

BRUECK
TANNER

If Python 2.1 can do it, you can do it too . . .
Packed with crystal-clear explanations, hands-on examples, and a complete language reference, this
authoritative guide gives you all the tools you need for rapid application development with Python 2.1.
From variables, expressions, and other basics to XML, multimedia, and multithreading, Python pros
Dave Brueck and Stephen Tanner show you step by step how to master Python components, put them
together, and create full-featured applications — in practically no time!

Inside, you’ll find complete
coverage of Python 2.1
• Get up to speed on basics with a quick one-hour tutorial

• Work with Python data types, expressions, and object-
oriented features

• Take advantage of Python operating system services
and database features

• Create Web-savvy applications that can handle
Internet data and parse XML

• Build graphical applications using Tkinter and wxPython

• Process sound and image files

• Harness multithreading, encryption, tokenizing, and other
advanced techniques

• Use Python tools to create number-crunching routines
and internationalized applications

• Distribute Python applications and modules on a
Windows or UNIX system

Shelving Category:
Programming

Reader Level:
Beginning to Advanced

ISBN 0-7645-4807-7

$39.99 USA
$59.99 Canada
£29.99 UK

Python
2.1

Python
2.1

Master all major
Python components
and see how they
work together

Leverage Python
standard libraries
for rapid application
development

Harness XML,
Unicode, and other
cutting-edge
technologies

Python 2.1

Dave Brueck and Stephen Tanner

,!7IA7G4-feiahj!:p;N;t;T;t
Includes a complete
language reference

INCLUDES A

COMPLETE
PYTHON
LANGUAGE
REFERENCE

w w w . h u n g r y m i n d s . c o m

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

Use
scales and
listboxes
to design
a color
scheme Python 2.1

*85555-AHCEJh

100%
C O M P R E H E N S I V E

Bible

See the
chat/whiteboard

application
in action

Use the
device

contexts
to draw
graphics

4807-7 cover 5/16/01 12:25 PM Page 1

Python 2.1 Bible

4807-7 FM.F 5/24/01 8:57 AM Page i

4807-7 FM.F 5/24/01 8:57 AM Page ii

Python 2.1 Bible

Dave Brueck and Stephen Tanner

Hungry Minds, Inc.

New York, NY ✦ Cleveland, OH ✦ Indianapolis, IN ✦

4807-7 FM.F 5/24/01 8:57 AM Page iii

Python 2.1 Bible

Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

Library of Congress Catalog Card No.: 2001090703

ISBN: 0-7645-4807-7

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RS/QW/QR/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; by
Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc. for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for the
Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
Department within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including
discounts, premium and bulk quantity sales, and
foreign-language translations, please contact our
Customer Care Department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
Department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales Department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations Department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All trademarks are the property of their respective owners. Hungry Minds, Inc., is not
associated with any product or vendor mentioned in this book.

is a trademark of Hungry Minds, Inc.

4807-7 FM.F 5/24/01 8:57 AM Page iv

4807-7 FM.F 5/24/01 8:57 AM Page v

Credits
Acquisitions Editor

Debra Williams Cauley

Project Editor

Barbra Guerra

Technical Editor

Joseph Traub

Copy Editors

Lisa Blake

Luann Rouff

Editorial Manager

Colleen Totz

Project Coordinator

Regina Snyder

Graphics and Production Specialists

Brian Torwelle

Quality Control Technicians

Laura Albert, Carl Pierce, Nancy Price,

Charles Spencer

Book Designer

Drew R. Moore

Proofreading and Indexing

TECHBOOKS Production Services

About the Authors
Dave Brueck is a professional software developer who loves to use Python when-

ever possible. His current projects include developing networked games, develop-

ing Python interfaces to his stockbroker’s C SDK, and plotting to overturn various

world governments. Previously Dave was a contributing author to 3D Studio Max R3
Bible by Kelly Murdock, published by Hungry Minds (formerly IDG Books

Worldwide).

Stephen Tanner is currently using Python to build a black-box software testing frame-

work. His side projects include Python tools to perform probabilistic derivatives-

trading analysis, and to download mass quantities of .mp3s.

Aside from their “real” jobs, Dave and Stephen enjoy convincing people to pay them

big bucks for consulting jobs.

4807-7 FM.F 5/24/01 8:57 AM Page vi

To Jennie, Rachael, and Jacob — thanks for being patient.
To Pokey the Penguin — NOW who is going to the restaurant?
To the weeds in my unfinished back yard — playtime is over.
— Dave

For great justice!
— Stephen

4807-7 FM.F 5/24/01 8:57 AM Page vii

4807-7 FM.F 5/24/01 8:57 AM Page viii

Preface

Python is an object-oriented, interpreted programming language useful for a

wide range of tasks, from small scripts to entire applications. It is freely avail-

able in binary or source code form and can be used royalty-free on all major plat-

forms including Windows, Macintosh, Linux, FreeBSD, and Solaris.

Compared with most programming languages, Python is very easy to learn and is

considered by many to be the language of choice for beginning programmers.

Instead of outgrowing the language, however, experienced developers enjoy lower

maintenance costs without missing out on any features found in other major lan-

guages such as C++, Java, or Perl.

Python is well known for its usefulness as a rapid application development tool,

and we often hear of Python projects that finish in hours or days instead of the

weeks or months that would have been required with traditional programming lan-

guages. It boasts a rich, full-featured set of standard libraries as well as the ability

to interface with libraries in other languages like C++.

Despite being incredibly powerful and enabling very rapid application develop-

ment, the real reason we love to use Python is that it’s just plain fun. Python is like a

lever — with it, you can do some pretty heavy lifting with very little effort. It frees

you from lots of annoying, mundane work, and before long you begin to wonder

how you endured your pre-Python days.

About This Book
Although Python is a great first programming language, in this book we do assume

that you already have some programming experience.

The first section of the book introduces you to Python and tells you everything you

need to know to get started. If you’re new to Python, then that section is definitely

the place to start; otherwise, it serves as a useful language reference with many

examples.

We’ve worked hard to ensure that the book works well as a quick reference. Often

the quickest way to understand a feature is to see it in use: Flip through the book’s

pages and you’ll see that they are dripping with code examples.

4807-7 FM.F 5/24/01 8:57 AM Page ix

x Python 2.1 Bible

All the examples in the book work and are things you can try on your own. Where

possible, the chapters also build complete applications that have useful and inter-

esting purposes. We’ve gone to great lengths to explain not only how to use each

module or feature but also why such a feature is useful.

What You Need
Besides the book, all you need is a properly installed copy of Python. Appendix A

lists some Python resources available online, but a good place to start is

www.python.org; it has prebuilt versions of Python for all major platforms as well

as the Python source code itself. Once you’ve downloaded Python you’ll be under-

way in a matter of minutes.

If you’re a user of Microsoft Windows, you can download an excellent distribution

of Python from www.activestate.com. ActiveState provides a single download

that includes Python, a free development environment and debugger, and Win32

extensions.

PythonWare (www.pythonware.com) also offers a distribution of Python that

comes bundled with popular third-party Python modules. PythonWare’s version

peacefully coexists with older versions of Python, and the small distribution size

makes for a quick download.

No matter which site you choose, Python is free, so go download it and get started.

How the Book Is Organized
We’ve tried to organize the book so that related topics are close together. If you find

the topic of one chapter particularly interesting, chances are that the chapters

before and after it will pique your interest too.

Part I: The Python Language
The first chapter in this section is a crash course in Python programming. If you

have many programming languages under your belt or just want to whet your

appetite, try out the examples in that chapter to get a feel for Python’s syntax and

powerful features.

The remaining chapters in this first section cover the same material as Chapter 1

but in much greater detail. They work equally well as an initial tutorial of the

Python language and as a language reference for seasoned Pythonistas.

4807-7 FM.F 5/24/01 8:57 AM Page x

xiPreface

Part II: Files, Data Storage, and
Operating System Services
This part covers Python’s powerful string and regular expression handling features

and shows you how to access files and directories. In this section we also cover

how Python enables you to easily write objects to disk or send them across net-

work connections, and how to access relational databases from your programs.

Part III: Networking and the Internet
Python is an ideal tool for XML processing, CGI scripting, and many other network-

ing tasks. This part guides you through Internet programming with Python, whether

you need to send e-mail, run a Web site, or just amass the world’s largest .mp3

collection.

Part IV: User Interfaces and Multimedia
This part covers Tkinter and wxPython, two excellent tools for building a GUI in

Python. In this part, we also cover Python’s text interface tools, including support

for Curses. This section also delves into Python’s support for graphics and sound.

Part V: Advanced Python Programming
This part answers the questions that come up in larger projects: How do I create

multithreaded Python applications? How can I optimize my code, or glue it to C

libraries? How can I make my program behave correctly in other countries? We also

cover Python’s support for number crunching and security.

Part VI: Deploying Python Applications
This part covers what you need to know to deploy your Python programs quickly

and painlessly. Python’s distribution utilities are great for bundling and distributing

applications on many platforms.

Part VII: Platform-Specific Support
Sometimes it’s nice to take advantage of an operating system’s strengths. This part

addresses some Windows-specific topics (like accessing the registry), and some

UNIX-specific topics (like file descriptors).

4807-7 FM.F 5/24/01 8:57 AM Page xi

xii Python 2.1 Bible

Appendixes
Appendix A is a guide to online Python resources. Appendix B introduces you to

IDLE and PythonWin — two great IDEs for developing Python programs. It also

explains how to make Emacs handle Python code.

Conventions Used in This Book
Source code, function definitions, and interactive sessions appear in monospaced
font. Comments appear in bold monospaced font preceded by a hash mark for

easy reading. For example, this quick interpreter session checks the version of the

Python interpreter. The >>> at the start of a line is the Python interpreter prompt

and the text after the prompt is what you would type:

>>> import sys # This is a comment.
>>> print sys.version
2.0 (#8, Oct 16 2000, 17:27:58) [MSC 32 bit (Intel)]

References to variables in function definitions appear in italics. For example, the

function random.choice(seq) chooses a random element from the sequence seq
and returns it.

We divided up the writing of this book’s chapters between ourselves. So, through-

out the book’s body, we use “I” (not “we”) to relate our individual opinions and

experiences.

What the Icons Mean
Throughout the book, we’ve used icons in the left margin to call your attention to

points that are particularly important.

This icon indicates that the material discussed is new to Python 2.0 or Python 2.1.

The Note icons tell you that something is important — perhaps a concept that may
help you master the task at hand or something fundamental for understanding
subsequent material.

Tip icons indicate a more efficient way of doing something or a technique that
may not be obvious.

Tip

Note

New
Feature

4807-7 FM.F 5/24/01 8:57 AM Page xii

xiiiPreface

Caution icons mean that the operation we’re describing can cause problems if
you’re not careful.

We use the Cross-Reference icon to refer you to other sections or chapters that
have more to say on a subject.

Visit Us!
We’ve set up a Web site for the book at www.pythonapocrypha.com. On the site

you’ll find additional information, links to Python Web sites, and all the code sam-

ples from the book (so you can be lazy and not type them in). The Web site also has

a section where you can give feedback on the book, and we post answers to com-

mon questions.

Have fun and enjoy the book!

Cross-
Reference

Caution

4807-7 FM.F 5/24/01 8:57 AM Page xiii

Acknowledgments

Although this book represents many hours of work on our part, there are many

others without whom we would have failed.

First and foremost is Guido van Rossum, Python’s creator and Benevolent Dictator

for Life. We’re glad he created such a cool language and that many others have

joined him along the way.

Many thanks go to the good people at Hungry Minds: Debra Williams Cauley, our

acquisitions editor, for making it all possible; Barb Guerra, our project editor, for

keeping everything on track; Joseph Traub, our technical editor, for clarifying expo-

sition and squashing bugs; and Lisa Blake and Luann Rouff, our copy editors, who

fixed more broken grammar and passive-voice constructions than a stick could be

shaken at.

4807-7 FM.F 5/24/01 8:57 AM Page xiv

Contents at a Glance
Preface . ix

Acknowledgments . xiv

Part I: The Python Language . 1
Chapter 1: Python in an Hour . 3

Chapter 2: Identifiers, Variables, and Numeric Types 19

Chapter 3: Expressions and Strings . 29

Chapter 4: Advanced Data Types . 49

Chapter 5: Control Flow . 73

Chapter 6: Program Organization . 87

Chapter 7: Object-Oriented Python . 99

Chapter 8: Input and Output . 119

Part II: Files, Data Storage, and Operating System Services 131
Chapter 9: Processing Strings and Regular Expressions 133

Chapter 10: Working with Files and Directories 155

Chapter 11: Using Other Operating System Services 179

Chapter 12: Storing Data and Objects . 195

Chapter 13: Accessing Date and Time . 219

Chapter 14: Using Databases . 229

Part III: Networking and the Internet 245
Chapter 15: Networking . 247

Chapter 16: Speaking Internet Protocols . 275

Chapter 17: Handling Internet Data . 303

Chapter 18: Parsing XML and Other Markup Languages 325

Part IV: User Interfaces and Multimedia 345
Chapter 19: Tinkering with Tkinter . 347

Chapter 20: Using Advanced Tkinter Widgets . 371

Chapter 21: Building User Interfaces with wxPython 391

Chapter 22: Using Curses . 415

Chapter 23: Building Simple Command Interpreters 433

Chapter 24: Playing Sound . 453

4807-7 FM.F 5/24/01 8:57 AM Page xv

Part V: Advanced Python Programming 465
Chapter 25: Processing Images . 467

Chapter 26: Multithreading . 481

Chapter 27: Debugging, Profiling, and Optimization 497

Chapter 28: Security and Encryption . 515

Chapter 29: Writing Extension Modules . 527

Chapter 30: Embedding the Python Interpreter 553

Chapter 31: Number Crunching . 581

Chapter 32: Using NumPy . 589

Chapter 33: Parsing and Interpreting Python Code 605

Part VI: Deploying Python Applications 617
Chapter 34: Creating Worldwide Applications . 619

Chapter 35: Customizing Import Behavior . 629

Chapter 36: Distributing Modules and Applications 643

Part VII: Platform-Specific Support . 659
Chapter 37: Windows . 661

Chapter 38: UNIX-Compatible Modules . 671

Appendix A: Online Resources . 685

Appendix B: Python Development Environments 689

Index . 701

4807-7 FM.F 5/24/01 8:57 AM Page xvi

Contents
Preface . ix

Acknowledgments . xiv

Part I: The Python Language 1

Chapter 1: Python in an Hour . 3
Jumping In: Starting the Python Interpreter 3

Experimenting with Variables and Expressions 4

Pocket calculator . 4

Variables . 5

Defining a Function . 5

Running a Python Program . 6

Looping and Control . 6

Integer division . 7

Looping . 8

Branching with if-statements . 8

Breaking and continuing . 8

Lists and Tuples . 9

Tuples . 9

Slicing and dicing . 9

Dictionaries . 10

Reading and Writing Files . 11

Sample Program: Word Frequencies . 11

Loading and Using Modules . 14

Creating a Class . 14

Some quick object jargon . 14

Object orientation, Python style . 15

Keep off the grass — Accessing class members 15

Example: the point class . 15

Recommended Reading . 17

Chapter 2: Identifiers, Variables, and Numeric Types 19
Identifiers and Operators . 19

Reserved words . 20

Operators . 20

Numeric Types . 21

Integers . 21

Long integers . 21

Floating point numbers . 22

4807-7 FM.F 5/24/01 8:57 AM Page xvii

xviii Python 2.1 Bible

Imaginary numbers . 22

Manipulating numeric types . 23

Assigning Values to Variables . 26

Simple assignment statements . 26

Multiple assignment . 27

Augmented assignment . 27

Chapter 3: Expressions and Strings . 29
Expressions . 29

Comparing numeric types . 29

Compound expressions. 31

Complex expressions . 32

Operator precedence . 33

Strings . 34

String literals . 35

Manipulating strings . 37

Comparing strings . 42

Unicode string literals . 43

Converting Between Simple Types . 43

Converting to numerical types . 44

Converting to strings . 45

Chapter 4: Advanced Data Types . 49
Grouping Data with Sequences . 49

Creating lists . 50

Creating tuples . 52

Working with Sequences . 52

Joining and repeating with arithmetic operators 52

Comparing and membership testing 53

Accessing parts of sequences . 53

Iterating with for...in . 55

Using sequence utility functions . 55

Using Additional List Object Features . 57

Additional operations . 57

List object methods . 58

Mapping Information with Dictionaries . 60

Creating and adding to dictionaries . 61

Accessing and updating dictionary mappings 61

Additional dictionary operations . 62

Understanding References . 63

Object identity . 63

Counting references . 64

Copying Complex Objects . 65

Shallow copies . 65

Deep copies . 66

4807-7 FM.F 5/24/01 8:57 AM Page xviii

xixContents

Identifying Data Types . 67

Working with Array Objects . 68

Creating arrays . 68

Converting between types . 69

Array methods and operations . 71

Chapter 5: Control Flow . 73
Making Decisions with If-Statements . 73

Using For-Loops . 74

Anatomy of a for-loop . 74

Looping example: encoding strings . 75

Ranges and xranges . 76

Breaking, continuing, and else-clauses 77

Changing horses in midstream . 78

Using While-Loops . 79

Throwing and Catching Exceptions . 79

Passing the buck: propagating exceptions 80

Handling an exception . 80

More on exceptions . 81

Defining and raising exceptions . 82

Cleaning up with finally . 82

Debugging with Assertions . 83

Assertions in Python . 83

Toggling assertions . 84

Example: Game of Life . 84

Chapter 6: Program Organization . 87
Defining Functions . 87

Pass by object reference . 88

All about parameters . 88

Arbitrary arguments . 89

Apply: passing arguments from a tuple 90

A bit of functional programming . 90

Grouping Code with Modules . 91

Laying out a module . 91

Taking inventory of a module . 92

Importing Modules . 92

What else happens upon import? . 93

Reimporting modules . 93

Exotic imports . 94

Locating Modules . 94

Python path . 94

Compiled files . 95

Understanding Scope Rules . 95

Is it local or global? . 95

Listing namespace contents . 96

Grouping Modules into Packages . 96

Compiling and Running Programmatically 97

4807-7 FM.F 5/24/01 8:57 AM Page xix

xx Python 2.1 Bible

Chapter 7: Object-Oriented Python . 99
Overview of Object-Oriented Python . 99

Creating Classes and Instance Objects . 100

Creating instance objects . 101

More on accessing attributes . 101

Deriving New Classes from Other Classes 102

Multiple inheritance . 103

Creating a custom list class . 104

Creating a custom string class . 105

Creating a custom dictionary class 106

Hiding Private Data . 106

Identifying Class Membership . 107

Overloading Standard Behaviors . 108

Overloading basic functionality . 109

Overloading numeric operators . 111

Overloading sequence and dictionary operators 112

Overloading bitwise operators . 114

Overloading type conversions . 115

Using Weak References . 115

Creating weak references . 116

Creating proxy objects . 117

Chapter 8: Input and Output . 119
Printing to the Screen . 119

Accessing Keyboard Input . 120

raw_input . 120

input . 121

Opening, Closing, and Positioning Files . 121

open . 122

File object information . 123

close . 123

File position . 123

Writing Files . 124

Reading Files . 125

Accessing Standard I/O . 126

Using Filelike Objects . 127

Part II: Files, Data Storage, and
Operating System Services 131

Chapter 9: Processing Strings and Regular Expressions 133
Using String Objects . 133

String formatting methods . 134

String case-changing methods . 134

String format tests (the is-methods) 135

4807-7 FM.F 5/24/01 8:57 AM Page xx

xxiContents

String searching methods . 135

String manipulation methods . 137

Using the String Module . 138

Character categories . 138

Miscellaneous functions . 139

Defining Regular Expressions . 140

Regular expression syntax . 140

Backslashes and raw strings . 142

Character groups and other backslash magic 142

Nongreedy matching . 143

Extensions . 143

Creating and Using Regular Expression Objects 144

Using regular expression objects . 145

Applying regular expressions without compiling 147

Using Match Objects . 147

group([groupid,...]) . 148

groups([nomatch]) . 148

groupdict([nomatch]) . 148

start([groupid]), end([groupid]), span([groupid]) 148

re,string,pos,endpos, . 149

Treating Strings as Files . 149

Encoding Text . 151

Using Unicode strings . 151

Reading and writing non-ASCII strings 151

Using the Unicode database . 153

Formatting Floating Point Numbers . 154

fix(number,precision) . 154

sci(number,precision) . 154

Chapter 10: Working with Files and Directories 155
Retrieving File and Directory Information 155

The piecemeal approach . 156

The I-want-it-all approach . 159

Building and Dissecting Paths . 161

Joining path parts . 161

Breaking paths into pieces . 162

Other path modifiers . 162

Listing Directories and Matching File Names 163

Obtaining Environment and Argument Information 165

Environment variables . 165

Current working directory . 165

Command-line parameters . 166

Example: Recursive Grep Utility . 166

Copying, Renaming, and Removing Paths 168

Copying and linking . 168

Renaming . 168

Removing . 169

4807-7 FM.F 5/24/01 8:57 AM Page xxi

xxii Python 2.1 Bible

Creating Directories and Temporary Files 169

Comparing Files and Directories . 171

Working with File Descriptors . 173

General file descriptor functions . 173

Pipes . 174

Other File Processing Techniques . 174

Randomly accessing lines in text files 174

Using memory-mapped files . 175

Iterating over several files . 176

Chapter 11: Using Other Operating System Services 179
Executing Shell Commands and Other Programs 179

Spawning Child Processes . 181

popen functions . 181

spawn functions . 182

fork . 183

Process management and termination 183

Handling Process Information . 185

Retrieving System Information . 187

Managing Configuration Files . 188

Understanding Error Names . 190

Handling Asynchronous Signals . 191

Chapter 12: Storing Data and Objects 195
Data Storage Overview . 195

Text versus binary . 195

Compression . 196

Byte order (“Endianness”) . 196

Object state . 196

Destination . 196

On the receiving end . 196

Loading and Saving Objects . 197

Pickling with pickle . 197

The marshal module . 200

Example: Moving Objects Across a Network 200

Using Database-Like Storage . 203

Converting to and from C Structures . 204

Converting Data to Standard Formats . 208

Sun’s XDR format . 208

Other formats . 210

Compressing Data . 210

zlib . 211

gzip . 213

zipfile . 214

4807-7 FM.F 5/24/01 8:57 AM Page xxii

xxiiiContents

Chapter 13: Accessing Date and Time 219
Telling Time in Python . 219

Ticks . 219

TimeTuple . 220

Stopwatch time . 220

Converting Between Time Formats . 221

Parsing and Printing Dates and Times . 222

Fancy formatting . 222

Parsing time . 223

Localization . 223

Accessing the Calendar . 224

Printing monthly and yearly calendars 224

Calendar information . 225

Leap years . 226

Using Time Zones . 226

Allowing Two-Digit Years . 227

Chapter 14: Using Databases . 229
Using Disk-Based Dictionaries . 229

DBM Example: Tracking Telephone Numbers 231

Advanced Disk-Based Dictionaries . 232

dbm . 232

gdbm . 232

dbhash . 233

Using BSD database objects . 233

Accessing Relational Databases . 234

Connection objects . 234

Transactions . 234

Cursor objects . 235

Example: “Sounds-Like” Queries . 235

Examining Relational Metadata . 237

Example: Creating Auditing Tables . 238

Advanced Features of the DB API . 240

Input and output sizes . 241

Reusable SQL statements . 242

Database library information . 242

Error hierarchy . 243

Part III: Networking and the Internet 245

Chapter 15: Networking . 247
Networking Background . 247

Working with Addresses and Host Names 248

4807-7 FM.F 5/24/01 8:57 AM Page xxiii

xxiv Python 2.1 Bible

Communicating with Low-Level Sockets . 250

Creating and destroying sockets . 250

Connecting sockets . 251

Sending and receiving data . 252

Using socket options . 253

Converting numbers . 256

Example: A Multicast Chat Application . 256

Using SocketServers . 261

The SocketServer family . 261

Request handlers . 263

Processing Web Browser Requests . 264

BaseHTTPRequestHandler . 265

SimpleHTTPRequestHandler . 266

CGIHTTPRequestHandler . 267

Example: form handler CGI script . 267

Handling Multiple Requests Without Threads 269

asyncore . 271

Chapter 16: Speaking Internet Protocols 275
Python’s Internet Protocol Support . 275

