

While the threading primitives provide basic synchronization, they can be tricky to use.
Over the years, various folks have come up with higher-level alternatives. One that
works particularly well in object-oriented systems is the concept of a monitor.

Monitors wrap an object containing some kind of resource with synchronization func-
tions. To see them in action, let’s look at a simple counter that is accessed from two
threads.

class Counter
attr_reader :count
def initialize
@count = 0
super
end
def tick
@Qcount += 1
end
end

c = Counter.new

tl = Thread.new { 10000.times { c.tick } }
t2 = Thread.new { 10000.times { c.tick } }
tl.join
t2.join

c.count — 11319

Perhaps surprisingly, the count doesn’t equal 20,000. The reason is a simple line of
code.

@count += 1

This line is actually more complex than it first appears. Within the Ruby interpreter, it
might break down into
val = fetch_current(@count)

add 1 to val
store val back into @count

Now imagine two threads executing this code at the same time. Table 11.1 on the next
page shows the thread number (#/ and ¢2), the code being executed, and the value of
the counter (which we initialize to 0).

Even though our basic set of load/add/store instructions executed five times, we ended
up with a count of three. Because thread 1 interrupted the execution of thread 2 in the
middle of a sequence, when thread 2 resumed it stored a stale value back into @count.

Prepared exclusively for Yeganefar

MUTUAL EXCLUSION 135

Table 11.1. Two threads in a race condition

Thread Executes... Result
tl: val = fetch_current(@count) @count =0
tl: add 1 to val 0
tl: store val back into @count @count=1
2: val = fetch_current(@count) 1
t2: add 1 to val 1
t2: store val back into @count @count =2
tl: val = fetch_current(@count) 2
t2: val = fetch_current(@count) 2
tl: add 1 to val 2
tl: store val back into @count @count =3
tl: val = fetch_current(@count) 3
tl: add 1 to val 3
tl: store val back into @count @count =4
2: add 1 to val 4
t2: store val back into @count @count=3

The solution is to arrange things so that only one thread can execute the tick method’s
increment at any one time. This is easy using monitors.

require 'monitor’
class Counter < Monitor
attr_reader :count
def initialize
@count = 0
super
end
def tick
synchronize do
@count += 1
end
end
end

c¢ = Counter.new
tl = Thread.new { 10000.times { c.tick } }
t2 = Thread.new { 10000.times { c.tick } }

tl.join; t2.join

c.count — 20000
By making our counter a monitor, it gains access to the synchronize method. Only
one thread can be executing code within a synchronize block for a particular monitor
object at any one time, so we no longer have two threads caching intermediate results
at the same time, and our count has its expected value.

Prepared exclusively for Yeganefar

MUTUAL EXCLUSION 136

We don’t have to make our class a subclass of Monitor to gain these benefits. We could
also mix in a variant, MonitorMixin.

require 'monitor’
class Counter
include MonitorMixin

end

The previous example put the synchronization inside the resource being synchronized.
This is appropriate when all accesses to all objects of the class require synchronization.
But if you want to control access to objects that require synchronization only in some
circumstances, or if the synchronization is spread across a group of objects, then it may
be better to use an external monitor.

require 'monitor’

class Counter
attr_reader :count
def initialize
@count = 0
end
def tick
@count += 1
end
end

c = Counter.new
lock = Monitor.new

tl = Thread.new { 10000.times { lock.synchronize { c.tick } } }
t2 = Thread.new { 10000.times { lock.synchronize { c.tick } } }
tl.join; t2.join

c.count — 20000
We can even make specific objects into monitors.

require 'monitor’

class Counter
as before...
end

c = Counter.new
c.extend(MonitorMixin)

tl
t2

Thread.new { 10000.times { c.synchronize { c.tick } } }
Thread.new { 10000.times { c.synchronize { c.tick } } }

tl.join; t2.join
c.count — 20000

Prepared exclusively for Yeganefar

MUTUAL EXCLUSION 137

Here, because class Counter doesn’t know it is a monitor at the time it’s defined, we
have to perform the synchronization externally (in this case by wrapping the calls to
c.tick). This is clearly a tad dangerous: if some other code calls tick but doesn’t
realize that synchronization is required, we’re back in the same mess we started with.

Queues

Most of the examples in this chapter use the Monitor class for synchronization. How-
ever, another technique is useful, particularly when you need to synchronize work
between producers and consumers. The Queue class, located in the thread library,
implements a thread-safe queuing mechanism. Multiple threads can add and remove
objects from the queue, and each addition and removal is guaranteed to be atomic. For
an example of this, see the description of the thread library on page 722.

Condition Variables

Monitors give us half of what we need, but there’s a problem. Say we have two threads
accessing a shared queue. One needs to add entries, and the other needs to read them
(perhaps the list represents songs waiting to be played on our jukebox: it gets added to
when customers make selections, and gets emptied as records get played).

We know we need to synchronize access, so we try something like

require 'monitor’
playlist = []
playlist.extend(MonitorMixin)
Player thread
Thread.new do
record = nil
loop do
playlist.synchronize do # < < BUG!!
sleep 0.1 while playlist.empty?
record = playlist.shift
end
play(record)
end
end

Customer request thread thread
Thread.new do
loop do
req = get_customer_request
playlist.synchronize do
playlist << req
end
end
end

Prepared exclusively for Yeganefar

MUTUAL EXCLUSION 138

But this code has a problem. Inside the player thread, we gain access to the monitor
and then loop waiting for something to be added to the playlist. But because we own
the monitor, the customer thread will never be able to enter its synchronized block, and
will never add something to the playlist. We’re stuck. What we need is to be able to sig-
nal that the playlist has something in it and to provide synchronization between threads
based on this condition, all while staying within the safety of a monitor. More gener-
ally, we need to be able to give up temporarily the exclusive use of the critical region
and simultaneously tell people that we’re waiting for a resource. When the resource
becomes available, we need to be able to grab it and reobtain the lock on the critical
region, all in one step.

That’s where condition variables come in. A condition variable is a controlled way of
communicating an event (or a condition) between two threads. One thread can wait on
the condition, and the other can signal it. For example, we could rewrite our jukebox
using condition variables. (For the purposes of this code we’ll write stub methods for
receiving customer requests and playing records. We also have to add a flag to tell the
player that it’s OK to shut down; normally it would run forever.)

require 'monitor’
SONGS = [
'Blue Suede Shoes',
'Take Five',
'Bye Bye Love',
'Rock Around The Clock',
'Ruby Tuesday'
1
START_TIME = Time.now
def timestamp
(Time.now - START_TIME).to_i
end
Wait for up to two minutes between customer requests
def get_customer_request
sleep(120 * rand)
song = SONGS.shift
puts "#{timestamp}: Requesting #{song}" if song
song
end
Songs take between two and three minutes
def play(song)
puts "#{timestamp}: Playing #{song}"
sleep(120 + 60+*rand)
end
ok_to_shutdown = false
and here's our original code
playlist = []
playlist.extend(MonitorMixin)

Prepared exclusively for Yeganefar

RUNNING MULTIPLE PROCESSES

139

plays_pending = playlist.new_cond
Customer request thread thread
customer = Thread.new do
loop do
req = get_customer_request
break unless req
playlist.synchronize do
playlist << req
plays_pending.signal
end
end
end

Player thread
player = Thread.new do
loop do
song = nil
playlist.synchronize do
break if ok_to_shutdown && playlist.empty?
plays_pending.wait_while { playlist.empty? }
song = playlist.shift
end
break unless song
play(song)
end
end

customer. join
ok_to_shutdown = true
player.join

produces:

26: Requesting Blue Suede Shoes

28: Playing Blue Suede Shoes

72: Requesting Take Five

188: Requesting Bye Bye Love

214: Playing Take Five

288: Requesting Rock Around The Clock
299: Requesting Ruby Tuesday

396: Playing Bye Bye Love

563: Playing Rock Around The Clock
708: Playing Ruby Tuesday

Running Multiple Processes

Sometimes you may want to split a task into several process-sized chunks—or perhaps
you need to run a separate process that was not written in Ruby. Not a problem: Ruby
has a number of methods by which you may spawn and manage separate processes.

Prepared exclusively for Yeganefar

RUNNING MULTIPLE PROCESSES 140

Spawning New Processes

You have several ways to spawn a separate process; the easiest is to run some command
and wait for it to complete. You may find yourself doing this to run some separate
command or retrieve data from the host system. Ruby does this for you with the system
and backquote (or backtick) methods.

system("tar xzf test.tgz") — true
result = “date’
result — "Thu Aug 26 22:36:55 CDT 2004\n"

The method Kernel.system executes the given command in a subprocess; it returns
true if the command was found and executed properly and false otherwise. In case
of failure, you’ll find the subprocess’s exit code in the global variable $?.

One problem with system is that the command’s output will simply go to the same
destination as your program’s output, which may not be what you want. To capture the
standard output of a subprocess, you can use the backquote characters, as with “date’
in the previous example. Remember that you may need to use String#chomp to remove
the line-ending characters from the result.

OK, this is fine for simple cases—we can run some other process and get the return
status. But many times we need a bit more control than that. We’d like to carry on a
conversation with the subprocess, possibly sending it data and possibly getting some
back. The method I0.popen does just this. The popen method runs a command as
a subprocess and connects that subprocess’s standard input and standard output to a
Ruby IO object. Write to the I0 object, and the subprocess can read it on standard
input. Whatever the subprocess writes is available in the Ruby program by reading
from the I0 object.

For example, on our systems one of the more useful utilities is pig, a program that
reads words from standard input and prints them in pig latin (or igpay atinlay). We
can use this when our Ruby programs need to send us output that our five-year-olds
shouldn’t be able to understand.

pig = IO.popen("/usr/local/bin/pig", "w+")
pig.puts "ice cream after they go to bed"
pig.close_write

puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the real-world complexi-
ties involved in driving subprocesses through pipes. The code certainly looks simple
enough: open the pipe, write a phrase, and read back the response. But it turns out that
the pig program doesn’t flush the output it writes. Our original attempt at this exam-
ple, which had a pig.puts followed by a pig.gets, hung forever. The pig program

Prepared exclusively for Yeganefar

RUNNING MULTIPLE PROCESSES 141

processed our input, but its response was never written to the pipe. We had to insert
the pig.close_write line. This sends an end-of-file to pig’s standard input, and the
output we’re looking for gets flushed as pig terminates.

popen has one more twist. If the command you pass it is a single minus sign (—), popen
will fork a new Ruby interpreter. Both this and the original interpreter will continue
running by returning from the popen. The original process will receive an I0 object
back, and the child will receive nil. This works only on operating systems that support
the fork(2) call (and for now this excludes Windows).

pipe = I0.popen(,w")
if pipe
pipe.puts "Get a job!"
STDERR.puts "Child says '#{pipe.gets.chomp}'"

else
STDERR.puts "Dad says '#{gets.chomp}'"
puts "OK"
end
produces:

Dad says 'Get a job!'
Child says 'OK'

In addition to the popen method, some platforms support the methods Kernel. fork,
Kernel.exec, and IO.pipe. The file-naming convention of many I0 methods and
Kernel.open will also spawn subprocesses if you put a | as the first character of the
filename (see the introduction to class I0 on page 482 for details). Note that you cannot
create pipes using File.new; it’s just for files.

Independent Children

Sometimes we don’t need to be quite so hands-on: we’d like to give the subprocess its

assignment and then go on about our business. Sometime later, we’ll check to see if it

has finished. For instance, we may want to kick off a long-running external sort.
exec("sort testfile > output.txt") if fork.nil?

The sort is now running in a child process
carry on processing in the main program

... dum di dum ...

then wait for the sort to finish
Process.wait

The call to Kernel. fork returns a process ID in the parent, and nil in the child, so the
child process will perform the Kernel.exec call and run sort. Sometime later, we issue
a Process.wait call, which waits for the sort to complete (and returns its process ID).

Prepared exclusively for Yeganefar

RUNNING MULTIPLE PROCESSES 142

If you’d rather be notified when a child exits (instead of just waiting around), you can
set up a signal handler using Kernel. trap (described on page 513). Here we set up a
trap on SIGCLD, which is the signal sent on “death of child process.”
trap("CLD") do
pid = Process.wait
puts "Child pid #{pid}: terminated"
end

exec("sort testfile > output.txt") if fork.nil?
do other stuff...

produces:

Child pid 25816: terminated

For more information on using and controlling external processes, see the documenta-
tion for Kernel.open, I0.popen, and the section on the Process module on page 562.

Blocks and Subprocesses

I0.popen works with a block in pretty much the same way as File.open does. If you

pass it a command, such as date, the block will be passed an I0 object as a parameter.
I0.popen("date") {|f| puts "Date is #{f.gets}" }

produces:

Date is Thu Aug 26 22:36:55 CDT 2004

The I0 object will be closed automatically when the code block exits, just as it is with
File.open.

If you associate a block with Kernel. fork, the code in the block will be run in a Ruby
subprocess, and the parent will continue after the block.

fork do
puts "In child, pid = #$$"
exit 99

end

pid = Process.wait
puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}"

produces:

In child, pid = 25823
Child terminated, pid = 25823, status = 99

$? is a global variable that contains information on the termination of a subprocess.
See the section on Process: :Status beginning on page 570 for more information.

Prepared exclusively for Yeganefar

Chapter 12

Unit Testing

Unit testing (described in the sidebar on the next page) is a technique that helps devel-
opers write better code. It helps before the code is actually written, as thinking about
testing leads you naturally to create better, more decoupled designs. It helps as you’re
writing the code, as it gives you instant feedback on how accurate your code is. And it
helps after you’ve written code, both because it gives you the ability to check that the
code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

But why have a chapter on unit testing in the middle of a book on Ruby? Because unit
testing and languages such as Ruby seem to go hand in hand. The flexibility of Ruby
makes writing tests easy, and the tests make it easier to verify that your code is working.
Once you get into the swing of it, you’ll find yourself writing a little code, writing a
test or two, verifying that everything is copacetic, and then writing some more code.

Unit testing is also pretty trivial—run a program that calls part of your application’s
code, get back some results, and then check the results are what you expected.

Let’s say we’re testing a Roman number class. So far the code is pretty simple: it just
lets us create an object representing a certain number and display that object in Roman
numerals. Figure 12.1 on page 145 shows our first stab at an implementation.

We could test this code by writing another program, like this.

require 'roman'

r = Roman.new(1)
fail "'i' expected" unless r.to_s == "i"

r = Roman.new(9)
fail "'ix' expected" unless r.to_s == "ix"

However, as the number of tests in a project grows, this kind of ad-hoc approach can
start to get complicated to manage. Over the years, various unit testing frameworks
have emerged to help structure the testing process. Ruby comes with one preinstalled,
Nathaniel Talbott’s Test::Unit framework.

Prepared exclusively for Yeganefar

TEST::UNIT FRAMEWORK 144

What is Unit Testing?

Unit testing focuses on small chunks (units) of code, typically individ-
ual methods or lines within methods. This is in contrast to most other
forms of testing, which consider the system as a whole.

Why focus in so tightly? Because ultimately all software is constructed
in layers: code on one layer relies on the correct operation of the code
in the layers below. If this underlying code turns out to contain bugs,
then all higher layers are potentially affected. This is a big problem.
Fred may write the code with a bug one week, and then you may end
up calling it, indirectly, two months later. When your code generates
incorrect results, it will take you a while to track down the problem in
Fred’s method. And when you ask Fred why he wrote it that way, the
likely answer will be “I don’t remember. That was months ago.”

If instead Fred had unit tested his code when he wrote it, two things
would have happened. First, he’d have found the bug while the code
was still fresh in his mind. Second, because the unit test was only
looking at the code he’d just written, when the bug did appear, he'd
only have to look through a handful of lines of code to find it, rather
than doing archaeology on the rest of the code base.

Test::Unit Framework

The Test::Unit framework is basically three facilities wrapped into a neat package.

1. It gives you a way of expressing individual tests.
2. It provides a framework for structuring the tests.
3. It gives you flexible ways of invoking the tests.

Assertions == Expected Results

Rather than have you write series of individual if statements in your tests, Test::Unit
provides a series of assertions that achieve the same thing. Although a number of dif-
ferent styles of assertion exist, they all follow basically the same pattern. Each assertion
gives you a way of specifying a desired result or outcome and a way of passing in the
actual outcome. If the actual doesn’t equal the expected, the assertion outputs a nice
message and records the fact as a failure.

For example, we could rewrite our previous test of the Roman class in Test::Unit. For
now, ignore the scaffolding code at the start and end, and just look at the assert_equal
methods.

Prepared exclusively for Yeganefar

::UNIT FRAMEWORK

Figure 12.1. Roman numerals generation (with bugs) h
class Roman
MAX_ROMAN = 4999
def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX_ROMAN}"
end
@value = value
end
FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 907, ["1", 501, ["x1", 40],
["x", 10], ["ix", 9], ["v", 51, ["iv", 471,
[iv, 1]
def to_s
value = @value
roman = ""
for code, factor in FACTORS
count, value = value.divmod(factor)
roman << code unless count.zero?
end
roman
end
end
|\ J

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase
def test_simple

assert_equal("i", Roman.new(1).to_s)
assert_equal ("ix", Roman.new(9).to_s)
end
end

produces:

Loaded suite -
Started

Finished in 0.003655 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

The first assertion says that we’re expecting the Roman number string representation
of 1 to be “i”, and the second test says we expect 9 to be “ix”. Luckily for us, both
expectations are met, and the tracing reports that our tests pass.

Let’s add a few more tests.

Prepared exclusively for Yeganefar

TEST::UNIT FRAMEWORK 146

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase
def test_simple

assert_equal("i", Roman.new(1).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)
end
end
produces:
Loaded suite -
Started
F

Finished in 0.021877 seconds.

1) Failure:
<"ii"> expected but was

<'17>.

1 tests, 2 assertions, 1 failures, O errors
test_simple(TestRoman) [prog.rb:6]:

Uh oh! The second assertion failed. See how the error message uses the fact that the
assert knows both the expected and actual values: it expected to get “ii” but instead got
“1”. Looking at our code, you can see a clear bug in to_s. If the count after dividing
by the factor is greater than zero, then we should output that many Roman digits. The
existing code outputs just one. The fix is easy.

def to_s

value = @value

roman = ""

for code, factor in FACTORS
count, value = value.divmod(factor)
roman << (code =* count)

end

roman

end

Now let’s run our tests again.

Loaded suite -
Started

Finished in 0.002161 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

Looking good. We can now go a step further and remove some of that duplication.

Prepared exclusively for Yeganefar

TEST::UNIT FRAMEWORK

require 'roman'
require 'test/unit'
class TestRoman < Test::Unit::TestCase
NUMBERS = [
[a, "i" 1, 2, "ii" 1, [3, "iii"],
[4, "iv"], [5, "v" 1, [9, "ix"]
1
def test_simple
NUMBERS.each do |arabic, roman|
r = Roman.new(arabic)
assert_equal(roman, r.to_s)
end
end
end

produces:

Loaded suite -
Started

Finished in 0.004026 seconds.

1 tests, 6 assertions, 0 failures, 0 errors

What else can we test? Well, the constructor checks that the number we pass in can
be represented as a Roman number, throwing an exception if it can’t. Let’s test the
exception.

require 'roman'

require 'test/unit'
class TestRoman < Test::Unit::TestCase

def test_range
assert_raise(RuntimeError) { Roman.new(0) }

assert_nothing_raised() { Roman.new(1) }
assert_nothing_raised() { Roman.new(499) }
assert_raise(RuntimeError) { Roman.new(5000) }
end
end
produces:

Loaded suite -
Started

Finished in 0.002898 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

We could do lot more testing on our Roman class, but let’s move on to bigger and better
things. Before we go, though, we should say that we’ve only scratched the surface of
the set of assertions available inside Test::Unit. Figure 12.2 on page 154 gives a full
list. The final parameter to every assertion is a message, which is output before any

Prepared exclusively for Yeganefar

STRUCTURING TESTS 148

failure message. This normally isn’t needed, as Test::Unit’s messages are normally
pretty reasonable. The one exception is the test assert_not_nil, where the message
“<nil> expected to not be nil” doesn’t help much. In that case, you may want to add
some annotation of your own.

require 'test/unit'

class TestsWhichFail < Test::Unit::TestCase

def test_reading
assert_not_nil(ARGF.read, "Read next line of input")

end
end

produces:

Loaded suite -

Started

F

Finished in 0.033581 seconds.

1) Failure:
Read next line of input.
<nil> expected to not be nil.

1 tests, 1 assertions, 1 failures, O errors
test_reading(TestsWhichFail) [prog.rb:4]:

Structuring Tests

Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look
at it.

You include Test::Unit facilities in your unit test with the following line.
require 'test/unit'

Unit tests seem to fall quite naturally into high-level groupings, called test cases, and
lower level groupings, the test methods themselves. The test cases generally contain all
the tests relating to a particular facility or feature. Our Roman number class is fairly
simple, so all the tests for it will probably be in a single test case. Within the test
case, you’ll probably want to organize your assertions into a number of test methods,
where each method contains the assertions for one type of test: one method could check
regular number conversions, another could test error handling, and so on.

The classes that represent test cases must be subclasses of Test::Unit::TestCase. The
methods that hold the assertions must have names that start with test. This is impor-
tant: Test::Unit uses reflection to find tests to run, and only methods whose names start
with test are eligible.

Prepared exclusively for Yeganefar

STRUCTURING TESTS 149

Quite often you’ll find all of the test methods within a test case setting up a particu-
lar scenario. Each test method then probes some aspect of that scenario. Finally, each
method may then tidy up after itself. For example, we could be testing a class that
extracts jukebox playlists from a database.

require 'test/unit'
require 'playlist_builder'
require 'dbi'
class TestPlaylistBuilder < Test::Unit::TestCase
def test_empty_playlist
db = DBI.connect('DBI:mysql:playlists"')
pb = PlaylistBuilder.new(db)
assert_equal([], pb.playlist())
db.disconnect
end

def test_artist_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include_artist("krauss")
assert(pb.playlist.size > 0, "Playlist shouldn't be empty")
pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)

end
db.disconnect

end

def test_title_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include_title("midnight")
assert(pb.playlist.size > 0, "Playlist shouldn't be empty")
pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)

end
db.disconnect

end

...

end

produces:

Loaded suite -
Started

Finished in 0.004809 seconds.

3 tests, 23 assertions, 0 failures, 0 errors

Each test starts by connecting to the database and creating a new playlist builder. Each
test ends by disconnecting from the database. (The idea of using a real database in unit

Prepared exclusively for Yeganefar

STRUCTURING TESTS 150

tests is questionable, as unit tests are supposed to be fast running, context independent,
and easy to set up, but it illustrates a point.)

We can extract all this common code into sefup and feardown methods. Within a
TestCase class, a method called setup will be run before each and every test method,
and a method called teardown will be run after each test method finishes. Let’s empha-
size that: the setup and teardown methods bracket each test, rather than being run
once per test case.

Our test would then become

require 'test/unit'

require 'playlist_builder'

require 'dbi'

class TestPlaylistBuilder < Test::Unit::TestCase

def setup
@db = DBI.connect('DBI:mysql:playlists')
@pb = PlaylistBuilder.new(@db)

end

def teardown
@db.disconnect
end

def test_empty_playlist
assert_equal([], @pb.playlist())
end
def test_artist_playlist
@pb.include_artist("krauss")
assert(@pb.playlist.size > 0, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)
end
end
def test_title_playlist
@pb.include_title("midnight")
assert(@pb.playlist.size > 0, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|
assert_match(/midnight/i, entry.title)
end
end
...
end

produces:

Loaded suite -
Started

Finished in 0.00691 seconds.

3 tests, 23 assertions, 0 failures, 0 errors

Prepared exclusively for Yeganefar

ORGANIZING AND RUNNING TESTS 151

Organizing and Running Tests

The test cases we’ve shown so far are all runnable Test::Unit programs. If, for example,
the test case for the Roman class was in a file called test_roman.rb, we could run the
tests from the command line using

% ruby test_roman.rb
Loaded suite test_roman
Started

Finished in 0.039257 seconds.

2 tests, 9 assertions, 0 failures, 0 errors

Test::Unit is clever enough to notice that there’s no main program, so it collects up all
the test case classes and runs each in turn.

If we want, we can ask it to run just a particular test method.

% ruby test_roman.rb --name test_range
Loaded suite test_roman
Started

Finished in 0.006445 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

Where to Put Tests

Once you get into unit testing, you may well find yourself generating almost as much
test code as production code. All of those tests have to live somewhere. The problem
is that if you put them alongside your regular production code source files, your direc-
tories start to get bloated—effectively you end up with two files for every production
source file.

A common solution is to have a test/ directory where you place all your test source
files. This directory is then placed parallel to the directory containing the code you’re
developing. For example, for our Roman numeral class, we may have

roman
~— lib/
F roman.rb
\— other files. ..
M test/
F test_roman.rb
\— other tests. ..

“— other stuff

Prepared exclusively for Yeganefar

ORGANIZING AND RUNNING TESTS 152

This works well as a way of organizing files but leaves you with a small problem: how
do you tell Ruby where to find the library files to test? For example, if our TestRoman
test code was in a test/ subdirectory, how does Ruby know where to find the roman.
rb source file, the thing we’re trying to test?

An option that doesn’t work reliably is to build the path into require statements in the
test and run the tests from the test/ subdirectory.

require 'test/unit'

require '../lib/roman'’

class TestRoman < Test::Unit::TestCase
...

end

Why doesn’t it work? Because our roman.rb file may itself require other source files in
the library we’re writing. It’ll load them using require (without the leading “../1ib/”),
and because they aren’t in Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t
run. A second, less immediate problem is that we won’t be able to use these same tests
to test our classes once installed on a target system, as then they’ll be referenced simply
using require 'roman'.

A better solution is to run the tests from the directory containing the library being
tested. Because the current directory is in the load path, the test code will be able to
find it.

% ruby ../test/test_roman.rb

However, this approach breaks down if you want to be able to run the tests from some-
where else on your system. Perhaps your scheduled build process runs tests for all the
software in the application by simply looking for files called test_xxx and executing
them. In this case, you need a little load path magic. At the front of your test code (for
example in test_roman.rb), add the following line:

$:.unshift File.join(File.dirname(__FILE_), "..", "lib")
require ...

This magic works because the test code is in a known location relative to the code being
tested. It starts by working out the name of the directory from which the test file is run
and then constructing the path to the files under test. This directory is the prepended
to the load path (the variable $:). From then on, code such as require 'roman' will
search the library being tested first.

Test Suites

After a while, you’ll grow a decent collection of test cases for your application. You
may well find that these tend to cluster: one group of cases tests a particular set of
functions, and another group tests a different set of functions. If so, you can group
those test cases together into fest suites, letting you run them all as a group.

Prepared exclusively for Yeganefar

ORGANIZING AND RUNNING TESTS 153

This is easy to do in Test::Unit. All you have to do is create a Ruby file that requires
test/unit, and then requires each of the files holding the test cases you want to group.
This way, you build yourself a hierarchy of test material

* You can run individual tests by name.

* You can run all the tests in a file by running that file.

* You can group a number of files into a test suite and run them as a unit.
* You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,
testing just one method or testing the entire application.

At this point, it’s worthwhile thinking about naming conventions. Nathaniel Talbott,
the author of Test::Unit, uses the convention that test cases are in files named tc_xxx
and test suites are in files named ts_xxx.

file ts_dbaccess.rb
require 'test/unit'
require 'tc_connect'
require 'tc_query'
require 'tc_update'
require 'tc_delete'

Now, if you run Ruby on the file ts_dbaccess.rb, you execute the test cases in the
four files you’ve required.

Is that all there is to it? No, you can make it more complicated if you want. You can
manually create and populate TestSuite objects, but there doesn’t seem to be much
point in practice. If you want to find more information, ri Test::Unit should help.

Test::Unit comes with a number of fancy GUI test runners. As real programmers use
the command line, however, these aren’t described here. Again, see the documentation
for details.

Prepared exclusively for Yeganefar

ORGANIZING AND RUNNING TESTS

Figure 12.2. Test::Unit assertions

assert(boolean, [message])
Fails if boolean is false or nil.

assert_nil(obj, [message 1)
assert_not_nil(obj, [message])
Expects obj to be (not) nil.

assert_equal(expected, actual, [message)
assert_not_equal(expected, actual, [message])
Expects obj to equal/not equal expected, using ==.

assert_in_delta(expected_float, actual_float, delta, [message])
Expects that the actual floating-point value is within delta of the expected value.

assert_raise(Exception, ...) { block }
assert_nothing_raised(Exception, . ..) { block }
Expects the block to (not) raise one of the listed exceptions.

assert_instance_of(klass, obj, [message])
assert_kind_of(klass, obj, [message])
Expects obj to be a kind/instance of klass.

assert_respond_to(obj, message, [message)
Expects obj to respond to message (a symbol).

assert_match(regexp, string, [message])
assert_no_match(regexp, string, [message])
Expects string to (not) match regexp.

assert_same(expected, actual, [message])
assert_not_same(expected, actual, [message])
Expects expected .equal? (actual).

assert_operator(obj1, operator, obj2, [message)
Expects the result of sending the message operator to objl with parameter obj2 to
be true.

assert_throws(expected _symbol, [message]) { block }
Expects the block to throw the given symbol.

assert_send(send_array, [message])
Sends the message in send_array[1] to the receiver in send_array[0], passing the

rest of send_array as arguments. Expects the return value to be true.

flunk(message="Flunked")
Always fail.

Prepared exclusively for Yeganefar

Chapter 13

When Trouble Strikes

Sad to say, it is possible to write buggy programs using Ruby. Sorry about that.

But not to worry! Ruby has several features that will help debug your programs. We’ll
look at these features, and then we’ll show some common mistakes you can make in
Ruby and how to fix them.

Ruby Debugger

Ruby comes with a debugger, which is conveniently built into the base system. You can
run the debugger by invoking the interpreter with the -r debug option, along with any
other Ruby options and the name of your script.

ruby -r debug [debug-options | [programfile | [program-arguments]|

The debugger supports the usual range of features you’d expect, including the ability
to set breakpoints, to step into and step over method calls, and to display stack frames
and variables. It can also list the instance methods defined for a particular object or
class, and it allows you to list and control separate threads within Ruby. Table 13.1 on
page 165 lists all the commands that are available under the debugger.

If your Ruby installation has readline support enabled, you can use cursor keys to
move back and forth in command history and use line-editing commands to amend
previous input.

To give you an idea of what the Ruby debugger is like, here is a sample session (with
user input in bold face type).