Retrieving Internet Resources . 276

Manipulating URLs . 276

Treating a URL as a file . 277

URLopeners . 277

Extended URL opening . 278

Sending HTTP Requests . 279

Building and using request objects 279

Sending and Receiving E-Mail . 281

Accessing POP3 accounts . 281

Accessing SMTP accounts . 283

Accessing IMAP accounts . 285

Transferring Files via FTP . 289

Retrieving Resources Using Gopher . 291

Working with Newsgroups . 292

Using the Telnet Protocol . 296

Connecting . 296

Reading and writing . 296

Watching and waiting . 297

Other methods . 297

Writing CGI Scripts . 298

Setting up CGI scripts . 298

Accessing form fields . 299

Advanced CGI functions . 301

A note on debugging . 301

A note on security . 302

4807-7 FM.F 5/24/01 8:57 AM Page xxiv

xxvContents

Chapter 17: Handling Internet Data 303
Manipulating URLs . 303

Formatting Text . 304

Formatter interface . 304

Writer interface . 305

Other module resources . 306

Reading Web Spider Robot Files . 307

Viewing Files in a Web Browser . 308

Dissecting E-Mail Messages . 309

Parsing a message . 309

Retrieving header values . 309

Other members . 310

Address lists . 310

rfc822 utility functions . 311

MIME messages . 311

Working with MIME Encoding . 312

Encoding and decoding MIME messages 312

Parsing multipart MIME messages . 313

Writing out multipart MIME messages 313

Handling document types . 316

Encoding and Decoding Message Data . 317

Uuencode . 317

Base64 . 318

Quoted-printable . 319

Working with UNIX Mailboxes . 320

Working with MH mailboxes . 320

Using Web Cookies . 321

Cookies . 322

Morsels . 322

Example: a cookie importer . 323

Chapter 18: Parsing XML and Other Markup Languages 325
Markup Language Basics . 325

Tags are for metatext . 326

Tag rules . 326

Namespaces . 327

Processing XML . 327

Parsing HTML Files . 327

HTMLParser methods . 328

Handling tags . 328

Other parsing methods . 328

Handling unknown or bogus elements 329

Example: Bold Only . 330

Example: Web Robot . 331

4807-7 FM.F 5/24/01 8:57 AM Page xxv

xxvi Python 2.1 Bible

Parsing XML with SAX . 334

Using a ContentHandler . 334

Example: blood-type extractor . 335

Using parser (XMLReader) objects 336

SAX exceptions . 337

Parsing XML with DOM . 338

DOM nodes . 338

Elements, attributes, and text . 338

The document node (DOM) . 339

Example: data import and export with DOM 339

Parsing XML with xmllib . 341

Elements and attributes . 342

XML handlers . 343

Other XMLParser members . 343

Part IV: User Interfaces and Multimedia 345

Chapter 19: Tinkering with Tkinter . 347
Getting Your Feet Wet . 347

Creating a GUI . 348

Building an interface with widgets . 348

Widget options . 349

Laying Out Widgets . 349

Packer options . 350

Grid options . 351

Example: Breakfast Buttons . 352

Using Common Options . 354

Color options . 354

Size options . 355

Appearance options . 355

Behavior options . 355

Gathering User Input . 356

Example: Printing Fancy Text . 357

Using Text Widgets . 359

Building Menus . 360

Using Tkinter Dialogs . 361

File dialogs . 362

Example: Text Editor . 362

Handling Colors and Fonts . 365

Colors . 365

Fonts . 366

Drawing Graphics . 366

The canvas widget . 366

Manipulating canvas items . 367

Using Timers . 368

Example: A Bouncing Picture . 368

4807-7 FM.F 5/24/01 8:57 AM Page xxvi

xxviiContents

Chapter 20: Using Advanced Tkinter Widgets 371
Handling Events . 371

Creating event handlers . 371

Binding mouse events . 372

Binding keyboard events . 372

Event objects . 373

Example: A Drawing Canvas . 373

Advanced Widgets . 375

Listbox . 375

Scale . 376

Scrollbar . 376

Example: Color Scheme Customizer . 377

Creating Dialogs . 381

Supporting Drag-and-Drop Operations . 382

Using Cursors . 385

Designing New Widgets . 387

Further Tkinter Adventures . 389

Additional widgets . 389

Learning more . 389

Chapter 21: Building User Interfaces with wxPython 391
Introducing wxPython . 391

Creating Simple wxPython Programs . 392

Choosing Different Window Types . 394

Managed windows . 394

Nonmanaged windows . 395

Using wxPython Controls . 399

Common controls . 399

Tree controls . 400

Editor controls . 401

Controlling Layout . 401

Specifying coordinates . 402

Sizers . 403

Layout constraints . 406

Layout algorithms . 407

Using Built-in Dialogs . 407

Drawing with Device Contexts . 408

Adding Menus and Keyboard Shortcuts . 411

Accessing Mouse and Keyboard Input . 412

Other wxPython Features . 412

Clipboard, drag and drop, and cursors 413

Graphics . 413

Date and time . 413

Fonts . 413

HTML . 414

Printing . 414

Other . 414

4807-7 FM.F 5/24/01 8:57 AM Page xxvii

xxviii Python 2.1 Bible

Chapter 22: Using Curses . 415
A Curses Overview . 415

Starting Up and Shutting Down . 416

Displaying and Erasing Text . 416

Reading from the window (screen-scraping) 417

Erasing . 418

Refreshing . 418

Boxes and lines . 418

The window background . 418

Example: masking a box . 419

Moving the Cursor . 420

Getting User Input . 421

Reading keys . 422

Other keyboard-related functions . 422

Fancy characters . 422

Reading mouse input . 423

Example: yes, no, or maybe . 424

Managing Windows . 425

Pads . 425

Stacking windows . 426

Editing Text . 426

Using Color . 427

Numbering . 427

Setting colors . 428

Tweaking the colors . 428

Example: A Simple Maze Game . 428

Chapter 23: Building Simple Command Interpreters 433
Beginning with the End in Mind . 433

Understanding the Lepto Language . 435

Creating a Lepto Lexical Analyzer . 436

The shlex module . 436

Putting shlex to work . 437

Adding Interactive-Mode Features . 440

Using the cmd module . 440

Subclassing cmd.Cmd . 442

Executing Lepto Commands . 445

Chapter 24: Playing Sound . 453
Sound File Basics . 453

Playing Sounds . 454

Playing sound on Windows . 454

Playing and recording sound on SunOS 455

Examining Audio Files . 456

4807-7 FM.F 5/24/01 8:57 AM Page xxviii

xxixContents

Reading and Writing Audio Files . 456

Reading and writing AIFF files with aifc 457

Reading and writing AU files with sunau 458

Reading and writing WAV files with wave 458

Example: Reversing an audio file . 458

Reading IFF chunked data . 460

Handling Raw Audio Data . 461

Examining a fragment . 461

Searching and matching . 462

Translating between storage formats 462

Manipulating fragments . 463

Part V: Advanced Python Programming 465

Chapter 25: Processing Images . 467
Image Basics . 467

Identifying Image File Types . 468

Converting Between Color Systems . 469

Color systems . 469

Converting from one system to another 470

Handling Raw Image Data . 472

Using the Python Imaging Library . 472

Retrieving image information . 473

Copying and converting images . 474

Using PIL with Tkinter . 475

Cropping and resizing images . 476

Modifying pixel data . 476

Other PIL features . 480

Chapter 26: Multithreading . 481
Understanding Threads . 481

Spawning, Tracking, and Killing Threads 482

Creating threads with the thread module 482

Starting and stopping threads with the threading module 483

Thread status and information under threading 484

Finding threads under threading . 484

Waiting for a thread to finish . 484

Avoiding Concurrency Issues . 485

Locking with thread . 485

Locking with threading . 486

Preventing Deadlock . 488

Example: Downloading from Multiple URLs 489

Porting Threaded Code . 494

Weaving Threads Together with Queues . 495

Technical Note: How Simultaneous Is Simultaneous? 495

For More Information . 496

4807-7 FM.F 5/24/01 8:57 AM Page xxix

xxx Python 2.1 Bible

Chapter 27: Debugging, Profiling, and Optimization 497
Debugging Python Code . 497

Starting and stopping the debugger 497

Examining the state of things . 498

Setting breakpoints . 499

Running . 500

Aliases . 500

Debugging tips . 500

Working with docstrings . 501

Automating Tests . 502

Synching docstrings with code . 502

Unit testing . 503

Finding Bottlenecks . 505

Profiling code . 505

Using Profile objects . 506

Calibrating the profiler . 507

Customizing statistics . 507

Common Optimization Tricks . 509

Sorting . 509

Looping . 510

I/O . 510

Strings . 511

Threads . 511

Taking out the Trash — the Garbage Collector 512

Reference counts and Python code 512

Reference counts and C/C++ code . 513

Chapter 28: Security and Encryption 515
Checking Passwords . 515

Running in a Restricted Environment . 516

The rexec sandbox . 517

Using a class fortress . 520

Creating Message Fingerprints . 521

MD5 . 522

SHA . 522

Other uses . 523

Using 1940s-Era Encryption . 523

Chapter 29: Writing Extension Modules 527
Extending and Embedding Overview . 527

Writing a Simple Extension Module . 528

Building and Linking . 531

Converting Python Data to C . 532

Unpacking normal arguments . 532

Using special format characters . 535

Unpacking keyword arguments . 537

Unpacking zero arguments . 538

4807-7 FM.F 5/24/01 8:57 AM Page xxx

xxxiContents

Converting C Data to Python . 538

Creating simple Python objects . 539

Creating complex Python objects . 540

Embedding the Interpreter . 541

A simple example . 541

Shutting down . 541

Other setup functions . 542

System information functions . 542

Running Python Code from C . 543

Using Extension Tools . 546

SWIG . 546

CXX . 549

Extension classes . 550

Chapter 30: Embedding the Python Interpreter 553
Tracking Reference Counts . 553

Types of reference ownership . 553

Reference conventions . 554

Common pitfalls . 555

Using the Abstract and Concrete Object Layers 555

Object layers . 556

Working with generic objects . 556

Working with Number Objects . 558

Any numerical type . 558

Integers . 560

Longs . 560

Floating-point numbers . 561

Complex numbers . 561

Working with Sequence Objects . 561

Any sequence type . 562

Strings . 563

Lists . 564

Tuples . 565

Buffers . 566

Unicode strings . 567

Working with Mapping Objects . 569

Functions for any mapping type . 569

Dictionaries . 570

Using Other Object Types . 571

Type . 571

None . 571

File . 571

Module . 572

CObjects . 574

Creating Threads and Sub-Interpreters . 574

Threads . 575

Sub-interpreters . 576

4807-7 FM.F 5/24/01 8:57 AM Page xxxi

xxxii Python 2.1 Bible

Handling Errors and Exceptions . 576

Checking for errors . 577

Signaling error conditions . 577

Creating custom exceptions . 578

Raising warnings . 578

Managing Memory . 579

Chapter 31: Number Crunching . 581
Using Math Routines . 581

Rounding and fractional parts . 581

General math routines . 582

Logarithms and exponentiation . 582

Trigonometric functions . 582

Computing with Complex Numbers . 583

Generating Random Numbers . 583

Random numbers . 583

Example: shuffling a deck . 585

Random distributions . 585

Example: plotting distributions using Monte Carlo sampling 586

Using Arbitrary-Precision Numbers . 587

Chapter 32: Using NumPy . 589
Introducing Numeric Python . 589

Installing NumPy . 589

Some quick definitions . 590

Meet the array . 590

Accessing and Slicing Arrays . 590

Contiguous arrays . 592

Converting arrays to lists and strings 592

Calling Universal Functions . 593

Ufunc destinations . 594

Example: editing an audio stream . 594

Repeating ufuncs . 595

Creating Arrays . 597

Array creation functions . 597

Seeding arrays with functions . 598

Using Element Types . 600

Reshaping and Resizing Arrays . 600

Using Other Array Functions . 601

sort(array,[axis=-1]) . 601

where(condition,X,Y) . 602

swapaxes(array,axis1,axis2) . 602

Matrix operations . 602

Array Example: Analyzing Price Trends . 603

4807-7 FM.F 5/24/01 8:57 AM Page xxxii

xxxiiiContents

Chapter 33: Parsing and Interpreting Python Code 605
Examining Tracebacks . 605

Printing a traceback — print_exc and friends 605

Extracting and formatting exceptions 606

Example: reporting exceptions in a GUI 607

Eating arbitrary exceptions is bad for you 607

Introspection . 608

Review: basic introspection . 608

Browsing classes . 609

Browsing function information . 609

Checking Indentation . 611

Tokenizing Python Code . 611

Example: Syntax-Highlighting Printer . 612

Inspecting Python Parse Trees . 613

Creating an AST . 613

ASTs and sequences . 614

Using ASTs . 614

Low-Level Object Creation . 614

Disassembling Python Code . 615

Part VI: Deploying Python Applications 617

Chapter 34: Creating Worldwide Applications 619
Internationalization and Localization . 619

Preparing Applications for Multiple Languages 620

An NLS example . 620

What it all means . 623

Formatting Locale-Specific Output . 624

Changing the locale . 624

Locale-specific formatting . 625

Properties of locales . 626

Chapter 35: Customizing Import Behavior 629
Understanding Module Importing . 629

Finding and Loading Modules with imp . 631

Importing Encrypted Modules . 633

Retrieving Modules from a Remote Source 636

Subclassing Importer . 636

Creating the remote Importer . 637

Testing the remote Importer . 640

4807-7 FM.F 5/24/01 8:57 AM Page xxxiii

xxxiv Python 2.1 Bible

Chapter 36: Distributing Modules and Applications 643
Understanding distutils . 643

Creating a simple distribution . 644

Installing the simple distribution . 645

Other distutils Features . 647

Distributing packages . 647

Including other files . 648

Customizing setup . 650

Distributing Extension Modules . 650

Creating Source and Binary Distributions 651

Source distributions . 652

Binary distributions . 653

Installers . 653

Building Standalone Executables . 655

py2exe . 655

Freeze . 656

Other tools . 657

Part VII: Platform-Specific Support 659

Chapter 37: Windows . 661
Using win32all . 661

Data types . 661

Error handling . 662

Finding what you need . 662

Example: Using Some Windows APIs . 662

Accessing the Windows Registry . 664

Accessing the registry with win32all 664

Example: setting the Internet Explorer home page 666

Creating, deleting, and navigating keys 666

Example: recursive deletion of a key 667

Other registry functions . 668

Accessing the registry with _winreg 668

Using msvcrt Goodies . 669

Console I/O . 669

Other functions . 670

Chapter 38: UNIX-Compatible Modules 671
Checking UNIX Passwords and Groups . 671

Accessing the System Logger . 673

Calling Shared Library Functions . 675

Providing Identifier and Keyword Completion 675

4807-7 FM.F 5/24/01 8:57 AM Page xxxiv

xxxvContents

Retrieving File System and Resource Information 677

File system information . 678

Resource usage . 678

Resource limits . 679

Controlling File Descriptors . 680

Handling Terminals and Pseudo-Terminals 681

Interfacing with Sun’s NIS “Yellow Pages” 682

Appendix A: Online Resources . 685

Appendix B: Python Development Environments 689

Index . 701

4807-7 FM.F 5/24/01 8:57 AM Page xxxv

4807-7 FM.F 5/24/01 8:57 AM Page xxxvi

The Python
Language

✦ ✦ ✦ ✦

Chapter 1
Python in an Hour

Chapter 2
Identifiers, Variables,
and Numeric Types

Chapter 3
Expressions and
Strings

Chapter 4
Advanced Data
Types

Chapter 5
Control Flow

Chapter 6
Program
Organization

Chapter 7
Object-Oriented
Python

Chapter 8
Input and Output

✦ ✦ ✦ ✦

P A R T

II

4807-7 PO1.F 5/24/01 8:57 AM Page 1

4807-7 PO1.F 5/24/01 8:57 AM Page 2

Python in
an Hour

Python is a rich and powerful language, but also one that

is easy to learn. This chapter gives an overview of

Python’s syntax, its useful data-types, and its unique features.

As you read, please fire up the Python interpreter, and try out

some of the examples. Feel free to experiment, tinker, and

wander away from the rest of the tour group. Everything in

this chapter is repeated, in greater detail, in later chapters, so

don’t worry too much about absorbing everything at once.

Try some things out, get your feet wet, and have fun!

Jumping In: Starting the
Python Interpreter

The first thing to do, if you haven’t already, is to install

Python. You can download Python from www.python.org. As

of this writing, the latest versions of Python are 2.0 (stable)

and 2.1 (still in beta).

You can start the Python interpreter from the command line.

Change to the directory where the interpreter lives, or add

the directory to your path. Then type:

python

On UNIX, Python typically lives in /usr/local/bin; on

Windows, Python probably lives in c:\python20.

On Windows, you can also bring the interpreter up from

Start ➪ Programs ➪ Python 2.0 ➪ Python (command line).

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Jumping in: Starting
the Python interpreter

Experimenting with
variables and
expressions

Defining a function

Running a Python
program

Looping and control

Lists and tuples

Dictionaries

Reading and writing
files

Loading and using
modules

Creating a class

✦ ✦ ✦ ✦

4807-7 ch01.F 5/24/01 8:57 AM Page 3

4 Part I ✦ The Python Language

Once you start the interpreter, Python displays something like this:

Python 2.0 (#8, Oct 16 2000, 17:27:58) [MSC 32 bit (Intel)] on win32
Type “copyright”, “credits” or “license” for more information.
>>>

The interpreter displays the >>> prompt to show that it’s ready for you to type in

some Python. And so, in the grand tradition of programming books everywhere, we

proceed to the “Hello world” example:

>>> print “Hello world!”
Hello world!

To exit the interpreter, type the end-of-file character (Ctrl-Z on Windows, or Ctrl-D

on Linux) and press Enter.

You may prefer to interact with the interpreter in IDLE, the standard Python IDE.
IDLE features syntax coloring, a class browser, and other handy features. See
Appendix B for tips on starting and using IDLE.

Experimenting with Variables
and Expressions

Python’s syntax for variables and expressions is close to what you would see in C

or Java, so you can skim this section if it starts looking familiar. However, you

should take note of Python’s loose typing (see below).

Pocket calculator
Python understands the standard arithmetic operators, including +, -, / (division),

and * (multiplication). The Python interpreter makes a handy calculator:

>>> 8/2
4
>>> 5+4*6
29

Note that the second example evaluates 29 (and not 54); the interpreter multiplies 4

by 6 before adding 5. Python uses operator precedence rules to decide what to do

first. You can control order explicitly by using parentheses:

>>> (5+4)*6
54

In practice, it’s often easiest to use parentheses (even when they aren’t required) to

make code more readable.

Note

4807-7 ch01.F 5/24/01 8:57 AM Page 4

5Chapter 1 ✦ Python in an Hour

Variables
You can use variables to hold values over time. For example, this code computes

how long it takes to watch every episode of Monty Python’s Flying Circus (including

the two German episodes of Monty Python’s Fliegende Zirkus):

>>> NumberOfEpisodes=47
>>> EpisodeLength=0.5
>>> PythonMarathonLength=(NumberOfEpisodes*EpisodeLength)
>>> PythonMarathonLength
23.5

A variable is always a reference to a value. Variables do not have types, but objects

do. (Python is loosely typed; the same variable may refer to an integer value in the

morning and a string value in the afternoon.)

Python does not require variable declarations. However, you cannot access a

variable until you have assigned it a value. If you try to access an undefined vari-

able, the interpreter will complain (the wording of the error may be different in

your version of Python):

>>> print Scrumptious
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

NameError: There is no variable named ‘Scrumptious’

This example raised an exception. In Python, most errors are represented by excep-

tion objects that the surrounding code can handle. Chapter 5 describes Python’s

exception-handling abilities.

Python is case-sensitive. This means that names that are capitalized differently
refer to different variables:

>>> FavoriteColor=”blue”
>>> favoritecolor=”yellow”
>>> print FavoriteColor,favoritecolor
blue yellow

Defining a Function
Assume you and some friends go out to dinner and decide to split the bill evenly.

How much should each person pay? Here is a function that calculates each

person’s share:

>>> def SplitBill(Bill,NumberOfPeople):
... # The hash character (#) starts a comment. Python
... # ignores everything from # to the end of the line.
... TotalWithTip = Bill * (1.15) # Add a 15% tip.

Note

4807-7 ch01.F 5/24/01 8:57 AM Page 5

6 Part I ✦ The Python Language

... return (TotalWithTip / NumberOfPeople)

...
>>> SplitBill(23.35,3)
8.9508333333333336

The statement def FunctionName (parameter,...): starts a function definition. I

indented the following four lines to indicate that they are a control block — a

sequence of statements grouped by a common level of indentation. Together, they

make up the body of the function definition.

Python statements with the same level of indentation are grouped together. In this

example, Python knows the function definition ends when it sees a non-indented

line. Grouping statements by indentation-level is common practice in most pro-

gramming languages; in Python it is actually part of the syntax. Normally, one

indentation level equals four spaces, and eight spaces equals one tab.

Running a Python Program
A text file consisting of Python code is called a program, or a script, or a module.
There is little distinction between the three terms — generally a script is smaller

than a program, and a file designed to be imported (rather than executed directly)

is called a module. Normally, you name Python code files with a .py extension.

To run a program named spam.py, type the following at a command prompt:

python spam.py

In Windows, you can run a program by double-clicking it. (If the file association for

the .py extension is not set up at installation time, you can configure it by right-

clicking the script, choosing “Open With...” and then choosing python.exe.)

In UNIX, you can run a script directly by using the “pound-bang hack.” Add this line

at the top of the Python script (replacing the path with the path to env if it’s differ-

ent on your system):

#!/usr/bin/python

Then make the file executable (by running chmod +x <filename>), and you can run

it directly.

Looping and Control
Listing 1-1 illustrates Python’s looping and conditional statements. It prints out all

the prime numbers less than 500.

4807-7 ch01.F 5/24/01 8:57 AM Page 6

7Chapter 1 ✦ Python in an Hour

Listing 1-1: PrimeFinder.py

print 1
Loop over the numbers from 2 to 499:
for PrimeTest in range(2,500):

Assume PrimeTest prime until proven otherwise:
IsPrime = 1 # 0 is false, nonzero is true
Loop over the numbers from 2 to (PrimeTest-1):
for TestFactor in range(2,PrimeTest):

a % b equals the remainder of a/b:
if (PrimeTest % TestFactor == 0):

PrimeTest divides TestFactor (remainder is 0).
IsPrime=0
break # Jump out of the innermost for-loop.

if (IsPrime):
print PrimeTest

Integer division
The modulo operator, %, returns the remainder when the first number is divided by

the second. (For instance, 8 % 5 is equal to 3.) If PrimeTest is zero modulo

TestFactor, then this remainder is zero, so TestFactor is one of PrimeTest’s

divisors.

In Python, dividing one integer by another returns another integer — the quotient,

rounded down:

>>> 8/3 # I want an integer, not the “right answer.”
2

So, here is a sneaky replacement to line 7 of PrimeFinder.py. If TestFactor does

not divide PrimeTest evenly, then the quotient is rounded off, and so the compari-

son will fail:

if ((PrimeTest/TestFactor)*TestFactor == PrimeTest)

Python uses the float class for floating-point (decimal) numbers. The float func-

tion transforms a value into a float:

>>> 8.0/3.0
2.6666666666666665
>>> float(8)/float(3) # Give me the “real” quotient.
2.6666666666666665

4807-7 ch01.F 5/24/01 8:57 AM Page 7

8 Part I ✦ The Python Language

Looping
The for statement sets up a loop — a block of code that is executed many times.

The function range(startnum,endnum) provides a list of integers starting with

startnum and ending just before endnum.

In the example, PrimeTest takes on each value in the range in order, and the outer

loop executes once for each value of PrimeTest. The inner loop iterates over the

“possible factors” of PrimeTest, starting at 2 and continuing until (PrimeTest-1).

Branching with if-statements
The statement if expression: begins a control block that executes only if

expression is true. You can enclose the expression in parentheses. As far as

Python is concerned, the number 0 is false, and any other number is true.

Note that in a condition, we use the == operator to test for equality. The = operator

is used only for assignments, and assignments are forbidden within a condition.

(Here Python differs from C/C++, which allows assignments inside an if-condition,

even though they are usually a horrible mistake.)

In an if statement, an else-clause executes when the condition is not true. For

example:

if (MyNumber % 2 == 0):
print “MyNumber is even!”

else:
print “MyNumber is odd!”

Breaking and continuing
The break statement jumps out of a loop. It exits the innermost loop in the current

context. In Listing 1-1, the break statement exits the inner TestFactor loop, and

continues on line 11. The continue statement jumps to the next iteration of a loop.

Loops can also be set up using the while statement. The syntax while (expres-
sion) sets up a control block that executes as long as expression is true. For

example:

print out powers of 2 less than 2000
X=2
while (X<2000):

print X
X=X*2

4807-7 ch01.F 5/24/01 8:57 AM Page 8

9Chapter 1 ✦ Python in an Hour

Lists and Tuples
A list is an ordered collection of zero or more elements. An element of a list can be

any sort of object. You can write lists as a comma-separated collection of values

enclosed in square brackets. For example:

FibonacciList=[1,1,2,3,5,8]
FishList=[1,2,”Fish”] # Lists can contain various types.
AnotherList=[1,2,FishList] # Lists can include other lists.
YetAnotherList=[1,2,3,] # Trailing commas are ok.
RevengeOfTheList=[] # The empty list

Tuples
A tuple is similar to a list. The difference is that a tuple is immutable — it cannot be

modified. You enclose tuples in parentheses instead of brackets. For example:

FirstTuple=(“spam”,”spam”,”bacon”,”spam”)
SecondTuple=() # The empty tuple
LonelyTuple=(5,) # Trailing comma is *required*, since (5) is

just a number-in-parens, not a tuple.

Slicing and dicing
Lists are ordered, so each list element has an index. You can access an element with

the syntax listname[index]. Note that index numbering begins with zero:

>>> FoodList=[“Spam”,”Egg”,”Sausage”]
>>> FoodList[0]
‘Spam’
>>> FoodList[2]
‘Sausage’
>>> FoodList[2]=”Spam” # Modifying list elements in place
>>> FoodList
[‘Spam’, ‘Egg’, ‘Spam’]

Sometimes it’s easier to count from the end of the list backwards. You can

access the last item of a list with listname[-1], the second-to-last item with

listname[-2], and so on.

You can access a sublist of a list via the syntax listname[start:end]. The sublist

contains the original list elements, starting with index start, up to (but not includ-

ing) index end. Both start and end are optional; omitting them makes Python go all

the way to the beginning (or end) of the list. For example:

>>>WordList=[“And”,”now”,”for”,”something”,”completely”,
“different”]
>>> WordList[0:2] # From index 0 to 2 (not including 2)
[‘And’, ‘now’]

4807-7 ch01.F 5/24/01 8:57 AM Page 9

10 Part I ✦ The Python Language

>>> WordList[2:5]
[‘for’, ‘something’, ‘completely’]
>>> WordList[:-1] # All except the last
[‘And’, ‘now’, ‘for’, ‘something’, ‘completely’]

Substrings
Lists, tuples, and strings are all sequence types. Sequence types all support indexed

access. So, taking a substring in Python is easy:

>>> Word=”pig”
>>> PigLatinWord=Word[1:]+Word[0]+”ay”
>>> PigLatinWord
‘igpay’

Immutable types
Tuples and strings are immutable types. Modifying them in place is not allowed:

FirstTuple[0]=”Egg” # Object does not support item assignment.

You can switch between tuples and lists using the tuple and list functions. So,

although you cannot edit a tuple directly, you can create a new-and-improved tuple:

>>> FoodTuple=(“Spam”,”Egg”,”Sausage”)
>>> FoodList=list(FoodTuple)
>>> FoodList
[‘Spam’, ‘Egg’, ‘Sausage’]
>>> FoodList[2]=”Spam”
>>> NewFoodTuple=tuple(FoodList)
>>> NewFoodTuple
(‘Spam’, ‘Egg’, ‘Spam’)

Dictionaries
A dictionary is a Python object that cross-references keys to values. A key is an

immutable object, such as a string. A value can be any object. A dictionary has a

canonical string representation: a comma-separated list of key-value pairs, enclosed

in curly braces: {key:value, key:value}. For example:

>>> PhoneDict={“bob”:”555-1212”,”fred”:”555-3345”}
>>> EmptyDict={} # Initialize a new dictionary.
>>> PhoneDict[“bob”] # Find bob’s phone number.
‘555-1212’
>>> PhoneDict[“cindy”]=”867-5309” # Add an entry.
>>> print “Phone list:”,PhoneDict
Phone list: {‘fred’: ‘555-3345’, ‘bob’: ‘555-1212’, ‘cindy’:
‘867-5309’}

4807-7 ch01.F 5/24/01 8:57 AM Page 10

11Chapter 1 ✦ Python in an Hour

Looking up a value raises an exception if the dictionary holds no value for the key.

The function dictionary.get(key,defaultValue) performs a “safe get”; it looks

up the value corresponding to key, but if there is no such entry, returns

defaultValue.

>>> PhoneDict[“luke”] # May raise an exception.
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

KeyError: luke
>>> PhoneDict.get(“joe”,”unknown”)
‘unknown’

Often a good default value is the built-in value None. The value None represents

nothing (it is a little Zen-like). The value None is similar to NULL in C (or null in

Java). It evaluates to false.

>>> DialAJoe=PhoneDict.get(“joe”,None)
>>> print DialAJoe
None

Reading and Writing Files
To create a file object, use the function open(filename,mode). The mode
argument is a string explaining what you intend to do with the file — typical values

are “w” to write and “r” to read. Once you have a file object, you can read() from it

or write() to it, then close() it. This example creates a simple file on disk:

>>> fred = open(“hello”,”w”)
>>> fred.write(“Hello world!”)
>>> fred.close()
>>> barney = open(“hello”,”r”)
>>> FileText = barney.read()
>>> barney.close()
>>> print FileText
Hello world!

Sample Program: Word Frequencies
Different authors use different words. Patterns of word use form a kind of “author

fingerprint” that is sometimes used as a test of a document’s authenticity.

Listing 1-2 counts occurrences of a word in a body of text, and illustrates some

more Python power in the process. (Don’t be intimidated by all the comments — it’s

actually only 26 lines of code.)

4807-7 ch01.F 5/24/01 8:57 AM Page 11

12 Part I ✦ The Python Language

Listing 1-2: WordCount.py

Import the string module, so we can call Python’s standard
string-related functions.
import string

def CountWords(Text):
“Count how many times each word occurs in Text.”
A string immediately after a def statement is a
“docstring” - a comment intended for documentation.
WordCount={}
We will build up (and return) a dictionary whose keys
are the words, and whose values are the corresponding
number of occurrences.

CurrentWord=””
To make the job cleaner, add a period at the end of the
text; that way, we are guaranteed to be finished with
the current word when we run out of letters:
Text=Text+”.”

We assume that ‘ and - don’t break words, but any other
nonalphabetic character does. This assumption isn’t
entirely accurate, but it’s close enough for us.
string.letters is a string of all alphabetic characters.
PiecesOfWords = string.letters + “‘-”

Iterate over each character in the text. The
function len () returns the length of a sequence,
such as a string:
for CharacterIndex in range(0,len(Text)):

CurrentCharacter=Text[CharacterIndex]

The find() method of a string finds
the starting index of the first occurrence of a
substring within a string, or returns –1
if it doesn’t find the substring. The next
line of code tests to see whether CurrentCharacter
is part of a word:
if (PiecesOfWords.find(CurrentCharacter)!=-1):

Append this letter to the current word.
CurrentWord=CurrentWord+CurrentCharacter

else:
This character is not a letter.
if (CurrentWord!=””):

We just finished off a word.
Convert to lowercase, so “The” and “the”
fall in the same bucket.
CurrentWord = string.lower(CurrentWord)

Now increment this word’s count.
CurrentCount=WordCount.get(CurrentWord,0)
WordCount[CurrentWord]=CurrentCount+1

4807-7 ch01.F 5/24/01 8:57 AM Page 12

13Chapter 1 ✦ Python in an Hour

Start a new word.
CurrentWord=””

return (WordCount)

if (__name__==”__main__”):
Read the text from the file song.txt.
TextFile=open(“poem.txt”,”r”)
Text=TextFile.read()
TextFile.close()

Count the words in the text.
WordCount=CountWords(Text)
Alphabetize the word list, and print them all out.
SortedWords=WordCount.keys()
SortedWords.sort()
for Word in SortedWords:

print Word,WordCount[Word]

Listing 1-3: poem.txt

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date:
Sometime too hot the eye of heaven shines
And often is his gold complexion dimmed;
And every fair from fair sometimes declines,
By chance or nature’s changing course untrimmed;
But thy eternal summer shall not fade,
Nor lose possession of that fair thou ow’st:
Nor shall Death brag thou wander’st in his shade,
When in eternal lines to time thou grow’st:
So long as men can breathe, or eyes can see,
So long lives this, and this gives life to thee.

Listing 1-4: WordCount output

all 1
and 5
art 1
as 1
brag 1
[. . .omitted for brevity. . .]
too 2
untrimmed 1
wander’st 1
when 1
winds 1

4807-7 ch01.F 5/24/01 8:57 AM Page 13

14 Part I ✦ The Python Language

Loading and Using Modules
Python comes with a collection of libraries to do all manner of useful things. To use

the functions, classes, and variables in another Python module, you must first

import that module with the statement import modulename. (Note: No parenthe-

ses.) After importing a module, you can access any of its members using the syntax

moduleName.itemName. For instance, this line (from the preceding example) calls

the function lower in the module string to convert a string to lowercase.

CurrentWord = string.lower(CurrentWord)

When you import a module, any code at module level (that is, code that isn’t part of

a function or class definition) executes. To set aside code to execute only when

someone runs your script from the command line, you can enclose it in an if
(__name__==”__main__”) block, as in Listing 1-2 above.

As an alternative to “import foo,” you can use the syntax from foo import
itemName to import a function or variable all the way into the current namespace.

For example, after you include the line from math import sqrt in a Python script,

you can call the square-root function sqrt directly, instead of calling math.sqrt.

You can even bring in everything from a module with from foo import *. However,

although this technique does save typing, it can become confusing — especially if

you import functions with the same name from several different modules!

Python does not enforce “privacy” in modules; you can call any of a module’s
functions. It is generally a good idea to be polite and only call those you are sup-
posed to.

Creating a Class
Python is an object-oriented language. In fact, every piece of Python data is an

object. Working with objects in Python is easy, as you will soon see.

Some quick object jargon
A class is a mechanism for tying together data and behavior. An instance of a partic-

ular class is called an object. Class instances have certain methods (functions) and

attributes (data values). In Python, all data items behave like objects, even though a

few base types (like integers) are not actual instances of a class.

You can derive a class from a parent class; this relationship is called inheritance.

Instances of the child (derived) class have the same attributes and methods of the

parent class. The child class may add new methods and attributes, and override

methods of the parent. A class may be derived from more than one parent class;

this relationship is called multiple inheritance.

Note

4807-7 ch01.F 5/24/01 8:57 AM Page 14

15Chapter 1 ✦ Python in an Hour

Object-oriented programming (OOP) is a mindset that may take some getting used

to. When inheritance becomes natural, and you start talking about your data in

anthropomorphic terms, you will know that your journey to the OO side is com-

plete. See the References section for some resources that explain object-oriented

programming in detail.

Object orientation, Python style
You define a new class with the syntax class ClassName. The control block

following the class statement is the class declaration; it generally consists of sev-

eral method definitions. You define a child class (using inheritance) via the syntax

class ClassName(ParentClass).

You create an object via the syntax NewObject = ClassName(). When you create

an object, Python calls its constructor, if any. In Python, a constructor is a member

function with the name __init__. A constructor may require extra parameters

to create an object. If so, you provide them when creating the object: NewObject =
ClassName(param1,param2,...).

Every object method takes, as its first parameter, the argument self, which is a

reference to the object. (Python self is similar to this in C++/Java, but self is

always explicit.)

You do not explicitly declare attributes in Python. An object’s attributes are not

part of the local namespace — in other words, to access an object’s attribute foo in

one of its methods, you must type self.foo.

Keep off the grass — Accessing class members
Attributes and methods are all “public” — they are visible and available outside the

object. However, to preserve encapsulation, many classes have some attributes or

methods you should not access directly. The motivation for this is that an object

should be something of a “black box” — code outside the object should only care

what it does, not how it does it. This helps keep code easy-to-maintain, especially in

big programs.

Example: the point class
Listing 1-5 defines a class representing a point in the plane (or on a computer

screen):

4807-7 ch01.F 5/24/01 8:57 AM Page 15

16 Part I ✦ The Python Language

Listing 1-5: Point.py

import math
The next statement starts our class declaration; the
function declarations inside the indented control block are
the class’s methods.
class Point:

The method __init__ is the class’s constructor. It
executes when you create an instance of the class.
When __init__ takes extra parameters (as it does here),
you must supply parameter values in order to create an
instance of the class. Writing an __init__ method is
optional.
def __init__(self,X,Y):

X and Y are the attributes of this class. You do not
have to declare attributes. I like to initialize
all my attributes in the constructor, to ensure that
the attributes will be available when I need them.
self.X=X
self.Y=Y

def DistanceToPoint(self, OtherPoint):
“Returns the distance from this point to another”
SumOfSquares = ((self.X-OtherPoint.X)**2) +\
((self.Y-OtherPoint.Y)**2)
return math.sqrt(SumOfSquares)

def IsInsideCircle(self, Center, Radius):
“””Return 1 if this point is inside the circle,

0 otherwise”””
if (self.DistanceToPoint(Center)<Radius):

return 1
else:

return 0

This code tests the point class.
PointA=Point(3,5) # Create a point with coordinates (3,5)
PointB=Point(-4,-4)

How far is it from point A to point B?
print “A to B:”,PointA.DistanceToPoint(PointB)

What if I go backwards?
print “B to A:”,PointB.DistanceToPoint(PointA)

Who lives inside the circle of radius 5 centered at (3,3)?
CircleCenter=Point(3,3)
print “A in circle:”,PointA.IsInsideCircle(CircleCenter,5)
print “B in circle:”,PointB.IsInsideCircle(CircleCenter,5)

4807-7 ch01.F 5/24/01 8:57 AM Page 16

17Chapter 1 ✦ Python in an Hour

Recommended Reading
If you are new to computer programming, you may find this tutorial useful:

http://www.honors.montana.edu/~jjc/easytut/easytut/.

To learn all about the language on one (large!) page, see the Python Quick

Reference at http://starship.python.net/quick-ref1_52.html.

If you like to learn by tinkering with finished programs, you can download a

wide variety of source code at the Vaults of Parnassus: http://www.vex.net/
parnassus/.

Summary
This wraps up our quick tour of Python. We hope you enjoyed the trip. You now

know most of Python’s notable features. In this chapter, you:

✦ Ran the Python interpreter for easy interaction.

✦ Grouped statements by indentation level.

✦ Wrote functions to count words in a body of text.

✦ Created a handy Point class.

The next chapter digs a little deeper and introduces all of Python’s standard types

and operators.

✦ ✦ ✦

4807-7 ch01.F 5/24/01 8:57 AM Page 17

4807-7 ch01.F 5/24/01 8:57 AM Page 18

Identifiers,
Variables, and
Numeric Types

One of the simplest forms of data on which your pro-

grams operate is numbers. This chapter introduces the

numeric data types in Python, such as integers and floating

point numbers, and shows you how to use them together in

simple operations like assignment to variables.

As with Chapter 1, you’ll find it helpful to have a Python inter-

preter up and running as you read this and the following chap-

ters. Playing around with the examples in each section will

pique your curiosity and help keep Python’s features firmly

rooted in your brain.

Identifiers and Operators
Variable names and other identifiers in Python are similar to

those in many other languages: they start with a letter (A–Z or

a–z) or an underscore (“_”) and are followed by any number

of letters, numbers, and underscores. Their length is limited

only by your eagerness to type, and they are case-sensitive

(that is, spam and Spam are different identifiers). Regardless of

length, choose identifiers that are meaningful. (Having said

that, I’ll break that rule for the sake of conciseness in many of

the examples in this chapter.)

The following are some examples of valid and invalid identifiers:

wordCount
y_axis
errorField2
_logFile
_2 # Technically valid, but not a
good idea

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Identifiers and
operators

Numeric types

Assigning values to
variables

✦ ✦ ✦ ✦

4807-7 ch02.F 5/24/01 8:57 AM Page 19

20 Part I ✦ The Python Language

7Index # Invalid, starts with a number
won’t_work # Invalid due to apostrophe character

Python considers these forms to have special meaning:

_name— Not imported by “from x import *” (see Chapter 6)

__name__— System name (see Chapter 6)

__name— Private class member (see Chapter 7)

When you’re running the Python interpreter in interactive mode, a single underscore

character (_) is a special identifier that holds the result of the last expression evalu-

ated. This is especially handy when you’re using Python as a desktop calculator:

>>> “Hello”
‘Hello’
>>> _
‘Hello’
>>> 5 + 2
7
>>> _ * 2
14
>>> _ + 5
19
>>>

Reserved words
Although it would make for some interesting source code, you can’t use the follow-

ing words as identifiers because they are reserved words in the Python language:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass
def finally in print

Operators
Python has the following operators, each of which we’ll discuss in context with the

applicable data types they operate on:

- != % & * ** / ^ | ~
+ < << <= <> == > >= >>

Note

4807-7 ch02.F 5/24/01 8:57 AM Page 20

21Chapter 2 ✦ Identifiers, Variables, and Numeric Types

Numeric Types
Python has four built-in numeric data types: integers, long integers, floating point

numbers, and imaginary numbers.

Integers
Integers are whole numbers in the range of -2147483648 to 2147483647 (that is, they

are signed, 32-bit numbers).

For convenience, the sys module has a maxint member that holds the maxi-
mum positive value of an integer variable:

>>> import sys
>>> sys.maxint
2147483647

In addition to writing integers in the default decimal (base 10) notation, you can

also write integer literals in hexadecimal (base 16) and octal (base 8) notation by

preceding the number with a 0x or 0, respectively:

>>> 300 # 300 in decimal
300
>>> 0x12c # 300 in hex
300
>>> 0454 # 300 in octal
300

Keep in mind that for decimal numbers, valid digits are 0 through 9. For hexa-

decimal, it’s 0 through 9 and A through F, and for octal it’s 0 through 7. If you’re not

familiar with hexadecimal and octal numbering systems, or if you are but they don’t

thrill you, just nod your head and keep moving.

Long integers
Long integers are similar to integers, except that the maximum and minimum val-

ues of long integers are restricted only by how much memory you have (yes, you

really can have long integers with thousands of digits). To differentiate between the

two types of integers, you append an “L” to the end of long integers:

>>> 200L # A long integer literal with a value of 200
200L

>>> 11223344 * 55667788 # Too big for normal integers...
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

OverflowError: integer multiplication

>>> 11223344L * 55667788L # ...but works with long integers
624778734443072L

Tip

4807-7 ch02.F 5/24/01 8:57 AM Page 21

22 Part I ✦ The Python Language

The “L” on long integers can be uppercase or lowercase, but do yourself a favor
and always use the uppercase version. The lowercase “L” and the one digit look
too similar, especially if you are tired, behind schedule on a project, or both.

Floating point numbers
Floating point numbers let you express fractional numeric values such as 3.14159.

You can also include an optional exponent. If you include neither an exponent nor a

decimal point, Python interprets the number as an integer, so to express “the float-

ing point number two hundred,” write it as 200.0 and not just 200. Here are a few

examples of floating point numbers:

200.05
9.80665
.1
20005e-2
6.0221367E23

Occasionally you may notice what appear to be rounding errors in how Python
displays floating point numbers:

>>> 0.3
0.29999999999999999

Don’t worry; this display is not indicating a bug, but is just a friendly reminder that
your digital computer just approximates real world numbers. See “Formatting
strings” in Chapter 3 to learn about printing numbers in a less ugly format.

The valid values for floating point numbers and the accuracy with which Python

uses them is implementation-dependent, although it is at least 64-bit, double-

precision math and is often IEEE 754 compliant.

Imaginary numbers
Unlike many other languages, Python has language-level support for imaginary

numbers, making it trivial to use them in your programs. You form an imaginary

number by appending a “j” to a decimal number (integer or floating point):

3j
2.5e-3j

When you add a real and an imaginary number together, Python recognizes the

result as a complex number and handles it accordingly:

>>> 2 + 5j
(2+5j)
>>> 2 * (2 + 5j)
(4+10j)

Note

Tip

4807-7 ch02.F 5/24/01 8:57 AM Page 22

23Chapter 2 ✦ Identifiers, Variables, and Numeric Types

Manipulating numeric types
You can use most of Python’s operators when working with numeric data types.

Numeric operators
Table 2-1 lists operators and how they behave with numeric types.

Table 2-1
Operations on Numeric Types

Operator Description Example Input Example Output

Unary Operations

+ Plus +2 2

- Minus -2 2

-(-2) 2

~ Inversion1 ~5 6

Binary Operations

+ Addition 5 + 7 12

5 + 7.0 12.0

- Subtraction 5 – 2 3

5 – 2.0 3.0

* Multiplication 2.5 * 2 5.0

/ Division 5 / 2 2

5 / 2.0 2.5

% Modulo (remainder) 5 % 2 1

7.5 % 2.5 0.0

** Power 5 ** 2 25

1.2 ** 2.1 1.466...