% ruby -r debug t.rb
Debug.rb

Emacs support available.
t.rb:1:def fact(n)
(rdb:1) list 1-9

[1, 10] in t.rb

Prepared exclusively for Yeganefar

INTERACTIVE RUBY 156

=> 1 def fact(n)
2 ifn<=0

3 1

4 else

5 n * fact(n-1)

6 end

7 end

8

9 p fact(5)
(rdb:1) b2
Set breakpoint 1 at t.rb:2
(rdb:1) ¢

breakpoint 1, fact at t.rb:2

t.rb:2: if n<=0

(rdb:1) dispn

1: n =5

(rdb:1) del 1

(rdb:1) watch n==

Set watchpoint 2

(rdb:1) €

watchpoint 2, fact at t.rb:fact

t.rb:1:def fact(n)

1: n=1

(rdb:1) where

--> #1 t.rb:1:in "fact'
#2 .rb:5:in “fact'
#3 .rb:5:in “fact'
#4 .rb:5:in “fact'
#5 .rb:5:in “fact'
#6 t.rb:9

(rdb:1) del 2

(rdb:1) €

120

o+ ot ot

Interactive Ruby

If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is
essentially a Ruby “shell” similar in concept to an operating system shell (complete
with job control). It provides an environment where you can “play around” with the
language in real time. You launch irb at the command prompt.

irb [irb-options] [ruby script] [program-arguments]|
irb will display the value of each expression as you complete it. For instance:

% irb

irb(main):001:0> a=1 +
irb(main):002:0x 2* 3/

irb(main):003:0+ 4 % 5

Prepared exclusively for Yeganefar

EDITOR SUPPORT 157

= 2

irb(main) :004:0> 2+2

=> 4

irb(main):005:0> def test
irb(main):006:1> puts "Hello, world!"
irb(main):007:1> end

=> nil

irb(main):008:0> test
Hello, world!

=> nil

irb(main):009:0>

irb also allows you to create subsessions, each one of which may have its own context.
For example, you can create a subsession with the same (top-level) context as the orig-
inal session or create a subsession in the context of a particular class or instance. The
sample session shown in Figure 13.1 on the next page is a bit longer but shows how
you can create subsessions and switch between them.

For a full description of all the commands that irb supports, see the reference beginning
on page 174.

As with the debugger, if your version of Ruby was built with GNU readline support,
you can use arrow keys (as with Emacs) or vi-style key bindings to edit individual lines
or to go back and reexecute or edit a previous line—just like a command shell.

irb is a great learning tool: it’s very handy if you want to try an idea quickly and see if
it works.

Editor Support

The Ruby interpreter is designed to read a program in one pass; this means you can
pipe an entire program to the interpreter’s standard input, and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs,
for instance, you can select a region of Ruby text and use the command Meta-| to
execute Ruby. The Ruby interpreter will use the selected region as standard input, and
output will go to a buffer named *Shell Command Output=. This feature has come
in quite handy for us while writing this book—just select a few lines of Ruby in the
middle of a paragraph and try it!

You can do something similar in the vi editor using :%!ruby which replaces the pro-
gram text with its output, or :w_ ! ruby, which displays the output without affecting the
buffer. Other editors have similar features.

While we are on the subject, this would probably be a good place to mention that a
Ruby mode for Emacs is included in the Ruby source distribution as ruby-mode.el
in the misc/ subdirectory. You can also find syntax-highlighting modules for vim

Prepared exclusively for Yeganefar

EDITOR SUPPORT 158

Figure 13.1. Sample irb session h

% irb

irb(main):001:0> irb

irb#1(main):001:0> jobs

#0->irb on main (#<Thread:0x401bd654>: stop)

#1->irb#1 on main (#<Thread:0x401d5a28>: running)

irb#1(main):002:0> fg 0

#<IRB::Irb:@scanner=#<RubylLex:0x401ca7>,@signal_status=:IN_EVAL,
@Qcontext=#<IRB::Context:0x401ca86c>>

irb(main):002:0> class VolumeKnob In this same irb session

irb(main):003:1> end , ’

- nil we’ll create a new

irb(main):004:0> irb VolumeKnob _| subsession in the context

irb#2(VolumeKnob):001:0> def initialize of class VolumeKnob.

irb#2(VolumeKnob) :002:1> @vol=50

irb#2(VolumeKnob):003:1> end We can use g 0 to

=> nil switch back to the main

irb#2(VolumeKnob):004:0> def up session, take at look at all

irb#Z(VolumeKnob) :005:1> @VOI +=10 Currentjobs’ and see what

irb#2(VolumeKnob):006:1> end instance methods

=> nil .| VolumeKnob defines.

irb#2(VolumeKnob):007:0> fg 0

#<IRB: :Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,
@context=#<IRB::Context:0x401ca86c>>

irb(main):005:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)

#1->irb#1 on main (#<Thread:0x401d5a28>: stop)

#2->irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)

irb(main):006:0> VolumeKnob.instance_methods

=> ["up"]

irb(main):007:0> v = VolumeKnob.new Make a new VolumeKnob

#<VolumeKnob: @vol=50> ~~___ | object, and create a new

irb(main):008:0> irb v subsession with that

irb#3(#<VolumeKnob:0x401e7d40>):001:0> up object as the context.

=> 60

irb#3(#<VolumeKnob:0x401e7d40>):002:0> up

=> 70 Switch back to the main

1rb§g(#<V01umeKnob:0x401e7d40>):003:0> Up | gession, kill the

=> . .

irb#3(VolumeKnob):004:0> fg 0 subsessions, and exit.

#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,
@context=#<IRB::Context:0x401ca86c>>

irb(main):009:0> kill 1,2,3

= [1, 2, 3]

irb(main):010:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)

irb(main):011:0> exit

|\ J

Prepared exclusively for Yeganefar

BUT IT DOESN’'T WORK! 159

(an enhanced version of the vi editor), jed, and other editors on the ’net. Check the
Ruby FAQ (http://www.rubygarden.org/iowa/fagtotum) for an up-to-date list
and pointers to resources.

But It Doesn’t Work!

So you’ve read through enough of the book, you start to write your very own Ruby
program, and it doesn’t work. Here’s a list of common gotchas and other tips.

e First and foremost, run your scripts with warnings enabled (the -w command-line
option).

[TEL)

 If you happen to forget a ““,” in an argument list—especially to print—you can
produce some very odd error messages.

e A parse error at the last line of the source often indicates a missing end keyword,
sometimes quite a bit earlier.

e An attribute setter is not being called. Within a class definition, Ruby will parse
setter= as an assignment to a local variable, not as a method call. Use the form
self.setter= to indicate the method call.

class Incorrect

attr_accessor :one, :two
def initialize

one = 1 # incorrect - sets local variable
self.two = 2
end

end

obj = Incorrect.new
obj.one — nil
obj.two — 2

* Objects that don’t appear to be properly set up may have been victims of an incor-
rectly spelled initialize method.

class Incorrect
attr_reader :answer

def initialise # < < < spelling error
@answer = 42
end
end

ultimate = Incorrect.new
ultimate.answer — nil

The same kind of thing can happen if you misspell the instance variable name.

Prepared exclusively for Yeganefar

http://www.rubygarden.org/iowa/faqtotum

BUT IT DOESN’'T WORK! 160

class Incorrect
attr_reader :answer
def initialize
@anwser = 42 #<« spelling error
end
end

ultimate = Incorrect.new
ultimate.answer — nil

* Block parameters are in the same scope as local variables. If an existing local
variable with the same name as a block parameter exists when the block executes,
that variable will be modified by the call to the block. This may or may not be a

Good Thing.
¢ = "carbon"
i = "iodine"

elements = [¢, i]

elements.each_with_index do |element, i|
do some chemistry

end

¢ — "carbon"

i - 1

» Watch out for precedence issues, especially when using {} instead of do/end.

def one(arg)
if block_given?
"block given to 'one' returns #{yield}"
else
arg
end
end

def two
if block_given?
"block given to 'two' returns #{yield}"

end

end

resultl = one two {
"three"

}

result2 = one two do
"three"

end

puts "With braces, result = #{resultl}"
puts "With do/end, result #{result2}"

produces:

With braces, result
With do/end, result

block given to 'two' returns three
block given to 'one' returns three

Prepared exclusively for Yeganefar

BUT IT DOESN’'T WORK! 161

 QOutput written to a terminal may be buffered. This means you may not see a mes-
sage you write immediately. In addition, if you write messages to both §stdout
and $stderr, the output may not appear in the order you were expecting. Always
use nonbuffered I/O (set sync=true) for debug messages.

e If numbers don’t come out right, perhaps they’re strings. Text read from a file will
be a String and will not be automatically converted to a number by Ruby. A call
to Integer will work wonders (and will throw an exception if the input isn’t a
well-formed integer). A common mistake Perl programmers make is

while line = gets
numl, num2 = line.split(/,/)
...

end

You can rewrite this as

while line = gets
numl, num2 = line.split(/,/)
numl = Integer(numl)
num?2 = Integer(num2)
...
end

Or, you could convert all the strings using map.

while line = gets
numl, num2 = line.split(/,/).map {|val| Integer(val) }
...

end

* Unintended aliasing—if you are using an object as the key of a hash, make sure it
doesn’t change its hash value (or arrange to call Hash#rehash if it does).

arr = [1, 2]

hash = { arr => "value" }

hash[arr] — "value"

arr[0] = 99

hash[arr] — nil

hash.rehash — {[99, 2]=>"value"}
hash[arr] — "value"

* Make sure the class of the object you are using is what you think it is. If in doubt,
use puts my_obj.class.

* Make sure your method names start with a lowercase letter and class and constant
names start with an uppercase letter.

e If method calls aren’t doing what you’d expect, make sure you’ve put parentheses
around the arguments.

Prepared exclusively for Yeganefar

BuT IT’S Too SLow! 162

* Make sure the open parenthesis of a method’s parameter list butts up against the
end of the method name with no intervening spaces.

* Use irb and the debugger.

e Use Object#freeze. If you suspect that some unknown portion of code is setting
a variable to a bogus value, try freezing the variable. The culprit will then be
caught during the attempt to modify the variable.

One major technique makes writing Ruby code both easier and more fun. Develop your
applications incrementally. Write a few lines of code, and then run them. Perhaps use
Test::Unit to write some tests. Write a few more lines of code, and then exercise them.
One of the major benefits of a dynamically typed language is that things don’t have to
be complete before you use them.

But It’s Too Slow!

Ruby is an interpreted, high-level language, and as such it may not perform as fast as a
lower-level language such as C. In the following sections, we’ll list some basic things
you can do to improve performance; also have a look in the index under Performance
for other pointers.

Typically, slow-running programs have one or two performance graveyards, places
where execution time goes to die. Find and improve these, and suddenly your whole
program springs back to life. The trick is finding them. The Benchmark module and the
Ruby profilers can help.

Benchmark

You can use the Benchmark module, also described on page 636, to time sections of
code. For example, we may wonder which is faster: a large loop using variables local
to the loop’s block or using variables from the surrounding scope. Figure 13.2 on the
following page shows how to use Benchmark to find out.

You have to be careful when benchmarking, because oftentimes Ruby programs can run
slowly because of the overhead of garbage collection. Because this garbage collection
can happen any time during your program’s execution, you may find that benchmark-
ing gives misleading results, showing a section of code running slowly when in fact the
slowdown was caused because garbage collection happened to trigger while that code
was executing. The Benchmark module has the bmbm method that runs the tests twice,
once as a rehearsal and once to measure performance, in an attempt to minimize the dis-
tortion introduced by garbage collection. The benchmarking process itself is relatively
well mannered—it doesn’t slow down your program much.

Prepared exclusively for Yeganefar

BuT IT’S Too SLow! 163

Figure 13.2. Comparing variable access costs using benchmark

require 'benchmark'
include Benchmark

LOOP_COUNT = 1_000_000

bm(12) do |test]
test.report("normal:") do
LOOP_COUNT.times do |x]|
y=x+1
end
end
test.report("predefine:") do
x=y=0
LOOP_COUNT.times do |x]|
y=x+1
end
end
end

produces:
user system total real

normal: 3.110000 0.000000 3.110000 (4.954929)
predefine: 2.560000 0.000000 2.560000 (3.009354)

The Profiler

Ruby comes with a code profiler (documentation begins on page 696). The profiler
shows you the number of times each method in the program is called and the average
and cumulative time that Ruby spends in those methods.

You can add profiling to your code using the command-line option -r profile or
from within the code using require 'profile'. For example:

require 'profile'
count = 0
words = File.open("/usr/share/dict/words")

while word = words.gets
word = word.chomp!
if word.length == 12
count += 1
end
end

puts "#{count} twelve-character words"

The first time we ran this (without profiling) against a dictionary of almost 235,000
words, it takes several seconds to complete. This seems excessive, so we added the
-r profile command-line option and tried again. Eventually we saw output that
looked like the following.

Prepared exclusively for Yeganefar

BuT IT’S Too SLow! 164

20460 twelve-character words

% cumulative self self total

time seconds seconds calls ms/call ms/call name

7.76 12.01 12.01 234937 0.05 0.05 String#chomp!
7.75 24.00 11.99 234938 0.05 0.05 IO#gets

7.71 35.94 11.94 234937 0.05 0.05 String#length
7.62 47.74 11.80 234937 0.05 0.05 Fixnum#==

0.59 48.66 0.92 20460 0.04 0.04 Fixnum#+

0.01 48.68 0.02 1 20.00 20.00 Profiler__.start_profile
0.00 48.68 0.00 1 0.00 0.00 File#initialize
0.00 48.68 0.00 1 0.00 0.00 Fixnum#to_s
0.00 48.68 0.00 1 0.00 0.00 File#open

0.00 48.68 0.00 1 0.00 0.00 Kernel.puts
0.00 48.68 0.00 2 0.00 0.00 IO#write

0.00 48.68 0.00 1 0.00 154800.00 #toplevel

The first thing to notice is that the timings shown are a lot slower than when the program
runs without the profiler. Profiling has a serious overhead, but the assumption is that
it applies across the board, and therefore the relative numbers are still meaningful.
This particular program clearly spends a lot of time in the loop, which executes almost
235,000 times. We could probably improve performance if we could either make the
stuff in the loop less expensive or eliminate the loop altogether. One way of doing the
latter is to read the word list into one long string, then use a pattern to match and extract
all twelve character words.

require 'profile'

words = File.read("/usr/share/dict/words")

count = words.scan(PATT= /A............ \n/).size
puts "#{count} twelve-character words"

Our profile numbers are now a lot better (and the program runs more than five times
faster when we take the profiling back out).

20460 twelve-character words

% cumulative self self total

time seconds seconds calls ms/call ms/call name

96.67 0.29 0.29 1 290.00 290.00 String#scan

6.67 0.31 0.02 1 20.00 20.00 Profiler__.start_profile
0.00 0.31 0.00 1 0.00 0.00 Array#size

0.00 0.31 0.00 1 0.00 0.00 Kernel.puts

0.00 0.31 0.00 2 0.00 0.00 IO#write

0.00 0.31 0.00 1 0.00 0.00 Fixnum#to_s

0.00 0.31 0.00 1 0.00 300.00 #toplevel

0.00 0.31 0.00 1 0.00 0.00 File#read

Remember to check the code without the profiler afterward, though—sometimes the
slowdown the profiler introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the
programmer of the need to apply common sense: creating unnecessary objects, per-
forming unneeded work, and creating bloated code will slow down your programs
regardless of the language.

Prepared exclusively for Yeganefar

BuT IT’S Too SLow! 165

Table 13.1. Debugger commands

b [reakK] [file|class:]line Set breakpoint at given line in file (default current file) or class.
b[reakK] [file|class:lname Set breakpoint at method in file or class.

b[reak] Display breakpoints and watchpoints.

wat [ch] expr Break when expression becomes true.

del[ete] [nnn] Delete breakpoint nnn (default all).

cat[ch] exception Stop when exception is raised.

cat[ch] List current catches.

tr [ace] (on|off) [all] Toggle execution trace of current or all threads.

disp[lay] expr Display value of nnn every time debugger gets control.

disp[lay] Show current displays.

undisp [lay] [nnn] Remove display (default all).

c[ont] Continue execution.

s [tep] nnn=1 Execute next nnn lines, stepping into methods.

n [ext] nnn=1 Execute next nnn lines, stepping over methods.

fin[ish] Finish execution of the current function.

q [uit] Exit the debugger.

w[here] Display current stack frame.

f[rame] Synonym for where.

I[ist] [start—end] List source lines from start to end.

up nnn=1 Move up nnn levels in the stack frame.

down nnn=1 Move down nnn levels in the stack frame.

v[ar] g[lobal] Display global variables.

v[ar] I [ocal] Display local variables.

v[ar] i[stance] obj Display instance variables of 0bj.

v[ar] c[onst] Name Display constants in class or module name.

m [ethod] i [nstance] obj Display instance methods of obj.

m [ethod] Name Display instance methods of the class or module name.

th[read] I[ist] List all threads.

th [read] [c[ur[rent]]] Display status of current thread.

th[read] [c[ur[rent]]] nnn Make thread nnn current, and stop it.

th [read] stop nnn Make thread nnn current, and stop it.

th[read] resume nnn Resume thread nnn.

th [read] [sw[itch]] nnn Switch thread context to nnn.

[p] expr Evaluate expr in the current context. expr may include assignment
to variables and method invocations.

hlelp] Show summary of commands.

empty A null command repeats the last command.

Prepared exclusively for Yeganefar

Part Il

Ruby in Its Setting

Chapter 14

Ruby and Its World

It’s an unfortunate fact of life that our applications have to deal with the big, bad world.
In this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Win-
dows users will probably also want to look at platform-specific information beginning
on page 253.

Command-Line Arguments

“In the beginning was the command line.”'Regardless of the system in which Ruby is
deployed, whether it be a super high-end scientific graphics workstation or an embed-
ded PDA device, you’ve got to start the Ruby interpreter somehow, and that gives us
the opportunity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, option-
ally the name of a program to run, and optionally a set of arguments for that program.

ruby [options] [--] [programfile] [arguments]

The Ruby options are terminated by the first word on the command line that doesn’t
start with a hyphen, or by the special flag —- (two hyphens).

If no filename is present on the command line, or if the filename is a single hyphen (-),
Ruby reads the program source from standard input.

Arguments for the program itself follow the program name. For example:

% ruby -w - "Hello World"

will enable warnings, read a program from standard input, and pass it the quoted string
"Hello World" as an argument.

1. This is the title of a marvelous essay by Neal Stephenson (available online at
http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine).

Prepared exclusively for Yeganefar

http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine

1.8

=

18,

COMMAND-LINE ARGUMENTS 168

Command-Line Options

-0[octal]

The 0 flag (the digit zero) specifies the record separator character (\0, if no digit
follows). -00 indicates paragraph mode: records are separated by two successive
default record separator characters. -0777 reads the entire file at once (as it is an
illegal character). Sets $/.

Autosplit mode when used with -n or -p; equivalent to executing $F=$_.split
at the top of each loop iteration.

-C directory

Changes working directory to directory before executing.

—-c Checks syntax only; does not execute the program.

--copyright
Prints the copyright notice and exits.

-d, --debug
Sets $DEBUG and $VERBOSE to true. This can be used by your programs to enable
additional tracing.

-e 'command'
Executes command as one line of Ruby source. Several -e’s are allowed, and the
commands are treated as multiple lines in the same program. If programfile is
omitted when -e is present, execution stops after the —e commands have been
run. Programs run using -e have access to the old behavior of ranges and regular
expressions in conditions—ranges of integers compare against the current input
line number, and regular expressions match against $_.

-F pattern
Specifies the input field separator ($;) used as the default for split() (affects the
-a option).

-h, --help

Displays a short help screen.

-1 directories

Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I options
may be present. Multiple directories may appear following each -I, separated
by a colon (:) on Unix-like systems and by a semicolon (;) on DOS/Windows
systems.

-i [extension]

Edits ARGV files in place. For each file named in ARGV, anything you write to stan-
dard output will be saved back as the contents of that file. A backup copy of the
file will be made if extension is supplied.

% ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" =.txt

Prepared exclusively for Yeganefar

COMMAND-LINE ARGUMENTS 169

-K kcode
Specifies the code set to be used. This option is useful mainly when Ruby is used

for Japanese-language processing. kcode may be one of: e, E for EUC; s, S for
SJIS; u, U for UTF-8; or a, A, n, N for ASCII.

-1 Enables automatic line-ending processing; sets $\ to the value of $/ and chops
every input line automatically.

-n Assumes a while gets; ...; end loop around your program. For example, a
simple grep command could be implemented as

% ruby -n -e "print if /wombat/" =.txt

-p Places your program code within the loop while gets; ...; print; end.
% ruby -p -e "$_.downcase!" *.txt

-r library

requires the named library before executing.
-S Looks for the program file using RUBYPATH or PATH environment variable.

-s Any command-line switches found after the program filename, but before any
filename arguments or before a ——, are removed from ARGV and set to a global
variable named for the switch. In the following example, the effect of this would
be to set the variable $opt to "electric".

% ruby -s prog -opt=electric ./mydata

-T[level]
Sets the safe level, which among other things enables tainting checks (see page
379). Sets $SAFE.

-v, —-verbose
E/ Sets $VERBOSE to true, which enables verbose mode. Also prints the version num-
ber. In verbose mode, compilation warnings are printed. If no program filename
appears on the command line, Ruby exits.

--version
Displays the Ruby version number and exits.

-w Enables verbose mode. Unlike -v, reads program from standard input if no pro-
gram files are present on the command line. We recommend running your Ruby
.8, programs with -w.

—h

-W level
Sets the level of warnings issued. With a level or two (or with no level specified),
equivalent to -w—additional warnings are given. If level is 1, runs at the standard
(default) warning level. With -WO absolutely no warnings are given (including
those issued using Kernel .warn).

Prepared exclusively for Yeganefar

PROGRAM TERMINATION 170

-X directory
Changes working directory to directory before executing. Same as -C directory.

-x [directory]
Strips off text before #!ruby line and changes working directory to directory if
given.

-y, --yydebug
Enables yacc debugging in the parser (waaay too much information).

ARGV

Any command-line arguments after the program filename are available to your Ruby
program in the global array ARGV. For instance, assume test.rb contains the following
program:

ARGV.each {|arg| p arg }

Invoke it with the following command line:

% ruby -w test.rb "Hello World" al 1.6180

It’ll generate the following output:

"Hello World"
na1n
"1.6180"

There’s a gotcha here for all you C programmers—ARGV[0] is the first argument to the
program, not the program name. The name of the current program is available in the
global variable $0. Notice that all the values in ARGV are strings.

If your program attempts to read from standard input (or uses the special file ARGF,
described on page 321), the program arguments in ARGV will be taken to be filenames,
and Ruby will read from these files. If your program takes a mixture of arguments and
filenames, make sure you empty the nonfilename arguments from the ARGV array before
reading from the files.

Program Termination

The method Kernel#exit terminates your program, returning a status value to the
operating system. However, unlike some languages, exit doesn’t terminate the pro-
gram immediately. Kernel#exit first raises a SystemExit exception, which you may
catch, and then performs a number of cleanup actions, including running any registered
at_exit methods and object finalizers. See the reference for Kernel#exit beginning
on page 500 for details.

Prepared exclusively for Yeganefar

ENVIRONMENT VARIABLES 171

Environment Variables

You can access operating system environment variables using the predefined variable
ENV. It responds to the same methods as Hash.”

ENV['SHELL'] — "/bin/sh"

ENV["HOME '] — " /Users/dave"

ENV['USER'] — "dave"

ENV.keys.size — 34

ENV.keys[0, 7] — ["MANPATH", "TERM_PROGRAM", "TERM", "SHELL",

"SAVEHIST", "HISTSIZE", "MAKEFLAGS"]

The values of some environment variables are read by Ruby when it first starts. These
variables modify the behavior of the interpreter, as shown in Table 14.1 on the next

page.

Writing to Environment Variables

A Ruby program may write to the ENV object. On most systems this changes the values
of the corresponding environment variables. However, this change is local to the pro-
cess that makes it and to any subsequently spawned child processes. This inheritance
of environment variables is illustrated in the code that follows. A subprocess changes
an environment variable, and this change is inherited by a process that it then starts.
However, the change is not visible to the original parent. (This just goes to prove that
parents never really know what their children are doing.)

puts "In parent, term = #{ENV['TERM']}"
fork do
puts "Start of child 1, term = #{ENV['TERM']}"
ENV['TERM'] = "ansi"
fork do
puts "Start of child 2, term = #{ENV['TERM']}"
end
Process.wait
puts "End of child 1, term = #{ENV['TERM']}"
end
Process.wait
puts "Back in parent, term = #{ENV['TERM']}"

produces:

In parent, term = xterm-color

Start of child 1, term = xterm-color
Start of child 2, term = ansi

End of child 1, term = ansi

Back in parent, term = xterm-color

2. ENV is not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

Prepared exclusively for Yeganefar

WHERE RUBY FINDS ITS MODULES 172

Table 14.1. Environment variables used by Ruby

Variable Name Description

DLN_LIBRARY_PATH Search path for dynamically loaded modules.

HOME Points to user’s home directory. Used when expanding ~ in file
and directory names.
LOGDIR Fallback pointer to the user’s home directory if $HOME is not set.
Used only by Dir.chdir.
E/ OPENSSL_CONF Specify location of OpenSSL configuration file.
RUBYLIB Additional search path for Ruby programs ($SAFE must be 0).

RUBYLIB_PREFIX (Windows only) Mangle the RUBYLIB search path by adding
this prefix to each component.

RUBYOPT Additional command-line options to Ruby; examined after real
command-line options are parsed ($SAFE must be 0).

RUBYPATH With -S option, search path for Ruby programs (defaults to
PATH).

RUBYSHELL Shell to use when spawning a process under Windows; if not
set, will also check SHELL or COMSPEC.

RUBY_TCL_DLL Override default name for TCL shared library or DLL.

RUBY_TK_DLL Override default name for Tk shared library or DLL. Both this

and RUBY_TCL_DLL must be set for either to be used.

Where Ruby Finds Its Modules

You use require or load to bring a library module into your Ruby program. Some
of these modules are supplied with Ruby, some you may have installed off the Ruby
Application Archive, and some you may have written yourself. How does Ruby find
them?

When Ruby is built for your particular machine, it predefines a set of standard directo-
ries to hold library stuff. Where these are depends on the machine in question. You can
determine this from the command line with something like

% ruby -e 'puts $:'

On a typical Linux box, you’ll probably find something such as the following. Note
E/ that as of Ruby 1.8, the order of these directories has changed—architecture-specific
directories now follow their machine-independent counterparts.

/usr/local/lib/ruby/site_ruby/1.8
/usr/local/lib/ruby/site_ruby/1.8/i686-1inux
/usr/local/lib/ruby/site_ruby
/usr/local/lib/ruby/1.8
/usr/local/lib/ruby/1.8/i686-1inux

Prepared exclusively for Yeganefar

BUILD ENVIRONMENT 173

The site_ruby directories are intended to hold modules and extensions that you’'ve
added. The architecture-dependent directories (1686-1inux in this case) hold executa-
bles and other things specific to this particular machine. All these directories are auto-
matically included in Ruby’s search for modules.

Sometimes this isn’t enough. Perhaps you’re working on a large project written in Ruby,
and you and your colleagues have built a substantial library of Ruby code. You want
everyone on the team to have access to all this code. You have a couple of options to
accomplish this. If your program runs at a safe level of zero (see Chapter 25 beginning
on page 379), you can set the environment variable RUBYLIB to a list of one or more
directories to be searched.’ If your program is not setuid, you can use the command-line
parameter -I to do the same thing.

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen,
this variable is initialized to the list of standard directories, plus any additional ones
you specified using RUBYLIB and -I. You can always add additional directories to this
array from within your running program.

Just to make things more interesting, a new way of organizing libraries came along
just in time to make it into this book. Chapter 17 on page 203 describes RubyGems, a
network-enabled package management system.

Build Environment

When Ruby is compiled for a particular architecture, all the relevant settings used to
build it (including the architecture of the machine on which it was compiled, compiler
options, source code directory, and so on) are written to the module Config within the
library file rbconfig.rb. After installation, any Ruby program can use this module to
get details on how Ruby was compiled.

require 'rbconfig.rb'

include Config

CONFIG["host"] — "powerpc-apple-darwin7.5.0"
CONFIG["libdir"] — "/Users/dave/rubyl.8/1ib"

Extension libraries use this configuration file in order to compile and link properly on
any given architecture. See Chapter 21 beginning on page 261 and the reference for
mkmf beginning on page 755 for details.

3. The separator between entries depends on your platform. For Windows, it’s a semicolon; for Unix, it’s
a colon.

Prepared exclusively for Yeganefar

Chapter 15

Interactive Ruby Shell

Back on page 156 we introduced irb, a Ruby module that lets you enter Ruby programs
interactively and see the results immediately. This chapter goes into more detail on
using and customizing irb.

Command Line

irb is run from the command line.
irb [irb-options] [ruby script] [program arguments]

The command-line options for irb are listed in Table 15.1 on the next page. Typically,
you’ll run irb with no options, but if you want to run a script and watch the blow-
by-blow description as it runs, you can provide the name of the Ruby script and any
options for that script.

Once started, irb displays a prompt and waits for input. In the examples that follow,
we’ll use irb’s default prompt, which shows the current binding, the indent (nesting)
level, and the line number.

At a prompt, you can type Ruby code. irb includes a Ruby parser, so it knows when
statements are incomplete. When this happens, the prompt will end with an asterisk.
You can leave irb by typing exit or quit, or by entering an end-of-file character (unless
IGNORE_EOF mode is set).

% irb

irb(main):001:0> 1 + 2
=> 3

irb(main):002:0> 3 +
irb(main):003:0+% 4
=7

irb(main):004:0> quit
%

Prepared exclusively for Yeganefar

175

COMMAND LINE

Table 15.1. irb command-line options

Option

Description

--back-trace-limit n

-d

-f

-1 path
—-inf-ruby-mode

—--inspect
—--irb_debug n

-m

--noinspect
—-noprompt
—--noreadline
—-—prompt prompt-mode

—--prompt-mode prompt-mode
-r load-module

--readline
—-simple-prompt

--tracer

-v, —--version

Display backtrace information using the top n and
last n entries. The default value is 16.

Set $DEBUG to true (same as ruby -d).

Suppress reading ~/.irbrc.

specify the $LOAD_PATH directory.

Set up irb to run in inf-ruby-mode under Emacs.
Change the prompt and suppress —-readline.

Use Object#inspect to format output (the default,
unless in math mode).

Set internal debug level to n (only useful for irb
development).

Math mode (fraction and matrix support is available).
Do not use inspect for output.

Do not display a prompt.

Do not use Readline extension module.

Switch prompt. Predefined prompt modes are null,
default, classic, simple, xmp, and inf-ruby.
Same as ——prompt.

Same as ruby -r.

Use readline extension module.

Use simple prompts.

Display trace for execution of commands.

Print the version of irb.

During an irb session, the work you do is accumulated in irb’s workspace. Variables
you set, methods you define, and classes you create are all remembered and may be

used subsequently.

irb(main):001:0> def fib_up_to(n)

irb(main):002:1>
irb(main):003:1>
irb(main) :004:2>
irb(main):005:2>
irb(main):006:2> end
irb(main):007:1> end
=> nil

fi, f2 =1, 1
while f1 <= n
puts f1
f1, £f2 = £2, f1+f2

irb(main):008:0> fib_up_to(4)

Prepared exclusively for Yeganefar

COMMAND LINE 176

Notice the nil return values. These are the results of defining the method and then
running it. The method output the Fibonacci numbers but then returned nil.

A great use of irb is experimenting with code you’ve already written. Perhaps you want
to track down a bug, or maybe you just want to play. If you load your program into
irb, you can then create instances of the classes it defines and invoke its methods. For
example, the file code/fib_up_to.rb contains the following method definition.
def fib_up_to(max)
i1, i2 =1, 1
while il <= max

yield il
il, 12 = i2, il+i2
end
end

We can load this into irb and play with the method.