Binary Bitwise Operations2

& AND 5 & 2 0

11 & 3 3

| OR 5 | 2 7

11 | 3 11

^ XOR (exclusive-or) 5 ^ 2 7

11 ^ 3 8

Continued

4807-7 ch02.F 5/24/01 8:57 AM Page 23

24 Part I ✦ The Python Language

Table 2-1 (continued)

Operator Description Example Input Example Output

Shifting Operations2

<< Left bit-shift 5 << 2 20

>> Right bit-shift 50 >> 3 6

1 Unary bitwise inversion of a number x is defined as –(x+1).

2 Numbers used in binary bitwise and shifting operations must be integers or long integers.

It is important to notice what happens when you mix standard numeric types

(adding an integer and a floating point number, for example). If needed, Python first

coerces (converts) either of the numbers according to these rules (stopping as

soon as a rule is satisfied):

1. If one of the numbers is a complex number, convert the other to a complex

number too.

2. If one of the numbers is a floating point number, convert the other to floating

point.

3. If one of the numbers is a long integer, convert the other to a long integer.

4. No previous rule applies, so both are integers, and Python leaves them

unchanged.

Other functions
Python has a few other built-in functions for working with numeric types, as

described in the following sections.

Absolute value — abs
The abs(x) function takes the absolute value of any integer, long integer, or floating

point number:

>>> abs(-5.0)
5.0
>>> abs(-20L)
20L

When applied to a complex number, this function returns the magnitude of the num-

ber, which is the distance from that point to the origin in the complex plane. Python

calculates the magnitude just like the length of a line in two dimensions: for a com-

plex number (a + bj), the magnitude is the square root of a squared plus b
squared:

>>> abs(5 - 2j)
5.3851648071345037

4807-7 ch02.F 5/24/01 8:57 AM Page 24

25Chapter 2 ✦ Identifiers, Variables, and Numeric Types

Convert two numbers to a common type — coerce(x, y)
The coerce function applies the previously explained numeric conversion rules to

two numbers and returns them to you as a tuple (we cover tuples in detail in the

next chapter):

>>> coerce(5,2L)
(5L, 2L)
>>> coerce(5.5,2L)
(5.5, 2.0)
>>> coerce(5.5,5 + 2j)
((5.5+0j), (5+2j))

Quotient and remainder — divmod(a, b)
This function performs long division on two numbers and returns the quotient and

the remainder:

>>> divmod(5,2)
(2, 1)
>>> divmod(5.5,2)
(2.0, 1.5)

Power — pow(x, y [, z])
The pow function is similar to the power (**) operator in Table 2-1:

>>> pow(5,2)
25
>>> pow(1.2,2.1)
1.4664951016517147

As usual, Python coerces the two numbers to a common type if needed. If the

resulting type can’t express the correct result, Python yells at you:

>>> pow(2.0,-1) # The coerced type is a floating point.
0.5
>>> pow(2,-1) # The coerced type is an integer.
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

ValueError: integer to the negative power

An optional third argument to pow specifies the modulo operation to perform on

the result:

>>> pow(2,5)
32
>>> pow(2,5,10)
2
>>> (2 **5) % 10
2

4807-7 ch02.F 5/24/01 8:57 AM Page 25

26 Part I ✦ The Python Language

The result is the same as using the power and modulo operators, but Python

arrives at the result more efficiently. (Speedy power-and-modulo is useful in some

types of cryptography.)

Round — round(x [, n])
This function rounds a floating point number x to the nearest whole number.

Optionally, you can tell it to round to n digits after the decimal point:

>>> round(5.567)
6.0
>>> round(5.567,2)
5.57

Chapter 31, “Number Crunching,” covers several Python modules that deal with
math and numerical data types.

Assigning Values to Variables
With basic numeric types out of the way, we can take a break before moving on to

other data types, and talk about variables and assignment statements. Python cre-

ates variables the first time you use them (you never need to explicitly declare

them beforehand), and automatically cleans up the data they reference when they

are no longer needed.

Refer back to “Identifiers and Operators” at the beginning of this chapter for the

rules regarding valid variable names.

Simple assignment statements
The simplest form of assignment statements in Python are of the form variable = value:

>>> a = 5
>>> b = 10
>>> a
5
>>> b
10
>>> a + b
15
>>> a > b
0

“Understanding References” in Chapter 4 goes into more depth about how and
when Python destroys unneeded data, and “Taking Out the Trash” in Chapter 26
covers the Python garbage collector.

Cross-
Reference

Cross-
Reference

4807-7 ch02.F 5/24/01 8:57 AM Page 26

27Chapter 2 ✦ Identifiers, Variables, and Numeric Types

A Python variable doesn’t actually contain a piece of data but merely references a

piece of data. The details and importance of this are covered in Chapter 4, but for

now it’s just important to note that the type of data that a variable refers to can

change at any time:

>>> a = 10
>>> a # First it refers to an integer.
10
>>> a = 5.0 + 2j
>>> a # Now it refers to a complex number.
(5+2j)

Multiple assignment
Python provides a great shorthand method of assigning values to multiple variables

at the same time:

>>> a,b,c = 5.5,2,10
>>> a
5.5
>>> b
2
>>> c
10

You can also use multiple assignment to swap any number of variables. Continuing

the previous example:

>>> a,b,c = c,a,b
>>> a
10
>>> b
5.5
>>> c
2

Multiple assignment is really tuple packing and unpacking, covered in Chapter 4.

Augmented assignment
Another shorthand feature is augmented assignment, which enables you to combine

an assignment and a binary operation into a single statement:

>>> a = 10
>>> a += 5
>>> a
15

Cross-
Reference

4807-7 ch02.F 5/24/01 8:57 AM Page 27

28 Part I ✦ The Python Language

Augmented assignment was introduced in Python 2.0.

Python provides these augmented assignment operators:

+= -= *= /= %= **=
>>= <<= &= |= ^=

The statement a += 5 is nearly identical to the longer form of a = a + 5 with two

exceptions (neither of which you need to worry about too often, but are worth

knowing):

1. In augmented assignment, Python evaluates a only once instead of the two

times in the longhand version.

2. When possible, augmented assignment modifies the original object instead of

creating a new object. In the longhand example above, Python evaluates the

expression a + 5, creates a place in memory to hold the result, and then re-

assigns a to reference the new data. With augmented assignment, however,

Python places the result in the original object.

Summary
Python has several built-in data types and many features to help you work with

them. In this chapter you:

✦ Learned the rules for valid Python variable names and other identifiers.

✦ Created variables using integer, floating point, and other numerical data.

✦ Used augmented assignment statements to combine basic operations such as

addition with assignment.

In the next chapter you discover how to use expressions to compare data and you

learn how character strings work in Python.

✦ ✦ ✦

New
Feature

4807-7 ch02.F 5/24/01 8:57 AM Page 28

Expressions
and Strings

Character strings can hold messages for users to read

(a la “Hello, world!”), but in Python they can also hold a

sequence of binary data. This chapter covers how you use

strings in your programs, and how you can convert between

strings, numbers, and other Python data types.

Before you leave this chapter, you’ll also have a solid grasp of

expressions and how your programs can use them to make

decisions and compare data.

Expressions
Expressions are the core building blocks of decision making in

Python and other programming languages, and Python evalu-

ates each expression to see if it is true or false.

The most basic form of a Python expression is any value: if

the value is nonzero, it is considered to be “true,” and if it

equals 0, it is considered to be “false.”

Chapter 4 goes on to explain that Python also considers
any nonempty and non-None objects to be true.

More common, however, is the comparison of two or more

values with some sort of operator:

>>> 12 > 5 # This expression is true.
1
>>> 2 < 1 # This expression is false.
0

Comparing numeric types
Python supplies a standard set of operators for comparing

numerical data types. Table 3-1 lists these comparison opera-

tors with examples.

Cross-
Reference

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Expressions

Strings

Converting between
simple types

✦ ✦ ✦ ✦

4807-7 ch03.F 5/24/01 8:57 AM Page 29

30 Part I ✦ The Python Language

Table 3-1
Comparison Operators

Operator Description Sample Input Sample Output

< Less than 10 < 5 0

> Greater than 10 > 5 1

<= Less than or equal 3 <= 5 1

3 <= 3 1

>= Greater than or equal 3 >= 5 0

== Equality 3 == 3 1

3 == 5 0

!= Inequality* 3 != 5 1

* Python also supports an outdated inequality operator: <>. It may not be supported in the future.

Before comparing two numbers, Python applies the usual coercion rules if

necessary.

A comparison between two complex numbers involves only the real part of each

number if they are different. Only if the real parts of both are the same does the

comparison depend on the imaginary part:

>>> 3 + 10j < 2 + 1000j
0
>>> 3 + 10j < 3 + 1000j
1

Python doesn’t restrict you to just two operands in a comparison; for example, you

can use the common a < b < c notation common in mathematics:

>>> a,b,c = 10,20,30
>>> a < b < c
True because 10 < 20 and 20 < 30

Note that a < b < c is the same as comparing a < b and then comparing b < c, except

that b is evaluated only once (besides being nifty, this could really make a differ-

ence if evaluating b required a lot of processing time).

Expressions like a < b > c are legal but discouraged, because to the casual observer

(for example, you, late at night, searching for a bug in your code) they appear to

imply a comparison or relationship between a and c, which is not really the case.

Python has three additional functions that you can use when comparing data:

4807-7 ch03.F 5/24/01 8:57 AM Page 30

31Chapter 3 ✦ Expressions and Strings

min (x[, y,z,...])
The min function takes two or more arguments of any type and returns the smallest:

>>> min(10,20.5,5,100L)
5

max (x[, y,z,...])
Similarly, max chooses the largest of the arguments passed in:

>>> max(10,20.5,5,100L)
100L

Both min and max can accept a sequence as an argument (See Chapter 4 for infor-

mation on lists and tuples.):

>>> Ages=[42,37,26]
>>> min(Ages)
26

cmp (x,y)
The comparison function takes two arguments and returns a negative number, 0, or

a positive number if the first argument is less than, equal to, or greater than the

second:

>>> cmp(2,5)
-1
>>> cmp(5,5.0)
0
>>> cmp(5,2)
1

Do not rely on the values being strictly 1, -1, or 0, especially when calling cmp with

other data types (for example, strings).

Compound expressions
A compound expression combines simple expressions using the Boolean operators

and, or, and not. Python treats Boolean operators slightly differently than many

other languages do.

and
When evaluating the expression a and b, Python evaluates a to see if it is false, and

if so, the entire expression takes on the value of a. If a is true, Python evaluates b
and the entire expression takes on the value of b. There are two important points

here. First, the expression does not evaluate to just true or false (0 or 1):

4807-7 ch03.F 5/24/01 8:57 AM Page 31

32 Part I ✦ The Python Language

>>> a,b = 10,20
>>> a and b # a is true, so evaluate b
20
>>> a,b = 0,5
>>> a and b
0

Second, if a (the first expression) evaluates to false, then Python never bothers to

evaluate b (the second expression):

>>> 0 and 2/0 # Doesn’t cause division by zero error
0

or
With the expression a or b, Python evaluates a to see if it is true, and if so, the

entire expression takes on the value of a. When a is false, the expression takes on

the value of b:

>>> a,b = 10,20
>>> a or b
10
>>> a,b = 0,5
>>> a or b
5

Similar to the and operator, the expression takes on the value of either a or b
instead of just 0 or 1, and Python evaluates b only if a is false.

not
Finally, not inverts the “truthfulness” of an expression: if the expression evaluates

to true, not returns false, and vice versa:

>>> not 5
0
>>> not 0
1
>>> not (0 > 2)
1

Unlike the and and or operators, not always returns a value of 0 or 1.

Complex expressions
You can form arbitrarily complex expressions by grouping any number of expres-

sions together using parentheses and Boolean operators. For example, if you just

can’t seem to remember if a number is one of the first few prime numbers, this

expression will bail you out:

4807-7 ch03.F 5/24/01 8:57 AM Page 32

33Chapter 3 ✦ Expressions and Strings

>>> i = 5
>>> (i == 2) or (i % 2 != 0 and 0 < i < 9)
1
>>> i = 2
>>> (i == 2) or (i % 2 != 0 and 0 < i < 9)
1
>>> i = 4
>>> (i == 2) or (i % 2 != 0 and 0 < i < 9)
0

If the number is 2, the first sub-expression (i == 2) evaluates to true and Python

stops processing the expression and returns 1 for true. Otherwise, two remaining

conditions must be met for the expression to evaluate to true. The number must

not be evenly divisible by 2, and it must be between 0 and 9 (hey, I said the first few
primes, remember?).

Parentheses let you explicitly control the order of what gets evaluated first. Without

parentheses, the order of evaluation may be unclear and different than what you

expect (and a great source of bugs):

>>> 4 or 1 * 2
4

A well-placed pair of parentheses clears up any ambiguity:

>>> (4 or 1) * 2
8

Operator precedence
Python uses the ordering in Table 3-2 to guide the evaluation of complex expres-

sions. Expressions using operators higher up in the table get evaluated before

those towards the bottom of the table. Operators on the same line of the table have

equal priority or precedence. Python evaluates operators with the same prece-

dence from left to right.

Table 3-2
Operator Precedence (from lowest to highest)

Operators Description

`x` String conversion

{key:datum, ...} Dictionary

[x,y,...] List

(x,y,...) Tuple

Continued

4807-7 ch03.F 5/24/01 8:58 AM Page 33

34 Part I ✦ The Python Language

Table 3-2 (continued)

Operators Description

f(x,y,...) Function call

x[j:k] Slice

x[j] Subscription

x.attribute Attribute reference

~x Bitwise negation (inversion)

+x, -x Plus, minus

** Power

*, /, % Multiply, divide, modulo

+, - Add, subtract

<<, >> Shifting

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

<, <=, ==, !=, >=, > Comparisons

is, is not Identity

in, not in Membership

not x Boolean NOT

and Boolean AND

or Boolean OR

lambda Lambda expression

See Chapters 4 through 7 for more information on operators and data types such
as lists and tuples that we have not yet covered.

Strings
A string is Python’s data type for holding not only text but also “non-printable” or

binary data. If you’ve done much work with strings in languages like C or C++, pre-

pare to be liberated from mundane memory management tasks as well as a plethora

of bugs lying in wait. Strings in Python were not added as an afterthought or tacked

on via a third party library, but are part of the core language itself, and it shows!

Cross-
Reference

4807-7 ch03.F 5/24/01 8:58 AM Page 34

35Chapter 3 ✦ Expressions and Strings

String literals
A string literal is a sequence of characters enclosed by a matching pair of single or

double quotes:

“Do you like green eggs and ham?”
‘Amu vian najbaron’
“Tuesday’ # Illegal: quotes do not match.

Which of the two you use is more of a personal preference (in some nerdy way I

find single-quoted strings more sexy and “cool”), but sometimes the text of the

string makes one or the other more convenient:

‘Quoth the Raven, _Nevermore._ ‘
Monty Python’s Flying Circus
_Enter your age (I’ll know if you’re lying, so don’t): _

Python automatically joins two or more string literals separated only by whitespace:

>>> “one” ‘two’ “three”
‘onetwothree’

A single backslash character inside a string literal lets you break a string across

multiple lines:

>>> ‘Rubber baby \
... buggy bumpers’
‘Rubber baby buggy bumpers’

If your string of text covers several lines and you want Python to preserve the exact

formatting you used when typing it in, use triple-quoted strings (the string begins

with three single or double quotes and ends with three more of the same type of

quote). An example:

>>> s = “”””Knock knock.”
... “Who’s there?”
... “Knock knock.”
... “Who’s there?”
... “Knock knock.”
... “Who’s there?”
... “Philip Glass.”
... “””
>>> print s
“Knock knock.”
“Who’s there?”
“Knock knock.”
“Who’s there?”
“Knock knock.”
“Who’s there?”
“Philip Glass.”

4807-7 ch03.F 5/24/01 8:58 AM Page 35

36 Part I ✦ The Python Language

String length
Regardless of the quoting method you use, string literals can be of any length. You

can use the len(x) function to retrieve the length of a string:

>>> len(‘Pokey’)
5
>>> s = ‘Data:\x00\x01’
>>> len(s)
7

Escape sequences
You can also use escape sequences to include quotes or other characters inside a

string (see Table 3-3):

>>> print “\”Never!\” shouted Skeptopotamus.”
“Never!” shouted Skeptopotamus.

Table 3-3
Escape Sequences

Sequence Description

\n Newline (ASCII LF)

\’ Single quote

\” Double quote

\\ Backslash

\t Tab (ASCII TAB)

\b Backspace (ASCII BS)

\r Carriage return (ASCII CR)

\xhh Character with ASCII value hh in hex

\ooo Character with ASCII value ooo in octal

\f Form feed (ASCII FF)*

\a Bell (ASCII BEL)

\v Vertical tab (ASCII VT)

* Not all output devices support all ASCII codes. You won’t use \v very often, for example.

Table 3-3 lists the valid escape sequences. If you try to use an invalid escape

sequence, Python leaves both the backslash and the character after it in the string:

>>> print ‘Time \z for foosball!’
Time \z for foosball!

4807-7 ch03.F 5/24/01 8:58 AM Page 36

37Chapter 3 ✦ Expressions and Strings

As shown in Table 3-3, you can specify the characters of a string using their ASCII

value:

>>> ‘\x50\x79\x74\x68\x6f\x6e’
‘Python’

See “Converting Between Simple Types” later in this chapter for more on the ASCII
codes for characters.

The values can be in the range of 0 to 255 (the values that a single byte can have).

Remember: a string in Python doesn’t have to be printable text. A string could hold

the raw data of an image file, a binary message received over a network, or any-

thing else.

Raw strings
One final way to specify string literals is with raw strings, in which backslashes can

still be used as escape characters, but Python leaves them in the string. You flag a

string as a raw string with an r prefix. For example, on Windows systems the path

separator character is a backslash, so to use it in a string you’d normally have to

type ‘\\’ (the escape sequence for the backslash). Alternatively, you could use a

raw string:

>>> s = r”c:\games\half-life\hl.exe”
>>> s
‘c:\\games\\half-life\\hl.exe’
>>> print s
c:\games\half-life\hl.exe

The os.path module provides easy, cross-platform path manipulation. See
Chapter 10 for details.

Manipulating strings
You can use the plus and multiply operators to build strings. The plus operator

concatenates strings together:

>>> a = ‘ha ‘
>>> a + a + a
‘ha ha ha ‘

The multiply operator repeats a string:

>>> ‘=’ * 10
‘==========’

Cross-
Reference

Cross-
Reference

4807-7 ch03.F 5/24/01 8:58 AM Page 37

38 Part I ✦ The Python Language

Note that operator precedence rules apply, as always:

>>> ‘Wh’ + ‘e’ * 10 +’!’
‘Wheeeeeeeeee!’

Augmented assignment works as well:

>>> a = ‘Ah’
>>> a += ‘ Hah! ‘
>>> a
‘Ah Hah! ‘
>>> a *= 2
>>> a
‘Ah Hah! Ah Hah! ‘

Accessing individual characters and substrings
Because strings are sequences of characters, you can use on them the same opera-

tors that are common to all of Python’s sequence types, among them, subscription
and slice.

See Chapter 4 for a discussion of Python sequence types.

Subscription lets you use an index number to retrieve a single character from a

Python string, with 0 being the first character:

>>> s = ‘Python’
>>> s[1]
‘y’

Additionally, you can reference characters from the end of the string using negative

numbers. An index of -1 means the last character, -2 the next to last, and so on:

>>> ‘Hello’[-1]
‘o’
>>> ‘Hello’[-5]
‘H’

Python strings are immutable, which means you can’t directly change them or indi-

vidual characters (you can, of course, assign the same variable to a new string):

>>> s = ‘Bad’
>>> s[2] = ‘c’ # Can’t modify the string value
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

TypeError: object doesn’t support item assignment
>>> s = ‘Good’ # Can reassign the variable

Cross-
Reference

4807-7 ch03.F 5/24/01 8:58 AM Page 38

39Chapter 3 ✦ Expressions and Strings

Slicing is similar to subscription except that with it you can retrieve entire sub-

strings instead of single characters. The operator takes two arguments for the

lower and upper bounds of the slice:

>>> ‘Monty’[2:4]
‘nt’

It’s important to understand that the bounds are not referring to character indices

(as with subscription), but really refer to the spots between characters:

M o n t y
| | | | | |
0 1 2 3 4 5

So the slice of 2:4 is like telling Python, “Give me everything from the right of 2 and

to the left of 4,” which is the substring “nt”.

The lower and upper bounds of a slice are optional. If omitted, Python sticks in the

beginning or ending bound of the string for you:

>>> s = ‘Monty’
>>> s[:2]
‘Mo’
>>> s[2:]
‘nty’
>>> s[:]
‘Monty’

Don’t forget: Python doesn’t care if you use negative numbers as bounds for the

offset from the end of the string. Continuing the previous example:

>>> s[1:-1]
‘ont’
>>> s[-3:-1]
‘nt’

Strings Are Objects

Python strings are actually objects with many built-in methods:

>>> s = ‘Dyn-o-mite!’
>>> s.upper()
‘DYN-O-MITE!’
>>> ‘ text ‘.strip()
‘text’

Refer to Chapter 9 for a discussion of all the String methods and how to use them.

4807-7 ch03.F 5/24/01 8:58 AM Page 39

40 Part I ✦ The Python Language

You can also access each character via tuple unpacking. This feature isn’t used as

often because you have to use exactly the same number of variables as characters

in the string:

>>> a,b,c = ‘YES’
>>> print a, b, c
Y E S

Python does not have a separate ‘character’ data type; a character is just a string of
length 1.

Formatting strings
The modulo operator (%) has special behavior when used with strings. You can use

it like the C printf function for formatting data:

>>> “It’s %d past %d, %s!” % (7,9,”Fred”)
“It’s 7 past 9, Fred!”

Python scans the string for conversion specifiers and replaces them with values

from the list you supply. Table 3-4 lists the different characters you can use in a

conversion and what they do; those in bold are more commonly useful.

Table 3-4
String Formatting Characters

Character Description

d or I Decimal (base 10) integer

f Floating point number

s String or any object

c Single character

u Unsigned decimal integer

X or x Hexadecimal integer (upper or lower case)

o Octal integer

e or E Floating point number in exponential form

g or G Like %f unless exponent < -4 or greater than the
precision. If so, acts like %e or %E

r repr() version of the object*

% Use %% to print the percentage character.

* %s prints the str() version, %r prints the repr() version. See “Converting Between Simple Types” in this chapter.

Note

4807-7 ch03.F 5/24/01 8:58 AM Page 40

41Chapter 3 ✦ Expressions and Strings

Here are a few more examples:

>>> ‘%x %X’ % (57005,48879)
‘dead BEEF’
>>> pi = 3.14159
>>> ‘%f %E %G’ % (pi,pi,pi)
‘3.141590 3.141590E+000 3.14159’
>>> print ‘%s %r’ % (‘Hello’,’Hello’)
Hello ‘Hello’

Beyond these features, Python has several other options, some of which are

holdovers from C. Between the % character and the conversion character you

choose, you can have any combination of the following (in this order):

Key name
Instead of a tuple, you can provide a dictionary of values to use (dictionaries are

covered in Chapter 4). Place the key names (enclosed in parentheses) between the

percent sign and the type code in the format string. This one is best explained with

an example (although fans of Mad-Libs will be at home):

>>> d = {‘name’:’Sam’, ‘num’:32, ‘amt’:10.12}
>>> ‘%(name)s is %(num)d years old. %(name)s has $%(amt).2f’ %
d
‘Sam is 32 years old. Sam has $10.12’

- or 0
A minus indicates that numbers should be left justified, and a 0 tells Python to pad

the number with leading zeros. (This won’t have much effect unless used with the

minimum field modifier, explained below.)

+
A plus indicates that the number should always display its sign, even if the number

is positive:

>>> ‘%+d %+d’ % (5,-5)
‘+5 -5’

Minimum field width number
A number indicates the minimum field this value should take up. If printing the

value takes up less space, Python adds padding (either spaces or zeros, see above)

to make up the difference:

>>> ‘%5d’ % 2 # Don’t need () if there’s only one value
‘ 2’
>>> ‘%-5d, %05d’ % (2,2)
‘2 , 00002’

4807-7 ch03.F 5/24/01 8:58 AM Page 41

42 Part I ✦ The Python Language

Additional precision-ish number
This final number is a period character followed by a number. For a string, the

number is the maximum number of characters to print. For a floating-point number,

it’s the number of digits to print after the decimal point, and for integers it’s the

minimum number of digits to print. Got all that?

>>> ‘%.3s’ % ‘Python’
‘Pyt’
>>> ‘%05.3f’ % 3.5
‘3.500’
>>> ‘%-8.5d’ % 10
‘00010 ‘

Last but not least, you can use an asterisk in place of any number in a width field. If

you supply an asterisk, you also provide a list of values (instead of a single num-

ber). Python looks in the list of values for that width value:

>>> ‘%*.*f’ % (6,3,1.41421356)
‘ 1.414’

Comparing strings
String comparison works much the same way numeric comparison does by using

the standard comparison operators (<, <=, !=, ==, >=, >). The comparison is

lexicographic (‘A’ < ‘B’) and case-sensitive:

>>> ‘Fortran’ > ‘Pascal’
0
>>> ‘Perl’ < ‘Python’
1

For a string in an expression, Python evaluates any nonempty string to true, and an

empty string to false:

>>> ‘OK’ and 5
5
>>> not ‘fun’
0
>>> not ‘’
1

This behavior provides a useful idiom for using a default value if a string is empty.

For example, suppose that the variable s in the following example came from user

input instead of you supplying the value. If the user chose something, name holds

its value; otherwise name holds the default value of ‘index.html’.

>>> s = ‘’; name = s or ‘index.html’
>>> name
‘index.html’

4807-7 ch03.F 5/24/01 8:58 AM Page 42

43Chapter 3 ✦ Expressions and Strings

>>> s = ‘page.html’; name = s or ‘index.html’
>>> name
‘page.html’

You can use the min, max, and cmp functions on strings:

>>> min(‘abstract’) # Find the least character in the string.
‘a’
>>> max(‘i’,’love’,’spam’) # Find the greatest string.
‘spam’
>>> cmp(‘Vader’,’Maul’) # Vader is greater.
9

Strings (and other sequence types) also have the in (and not in) operator, which

tests if a character is a member of a string:

>>> ‘u’ in ‘there?’
0
>>> ‘i’ not in ‘teamwork’ # Cheesy
1

Chapter 9 covers advanced string searching and matching with regular expressions.

Unicode string literals
Many computer languages limit characters in a string to values in the range of 0 to

255 because they store each one as a single byte, making nearly impossible the sup-

port of non-ASCII characters used by so many other languages besides plain old

English. Unicode characters are 16-bit values (0 to 65535) and can therefore handle

just about any character set imaginable.

Full support for Unicode strings was a new addition in Python 2.0.

You can specify a Unicode literal string by prefixing a string with a u:

>>> u’Rang’
u’Rang’

See Chapter 9 for more on using Unicode strings.

Converting Between Simple Types
Python provides many functions for converting between numerical and string data

types in addition to the string formatting feature in the previous section.

Cross-
Reference

New
Feature

Cross-
Reference

4807-7 ch03.F 5/24/01 8:58 AM Page 43

44 Part I ✦ The Python Language

Converting to numerical types
The int, long, float, complex, and ord functions convert data to numerical types.

int (x[, radix])
This function uses a string and an optional base to convert a number or string to an

integer:

>>> int(‘15’)
15
>>> int(‘15’,16) # In hexadecimal, sixteen is written “10”
21

The string it converts from must be a valid integer (trying to convert the string 3.5
would fail). Alternatively, the int function can convert other numbers to integers:

>>> int(3.5)
3
>>> int(10L)
10

The int function drops the fractional part of a number. To find the “closest” inte-

ger, use the round function (below).

long (x[, radix])
The long function can convert a string or another number to a long integer (you

can also include a base):

>>> long(‘125’)
125L
>>> long(17.6)
17L
>>> long(‘1E’,16)
30L

float (x)
You should be seeing a pattern by now:

>>> float(12.1)
12.1
>>> float(10L)
10.0
>>> int(float(“3.5”)) # int(“3.5”) is illegal.
3

The exception is with complex numbers; use the abs function to “convert” a

complex number to a floating-point number.

4807-7 ch03.F 5/24/01 8:58 AM Page 44

45Chapter 3 ✦ Expressions and Strings

round (num[, digits])
This function rounds a floating point number to a number having the specified

number of fractional digits. If you omit the digits argument, the result is a whole

number:

>>> round(123.5678,3)
123.568
>>> round(123.5678)
124.0
>>> round(123.4)
123.0

complex (real[, imaginary])
The complex function can convert a string or number to a complex number, and it

also takes an optional imaginary part to use if none is supplied:

>>> complex(‘2+5j’)
(2+5j)
>>> complex(‘2’)
(2+0j)
>>> complex(6L,3)
(6+3j)

ord (ch)
This function takes a single character (a string of length 1) as its argument and

returns the ASCII or Unicode value for that character:

>>> ord(u’a’)
97
>>> ord(‘b’)
98

Converting to strings
Going the other direction, the following functions take numbers and make them into

strings.

chr (x) and unichr (x)
Inverses of the ord function, these functions take a number representing an ASCII

or Unicode value and convert it to a character:

>>> chr(98)
‘b’

4807-7 ch03.F 5/24/01 8:58 AM Page 45

46 Part I ✦ The Python Language

oct (x) and hex (x)
These two functions take numbers and convert them to octal and hexadecimal

string representations:

>>> oct(123)
‘0173’
>>> hex(123)
‘0x7b’

str (obj)
The str function takes any object and returns a printable string version of that

object:

>>> str(5)
‘5’
>>> str(5.5)
‘5.5’
>>> str(3+2j)
‘(3+2j)’

Python calls this function when you use the print statement.

repr (obj)
The repr function is similar to str except that it tries to return a string version of

the object that is valid Python syntax. For simple data types, the outputs of str and

repr are often identical. (See Chapter 9 for details.)

A popular shorthand for this function is to surround the object to convert in back

ticks (above the Tab key on most PC keyboards):

>>> a = 5
>>> ‘Give me ‘ + a # Can’t add a string and an integer!
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

TypeError: cannot add type “int” to string
>>> ‘Give me ‘ + `a` # Convert to a string on-the-fly.
‘Give me 5’

As of Python 2.1, str and repr display newlines and other escape sequences the
same way you type them (instead of displaying their ASCII code):

>>> ‘Hello\nWorld’
‘Hello\nWorld’

When you use the Python interpreter interactively, Python calls repr to display

objects. You can have it use a different function by setting the value of sys.
displayhook:

New
Feature

4807-7 ch03.F 5/24/01 8:58 AM Page 46

47Chapter 3 ✦ Expressions and Strings

>>> 5.3
5.2999999999999998 # The standard representation is ugly.
>>> def printstr(s):
... print str(s)
>>> import sys
>>> sys.displayhook = printstr
>>> 5.3
5.3 # A more human-friendly format

The sys.displayhook feature is new in Python 2.1.

Summary
Python has a complete set of operators for building expressions as complex as you

need. Python’s built-in string data type offers powerful but convenient control over

text and binary strings, freeing you from many maintenance tasks you’d be stuck

with in other programming languages. In this chapter you:

✦ Built string literals and formatted data in strings.

✦ Used Python’s operators to modify and compare data.

✦ Learned to convert between various data types and strings.

In the next chapter you’ll unleash the power of Python’s other built-in data types

including lists, tuples, and dictionaries.

✦ ✦ ✦

New
Feature

4807-7 ch03.F 5/24/01 8:58 AM Page 47

4807-7 ch03.F 5/24/01 8:58 AM Page 48

Advanced
Data Types

The simple data types in the last few chapters are com-

mon to many programming languages, although often not

so easily managed and out-of-the-box powerful. The data

types in this chapter, however, set Python apart from lan-

guages such as C, C++, or even Java, because they are built-in,

intuitive and easy to use, and incredibly powerful.

Grouping Data with Sequences
Strings, lists, and tuples are Python’s built-in sequence data

types. Each sequence type represents an ordered set of data

elements. Unlike strings, where each piece of data is a single

character, the elements that make up a list or a tuple can be

anything, including other lists, tuples, strings, and so on.

Though much of this section applies to strings, the focus here

is on lists and tuples.

Go directly to Chapter 3 to learn more about strings. Do
not pass Go.

The main difference between lists and tuples is one of muta-

bility: you can change, add, or remove items of a list, but you

cannot change a tuple. Beyond this, though, you will find a

conceptual difference on where you apply each. You’d use a

list as an array to hold the lines of text from a file, for exam-

ple, and a tuple to represent a 3-D point in space (x,y,z). Put

another way, lists are great for dealing with many items

that you’d process similarly, while a tuple often represents

different parts of a single item. (Don’t worry — when you go to

use either in a program it becomes pretty obvious which one

you need.)

Cross-
Reference

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Grouping data with
sequences

Working with
sequences

Using additional list
object features

Mapping information
with dictionaries

Understanding
references

Copying complex
objects

Identifying data types

Working with array
objects

✦ ✦ ✦ ✦

4807-7 ch04.F 5/24/01 8:58 AM Page 49

50 Part I ✦ The Python Language

Creating lists
Creating a list is straightforward because you don’t need to specify a particular

data type or length. You can surround any piece of data in square brackets to create

a list containing that data:

>>> x = [] # An empty list
>>> y = [‘Strawberry’,’Peach’]
>>> z = [10,’Howdy’,y] # Mixed types and a list within a list
>>> z
[10, ‘Howdy’, [‘Strawberry’, ‘Peach’]]

You can call the list(seq) function to convert from one sequence type to a list:

>>> list((5,10)) # A tuple
[5, 10]
>>> list(“The World”)
[‘T’, ‘h’, ‘e’, ‘ ‘, ‘W’, ‘o’, ‘r’, ‘l’, ‘d’]

If you call list on an object that is already a list, you get a copy of the original list

back.

See “Copying Complex Objects” in this chapter for more on copying objects.

Ranges
You use the range([lower,] stop[, step]) function to generate a list whose

members are some ordered progression of integers. Instead of idling away your

time typing in the numbers from 0 to 10, you can do the same with a call to range:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # 10 items, starting at 0

You can also call the function with start and stop indices, and even a step to tell it

how quickly to jump to the next item:

>>> range(6,12)
[6, 7, 8, 9, 10, 11] # Stops just before the stop index.
>>> range (2,20,3)
[2, 5, 8, 11, 14, 17]
>>> range (20,2,-3) # Going down!
[20, 17, 14, 11, 8, 5]

You most commonly use the range function in looping (which we cover in the next

chapter):

>>> for i in range(10):
... print i,
0 1 2 3 4 5 6 7 8 9

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 50

51Chapter 4 ✦ Advanced Data Types

The xrange ([lower,] stop[, step]) function is similar to range except that

instead of creating a list, it returns an xrange object that behaves like a list but

doesn’t calculate each list value until needed. This feature has the potential to save

memory if the range is very large or to improve performance if you aren’t likely to

iterate through every single member of the equivalent list.

List comprehensions
One final way to create a list is through list comprehensions, which are great if you

want to operate on each item in a list and store the result in a new list, or if you

want to create a list that contains only items that meet certain criteria. For

example, to generate a list containing x2 for the numbers 1 through 10:

>>> [x*x for x in range(1,11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

List comprehensions are new in Python 2.0.

Python uses the range(1,11) to generate a list containing the numbers 1 through

10. Then, for each number in that list, it evaluates the expression x*x and adds the

result to the output list.

You can add an if to the list comprehension so that items get added to the new list

only if they pass some test. For example, to generate the same list as above while

weeding out odd numbers:

>>> [x*x for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

But wait, there’s more! You can list more than one for statement and Python evalu-

ates each in order, processing the rest of the list comprehension each time:

>>> [a+b for a in ‘ABC’ for b in ‘123’]
[‘A1’, ‘A2’, ‘A3’, ‘B1’, ‘B2’, ‘B3’, ‘C1’, ‘C2’, ‘C3’]

Python loops through each character of ‘ABC’ and for each one goes through the

entire loop of each character in ‘123’.

See where this is going? You can have as many for statements as you want, and

each one can have an if statement (but if you think you need five or six then you

might want to break them into separate statements for sanity’s sake):

>>> [a+b+c for a in “HI” for b in “JOE” if b != ‘E’
... for c in ‘123’ if c!= ‘2’]
[‘HJ1’, ‘HJ3’, ‘HO1’, ‘HO3’, ‘IJ1’, ‘IJ3’, ‘IO1’, ‘IO3’]

New
Feature

4807-7 ch04.F 5/24/01 8:58 AM Page 51

52 Part I ✦ The Python Language

Finally, the expression that Python evaluates to generate each item in the new list

doesn’t have to be a simple data type such as an integer. You can also have it be

lists, tuples, and so forth:

>>> [(x,ord(x)) for x in ‘Ouch’]
[(‘O’, 79), (‘u’, 117), (‘c’, 99), (‘h’, 104)]

Creating tuples
Creating a tuple is similar to creating a list, except that you use parentheses instead

of square brackets:

>>> x = () # Any empty tuple
>>> y = 22407,’Fredericksburg’ # ()’s are optional
>>> z = (‘Mrs. White’,’Ballroom’,’Candlestick’)

Parentheses can also enclose any expression, so Python has a special syntax to des-

ignate a tuple with only one item. To create a tuple containing the string ‘lonely’:

>>> x = (‘lonely’,)

Use the tuple(seq) function to convert one of the other sequence types to a tuple:

>>> tuple(‘tuple’)
(‘t’, ‘u’, ‘p’, ‘l’, ‘e’)
>>> tuple([1,2,3])
(1, 2, 3)

Working with Sequences
Now that you have your list or tuple, what do you do with it? This section shows

you the operators and functions you can use to work on sequence data.

Joining and repeating with arithmetic operators
Of the arithmetic operators, Python defines addition and multiplication for working

with sequences. As with strings, the addition operator concatenates sequences and

the multiplication operator repeats them:

>>> [1,2] + [5] + [‘EGBDF’]
[1, 2, 5, ‘EGBDF’]
>>> (‘FACEG’,) + (17,88)
(‘FACEG’, 17, 88)
>>> (1,3+4j) * 2
(1, (3+4j), 1, (3+4j))

4807-7 ch04.F 5/24/01 8:58 AM Page 52

53Chapter 4 ✦ Advanced Data Types

The augmented assignment version of these operators works as well (although for

strings and tuples Python doesn’t perform the operation in place but instead cre-

ates a new object):

>>> z = [‘bow’,’arrow’]
>>> z *= 2
>>> z
[‘bow’, ‘arrow’, ‘bow’, ‘arrow’]
>>> q = (1,2)
>>> q += (3,4)
>>> q
(1, 2, 3, 4)

Comparing and membership testing
You can use the normal comparison (<, <=, >=, >) and equality (!=, ==) operators

with sequence objects:

>>> [‘five’,’two’] != [5,2]
1
>>> (0.5,2) < (0.5,1)
0

Python checks the corresponding element of each sequence until it can make a

determination. When the items in two sequence objects are equal except that one

has more items than the other, the longer is considered greater:

>>> [1,2,3] > [1,2]
1

You can use the in operator to test if something is in a list or tuple, and not in to

test if it is not:

>>> trouble = (‘Dan’,’Joe’,’Bob’)
>>> ‘Bob’ in trouble
1
>>> ‘Dave’ not in trouble
1

Accessing parts of sequences
When you need to retrieve data from a sequence object, you have several

alternatives.

Subscription
When you want to access a single element of a sequence object, you use the sub-

script or index of the element you want to reference, with the first element having

an index of zero (For some reason I get strange looks when I say, “Back to square

zero!”):

4807-7 ch04.F 5/24/01 8:58 AM Page 53

54 Part I ✦ The Python Language

>>> num = [‘dek’,’dudek’,’tridek’]
>>> num[1]
‘dudek’
>>> num[-1] # A negative index starts from the other end.
‘tridek’

Slices
Slices let you create a new sequence containing all or part of another sequence. You

specify a slice in the form of [start:end] and for each element Python adds that

element to the new sequence if its index i is start <= i < end.

Conceptually, thinking of the slice parameters as pointing between items in a
sequence is helpful.

>>> meses = [‘marzo’,’abril’,’mayo’,’junio’]
>>> meses[1:3]
[‘abril’, ‘mayo’]
>>> meses[0:-2] # Parameters can count from the right, too.
[‘marzo’, ‘abril’]

The start and end parameters are both optional, and Python silently corrects

invalid input:

>>> meses[2:]
[‘mayo’, ‘junio’]
>>> meses[:2]
[‘marzo’, ‘abril’]
>>> meses[-2:5000]
[‘mayo’, ‘junio’]

See “Accessing individual characters and substrings” in Chapter 3 for more exam-
ples of using slices.

Unpacking
Just as you can create a tuple by assigning a comma-separated list of items to a

single variable, you can unpack a sequence object (not just tuples!) by doing the

opposite:

>>> s = 801,435,804
>>> x,y,z = s
>>> print x,y,z
801 435 804

Keep in mind that the number of variables on the left must match the length of the

sequence you’re unpacking on the right.

Multiple assignment (in Chapter 3) is really just a special case of tuple packing and
unpacking: you pack the objects into a single tuple and then unpack them into the
same number of original variables.

Note

Cross-
Reference

Tip

4807-7 ch04.F 5/24/01 8:58 AM Page 54

55Chapter 4 ✦ Advanced Data Types

Iterating with for...in
A common task is to loop over all the elements of a list or tuple and operate on

each one. One of the easiest ways to do this is with a for...in statement:

>>> for op in [‘sin’,’cos’,’tan’]:
... print op
sin
cos
tan

Using sequence utility functions
Python provides a rich complement of sequence processing functions.

len (x), min (x[, y,z,...]), and max (x[, y,z,...])
These three aren’t really specific to sequences, but they’re quite useful nonetheless:

>>> data = [0.5, 12, 18, 2, -5]
>>> len(data) # Count of items in the sequence
5
>>> min(data) # The minimum item in the sequence
-5
>>> max(data) # The maximum item in the sequence
18

filter (function, list)
When you call filter it applies a function to each item in a sequence, and returns

all items for which the function returns true, thus filtering out all items for which

the function returns false. In the following example I create a tiny function,

nukeBad, that returns false if the string passed in contains the word ‘bad’.

Combining filter with nukeBad eliminates all those ‘bad’ words:

>>> def nukeBad(s):
... return s.find(‘bad’) == -1
>>> s = [‘bad’,’good’,’Sinbad’,’bade’,’welcome’]
>>> filter(nukeBad,s)
[‘good’, ‘welcome’]

If you pass in None for the function argument, filter removes any 0 or empty

items from the list:

>>> stuff = [12,0,’Hey’,[],’’,[1,2]]
>>> filter(None,stuff)
[12, ‘Hey’, [1, 2]]

The filter function returns the same sequence type as the one you passed in. The

example below removes any number characters from a string and returns a new

string:

4807-7 ch04.F 5/24/01 8:58 AM Page 55

56 Part I ✦ The Python Language

>>> filter(lambda d:not d.isdigit(),”P6yth12on”)
‘Python’

See Chapter 6 for more information on lambda expressions.

map (function, list[, list, ...])
The map function takes a function and a sequence and returns to you the result of

applying the function to each item in the original sequence. Regardless of the type

of sequence you pass in, map always returns a list:

>>> import string
>>> s = [‘chile’,’canada’,’mexico’]
>>> map(string.capitalize,s)
[‘Chile’, ‘Canada’, ‘Mexico’]

You can pass in several multiple lists, too, as long as the function you supply takes

the same number of arguments as the number of lists you pass in:

>>> import operator
>>> s = [2,3,4,5]; t = [5,6,7,8]
>>> map(operator.mul,s,t) # s[j] * t[j]
[10, 18, 28, 40]

Chapter 7 covers the operator class, which contains function versions of the
standard operators so you can pass them into functions like map.

If the lists you use are of different lengths, map uses empty (None) items to make up

the difference. Also, if you pass in None instead of a function, map combines the cor-

responding elements from each sequence and returns them as tuples (compare this

to the behavior of the zip function, later in this section):

>>> a = [1,2,3]; b = [4,5,6]; c = [7,8,9]
>>> map(None,a,b,c)
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

reduce (function, seq[, init])
This function takes the first two items in the sequence you pass in, passes them to

the function you supply, takes the result and the next item in the list, passes them

to the function, and so on until it has processed all the items:

>>> import operator
>>> reduce(operator.mul,[2,3,4,5])
120 # 120 = ((2*3)*4)*5

An optional third parameter is an initializer reduce uses in the very first calcula-

tion, or when the list is empty. The following example starts with the string “-” and

adds each character of a word to the beginning and end of the string (because

strings are sequences, reduce calls the function once for each letter in the string):

Cross-
Reference

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 56

57Chapter 4 ✦ Advanced Data Types

>>> reduce(lambda x,y: y+x+y, “Hello”, “-”)
‘olleH-Hello’

zip (seq[, seq, ...])
The zip function combines corresponding items from two or more sequences and

returns them as a list of tuples, stopping after it has processed all the items in the

shortest sequence:

>>> zip([1,1,2,3,5],[8,13,21])
[(1, 8), (1, 13), (2, 21)]

You may find the zip function convenient when you want to iterate over several

lists in parallel:

>>> names = [‘Joe’,’Fred’,’Sam’]
>>> exts = [116,120,100]
>>> ages = [26,34,28]
>>> for name,ext,age in zip(names,exts,ages):
... print ‘%s (extension %d) is %d’ % (name,ext,age)
Joe (extension 116) is 26
Fred (extension 120) is 34
Sam (extension 100) is 28

Passing in just one sequence to zip returns each item as a 1-tuple:

>>> zip((1,2,3,4))
[(1,), (2,), (3,), (4,)]

The zip function was introduced in Python 2.0.

Using Additional List Object Features
List objects have several methods that further facilitate their use, and because they

are mutable they support a few extra operations.

Additional operations
You can replace the value of any item with an assignment statement:

>>> todo = [‘dishes’,’garbage’,’sweep’,’mow lawn’,’dust’]
>>> todo[1] = ‘boogie’
>>> todo
[‘dishes’, ‘boogie’, ‘sweep’, ‘mow lawn’, ‘dust’]

What gets replaced in the list doesn’t need to be limited to a single item. You can

choose to replace an entire slice with a new list:

New
Feature

4807-7 ch04.F 5/24/01 8:58 AM Page 57

58 Part I ✦ The Python Language

>>> todo[1:3] = [‘nap’] # Replace from 1 to before 3
>>> todo
[‘dishes’, ‘nap’, ‘mow lawn’, ‘dust’]
>>> todo[2:] = [‘eat’,’drink’,’be merry’]
>>> todo
[‘dishes’, ‘nap’, ‘eat’, ‘drink’, ‘be merry’]

And finally, you can delete items or slices using del:

>>> del z[0]
>>> z
[‘nap’, ‘eat’, ‘drink’, ‘be merry’]
>>> del z[1:3]
>>> z
[‘nap’, ‘be merry’]

List object methods
The following methods are available on all list objects.

append (obj) and extend (obj)
The append method adds an item to the end of a list like the += operator (Python

modifies the original list in place) except that the item you pass to append is not a

list. The extend method assumes the argument you pass it is a list:

>>> z = [‘Nevada’,’Virginia’]
>>> z.append(‘Utah’)
>>> z
[‘Nevada’, ‘Virginia’, ‘Utah’]
>>> z.extend([‘North Carolina’,’Georgia’])
>>> z
[‘Nevada’, ‘Virginia’, ‘Utah’, ‘North Carolina’, ‘Georgia’]

index (obj)
This method returns the index of the first matching item in the list, if present, and

raises the ValueError exception if not. Continuing the previous example:

>>> x.index(12)
1
>>> try: print x.index(‘Farmer’)
... except ValueError: print ‘NOT ON LIST!’
NOT ON LIST!