% irb

irb(main):001:0> load 'code/fib_up_to.rb'

=> true

irb(main):002:0> result = []

= []

irb(main):003:0> fib_up_to(20) {|val| result << val}
=> nil

irb(main) :004:0> result

= [1, 1, 2, 3, 5, 8, 13]

In this example, we use load, rather than require, to include the file in our session.
We do this as a matter of practice: 1oad allows us to load the same file multiple times,
so if we find a bug and edit the file, we could reload it into our irb session.

Tab Completion

If your Ruby installation has readline support, then you can use irb’s completion
facility. Once loaded (and we’ll get to how to load it shortly), completion changes the
meaning of the key when typing expressions at the irb prompt. When you press
partway through a word, irb will look for possible completions that make sense at
that point. It there is only one, irb will fill it in automatically. If there’s more than one
valid option, irb initially does nothing. However, if you hit again, it will display
the list of valid completions at that point.

For example, you may be in the middle of an irb session, having just assigned a string
object to the variable a.

irb(main):002:0> a = "cat"
=> "cat

You now want to try the method String#reverse on this object. You start by typing
a.re and then hit twice.

Prepared exclusively for Yeganefar

COMMAND LINE 177

irb(main):003:0> a. re

a.reject a.replace a.respond_to? a.reverse a.reverse!

irb lists all the methods supported by the object in a whose names start with “re.” We
see the one we want, reverse, and enter the next character of its name, v, followed by

the key.
irb(main):003:0> a.re

irb(main):003:0> a.reverse
—> "tac"
irb(main) :004:0>

irb responds to the key by expanding the name as far as it can go, in this case
completing the word reverse. If we keyed twice at this point, it would show us
the current options, reverse and reverse!. However, as reverse is the one we want,
we instead hit , and the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab
completion works when we try to invoke one of its methods.

irb(main) :004:0> class Test
irb(main):005:1> def my_method
irb(main) :006:2> end
irb(main):007:1> end

=> nil

irb(main):008:0> t = Test.new

=> #<Test:0x35b724>
irb(main):009:0> t.m
irb(main):009:0> t.my_method

Tab completion is implemented as an extension library, irb/completion. You can
load it when you invoke irb from the command line.

% irb -r irb/completion
You can also load the completion library when irb is running.

irb(main):001:0> require 'irb/completion’
=> true

If you use tab completion all the time, it’s probably most convenient to put the require
command into your .irbrc file.

require 'irb/completion’

Subsessions

irb supports multiple, concurrent sessions. One is always current; the others lie dormant
until activated. Entering the command irb within irb creates a subsession, entering the
jobs command lists all sessions, and entering fg activates a particular dormant session.

Prepared exclusively for Yeganefar

COMMAND LINE 178

This example also illustrates the -r command-line option, which loads in the given file
before irb starts.

% irb -r code/fib_up_to.rb

irb(main):001:0> result = []

= []

irb(main):002:0> fib_up_to(10) {|val| result << val }
=> nil

irb(main):003:0> result

= [1, 1, 2, 3, 5, 8]

irb(main):004:0> # Create a nested irb session
irb(main):005:0+ irb

irb#1(main):001:0> result = %w{ cat dog horse }
=> ["cat", "dog", "horse"]

irb#1(main):002:0> result.map {|val| val.upcase }
=> ["CAT", "DOG", "HORSE"]

irb#1(main):003:0> jobs

=> #0->irb on main (#<Thread:0x331740>: stop)
#1->irb#1 on main (#<Thread:0x341694>: running)
irb#1(main):004:0> fg 0

irb(main) :006:0> result

= [1, 1, 2, 3, 5, 8]

irb(main):007:0> fg 1

irb#1(main):005:0> result

=> ["cat", "dog", "horse"]

Subsessions and Bindings

If you specify an object when you create a subsession, that object becomes the value
of self in that binding. This is a convenient way to experiment with objects. In the
following example, we create a subsession with the string “wombat” as the default
object. Methods with no receiver will be executed by that object.

% irb

irb(main):001:0> self

=> main

irb(main):002:0> irb "wombat"
irb#1(wombat):001:0> self

=> "wombat"

irb#1(wombat):002:0> upcase

=> "WOMBAT"

irb#1(wombat):003:0> size

= 6

irb#1(wombat) :004:0> gsub(/[aeiou]/, '=')
=> "wxmb*t"

irb#1(wombat):005:0> irb_exit
irb(main):003:0> self

=> main

irb(main) :004:0> upcase

NameError: undefined local variable or method “upcase' for main:Object

Prepared exclusively for Yeganefar

CONFIGURATION 179

Configuration

irb is remarkably configurable. You can set configuration options with command-line
options, from within an initialization file, and while you’re inside irb itself.

Initialization File

irb uses an initialization file in which you can set commonly used options or execute
any required Ruby statements. When irb is run, it will try to load an initialization file
from one of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and
$irbrec.

Within the initialization file you may run any arbitrary Ruby code. You can also set
configuration values. The list of configuration variables is given starting on page 181—
the values that can be used in an initialization file are the symbols (starting with a
colon). You use these symbols to set values into the IRB. conf hash. For example, to
make SIMPLE the default prompt for all your irb sessions, you could have the following
in your initialization file.

IRB.conf[:PROMPT_MODE] = :SIMPLE

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc
object. This proc will be invoked whenever the irb context is changed and will receive
the configuration for that context as a parameter. You can use this facility to change the
configuration dynamically based on the context. For example, the following .irbrc
file sets the prompt so that only the main prompt shows the irb level, but continuation
prompts and the result still line up.

IRB.conf[:IRB_RC] = proc do |conf]|
leader = " " * conf.irb_name.length
conf.prompt_i = "#{conf.irb_name} -->
conf.prompt_s = leader + ' \-" '
conf.prompt_c = leader + ' \-+

v

conf.return_format = leader + " ==> %s\n\n"
puts "Welcome!"
end

An irb session using this .irbrc file looks like the following.

% irb
Welcome!
irb --=> 1 + 2

irb --> 2 +

Prepared exclusively for Yeganefar

CONFIGURATION 180

Extending irb

Because the things you type to irb are interpreted as Ruby code, you can effectively
extend irb by defining new top-level methods. For example, you may want to be able to
look up the documentation for a class or method while in irb. If you add the following to
your .irbrc file, you’ll add a method called ri, which invokes the external ri command
on its arguments.

def ri(xnames)

system(%{ri #{names.map {|name| name.to_s}.join(" ")}})
end

The next time you start irb, you’ll be able to use this method to get documentation.

irb(main):001:0> ri Proc

Class: Proc
Proc objects are blocks of code that have been bound to a set of
local variables. Once bound, the code may be called in different
contexts and still access those variables.

and so on...

irb(main):002:0> ri :strftime
Time#strftime

time.strftime(string) => string

Formats time according to the directives in the given format
string. Any text not listed as a directive will be passed through
to the output string.

Format meaning:
%a - The abbreviated weekday name (" "Sun'')
%A - The full weekday name (" “Sunday'')
%b - The abbreviated month name (" "Jan'')
%B - The full month name ("January'')
%c - The preferred local date and time representation
%d - Day of the month (01..31)
and so on...

irb(main):003:0> ri "String.each"

String#each
str.each(separator=$/) |substr| block => str
str.each_line(separator=$/) |substr| block => str

Splits str using the supplied parameter as the record separator
($/ by default), passing each substring in turn to the supplied
block. If a zero-length record separator is supplied, the string
is split on \n characters, except that multiple successive
newlines are appended together.

print "Example one\n"

"hello\nworld".each [s| p s
and so on...

Prepared exclusively for Yeganefar

CONFIGURATION 181

Interactive Configuration

Most configuration values are also available while you’re running irb. The list starting
on the current page shows these values as conf.xxx. For example, to change your
prompt back to DEFAULT, you could use the following.

irb(main):001:0> 1 +

irb(main):002:0% 2

= 3

irb(main) :003:0> conf.prompt_mode = :SIMPLE

=> :SIMPLE

>> 1 +

?> 2

= 3

irb Configuration Options

In the descriptions that follow, a label of the form :XXX signifies a key used in the
IRB.conf hash in an initialization file, and conf.xxx signifies a value that can be set
interactively. The value in square brackets at the end of the description is the option’s
default.

: AUTO_INDENT / conf.auto_indent_mode
If true, irb will indent nested structures as you type them. [false]

:BACK_TRACE_LIMIT / conf.back_trace_limit
Displays lines n initial and n final lines of backtrace. [16]

: CONTEXT_MODE
What binding to use for new workspaces: 0— proc at the top level,] — binding in a loaded,
anonymous file, 2— per thread binding in a loaded file, 3— binding in a top-level function.

(3]

:DEBUG_LEVEL / conf .debug_level
Sets the internal debug level to n. Useful if you’re debugging irb’s lexer. [0]

: IGNORE_EOF / conf.ignore_eof
Specifies the behavior of an end of file received on input. If true, it will be ignored; other-
wise, irb will quit. [false]

: IGNORE_SIGINT / conf.ignore_sigint
If false, ~C (Ctrl+c) will quit irb. If true, *C during input will cancel input and return to the
top level; during execution, *C will abort the current operation. [true]

: INSPECT_MODE / conf . inspect_mode
Specifies how values will be displayed: true means use inspect, false uses to_s, and
nil uses inspect in nonmath mode and to_s in math mode. [nil]

Prepared exclusively for Yeganefar

CONFIGURATION 182

:IRB_RC
Can be set to a proc object that will be called when an irb session (or subsession) is started.
[nil]

conf.last_value
The last value output by irb. [...]

: LOAD_MODULES / conf.load_modules
A list of modules loaded via the -r command-line option. [[]]

:MATH_MODE / conf .math_mode
If true, irb runs with the mathn library loaded (see page 671). [false]

conf.prompt_c
The prompt for a continuing statement (for example, immediately after an “if”’). [depends]

conf.prompt_i
The standard, top-level prompt. [depends]

:PROMPT_MODE / conf . prompt_mode
The style of prompt to display. [:DEFAULT]

conf.prompt_s
The prompt for a continuing string. [depends]

:PROMPT
See Configuring the Prompt on page 184. [{ ... }]

:RC/ conf.rc
If false, do not load an initialization file. [true]

conf.return_format
The format used to display the results of expressions entered interactively. [depends]

:SINGLE_IRB
If true, nested irb sessions will all share the same binding; otherwise a new binding will be
created according to the value of : CONTEXT_MODE. [nil]

conf.thread
A read-only reference to the currently executing Thread object. [current thread]

:USE_LOADER / conf.use_loader
Specifies whether irb’s own file reader method is used with load/require. [false]

:USE_READLINE / conf.use_readline
irb will use the readline library if available (see page 702) unless this option is set to
false, in which case readline will never be used, or nil, in which case readline will
not be used in inf-ruby-mode. [depends]

Prepared exclusively for Yeganefar

COMMANDS 183

:USE_TRACER / conf.use_tracer
If true, traces the execution of statements. [false]

:VERBOSE / conf . verbose
In theory switches on additional tracing when true; in practice almost no extra tracing
results. [true]

Commands

At the irb prompt, you can enter any valid Ruby expression and see the results. You can
also use any of the following commands to control the irb session.

exit, quit, irb_exit, irb_quit
Quits this irb session or subsession. If you’ve used cb to change bindings (see
below), exits from this binding mode.

conf, context, irb_context
Displays current configuration. Modifying the configuration is achieved by invok-
ing methods of conf. The list starting on page 181 shows the available conf set-
tings. For example, to set the default prompt to something subservient, you could
use
irb(main):001:0> conf.prompt_i = "Yes, Master? "

=> "Yes, Master? "
Yes, Master? 1 + 2

cb, irb_change_binding (obj)
Creates and enters a new binding that has its own scope for local variables. If 0bj
is given, it will be used as self in the new binding.

irb (obj)
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs
Lists irb subsessions.

fg n, irb_fg n
Switches into the specified irb subsession. n may be any of: an irb subsession
number, a thread ID, an irb object, or the object that was the value of self when a
subsession was launched.

kill n, irb_kill n
Kills an irb subsession. n may be any of the values as described for irb_fg.

Prepared exclusively for Yeganefar

COMMANDS 184

Configuring the Prompt

You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts
are stored in the prompt hash, IRB. conf[: PROMPT].

For example, to establish a new prompt mode called “MY_PROMPT”, you could enter
the following (either directly at an irb prompt or in the .irbrc file).

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode

}

:PROMPT_I => '-->"', # normal prompt

:PROMPT_S => '--"", # prompt for continuing strings
:PROMPT_C => '——+', # prompt for continuing statement
:RETURN => " ==>%s\n" # format to return value

Once you’ve defined a prompt, you have to tell irb to use it. From the command line,
you can use the -—prompt option. (Notice how the name of the prompt mode is auto-
matically converted to uppercase, with hyphens changing to underscores.)

%

irb --prompt my-prompt

If you want to use this prompt in all your future irb sessions, you can set it as a config-
uration value in your .irbrc file.

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols PROMPT_I, PROMPT_S, and PROMPT_C specify the format for each of the
prompt strings. In a format string, certain “%’ sequences are expanded.

Flag

Description

%N
J%om
%M
%1

%ni

%nn
%%

Current command.

to_s of the main object (self).

inspect of the main object (self).

Delimiter type. In strings that are continued across a line break, %1 will display
the type of delimiter used to begin the string, so you’ll know how to end it. The
delimiter will be one of "', ', /,], or ".

Indent level. The optional number n is used as a width specification to printf,
as printf("%nd").

Current line number (n used as with the indent level).

A literal percent sign.

For instance, the default prompt mode is defined as follows.

IRB.conf[:PROMPT_MODE] [:DEFAULT] = {

:PROMPT_I => "%N(%m):%03n:%i> ",
:PROMPT_S => "%N(%m) :%03n:%i%l ",
:PROMPT_C => "%N(%m):%03n:%i+ ",
:RETURN => "%s\n"

Prepared exclusively for Yeganefar

RESTRICTIONS 185

Restrictions

Because of the way irb works, it is slightly incompatibility with the standard Ruby
interpreter. The problem lies in the determination of local variables.

Normally, Ruby looks for an assignment statement to determine if something is a
variable—if a name hasn’t been assigned to, then Ruby assumes that name is a method
call.

eval "var = 0"

var
produces:

prog.rb:2: undefined local variable or method ‘var'
for main:Object (NameError)

In this case, the assignment is there, but it’s within a string, so Ruby doesn’t take it into
account.

irb, on the other hand, executes statements as they are entered.

irb(main):001:0> eval "var = 0"
0

irb(main):002:0> var

0

In irb, the assignment was executed before the second line was encountered, so var is
correctly identified as a local variable.

If you need to match the Ruby behavior more closely, you can place these statements
within a begin/end pair.

irb(main):001:0> begin

irb(main):002:1x* eval "var = 0"

irb(main):003:1> var

irb(main):004:1> end

NameError: undefined local variable or method ‘var'

(irb):3:in “irb_binding'

rtags and xmp

Just in case irb wasn’t already complex enough, let’s add a few more wrinkles. Along
with the main irb program, the irb suite includes some extra goodies. In the next sec-
tions we’ll look at two: rtags and xmp.

rtags

rtags is a command used to create a TAGS file for use with either the Emacs or vi
editor.

Prepared exclusively for Yeganefar

RTAGS AND XMP 186

rtags [-vi] [files]...

By default, rtags makes a TAGS file suitable for Emacs (see etags.el). The -vi
option makes a TAGS file for use with vi.

rtags needs to be installed in the same manner as irb (that is, you need to install irb in
the library path and make a link from irb/rtags.rb to bin/rtags).
Xxmp

irb’s xmp is an “example printer”’—that is, a pretty-printer that shows the value of each
expression as it is run (much like the script we wrote to format the examples in this
book). There is also another stand-alone xmp in the archives.

xmp can be used as follows.

require 'irb/xmp'

xmp <<END
artist = "Doc Severinsen"
artist.upcase
END
produces:
artist = "Doc Severinsen"

==> "Doc Severinsen"
artist.upcase
==> "DOC SEVERINSEN"

Or, xmp can be used as an object instance. Used in this fashion, the object maintains
context between invocations.

require 'irb/xmp'

X = XMP.new

x.puts 'artist = "Louis Prima"'
X.puts 'artist.upcase'

produces:

artist = "Louis Prima"
==> "Louis Prima"
artist.upcase
==> "LOUIS PRIMA"

You can explicitly provide a binding with either form; otherwise, xmp uses the caller’s
environment.

xmp code_string, abinding
XMP .new(abinding)

Note that xmp does not work with multithreading.

Prepared exclusively for Yeganefar

Chapter 16

Documenting Ruby

E/ As of version 1.8, Ruby comes bundled with RDoc, a tool that extracts and formats
documentation that’s embedded in Ruby source code files. This tool is used to doc-
ument the built-in Ruby classes and modules. An increasing number of libraries and
extensions are also documented this way.

RDoc does two jobs. First, it analyzes Ruby and C source files, looking for information
to document.' Second, it takes this information and converts it into something readable.
Out of the box, RDoc produces two kinds of output: HTML and ri. Figure 16.1 on the
following page shows some HTML-format RDoc output in a browser window. This is
the result of feeding RDoc a Ruby source file with no additional documentation—RDoc
does a credible job of producing something meaningful. If our source code contains
comments, RDoc can use them to spice up the documentation it produces. Typically,
the comment before an element is used to document that element, as shown in Fig-
ure 16.2 on page 189.

RDoc can also be used to produce documentation that can be read by the ri command-
line utility. For example, if we ask RDoc to document the code in Figure 16.2 this way,
we can then access the documentation using ri, as shown in Figure 16.3 on page 190.
New Ruby distributions have the built-in classes and modules (and some libraries) doc-
umented this way. Figure 16.4 on page 191 shows the output produced if you type ri
Proc.

Adding RDoc to Ruby Code

RDoc parses Ruby source files to extract the major elements (classes, modules, meth-
ods, attributes, and so on). You can choose to associate additional documentation with
these by simply adding a comment block before the element in the file.

1. RDoc can also document Fortran 77 programs.

Prepared exclusively for Yeganefar

ADDING RDoc 10 RuBY CODE

06 RDoc Documentation

Files || Classes Methods

exl.rb Counter inc (Counter)
new (Counter)

Counter (Class)

In: exluab

Parent: Object

Methods
inc new class Counter
attr_reader :counter
def initialize(initial_value=0}
. Qeounter = initial_value
Attributes end

def ine
Goounter += 1
end
end

counter [k

Public Class methods

new(initial_value=0)

Public Instance methods

inc()

[Validate]

This figure shows some RDoc output in a browser window. The overlaid box
shows the source program from which this output was generated. Even though
the source contains no internal documentation, RDoc still manages to extract
interesting information from it. We have three panes at the top of the screen
showing the files, classes, and methods for which we have documentation.
For class Counter, RDoc shows us the attributes and methods (including the
method signatures). And if we clicked a method signature, RDoc would pop up
a window containing the source code for the corresponding method.

Figure 16.1. Browse RDoc output for class counter

Prepared exclusively for Yeganefar

ADDING RDoc 1O RuBY CODE 189

Counter (Class)

In: ex2rb

Parent: Object

006 RDoc Documentation

Files Classes Methods

ex2.rb Counter inc (Counter)
new (Counter)

method Counter#inc increments this value.

Methods

inc new

Attributes

counter [k The current value of the count

qublic Class methods

new(initial_value=0)

Implements a simple accumulator, whose value is accessed via the attribute counter. Calling the

create a new Counter with the given initial value

’Public Instance methods

inc()

Implements a simple accumulator, whose

value is accessed via the attribute

counter. Calling the methed Counter#inc
increments this value.

class Counter

The current value of the count
attr_reader :counter

create a new Counter with the given

initial value

def initialize(initial_value=0)
Bcounter = initial_value

end

increment the current value of the count
def inc
Bcounter += 1
end
end

increment the current value of the count

[Validate]

&

Notice how the comments before each element now appear in the RDoc out-
put, reformatted into HTML. Less obvious is that RDoc has detected hyperlink
opportunities in our comments: in the class-level comment, the reference to
Counter#inc is a hyperlink to the method description, and in the command for
the new method, the reference to class Counter hyperlinks back to the class
documentation. This is a key feature of RDoc: it is designed to be unintrusive
in the Ruby source files and to make up for this by trying to be clever when

producing output.

Figure 16.2. Browse RDoc output when source has comments

Prepared exclusively for Yeganefar

ADDING RDoc 10 RuBY CODE

Figure 16.3. Using ri to read documentation

% ri Counter

—— Class: Counter
Implements a simple accumulator, whose value is
accessed via the attribute counter. Calling the
method Counter#inc increments this value.

Class methods:
new

Instance methods:
inc

Attributes:
counter

% ri Counter.inc

increment the current value of the count

Comment blocks can be written fairly naturally, either using # on successive lines of
the comment or by including the comment in a =begin...=end block. If you use the
latter form, the =begin line must be flagged with an rdoc tag, to distinguish the block
from other styles of documentation.

=begin rdoc

Calculate the minimal-cost path though the graph

using Debrinkski's algorithm, with optimized

inverse pruning of isolated leaf nodes.

=end

def calculate_path

end

Within a documentation comment, paragraphs are lines that share the left margin. Text
indented past this margin is formatted verbatim.

Nonverbatim text can be marked up. To set individual words in italic, bold, or typewriter
fonts, you can use _word_, *word=, and +word+ respectively. If you want to do this
to multiple words, or text containing non-word characters, you can use multiple
words, more words, and <tt>yet more words</tt>. Putting a back-
slash before inline markup stops it being interpreted.

Prepared exclusively for Yeganefar

ADDING RDoc 10 RuBY CODE 191

Figure 16.4. Document for class Proc generated by RDoc/ri

% ri Proc

——— Class: Proc
Proc objects are blocks of code that have been
bound to a set of local variables. Once bound,
the code may be called in different contexts and
still access those variables.

def gen_times(factor)
return Proc.new |[n| n=factor
end

times3 = gen_times(3)
times5 = gen_times(5)

times3.call(12) #=> 36
times5.call(5) #=> 25
times3.call(times5.call(4)) #=> 60

Class methods:
new

Instance methods:
==, [], arity, binding, call, clone, eql?, hash,
to_proc, to_s

RDoc stops processing comments if it finds a comment line starting #--. This can be
used to separate external from internal comments or to stop a comment being associated
with a method, class, or module. Documenting can turned back on by starting a line
with #++.

Extract the age and calculate the

date of birth.

#——

FIXME: fails if the birthday falls on
February 29th, or if the person

was born before epoch and the installed
Ruby doesn't support negative time_t
#++

The DOB is returned as a Time object.
#——

But should probably change to use Date.

def get_dob(person)

end

Prepared exclusively for Yeganefar

ADDING RDoc 10 RuBY CODE 192

Hyperlinks

Names of classes, source files, and any method names containing an underscore or
preceded by a hash character are automatically hyperlinked from comment text to their
description.

Hyperlinks to the ’net starting http:, mailto:, ftp:, and www: are recognized. An
HTTP URL that references an external image file is converted into an inline <IMG. .. >
tag. Hyperlinks starting 1ink: are assumed to refer to local files whose paths are rela-
tive to the —-op directory, where output files are stored.

Hyperlinks can also be of the form label[url], in which case the label is used in
the displayed text and url is used as the target. If the label contains multiple words,
surround it in braces: {two words}[url].

Lists

Lists are typed as indented paragraphs with
e a * or - (for bullet lists),
* adigit followed by a period for numbered lists,
 an uppercase or lowercase letter followed by a period for alpha lists.

For example, you could produce something like the previous text with

Lists are typed as indented paragraphs with:
a '*'" or '-' (for bullet lists)
* a digit followed by a period for
numbered lists
% an upper or lower case letter followed
by a period for alpha lists.

HoH O W B

Note how subsequent lines in a list item are indented to line up with the text in the
element’s first line.

Labeled lists (sometimes called description lists are typed using square brackets for the

label.
[cat] small domestic animal
[+cat+] command to copy standard input
to standard output

Labeled lists may also be produced by putting a double colon after the label. This sets
the result in tabular form, so the descriptions all line up.

cat:: small domestic animal
+cat+:: command to copy standard input
to standard output

Prepared exclusively for Yeganefar

ADDING RDoc 1O RuBY CODE 193

For both kinds of labeled lists, if the body text starts on the same line as the label, then
the start of that text determines the block indent for the rest of the body. The text may
also start on the line following the label, indented from the start of the label. This is
often preferable if the label is long. Both the following are valid labeled list entries

<tt>--output</tt> <i>name [, name]</i>::
specify the name of one or more output files. If multiple

files are present, the first is used as the index.
#
<tt>--quiet:</tt>:: do not output the names, sizes, byte counts,
index areas, or bit ratios of units as
they are processed.
Headings

Headings are entered on lines starting with equals signs. The more equals signs, the
higher the level of heading.

= Level One Heading
== Level Two Heading
and so on...

Rules (horizontal lines) are entered using three or more hyphens.

and so it goes...
e
The next section...

Documentation Modifiers

Method parameter lists are extracted and displayed with the method description. If a
method calls yield, then the parameters passed to yield will also be displayed. For
example, consider the following code.

def fred
yield line, address
This will get documented as:
fred() {|line, address| ... }

You can override this using a comment containing :yields: ... on the same line as
the method definition.

def fred # :yields: index, position
yield line, address

which will get documented as

fred() {|index, position| ... }

Prepared exclusively for Yeganefar

ADDING RDoc 10 RuBY CODE 194

:yields: is an example of a documentation modifier. These appear immediately after
the start of the document element they are modifying.

Other modifiers include

:nodoc: [all]
Don’t include this element in the documentation. For classes and modules, the
methods, aliases, constants, and attributes directly within the affected class or
module will also be omitted from the documentation. By default, though, mod-
ules and classes within that class or module will be documented. This is turned
off by adding the all modifier. For example, in the following code, only class
SM: : Input will be documented.

module SM #:nodoc:
class Input
end
end
module Markup #:nodoc: all
class Output
end
end

:doc:
Force a method or attribute to be documented even if it wouldn’t otherwise be.
Useful if, for example, you want to include documentation of a particular private
method.

inotnew:
(Only applicable to the initialize instance method.) Normally RDoc assumes
that the documentation and parameters for #initialize are actually for the cor-
responding class’s new method and so fakes out a new method for the class. The
:notnew: modifier stops this. Remember that #initialize is protected, so you
won’t see the documentation unless you use the —-a command-line option.

Other Directives
Comment blocks can contain other directives.

:call-seq: lines...
Text up to the next blank comment line is used as the calling sequence when
generating documentation (overriding the parsing of the method parameter list).
A line is considered blank even if it starts with a #. For this one directive, the
leading colon is optional.

:include: filename
Include the contents of the named file at this point. The file will be searched for
in the directories listed by the --include option or in the current directory by

Prepared exclusively for Yeganefar

ADDING RDOC TO C EXTENSIONS 195

default. The contents of the file will be shifted to have the same indentation as the
: at the start of the :include: directive.

rtitle: text
Sets the title for the document. Equivalent to the --title command-line parame-
ter. (The command-line parameter overrides any :title: directive in the source.)

:main: name
Equivalent to the -—-main command-line parameter, setting the initial page dis-
played for this documentation.

:stopdoc: / :startdoc:
Stop and start adding new documentation elements to the current container. For
example, if a class has a number of constants that you don’t want to document, put
a :stopdoc: before the first and a :startdoc: after the last. If you don’t specify
a :startdoc: by the end of the container, disables documentation for the entire
class or module.

:enddoc:
Document nothing further at the current lexical level.

Figure 16.5 on the following page shows a more complete example of a source file
documented using RDoc.

Adding RDoc to C Extensions

RDoc also understands many of the conventions used when writing extensions to Ruby
in C.

Most C extensions have an Init_Classname function. RDoc takes this as the class
definition—any C comment before the Init_ method will be used as the class’s docu-
mentation.

The Init_ function is normally used to associate C functions with Ruby method names.
For example, a Cipher extension may define a Ruby method salt=, implemented by
the C function salt_set using a call such as

rb_define_method(cCipher, "salt=", salt_set, 1);
RDoc parses this call, adding the salt=method to the class documentation. RDoc then

searches the C source for the C function salt_set. If this function is preceded by a
comment block, RDoc uses this for the method’s documentation.

This basic scheme works with no effort on your part beyond writing the normal doc-
umentation in the comments for functions. However, RDoc cannot discern the calling
sequence for the corresponding Ruby method. In this example, the RDoc output will

Prepared exclusively for Yeganefar

ADDING RDOC TO C EXTENSIONS

Figure 16.5. Ruby source file documented with RDoc

This module encapsulates functionality related to the

generation of Fibonacci sequences.

#-——

Copyright (c) 2004 Dave Thomas, The Pragmatic Programmers, LLC.
Licensed under the same terms as Ruby. No warranty is provided.
module Fibonacci

Calculate the first _count_ Fibonacci numbers, starting with 1,1.
#

:call-seq:

Fibonacci.sequence(count) -> array

Fibonacci.sequence(count) {|val| ... } -> nil

#

If a block is given, supply successive values to the block and
return +nil+, otherwise return all values as an array.
def Fibonacci.sequence(count, &block)
result, block = setup_optional_block(block)
generate do |val|
break if count <= 0
count -= 1
block[val]
end
result
end

Calculate the Fibonacci numbers up to and including _max_.

#
#
:call-seq:
Fibonacci.upto(count) -> array
Fibonacci.upto(count) {|val ... } -> nil
#
If a block is given, supply successive values to the
block and return +nil+, otherwise return all values as an array.
def Fibonacci.upto(max, &block)
result, block = setup_optional_block(block)
generate do |val|
break if val > max
block[val]
end
result
end

private

Yield a sequence of Fibonacci numbers to a block.
def Fibonacci.generate

f1, f2 =1, 1
loop do
yield f1
f1, 2 = £2, f1+f2
end
end

If a block parameer is given, use it, otherwise accumulate into an
array. Return the result value and the block to use.
def Fibonacci.setup_optional_block(block)
if block.nil?
[result = [], lambda {|val| result << val }]
else
[nil, block]
end
end
end

ADDING RDOC TO C EXTENSIONS 197

show a single argument with the (somewhat meaningless) name “argl.” You can over-
ride this using the call-seq directive in the function’s comment. The lines following
call-seq (up to a blank line) are used to document the calling sequence of the method.

/*
* call-seq:
% cipher.salt = number
cipher.salt = "string"

% Sets the salt of this cipher to either a binary +number+ or
% bits in +string+.
%/

static VALUE

salt_set(cipher, salt)

If a method returns a meaningful value, it should be documented in the call-seq
following the characters ->.
/*
%+ call-seq:
* cipher.keylen -> Fixnum or nil

#/

Although RDoc heuristics work well for finding the class and method comments for
simple extensions, it doesn’t always work for more complex implementations. In these
cases, you can use the directives Document-class: and Document-method: to indi-
cate that a C comment relates to a given class or method, respectively. The modifiers
take the name of the Ruby class or method that’s being documented.