See the next chapter for information on try...exception blocks.

count (obj)
You use the count method to find out how many items in the list match the one you

pass in:

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 58

59Chapter 4 ✦ Advanced Data Types

>>> x = [15,12,’Foo’,16,12]
>>> x.count(12)
2

String objects also have count and index methods. See Chapter 9 for details.

insert (j, obj)
Use the insert method to add a new item anywhere in the list. Pass in the index of

the item you want the new one to come before and the item to insert:

>>> months = [‘March’,’May’,’June’]
>>> months.insert(1,’April’)
>>> months
[‘March’, ‘April’, ‘May’, ‘June’]

Notice that insert is pretty forgiving if you pass in a bogus index:

>>> months.insert(-1,’February’) # Item added at start
>>> months.insert(5000,’July’) # Item added at end
>>> months
[‘February’, ‘March’, ‘April’, ‘May’, ‘June’, ‘July’]

remove (obj)
This function locates the first occurrence of an item in the list and removes it, if

present, and yells at you if not:

>>> months.remove(‘March’)
>>> months
[‘February’, ‘February’, ‘April’, ‘May’, ‘June’, ‘July’]
>>> months.remove(‘August’)
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

ValueError: list.remove(x): x not in list

pop([j])
If you specify an index, pop removes the item from that place in the list and returns

it. Without an index, the pop function removes and returns the last item from the

list:

>>> saludos = [‘Hasta!’,’Ciao’,’Nos vemos’]
>>> saludos.pop(1)
‘Ciao’
>>> saludos
[‘Hasta!’, ‘Nos vemos’]
>>> saludos.pop()
‘Nos vemos’

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 59

60 Part I ✦ The Python Language

Calling pop on an empty list causes it to raise IndexError.

reverse()
As named, the reverse function reverses the order of the list:

>>> names = [‘Jacob’,’Hannah’,’Rachael’,’Jennie’]
>>> names.reverse()
>>> names
[‘Jennie’, ‘Rachael’, ‘Hannah’, ‘Jacob’]

sort([func])
This function orders the items in a list. Continuing the previous example:

>>> names.sort()
>>> names
[‘Hannah’, ‘Jacob’, ‘Jennie’, ‘Rachael’]

Additionally, you can provide your own comparison function to use during the sort.

This function accepts two arguments and returns a negative number, 0, or a posi-

tive number if the first argument is less than, equal to, or greater than the second.

For example, to order a list by length of each item:

>>> names.sort(lambda a,b:len(a)-len(b)) # Ch 5 covers lambdas.
>>> names
[‘Jacob’, ‘Hannah’, ‘Jennie’, ‘Rachael’]

If you want to add and remove items to a sorted list, use the bisect module.
When you insert an item using the insort(list, item) function, it uses a bisec-
tion algorithm to inexpensively find the correct place to insert the item so that the
resulting list remains sorted. The bisect(list, item) function in the same
module finds the correct insertion point without actually adding the item to the list.

Mapping Information with Dictionaries
A dictionary contains a set of mappings between unique keys and their values; they

are Python’s only built-in mapping data type. The examples in this section use the

following dictionary that maps login user names and passwords to Web site names

(who can ever keep track of them all?):

>>> logins = {‘yahoo’:(‘john’,’jyahooohn’),
... ‘hotmail’:(‘jrf5’,’18thStreet’)}
>>> logins[‘hotmail’] # What’s my name/password for hotmail?
(‘jrf5’, ‘18thStreet’)

Tip

4807-7 ch04.F 5/24/01 8:58 AM Page 60

61Chapter 4 ✦ Advanced Data Types

Creating and adding to dictionaries
You create a dictionary by listing zero or more key-value pairs within curly braces.

The keys used in a dictionary must be unique and immutable, so strings, numbers,

and tuples with immutable items in them can all be used as keys. The values in the

key-value pair can be anything, even other dictionaries if you want.

Adding or replacing mappings is easy:

>>> logins[‘slashdot’] = (‘juan’,’lemmein’)

Accessing and updating dictionary mappings
If you try to use a key that doesn’t exist in the dictionary, Python barks out a

KeyError exception. When you don’t want to worry about handling the exception,

you can instead use the get (key[, obj]) method, which returns None if the

mapping doesn’t exist, and even lets you specify a default value for such cases:

>>> logins[‘sourceforge’,’No such login’]
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

KeyError: (‘sourceforge’, ‘No such login’)
>>> logins.get(‘sourceforge’) == None
1
>>> logins.get(‘sourceforge’,’No such login’)
‘No such login’

The setdefault(key[, obj]) method works like get with the default parameter,

except that if the key-value pair doesn’t exist, Python adds it to the dictionary:

>>> logins.setdefault(‘slashdot’,(‘jimmy’,’punk’))
(‘juan’, ‘lemmein’) # Existing item returned
>>> logins.setdefault(‘justwhispers’,(‘jimmy’,’punk’))
(‘jimmy’, ‘punk’) # New item returned AND added to dictionary

If you just want to know if a dictionary has a particular key-value pair (or if you

want to check before requesting it), you can use the has_key(key) method:

>>> logins.has_key(‘yahoo’)
1

The del statement removes an item from a dictionary:

>>> del logins[‘yahoo’]
>>> logins.has_key(‘yahoo’)
0

4807-7 ch04.F 5/24/01 8:58 AM Page 61

62 Part I ✦ The Python Language

You can use the update (dict) method to add the items from one dictionary to

another:

>>> z = {}
>>> z[‘slashdot’] = (‘fred’,’fred’)
>>> z.update (logins)
>>> z
{‘justwhispers’: (‘jimmy’, ‘punk’),
‘slashdot’: (‘juan’, ‘lemmein’), # Duplicate key overwritten
‘hotmail’: (‘jrf5’, ‘18thStreet’)}

Additional dictionary operations
Here are a few other functions and methods of dictionaries that are straightforward

and useful:

>>> len(logins) # How many items?
3
>>> logins.keys() # List the keys of the mappings
[‘justwhispers’, ‘slashdot’, ‘hotmail’]
>>> logins.values() # List the other half of the mappings
[(‘jimmy’, ‘punk’), (‘juan’, ‘lemmein’), (‘jrf5’,
‘18thStreet’)]
>>> logins.items() # Both pieces together as tuples

“Hashability”

The more precise requirement of a dictionary key is that it must be hashable. An object’s
hash value is a semi-unique, internally generated number that can be used for quick com-
parisons. Consider comparing two strings, for example. To see if the strings are equal, you
would have to compare each character until one differed. If you already had the hash value
for each string, however, you could just compare the two and be done.

Python uses hash values in dictionary lookups for the same reason: so that dictionary
lookups will not be too costly.

You can retrieve the hash value of any hashable object by using the hash (obj) function:

>>> hash(‘hash’)
-1671425852
>>> hash(10)
10
>>> hash(10.0) # Numbers of different types have the same hash.
10
>>> hash((1,2,3))
-821448277

The hash function raises the TypeError exception on unhashable objects (lists, for example).

4807-7 ch04.F 5/24/01 8:58 AM Page 62

63Chapter 4 ✦ Advanced Data Types

[(‘justwhispers’, (‘jimmy’, ‘punk’)), (‘slashdot’, (‘juan’,
‘lemmein’)), (‘hotmail’, (‘jrf5’, ‘18thStreet’))]
>>> logins.clear() # Delete everything
>>> logins
{}

You can destructively iterate through a dictionary by calling its popitem() method,

which removes a random key and its value from the dictionary:

>>> d = {‘one’:1, ‘two’:2, ‘three’:3}
>>> try:
... while 1:
... print d.popitem()
... except KeyError: # Raises KeyError when empty
... pass
(‘one’, 1)
(‘three’, 3)
(‘two’, 2)

popitem is new in Python 2.1.

Dictionary objects also provide a copy() method that creates a shallow copy of the

dictionary:

>>> a = {1:’one’, 2:’two’, 3:’three’}
>>> b = a.copy()
>>> b
{3: ‘three’, 2: ‘two’, 1: ‘one’}

See “Copying Complex Objects” later in this chapter for a comparison of shallow
and deep copies.

Understanding References
Python stores any piece of data in an object, and variables are merely references to

an object; they are names for a particular spot in the computer’s memory. All

objects have a unique identity number, a type, and a value.

Object identity
Because the object, and not the variable, has the data type (for example, integer), a

variable can reference a list at one moment and a floating-point number the next.

An object’s type can never change, but for lists and other mutable types its value

can change.

Cross-
Reference

New
Feature

4807-7 ch04.F 5/24/01 8:58 AM Page 63

64 Part I ✦ The Python Language

Python provides the id(obj) function to retrieve an object’s identity (which, in the

current implementation, is just the object’s address in memory):

>>> shoppingList = [‘candy’,’cookies’,’ice cream’]
>>> id(shoppingList)
17611492
>>> id(5)
3114676

The is operator compares the identities of two objects to see if they are the same:

>>> junkFood = shoppingList # Both reference the same object
>>> junkFood is shoppingList
1
>>> yummyStuff = [‘candy’,’cookies’,’ice cream’]
>>> junkFood is not yummyStuff # Different identity, but...
1
>>> junkFood == yummyStuff # ...same value
1

Because variables just reference objects, a change in a mutable object’s value is

visible to all variables referencing that object:

>>> a = [1,2,3,4]
>>> b = a
>>> a[2] = 5
>>> b
[1, 2, 5, 4]
>>> a = 6
>>> b = a # Reference the same object for now.
>>> b
6
>>> a = a + 1 # Python creates a new object to hold (a+1)
>>> b # so b still references the original object.
6

Counting references
Each object also contains a reference count that tells how many variables are cur-

rently referencing that object. When you assign a variable to an object or when you

make an object a member of a list or other container, the reference count goes up.

When you destroy, reassign, or remove an object from a container the reference

count goes down. If the reference count reaches zero (no variables reference this

object), Python’s garbage collector destroys the object and reclaims the memory it

was using.

The sys.getrefcount(obj) function returns the reference count for the given

object.

4807-7 ch04.F 5/24/01 8:58 AM Page 64

65Chapter 4 ✦ Advanced Data Types

See Chapter 26 for more on Python’s garbage collector.

As of version 2.0, Python now also collects objects with only circular references.
For example,

a = []; b = []
a.append(b); b.append(a)
a = 5; b = 10 # Reassign both variables to different
objects.

The two list objects still have a reference count of 1 because each is a member of
the other’s list. Python now recognizes such cases and reclaims the memory used
by the list objects.

Keep in mind that the del statement deletes a variable and not an object, although

if the variable you delete was the last to reference an object then Python may end

up deleting the object too:

>>> a = [1,2,3]
>>> b = a # List object has 2 references now
>>> del a # Back to 1 reference
>>> b
[1, 2, 3]

You can also create weak references to objects, or references that do not affect an
object’s reference count. See Chapter 7 for more information.

Copying Complex Objects
Assigning a variable to a list object creates a reference to the list, but what if you

want to create a copy of the list? Python enables you to make two different types of

copies, depending on what you need to do.

Shallow copies
A shallow copy of a list or other container object makes a copy of the object itself

but creates references to the objects contained by the list. An easy way to make a

shallow copy of a sequence is by requesting a slice of the entire object:

>>> faceCards = [‘A’,’K’,’Q’,’J’]
>>> myHand = faceCards[:] # Create a copy, not a reference
>>> myHand is faceCards
0
>>> myHand == faceCards
1

Cross-
Reference

New
Feature

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 65

66 Part I ✦ The Python Language

You can also use the copy(obj) function of the copy module:

>>> import copy
>>> highCards = copy.copy(faceCards)
>>> highCards is faceCards, highCards == faceCards
(0, 1)

Deep copies
A deep copy makes a copy of the container object and recursively makes copies of

all the children objects. For example, consider the case when a list contains a list. A

shallow copy of the parent list would contain a reference to the child list, not a sep-

arate copy. As a result, changes to the inner list would be visible from both copies

of the parent list:

>>> myAccount = [1000, [‘Checking’,’Savings’]]
>>> yourAccount = myAccount[:]
>>> myAccount[1].remove(‘Savings’) # Modify the child list.
>>> myAccount
[1000, [‘Checking’]] # Different parent objects share a
>>> yourAccount # reference to the same child list.
[1000, [‘Checking’]]

Now look at the same example by using the deepcopy(obj) function in the copy
module:

>>> myAccount = [1000, [‘Checking’,’Savings’]]
>>> yourAccount = copy.deepcopy(myAccount)
>>> myAccount[1].remove(‘Savings’)
>>> myAccount
[1000, [‘Checking’]] # deepcopy copied the child list too.
>>> yourAccount
[1000, [‘Checking’, ‘Savings’]]

The deepcopy function tracks which objects it copied so that if an object directly

or indirectly references itself, deepcopy makes only one copy of that object.

Not all objects can be copied safely. For example, copying a socket that has an open

connection to a remote computer won’t work because part of the object’s internal

state (the open connection) is outside the realms of Python. File objects are

another example of forbidden copy territory, and Python lets you know:

f = open(‘foo’,’wt’)
>>> copy.deepcopy(f)
Traceback (innermost last):
File “<interactive input>”, line 1, in ?
File “D:\Python20\lib\copy.py”, line 147, in deepcopy
raise error, \

Error: un-deep-copyable object of type <type ‘file’>

4807-7 ch04.F 5/24/01 8:58 AM Page 66

67Chapter 4 ✦ Advanced Data Types

Chapter 7 shows you how to override standard behaviors on classes you create. By
defining your own __getstate__ and __setstate__ methods you can control
how your objects respond to shallow and deep copy operations.

Identifying Data Types
You can check the data type of any object at runtime, enabling your programs to

correctly handle different types of data (for example, think of the int function that

works when you pass it an integer, a float, a string, and so on). You can retrieve the

type of any object by passing the object to the type(obj) function:

>>> type(5)
<type ‘int’>
>>> type(‘She sells seashells’)
<type ‘string’>
>>> type(operator)
<type ‘module’>

The types module contains the type objects for Python’s built-in data types. The

following example creates a function that prints a list of words in uppercase. To

make it more convenient to use, the function accepts either a single string or a list

of strings:

>>> import types
>>> def upEm(words):
... if type(words) != types.ListType: # Not a list so
... words = [words] # make it a list.
... for word in words:
... print word.upper()
>>> upEm(‘horse’)
HORSE
>>> upEm([‘horse’,’cow’,’sheep’])
HORSE
COW
SHEEP

The following list shows a few of the more common types you’ll use.

BuiltinFunctionType

FunctionType

MethodType

BuiltinMethodType

InstanceType

ModuleType

ClassType

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 67

68 Part I ✦ The Python Language

IntType

NoneType

DictType

LambdaType

StringType

FileType

ListType

TupleType

FloatType

LongType

Classes and instances of classes have the types ClassType and InstanceType,

respectively. Python provides the isinstance(obj) and issubclass(obj) func-

tions to test if an object is an instance or a subclass of a particular type:

>>> isinstance(5.1,types.FloatType)
1
>>> class Foo:
... pass
...
>>> a = Foo()
>>> isinstance(a,Foo)
1

Chapter 7 covers creating and using classes and objects.

Working with Array Objects
While lists are flexible in that they let you store any type of data in them, that flexi-

bility comes at a cost of more memory and a little less performance. In most cases,

this isn’t an issue, but in cases where you want to exchange a little flexibility for

performance or low level access, you can use the array module to create an array

object.

Creating arrays
An array object is similar to a list except that it can hold only certain types of sim-

ple data and only one type at any given time. When you create an array object, you

specify which type of data it will hold:

>>> import array
>>> z = array.array (‘B’) # Create an array of bytes
>>> z.append(5)

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 68

69Chapter 4 ✦ Advanced Data Types

>>> z[0]
5
>>> q = array.array(‘i’,[5,10,-12,13]) # Optional initializer
>>> q
array(‘i’, [5, 10, -12, 13])

Table 4-1 lists the type code you use to create each type of array. You can retrieve

the size of items and the type code of an array object using its itemsize and

typecode members.

Table 4-1
Array Type Codes

Code Equivalent C Type Minimum Size in Bytes*

c char 1

b (B) byte (unsigned byte) 1

h (H) short (unsigned short) 2

i (I) int (unsigned int) 2

l (L) long (unsigned long) 4

f float 4

d double 8

* Actual size may be greater, depending on the implementation.

Converting between types
Array objects have built-in support for converting to and from lists and strings, and

for reading and writing with files. The following examples all deal with an array

object of two-byte short integers initially containing the numbers 10, 1000, and 500:

>>> z = array.array(‘h’,[10,1000,500])
>>> z.itemsize
2

Lists
The tolist() method converts the array to an ordinary list:

>>> z.tolist()
[10, 1000, 500]

4807-7 ch04.F 5/24/01 8:58 AM Page 69

70 Part I ✦ The Python Language

The fromlist(list) method appends items from a normal list to the end of the

array:

>>> z.fromlist([2,4])
>>> z
array(‘h’, [10, 1000, 500, 2, 4])

If any item in the list to add is of an incorrect type, fromlist adds none of the

items to the array object.

Strings
You can convert an array to a sequence of bytes using the tostring() method:

>>> z.tostring()
‘ \n\x00\xe8\x03\xf4\x01\x02\x00\x04\x00’
>>> len(z.tostring())
6 # 3 items, 2 bytes each

The fromstring(str) method goes in the other direction, taking a string of bytes

and converting them to values for the array:

>>> z.fromstring(‘\x10\x00\x00\x02’) # x10 = 16, x0200 = 512
>>> z
array(‘h’, [10, 1000, 500, 2, 4, 16, 512])

Files
The tofile(file) method converts the array to a sequence of bytes (just like

tostring) and writes the resulting bytes to a file you pass in:

>>> z = array.array(‘h’,[10,1000,500])
>>> f = open(‘myarray’,’wb’) # Chapter 8 covers files.
>>> z.tofile(f)
>>> f.close()

The fromfile(file, count) method reads the specified number of items in from

a file object and appends them to the array. Continuing the previous example:

>>> z.fromfile(open(‘myarray’,’rb’),3) # Read 3 items.
>>> z
array(‘h’, [10, 1000, 500, 10, 1000, 500])

If the file ends before reading in the number of items you requested, fromfile raises

the EOFError exception, but still adds as many valid items as it could to the array.

The marshal, pickle, and struct modules all provide additional — and often
better — methods for converting to and from sequences of bytes for use in files
and network messages. See Chapter 12 for more.

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 70

71Chapter 4 ✦ Advanced Data Types

Array methods and operations
Array objects support many of the same functions and methods of lists: len,

append, extend, count, index, insert, pop, remove, and reverse. You can access

individual members with subscription, and you can use slicing to return a smaller

portion of the array (although it returns another array object and not a list).

The buffer_info() method returns some low-level information about the current

array. The returned tuple contains the memory address of the buffer and the length

in bytes of the buffer. This information is valid until you destroy the array or it

changes length.

You can use the byteswap() method to change the byte order of each item in the

array, which is useful for converting between big-endian and little-endian data:

>>> z = array.array(‘I’,[1,2,3])
>>> z.byteswap()
>>> z
array(‘I’, [16777216L, 33554432L, 50331648L])

See Chapter 12 for information on cross-platform byte ordering.

NumPy (Numeric Python) is a Python extension that you can also use to create
arrays, but it has much better support for using the resulting arrays in calculations.
See Chapter 31 for more information on NumPy.

Summary
Python provides several powerful and easy-to-use data types that simplify working

with different types of data. In this chapter you:

✦ Learned the differences between Python’s sequence types.

✦ Organized data with lists, sequences, and dictionaries.

✦ Created shallow and deep copies of complex objects.

✦ Used an object’s type to handle it appropriately.

✦ Built array objects to hold homogenous data.

The next chapter shows you how to expand your programs to include loops and

decisions and how to catch errors with exceptions.

✦ ✦ ✦

Cross-
Reference

Cross-
Reference

4807-7 ch04.F 5/24/01 8:58 AM Page 71

4807-7 ch04.F 5/24/01 8:58 AM Page 72

Control Flow

Aprogram is more than simply a list of actions. A program

can perform an action several times (with for- and while-

loops), handle various cases (with if-statements), and cope

with problems along the way (with exceptions).

This chapter explains how to control the flow of execution in

Python. A simple Game of Life program illustrates these tech-

niques in practice.

Making Decisions
with If-Statements

The if-statement evaluates a conditional expression. If the

expression is true, the program executes the if-block. For

example:

if (CustomerAge>55):
print “You get a senior citizen’s discount!”

An if-statement may have an else-block. If the expression is

false, the else-block (if any) executes. This code block prints

one greeting for Bob, and another for everyone else:

if (UserName==”Bob”):
print “Greetings, O supreme commander!”
else:
print “Hello, humble peasant.”

An if-statement may have one or more elif-blocks (“elif” is

shorter to type than “else if” and has the same effect). When

Python encounters such a statement, it evaluates the if-

expression, then the first elif-expression, and so on, until one

of the expressions evaluates to true. Then, Python executes

the corresponding block of code.

When Python executes an if-statement, it executes no more

than one block of code. (If there is an else-block, then exactly
one block of code gets executed.)

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Making decisions
with if-statements

Using for-loops

Using while-loops

Throwing and
catching exceptions

Debugging with
assertions

Example: Game
of Life

✦ ✦ ✦ ✦

4807-7 ch05.F 5/24/01 8:58 AM Page 73

74 Part I ✦ The Python Language

Listing 5-1 is a sample script that uses an if-statement (shown in both italics and

bold) in a simple number-guessing game.

Listing 5-1: NumberGuess.py

import random
import sys

This line chooses a random integer >=1 and <=100.
(See Chapter 15 for a proper explanation.)
SecretNumber=random.randint(1,100)

print “I’m thinking of a number between 1 and 100.”
Loop forever (at least until the user hits Ctrl-Break).
while (1):

print “Guess my number.”
The following line reads a line of input from
the command-line and converts it to an integer.
NumberGuess=int(sys.stdin.readline())
if (NumberGuess==SecretNumber):

print “Correct! Choosing a new number...”
SecretNumber=random.randint(1,100)

elif (NumberGuess > SecretNumber):
print “Lower.”

else:
print “Higher.”

You can use many elif clauses; the usual way to write Python code that handles five

different cases is with an if-elif-elif-elif-else statement. (Veterans of C and Java, take

note: Python does not have a switch statement.)

Python stops checking if-expressions as soon as it finds a true one. If you write an
if-statement to handle several different cases, consider putting the most common
and/or cheapest-to-check cases first in order to make your program faster.

Using For-Loops
For-loops let your program do something several times. In addition, you can iterate

over elements of a sequence with a for-loop.

Anatomy of a for-loop
A simple for statement has the following syntax:

Note

4807-7 ch05.F 5/24/01 8:58 AM Page 74

75Chapter 5 ✦ Control Flow

for <variable> in <sequence>:
(loop body)

The statement (or block) following the for statement forms the body of the loop.

Python executes the body once for each element of the sequence. The loop variable

takes on each element’s value, in order, from first to last. For instance:

for Word in [“serious”,”silly”,”slinky”]:
print “The minister’s cat is a “+Word+” cat.”

The body of a loop can be a single statement on the same line as the for-statement:

for Name in [“Tom”,”Dick”,”Harry”]: print Name

Some people (myself included) usually stick with the first style, because all-on-one-line

loops can lead to long and tricky lines of code.

Python can loop over any sequence type — even a string. If the sequence is empty,

the loop body never executes.

Looping example: encoding strings
Listing 5-2 uses for-loops to convert strings to a list of hexadecimal values, and

back again. The encoded strings look somewhat similar to the “decoder rings”

popular on old children’s radio programs.

Listing 5-2: DecoderRing.py

import string

def Encode(MessageString):
EncodedList=[]
Iterate over each character in the string
for Char in MessageString:

EncodedList.append(“%x” % ord(Char))
return EncodedList

def Decode(SecretMessage):
DecodedList=[]
Iterate over each element in the list
for HexValue in SecretMessage:

The following line converts HexValue from
a hex-string to an integer, then finds the ASCII
symbol for that integer, and finally adds that
character to the list.
Don’t try this at home! :)
DecodedList.append(chr(int(HexValue,16)))

Continued

4807-7 ch05.F 5/24/01 8:58 AM Page 75

76 Part I ✦ The Python Language

Listing 5-2 (continued)

Join these strings together, with no separator.
return string.join(DecodedList,””)

if (__name__==”__main__”):
SecretMessage=Encode(“Remember to drink your Ovaltine!”)
print SecretMessage
print Decode(SecretMessage)

Listing 5-3: DecoderRing.py output

[‘52’, ‘65’, ‘6d’, ‘65’, ‘6d’, ‘62’, ‘65’, ‘72’, ‘20’, ‘74’,
‘6f’, ‘20’, ‘64’, ‘72’, ‘69’, ‘6e’, ‘6b’, ‘20’, ‘79’, ‘6f’,
‘75’, ‘72’, ‘20’, ‘4f’, ‘76’, ‘61’, ‘6c’, ‘74’, ‘69’, ‘6e’,
‘65’, ‘21’]
Remember to drink your Ovaltine!

Ranges and xranges
Many loops do something a fixed number of times. To iterate over a range of

numbers, use range. For example:

print 10 numbers (from 0 to 9)
for X in range(10):
print X

The function range returns a list of numbers that you can use anywhere (not just in

a loop). The syntax is: range(start[,end[,step]]). The numbers in the range

begin with start, increment by step each time, and stop just before end. Both start and

step are optional; by default, a range starts at 0 and increments by 1. For example:

>>> range(10,0,-1) # Countdown!
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> range(5,10)
[5, 6, 7, 8, 9]

Code that does something once for each element of a sequence sometimes loops

over range(len(SequenceVariable)). This range contains the index of each ele-

ment in the sequence. For example, this code prints the days of the week:

DaysOfWeek=[“Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”, “Sunday”]
for X in range(len(DaysOfWeek)):

print “Day”,X,”is”,DaysOfWeek[X]

4807-7 ch05.F 5/24/01 8:58 AM Page 76

77Chapter 5 ✦ Control Flow

An xrange is an object that represents a range of numbers. You can loop over an

xrange instead of the list returned by range. The only real difference is that creat-

ing a large range involves creating a memory-hogging list, while creating an xrange
of any size is cheap. Try checking your system’s free memory while running these

interpreter commands:

>>> MemoryHog=range(1000000) # There goes lots of RAM!
>>> BigXRange=xrange(1000000) # Only uses a little memory.

To see the contents of an xrange in convenient list form, use the tolist method:

>>> SmallXRange=xrange(10,110,10)
>>> SmallXRange.tolist()
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Breaking, continuing, and else-clauses
Python’s continue statement jumps to the next iteration of a loop. The break
statement jumps out of a loop entirely. These statements apply only to the inner-

most loop; if you are in a loop-within-a-loop-within-a-loop, break jumps out of only

the innermost loop.

You can follow the body of a for-loop with an else-clause. The code in the else-clause

executes after the loop finishes iterating, unless the program exits the loop due to a

break statement. (If you have no break statement in the loop, the else-clause

always executes, so you really have no need to put the code in an else-clause.)

Listing 5-4 illustrates break, continue, and an else-clause:

Listing 5-4: ClosestPoint.py

import math
def FindClosestPointAboveXAxis(PointList,TargetPoint):
“”” Given a list of points and a target point, this function
returns the list’s closest point, and its distance from the
target. It ignores all points with a negative y-coordinate. We
represent points in the plane (or on screen) as a two-valued
tuple of the form (x-coordinate,y-coordinate). “””

ClosestPoint=None # Initialize.
ClosestDistance=None
Iterate over each point in the list.
for Point in PointList:
Throw out any point below the X axis.
if (Point[1]<0):

Skip to the next point in the list.
continue

Compute the distance from this point to the target.

Continued

4807-7 ch05.F 5/24/01 8:58 AM Page 77

78 Part I ✦ The Python Language

Listing 5-4 (continued)

The following two lines are one statement;
indentation for clarity is optional.
DistToPoint=math.sqrt((TargetPoint[0]-Point[0])**2 +

(TargetPoint[1]-Point[1])**2)
if (ClosestDistance == None or

DistToPoint < ClosestDistance):
ClosestPoint=Point
ClosestDistance = DistanceToPoint

if (DistanceToPoint==0):
print “Point found in list”
Exit the loop entirely, since no point will
be closer than this
break

else:
This clause executes unless we hit the break above.
print “Point not found in list”

return (ClosestPoint, ClosestDistance)

Here is the function in action:

>>> SomePoints=[(-1,-1),(4,5),(-5,7),(23,-2),(5,2)]
>>> ClosestPoint.FindClosestPointAboveXAxis(SomePoints,(1,1))
Point not found in list
((5, 2), 4.1231056256176606)
>>> ClosestPoint.FindClosestPointAboveXAxis(SomePoints,(-1,-1))
Point not found in list
((5, 2), 6.7082039324993694)
>>> ClosestPoint.FindClosestPointAboveXAxis(SomePoints,(4,5))
Point found in list
((4, 5), 0.0)

Changing horses in midstream
Modifying the sequence that you are in the process of looping over is not recom-
mended — Python won’t get confused, but any mere mortals reading your program

will.

The loop variable keeps iterating over its reference sequence, even if you change a

sequence variable. For example, this loop prints the numbers from 0 to 99; chang-

ing the value that MyRange points to does not affect control flow:

MyRange=range(100)
for X in MyRange:

print X
MyRange = range(30) # No change in looping behavior!

4807-7 ch05.F 5/24/01 8:58 AM Page 78

79Chapter 5 ✦ Control Flow

However, changing the reference sequence does affect the loop. After executing for

the nth element in a sequence, the loop proceeds to the (n+1)th element, even if the

sequence changes in the process. For example, this loop prints even numbers from

0 to 98:

MyRange=range(100)
for X in MyRange:

print X
del MyRange[0] # Changing the loop-sequence in place

Modifying the loop variable inside a for-loop is also inadvisable. It does not change

looping behavior; Python will continue the next iteration of the loop as usual.

Using While-Loops
If you could crossbreed an if-statement and a for-loop, you would get a while-

statement, Python’s other looping construct.

A while-statement has the form:

while (<expression>):
<block of code>

When Python encounters a while-statement, it evaluates the expression, and if the

expression is true, it executes the corresponding block of code. Python keeps exe-

cuting the block of code until the expression is no longer true. For example, this

code counts down from 10 to 1:

X=10
while (X>0):
print X
X -= 1

Within a while-loop, you can use the continue statement to jump to the next itera-

tion, or the break statement to jump out of the loop entirely. A while-loop can also

have an else-block. Code in the else-block executes immediately after the last itera-

tion, unless a break statement exits the loop. These statements work similarly for

for-loops and while-loops. See the section on for-loops, above, for examples of

break, continue, and else.

Throwing and Catching Exceptions
Imagine a Python program innocently going about its business, when suddenly . . .

[dramatic, scary music] something goes wrong.

4807-7 ch05.F 5/24/01 8:58 AM Page 79

80 Part I ✦ The Python Language

In general, when a function or method encounters a situation that it can’t cope

with, it raises an exception. An exception is a Python object that represents an

error.

Passing the buck: propagating exceptions
When a function raises an exception, the function must either handle the exception

immediately or terminate. If the function doesn’t handle the exception, the caller

may handle it. If not, the caller also terminates immediately as well. The exception

propagates up the call-stack until someone handles the error. If nobody catches the

exception, the whole program terminates.

In general, functions that return a value should return None to indicate a “reason-

able” failure, and only raise an exception for “unreasonable” problems. Just what is

reasonable is open to debate, so it is generally a good idea to clearly document the

exceptions your code raises, and to handle common exceptions raised by the code

you call.

Handling an exception
If you have some “suspicious” code that may raise an exception, you can defend

your program by placing the suspicious code in a try: block. After the try: block,

include an except statement, followed by a block of code which handles the prob-

lem (as elegantly as possible).

For example, the guess-the-number program from earlier in this chapter crashes if

you try to feed it something other than an integer. The error looks something like

this:

Traceback (most recent call last):
File “C:\Python20\NumberGuess.py”, line 7, in ?
NumberGuess=int(sys.stdin.readline())

ValueError: invalid literal for int(): whoops!

Listing 5-5 shows a new-and-improved script that handles the exception. The call to

sys.stdin.readline() is now in a try: block:

Listing 5-5: NumberGuess2.py

import random
import sys

This line chooses a random integer >=1 and <=100.
(See Chapter 15 for a proper explanation.)
SecretNumber=random.randint(1,100)

4807-7 ch05.F 5/24/01 8:58 AM Page 80

81Chapter 5 ✦ Control Flow

print “I’m thinking of a number between 1 and 100.”
Loop forever (at least until the user hits Ctrl-Break).
while (1):

print “Guess my number.”
The following line reads a line of input from
the command line and converts it to an integer.
try:

NumberGuess=int(sys.stdin.readline())
except ValueError:

print “Please type a whole number.”
continue

if (NumberGuess==SecretNumber):
print “Correct! Choosing a new number...”
SecretNumber=random.randint(1,100)

elif (NumberGuess > SecretNumber):
print “Lower.”

else:
print “Higher.”

More on exceptions
An exception can have an argument, which is a value that gives additional informa-

tion about the problem. The contents (and even the type) of the argument vary by

exception. You capture an exception’s argument by supplying a variable in the

except clause: except ExceptionType,ArgumentVariable

You can supply several except clauses to handle various types of exceptions. In this

case, exceptions are handled by the first applicable except clause. You can also

provide a generic except clause, which handles any exception. If you do this, I

highly recommend that you do something with the exception. Code that silently

“swallows” exceptions may mask important bugs, like a NameError. Here is some

cookie-cutter code I use for quick-and-dirty error handling:

try:
DoDangerousStuff()

except:
The show must go on!
Print the exception and the stack trace, and continue.
(ErrorType,ErrorValue,ErrorTB)=sys.exc_info()
print sys.exc_info()
traceback.print_exc(ErrorTB)

After the except clause(s), you can include an else-clause. The code in the else-block

executes if the code in the try: block does not raise an exception. The else-block is a

good place for code that does not need the try: block’s protection.

Python raises an IOError exception if you try to open a file that doesn’t exist. Here

is a snippet of code that handles a missing file without crashing. (This code grabs

the exception argument — a tuple consisting of an error number and error string —

but doesn’t do anything interesting with it.)

4807-7 ch05.F 5/24/01 8:58 AM Page 81

82 Part I ✦ The Python Language

try:
OptionsFile=open(“SecretOptions.txt”)

except IOError, (ErrorNumber,ErrorString):
Assume our default option values are all OK.
We need a statement here, but we have nothing
to do, so we pass.
pass

else:
This executes if we opened it without an IOError.
ParseOptionsFile(OptionsFile)

Defining and raising exceptions
You can raise exceptions with the statement raise exceptionType,argument.

ExceptionType is the type of exception (for example, NameError). Argument is a

value for the exception argument. Argument is optional; if not supplied, the excep-

tion argument is None.

An exception can be a string, a class, or an object. Most of the exceptions that the

Python core raises are classes, with an argument that is an instance of the class.

Defining new exceptions is quite easy, as this contrived example demonstrates:

def CalculateElfHitPoints(Level):
if Level<1:

raise “Invalid elf level!”,Level
(The code below won’t execute if we raise
the exception.)
HitPoints=0
for DieRoll in range(Level):

HitPoints += random.randint(1,6)

In order to catch an exception, an “except” clause must refer to the same excep-
tion thrown. Python compares string exceptions by reference identity (is, not ==).
So, if you have code to raise “BigProblem” and an except-clause for “BigProblem,”
the except clause may not catch the exception. (The strings are equivalent, but
may not point to the same spot in memory.) To handle exceptions properly, use a
named constant string, or a class. (See Listing 5-6 for an example.)

Cleaning up with finally
An alternative mechanism for coping with failure is the finally block. The

finally block is a place to put any code that must execute, whether the try-block

raised an exception or not. You can provide except clause(s), or a finally clause,

but not both.

For example, multithreaded programs often use a lock to prevent threads from

stomping on each other’s data. If a thread acquires a lock and crashes without

releasing it, the other threads may be kept waiting forever — an unpleasant situa-

tion called deadlock. This example is a perfect job for the finally clause:

Note

4807-7 ch05.F 5/24/01 8:58 AM Page 82

83Chapter 5 ✦ Control Flow

try:
DataLock.acquire()
... do things with the data ...

finally:
This code *must* execute. The fate of the
free world hangs in the balance!
DataLock.release()

Debugging with Assertions
An assertion is a sanity-check that you can turn on (for maximum paranoia) or turn

off (to speed things up). Using an assertion can help make code self-documenting;

raising an AssertionError implies that a problem is due to programmer error and

not normal problems. Programmers often place assertions at the start of a function

to check for valid input, and after a function call to check for valid output.

Assertions in Python
You can add assertions to your code with the syntax assert <Expression>. When

it encounters an assert statement, Python evaluates the accompanying expres-

sion, which is hopefully true. If the expression is false, Python raises an

AssertionError.

You can include an assertion argument, via the syntax assert
Expression,ArgumentExpression. If the assertion fails, Python uses

ArgumentExpression as the argument for the AssertionError.

For example, here is a function that converts a temperature from degrees Kelvin to

degrees Fahrenheit. Since zero degrees Kelvin is as cold as it gets, the function bails

out if it sees a negative temperature:

>>> def KelvinToFahrenheit(Temperature):
... assert (Temperature >= 0),”Colder than absolute zero!”
... return ((Temperature-273)*1.8)+32
>>> KelvinToFahrenheit(273)
32.0
>>> int(KelvinToFahrenheit(505.78))
451
>>> KelvinToFahrenheit(-5)
Traceback (innermost last):
File “<pyshell#186>”, line 1, in ?
KelvinToFahrenheit(-5)

File “<pyshell#178>”, line 2, in KelvinToFahrenheit
assert (Temperature >= 0),”Colder than absolute zero!”

AssertionError: Colder than absolute zero!

4807-7 ch05.F 5/24/01 8:58 AM Page 83

84 Part I ✦ The Python Language

Toggling assertions
Normally, assertions are active. They are toggled by the internal variable __debug__.

Turning on optimization (by running python with the -O command-line argument)

turns assertions off. (Direct access to __debug__ is also possible, but not

recommended.)

In assert statements, avoid using expressions with side effects. If the assertion
expression affects the data, then the “release” and “debug” versions of your scripts
may behave differently, leaving you with twice as much debugging to do.

Example: Game of Life
Listing 5-6 simulates John Conway’s Game of Life, a simple, cellular automata. The

game is played on a grid. Each cell of the grid can be “alive” or “dead.” Each “gener-

ation,” cells live or die based on the state of their eight neighboring cells. Cells with

three living neighbors come to life. Live cells with two living neighbors stay alive.

All other cells die (or stay dead).

This example introduces a class to represent the playing field. For further informa-
tion on classes, see Chapter 7.

Listing 5-6: LifeGame.py

We arbitrarily set the field size to 10x10. Naming the size
in upper-case implies that we shouldn’t change its value.
FIELD_SIZE=10

Create two strings for use as exceptions. We raise and catch
these variables, instead of raw strings (which would be ==-
equivalent, but possibly not is-equivalent).
STEADY_STATE=”Steady state”
EVERYONE_DEAD=”Everyone dead”

class PlayField:
Constructor. When creating a PlayField, initialize the
grid to be all dead:
def __init__(self):

self.LifeGrid={}
for Y in range(FIELD_SIZE):

for X in range(FIELD_SIZE):
self.LifeGrid[(X,Y)]=0

def SetAlive(self,X,Y):
self.LifeGrid[(X,Y)]=1

def SetDead(self,X,Y):
self.LifeGrid[(X,Y)]=0

def PrintGrid(self,Number):
print “Generation”,Number

Cross-
Reference

Tip

4807-7 ch05.F 5/24/01 8:58 AM Page 84

85Chapter 5 ✦ Control Flow

for Y in range(FIELD_SIZE):
for X in range(FIELD_SIZE):

Trailing comma means don’t print newline:
print self.LifeGrid[(X,Y)],

Print newline at end of row:
print

def GetLiveNeighbors(self,X,Y):
The playing field is a “donut world”, where the
edge cells join to the opposite edge.
LeftColumn=X-1
if (LeftColumn<0): LeftColumn=FIELD_SIZE-1
RightColumn=(X+1) % FIELD_SIZE
UpRow=Y-1
if (UpRow<0): UpRow=FIELD_SIZE-1
DownRow=(Y+1) % FIELD_SIZE
LiveCount=(self.LifeGrid[(LeftColumn,UpRow)]+

self.LifeGrid[(X,UpRow)]+
self.LifeGrid[(RightColumn,UpRow)]+
self.LifeGrid[(LeftColumn,Y)]+
self.LifeGrid[(RightColumn,Y)]+
self.LifeGrid[(LeftColumn,DownRow)]+
self.LifeGrid[(X,DownRow)]+
self.LifeGrid[(RightColumn,DownRow)])

return (LiveCount)
def RunGeneration(self):

NewGrid={}
AllDeadFlag=1
for Y in range(FIELD_SIZE):

for X in range(FIELD_SIZE):
CurrentState=self.LifeGrid[(X,Y)]
LiveCount=self.GetLiveNeighbors(X,Y)
if ((LiveCount==2 and CurrentState)

or (LiveCount==3)):
NewGrid[(X,Y)]=1
AllDeadFlag=0

else:
NewGrid[(X,Y)]=0

if (AllDeadFlag): raise EVERYONE_DEAD
if self.LifeGrid==NewGrid: raise STEADY_STATE
self.LifeGrid,OldGrid=NewGrid,self.LifeGrid

def ShowManyGenerations(self,GenerationCount):
try:

for Cycle in range(GenerationCount):
self.PrintGrid(Cycle)
self.RunGeneration()

except EVERYONE_DEAD:
print “The population is now dead.”

except STEADY_STATE:
print “The population is no longer changing.”

if (__name__==”__main__”):
This first grid quickly settles into a pattern
that does not change.

Continued

4807-7 ch05.F 5/24/01 8:58 AM Page 85

86 Part I ✦ The Python Language

Listing 5-6 (continued)

BoringGrid=PlayField()
BoringGrid.SetAlive(2,2)
BoringGrid.SetAlive(2,3)
BoringGrid.SetAlive(2,4)
BoringGrid.SetAlive(3,2)
BoringGrid.ShowManyGenerations(50)

This grid contains a “glider” – a pattern of live
cells which moves diagonally across the grid.
GliderGrid=PlayField()
GliderGrid.SetAlive(0,0)
GliderGrid.SetAlive(1,0)
GliderGrid.SetAlive(2,0)
GliderGrid.SetAlive(2,1)
GliderGrid.SetAlive(1,2)
GliderGrid.ShowManyGenerations(50)

Summary
Python has several tools for controlling the flow of execution. In this chapter you:

✦ Made decisions with if-statements.

✦ Set up repeating tasks with for-loops and while-loops.

✦ Built code that copes with problems by handling exceptions.

✦ Learned to add test scaffolding with assertions.

In the next chapter you’ll learn how to organize all your Python code into functions,

modules, and packages.

✦ ✦ ✦

4807-7 ch05.F 5/24/01 8:58 AM Page 86

Program
Organization

Python lets you break code down into reusable functions

and classes, then reassemble those components into

modules and packages. The larger the project, the more useful

this organization becomes.

This chapter explains function definition syntax, module and

package structure, and Python’s rules for visibility and scope.

Defining Functions
Here is a sample function definition:

def ReverseString(Forwards):
“””Convert a string to a list of

characters, reverse the
list, and join the list back into a string

“””
CharacterList=list(Forwards)
CharacterList.reverse()
return string.join(CharacterList,””);

The statement def FunctionName([parameters,...])
begins the function. Calling the function executes the code

within the following indented block.

A string following the def statement is a docstring. A docstring

is a comment intended as documentation. Development envi-

ronments like IDLE display a function’s docstrings to show

how to call the function. Also, tools like HappyDoc can extract

docstrings from code to produce documentation. So, a doc-

string is a good place to describe a function’s behavior,

parameter requirements, and the like. Modules can also have

a docstring — a string preceding any executable code is taken

to be the module’s description.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Defining functions

Grouping code with
modules

Importing modules

Locating modules

Understanding scope
rules

Grouping modules
into packages

Compiling and
running
programmatically

✦ ✦ ✦ ✦

4807-7 ch06.F 5/24/01 8:58 AM Page 87

88 Part I ✦ The Python Language

The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as

return None. A function also exits (returning None) when the last statement fin-

ishes, and execution “runs off the end of” the function code block.

Pass by object reference
A Python variable is a reference to an object. Python passes function parameters

using call-by-value. If you change what a parameter refers to within a function, the

change does not affect the function’s caller. For example:

>>> def StupidFunction(InputList):
... InputList=[“I”,”Like”,”Cheese”]
...
>>> MyList=[1,2,3]
>>> StupidFunction(MyList)
>>> print MyList # MyList is unchanged!
[1, 2, 3]

The parameter InputList is local to the function StupidFunction. Changing InputList

within the function does not affect MyList. The function accomplishes nothing.

However, a function can change the object that a parameter refers to. For example,

this function removes duplicate elements from a list:

def RemoveDuplicates(InputList):
ListIndex=-1
We iterate over the list from right to left, deleting
all duplicates of element -1, then -2, and so on. (Because
we are removing elements of the list, using negative
indices is convenient: element -3 is still element -3
after we delete some items preceding it.)
while (-ListIndex<len(InputList)):

list.index() returns a positive index, so get the
positive equivalent of ListIndex and name it
CurrentIndex (same element, new index number).
CurrentIndex=len(InputList)+ListIndex
CurrentElement=InputList[ListIndex]
Keep removing duplicate elements as long as
an element precedes the current one.
while (InputList.index(CurrentElement)<CurrentIndex):

InputList.remove(CurrentElement)
CurrentIndex=CurrentIndex-1

ListIndex=ListIndex-1

All about parameters
A function parameter can have a default value. If a parameter has a default value,

you do not need to supply a value to call the function.