/ *
% Document-method: reset
*
% Clear the current buffer and prepare to add new
% cipher text. Any accumulated output cipher text
% is also cleared.
%/

Finally, it is possible in the Init_ method to associate a Ruby method with a C func-
tion in a different C source file. RDoc would not find this function without your help:
you add a reference to the file containing the function definition by adding a special
comment to the rb_define_method call. The following example tells RDoc to look in
the file md5 . ¢ for the function (and related comment) corresponding to the md5 method.

rb_define_method(cCipher, "md5", gen_md5, -1); /% in md5.c =*/

Figure 16.6 on the next page shows a C source file documented using RDoc. Note that
the bodies of several internal methods have been elided to save space.

Prepared exclusively for Yeganefar

ADDING RDOC TO C EXTENSIONS 198

Figure 16.6. C source file documented with RDoc

#include "ruby.h"
#include "cdjukebox.h"

static VALUE cCDPlayer;

static void cd_free(void *p) { ... }

static VALUE cd_alloc(VALUE klass) { ... }

static void progress(CDJukebox *rec, int percent) { ... }
/+ call-seq:

® CDPlayer.new(unit) -> new_cd_player

Assign the newly created CDPlayer to a particular unit
%/

static VALUE cd_initialize(VALUE self, VALUE unit) {

int unit_id;

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);

return self;

}

/* call-seq:
player.seek(int_disc, int_track) -> nil
player.seek(int_disc, int_track) {|percent| } -> nil

% Seek to a given part of the track, invoking the block
% with the percent complete as we go.
%/
static VALUE
cd_seek(VALUE self, VALUE disc, VALUE track) {
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);

jukebox_seek(jb, NUM2INT(disc), NUM2INT(track), progress);
return Qnil;

}

/+ call-seq:
% player.seek_time -> Float

Return the average seek time for this unit (in seconds)
*/
static VALUE
cd_seek_time(VALUE self)
{
double tm;
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
tm = get_avg_seek_time(jb);
return rb_float_new(tm);

}

/+ Interface to the Spinzalot[http://spinzalot.cd]
%« CD Player library.
%/

void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);
rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);
rb_define_method(cCDPlayer, "seek", cd_seek, 2);
rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);

RUNNING RDoC 199

Running RDoc

You run RDoc from the command line.

% rdoc [options] [filenames...]
Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain collected, before any output is pro-
duced. This allows cross-references between all files to be resolved. If a name is a
directory, it is traversed. If no names are specified, all Ruby files in the current direc-
tory (and subdirectories) are processed.

A typical use may be to generate documentation for a package of Ruby source (such as
RDoc itself).

% rdoc

This command generates HTML documentation for all the Ruby and C source files in
and below the current directory. These will be stored in a documentation tree starting
in the subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames ending .rb
and .rbw are assumed to be Ruby source. Files ending . c are parsed as C files. All other
files are assumed to contain just markup (with or without leading # comment markers).
If directory names are passed to RDoc, they are scanned recursively for C and Ruby
source files only. To include nonsource files such as READMEs in the documentation
process, their names must be given explicitly on the command line.

When writing a Ruby library, you often have some source files that implement the
public interface, but the majority are internal and of no interest to the readers of your
documentation. In these cases, construct a .document file in each of your project’s
directories. If RDoc enters a directory containing a .document file, it will process only
the files in that directory whose names match one of the lines in that file. Each line
in the file can be a filename, a directory name, or a wildcard (a file system “glob”
pattern). For example, to include all Ruby files whose names start main, along with the
file constants.rb, you could use a .document file containing

main+.rb

constants.rb

Some project standards ask for documentation in a top-level README file. You may find
it convenient to write this file in RDoc format, and then use the :include: directive to
incorporate this document into that for the main class.

Prepared exclusively for Yeganefar

DISPLAYING PROGRAM USAGE 200

Create Documentation for ri

RDoc is also used to create documentation which will be later displayed using ri.

When you run ri, it by default looks for documentation in three places:”

1. the system documentation directory, which holds the documentation distributed
with Ruby, and which is created by the Ruby install process,

2. the site directory, which contains sitewide documentation added locally, and
3. the user documentation directory, stored under the user’s own home directory.
You can find these three directories in the following locations.

e $datadir/ri/<ver>/system/...
e $datadir/ri/<ver>/site/...
e ~/.rdoc/....

The variable $datadir is the configured data directory for the installed Ruby. Find
your local datadir using

ruby -r rbconfig -e 'p Config::CONFIG["datadir"]'

To add documentation to ri, you need to tell RDoc which output directory to use. For
your own use, it’s easiest to use the —-ri option.

% rdoc --ri filel.rb file2.rb

If you want to install sitewide documentation, use the --ri-site option.

% rdoc --ri-site filel.rb file2.rb

The --ri-system option is normally used only to install documentation for Ruby’s
built-in classes and standard libraries. You can regenerate this documentation from the
Ruby source distribution (not from the installed libraries themselves).

% cd <ruby source base>/1lib
% rdoc --ri-system

Displaying Program Usage

Most command line programs have some kind of facility to describe their correct usage;
give them invalid parameters and they’ll report a short error message followed by a syn-
opsis of their actual options. And, if you’re using RDoc, you’ll probably have described

2. You can override the directory location using the —-op option to RDoc, and subsequently using the
—--doc-dir option with ri.

Prepared exclusively for Yeganefar

DISPLAYING PROGRAM USAGE 201

N

Figure 16.7. Sample program using RDoc::usage
== Synopsis
#
Display the current date and time, optionally honoring
a format string.
#
== Usage
#
ruby showtime.rb [-h | --help] [-f | —-fmt fmtstring]
#
fmtstring::
A +strftime+ format string controlling the
display of the date and time. If omitted,
use "%Y-%M-%d %H:%m"
#
== Author
Dave Thomas, The Pragmatic Programmers, LLC
#
== Copyright
Copyright (c) 2004 The Pragmatic Programmers.
Licensed under the same terms as Ruby.
require 'optparse'
require 'rdoc/usage’
fmt = "%Y-%M-%d %H:%m"
opts = OptionParser.new
opts.on("-h", "--help") { RDoc::usage }
opts.on("-f", "--fmt FMTSTRING") {|str| fmt = str }
opts.parse(ARGV) rescue RDoc::usage('usage')
puts Time.now.strftime(fmt)

4 J

how the program should be used in a RDoc comment at the start of the main pro-
gram. Rather than duplicate all this information in a puts somewhere, you can use
RDoc: :usage to extract it straight from the command and write it to the user.

You can pass RDoc: :usage a number of string parameters. If present, it extracts from
the comment block only those sections named by parameters (where a section starts
with a heading equal to the parameter, ignoring case). With no string parameters,
RDoc: :usage displays the entire comment. In addition, RDoc: :usage exits the pro-
gram after displaying the usage message. If the first parameter in the call is an integer,
it is used as the program’s exit code (otherwise RDoc: :usage exits with a zero error
code). If you don’t want to exit the program after displaying a usage message, call
RDoc: :usage_no_exit

Figure 16.7 shows a trivial program that displays the time. It uses RDoc: :usage to
display the complete comment block if the user asks for help, and to display just the

Prepared exclusively for Yeganefar

DISPLAYING PROGRAM USAGE 202

(S HGNG) ~[Waork/rubybook/code | =)
% ruby showtime.rb --help

Display the current date and time, optionally honoring a format string.

ruby showtime.rb [-h | --help] [-f | --fmt fmtstring]

fmtstring: A strftime format string cont ling the display of the date
and time. If omitted, use # & ;

Dave Thomas, The Pragmatic Programmers, LLC

Copyright (c) 2004 The Pragmatic Programmers. Licensed under the same m
terms as Ruby. i
v

8 | Y
Figure 16.8. Help generated by sample program

usage section if the user gives an invalid option. Figure 16.8 shows the output generated
in response to a ——help option.

RDoc: :usage honors the RI environment variable, which can be used to set the display
width and output style. The output in Figure 16.8 was generated with the RI option set
to “-f ansi.” Although not too apparent if you’re looking at this figure in the black-and-
white book, the section headings, code font, and emphasized font are shown in different

colors using ANSI escape sequences.

Prepared exclusively for Yeganefar

Chad Fowler is a leading figure in the Ruby
community. He’s on the board of Ruby Central,
Inc. He’s one of the organizers of RubyConf. And
he’s one of the writers of RubyGems. All this
makes him uniquely qualified to write this chapter.

Chapter 17

Package Management
with RubyGems

RubyGems is a standardized packaging and installation framework for libraries and
applications, making it easy to locate, install, upgrade, and uninstall Ruby packages. It
provides users and developers with four main facilities.

1. A standardized package format,
2. A central repository for hosting packages in this format,

3. Installation and management of multiple, simultaneously installed versions of the
same library,

4. End-user tools for querying, installing, uninstalling, and otherwise manipulating
these packages.

Before RubyGems came along, installing a new library involved searching the Web,
downloading a package, and attempting to install it—only to find that its dependencies
haven’t been met. If the library you want is packaged using RubyGems, however, you
can now simply ask RubyGems to install it (and all its dependencies). Everything is
done for you.

In the RubyGems world, developers bundle their applications and libraries into single
files called gems. These files conform to a standardized format, and the RubyGems
system provides a command-line tool, appropriately named gem, for manipulating these
gem files.

In this chapter, we’ll see how to

1. Install RubyGems on your computer.
2. Use RubyGems to install other applications and libraries.
3. Write your own gems.

Prepared exclusively for Yeganefar

INSTALLING RUBYGEMS 204

Installing RubyGems

To use RubyGems, you’ll first need to download and install the RubyGems system from
the project’s home page at http://rubygems.rubyforge.org. After downloading
and unpacking the distribution, you can install it using the included installation script.

% cd rubygems-0.7.0
% ruby install.rb

Depending on your operating system, you may need suitable privileges to write files
into Ruby’s site_ruby/ and bin/ directories.

The best way to test that RubyGems was installed successfully also happens to be the
most important command you’ll learn.

% gem help
RubyGems is a sophisticated package manager for Ruby. This is
a basic help message containing pointers to more information.
Usage:
gem -h/--help
gem -v/--version
gem command [arguments...] [options...]
Examples:
gem install rake
gem list --local
gem build package.gemspec
gem help install

Further help:

gem help commands list all 'gem' commands
gem help examples show some examples of usage
gem help <COMMAND> show help on COMMAND

(e.g. 'gem help install')
Further information:
http://rubygems.rubyforge.org

Because RubyGems’ help is quite comprehensive, we won’t go into detail about each
of the available RubyGems commands and options in this chapter.

Installing Application Gems

Let’s start by using RubyGems to install an application that is written in Ruby. Jim
Weirich’s Rake (http://rake.rubyforge.org) holds the distinction of being the first
application that was available as a gem. Not only that, but it’s generally a great tool to
have around, as it is a build tool similar to Make and Ant. In fact, you can even use
Rake to build gems!

Locating and installing Rake with RubyGems is simple.

Prepared exclusively for Yeganefar

http://rubygems.rubyforge.org
http://rake.rubyforge.org

INSTALLING APPLICATION GEMS 205

% gem install -r rake

Attempting remote installation of 'Rake'
Successfully installed rake, version 0.4.3
% rake --version

rake, version 0.4.3

RubyGems downloads the Rake package and installs it. Because Rake is an application,
RubyGems downloads both the Rake libraries and the command-line program rake.

You control the gem program using subcommands, each of which has its own options
and help screen. In this example, we used the install subcommand with the -r option,
which tells it to operate remotely. (Many RubyGems operations can be performed either
locally or remotely. For example, you can to use the query command either to display
all the gems that are available remotely for installation or to display a list of gems you
already have installed. For this reason, subcommands accept the options -r and -1,
specifying whether an operation is meant to be carried out remotely or locally.)

If for some reason—perhaps because of a potential compatibility issue—you wanted
an older version of Rake, you could use RubyGems’ version requirement operators to
specify criteria by which a version would be selected.

% gem install -r rake -v "< 0.4.3"
Attempting remote installation of 'rake'
Successfully installed rake, version 0.4.2
% rake --version

rake, version 0.4.2

Table 17.1 on the following page lists the version requirement operators. The -v argu-
ment in our previous example asks for the highest version lower than 0.4.3.

There’s a subtlety when it comes to installing different versions of the same application
with RubyGems. Even though RubyGems keeps separate versions of the application’s
library files, it does not version the actual command you use to run the application. As
a result, each install of an application effectively overwrites the previous one.

During installation, you can also add the -t option to the RubyGems install com-
mand, causing RubyGems to run the gem'’s test suite (if one has been created). If the
tests fail, the installer will prompt you to either keep or discard the gem. This is a good
way to gain a little more confidence that the gem you’ve just downloaded works on
your system the way the author intended.

% gem install SomePoorlyTestedProgram -t

Attempting local installation of 'SomePoorlyTestedProgram-1.0.1'
Successfully installed SomePoorlyTestedProgram, version 1.0.1

23 tests, 22 assertions, O failures, 1 errors...keep Gem? [Y/n] n
Successfully uninstalled SomePoorlyTestedProgram version 1.0.1

Had we chosen the default and kept the gem installed, we could have inspected the gem
to try to determine the cause of the failing test.

Prepared exclusively for Yeganefar

INSTALLING AND USING GEM LIBRARIES 206

Table 17.1. Version operators
Both the require_gem method and the add_dependency attribute in a Gem: : Specification
accept an argument that specifies a version dependency. RubyGems version dependencies are
of the form operator major.minor.patch_level. Listed below is a table of all the possible
version operators.

Operator Description

= Exact version match. Major, minor, and patch level must be identical.
= Any version that is not the one specified.

> Any version that is greater (even at the patch level) than the one specified.
< Any version that is less than the one specified.

>= Any version greater than or equal to the specified version.

<= Any version less than or equal to the specified version.

~> “Boxed” version operator. Version must be greater than or equal to the

specified version and less than the specified version after having its minor
version number increased by one. This is to avoid API incompatibilities
between minor version releases.

Installing and Using Gem Libraries

Using RubyGems to install a complete application was a good way to get your feet
wet and to start to learn your way around the gem command. However, in most cases,
you’ll use RubyGems to install Ruby libraries for use in your own programs. Since
RubyGems enables you to install and manage multiple versions of the same library,
you’ll also need to do some new, RubyGems-specific things when you require those
libraries in your code.

Perhaps you’ve been asked by your mother to create a program to help her maintain and
publish a diary. You have decided that you would like to publish the diary in HTML
format, but you are worried that your mother may not understand all of the ins and outs
of HTML markup. For this reason, you’ve opted to use one of the many excellent tem-
plating packages available for Ruby. After some research, you’ve decided on Michael
Granger’s BlueCloth, based on its reputation for being very simple to use.

You first need to find and install the BlueCloth gem.

% gem query -rn Blue

w%% REMOTE GEMS %=

BlueCloth (0.0.4, 0.0.3, 0.0.2)
BlueCloth is a Ruby implementation of Markdown, a text-to-HTML
conversion tool for web writers. Markdown allows you to write using
an easy-to-read, easy-to-write plain text format, then convert it
to structurally valid XHTML (or HTML).

Prepared exclusively for Yeganefar

INSTALLING AND USING GEM LIBRARIES 207

This invocation of the query command uses the -n option to search the central gem
repository for any gem whose name matches the regular expression /Blue/. The results
show that three available versions of BlueCloth exist (0.0.4, 0.0.3, and 0.0.2). Because
you want to install the most recent one, you don’t have to state an explicit version on
the install command; the latest is downloaded by default.

% gem install -r BlueCloth
Attempting remote installation of 'BlueCloth'
Successfully installed BlueCloth, version 0.0.4

Generating APl Documentation

Being that this is your first time using BlueCloth, you’re not exactly sure how to use it.
You need some API documentation to get started. Fortunately, with the addition of the
--rdoc option to the install command, RubyGems will generate RDoc documen-
tation for the gem it is installing. For more information on RDoc, see Chapter 16 on
page 187.

% gem install -r BlueCloth --rdoc

Attempting remote installation of 'BlueCloth'
Successfully installed BlueCloth, version 0.0.4
Installing RDoc documentation for BlueCloth-0.0.4...
WARNING: Generating RDoc on .gem that may not have RDoc.

bluecloth.rb: CC.ovvvviii i e e eaes
Generating HIML...

Having generated all this useful HTML documentation, how can you view it? You
have at least two options. The hard way (though it really isn’t that hard) is to open
RubyGems’ documentation directory and browse the documentation directly. As with
most things in RubyGems, the documentation for each gem is stored in a central, pro-
tected, RubyGems-specific place. This will vary by system and by where you may
explicitly choose to install your gems. The most reliable way to find the documents is
to ask the gem command where your RubyGems main directory is located. For exam-
ple:

% gem environment gemdir
/usr/local/lib/ruby/gems/1.8

RubyGems stores generated documentation in the doc/ subdirectory of this directory,
in this case /usr/local/lib/ruby/gems/1.8/doc. You can open the file index.
html and view the documentation. If you find yourself using this path often, you can
create a shortcut. Here’s one way to do that on Mac OS X boxes.

% gemdoc="gem environment gemdir /doc

% 1s $gemdoc

BlueCloth-0.0.4

% open $gemdoc/BlueCloth-0.0.4/rdoc/index.html

Prepared exclusively for Yeganefar

INSTALLING AND USING GEM LIBRARIES 208

To save time, you could declare $gemdoc in your login shell’s profile or rc file.

The second (and easier) way to view gems’ RDoc documentation is to use RubyGems’
included gem_server utility. To start gem_server, simply type

% gem_server

[2004-07-18 11:28:51] INFO WEBrick 1.3.1

[2004-07-18 11:28:51] INFO ruby 1.8.2 (2004-06-29) [i386-mswin32]
[2004-07-18 11:28:51] INFO WEBrick::HTTPServer#start: port=8808

gem_server starts a Web server running on whatever computer you run it on. By
default, it will start on port 8808 and will serve gems and their documentation from
the default RubyGems installation directory. Both the port and the gem directory are
overridable via command-line options, using the -p and -d options, respectively.

Once you’ve started the gem_server program, if you are running it on your local com-
puter, you can access the documentation for your installed gems by pointing your Web
browser to http://localhost:8808. There, you will see a list of the gems you have
installed with their descriptions and links to their RDoc documentation.

Let’s Code!

Now you’ve got BlueCloth installed and you know how to use it, you’re ready to write
some code. Having used RubyGems to download the library, we can now also use
it to load the library components into our application. Prior to RubyGems, we’d say
something like

require 'bluecloth'

With RubyGems, though, we can take advantage of its packaging and versioning sup-
port. To do this, we use require_gem in place of require.

require 'rubygems'

require_gem 'BlueCloth', ">= 0.0.4"

doc = BlueCloth::new <<MARKUP

This is some sample [text][1]. Just learning to use [BlueCloth][1].
Just a simple test.

[1]: http://ruby-lang.org
MARKUP

puts doc.to_html

produces:

<p>This is some sample text. Just
learning to use BlueCloth.
Just a simple test.</p>

The first two lines are the RubyGems-specific code. The first line loads the RubyGems
core libraries that we’ll need in order to work with installed gems.

require 'rubygems'

Prepared exclusively for Yeganefar

http://localhost:8808

INSTALLING AND USING GEM LIBRARIES 209

The second line is where most of the magic happens.

require_gem 'BlueCloth', '>= 0.0.4'

This line adds the BlueCloth gem to Ruby’s $LOAD_PATH and uses require to load any
libraries that the gem’s creator specified to be autoloaded. Let’s say that again a slightly
different way.

Each gem is considered to be a bundle of resources. It may contain one library file
or one hundred. In an old-fashioned, non-RubyGems library, all these files would be
copied into some shared location in the Ruby library tree, a location that was in Ruby’s
predefined load path.

RubyGems doesn’t work this way. Instead, it keeps each version of each gem in its own
self-contained directory tree. The gems are not injected into the standard Ruby library
directories. As a result, RubyGems needs to do some fancy footwork so that you can
get to these files. It does this by adding the gem’s directory tree to Ruby’s load path.
From inside a running program, the effect is the same: require just works. From the
outside, though, RubyGems gives you far better control over what’s loaded into your
Ruby programs.

In the case of BlueCloth, the templating code is distributed as one file, bluecloth.rb;
that’s the file that require_gem will load. require_gem has an optional second argu-
ment, which specifies a version requirement. In this example, you’ve specified that
BlueCloth version 0.0.4 or greater be installed to use this code. If you had required ver-
sion 0.0.5 or greater, this program would fail, because the version you’ve just installed
is too low to meet the requirement of the program.

require 'rubygems'
require_gem 'BlueCloth', '>= 0.0.5'

produces:
/usr/local/lib/ruby/site_ruby/rubygems.rb:30:
in ‘require_gem': (LoadError)
RubyGem version error: BlueCloth(0.0.4 not >= 0.0.5)
from prog.rb:2

As we said earlier, the version requirement argument is optional, and this example is
obviously contrived. But, it’s easy to imagine how this feature can be useful as different
projects begin to depend on multiple, potentially incompatible, versions of the same
library.

Dependent on RubyGems?

Astute readers (that’s all of you) will have noticed that the code we’ve created so far
is dependent on the RubyGems package being installed. In the long term, that’ll be a
fairly safe bet (we’re guessing that RubyGems will make its way into the Ruby core
distribution). For now, though, RubyGems is not part of the standard Ruby distribution,

Prepared exclusively for Yeganefar

INSTALLING AND USING GEM LIBRARIES 210

The Code Behind the Curtai

So just what does happen behind the scenes when you call the magic
require_gem method?

First, the gems library modifies your $LOAD_PATH, including any direc-
tories you have added to the gemspec’s require_paths. Second,
it calls Ruby’s require method on any files specified in the gem-
spec’s autorequires attribute (described on page 212). It's this
$LOAD_PATH-modifying behavior that enables RubyGems to manage
multiple installed versions of the same library.

so users of your software may not have RubyGems installed on their computers. If we
distribute code that has require 'rubygems' in it, that code will fail.

You can use at least two techniques to get around this issue. First, you can wrap the
RubyGems-specific code in a block and use Ruby’s exception handling to rescue the
resultant LoadError should RubyGems not be found during the require.
begin
require 'rubygems'
require_gem 'BlueCloth', ">= 0.0.4"
rescue LoadError

require 'bluecloth’
end

This code first tries to require in the RubyGems library. If this fails, the rescue stanza
is invoked, and your program will try to load BlueCloth using a conventional require.
This latter require will fail if BlueCloth isn’t installed, which is the same behavior users
see now if they’re not using RubyGems.

Alternatively, RubyGems can generate and install a stub file during gem installation.
This stub file is inserted into the standard Ruby library location and will be named after
the gem package contents (so the stub for BlueCloth will be called bluecloth.rb).
People using this library can then simply say

require 'bluecloth’

This is exactly what they would have said in pre-RubyGems days. The difference now
is that rather than loading BlueCloth directly, they’ll instead load the stub, which will
in turn call require_gem to load the correct package. A stub file for BlueCloth would
look something like this.

require 'rubygems'

$".delete('bluecloth.rb')

require_gem 'BlueCloth’

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 211

The stub keeps all the RubyGems-specific code in one place, so dependent libraries
won’t need to include any RubyGems code in their source. The require_gem call will
load whatever library files the gem maintainer has specified as being autoloaded.

As of RubyGems 0.7.0, stub installation is enabled by default. During installation, you
can disable it with the --no-install-stub option. The biggest disadvantage of using
the library stubs is that you lose RubyGems’ ability to manage multiple installed ver-
sions of the same library. If you need a specific version of a library, it’s better to use the
LoadError method described previously.

Creating Your Own Gems

By now, you’ve seen how easy RubyGems makes things for the users of an applica-
tion or library and are probably ready to make a gem of your own. If you’re creating
code to be shared with the open-source community, RubyGems are an ideal way for
end-users to discover, install, and uninstall your code. They also provide a powerful
way to manage internal, company projects, or even personal projects, since they make
upgrades and rollbacks so simple. Ultimately, the availability of more gems makes the
Ruby community stronger. These gems have to come from somewhere; we’re going to
show you how they can start coming from you.

Let’s say you’ve finally gotten your mother’s online diary application, MomLog, fin-
ished, and you have decided to release it under an open-source license. After all, other
programmers have mothers, too. Naturally, you want to release MomLog as a gem
(moms love it when you give them gems).

Package Layout

The first task in creating a gem is organizing your code into a directory structure that
makes sense. The same rules that you would use in creating a typical tar or zip archive
apply in package organization. Some general conventions follow.

e Put all of your Ruby source files under a subdirectory called 1ib/. Later, we’ll
show you how to ensure that this directory will be added to Ruby’s $LOAD_PATH
when users load this gem.

 If it’s appropriate for your project, include a file under 1ib/yourproject.rb that
performs the necessary require commands to load the bulk of the project’s func-
tionality. Before RubyGems’ autorequire feature, this made things easier for others
to use a library. Even with RubyGems, it makes it easier for others to explore your
code if you give them an obvious starting point.

e Always include a README file including a project summary, author contact infor-
mation, and pointers for getting started. Use RDoc format for this file so you

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 212

can add it to the documentation that will be generated during gem installation.
Remember to include a copyright and license in the README file, as many com-
mercial users won’t use a package unless the license terms are clear.

e Tests should go in a directory called test/. Many developers use a library’s unit
tests as a usage guide. It’s nice to put them somewhere predictable, making them
easy for others to find.

* Any executable scripts should go in a subdirectory called bin/.
» Source code for Ruby extensions should go in ext/.

* If you've got a great deal of documentation to include with your gem, it’s good to
keep it in its own subdirectory called docs/. If your README file is in the top level
of your package, be sure to refer readers to this location.

This directory layout is illustrated in Figure 17.1 on page 220.

The Gem Specification

Now that you’ve got your files laid out as you want them, it’s time to get to the heart of
gem creation: the gem specification, or gemspec. A gemspec is a collection of metadata
in Ruby or YAML (see page 737) that provides key information about your gem. The
gemspec is used as input to the gem-building process. You can use several different
mechanisms to create a gem, but they’re all conceptually the same. Here’s your first,
basic MomLog gem.

require 'rubygems'
SPEC = Gem: :Specification.new do |s]|

S.name = "MomLog"
s.version = "1.0.0"
s.author = "Jo Programmer"
s.email = "jo@joshost.com"
s.homepage = "http://www.joshost.com/MomLog"
s.platform = Gem::Platform: :RUBY
s.summary = "An online Diary for families"
candidates = Dir.glob("{bin,docs,lib,tests}/#x*/+")
s.files = candidates.delete_if do |item|
item.include?("CVS") || item.include?("rdoc")
end
s.require_path = "1ib"
s.autorequire = "momlog"
s.test_file = "tests/ts_momlog.rb"
s.has_rdoc = true
s.extra_rdoc_files = ["README"]
s.add_dependency("BlueCloth", ">= 0.0.4")
end

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 213

Let’s quickly walk through this example. A gem’s metadata is held in an object of class
Gem: :Specification. The gemspec can be expressed in either YAML or Ruby code.
Here we’ll show the Ruby version, as it’s generally easier to construct and more flexible
in use. The first five attributes in the specification give basic information such as the
gem’s name, the version, and the author’s name, e-mail, and home page.

In this example, the next attribute is the platform on which this gem can run. In this
case, the gem is a pure Ruby library with no operating system—specific requirements, so
we’ve set the platform to RUBY. If this gem were written for Windows only, for example,
the platform would be listed as WIN32. For now, this field is only informational, but in
the future it will be used by the gem system for intelligent selection of precompiled
native extension gems.

The gem’s summary is the short description that will appear when yourun a gem query
(as in our previous BlueCloth example).

The files attribute is an array of pathnames to files that will be included when the
gem is built. In this example, we’ve used Dir.glob to generate the list and filtered out
CVS and RDoc files.

Runtime Magic

The next two attributes, require_path and autorequire, let you specify the direc-
tories that will be added to the $LOAD_PATH when require_gem loads the gem, as
well as any files that will automatically be loaded using require. In this example,
1ib refers to a relative path under the MomLog gem directory, and the autorequire
will cause 1ib/momlog.rb to be required when require_gem "MomLog" is called.
For each of these two attributes, RubyGems provides corresponding plural versions,
require_paths and autorequires. These take arrays, allowing you to have many
files automatically loaded from different directories when the gem is loaded using
require_gem.

Adding Tests and Documentation

The test_file attribute holds the relative pathname to a single Ruby file included
in the gem that should be loaded as a Test::Unit test suite. (You can use the plural
form, test_files, to reference an array of files containing tests.) For details on how
to create a test suite, see Chapter 12 on page 143 on unit testing.

Finishing up this example, we have two attributes controlling the production of local
documentation of the gem. The has_rdoc attribute specifies that you have added RDoc
comments to your code. It’s possible to run RDoc on totally uncommented code, pro-
viding a browsable view of its interfaces, but obviously this is a lot less valuable than
running RDoc on well-commented code. has_rdoc is a way for you to tell the world,
“Yes. It’s worth generating the documentation for this gem.”

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 214

RDoc has the convenience of being very readable in both source and rendered form,
making it an excellent choice for an included README file with a package. By default,
however, the rdoc command will run only on source code files. The extra_rdoc_file
attribute takes an array of paths to non-source files in your gem that you would like to
be included in the generation of RDoc documentation.

Adding Dependencies
For your gem to work properly, users are going to need to have BlueCloth installed.

We saw earlier how to set a load-time version dependency for a library. Now we need
to tell our gemspec about that dependency, so the installer will ensure that it is present
while installing MomLog. We do that with the addition of a single method call to our
Gem: :Specification object.

s.add_dependency("BlueCloth", ">= 0.0.4")

The arguments to our add_dependency method are identical to those of require_gem,
which we explained earlier.

After generating this gem, attempting to install it on a clean system would look some-
thing like this.
% gem install pkg/MomLog-1.0.0.gem
Attempting local installation of 'pkg/MomLog-1.0.0.gem'
/usr/local/lib/ruby/site_ruby/1.8/rubygems.rb:50:in ‘require_gem':
(LoadError)
Could not find RubyGem BlueCloth (>= 0.0.4)

Because you are performing a local installation from a file, RubyGems won’t attempt to
resolve the dependency for you. Instead, it fails noisily, telling you that it needs Blue-
Cloth to complete the installation. You could then install BlueCloth as we did before,
and things would go smoothly the next time you attempted to install the MomLog gem.

If you had uploaded MomLog to the central RubyGems repository and then tried to
install it on a clean system, you would be prompted to automatically install BlueCloth
as part of the MomLog installation.

% gem install -r MomLog

Attempting remote installation of 'MomLog'
Install required dependency BlueCloth? [Yn] Y%
Successfully installed MomLog, version 1.0.0

Now you’ve got both BlueCloth and MomLog installed, and your mother can start
happily publishing her diary. Had you chosen not to install BlueCloth, the installation
would have failed as it did during the local installation attempt.

As you add more features to MomLog, you may find yourself pulling in additional
external gems to support those features. The add_dependency method can be called
multiple times in a single gemspec, supporting as many dependencies as you need it to
support.

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 215

Ruby Extension Gems

So far, all of the examples we’ve looked at have been pure Ruby code. However, many
Ruby libraries are created as native extensions (see Chapter 21 on page 261). You have
two ways to package and distribute this kind of library as a gem. You can distribute the
gem in source format and have the installer compile the code at installation time. Alter-
natively, you can precompile the extensions and distribute one gem for each separate
platform you want to support.

For source gems, RubyGems provides an additional Gem: :Specification attribute
called extensions. This attribute is an array of paths to Ruby files that will generate
Makefiles. The most typical way to create one of these programs is to use Ruby’s mkmf
library (see Chapter 21 on page 261 and the appendix about mkmf on page 755). These
files are conventionally named extconf.rb, though any name will do.

Your mom has a computerized recipe database that is near and dear to her heart. She
has been storing her recipes in it for years, and you would like to give her the ability
to publish these recipes on the Web for her friends and family. You discover that the
recipe program, MenuBuilder, has a fairly nice native API and decide to write a Ruby
extension to wrap it. Since the extension may be useful to others who aren’t necessarily
using MomLog, you decide to package it as a separate gem and add it as an additional
dependency for MomLog.

Here’s the gemspec.

require 'rubygems'
spec = Gem::Specification.new do |s|
s.name = "MenuBuilder"
.version = "1.0.0"
.author = "Jo Programmer"
.email = "jo@joshost.com"
.homepage = "http://www.joshost.com/projects/MenuBuilder"
.platform = Gem::Platform: :RUBY
.summary = "A Ruby wrapper for the MenuBuilder recipe database."
.files = ["ext/main.c", "ext/extconf.rb"]
.require_path = "."
.autorequire = "MenuBuilder"
.extensions = ["ext/extconf.rb"]

Q0 n v n n n n nnon

o
=1

if $0 == _FILE__

Gem: :manage_gems

Gem: :Builder.new(spec) .build
end

Note that you have to include source files in the specification’s files list so they’ll be
included in the gem package for distribution.

When a source gem is installed, RubyGems runs each of its extensions programs and
then executes the resultant Makefile.

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 216

% gem install MenuBuilder-1.0.0.gem

Attempting local installation of 'MenuBuilder-1.0.0.gem'
ruby extconf.rb inst MenuBuilder-1.0.0.gem

creating Makefile

make

gcc -fPIC -g -02 -I. -I/usr/local/lib/ruby/1.8/i686-1inux \
-I/usr/local/lib/ruby/1.8/i686-1inux -I. -c main.c

gcc -shared -L"/usr/local/lib" -o MenuBuilder.so main.o \
-1d1 -lcrypt -Im -lc

make install

install -c -p -m 0755 MenuBuilder.so \
/usr/local/lib/ruby/gems/1.8/gems/MenuBuilder-1.0.0/.

Successfully installed MenuBuilder, version 1.0.0

RubyGems does not have the capability to detect system library dependencies that
source gems may have. Should your source gems depend on a system library that is
not installed, the gem installation will fail, and any error output from the make com-
mand will be displayed.

Distributing source gems obviously requires that the consumer of the gem have a work-
ing set of development tools. At a minimum, they’ll need some kind of make program
and a compiler. Particularly for Windows users, these tools may not be present. You
can get around this limitation by distributing precompiled gems.

Creation of precompiled gems is simple—add the compiled shared object files (DLLs
on Windows) to the gemspec’s files list, and make sure these files are in one of the
gem’s require_path attributes. As with pure Ruby gems, the require_gem command
will modify Ruby’s $LOAD_PATH, and the shared object will be accessible via require.

Since these gems will be platform specific, you can also use the platform attribute
(remember this from the first gemspec example?) to specify the target platform for
the gem. The Gem: : Specification class defines constants for Windows, Intel Linux,
Macintosh, and pure Ruby. For platforms not included in this list, you can use the value
of the RUBY_PLATFORM variable. This attribute is purely informational for now, but it’s
a good habit to acquire. Future RubyGems releases will use the platform attribute to
intelligently select precompiled gems for the platform on which the installer is running.

Building the Gem File

The MomLog gemspec we just created is runnable as a Ruby program. Invoking it will
create a gem file, MomLog-0.5.0.gem.

% ruby momlog.gemspec

Attempting to build gem spec 'momlog.gemspec'
Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog-0.5.0.gem

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS

Alternatively, you can use the gem build command to generate the gem file.

% gem build momlog.gemspec

Attempting to build gem spec 'momlog.gemspec'
Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog-0.5.0.gem

Now that you’ve got a gem file, you can distribute it like any other package. You can
put it on an FTP server or a Web site for download or e-mail it to your friends. Once
your friends have got this file on their local computers (downloading from your FTP
server if necessary), they can install the gem (assuming they have RubyGems installed
too) by calling

% gem install MomLog-0.5.0.gem

Attempting local installation of 'MomLog-0.5.0.gem’
Successfully installed MomLog, version 0.5.0

If you would like to release your gem to the Ruby community, the easiest way is to use
RubyForge (http://rubyforge.org). RubyForge is an open-source project manage-
ment Web site. It also hosts the central gem repository. Any gem files released using
RubyForge’s file release feature will be automatically picked up and added to the cen-
tral gem repository several times each day. The advantage to potential users of your
software is that it will be available via RubyGems’ remote query and installation oper-
ations, making installation even easier.

Building with Rake

Last but certainly not least, we can use Rake to build gems (remember Rake, the pure-
Ruby build tool we mentioned back on page 204). Rake uses a command file called a
Rakefile to control the build. This defines (in Ruby syntax!) a set of rules and tasks.
The intersection of make’s rule-driven concepts and Ruby’s power make for a build and
release automator’s dream environment. And, what release of a Ruby project would be
complete without the generation of a gem?

For details on how to use Rake, see http://rake.rubyforge.org. Its documents are
comprehensive and always up-to-date. Here, we’ll focus on just enough Rake to build
a gem. From the Rake documentation:

Tasks are the main unit of work in a Rakefile. Tasks have a name (usually given as
a symbol or a string), a list of prerequisites (more symbols or strings), and a list of
actions (given as a block).

Normally, you can use Rake’s built-in task method to define your own named tasks
in your Rakefile. For special cases, it makes sense to provide helper code to automate
some of the repetitive work you would have to do otherwise. Gem creation is one of

Prepared exclusively for Yeganefar

http://rubyforge.org
http://rake.rubyforge.org

CREATING YOUR OWN GEMS 218

these special cases. Rake comes with a special TaskLib, called GemPackageTask, that
helps integrate gem creation into the rest of your automated build and release process.

To use GemPackageTask in your Rakefile, create the gemspec exactly as we did pre-
viously, but this time place it into your Rakefile. We then feed this specification to
GemPackageTask.

require 'rubygems'

Gem: :manage_gems
require 'rake/gempackagetask’

spec = Gem::Specification.new do |s|

S.name = "MomLog"

s.version = "0.5.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/MomLog"
s.platform = Gem::Platform: :RUBY

s.summary = "An online Diary for families"
s.files = FileList["{bin,tests,lib,docs}/#*/%"].exclude("rdoc").to_a
s.require_path = "1ib"

s.autorequire = "momlog"

s.test_file = "tests/ts_momlog.rb"
s.has_rdoc = true

s.extra_rdoc_files = ["README"]

s

.add_dependency("BlueCloth", ">= 0.0.4"
=1.

4")
.add_dependency("MenuBuilder", "> 0.0")

(%)

end

Rake: :GemPackageTask.new(spec) do |pkg]|
pkg.need_tar = true
end

Note that you’ll have to require the rubygems package into your Rakefile. You’ll also
notice that we’ve used Rake’s FileList class instead of Dir.glob to build the list
of files. FileList is smarter than Dir.glob for this purpose in that it automatically
ignores commonly unused files (such as the CVS directory that the CVS version control
tool leaves lying around).

Internally, the GemPackageTask generates a Rake target with the identifier

package_directory/gemname-gemversion.gem

In our case, this identifier will be pkg/MomLog-0.5.0.gem. You can invoke this task
from the same directory where you’ve put the Rakefile.

% rake pkg/MomLog-0.5.0.gem
(in /home/chad/download/gembook/code/MomLog)
Successfully built RubyGem
Name: MomLog
Version: 0.5.0
File: MomLog-0.5.0.gem

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 219

Now that you’ve got a task, you can use it like any other Rake task, adding dependencies
to it or adding it to the dependency list of another task, such as deployment or release
packaging.

Maintaining Your Gem
(and One Last Look at MomLog)

You’ve released MomLog, and it’s attracting new, adoring users every week. You have
taken great care to package it cleanly and are using Rake to build your gem.

Your gem being “in the wild” with your contact information attached to it, you know
that it’s only a matter of time before you start receiving feature requests (and fan mail!)
from your users. But, your first request comes via a phone call from none other than
dear old Mom. She has just gotten back from a vacation in Florida and asks you how
she can include her vacation pictures in her diary. You don’t think an explanation of
command-line FTP would be time well spent, and being the ever-devoted son or daugh-
ter, you spend your evening coding a nice photo album module for MomLog.

Since you have added functionality to the application (as opposed to just fixing a bug),
you decide to increase MomLog’s version number from 1.0.0 to 1.1.0. You also add
a set of tests for the new functionality and a document about how to set up the photo
upload functionality.

Figure 17.1 on the next page shows the complete directory structure of your final Mom-
Log 1.1.0 package. The final gem specification (extracted from the Rakefile) looks like

this.
spec = Gem::Specification.new do |s|
S.name = "MomLog"
s.version = "1.1.0"
s.author = "Jo Programmer"
s.email = "jo@joshost.com"
s.homepage = "http://www.joshost.com/MomLog"
s.platform = Gem::Platform::RUBY
s.summary = "An online diary, recipe publisher, " +

"and photo album for families."

s.files = FileList["{bin,tests,lib,docs}/#*/*"].exclude("rdoc").to_a
s.require_path = "1ib"

s.autorequire = "momlog"

s.test_file = "tests/ts_momlog.rb"

s.has_rdoc = true

s.extra_rdoc_files = ["README", "docs/DatabaseConfiguration.rdoc",

"docs/Installing.rdoc", "docs/PhotoAlbumSetup.rdoc"]
s.add_dependency("BlueCloth", ">= 0.0.4")
s.add_dependency("MenuBuilder", ">= 1.0.0")

end

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS

Figure 17.1. MomLog package structure

momlog/
—— README
—— Rakefile
—— bin/

— momlog_server
—— docs/
—— Installing.rdoc
—— DatabaseConfiguration.rdoc
—— PhotoAlbumSetup.rdoc
—— 1ib/
I: momlog.rb

momlog/

——diary.rb
—— recipes.rb
——db.rb
—— upload.rb
—— photo_album.rb
——r1rss.rb

—— tests/

—— ts_momlog.rb

—— tc_recipe.rb

—— tc_photo_album.rb
—— tc_upload.rb

—— tc_diary.rb

—— tc_rss.rb

You run Rake over your Rakefile, generating the updated MomLog gem, and you’re
ready to release the new version. You log into your RubyForge account, and upload
your gem to the “Files” section of your project. While you wait for RubyGems’ auto-
mated process to release the gem into the central gem repository, you type a release
announcement to post to your RubyForge project.

Within about an hour, you log in to your mother’s Web server to install the new software
for her. RubyGems makes things easy, but we have to take special care of Mom.

% gem query -rn MomLog
ww% REMOTE GEMS wwx

MomLog (1.1.0, 1.0.0)
An online diary, recipe publisher, and photo album for families.

Prepared exclusively for Yeganefar

CREATING YOUR OWN GEMS 221

Great! The query indicates that there are two versions of MomLog available now. You
type the install command without specifying a version argument, because you know
that the default is to install the most recent version.

% gem install -r MomLog
Attempting remote installation of 'MomLog'
Successfully installed MomLog, version 1.1.0

You haven’t changed any of the dependencies for MomLog, so your existing BlueCloth
and MenuBuilder installations meet the requirements for MomLog 1.1.0.

Now that Mom’s happy, it’s time to go try some of her recently posted recipes.

Prepared exclusively for Yeganefar

Chapter 18

Ruby and the Web

Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP
daemon, or Web server in Ruby, but you can also use Ruby for more usual tasks such
as CGI programming or as a replacement for PHP.

Many options are available for using Ruby to implement Web applications, and a single
chapter can’t do them all justice. Instead, we’ll try to touch some of the highlights and
point you toward libraries and resources that can help.

Let’s start with some simple stuff: running Ruby programs as Common Gateway Inter-
face (CGI) programs.

Writing CGl Scripts

You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate
HTML output, all you need is something like
#! /usr/bin/ruby

print "Content-type: text/html\r\n\r\n"
print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

Put this script in a CGI directory, mark it as executable, and you’ll be able to access it
via your browser. (If your Web server doesn’t automatically add headers, you’ll need
to add the response header yourself.)

#! /usr/bin/ruby

print "HTTP/1.0 200 OK\r\n"

print "Content-type: text/html\r\n\r\n"

print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

However, that’s hacking around at a pretty low level. You’d need to write your own
request parsing, session management, cookie manipulation, output escaping, and so
on. Fortunately, options are available to make this easier.

Prepared exclusively for Yeganefar

WRITING CGI SCRIPTS 223

Using cgi.rb

Class CGI provides support for writing CGI scripts. With it, you can manipulate forms,
cookies, and the environment; maintain stateful sessions; and so on. It’s a fairly large
class, but we’ll take a quick look at its capabilities here.

Quoting

When dealing with URLs and HTML code, you must be careful to quote certain char-
acters. For instance, a slash character (/) has special meaning in a URL, so it must
be “escaped” if it’s not part of the pathname. That is, any / in the query portion of the
URL will be translated to the string %2F and must be translated back to a / for you to
use it. Space and ampersand are also special characters. To handle this, CGI provides
the routines CGI.escape and CGI.unescape.

require 'cgi'

puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")
produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters.

require 'cgi
puts CGI.escapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements within a
string.

require 'cgi'
puts CGI.escapeElement('<hr>Click Here
','A')

produces:

<hr>Click Here

Here only the A element is escaped; other elements are left alone. Each of these methods
has an “un-" version to restore the original string.

require 'cgi'
puts CGI.unescapeHTML("a < 100 && b > 200")

produces:
a < 100 & b > 200

Prepared exclusively for Yeganefar

WRITING CGI SCRIPTS 224

Query Parameters

HTTP requests from the browser to your application may contain parameters, either
passed as part of the URL or passed as data embedded in the body of the request.

Processing of these parameters is complicated by the fact that a value with a given name
may be returned multiple times in the same request. For example, say we’re writing a
survey to find out why folks like Ruby. The HTML for our form looks like this.

<html>
<head><title>Test Form</title></head>
<body>
I like Ruby because:
<form target="cgi-bin/survey.rb">
<input type="checkbox" name="reason" value="flexible" />
It's flexible

<input type="checkbox" name="reason" value="transparent" />
It's transparent

<input type="checkbox" name="reason" value="perlish" />
It's like Perl

<input type="checkbox" name="reason" value="fun" />

It's fun
<p>
Your name: <input type="text" name="name">
</p>
<input type="submit"/>
</form>
</body>

</html>

When someone fills in this form, they might check multiple reasons for liking Ruby (as
shown in Figure 18.1 on the following page). In this case, the form data corresponding
to the name reason will have three values, corresponding to the three checked boxes.

Class CGI gives you access to form data in a couple of ways. First, we can just treat the
CGI object as a hash, indexing it with field names and getting back field values.

require 'cgi'

cgi = CGI.new

cgi["'name'] — "Dave Thomas"

cgi['reason'] — "flexible"
However, this doesn’t work well with the reason field: we see only one of the three

E/ values. We can ask to see them all by using the CGI#params method. The value returned

by params acts like a hash containing the request parameters. You can both read and
write this hash (the latter allows you to modify the data associated with a request). Note
that each of the values in the hash is actually an array.

Prepared exclusively for Yeganefar

WRITING CGI SCRIPTS 225

r
Figure 18.1. Sample CGl Form

Test Form

@ €3 hitp: / /localhost/form.html "va Google I8

Rendezvous ¥ POPw Pragmatic Pr...ming ripoff Apple

I like Ruby because:
It's flexible

It's transparent
1 Tt's like Perl

M It's fun

Your name: Dave Thomas

| Submit |

require 'cgi

cgi = CGI.new

cgi.params — {"name"=>["Dave Thomas"],
"reason"=>["flexible", "transparent",
"fun"]}

cgi.params['name'] — ["Dave Thomas"]

cgi.params['reason'] — ["flexible", "transparent", "fun"]

cgi.params['name'] = [cgi['name'].upcase]

cgi.params — {"name"=>["DAVE THOMAS"],
"reason"=>["flexible", "transparent",
"fun"1}

You can determine if a particular parameter is present in a request using CGI#has_key?.
require 'cgi'

cgi = CGI.new

cgi.has_key?('name') — true

cgi.has_key?('age') — false

Generating HTML

CGI contains a huge number of methods that can be used to create HTML—one method
per element. To enable these methods, you must create a CGI object by calling CGI.new,
passing in the required level of HTML. In these examples, we’ll use html3

Prepared exclusively for Yeganefar

WRITING CGI SCRIPTS 226

To make element nesting easier, these methods take their content as code blocks. The
code blocks should return a String, which will be used as the content for the element.

For this example, we’ve added some gratuitous newlines to make the output fit on the
page.
require 'cgi'
cgi = CGIL.new("html3") # add HIML generation methods
cgi.out {
cgi.html {
cgi.head { "\n"+cgi.title{"This Is a Test"} } +
cgi.body { "\n"+
cgi.form {"\n"+
cgi.hr +
cgi.hl { "A Form: " } + "\n"+
cgi.textarea('get_text") +"\n"+
cgi.br +
cgi.submit
b
}
}
}

produces:

Content-Type: text/html
Content-Length: 302

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><HTML><HEAD>
<TITLE>This Is a Test</TITLE></HEAD><BODY>

<FORM METHOD="post" ENCTYPE="application/x-www-form-urlencoded">
<HR><H1>A Form: </H1>

<TEXTAREA NAME="get_text" ROWS="10" COLS="70"></TEXTAREA>

<INPUT TYPE="submit"></FORM></BODY></HTML>

This code will produce an HTML form titled “This Is a Test,” followed by a horizontal
rule, a level-one header, a text input area, and finally a submit button. When the submit
comes back, you’ll have a CGI parameter named get_text containing the text the user
entered.

Although quite interesting, this method of generating HTML is fairly laborious and
probably isn’t used much in practice. Most people seem to write the HTML directly,
use a templating system, or use an application framework, such as Iowa. Unfortunately,
we don’t have space here to discuss lowa—have a look at the online documentation at
http://enigo.com/projects/iowa, or look at Chapter 6 of The Ruby Developer’s
Guide [FINO2]—but we can look at templating.

Templating Systems

Templating systems allow you separate the presentation and logic of your application.
It seems that just about everyone who writes a Web application using Ruby at some

Prepared exclusively for Yeganefar

http://enigo.com/projects/iowa

WRITING CGI SCRIPTS 227

point also writes a templating system: the RubyGarden wiki lists quite a few,' and even
this list isn’t complete. For now, let’s just look at three: RDoc templates, Amrita, and
erb/eruby.

RDoc Templates

The RDoc documentation system (described in Chapter 16 on page 187) includes a
very simple templating system that it uses to generate all its XML and HTML output.
Because RDoc is distributed as part of standard Ruby, the templating system is available
wherever Ruby 1.8.2 or later is installed. However, the templating system does not use
conventional HTML or XML markup (as it is intended to be used to generate output in
many different formats), so files marked up with RDoc templates may not be easy to
edit using conventional HTML editing tools.

require 'rdoc/template’

HIML = %{Hello, %name%.

<p>

The reasons you gave were:

START:reasons
%reason_name% (%rank%)

END:reasons

}
data = {
'name' => 'Dave Thomas',
'reasons' => [
{ 'reason_name' => 'flexible', 'rank' => '87' },
{ 'reason_name' => 'transparent', 'rank' => '76' },
{ 'reason_name' => 'fun', 'rank' => '94' },

]
}

t = TemplatePage.new(HTML)
t.write_html_on(STDOUT, data)

produces:
Hello, Dave Thomas.
<p>
The reasons you gave were:

flexible (87)
transparent (76)
fun (94)

1. http://www.rubygarden.org/ruby?HtmlTemplates

Prepared exclusively for Yeganefar

http://www.rubygarden.org/ruby?HtmlTemplates

WRITING CGI SCRIPTS 228

The constructor is passed a string containing the template to be used. The method
write_html_on is then passed a hash containing names and values. If the template
contains the sequence %xxxx%, the hash is consulted, and the value corresponding to
the name xxx is substituted in. If the template contains START:yyy, the hash value
corresponding to yyy is assumed to be an array of hashes. The template lines between
START :yyy and END: yyy are repeated for each element in that array. The templates also
support conditions: lines between IF:zzz and ENDIF:zzz are included in the output
only if the hash has a key zzz.

Amrita

Amrita’ is a library that generates HTML documents from a template that is itself valid
HTML. This makes Amrita easy to use with existing HTML editors. It also means that
Amrita templates display correctly as freestanding HTML pages.

Amrita uses the id tags in HTML elements to determine the values to be substituted.
If the value corresponding to a given name is nil or false, the HTML element won’t
be included in the resulting output. If the value is an array, it iterates the corresponding
HTML element.

require 'amrita/template’
include Amrita
HIML = %{<p id="greeting" />
<p>The reasons you gave were:</p>

<li id="reasons">,

}
data = {
:greeting => 'Hello, Dave Thomas',
:reasons => [

{ :reason_name => 'flexible', :rank => '87' },
{ :reason_name => 'transparent', :rank => '76' },
{ :reason_name => 'fun', :rank => '94' },

]
}

t = TemplateText.new(HTML)
t.prettyprint = true
t.expand(STDOUT, data)

produces:

<p>Hello, Dave Thomas</p>
<p>The reasons you gave were:</p>

2. http://www.brain-tokyo.jp/research/amrita/rdocs/

Prepared exclusively for Yeganefar

http://www.brain-tokyo.jp/research/amrita/rdocs/

WRITING CGI SCRIPTS 229

flexible, 87 </1li>
transparent, 76
fun, 94 </1i>

erb and eruby

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem
inside out; we can actually embed Ruby in an HTML document.

A number of packages allow you to embed Ruby statements in some other sort of a
document, especially in an HTML page. Generically, this is known as “eRuby.” Specif-
ically, several different implementations of eRuby exist, including eruby and erb.
eruby, written by Shugo Maeda, is available for download from the Ruby Applica-
tion Archive. erb, its little cousin, is written in pure Ruby and is included with the
standard distribution. We’ll look at erb here.

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equiv-
alent of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using erb

erb is normally used as a filter. Text within the input file is passed through untouched,
with the following exceptions

Expression Description

<% ruby code %> Execute the Ruby code between the delimiters.
<%= ruby expression %> Evaluate the Ruby expression, and replace the sequence
with the expression’s value.

<%# ruby code %> The Ruby code between the delimiters is ignored (useful for
testing).

% line of ruby code A line that starts with a percent is assumed to contain just
Ruby code.

You invoke erb as

erb [options] [document]

If the document is omitted, eruby will read from standard input. The command-line
options for erb are shown in Table 18.1 on the following page.

Let’s look at some simple examples. We’ll run the erb executable on the following
input.

% a = 99
<%= a %> bottles of beer...

Prepared exclusively for Yeganefar

WRITING CGI SCRIPTS 230

Table 18.1. Command-line options for erb

Option Description

-d Sets $DEBUG to true.

-Kkcode Specifies an alternate encoding system (see page 169).
-n Display resulting Ruby script (with line numbers).

-r library Loads the named library.

-P Doesn’t do erb processing on lines starting %.

=S level Sets the safe level.

-T mode Sets the trim mode.

-v Enables verbose mode.

-X Displays resulting Ruby script.

The line starting with the percent sign simply executes the given Ruby statement. The
next line contains the sequence <% a %>, which substitutes in the value of a.

erb fl.erb
produces:

99 bottles of beer...

erb works by rewriting its input as a Ruby script and then executing that script. You
can see the Ruby that erb generates using the -n or -x option.

erb -x fl.erb

produces:
_erbout = ''; a = 99
_erbout.concat((a).to_s); _erbout.concat " bottles of beer...\n"
_erbout

Notice how erb builds a string, _erbout, containing both the static strings from the
template and the results of executing expressions (in this case the value of a).

Of course, you can embed Ruby within a more complex document type, such as HTML.
Figure 18.2 on page 232 shows a couple of loops in an HTML document.

Installing eruby in Apache

If you want to use erb-like page generation for a Web site that gets a reasonable amount
of traffic, you’ll probably want to switch across to using eruby, which has better per-
formance. You can then configure the Apache Web server to automatically parse Ruby-
embedded documents using eRuby, much in the same way that PHP does. You create
Ruby-embedded files with an .rhtml suffix and configure the Web server to run the
eruby executable on these documents to produce the desired HTML output.

Prepared exclusively for Yeganefar

COOKIES 231

To use eruby with the Apache Web server, you need to perform the following steps.
1. Copy the eruby binary to the cgi-bin directory.

2. Add the following two lines to httpd. conf.

AddType application/x-httpd-eruby .rhtml
Action application/x-httpd-eruby /cgi-bin/eruby

3. If desired, you can also add or replace the DirectoryIndex directive such that
it includes index.rhtml. This lets you use Ruby to create directory listings for
directories that do not contain an index.html. For instance, the following direc-
tive would cause the embedded Ruby script index.rhtml to be searched for and
served if neither index.html nor index.shtml existed in a directory.

DirectoryIndex index.html index.shtml index.rhtml

Of course, you could also simply use a sitewide Ruby script as well.

DirectoryIndex index.html index.shtml /cgi-bin/index.rb

Cookies

Cookies are a way of letting Web applications store their state on the user’s machine.
Frowned upon by some, cookies are still a convenient (if unreliable) way of remember-
ing session information.

The Ruby CGI class handles the loading and saving of cookies for you. You can access
the cookies associated with the current request using the CGI#cookies method, and you
can set cookies back into the browser by setting the cookies parameter of CGI#out to
reference either a single cookie or an array of cookies.

#!/usr/bin/ruby

COOKIE_NAME = 'chocolate chip'
require 'cgi'

cgi = CGI.new

values = cgi.cookies[COOKIE_NAME]

if values.empty?

msg = "It looks as if you haven't visited recently"”
else

msg = "You last visited #{values[0]}"
end

cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)
cookie.expires = Time.now + 30%24%3600 # 30 days

cgi.out("cookie" => cookie) { msg }

Prepared exclusively for Yeganefar

COOKIES 232

Figure 18.2. Erb processing a file with loops h
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HIML 4.01//EN">
<html>
<head>
<title>eruby example</title>
</head>
<body>
<hl>Enumeration</h1>

%5.times do |i]

number <%=i%></1i>
%end

<h1>"Environment variables starting with "T"</h1l>
<table>
%ENV.keys.grep(/AT/).each do |key|
<tr><td><%=key%></td><td><%=ENV[key]%></td></tr>
%end
</table>
</body>
</html>
produces:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HIML 4.01//EN">
<html>
<head>
<title>eruby example</title>
</head>
<body>
<h1>Enumeration</hl>

number 0</1i>
number 1</1i>
number 2</1i>
number 3</1i>
number 4</1i>

<hl>"Environment variables starting with "T"</hl>

<table>
<tr><td>TERM_PROGRAM</td><td>iTerm.app</td></tr>
<tr><td>TERM</td><td>xterm-color</td></tr>
<tr><td>TYPE</td><td>SCREEN</td></tr>

</table>

</body>

</html>

|\ J

Prepared exclusively for Yeganefar

COOKIES 233

Sessions

Cookies by themselves still need a bit of work to be useful. We really want session:
information that persists between requests from a particular Web browser. Sessions
are handled by class CGI::Session, which uses cookies but provides a higher-level
abstraction.

As with cookies, sessions emulate a hashlike behavior, letting you associate values with
keys. Unlike cookies, sessions store the majority of their data on the server, using the
browser-resident cookie simply as a way of uniquely identifying the server-side data.
Sessions also give you a choice of storage techniques for this data: it can be held in
regular files, in a PStore (see the description on page 698), in memory, or even in your
own customized store.

Sessions should be closed after use, as this ensures that their data is written out to the
store. When you’ve permanently finished with a session, you should delete it.

require 'cgi'

require 'cgi/session'’

cgi = CGI.new("html3")

sess = CGI::Session.new(cgi,
"session_key" => "rubyweb",
"prefix" => "web-session."

)
if sess['lastaccess']
msg = "You were last here #{sess['lastaccess']}."
else
msg = "Looks like you haven't been here for a while"
end
count = (sess["accesscount”] || 0).to_i

count += 1
msg << "<p>Number of visits: #{count}"

sess["accesscount"] = count
sess["lastaccess"] = Time.now.to_s
sess.close
cgi.out {
cgi.html {
cgi.body {
msg
}
}
}

The code in the previous example used the default storage mechanism for sessions: per-
sistent data was stored in files in your default temporary directory (see Dir.tmpdir).

E/ The filenames will all start web-session. and will end with a hashed version of the
session number. See ri CGI::Session for more information.

Prepared exclusively for Yeganefar

IMPROVING PERFORMANCE 234

Improving Performance

You can use Ruby to write CGI programs for the Web, but, as with most CGI programs,
the default configuration has to start a new copy of Ruby with every cgi-bin page access.
That’s expensive in terms of machine utilization and can be painfully slow for Web
surfers. The Apache Web server solves this problem by supporting loadable modules.

Typically, these modules are dynamically loaded and become part of the running Web
server process—you have no need to spawn another interpreter over and over again to
service requests; the Web server is the interpreter.

And so we come to mod_ruby (available from the archives), an Apache module that
links a full Ruby interpreter into the Apache Web server itself. The README file included
with mod_ruby provides details on how to compile and install it.

Once installed and configured, you can run Ruby scripts pretty much as you could
without mod_ruby, except that now they will come up much faster. You can also take
advantage of the extra facilities that mod_ruby provides (such as tight integration into
Apache’s request handling).

You have some things to watch, however. Because the interpreter remains in mem-
ory between requests, it may end up handling requests from multiple applications. It’s
possible for libraries in these applications to clash (particularly if different libraries
contain classes with the same name). You also cannot assume that the same interpreter
will handle the series of requests from one browser’s session—Apache will allocate
handler processes using its internal algorithms.

Some of these issues are resolved using the FastCGI protocol. This is an interesting
hack, available to all CGI-style programs, not just Ruby. It uses a very small proxy
program, typically running as an Apache module. When requests are received, this
proxy then forwards them to a particular long-running process that acts like a normal
CGI script. The results are fed back to the proxy, and then back to the browser. FastCGI
has the same advantages as running mod_ruby, as the interpreter is always running
in the background. It also gives you more control over how requests are allocated to
interpreters. You’ll find more information at http://www.fastcgi.com.

Choice of Web Servers

So far, we’ve been running Ruby scripts under the control of the Apache Web server.

E/ However, Ruby 1.8 and later comes bundled with WEBTrick, a flexible, pure-Ruby
HTTP server toolkit. Basically, it’s an extensible plug in—based framework that lets
you write servers to handle HTTP reugests and responses. Here’s a basic HTTP server
that serves documents and directory indexes.

Prepared exclusively for Yeganefar

http://www.fastcgi.com

CHOICE OF WEB SERVERS 235

#!/usr/bin/ruby
require 'webrick'
include WEBrick

s = HTTPServer.new(

:Port => 2000,

:DocumentRoot => File.join(Dir.pwd, "/html")
)
trap("INT") { s.shutdown }

s.start

The HITPServer constructor creates a new Web server on port 2000. The code sets
the document root to be the html/ subdirectory of the current directory. It then uses
Kernel.trap to arrange to shut down tidily on interrupts before starting the server
running. If you point your browser at http://localhost:2000, you should see a
listing of your html subdirectory.

WEBrick can do far more that serve static content. You can use it just like a Java
servlet container. The following code mounts a simple servlet at the location /hello.
As requests arrive, the do_GET method is invoked. It uses the response object to display
the user agent information and parameters from the request.

#!/usr/bin/ruby

require 'webrick'
include WEBrick

s = HTTPServer.new(:Port => 2000)

class HelloServlet < HTTPServlet::AbstractServlet
def do_GET(req, res)

res['Content-Type'] = "text/html"
res.body = %{
<html><body>
Hello. You're calling from a #{req['User-Agent']}
<p>
I see parameters: #{req.query.keys.join(', ")}
</body></html>
}
end
end

s.mount("/hello", HelloServlet)
trap("INT"){ s.shutdown }
s.start

More information on WEBTrick is available from http:///www.webrick.org. There
you’ll find links to a set of useful servlets, including one that lets you write SOAP
servers in Ruby.

Prepared exclusively for Yeganefar

http://localhost:2000
http:///www.webrick.org

SOAP AND WEB SERVICES 236

SOAP and Web Services

E/ Speaking of SOAP, Ruby now comes with an implementation of SOAP.? This lets you
write both servers and clients using Web services. By their nature, these applications
can operate both locally and remotely across a network. SOAP applications are also
unaware of the implementation language of their network peers, so SOAP is a conve-
nient way of interconnecting Ruby applications with those written in languages such as
Java, Visual Basic, or C++.

SOAP is basically a marshaling mechanism which uses XML to send data between two
nodes in a network. It is typically used to implement remote procedure calls, RPCs,
between distributed processes. A SOAP server publishes one or more interfaces. These
interfaces are defined in terms of data types and methods that use those types. SOAP
clients then create local proxies that SOAP connects to interfaces on the server. A call
to a method on the proxy is then passed to the corresponding interface on the server.
Return values generated by the method on the server are passed back to the client via
the proxy.

Let’s start with a trivial SOAP service. We’ll write an object that does interest calcula-
tions. Initially, it offers a single method, compound, that determines compound interest
given a principal, an interest rate, the number of times interested is compounded per
year, and the number of years. For management purposes, we’ll also keep track of how
many times this method was called and make that count available via an accessor. Note
that this class is just regular Ruby code—it doesn’t know that it’s running in a SOAP
environment.

class InterestCalculator
attr_reader :call_count
def initialize
@call_count = 0
end

def compound(principal, rate, freq, years)
@call_count += 1
principal*(1.0 + rate/freq)=+(freqxyears)
end

end

Now we’ll make an object of this class available via a SOAP server. This will enable
client applications to call the object’s methods over the network. We’re using the stand-
alone server here, which is convenient when testing, as we can run it from the command
line. You can also run Ruby SOAP servers as CGI scripts or under mod_ruby.

3. SOAP once stood for Simple Object Access Protocol. When folks could no longer stand the irony, the
acronym was dropped, and now SOAP is just a name.

Prepared exclusively for Yeganefar

SOAP AND WEB SERVICES 237

require 'soap/rpc/standaloneServer'’
require 'interestcalc'

NS = 'http://pragprog.com/InterestCalc’
class Server2 < SOAP::RPC::StandaloneServer

def on_init
calc = InterestCalculator.new

add_method(calc, 'compound', 'principal', 'rate', 'freq', 'years')
add_method(calc, 'call_count')
end

end

svr = Server2.new('Calc', NS, '0.0.0.0', 12321)
trap('INT') { svr.shutdown }

svr.start

This code defines a class which implements a standalone SOAP server. When it is
initialized, the class creates a InterestCalculator object (an instance of the class
we just wrote). It then uses add_method to add the two methods implemented by this
class, compound and call_count. Finally, the code creates and runs an instance of
this server class. The parameters to the constructor are the name of the application, the
default namespace, the address of the interface to use, and the port.

We then need to write some client code to access this server. The client creates a local
proxy for the InterestCalculator service on the server, adds the methods it wants
to use, and then calls them.

require 'soap/rpc/driver’
proxy = SOAP::RPC::Driver.new("http://localhost:12321",
"http://pragprog.com/InterestCalc")

proxy.add_method('compound', 'principal', 'rate', 'freq', 'years')
proxy.add_method('call_count')

puts "Call count: #{proxy.call_count}"
puts "5 years, compound annually: #{proxy.compound(100, 0.06, 1, 5)}"
puts "5 years, compound monthly: #{proxy.compound(100, 0.06, 12, 5)}"
puts "Call count: #{proxy.call_count}"

To test this, we can run the server in one console window (the output here has been
reformated slightly to fit the width of this page).

% ruby server.rb
I, [2004-07-26T10:55:51.629451 #12327] INFO
-- Calc: Start of Calc.
I, [2004-07-26T10:55:51.633755 #12327] INFO
-- Calc: WEBrick 1.3.1
I, [2004-07-26T10:55:51.635146 #12327] INFO
-- Calc: ruby 1.8.2 (2004-07-26) [powerpc-darwin]
I, [2004-07-26T10:55:51.639347 #12327] INFO
—-- Calc: WEBrick::HTTPServer#start: pid=12327 port=12321

We then run the client in another window.

Prepared exclusively for Yeganefar

SOAP AND WEB SERVICES 238

% ruby client.rb

Call count: 0

5 years, compound annually: 133.82255776

5 years, compound monthly: 134.885015254931
Call count: 2

Looking good! Flush with success, we call all our friends over and run it again.

% ruby client.rb

Call count: 2

5 years, compound annually: 133.82255776

5 years, compound monthly: 134.885015254931
Call count: 4

Notice how the call count now starts at two the second time we run the client. The
server creates a single InterestCalculator object to service incoming requests, and
this object is reused for each request.

SOAP and Google

Obviously the real benefit of SOAP is the way it lets you interoperate with other
services on the Web. As an example, let’s write some Ruby code to send queries to
Google’s Web APL.

Before sending queries to Google, you need a developer key. This is available from
Google—go to http://www.google.com/apis and follow the instructions in step 2,
Create a Google Account. After you fill in your e-mail address and supply a password,
Google will send you a developer key. In the following examples, we’ll assume that
you’ve stored this key in the file .google_key in your home directory.

Let’s start at the most basic level. Looking at the documentation for the Google API
method doGoogleSearch, we discover it has ten (!) parameters.

key The developer key

q The query string

start The index of the first required result

maxResults The maximum number of results to return per query

filter If enabled, compresses results so that similar pages and pages from the
same domain are only shown once

restrict Restricts the search to a subset of the Google Web index

safeSearch If enabled, removes possible adult content from the results

1r Restricts the search to documents in a given set of languages

ie Ignored (was input encoding)

oe Ignored (was output encoding)

We can use the add_method call to construct a SOAP proxy for the doGoogleSearch
method. The following example does just that, printing out the first entry returned if
you search Google for the term pragmatic.

Prepared exclusively for Yeganefar

http://www.google.com/apis

SOAP AND WEB SERVICES 239

require 'soap/rpc/driver’

require 'cgi'

endpoint = 'http://api.google.com/search/beta2’

namespace = 'urn:GoogleSearch'

soap = SOAP::RPC::Driver.new(endpoint, namespace)

soap.add_method('doGoogleSearch', 'key', 'q', 'start',
'maxResults', 'filter', 'restrict',
'safeSearch', 'lr', 'ie', 'oe')

query = 'pragmatic'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false, nil,
false, nil, nil, nil)

printf "Estimated number of results is %d.\n",

result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime

first = result.resultElements[0]

puts first.title

puts first.URL

puts CGI.unescapeHTIML(first.snippet)

Run this, and you’ll see something such as the following (notice how the query term
has been highlighted by Google).

Estimated number of results is 550000.

Your query took 0.123762 seconds.

The Pragmatic Programmers, LLC
http://www.pragmaticprogrammer.com/

Home of Andrew Hunt and David Thomas's best-selling book 'The
Pragmatic Programmer'
 and The 'Pragmatic Starter Kit
(tm)' series. ... The Pragmatic Bookshelf TM. ...

However, SOAP allows for the dynamic discovery of the interface of objects on the
server. This is done using WSDL, the Web Services Description Language. A WSDL
file is an XML document that describes the types, methods, and access mechanisms for
a Web services interface. SOAP clients can read WSDL files to create the interfaces to
a server automatically.

The Web page http://api.google.com/GoogleSearch.wsdl contains the WSDL
describing the Google interface. We can alter our search application to read this WSDL,
which removes the need to add the doGoogleSearch method explicitly.

require 'soap/wsdlDriver'

require 'cgi'

WSDL_URL = "http://api.google.com/GoogleSearch.wsdl"

soap = SOAP::WSDLDriverFactory.new(WSDL_URL).createDriver
query = 'pragmatic'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false,
nil, false, nil, nil, nil)

Prepared exclusively for Yeganefar

http://api.google.com/GoogleSearch.wsdl

MORE INFORMATION

printf "Estimated number of results is %d.\n",
result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime
first = result.resultElements[0]

puts first.title

puts first.URL

puts CGI.unescapeHTIML(first.snippet)

Finally, we can take this a step further using Ian Macdonald’s Google library (available
in the RAA). It encapsulates the Web services API behind a nice interface (nice if for no
other reason than it eliminates the need for all those extra parameters). The library also
has methods to construct the date ranges and other restrictions on a Google query and
provides interfaces to the Google cache and the spell-checking facility. The following
code is our “pragmatic” search using Ian’s library.

require 'google'

require 'cgi'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

google = Google: :Search.new(key)
result = google.search('pragmatic')

printf "Estimated number of results is %d.\n",
result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime
first = result.resultElements[0]

puts first.title

puts first.url

puts CGI.unescapeHTML(first.snippet)

More Information

Ruby Web programming is a big topic. To dig deeper, you may want to look at Chapter
9 in The Ruby Way [FulO1], where you’ll find many examples of network and Web
programming, and Chapter 6 of The Ruby Developer’s Guide [FIN02], where you’ll
find some good examples of structuring CGI applications, along with some example
Iowa code.

If SOAP strikes you being complex, you may want to look at using XML-RPC, which
is described briefly on page 736.

A number of other Ruby Web development frameworks are available on the "net. This
is a dynamic area: new contenders appear constantly, and it is hard for a printed book to
be definitive. However, two frameworks that are currently attracting mindshare in the
Ruby community are

e Rails (http://www.rubyonrails.org), and
¢ CGIKit (http://www.spice-of-1ife.net/cgikit/index_en.html).

Prepared exclusively for Yeganefar

http://www.rubyonrails.org
http://www.spice-of-life.net/cgikit/index_en.html

Chapter 19

Ruby Tk

The Ruby Application Archive contains several extensions that provide Ruby with a
graphical user interface (GUI), including extensions for Fox, GTK, and others.

The Tk extension is bundled in the main distribution and works on both Unix and
Windows systems. To use it, you need to have Tk installed on your system. Tk is a
large system, and entire books have been written about it, so we won’t waste time or
resources by delving too deeply into Tk itself but instead concentrate on how to access
Tk features from Ruby. You’ll need one of these reference books in order to use Tk with
Ruby effectively. The binding we use is closest to the Perl binding, so you probably
want to get a copy of Learning Perl/Tk [Wal99] or Perl/Tk Pocket Reference [Lid98].

Tk works along a composition model—that is, you start by creating a container (such as
a TkFrame or TkRoot) and then create the widgets (another name for GUI components)
that populate it, such as buttons or labels. When you are ready to start the GUI, you
invoke Tk.mainloop. The Tk engine then takes control of the program, displaying
widgets and calling your code in response to GUI events.

Simple Tk Application

A simple Tk application in Ruby may look something like this.

require 'tk'
root = TkRoot.new { title "Ex1" } Ex1

TkLabel .new(root) do "
text 'Hello, World!' Hello, Word!

pack { padx 15 ; pady 15; side 'left' }
end
Tk .mainloop

Let’s look at the code a little more closely. After loading the tk extension module,
we create a root-level frame using TkRoot .new. We then make a TkLabel widget as a

Prepared exclusively for Yeganefar

WIDGETS 242

child of the root frame, setting several options for the label. Finally, we pack the root
frame and enter the main GUI event loop.

It’s a good habit to specify the root explicitly, but you could leave it out—along with
the extra options—and boil this down to a three-liner.

require 'tk'

TkLabel.new { text 'Hello, World!'; pack }

Tk .mainloop

That’s all there is to it! Armed with one of the Perl/Tk books we reference at the start of
this chapter, you can now produce all the sophisticated GUIs you need. But then again,
if you’d like to stick around for some more details, here they come.

Widgets

Creating widgets is easy. Take the name of the widget as given in the Tk documentation
and add a Tk to the front of it. For instance, the widgets Label, Button, and Entry
become the classes TkLabel, TkButton, and TkEntry. You create an instance of a
widget using new, just as you would any other object. If you don’t specify a parent
for a given widget, it will default to the root-level frame. We usually want to specify
the parent of a given widget, along with many other options—color, size, and so on.
We also need to be able to get information back from our widgets while our program
is running by setting up callbacks (routines invoked when certain events happen) and
sharing data.

Setting Widget Options

If you look at a Tk reference manual (the one written for Perl/Tk, for example), you’ll
notice that options for widgets are usually listed with a hyphen—as a command-line
option would be. In Perl/Tk, options are passed to a widget in a Hash. You can do that
in Ruby as well, but you can also pass options using a code block; the name of the
option is used as a method name within the block and arguments to the option appear
as arguments to the method call. Widgets take a parent as the first argument, followed
by an optional hash of options or the code block of options. Thus, the following two
forms are equivalent.

TkLabel .new(parent_widget) do

text 'Hello, World!'
pack('padx' => 5,
'pady' => 5,
'side' => 'left')
end
or

TkLabel .new(parent_widget, 'text' => 'Hello, World!').pack(...)

Prepared exclusively for Yeganefar

WIDGETS 243

One small caution when using the code block form: the scope of variables is not what
you think it is. The block is actually evaluated in the context of the widget’s object, not
the caller’s. This means that the caller’s instance variables will not be available in the
block, but local variables from the enclosing scope and globals will be (not that you
use global variables, of course.) We’ll show option passing using both methods in the
examples that follow.

Distances (as in the padx and pady options in these examples) are assumed to be in
pixels but may be specified in different units using one of the suffixes c (centimeter), i
(inch), m (millimeter), or p (point). "12p", for example, is twelve points.

Getting Widget Data

We can get information back from widgets by using callbacks and by binding variables.

Callbacks are very easy to set up. The command option (shown in the TkButton call in
the example that follows) takes a Proc object, which will be called when the callback
fires. Here we pass the proc in as a block associated with the method call, but we could
also have used Kernel.lambda to generate an explicit Proc object.
require 'tk'
TkButton.new do
text "EXIT"
command { exit }
pack('side'=>"left', 'padx'=>10, 'pady'=>10)
end
Tk .mainloop

We can also bind a Ruby variable to a Tk widget’s value using a TkVariable proxy.
This arranges things so that whenever the widget’s value changes, the Ruby variable
will automatically be updated, and whenever the variable is changed, the widget will
reflect the new value.

We show this in the following example. Notice how the TkCheckButton is set up;
the documentation says that the variable option takes a var reference as an argu-
ment. For this, we create a Tk variable reference using TkVariable.new. Accessing
mycheck.value will return the string “0” or “1” depending on whether the checkbox
is checked. You can use the same mechanism for anything that supports a var reference,
such as radio buttons and text fields.

require 'tk'
packing = { 'padx'=>5, 'pady'=>5, 'side' => 'left' }
checked = TkVariable.new

def checked.status
value == "1" ? "Yes" : "No"
end

Prepared exclusively for Yeganefar

WIDGETS 244

status = TkLabel.new do
text checked.status
pack(packing)

end

TkCheckButton.new do
variable checked
pack(packing)

end

TkButton.new do
text "Show status"
command { status.text(checked.status) }
pack(packing)

end

Tk .mainloop

Setting/Getting Options Dynamically

In addition to setting a widget’s options when it’s created, you can reconfigure a widget
while it’s running. Every widget supports the configure method, which takes a Hash
or a code block in the same manner as new. We can modify the first example to change
the label text in response to a button click.

require 'tk'

root = TkRoot.new { title "Ex3" }

top = TkFrame.new(root) { relief 'raised'; border 5 }

1bl = TkLabel.new(top) do
justify 'center'

text 'Hello, World!'

pack('padx'=>5, 'pady'=>5, 'side' => 'top')
end
TkButton.new(top) do

text "OkK"

command { exit }
pack('side'=>"left', 'padx'=>10, 'pady'=>10)
end
TkButton.new(top) do
text "Cancel"
command { 1bl.configure('text'=>"Goodbye, Cruel World!") }
pack('side'=>"'right', 'padx'=>10, 'pady'=>10)
end
top.pack('fill'=>"both', 'side' =>"top')
Tk .mainloop

Now when the Cancel button is clicked, the text in the label will change immediately
from “Hello, World!” to “Goodbye, Cruel World!”

You can also query widgets for particular option values using cget.

Prepared exclusively for Yeganefar

WIDGETS

require 'tk'
b = TkButton.new do

text "OK"
justify "left"
border 5
end
b.cget('text") — "OK"

b.cget('justify') — "left"
b.cget('border') — 5

Sample Application

Here’s a slightly longer example, showing a genuine application—a pig latin generator.
Type in the phrase such as Ruby rules, and the Pig It button will instantly translate
it into pig latin.
require 'tk'
class PigBox
def pig(word)

leading_cap = word =~ /A[A-Z]/ Enter Text:
word.downcase!
res = case word |UbyrayLﬂewaﬂ
when /A[aeiouy]/
word+"way"
when /A([Aaeiouy]+)(.*)/ Fig It |
$2+$1+"ay"
else :
word Exit |
end
leading_cap ? res.capitalize : res
end

def show_pig
@text.value = @text.value.split.collect{|w| pig(w)}.join(" ")
end
def initialize
ph = { 'padx' => 10, 'pady' => 10 } # common options
root = TkRoot.new { title "Pig" }
top = TkFrame.new(root) { background "white" }
TkLabel.new(top) {text 'Enter Text:' ; pack(ph) }

@text = TkVariable.new
TkEntry.new(top, 'textvariable' => @text).pack(ph)
pig_b = TkButton.new(top) { text 'Pig It'; pack ph}
pig_b.command { show_pig }
exit_b = TkButton.new(top) {text 'Exit'; pack ph}
exit_b.command { exit }
top.pack('fill'=>"'both', 'side' =>'top')
end
end

PigBox.new
Tk .mainloop

Prepared exclusively for Yeganefar

BINDING EVENTS 246

Geometry Management

In the example code in this chapter, you'll see references to the wid-
get method pack. That's a very important call, as it turns out—leave it
off and you'll never see the widget. pack is a command that tells the
geometry manager to place the widget according to constraints that
we specify. Geometry managers recognize three commands.

Command Placement Specification

pack Flexible, constraint-based placement
place Absolute position
grid Tabular (row/column) position

As pack is the most commonly used command, we’ll use it in our
examples.

Binding Events

Our widgets are exposed to the real world; they get clicked, the mouse moves over
them, the user tabs into them; all these things, and more, generate events that we can
capture. You can create a binding from an event on a particular widget to a block of
code, using the widget’s bind method.

For instance, suppose we’ve created a button widget that displays an image. We’d like
the image to change when the user’s mouse is over the button.

require 'tk'

imagel = TkPhotoImage.new { file "imgl.gif" }
image2 = TkPhotoImage.new { file "img2.gif" }
b = TkButton.new(@root) do

image imagel
command { exit }
pack

end

b.bind("Enter") { b.configure('image'=>image2) }
b.bind("Leave") { b.configure('image'=>imagel) }

Tk .mainloop

First, we create two GIF image objects from files on disk, using TkPhotoImage. Next
we create a button (very cleverly named “b”), which displays the image imagel. We
then bind the Enter event so that it dynamically changes the image displayed by the
button to image2 when the mouse is over the button, and the Leave event to revert back
to imagel when the mouse leaves the button.

Prepared exclusively for Yeganefar

This example shows the simple events Enter and Leave. But the named event given as
an argument to bind can be composed of several substrings, separated with dashes, in
the order modifier-modifier-type-detail. Modifiers are listed in the Tk reference and
include Buttonl, Control, Alt, Shift, and so on. Type is the name of the event
(taken from the X11 naming conventions) and includes events such as ButtonPress,
KeyPress, and Expose. Detail is either a number from 1 to 5 for buttons or a keysym
for keyboard input. For instance, a binding that will trigger on mouse release of button 1
while the control key is pressed could be specified as

Control-Buttonl-ButtonRelease
or
Control-ButtonRelease-1

The event itself can contain certain fields such as the time of the event and the x and y
positions. bind can pass these items to the callback, using event field codes. These are
used like printf specifications. For instance, to get the = and y coordinates on a mouse
move, you’d specify the call to bind with three parameters. The second parameter is
the Proc for the callback, and the third parameter is the event field string.

canvas.bind("Motion", lambda {|x, y| do_motion (x, y)}, "%x %vy")

Canvas

Tk provides a Canvas widget with which you can draw and produce PostScript out-
put. Figure 19.1 on the following page shows a simple bit of code (adapted from the
distribution) that will draw straight lines. Clicking and holding button 1 will start a
line, which will be “rubber-banded” as you move the mouse around. When you release
button 1, the line will be drawn in that position.

A few mouse clicks, and you’ve got an instant masterpiece.

Canvas

As they say, “We couldn’t find the artist, so we had to hang the picture....”

Prepared exclusively for Yeganefar

CANVAS 248

r
Figure 19.1. Drawing on a Tk Canvas

require 'tk'

class Draw
def do_press(x, y)
@start_x = x
@start_y = y
@current_line = TkcLine.new(@canvas, X, V, X, V)
end

def do_motion(x, y)
if @current_line
@current_line.coords @start_x, @start_y, X, VY
end
end

def do_release(x, V)
if @current_line
@current_line.coords @start_x, @start_y, x, V
@current_line.fill 'black'
@current_line = nil
end
end

def initialize(parent)
@canvas = TkCanvas.new(parent)
@canvas.pack
@start_x = @start_y = 0
@canvas.bind("1", lambda {|e| do_press(e.x, e.y)})
@canvas.bind("B1-Motion",
lambda {|x, y| do_motion(x, y)}, "%x %y")
@canvas.bind("ButtonRelease-1",
lambda {|x, y| do_release(x, v)},
"%x %y'")
end
end

root = TkRoot.new { title 'Canvas' }
Draw.new(root)
Tk .mainloop

Prepared exclusively for Yeganefar

SCROLLING 249

Scrolling

Unless you plan on drawing very small pictures, the previous example may not be all
that useful. TkCanvas, TkListbox, and TkText can be set up to use scrollbars, so you
can work on a smaller subset of the “big picture.”

Communication between a scrollbar and a widget is bidirectional. Moving the scrollbar
means that the widget’s view has to change; but when the widget’s view is changed by
some other means, the scrollbar has to change as well to reflect the new position.

Since we haven’t done much with lists yet, our scrolling example will use a scrolling list
of text. In the following code fragment, we’ll start by creating a plain old TkListbox
and an associated TkScrollbar. The scrollbar’s callback (set with command) will call
the list widget’s yview method, which will change the value of the visible portion of
the list in the y direction.

After that callback is set up, we make the inverse association: when the list feels the
need to scroll, we’ll set the appropriate range in the scrollbar using TkScrollbar#set.
We’ll use this same fragment in a fully functional program in the next section.

list_w = TkListbox.new(frame) do
selectmode 'single'
pack 'side' => 'left'
end
list_w.bind("ButtonRelease-1") do
busy do
filename = list_w.get(*list_w.curselection)
tmp_img = TkPhotoImage.new { file filename }
scale tmp_img.height / 100
scale =1 if scale <1
image_w.copy(tmp_img, 'subsample' => [scale, scale])
image_w.pack
end
end

scroll_bar = TkScrollbar.new(frame) do
command {|=*args| list_w.yview =args }
pack 'side' => 'left', 'fill' => 'y'
end
list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }

Just One More Thing

We could go on about Tk for another few hundred pages, but that’s another book. The
following program is our final Tk example—a simple GIF image viewer. You can select
a GIF filename from the scrolling list, and a thumb nail version of the image will be
displayed. We’ll point out just a few more things.

Prepared exclusively for Yeganefar

SCROLLING

250

Have you ever used an application that creates a “busy cursor” and then forgets to reset
it to normal? A neat trick in Ruby will prevent this from happening. Remember how
File.new uses a block to ensure that the file is closed after it is used? We can do a
similar thing with the method busy, as shown in the next example.

This program also demonstrates some simple TkListbox manipulations—adding ele-
ments to the list, setting up a callback on a mouse button release,' and retrieving the
current selection.

So far, we’ve used TkPhotoImage to display images directly, but you can also zoom,
subsample, and show portions of images as well. Here we use the subsample feature to
scale down the image for viewing.

require 'tk'

class GifViewer
def initialize(filelist)

screenshotsigifs8.gif
screenshotsigifs/.gif
screenshotsigifs/10.gif

screenshotsigifss1.gif
screenshotsigifss2.gif

def <=»

people = Array new

setup_viewer(filelist)

d screenshotsfgifsi3.gif 1
en screenshotsigifsi4.gif = -
|_||screenshotsigifss15.gif
def run i screenshotsigifss6.gif
Tk. malnloop / |screenshotsigifsi 7.gif
end

def setup_viewer(filelist)

@root = TkRoot.new {title 'Scroll List'}
frame = TkFrame.new(@root)
image_w = TkPhotoImage.new

TkLabel .new(frame) do
image image_w
pack 'side'=>'right'
end

list_w = TkListbox.new(frame) do
selectmode 'single'
pack 'side' => 'left'

end
list_w.bind("ButtonRelease-1") do
busy do
filename = list_w.get(*list_w.curselection)
tmp_img = TkPhotoImage.new { file filename }
scale = tmp_img.height / 100
scale =1 if scale <1
image_w.copy(tmp_img, 'subsample' => [scale, scale])
image_w.pack
end
end

1. You probably want the button release, not the press, as the widget gets selected on the button press.

Prepared exclusively for Yeganefar

TRANSLATING FROM PERL/TK DOCUMENTATION 251

filelist.each do |name|
list_w.insert('end', name) # Insert each file name into the list
end

scroll_bar = TkScrollbar.new(frame) do
command {|#args| list_w.yview =args }
pack 'side' => 'left', 'fill' => 'y'
end

list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }
frame.pack
end

Run a block with a 'wait' cursor
def busy
@root.cursor "watch" # Set a watch cursor
yield
ensure
@root.cursor "" # Back to original
end

end

viewer = GifViewer.new(Dir["screenshots/gifs/*.gif"])
viewer.run

Translating from Perl/Tk Documentation

That’s it, you’re on your own now. For the most part, you can easily translate the doc-
umentation given for Perl/Tk to Ruby. There are a few exceptions; some methods are
not implemented, and some extra functionality is undocumented. Until a Ruby/Tk book
comes out, your best bet is to ask on the newsgroup or read the source code.

But in general, it’s pretty easy to see what’s happening. Remember that options may be
given as a hash, or in code block style, and the scope of the code block is within the
TkWwidget being used, not your class instance.

Object Creation

In the Perl/Tk mapping, parents are responsible for creating their child widgets. In
Ruby, the parent is passed as the first parameter to the widget’s constructor.
Perl/Tk: $widget = $parent->Widget([option => value])

Ruby: widget = TkWidget.new(parent, option-hash)
widget = TkWidget.new(parent) { code block }

You may not need to save the returned value of the newly created widget, but it’s there
if you do. Don’t forget to pack a widget (or use one of the other geometry calls), or it
won’t be displayed.

Prepared exclusively for Yeganefar

TRANSLATING FROM PERL/TK DOCUMENTATION 252

Options
Perl/Tk: -background => color
Ruby: 'background' => color

{ background color }

Remember that the code block scope is different.

Variable References

Perl/Tk: -textvariable => \$variable
-textvariable => varRef
Ruby: ref = TkVariable.new
'textvariable' => ref
{ textvariable ref }

Use TkVariable to attach a Ruby variable to a widget’s value. You can then use the
value accessors in TkVariable (TkVariable#value and TkVariable#value=) to
affect the contents of the widget directly.

Prepared exclusively for Yeganefar

Chapter 20

Ruby and Microsoft Windows

Ruby runs in a number of different environments. Some of these are Unix-based, and
others are based on the various flavors of Microsoft Windows. Ruby came from people
who were Unix-centric, but over the years it has also developed a whole lot of useful
features in the Windows world, too. In this chapter, we’ll look at these features and
share some secrets to using Ruby effectively under Windows.

Getting Ruby for Windows

Two flavors of Ruby are available for the Windows environment.

The first is a version of Ruby that runs natively—that is, it is just another Windows
application. The easiest way to get this distribution is to use the One-Click Installer,
which loads a ready-made binary distribution onto your box. Follow the links from
http://rubyinstaller.rubyforge.org/ to get the latest version.

If you’re feeling more adventurous, or if you need to compile in libraries that aren’t sup-
plied with the binary distribution, then you can build Ruby from source. You’ll need the
Microsoft VC++ compiler and associated tools to do this. Download the source of Ruby
from http://www.ruby-lang.org, or use CVS to check out the latest development
version. Then read the file win32\README .win32 for instructions.

A second alternative uses an emulation layer called Cygwin. This provides a Unix-
like environment on top of Windows. The Cygwin version of Ruby is the closest to
Ruby running on Unix platforms, but running it means you must also install Cygwin.
If you want to take this route, you can download the Cygwin version of Ruby from
http://ftp.ruby-lang.org/pub/ruby/binaries/cygwin/. You’ll also need Cyg-
win itself. The download link has a pointer to the required dynamic link library (DLL),
or you can go to http://www.cygwin.com and download the full package (but be
careful: you need to make sure the version you get is compatible with the Ruby you
downloaded).

Prepared exclusively for Yeganefar

http://rubyinstaller.rubyforge.org/
http://www.ruby-lang.org
http://ftp.ruby-lang.org/pub/ruby/binaries/cygwin/
http://www.cygwin.com

RUNNING RuBY UNDER WINDOWS 254

Which version to choose? When the first edition of this book was produced, the Cygwin

E/ version of Ruby was the distribution of choice. That situation has changed: the native
build has become more and more functional over time, to the point where this is now
our preferred Windows build of Ruby.

Running Ruby Under Windows

You’ll find two executables in the Ruby Windows distribution.

ruby.exe is meant to be used at a command prompt (a DOS shell), just as in the Unix
version. For applications that read and write to the standard input and output, this is
fine. But this also means that anytime you run ruby.exe, you’ll get a DOS shell even
if you don’t want one—Windows will create a new command prompt window and
display it while Ruby is running. This may not be appropriate behavior if, for example,
you double-click a Ruby script that uses a graphical interface (such as Tk), or if you
are running a Ruby script as a background task or from inside another program.

In these cases, you’ll want to use rubyw.exe. It is the same as ruby.exe except that
it does not provide standard in, standard out, or standard error and does not launch a
DOS shell when run.

The installer (by default) sets file associations so that files with the extension .rb will
automatically use rubyw.exe. By doing this, you can double-click Ruby scripts, and
they will simply run without popping up a DOS shell.

Win32API

If you plan on doing Ruby programming that needs to access some Windows 32 API
functions directly, or that needs to use the entry points in some other DLLs, we’ve got
good news for you—the Win32API library.

As an example, here’s some code that’s part of a larger Windows application used
by our book fulfillment system to download and print invoices and receipts. A Web
application generates a PDF file, which the Ruby script running on Windows downloads
into a local file. The script then uses the print shell command under Windows to print
this file.

arg = "ids=#{resp.intl_orders.join(",")}"
fname = "/temp/invoices.pdf"

site = Net::HTTP.new(HOST, PORT)

site.use_ssl = true

http_resp, = site.get2("/fulfill/receipt.cgi?" + arg,
'Authorization' => 'Basic ' +
["name:passwd"].pack('m"').strip)

Prepared exclusively for Yeganefar

WINDOWS AUTOMATION 255

File.open(fname, "wb") {|f| f.puts(http_resp.body) }
shell = Win32API.new("shell32","ShellExecute",
['w','p','p','pY,'PY, L], 'L)

shell.Call(0, "print", fname, 0,0, SW_SHOWNORMAL)
You create a Win32APT object that represents a call to a particular DLL entry point by
specifying the name of the function, the name of the DLL that contains the function,
and the function signature (argument types and return type). In the previous example,
the variable shell wraps the Windows function ShellExecute in the shel122 DLL.
It takes six parameters (a number, four string pointers, and a number) and returns a
number. (These parameter types are described on page 734.) The resulting object can
then be used to make the call to print the file that we downloaded.

Many of the arguments to DLL functions are binary structures of some form. Win32APT
handles this by using Ruby String objects to pass the binary data back and forth. You
will need to pack and unpack these strings as necessary (see the example on page 734).

Windows Automation

If groveling around in the low-level Windows API doesn’t interest you, Windows

Automation may—you can use Ruby as a client for Windows Automation thanks to

a Ruby extension called WIN320LE, written by Masaki Suketa. Win32OLE is part of
L/ the standard Ruby distribution.

Windows Automation allows an automation controller (a client) to issue commands
and queries against an automation server, such as Microsoft Excel, Word, PowerPoint,
and so on.

You can execute a method of an automation server by calling a method of the same
name from a WIN320LE object. For instance, you can create a new WIN320LE client that
launches a fresh copy of Internet Explorer and commands it to visit its home page.

ie = WIN320LE.new('InternetExplorer.Application')

ie.visible = true
ie.gohome

You could also make it navigate to a particular page.

ie = WIN320LE.new('InternetExplorer.Application')
ie.visible = true
ie.navigate("http://www.pragmaticprogrammer.com")

Methods that aren’t known to WIN320LE (such as visible, gohome, or navigate) are
passed on to the WIN320LE#invoke method, which sends the proper commands to the
server.

Prepared exclusively for Yeganefar

WINDOWS AUTOMATION 256

Getting and Setting Properties

You can set and get properties from the server using normal Ruby hash notation. For
example, to set the Rotation property in an Excel chart, you could write

excel = WIN320LE.new("excel.application")
excelchart = excel.Charts.Add()

excelchart['Rotation'] = 45
puts excelchart['Rotation']

An OLE object’s parameters are automatically set up as attributes of the WIN320LE
object. This means you can set a parameter by assigning to an object attribute.

excelchart.rotation = 45
r = excelchart.rotation

The following example is a modified version of the sample file excel2.rb (found in
the ext/win32/samples directory). It starts Excel, creates a chart, and then rotates it
on the screen. Watch out, Pixar!

require 'win32ole’

-4100 is the value for the Excel constant x13DColumn.
ChartTypeVal = -4100;

excel = WIN320LE.new("excel.application")
Create and rotate the chart
excel['Visible'] = TRUE
excel.Workbooks.Add ()

excel.Range("al")['Value'] = 3
excel.Range("a2")['Value'] = 2
excel.Range("a3")['Value'] =1

excel.Range("al:a3").Select()

excelchart = excel.Charts.Add()
excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot]
excelchart.rotation = rot
sleep(0.1)

end

excel.ActiveWorkbook.Close(0)
excel.Quit()

Named Arguments

Other automation client languages such as Visual Basic have the concept of named
arguments. Suppose you had a Visual Basic routine with the signature

Song(artist, title, length): rem Visual Basic

Prepared exclusively for Yeganefar

WINDOWS AUTOMATION 257

Instead of calling it with all three arguments in the order specified, you could use named
arguments.

Song title := 'Get It On': rem Visual Basic
This is equivalent to the call Song(nil, ’Get It On’, nil).

In Ruby, you can use this feature by passing a hash with the named arguments.

Song.new('title' => 'Get It On')

for each

Where Visual Basic has a “for each” statement to iterate over a collection of items in a
server, a WIN320LE object has an each method (which takes a block) to accomplish the
same thing.

require 'win32ole’
excel = WIN320LE.new("excel.application")
excel.Workbooks.Add

excel.Range("al").Value = 10
excel.Range("a2").Value = 20
excel.Range("a3").Value = "=al+a2"

excel.Range("al:a3").each do |cell]
p cell.Value
end

Events

Your automation client written in Ruby can register itself to receive events from other
programs. This is done using the WIN320LE_EVENT class. This example (based on code
from the Win320LE 0.1.1 distribution) shows the use of an event sink that logs the
URLS that a user browses to when using Internet Explorer.

require 'win32ole’
$urls = []

def navigate(url)
$urls << url
end

def stop_msg_loop
puts "IE has exited..."
throw :done

end

def default_handler(event, =xargs)
case event
when "BeforeNavigate"
puts "Now Navigating to #{args[0]}..."
end
end

Prepared exclusively for Yeganefar

WINDOWS AUTOMATION 258

ie = WIN320LE.new('InternetExplorer.Application')
ie.visible = TRUE
ie.gohome
ev = WIN320LE_EVENT.new(ie, 'DWebBrowserEvents')
ev.on_event {|+args| default_handler(+args)}
ev.on_event("NavigateComplete") {|url| navigate(url)}
ev.on_event("Quit") {|+args| stop_msg_loop}
catch(:done) do

loop do

WIN320LE_EVENT .message_loop

end

end

puts "You Navigated to the following URLs:
$urls.each_with_index do |url, i

puts "(#{i+1}) #{url}"
end

Optimizing

As with most (if not all) high-level languages, it can be all too easy to churn out code
that is unbearably slow, but that can be easily fixed with a little thought.

With WIN320LE, you need to be careful with unnecessary dynamic lookups. Where pos-
sible, it is better to assign a WIN320LE object to a variable and then reference elements
from it, rather than creating a long chain of *“.” expressions.

For example, instead of writing

workbook.Worksheets(1) .Range("Al").value =
workbook .Worksheets(1).Range("A2").value =
workbook.Worksheets(1) .Range("A3").value =
workbook .Worksheets(1).Range("A4").value =

0 BN

we can eliminate the common subexpressions by saving the first part of the expression
to a temporary variable and then make calls from that variable.

worksheet = workbook.Worksheets(1)

worksheet.Range("A1").value = 1
worksheet.Range("A2").value = 2
worksheet.Range("A3").value = 4
worksheet.Range("A4").value = 8

You can also create Ruby stubs for a particular Windows type library. These stubs wrap
the OLE object in a Ruby class with one method per entry point. Internally, the stub
uses the entry point’s number, not name, which speeds access.

Generate the wrapper class using the olegen.rb script in the ext\win32ole\samples
directory, giving it the name of the type library to reflect on.

C:\> ruby olegen.rb 'NetMeeting 1.1 Type Library' >netmeeting.rb

Prepared exclusively for Yeganefar

WINDOWS AUTOMATION 259

The external methods and events of the type library are written as Ruby methods to the
given file. You can then include it in your programs and call the methods directly. Let’s
try some timings.

require 'netmeeting'
require 'benchmark'
include Benchmark
bmbm(10) do |test|
test.report("Dynamic") do
nm = WIN320LE.new('NetMeeting.App.1')
10000.times { nm.Version }
end
test.report("Via proxy") do
nm = NetMeeting_App_1.new
10000.times { nm.Version }
end
end

produces:

Rehearsal ---—---------—-—mm
Dynamic 0.600000 0.200000 0.800000 (1.623000)
Via proxy 0.361000 0.140000 0.501000 (0.961000)
total: 1.301000sec

user system total real
Dynamic 0.471000 0.110000 0.581000 (1.522000)
Via proxy 0.470000 0.130000 0.600000 (0.952000)

The proxy version is more than 40 percent faster than the code that does the dynamic
lookup.

More Help

If you need to interface Ruby to Windows NT, 2000, or XP, you may want to have a look

at Daniel Berger’s Win32Uftils project (http://rubyforge.org/projects/win32utils/).
There you’ll find modules for interfacing to the Windows’ clipboard, event log, sched-

uler, and so on.

Also, the DL library (described briefly on page 648) allows Ruby pragrams to invoke
methods in dynamically loaded shared objects. On Windows, this means that your Ruby
code can load and invoke entry points in a Windows DLL. For example, the following
code, taken from the DL source code in the standard Ruby distribution, pops up a mes-
sage box on a Windows machine, and determines which button the user clicked.

require 'dl’'
User32 = DL.dlopen("user32")
MB_OKCANCEL = 1

Prepared exclusively for Yeganefar

http://rubyforge.org/projects/win32utils/

WINDOWS AUTOMATION 260

message_box = User32['MessageBoxA', 'ILSSI']
r, rs = message_box.call(0, 'OK?', 'Please Confirm', MB_OKCANCEL)

case r
when 1
print("OK!\n")
when 2
print("Cancel!\n")
end

This code opens the User32 DLL. It then creates a Ruby object, message_box, that
wraps the MessageBoxA entry point. The second paramater, "ILSSI", declares that the
method returns an Integer, and takes a Long, two Strings, and an Integer as parameters.

The wrapper object is then user to call the message box entry point in the DLL. The
return values are the result (in this case, the identifier of the button pressed by the user)
and an array of the parameters passed in (which we ignore).

Prepared exclusively for Yeganefar

Chapter 21

Extending Ruby

It is easy to extend Ruby with new features by writing code in Ruby. But every now and
then you need to interface to things at a lower level. Once you start adding in low-level
code written in C, the possibilities are endless. Having said this, the stuff in this chapter
is pretty advanced and should probably be skipped the first time through the book.

Extending Ruby with C is pretty easy. For instance, suppose we are building a custom
Internet-ready jukebox for the Sunset Diner and Grill. It will play MP3 audio files from
a hard disk or audio CDs from a CD jukebox. We want to be able to control the jukebox
hardware from a Ruby program. The hardware vendor gave us a C header file and a
binary library to use; our job is to construct a Ruby object that makes the appropriate
C function calls.

Much of the information in this chapter is taken from the README.EXT file that is
included in the distribution. If you are planning on writing a Ruby extension, you may
want to refer to that file for more details as well as the latest changes.

Your First Extension

Just to introduce extension writing, let’s write one. This extension is purely a test of the
process—it does nothing that you couldn’t do in pure Ruby. We’ll also present some
stuff without too much explanation—all the messy details will be given later.

The extension we write will have the same functionality as the following Ruby class.

class MyTest
def initialize
@arr = Array.new
end
def add(obj)
@arr.push(obj)
end
end

Prepared exclusively for Yeganefar

YOUR FIRST EXTENSION 262

That is, we’ll be writing an extension in C that is plug-compatible with that Ruby class.
The equivalent code in C should look somewhat familiar.

#include "ruby.h"
static int id_push;
static VALUE t_init(VALUE self)
{
VALUE arr;
arr = rb_ary_new();
rb_iv_set(self, "@arr", arr);
return self;

}
static VALUE t_add(VALUE self, VALUE obj)
{

VALUE arr;

arr = rb_iv_get(self, "@arr");
rb_funcall(arr, id_push, 1, obj);
return arr;

}

VALUE cTest;

void Init_my_test() {
cTest = rb_define_class("MyTest", rb_cObject);
rb_define_method(cTest, "initialize", t_init, 0);
rb_define_method(cTest, "add", t_add, 1);
id_push = rb_intern("push");

}

Let’s go through this example in detail, as it illustrates many of the important concepts
in this chapter. First, we need to include the header file ruby.h to obtain the necessary
Ruby definitions.

Now look at the last function, Init_my_test. Every extension defines a C global func-
tion named Init_name. This function will be called when the interpreter first loads the
extension name (or on startup for statically linked extensions). It is used to initialize
the extension and to insinuate it into the Ruby environment. (Exactly how Ruby knows
that an extension is called name we’ll cover later.) In this case, we define a new class
named MyTest, which is a subclass of Object (represented by the external symbol
rb_cObject; see ruby.h for others).

Next we set up add and initialize as two instance methods for class MyTest. The
calls to rb_define_method establish a binding between the Ruby method name and
the C function that will implement it. If Ruby code calls the add method on one of our
objects, the interpreter will in turn call the C function t_add with one argument.

Similarly, when new is called for this class, Ruby will construct a basic object and then
call initialize, which we have defined here to call the C function t_init with no
(Ruby) arguments.

Prepared exclusively for Yeganefar

YOUR FIRST EXTENSION 263

Now go back and look at the definition of t_init. Even though we said it took no
arguments, it has a parameter here! In addition to any Ruby arguments, every method
is passed an initial VALUE argument that contains the receiver for this method (the equiv-
alent of self in Ruby code).

The first thing we’ll do in t_init is create a Ruby array and set the instance variable
@arr to point to it. Just as you would expect if you were writing Ruby source, ref-
erencing an instance variable that doesn’t exist creates it. We then return a pointer to
ourselves.

WARNING: Every C function that is callable from Ruby must return a VALUE, even if
it’s just Qnil. Otherwise, a core dump (or GPF) will be the likely result.

Finally, the function t_add gets the instance variable @arr from the current object and
calls Array#push to push the passed value onto that array. When accessing instance
variables in this way, the @ prefix is mandatory—otherwise the variable is created but
cannot be referenced from Ruby.

Despite the extra, clunky syntax that C imposes, you’re still writing in Ruby—you can
manipulate objects using all the method calls you’ve come to know and love, with the
added advantage of being able to craft tight, fast code when needed.

Building Our Extension

We’ll have a lot more to say about building extensions later. For now, though, all we
have to do is follow these steps.

1. Create a file called extconf.rb in the same directory as our my_text.c C source
file. The file extconf.rb should contain the following two lines.

require 'mkmf’'
create_makefile("my_test")

2. Run extconf.rb. This will generate a Makefile.

% ruby extconf.rb
creating Makefile

3. Use make to build the extension. This is what happens on an OS X system.

% make

gce -fno-common -g -02 -pipe -fno-common -I.
-I/usr/lib/ruby/1.9/powerpc-darwin7.4.0
-I/usr/lib/ruby/1.9/powerpc-darwin7.4.0 -I. -c my_test.c

cc -dynamic -bundle -undefined suppress -flat_namespace
-L'/usr/1ib' -o my_test.bundle my_test.o -1dl -lobjc

The result of all this is the extension, all nicely bundled up in a shared object (a . so,
.d11, or [on OS X] a .bundle).

Prepared exclusively for Yeganefar

RuBY OBJECTS IN C 264

Running Our Extension

We can use our extension from Ruby simply by require-ing it dynamically at runtime
(on most platforms). We can wrap this up in a test to verify that things are working as
we expect.

require 'my_test'

require 'test/unit'

class TestTest < Test::Unit::TestCase

def test_test
t = MyTest.new
assert_equal(Object, MyTest.superclass)
assert_equal (MyTest, t.class)

t.add(1)
t.add(2)

assert_equal([1,2], t.instance_eval("@arr"))
end
end

produces:

Finished in 0.002589 seconds.
1 tests, 3 assertions, 0 failures, 0 errors

Once we’re happy that our extension works, we can then install it globally by running
make install.

Ruby Objects in C

When we wrote our first extension, we cheated, because it didn’t really do anything
with the Ruby objects—it didn’t do calculations based on Ruby numbers, for example.
Before we can do this, we need to find out how to represent and access Ruby data types
from within C.

Everything in Ruby is an object, and all variables are references to objects. When we’re
looking at Ruby objects from within C code, the situation is pretty much the same.
Most Ruby objects are represented as C pointers to an area in memory that contains the
object’s data and other implementation details. In C code, all these references are via
variables of type VALUE, so when you pass Ruby objects around, you’ll do it by passing
VALUES.

This has one exception. For performance reasons, Ruby implements Fixnums, Symbols,
true, false, and nil as so-called immediate values. These are still stored in variables
of type VALUE, but they aren’t pointers. Instead, their value is stored directly in the
variable.

Prepared exclusively for Yeganefar

RuBY OBJECTS IN C 265

So sometimes VALUEs are pointers, and sometimes they’re immediate values. How does
the interpreter pull off this magic? It relies on the fact that all pointers point to areas of
memory aligned on 4- or 8-byte boundaries. This means that it can guarantee that the
low 2 bits in a pointer will always be zero. When it wants to store an immediate value,
it arranges to have at least one of these bits set, allowing the rest of the interpreter code
to distinguish immediate values from pointers. Although this sounds tricky, it’s actually
easy to use in practice, largely because the interpreter comes with a number of macros
and methods that simplify working with the type system.

This is how Ruby implements object-oriented code in C: A Ruby object is an allocated
structure in memory that contains a table of instance variables and information about
the class. The class itself is another object (an allocated structure in memory) that
contains a table of the methods defined for that class. Ruby is built upon this foundation.

Working With Immediate Objects

As we said above, immediate values are not pointers: Fixnum, Symbol, true, false,
and nil are stored directly in VALUE.

Fixnum values are stored as 31-bit numbers' that are formed by shifting the original
number left 1 bit and then setting the LSB, or least significant bit (bit 0), to 1. When
VALUE is used as a pointer to a specific Ruby structure, it is guaranteed always to have
an LSB of zero; the other immediate values also have LSBs of zero. Thus, a simple bit
test can tell you whether you have a Fixnum. This test is wrapped in a macro, FIXNUM_P.
Similar tests let you check for other immediate values.

nonzero if value is a Fixnum

nonzero if value is a Symbol

nonzero if value is nil

nonzero if value is neither nil nor false

FIXNUM_P(value) —
SYMBOL_P(value) —
NIL_P(value) —
RTEST (value) —
Several useful conversion macros for numbers as well as other standard data types are
shown in Table 21.1 on the following page.

The other immediate values (true, false, and nil) are represented in C as the con-
stants Qtrue, Qfalse, and Qnil, respectively. You can test VALUE variables against
these constants directly or use the conversion macros (which perform the proper cast-
ing).

Working with Strings

In C, we’re used to working with null-terminated strings. Ruby strings, however, are
more general and may well included embedded nulls. The safest way to work with

1. Or 63-bit on wider CPU architectures.

Prepared exclusively for Yeganefar

RuBY OBJECTS IN C 266

Table 21.1. C/Ruby data type conversion functions and macros
C Data Types to Ruby Objects:

INT2NUM(int) — Fixnum or Bignum
INT2FIX(int) — Fixnum (faster)
LONG2NUM(long — Fixnum or Bignum
LONG2FIX(int) — Fixnum (faster)
LL2NUM(long long) — Fixnum or Bignum (if native
system supports long long type)
ULL2NUM(long long) — Fixnum or Bignum (if native
system supports long long type)
CHR2FIX(char) — Fixnum
rb_str_new2(char *) — String
rb_float_new(double) — Float
Ruby Objects to C Data Types:
int NUM2INT(Numeric) (Includes type check)
int FIX2INT(Fixnum) (Faster)
unsigned int NUM2UINT(Numeric) (Includes type check)
unsigned int FIX2UINT(Fixnum) (Includes type check)
long NUM2LONG(Numeric) (Includes type check)
long FIX2LONG(Fixnum) (Faster)
unsigned long NUM2ULONG(Numeric) (Includes type check)

char NUMZ2CHR(Numeric or String) (Includes type check)
double NUM2DBL(Numeric)
see text for strings. ..

Ruby strings, therefore, is to do what the interpreter does and use both a pointer and a
length. In fact, Ruby String objects are actually references to an RString structure,
and the RString structure contains both a length and a pointer field. You can access
the structure via the RSTRING macro.

VALUE str;
RSTRING(str)->len — length of the Ruby string
RSTRING(str)->ptr — pointer to string storage

However, life is slightly more complicated than that. Rather than using the VALUE

E/ object directly when you need a string value, you probably want to call the method
StringValue, passing it the original value. It’ll return an object that you can use
RSTRING on or throw an exception if it can’t derive a string from the original. This
is all part of Ruby 1.8’s duck typing initiative, described in more detail on pages 280
and 349. The StringValue method checks to see if its operand is a String. If not, it
tries to invoke to_str on the object, throwing a TypeError exception if it can’t.

Prepared exclusively for Yeganefar

RuBY OBJECTS IN C 267

So, if you want to write some code that iterates over all the characters in a String
object, you may write:
static VALUE iterate_over(VALUE original_str) {

int 1i;

char *p

VALUE str = StringValue(original_str);

p = RSTRING(str)->ptr; // may be null

for (i = 0; i < RSTRING(str)->len; i++, p++) {

// process #p
}

return str;

3

If you want to bypass the length, and just access the underlying string pointer, you can
use the convenience method StringValuePtr, which both resolves the string reference
and then returns the C pointer to the contents.

If you plan to use a string to access or control some external resource, you proba-
bly want to hook into Ruby’s tainting mechanism. In this case you’ll use the method
SafeStringValue, which works like StringValue but throws an exception if its argu-
ment is tainted and the safe level is greater than zero.

Working with Other Objects

When VALUEs are not immediate, they are pointers to one of the defined Ruby
object structures—you can’t have a VALUE that points to an arbitrary area of mem-
ory. The structures for the basic built-in classes are defined in ruby.h and are named
RClassname: RArray, RBignum, RClass, RData, RFile, RFloat, RHash, RObject,
RRegexp, RString, and RStruct.

You can check to see what type of structure is used for a particular VALUE in a number
of ways. The macro TYPE(obj) will return a constant representing the C type of the
given object: T_OBJECT, T_STRING, and so on. Constants for the built-in classes are
defined in ruby.h. Note that the rype we are referring to here is an implementation
detail—it is not the same as the class of an object.

If you want to ensure that a value pointer points to a particular structure, you can use
the macro Check_Type, which will raise a TypeError exception if value is not of the
expected fype (which is one of the constants T_STRING, T_FLOAT, and so on).

Check_Type(VALUE value, int type)
Again, note that we are talking about “type” as the C structure that represents a partic-
ular built-in type. The class of an object is a different beast entirely. The class objects

for the built-in classes are stored in C global variables named rb_cClassname (for
instance, rb_cObject); modules are named rb_mModulename.

Prepared exclusively for Yeganefar

RuBY OBJECTS IN C 268

Pre 1.8 String A
E/ Prior to Ruby 1.8, if a VALUE was supposed to contain a string, you'd
access the RSTRING fields directly, and that would be it. In 1.8, how-
ever, the gradual introduction of duck typing, along with various opti-
mizations, mean that this approach probably won’t work the way you’d
like. In particular, the ptr field of an STRING object might be null for
zero-length strings. If you use the 1.8 StringValue method, it handles
this case, resetting null pointers to reference instead a single, shared,
empty string.

So, how do you write an extension that will work with both Ruby 1.6
and 1.87 Carefully, and with macros. Perhaps something such as this.

#if !defined(StringValue)

define StringValue(x) (x)

#endif

#if !defined(StringValuePtr)

define StringValuePtr(x) ((STR2CSTR(x)))
#end

This code defines the 1.8 StringValue and StringValuePtr macros
in terms of the older 1.6 counterparts. If you then write code in terms
of these macros, it should compile and run on both older and newer
interpreters.

If you want your code to have 1.8 duck-typing behavior, even when
running under 1.6, you may want to define StringValue slightly differ-
ently. The difference between this and the previous implementation is
described on page 280.

#if !defined(StringValue)

define StringValue(x) do { \
if (TYPE(x) != T_STRING) x = rb_str_to_str(x); \
} while (0)
#end
\ J

It isn’t advisable to alter with the data in these C structures directly, however—you
may look, but don’t touch. Instead, you’ll normally use the supplied C functions to
manipulate Ruby data (we’ll talk more about this in just a moment).

However, in the interests of efficiency you may need to dig into these structures to
obtain data. To dereference members of these C structures, you have to cast the generic
VALUE to the proper structure type. ruby.h contains a number of macros that perform
the proper casting for you, allowing you to dereference structure members easily. These
macros are named RCLASSNAME, as in RSTRING or RARRAY. We’ve already seen the use
of RSTRING when working with strings. You can do the same with arrays.

Prepared exclusively for Yeganefar

RuBY OBJECTS IN C 269

VALUE arr;

RARRAY(arr)->len — length of the Ruby array
RARRAY (arr)->capa — capacity of the Ruby array
RARRAY(arr)->ptr — pointer to array storage

There are similar accessors for hashes (RHASH), files (RFILE), and so on. Having said
all this, you need to be careful about building too much dependence on checking types
into your extension code. We have more to say about extensions and the Ruby type
system on page 280.

Global Variables

Most of the time, your extensions will implement classes, and the Ruby code uses those
classes. The data you share between the Ruby code and the C code will be wrapped
tidily inside objects of the class. This is how it should be.

Sometimes, though, you may need to implement a global variable, accessible by both
your C extension and by Ruby code.

The easiest way to do this is to have the variable be a VALUE (that is, a Ruby object).
You then bind the address of this C variable to the name of a Ruby variable. In this case,
the $ prefix is optional, but it helps clarify that this is a global variable. And remember:
making a stack-based variable a Ruby global is not going to work (for long).

static VALUE hardware_list;

static VALUE Init_SysInfo() {
rb_define_class(....);

hardware_list = rb_ary_new();
rb_define_variable("$hardware", &hardware_list);

rb_ary_push(hardware_list, rb_str_new2("DVD"));

rb_ary_push(hardware_list, rb_str_new2("CDPlayerl"));

rb_ary_push(hardware_list, rb_str_new2("CDPlayer2"));
}

The Ruby side can then access the C variable hardware_list as $hardware.
$hardware — ["DVD", "CDPlayerl", "CDPlayer2"]

Sometimes, though, life is more complicated. Perhaps you want to define a global vari-
able whose value must be calculated when it is accessed. You do this by defining hooked
and virtual variables. A hooked variable is a real variable that is initialized by a named
function when the corresponding Ruby variable is accessed. Virtual variables are sim-
ilar but are never stored: their value purely comes from evaluating the hook function.
See the API section that begins on page 294 for details.

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 270

If you create a Ruby object from C and store it in a C global variable without export-
ing it to Ruby, you must at least tell the garbage collector about it, lest ye be reaped
inadvertently.

static VALUE obj;
/] ...

obj = rb_ary_new();
rb_global_variable(obj);

The Jukebox Extension

We’ve covered enough of the basics now to return to our jukebox example—interfacing
C code with Ruby and sharing data and behavior between the two worlds.

Wrapping C Structures

We’ve got the vendor’s library that controls the audio CD jukebox units, and we’re
ready to wire it into Ruby. The vendor’s header file looks like this.

typedef struct _cdjb {
int statusf;
int request;
void =data;
char pending;
int unit_id;
void =stats;
} CDJukebox;

// Allocate a new CDJukebox structure

CDJukebox *new_jukebox(void);

// Assign the Jukebox to a player

void assign_jukebox(CDJukebox *jb, int unit_id);
// Deallocate when done (and take offline)

void free_jukebox(CDJukebox #jb);

// Seek to a disc, track and notify progress
void jukebox_seek(CDJukebox =jb),

int disc,

int track,

void (*done)(CDJukebox =*jb, int percent));
// ... others...

// Report a statistic
double get_avg_seek_time(CDJukebox =*jb);

This vendor has its act together; while they might not admit it, the code is written
with an object-oriented flavor. We don’t know what all those fields mean within the
CDJukeBox structure, but that’s OK—we can treat it as an opaque pile of bits. The
vendor’s code knows what to do with it; we just have to carry it around.

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 271

Anytime you have a C-only structure that you would like to handle as a Ruby object,
you should wrap it in a special, internal Ruby class called DATA (type T_DATA). Two
macros do this wrapping, and one macro retrieves your structure back out again.

API: C Data Type Wrapping

VALUE Data_Wrap_Struct(VALUE class, void (*mark)(),
void (+free)(), void =ptr)
Wraps the given C data type ptr, registers the two garbage collection
routines (see below), and returns a VALUE pointer to a genuine Ruby
object. The C type of the resulting object is T_DATA, and its Ruby
class is class.

VALUE Data_Make_Struct(VALUE class, c-type, void (*mark)(),
void (xfree)(), c-type =*)
Allocates and sets to zero a structure of the indicated type first and
then proceeds as Data_Wrap_Struct. c-type is the name of the C
data type that you’re wrapping, not a variable of that type.

Data_Get_Struct(VALUE obj, c-type,c-type =)
Returns the original pointer. This macro is a type-safe wrapper
around the macro DATA_PTR(obj), which evaluates the pointer.

The object created by Data_Wrap_Struct is a normal Ruby object, except that it has
an additional C data type that can’t be accessed from Ruby. As you can see in Fig-
ure 21.1 on the following page, this C data type is separate from any instance variables
that the object contains. But since it’s a separate thing, how do you get rid of it when
the garbage collector claims this object? What if you have to release some resource
(close some file, clean up some lock or IPC mechanism, and so on)?

Ruby uses a mark and sweep garbage collection scheme. During the mark phase, Ruby
looks for pointers to areas of memory. It marks these areas as “in use” (because some-
thing is pointing to them). If those areas themselves contain more pointers, the memory
these pointers reference is also marked, and so on. At the end of the mark phase, all
memory that is referenced will have been marked, and any orphaned areas will not have
a mark. At this point the sweep phase starts, freeing off memory that isn’t marked.

To participate in Ruby’s mark-and-sweep garbage collection process, you must define
a routine to free your structure and possibly a routine to mark any references from
your structure to other structures. Both routines take a void pointer, a reference to your
structure. The mark routine will be called by the garbage collector during its “mark”
phase. If your structure references other Ruby objects, then your mark function needs
to identify these objects using rb_gc_mark(value). If the structure doesn’t reference
other Ruby objects, you can simply pass 0 as a function pointer.

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 272

()
Figure 21.1. Wrapping objects around C data types
—'CDPIayer
: C
jukeboxl e——» @unit: 1 srect
—|CDPIayer
: C
jukebox2 e—» @unit: 2 sroct
\ J

When the object needs to be disposed of, the garbage collector will call the free rou-
tine to free it. If you have allocated any memory yourself (for instance, by using
Data_Make_Struct), you'll need to pass a free function—even if it’s just the stan-
dard C library’s free routine. For complex structures that you have allocated, your free
function may need to traverse the structure to free all the allocated memory.

Let’s look at our CD player interface. The vendor library passes the information around
between its various functions in a CDJukebox structure. This structure represents the
state of the jukebox and therefore is a good candidate for wrapping within our Ruby
class. You create new instances of this structure by calling the library’s CDPlayerNew
method. You’d then want to wrap that created structure inside a new CDPlayer Ruby
object. A fragment of code to do this may look like the following. (We’ll talk about that
magic klass parameter in a minute.)

CDJukebox *jukebox;
VALUE obj;

// Vendor library creates the Jukebox
jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object
obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

Once this code had executed, obj would hold a reference to a newly allocated CDPlayer
Ruby object, wrapping a new CDJukebox C structure. Of course, to get this code to
compile, we’d need to do some more work. We’d have to define the CDPlayer class
and store a reference to it in the variable cCDPlayer. We’d also have to define the
function to free off our object, cdplayer_free. That’s easy: it just calls the vendor
library dispose method.

static void cd_free(void *p) {
free_jukebox(p);
}

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 273

However, code fragments do not a program make. We need to package all this stuff in
a way that integrates it into the interpreter. And to do that, we need to look at some of
the conventions the interpreter uses.

Object Creation

E/ Ruby 1.8 has rationalized the creation and initialization of objects. Although the old
ways still work, the new way, using allocation functions, is much tidier (and is less
likely to be deprecated in the future).

The basic idea is simple. Let’s say you're creating an object of class CDPlayer in your
Ruby program.

cd = CDPlayer.new

Underneath the covers, the interpreter calls the class method new for CDPlayer. As
CDPlayer hasn’t defined a method new, Ruby looks into its parent, class Class.

The implementation of new in class Class is fairly simple: it allocates memory for the
new object and then calls the object’s initialize method to initialize that memory.

So, if our CDPlayer extension is to be a good Ruby citizen, it should work within this
framework. This means that we’ll need to implement an allocation function and an
initialize method.

Allocation Functions

The allocation function is responsible for creating the memory used by your object. If
the object you’re implementing doesn’t use any data other that Ruby instance variables,
then you don’t need to write an allocation function—Ruby’s default allocator will work
just fine. But if your class wraps a C structure, you’ll need to allocate space for that
structure in the allocation function. The allocation function gets passed the class of the
object being allocated. In our case it will in all likelihood be a cCDPlayer, but we’ll
use the parameter as given, as this means that we’ll work correctly if subclassed.

static VALUE cd_alloc(VALUE klass) {
CDJukebox *jukebox;
VALUE obj;

// Vendor library creates the Jukebox
jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object
obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

return obj;

}

You then need to register your allocation function in your class’s initialization code.

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 274

void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);
/] ...

}

Most objects probably need to define an initializer too. The allocation function creates
an empty, uninitialized object, and we’ll need to fill in specific values. In the case of the
CD player, the constructor is called with the unit number of the player to be associated
with this object.

static VALUE cd_initialize(VALUE self, VALUE unit) {
int unit_id;
CDJukebox =jb;
Data_Get_Struct(self, CDJukebox, jb);
unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);

return self;

}

One of the reasons for this multistep object creation protocol is that it lets the interpreter
handle situations where objects have to be created by “back-door means.” One example
is when objects are being deserialized from their marshaled form. Here, the interpreter
needs to create an empty object (by calling the allocator), but it cannot call the initializer
(as it has no knowledge of the parameters to use). Another common situation is when
objects are duplicated or cloned.

One further issue lurks here. Because users can choose to bypass either the construc-
tor, you need to ensure that your allocation code leaves the returned object in a valid
state. It may not contain all the information it would have had, had it been set up be
#initialize, but it at least needs to be usable.

Cloning Objects

All Ruby objects can be copied using one of two methods, dup and clone. The two
methods are similar: Both produce a new instance of their receiver’s class by calling
the allocation function. Then they copy across any instance variables from the original.
clone then goes a bit further and copies the original’s singleton class (if it has one) and
flags (such as the flag that indicates that an object is frozen). You can think of dup as
being a copy of the contents and clone as being a copy of the full object.

However, the Ruby interpreter doesn’t know how to handle copying the internal state of
objects that you write as C extensions. For example, if your object wraps a C structure
that contains an open file descriptor, it’s up to the semantics of your implementation
whether that descriptor should simply be copied to the new object or whether a new file
descriptor should be opened.

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 275

Pre-1.8 Object Allocation

Prior to Ruby 1.8, if you wanted to allocate additional space in an
1.8, object, either you had to put that code in the initialize method,
or you had to define a new method for your class. Guy Decoux rec-
ommends the following hybrid approach for maximizing compatibility
between 1.6 and 1.8 extensions.

static VALUE cd_alloc(VALUE klass) {
// same as before
}
static VALUE cd_new(int argc, VALUE =argv, VALUE klass) {
VALUE obj = rb_funcall2(klass,
rb_intern("allocate"), 0, 0);
rb_obj_call_init(obj, argc, argv);
return obj;

}
void init_CDPlayer() {

I acc

#if HAVE_RB_DEFINE_ALLOC_FUNC
// 1.8 allocation
rb_define_alloc_func(cCDPlayer, cd_alloc);
#else
// define manual allocation function for 1.6
rb_define_singleton_method(cCDPlayer, "allocate",

cd_alloc, 0);
#endif
rb_define_singleton_method(cCDPlayer, "new", cd_new, -1);
I ooc
b

If you're writing code that should run on both recent and old versions
of Ruby, you’ll need to take an approach similar to this. However, you'll
probably also need to handle cloning and duplication, and you’ll need
to consider what happens when your object gets marshaled.

To handle this, the interpreter delegates to your code the responsibility of copying the
internal state of objects that you implement. After copying the object’s instance vari-
ables, the interpreter invokes the new object’s initialize_copy method, passing in a
reference to the original object. It’s up to you to implement meaningful semantics in
this method.

For our CDPlayer class we’ll take a fairly simple approach to the cloning issue: we’ll
simply copy across the CDJukebox structure from the original object.

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 276

There’s a wee chunk of strange code in this example. To test that the original object
is indeed something we can clone the new one from, the code checks to see that the
original

1. has a TYPE of T_DATA (which means that it’s a noncore object), and
2. has a free function with the same address as our free function.

This is a relatively high-performance way of verifying that the original object is com-
patible with our own (as long as you don’t share free functions between classes). An
alternative, which is slower, would be to use rb_obj_is_kind_of and do a direct test
on the class.

static VALUE cd_init_copy(VALUE copy, VALUE orig) {
CDJukebox =orig_jb;
CDJukebox *copy_jb;
if (copy == orig)
return copy;

// we can initialize the copy from other CDPlayers
// or their subclasses only

if (TYPE(orig) != T_DATA ||
RDATA(orig)->dfree != (RUBY_DATA_FUNC)cd_free) {
rb_raise(rb_eTypeError, "wrong argument type");
}
// copy all the fields from the original
// object's CDJukebox structure to the
// new object

Data_Get_Struct(orig, CDJukebox, orig jb);
Data_Get_Struct(copy, CDJukebox, copy_jb);
MEMCPY (copy_jb, orig_jb, CDJukebox, 1);

return copy;

}

Our copy method does not have to allocate a wrapped structure to receive the original
objects CDJukebox structure: the cd_alloc method has already taken care of that.

Note that in this case it’s correct to do type checking based on classes: we need the
original object to have a wrapped CDJukebox structure, and the only objects that have
one of these are derived from class CDPlayer.

Putting It All Together

OK, finally we’re ready to write all the code for our CDPlayer class.

#include "ruby.h"
#include "cdjukebox.h"

static VALUE cCDPlayer;

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 277

// Helper function to free a vendor CDJukebox
static void cd_free(void =*p) {
free_jukebox(p);
}
// Allocate a new CDPlayer object, wrapping
// the vendor's CDJukebox structure
static VALUE cd_alloc(VALUE klass) {
CDJukebox *jukebox;
VALUE obj;
// Vendor library creates the Jukebox
jukebox = new_jukebox();
// then we wrap it inside a Ruby CDPlayer object
obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);
return obj;
}
// Assign the newly created CDPLayer to a
// particular unit
static VALUE cd_initialize(VALUE self, VALUE unit) {
int unit_id;
CDJukebox =jb;
Data_Get_Struct(self, CDJukebox, jb);
unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);
return self;
}
// Copy across state (used by clone and dup). For jukeboxes, we
// actually create a new vendor object and set its unit number from
// the old
static VALUE cd_init_copy(VALUE copy, VALUE orig) {
CDJukebox =orig_jb;
CDJukebox =*copy_jb;
if (copy == orig)
return copy;
// we can initialize the copy from other CDPlayers or their
// subclasses only
if (TYPE(orig) != T_DATA ||
RDATA(orig)->dfree != (RUBY_DATA_FUNC)cd_free) {
rb_raise(rb_eTypeError, "wrong argument type");
}
// copy all the fields from the original object's CDJukebox
// structure to the new object
Data_Get_Struct(orig, CDJukebox, orig _jb);
Data_Get_Struct(copy, CDJukebox, copy_jb);
MEMCPY (copy_jb, orig_jb, CDJukebox, 1);

return copy;

Prepared exclusively for Yeganefar

THE JUKEBOX EXTENSION 278

// The progress callback yields to the caller the percent complete
static void progress(CDJukebox #rec, int percent) {
if (rb_block_given_p()) {
if (percent > 100) percent = 100;
if (percent < 0) percent = 0;
rb_yield (INT2FIX(percent));
}
}

// Seek to a given part of the track, invoking the progress callback
// as we go

static VALUE

cd_seek(VALUE self, VALUE disc, VALUE track) {

CDJukebox =jb;
Data_Get_Struct(self, CDJukebox, jb);

jukebox_seek(jb,
NUM2INT (disc),
NUM2INT(track),
progress);
return Qnil;
}
// Return the average seek time for this unit
static VALUE
cd_seek_time(VALUE self)
{
double tm;
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
tm = get_avg_seek_time(jb);
return rb_float_new(tm);
}
// Return this player's unit number
static VALUE
cd_unit(VALUE self) {
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
return INT2NUM(jb->unit_id);;
}

void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);
rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);
rb_define_method(cCDPlayer, "initialize_copy", cd_init_copy, 1);
rb_define_method(cCDPlayer, "seek", cd_seek, 2);
rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);
rb_define_method(cCDPlayer, "unit", cd_unit, 0);

Prepared exclusively for Yeganefar

MEMORY ALLOCATION

Now we can control our jukebox from Ruby in a nice, object-oriented way.

require 'CDPlayer'

p = CDPlayer.new(13)

puts "Unit is #{p.unit}"

p.seek(3, 16) {|x| puts "#{x}% done" }

puts "Avg. time was #{p.seek_time} seconds"
pl = p.dup

puts "Cloned unit = #{pl.unit}"

produces:

Unit is 13

26% done

79% done

100% done

Avg. time was 1.2 seconds
Cloned unit = 13

This example demonstrates most of what we’ve talked about so far, with one additional
neat feature. The vendor’s library provided a callback routine—a function pointer that
is called every so often while the hardware is grinding its way to the next disc. We’ve
set that up here to run a code block passed as an argument to seek. In the progress
function, we check to see if there is an iterator in the current context and, if there is,
run it with the current percent done as an argument.

Memory Allocation

You may sometimes need to allocate memory in an extension that won’t be used for
object storage—perhaps you’ve got a giant bitmap for a Bloom filter, an image, or a
whole bunch of little structures that Ruby doesn’t use directly.

To work correctly with the garbage collector, you should use the following memory
allocation routines. These routines do a little bit more work than the standard malloc.
For instance, if ALLOC_N determines that it cannot allocate the desired amount of mem-
ory, it will invoke the garbage collector to try to reclaim some space. It will raise a
NoMemError if it can’t or if the requested amount of memory is invalid.

API: Memory Allocation

type * ALLOC_N(c-type, n)
Allocates n c-type objects, where c-type is the literal name of the C
type, not a variable of that type.

type » ALLOC(c-type)
Allocates a c-type and casts the result to a pointer of that type.

Prepared exclusively for Yeganefar

RuBY TYPE SYSTEM 280

REALLOC_N(var, c-type, n)
Reallocates n c-types and assigns the result to var, a pointer to a
variable of type c-type.

type # ALLOCA_N(c-type, n)
Allocates memory for n objects of c-fype on the stack—this memory
will be automatically freed when the function that invokes ALLOCA_N
returns.

Ruby Type System

E/ In Ruby, we rely less on the type (or class) on an object and more on its capabilities.
This is called duck typing. We describe it in more detail in Chapter 23 on page 349
You’ll find many examples of this if you examine the source code for the interpreter
itself. For example, the following code implements the Kernel.exec method.

VALUE

rb_f_exec(argc, argv)
int argc;
VALUE =argv;

VALUE prog = 0;
VALUE tmp;
if (argec == 0) {
rb_raise(rb_eArgError, "wrong number of arguments");
}
tmp = rb_check_array_type(argv[0]);
if (INIL_P(tmp)) {
if (RARRAY(tmp)->len != 2) {
rb_raise(rb_eArgError, "wrong first argument");
b
prog = RARRAY(tmp)->ptr[0];
SafeStringValue(prog);
argv[0] = RARRAY(tmp)->ptr[1l];
}
if (argc == 1 && prog == 0) {
VALUE cmd = argv[0];
SafeStringValue(cmd);
rb_proc_exec (RSTRING(cmd)->ptr);

}
else {
proc_exec_n(argc, argv, prog);
}
rb_sys_fail (RSTRING(argv[0])->ptr);
return Qnil; /+* dummy +*/

Prepared exclusively for Yeganefar

RuBY TYPE SYSTEM 281

The first parameter to this method may be a string or an array containing two strings.
However, the code doesn’t explicitly check the type of the argument. Instead, it first
calls rb_check_array_type, passing in the argument. What does this method do?

Let’s see.
VALUE
rb_check_array_type(ary)
VALUE ary;
{
return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
}
The plot thickens. Let’s track down rb_check_convert_type.
VALUE
rb_check_convert_type(val, type, tname, method)
VALUE val;
int type;
const char #tname, =method;
{
VALUE v;
/+ always convert T_DATA =x/
if (TYPE(val) == type && type != T_DATA) return val;
v = convert_type(val, tname, method, Qfalse);
if (NIL_P(v)) return Qnil;
if (TYPE(v) != type) {
rb_raise(rb_eTypeError, "%s#%s should return %s",
rb_obj_classname(val), method, tname);
}
return v;
}

Now we’re getting somewhere. If the object is the correct type (T_ARRAY in our exam-
ple), then the original object is returned. Otherwise, we don’t give up quite yet. Instead
we call our original object and ask if it can represent itself as an array (we call its
to_ary method). If it can, we’re happy and continue. The code is saying “I don’t need
an Array, I just need something that can be represented as an array.” This means that
Kernel.exec will accept as an array any parameter that implements a to_ary method.
We discuss these conversion protocols in more detail (but from the Ruby perspective)
starting on page 355.

What does all this mean to you as an extension writer? There are two messages. First,
try to avoid checking the types of parameters passed to you. Instead, see if there’s a
rb_check_xxx_type method that will convert the parameter into the type that you
need. If not, look for an existing conversion function (such as rb_Array, rb_Float,
or rb_Integer) that’ll do the trick for you. Second, it you’re writing an extension
that implements something that may be meaningfully used as a Ruby string or array,
consider implementing to_str or to_ary methods, allowing objects implemented by
your extension to be used in string or array contexts.

Prepared exclusively for Yeganefar

CREATING AN EXTENSION 282

Creating an Extension

Having written the source code for an extension, we now need to compile it so Ruby
can use it. We can either do this as a shared object, which is dynamically loaded at
runtime, or statically link the extension into the main Ruby interpreter itself. The basic
procedure is the same.

Create the C source code file(s) in a given directory.

Optionally create an supporting Ruby files in a 1ib subdirectory.
Create extconf.rb.

Run extconf.rb to create a Makefile for the C files in this directory.
Run make.

A i e

Run make install.

Creating a Makefile with extconf.rb

Figure 21.2 on the next page shows the overall workflow when building an extension.
The key to the whole process is the extconf.rb program that you, as a developer,
create. In extconf.rb, you write a simple program that determines what features are
available on the user’s system and where those features may be located. Executing
extconf.rb builds a customized Makefile, tailored for both your application and the
system on which it’s being compiled. When you run the make command against this
Makefile, your extension is built and (optionally) installed.

The simplest extconf.rb may be just two lines long, and for many extensions this is
sufficient.

require 'mkmf'
create_makefile("Test")

The first line brings in the mkmf library module (described starting on page 755). This
contains all the commands we’ll be using. The second line creates a Makefile for an
extension called “Test.” (Note that “Test” is the name of the extension; the makefile
will always be called Makefile.) Test will be built from all the C source files in the
current directory. When your code is loaded, Ruby will call its Init_Test method.

Let’s say that we run this extconf.rb programin a directory containing a single source
file, main. c. The result is a makefile that will build our extension. On a Linux box, this
executes the following commands.

gcc -fPIC -I/usr/local/lib/ruby/1.8/i686-1inux -g -02 \

-c main.c -o main.o
gcc -shared -o Test.so main.o -lc

The result of this compilation is Test . so, which may be dynamically linked into Ruby
at runtime with require.

Prepared exclusively for Yeganefar

CREATING AN EXTENSION 283

Figure 21.2. Building an extension

| extconf.rb | - | mkmf

ruby extconf.rb

Produces

| Makefile |

* o | - make - | libraries

Produces

| Test.so |

Under Mac OS X, the commands are different, but the result is the same: a shared
object (a bundle on the Mac) is created.
gcc -fno-common -g -02 -pipe -fno-common \
-I/usr/lib/ruby/1.8/powerpc-darwin \
-I/usr/lib/ruby/1.8/powerpc-darwin -c main.c

cc -dynamic -bundle -undefined suppress -flat_namespace \
-L'/usr/1lib"' -o Test.bundle main.o -1dl -lobjc

See how the mkmf commands have automatically located platform-specific libraries and
used options specific to the local compiler. Pretty neat, eh?

Although this basic extconf.rb program works for many simple extensions, you may
have to do some more work if your extension needs header files or libraries that aren’t
included in the default compilation environment or if you conditionally compile code
based on the presence of libraries or functions.

A common requirement is to specify nonstandard directories where include files and
libraries may be found. This is a two-step process. First, your extconf.rb should
contain one or more dir_config commands. This specifies a tag for a set of directories.
Then, when you run the extconf.rb program, you tell mkmf where the corresponding
physical directories are on the current system.

Prepared exclusively for Yeganefar

CREATING AN EXTENSION 284

Dividing Up the N e
Increasingly, extension writers are being good citizens. Rather than
install their work directory into one of Ruby’s library directories,
they’re using subdirectories to group their files together. This is easy
with extconf.rb. If the parameter to the create_makefile call con-
tains forward slashes, mkmf assumes that everything before the last
slash is a directory name and that the remainder is the extension
name. The extension will be installed into the given directory (relative
to the Ruby directory tree). In the following example, the extension
will still be named Test.

require 'mkmf'
create_makefile("wibble/Test")

However, when you require this class in a Ruby program, you'd write

require 'wibble/Test'

If extconf.rb contains the line dir_config(name), then you give the location of the
corresponding directories with the command-line options

—--with-name-include=directory
Add directory/include to the compile command.

--with-name-lib=directory
Add directory/1ib to the link command.

If (as is common) your include and library directories are subdirectories called include
and 1ib of some other directory, you can take a shortcut.

—--with-name-dir=directory
Add directory/1ib and directory/include to the link command and compile com-
mand, respectively.

As well as specifying all these --with options when you run extconf.rb, you can also
use the ——with options that were specified when Ruby was built for your machine. This
means you can discover and use the locations of libraries that are used by Ruby itself.

To make all this concrete, let’s say you need to use the vendor’s CDJukebox libraries
and include files for the CD player we’re developing. Your extconf.rb may contain

require 'mkmf'
dir_config('cdjukebox")

.. more stuff
create_makefile("CDPlayer")

Prepared exclusively for Yeganefar

CREATING AN EXTENSION 285

You’d then run extconf.rb with something like

% ruby extconf.rb --with-cdjukebox-dir=/usr/local/cdjb

The generated Makefile would assume that /usr/local/cdjb/1ib contained the
libraries and /usr/local/cdjb/include the include files.

The dir_config command adds to the list of places to search for libraries and include
files. It does not, however, link the libraries into your application. To do that, you’ll
need to use one or more have_library or find_library commands.

have_library looks for a given entry point in a named library. If it finds the entry
point, it adds the library to the list of libraries to be used when linking your extension.
find_library is similar but allows you to specify a list of directories to search for the
library. Here are the contents of the extconf.rb that we use to link our CD player.
require 'mkmf'
dir_config("cdjukebox")

have_library("cdjukebox", "new_jukebox")
create_makefile("CDPlayer")

A particular library may be in different places depending on the host system. The X
Window system, for example, is notorious for living in different directories on differ-
ent systems. The find_library command will search a list of supplied directories to
find the right one (this is different from have_library, which uses only configuration
information for the search). For example, to create a Makefile that uses X Windows
and a JPEG library, extconf.rb may contain

require 'mkmf’

if have_library("jpeg","jpeg_mem_init") and
find_library("X11", "XOpenDisplay",

"/usr/X11/1ib", # list of directories
"/usr/X11R6/1ib", # to check
"/usr/openwin/1ib") # for library
then
create_makefile("XThing")
else
puts "No X/JPEG support available"
end

We’ve added some additional functionality to this program. All the mkmf commands
return false if they fail. This means we can write an extconf.rb that generates a
Makefile only if everything it needs is present. The Ruby distribution does this so that
it will try to compile only those extensions that are supported on your system.

You also may want your extension code to be able to configure the features it uses
depending on the target environment. For example, our CD jukebox may be able to use
a high-performance MP3 decoder if the end user has one installed. We can check by
looking for its header file.

Prepared exclusively for Yeganefar

CREATING AN EXTENSION 286

require 'mkmf'
dir_config('cdjukebox")
have_library('cdjb', 'CDPlayerNew')
have_header('hp_mp3.h'")
create_makefile("CDJukeBox")

We can also check to see if the target environment has a particular function in any of
the libraries we’ll be using. For example, the setpriority call would be useful but
isn’t always available. We can check for it with

require 'mkmf'

dir_config('cdjukebox")

have_func('setpriority')
create_makefile("CDJukeBox")

Both have_header and have_func define preprocessor constants if they find their tar-
gets. The names are formed by converting the target name to uppercase and prepending
HAVE_. Your C code can take advantage of this using constructs such as

#1f defined(HAVE_HP_MP3_H)
include <hp_mp3.h>
#endif

#1f defined (HAVE_SETPRIORITY)
err = setpriority(PRIOR_PROCESS, 0, -10)
#endif

If you have special requirements that can’t be met with all these mkmf commands, your
program can directly add to the global variables $CFLAGS and $LFLAGS, which are
passed to the compiler and linker, respectively.

Sometimes you’ll create an extconf.rb, and it just doesn’t seem to work. You give it
the name of a library, and it swears that no such library has ever existed on the entire
planet. You tweak and tweak, but mkmf still can’t find the library you need. It would
be nice if you could find out exactly what it’s doing behind the scenes. Well, you can.
Each time you run your extconf.rb script, mkmf generates a log file containing details
of what it did. If you look in mkmf.log, you’ll be able to see what steps the program
used to try to find the libraries you requested. Sometimes trying these steps manually
will help you track down the problem.

Installation Target

The Makefile produced by your extconf.rb will include an “install” target. This will
copy your shared library object into the correct place on your (or your users’) local
file system. The destination is tied to the installation location of the Ruby interpreter
you used to run extconf.rb in the first place. If you have multiple Ruby interpreters
installed on your box, your extension will be installed into the directory tree of the one
that ran extconf.rb.

Prepared exclusively for Yeganefar

EMBEDDING A RUBY INTERPRETER 287

In addition to installing the shared library, extconf.rb will check for the presence of a
lib/ subdirectory. If it finds one, it will arrange for any Ruby files there to be installed
along with your shared object. This is useful if you want to split the work of writing
your extension between low-level C code and higher-level Ruby code.

Static Linking

Finally, if your system doesn’t support dynamic linking, or if you have an extension
module that you want to have statically linked into Ruby itself, edit the file ext/Setup
in the distribution and add your directory to the list of extensions in the file. In your
extension’s directory, create a file named MANIFEST containing a list of all the files
in your extension (source, extconf.rb, 1ib/, and so on). Then rebuild Ruby. The
extensions listed in Setup will be statically linked into the Ruby executable. If you
want to disable any dynamic linking, and link all extensions statically, edit ext/Setup
to contain the following option.

option nodynamic

A Shortcut

If you are extending an existing library written in C or C++, you may want to investigate
SWIG (http://www.swig.org). SWIG is an interface generator: it takes a library def-
inition (typically from a header file) and automatically generates the glue code needed
to access that library from another language. SWIG supports Ruby, meaning that it can
generate the C source files that wrap external libraries in Ruby classes.

Embedding a Ruby Interpreter

In addition to extending Ruby by adding C code, you can also turn the problem around
and embed Ruby itself within your application. You have two ways to do this. The first
is to let the interpreter take control by calling ruby_run. This is the easiest approach,
but it has one significant drawback—the interpreter never returns from a ruby_run call.
Here’s an example.

#include "ruby.h"

int main(void) {
/% ... our own application stuff ... %/
ruby_init();
ruby_init_loadpath();
ruby_script("embedded");
rb_load_file("start.rb");
ruby_run();
exit(0);

Prepared exclusively for Yeganefar

http://www.swig.org

EMBEDDING A RUBY INTERPRETER 288

To initialize the Ruby interpreter, you need to call ruby_init(). But on some plat-
forms, you may need to take special steps before that.

#if defined(NT)
NtInitialize(&argc, &argv);

#endif

#if defined(_MACOS__) && defined(__MWERKS_)
argc = ccommand(&argv);

#endif

See main.c in the Ruby distribution for any other special defines or setup needed for
your platform.

You need the Ruby include and library files accessible to compile this embedded code.
On my box (Mac OS X) I have the Ruby 1.8 interpreter installed in a private directory,
so my Makefile looks like this.

WHERE=/Users/dave/rubyl.8/1ib/ruby/1.8/powerpc-darwin/
CFLAGS=-I$(WHERE) -g
LDFLAGS=-L$ (WHERE) -lruby -1dl -lobjc

embed: embed.o
$(CC) -0 embed embed.o $(LDFLAGS)

The second way of embedding Ruby allows Ruby code and your C code to engage in
more of a dialogue: the C code calls some Ruby code, and the Ruby code responds.
You do this by initializing the interpreter as normal. Then, rather than entering the
interpreter’s main loop, you instead invoke specific methods in your Ruby code. When
these methods return, your C code gets control back.

There’s a wrinkle, though. If the Ruby code raises an exception and it isn’t caught, your
C program will terminate. To overcome this, you need to do what the interpreter does
and protect all calls that could raise an exception. This can get messy. The rb_protect
method call wraps the call to another C function. That second function should invoke
our Ruby method. However, the method wrapped by rb_protect is defined to take just
a single parameter. To pass more involves some ugly C casting.

Let’s look at an example. Here’s a simple Ruby class that implements a method to
return the sum of the numbers from one to max.

class Summer
def sum(max)
raise "Invalid maximum #{max}" if max < O
(max*max + max)/2
end
end

Let’s write a C program that calls an instance of this class multiple times. To create
the instance, we’ll get the class object (by looking for a top-level constant whose name
is the name of our class). We’ll then ask Ruby to create an instance of that class—
rb_class_new_instance is actually a call to Class.new. (The two initial O parame-

Prepared exclusively for Yeganefar

EMBEDDING A RUBY INTERPRETER 289

ters are the argument count and a dummy pointer to the arguments themselves.) Once
we have that object, we can invoke its sum method using rb_funcall.

#include "ruby.h"
static int id_sum;
int Values[] = { 5, 10, 15, -1, 20, 0 };
static VALUE wrap_sum(VALUE args) {
VALUE =#values = (VALUE =)args;
VALUE summer = values[O0];
VALUE max = values[1];
return rb_funcall(summer, id_sum, 1, max);

}
static VALUE protected_sum(VALUE summer, VALUE max) {
int error;
VALUE args[2];
VALUE result;
args[0] = summer;
args[1] = max;
result = rb_protect(wrap_sum, (VALUE)args, &error);
return error ? Qnil : result;

int main(void) {
int value;
int *next = Values;
ruby_init();
ruby_init_loadpath();
ruby_script("embedded");
rb_require("sum.rb");
// get an instance of Summer
VALUE summer = rb_class_new_instance(0, O,
rb_const_get(rb_cObject, rb_intern("Summer")));

id_sum = rb_intern("sum");
while (value = =next++) {

VALUE result = protected_sum(summer, INT2NUM(value));

if (NIL_P(result))

printf("Sum to %d doesn't compute!\n", value);
else
printf("Sum to %d is %d\n", value, NUM2INT(result));
}
ruby_finalize();
exit(0);
}

One last thing: the Ruby interpreter was not originally written with embedding in mind.
Probably the biggest problem is that it maintains state in global variables, so it isn’t
thread-safe. You can embed Ruby—just one interpreter per process.

Prepared exclusively for Yeganefar

BRIDGING RUBY TO OTHER LANGUAGES 290

A good resource for embedding Ruby in C++ programs is at
http://metaeditor.sourceforge.net/embed/. This page also contains links to
other examples of embedding Ruby.

API: Embedded Ruby API

void ruby_init()
Sets up and initializes the interpreter. This function should be called
before any other Ruby-related functions.

void ruby_init_loadpath()
Initializes the $: (load path) variable; necessary if your code loads
any library modules.

void ruby_options(int argc, char =xargv)
Gives the Ruby interpreter the command-line options.

void ruby_script(char #name)
Sets the name of the Ruby script (and $0) to name.

void rb_load_file(char =xfile)
Loads the given file into the interpreter.

void ruby_run()
Runs the interpreter.

void ruby_finalize()
Shuts down the interpreter.

For another example of embedding a Ruby interpreter within another program, see also
eruby, which is described beginning on page 229.

Bridging Ruby to Other Languages

So far, we’ve discussed extending Ruby by adding routines written in C. However, you
can write extensions in just about any language, as long as you can bridge the two
languages with C. Almost anything is possible, including awkward marriages of Ruby
and C++, Ruby and Java, and so on.

But you may be able to accomplish the same thing without resorting to C code. For
example, you could bridge to other languages using middleware such as SOAP or
COM. See the section on SOAP (page 236) and the section on Windows Automation
beginning on page 255 for more details.

Prepared exclusively for Yeganefar

http://metaeditor.sourceforge.net/embed/

RuBY C LANGUAGE API 291

Ruby C Language API

Last, but by no means least, here are some C-level functions that you may find useful
when writing an extension.

Some functions require an ID: you can obtain an ID for a string by using rb_intern
and reconstruct the name from an ID by using rb_id2name.

As most of these C functions have Ruby equivalents that are already described in detail
elsewhere in this book, the descriptions here will be brief.

The following listing is not complete. Many more functions are available—too many
to document them all, as it turns out. If you need a method that you can’t find here,
check ruby.h o