4807-7 ch06.F 5/24/01 8:58 AM Page 88

89Chapter 6 ✦ Program Organization

When you call a function, you can supply its parameters by name. It is legal to name

some parameters and not others — but after supplying the name for one parameter,

you must name any other parameters you pass.

For example, this function simulates the rolling of dice. By default, it rolls ordinary

6-sided dice, one at a time:

>>> import whrandom
>>> def RollDice(Dice=1,Sides=6):
... Total=0
... for Die in range(Dice):
... Total += whrandom.randint(1,Sides)
... return Total
...
>>> RollDice()
5
>>> RollDice(2) # Come on, snake-eyes!
8
>>> RollDice(2,4) # Roll two four-sided dice.
5
>>> RollDice(Sides=20) # Named parameter
17
>>> # After naming one parameter, you must name the rest:
>>> RollDice(Sides=5,4)
SyntaxError: non-keyword arg after keyword arg

A function evaluates its argument defaults only once. We recommend avoiding

dynamic (or mutable) default values. For example, if you do not pass a value to this

function, it will always print the time that you first called it:

def PrintTime(TimeStamp=time.time()):
time.time() is the current time in milliseconds,
time.localtime() puts the time into the
canonical tuple-form, and time.asctime() converts
the time-tuple to a cute string format.
The function’s default argument, TimeStamp, does
not change between calls!

print time.asctime(time.localtime(TimeStamp))

This improved version of the function prints the current time if another time is not

provided:

def PrintTime(TimeStamp=None):
if (TimeStamp==None): TimeStamp=time.time()
print time.asctime(time.localtime(TimeStamp))

Arbitrary arguments
A function can accept an arbitrary sequence of parameters. The function collects

these parameters into one tuple. This logging function shows the internal object IDs

of a sequence of arguments:

4807-7 ch06.F 5/24/01 8:58 AM Page 89

90 Part I ✦ The Python Language

def LogObjectIDs(LogString, *args):
print LogString
for arg in args: print id(arg)

A function can also accept an arbitrary collection of named parameters. The func-

tion collects these named parameters into one dictionary. This version of the log-

ging function lets you give names to the objects passed in:

def LogObjectIDs(LogString, **kwargs):
print LogString
for (ParamName,ParamValue) in kwargs.items():

print “Object:”,ParamName,”ID:”,id(ParamValue)

To make a truly omnivorous function, you can take a dictionary of arbitrary named

parameters and a tuple of unnamed parameters.

Apply: passing arguments from a tuple
The function apply(InvokeFunction,ArgumentSequence) calls the function

InvokeFunction, passing the elements of ArgumentSequence as arguments. The use-

fulness of apply is that it breaks arguments out of a tuple cleanly, for any length of

tuple.

For example, assume you have a function SetColor(Red,Green,Blue), and a tuple

representing a color:

>>> print MyColor
(255, 0, 255)
>>> SetColor(MyColor[0],MyColor[1],MyColor[2]) # Kludgy!
>>> apply(SetColor,MyColor) # Same as above, but cleaner.

A bit of functional programming
Python can define new functions on the fly, giving you some of the functional flexi-

bility of languages like Lisp and Scheme.

You define an anonymous function with the lambda keyword. The syntax is lambda
[parameters,...]: <expression>. For example, here is an anonymous function

that filters list entries:

>>> SomeNumbers=[5,10,15,3,18,2]
>>> filter(lambda x:x>10, SomeNumbers)
[15, 18]

This code uses anonymous functions to test for primes:

4807-7 ch06.F 5/24/01 8:58 AM Page 90

91Chapter 6 ✦ Program Organization

def FindPrimes(EndNumber):
NumList = range(2,EndNumber)
Index=0
while (Index<len(NumList)):

NumList=filter(lambda y,x=NumList[Index]:
(y<=x or y%x!=0), NumList)

Index += 1
print NumList

Lambda functions can be helpful for event handling in programs with a GUI. For

example, here is some code to add a button to a Tkinter frame.

def AddCosmeticButton(ButtonFrame,ButtonLabel):
Button(ButtonFrame,text=ButtonLabel,command = lambda
=ButtonLabel:LogUnimplemented(l)).pack()

Clicking the button causes it to call LogUnimplemented with the button label as an

argument. Presumably, LogUnimplemented makes note of the fact that somebody is

clicking a button that does nothing.

An anonymous function cannot be a direct call to print because lambda
requires an expression.

Lambda functions have their own local namespace and cannot access variables
other than those in their parameter list and those in the global namespace.

Grouping Code with Modules
A module is a file consisting of Python code. A module can define functions, classes,

and variables. A module can also include runnable code.

A stand-alone module is often called a script or program. You can use whichever

word you like, because Python makes no distinction between them.

Grouping related code into a module makes the code easier to understand and use.

When writing a program, split off code into separate modules whenever a file starts

becoming too large or performing too many different functions.

Laying out a module
The usual order for module elements is:

✦ Docstring and/or general comments (revision log or copyright information,

and so on)

✦ Import statements (see below for more information on importing modules)

Note

Note

4807-7 ch06.F 5/24/01 8:58 AM Page 91

92 Part I ✦ The Python Language

✦ Definitions of module-level variables (“constants”)

✦ Definitions of classes and functions

✦ Main function, if any

This organization is not required, but it works well and is widely used.

People often store frequently used values in ALL_CAPS_VARIABLES to make later
code easier to maintain, or simply more readable. For example, the standard
library ftplib includes this definition:

FTP_PORT = 21 # The standard FTP server control port

Such a variable is “constant by convention” — Python does not forbid modifica-
tions, but callers should not change its value.

Taking inventory of a module
The function dir(module) returns a list of the variables, functions, and classes

defined in module. With no arguments, dir returns a list of all currently defined

names. dir(__builtin__) returns a list of all built-in names. For example:

>>> dir() # Just after starting Python
[‘__builtins__’, ‘__doc__’, ‘__name__’]
>>> import sys
>>> dir()
[‘__builtins__’, ‘__doc__’, ‘__name__’, ‘sys’]

You can pass any object (or class) to dir to get a list of class members.

Importing Modules
To use a module, you must first import it. Then, you can access the names in the

module using dotted notation. For example:

>>> string.digits # Invalid, because I haven’t imported string
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

NameError: There is no variable named ‘string’
>>> import string # Note: No parentheses around module name.
>>> string.digits
‘0123456789’

Another option is to import names from the module into the current namespace,

using the syntax from ModuleName import Name, Name2,.... For example:

>>> from string import digits
>>> digits # Without a dot
‘0123456789’

Note

4807-7 ch06.F 5/24/01 8:58 AM Page 92

93Chapter 6 ✦ Program Organization

>>> string.digits # I don’t know about the module, only digits.
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

NameError: There is no variable named ‘string’

To bring every name from a module into the current namespace, use a blanket

import: from module import *. Importing modules this way can make for confusing

code, especially if two modules have functions with the same name. But it can also

save a lot of typing.

The import statements for a script should appear at the beginning of the file. (This

arrangement is not required, but importing halfway though a script is confusing.)

What else happens upon import?
Within a module, the special string variable __name__ is the name of the module.

When you execute a stand-alone module, its __name__ is always __main__. This

provides a handy way to set aside code that runs when you invoke a module, but not

when you import it. Some modules use this code as a test driver. (See Listing 6-1.)

Listing 6-1: Alpha.py

import string

def Alphabetize(Str):
“Alphabetize the letters in a string”
CharList=list(Str)
CharList.sort()
return (string.join(CharList,””))

if (__name__==”__main__”):
This code runs when we execute the script, not when
we import it.
X=string.upper(“BritneySpears”)
Y=string.upper(“Presbyterians”)
Strange but true!
print (Alphabetize(X)==Alphabetize(Y))

else:
This code runs when we import (not run) the module.
print “Imported module Alpha”

Reimporting modules
Once Python has imported a module once, it doesn’t import it again for subsequent

import statements. You can force Python to “reimport” a module with a call to

reload(LoadedModule). This procedure is useful for debugging — you can edit a

4807-7 ch06.F 5/24/01 8:58 AM Page 93

94 Part I ✦ The Python Language

module on disk, then reload it without having to restart an interactive interpreter

session.

Exotic imports
A module can override standard import behavior by implementing the function

__import__ (name[, globals[, locals[, fromlist]]]). Because a module is a

class, defining __import__ in a module amounts to overriding the default version

of __import__.

We don’t recommend overriding __import__ as it is a very low-level operation
for such a high-level language! See the libraries imp, ihooks, and rexec for exam-
ples of overridden import behavior.

Locating Modules
When you import a module, the Python interpreter searches for the module in the

current directory. If the module isn’t found, Python then searches each directory in

the PythonPath. If all else fails, Python checks the default path. On Windows, the

default path consists of c:\python20\lib\ and some subdirectories; on UNIX, this

default path is normally /usr/local/lib/python/. (The code for Python’s stan-

dard libraries is installed into the default path. Some modules, such as sys, are

built into the Python interpreter, and have no corresponding .py files.)

Python stores a list of directories that it searches for modules in the variable

sys.path.

Python path
The PythonPath is an environment variable, consisting of a list of directories. Here

is a typical PythonPath from a Windows system:

set PYTHONPATH=c:\python20\lib;c:\python20\lib\proj1;c:\python20\lib\bob

And here is a typical PythonPath from a UNIX system:

set PYTHONPATH=/home/stanner/python;/usr/bin/python/lib

I generally use a scratch folder to hold modules I am working on; other files I put in

the lib directory (or, if they are part of a package, in subdirectories). I find that set-

ting the PythonPath explicitly is most useful for switching between different ver-

sions of a module.

Caution

4807-7 ch06.F 5/24/01 8:58 AM Page 94

95Chapter 6 ✦ Program Organization

Compiled files
You can compile a Python program into system-independent bytecodes. The inter-

preter stores the compiled version of a module in a corresponding file with a .pyc
extension. This precompiled file runs at the same speed, but loads faster because

Python need not parse the source code. Files compiled with the optimization flag

on are named with a .pyo extension, and behave like .pyc files.

When you import a module foo, Python looks for a compiled version of foo. Python

looks for a file named foo.pyc that is as new as foo.py. If so, Python loads foo.
pyc instead of re-parsing foo.py. If not, Python parses foo.py, and writes out the

compiled version to foo.pyc.

When you run a script from the command line, Python does not create (or look
for) a precompiled version. To save some parsing time, you can invoke a short
“stub” script that imports the main module. Or, you can compile the main script by
hand (by importing it, by calling py_compile.compile(ScriptFileName), or
by calling compileall.compile_dir(ScriptDirectoryName)), then invoke
the .pyc file directly. However, be sure to precompile the script again when you
change it!

Understanding Scope Rules
Variables are names (identifiers) that map to objects. A namespace is a dictionary

of variable names (keys) and their corresponding objects (values). A Python state-

ment can access variables in a local namespace and in the global namespace. If

(heaven forfend!) a local and a global variable have the same name, the local vari-

able shadows the global variable.

Each function has its own local namespace. Class methods follow the same scoping

rule as ordinary functions. Python accesses object attributes via the self argu-

ment; attributes are not brought separately into the namespace.

At the module level, or in an interactive session, the local namespace is the same as

the global namespace. For purposes of an eval, exec, execfile, or input state-

ment, the local namespace is the same as the caller’s.

Is it local or global?
Python makes educated guesses on whether variables are local or global. It

assumes that any variable assigned a value in a function is local. Therefore, in order

to assign a value to a global variable within a function, you must first use the global
statement. The statement global VarName tells Python that VarName is a global

variable. Python stops searching the local namespace for the variable.

Note

4807-7 ch06.F 5/24/01 8:58 AM Page 95

96 Part I ✦ The Python Language

For example, Listing 6-2 defines a variable NumberOfMonkeys in the global name-

space. Within the function AddMonkey, we assign NumberOfMonkeys a value —

therefore, Python assumes NumberOfMonkeys is a local variable. However, we

access the value of the local variable NumberOfMonkeys before setting it, so an

UnboundLocalError is the result. Uncommenting the global statement fixes the

problem.

Listing 6-2: Monkeys.py

NumberOfMonkeys = 11

def AddMonkey():
Uncomment the following line to fix the code:
#global NumberOfMonkeys
NumberOfMonkeys = NumberOfMonkeys + 1

print NumberOfMonkeys
AddMonkey()
print NumberOfMonkeys

Listing namespace contents
The built-in functions locals and globals return local and global namespace con-

tents in dictionary form. These operations are handy for debugging.

Grouping Modules into Packages
You can group related modules into a package. Packages can also contain subpack-

ages, and sub-subpackages, and so on. You access modules inside a package using

dotted notation — for example, seti.log.FlushLogFile() calls the function

FlushLogFile in the module log in the package seti.

Python locates packages by looking for a directory containing a file named

__init__.py. The directory can be a subdirectory of any directory in sys.path.

The directory name is the package name.

The script __init__.py runs when the package is imported. It can be an empty

file, but should probably at least contain a docstring. It may also define the special

variable __all__, which governs the behavior of a blanket import of the form from
PackageName import *. If defined, __all__ is a list of names of modules to bring into

4807-7 ch06.F 5/24/01 8:58 AM Page 96

97Chapter 6 ✦ Program Organization

the current namespace. If the script __init__.py does not define __all__, then a

blanket-import brings into the current namespace only the names defined and

modules imported in __init__.py.

See Chapter 36 for information on how to install new modules and packages, and
how to distribute your own code.

Compiling and Running Programmatically
The exec statement can run an arbitrary chunk of Python code. The syntax is exec
ExecuteObject [in GlobalDict[, LocalDict]]. ExecuteObject is a string, file

object, or code object containing Python code. GlobalDict and LocalDict are diction-

aries used for the global and local namespaces, respectively. Both GlobalDict and

LocalDict are optional. If you omit LocalDict, it defaults to GlobalDict. If you omit

both, the code runs using the current namespaces.

The eval function evaluates a Python expression. The syntax is eval
(ExpressionObject[,GlobalDict[,LocalDict]]). ExpressionObject is a string

or a code object; GlobalDict and LocalDict have the same semantics as for exec.

The execfile function has the same syntax as exec, except that it takes a file

name instead of an execute object.

These functions raise an exception if they encounter a syntax error.

The compile function transforms a code string into a runnable code object. Python

passes the code object to exec or eval. The syntax is

compile(CodeString,FileName,Kind). CodeString is a string of Python code.

FileName is a string describing the code’s origin; if Python read the code from a file,

FileName should be the name of that file. Kind is a string describing the code:

✦ “exec” — one or more executable statements

✦ “eval” — a single expression

✦ “single” — a single statement, which is printed upon evaluation if not None

Multiline expressions should have two trailing newlines in order for Python to pass
them to compile or exec. (This requirement is a quirk of Python that may be
fixed in a later version.)

Note

Cross-
Reference

4807-7 ch06.F 5/24/01 8:58 AM Page 97

98 Part I ✦ The Python Language

Summary
Program organization helps make code reusable, as well as more easily compre-

hended. In this chapter you:

✦ Defined functions with variable argument lists.

✦ Organized code into modules and packages.

✦ Compiled and ran Python code on-the-fly.

In the next chapter you’ll harness the power of object-oriented programming in

Python.

✦ ✦ ✦

4807-7 ch06.F 5/24/01 8:58 AM Page 98

Object-Oriented
Python

Python has been an object-oriented language from day

one. Because of this, creating and using classes and

objects are downright easy. This chapter helps you become an

expert in using Python’s object-oriented programming support.

Overview of Object-Oriented
Python

If you don’t have any previous experience with object-oriented

(OO) programming, you may want to consult an introductory

course on it or at least a tutorial of some sort so that you have

a grasp of the basic concepts.

Python’s object-oriented programming support is very

straightforward and easy: you create classes (which are some-

thing akin to blueprints), and you use them to create instance
objects (which are like the usable and finished versions of

what the blueprints represent).

An instance object (or just “object,” for short) can have any

number of attributes, which include data members (variables

belonging to that object) and methods (functions belonging to

that object that operate on that object’s data).

You can create a new class by deriving it from one or more

other classes. The new child class, or subclass, inherits the

attributes of its parent classes, but it may override any of

the parent’s attributes as well as add additional attributes

of its own.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Overview of object-
oriented Python

Creating classes and
instance objects

Deriving new classes
from other classes

Hiding private data

Identifying class
membership

Overloading
standard behaviors

Using weak
references

✦ ✦ ✦ ✦

4807-7 ch07.F 5/24/01 8:58 AM Page 99

100 Part I ✦ The Python Language

Creating Classes and Instance Objects
Below is a sample class and an example of its use:

>>> class Wallet:
“Where does my money go?”
walletCnt = 0
def __init__(self,balance=0):

self.balance = balance
Wallet.walletCnt += 1

def getPaid(self,amnt):
self.balance += amnt
self.displayBalance()

def spend(self,amnt):
self.balance -= amnt
self.displayBalance()

def displayBalance(self):
print ‘New balance: $%.2f’ % self.balance

The class statement creates a new class definition (which is itself also an object)

called Wallet. The class has a documentation string (which you can access via

Wallet.__doc__), a count of all the wallets in existence, and three methods.

You declare methods like normal functions with the exception that the first argu-

ment to each method is self, the conventional Python name for the instance of the

object (it has the same role as the this object in Java or the this pointer in C++).

Python adds the self argument to the list for you; you don’t need to include it

when you call the methods. The first method is a special constructor or initializa-

tion method that Python calls when you create a new instance of this class. Note

that it accepts an initial balance as an optional parameter. The other two methods

operate on the wallet’s current balance.

All methods must operate on an instance of the object (if you’re coming from
C++, there are no “static methods”).

Objects can have two types of data members: walletCnt, which is outside of any

method of the class, is a class variable, which means that all instances of the class

share it. Changing its value in one instance (or in the class definition itself) changes

it everywhere, so any wallet can use walletCnt to see how many wallets you’ve

created:

>>> myWallet = Wallet(); yourWallet = Wallet()
>>> print myWallet.walletCnt, yourWallet.walletCnt
2,2

Note

4807-7 ch07.F 5/24/01 8:58 AM Page 100

101Chapter 7 ✦ Object-Oriented Python

The other type of data member is an instance variable, which is one defined inside a

method and belongs only to the current instance of the object. The balance mem-

ber of Wallet is an instance variable. So that you’re never confused as to what

belongs to an object, you must use the self parameter to refer to its attributes

whether they are methods or data members.

Creating instance objects
To create an instance of a class, you “call” the class and pass in whatever argu-

ments its __init__ method accepts, and you access the object’s attributes using

the dot operator:

>>> w = Wallet(50.00)
>>> w.getPaid(100.00)
New balance $150.00
>>> w.spend(25.0)
New balance $125.00
>>> w.balance
125.0

An instance of a class uses a dictionary (named __dict__) to hold the attributes

and values specific to that instance. Thus object.attribute is the same as

object.__dict__[‘attribute’]. Additionally, each object and class has a few

other special members:

>>> Wallet.__name__ # Class name
‘Wallet’
>>> Wallet.__module__ # Module in which class was defined
‘__main__’
>>> w.__class__ # Class definition for this object
<class __main__.Wallet at 010C1CFC>
>>> w.__doc__ # Doc string
‘Where does my money go?’

More on accessing attributes
You can add, remove, or modify attributes of classes and objects at any time:

>>> w.owner = ‘Dave’ # Add an ‘owner’ attribute.
>>> w.owner = ‘Bob’ # Bob stole my wallet.
>>> del w.owner # Remove the ‘owner’ attribute.

Modifying a class definition affects all instances of that class:

>>> Wallet.color = ‘blue’ # Add a class variable.
>>> w.color
‘blue’

4807-7 ch07.F 5/24/01 8:58 AM Page 101

102 Part I ✦ The Python Language

Note that when an instance modifies a class variable without naming the class, it’s

really only creating a new instance attribute and modifying it:

>>> w.color = ‘red’ # You might think you’re changing the
>>> Wallet.color # class variable, but you’re not!
‘blue’

Because you can modify a class instance at any time, a class is a great way to
mimic a more flexible version of a C struct:

class myStruct: pass
z = myStruct()
z.whatever = ‘howdy’

Instead of using the normal statements to access attributes, you can

use the getattr(obj, name[, default]), hasattr(obj,name),

setattr(obj,name,value), and delattr(obj, name) functions:

>>> hasattr(w,’color’) # Does w.color exist?
1
>>> getattr(w,’color’) # Return w.color please.
‘red’
>>> setattr(w,’size’,10) # Same as ‘w.size = 10’.
>>> delattr(w,’color’) # Same as ‘del w.color’.

As with functions, methods can also have data attributes. The method of the follow-

ing class, for example, includes an HTML docstring for use with a Web browser-

based class browser:

>>> class SomeClass:
... def deleteFiles(self, mask):
... os.destroyFiles(mask)
... deleteFiles.htmldoc = ‘<bold>Use with care!</bold>’
>>> hasattr(SomeClass.deleteFiles,’htmldoc’)
1
>>> SomeClass.deleteFiles.htmldoc
‘<bold>Use with care!</bold>’

You can read more about function attributes in Chapter 6.

Method attributes are new in Python 2.1.

Deriving New Classes from Other Classes
Instead of starting from scratch, you can create a class by deriving it from a pre-

existing class by listing the parent class in parentheses after the new class name:

New
Feature

Cross-
Reference

Tip

4807-7 ch07.F 5/24/01 8:58 AM Page 102

103Chapter 7 ✦ Object-Oriented Python

>>> class GetAwayVehicle:
... topSpeed = 200
... def engageSmokeScreen(self):
... print ‘<Cough!>’
... def fire(self):
... print ‘Bang!’
>>> class SuperMotorcycle(GetAwayVehicle):
... topSpeed = 250
... def engageOilSlick(self):
... print ‘Enemies destroyed.’
... def fire(self):
... GetAwayVehicle.fire(self) # Use method in parent.
... print ‘Kapow!’

The child class (SuperMotorcycle) inherits the attributes of its parent class

(GetAwayVehicle), and you can use those attributes as if they were defined in the

child class:

>>> myBike = SuperMotorcycle()
>>> myBike.engageSmokeScreen()
<Cough!>
>>> myBike.engageOilSlick()
Enemies destroyed.

A child class can override data members and methods from the parent. For

example, the value of topSpeed in child overrides the one in the parent:

>>> myBike.topSpeed
250

The fire method doesn’t just override the original version in the parent, but it also

calls the parent version too:

>>> myBike.fire()
Bang!
Kapow!

Multiple inheritance
When deriving a new child class, you aren’t limited to a single parent class:

>>> class Glider:
... def extendWings(self):
... print ‘Wings ready!’
... def fire(self):
... print ‘Bombs away!’
>>> class FlyingBike(Glider,SuperMotorcycle):
... pass

4807-7 ch07.F 5/24/01 8:58 AM Page 103

104 Part I ✦ The Python Language

In this case a FlyingBike enjoys all the benefits of being both a Glider and a

SuperMotorcycle (which is also a GetAwayVehicle). When searching for an

attribute not defined in a child class, Python does a left-to-right, depth-first search

on the base classes until it finds a match. If you fire with a FlyingBike, it drops

bombs, because first and foremost, it’s a Glider:

>>> betterBike = FlyingBike()
>>> betterBike.fire()
Bombs away!

You can get a list of base classes using the __bases__ member of the class

definition object:

>>> for base in FlyingBike.__bases__:
... print base
__main__.Glider # __main__ is the module in
__main__.SuperMotorcycle # which you defined the class.

Just because multiple inheritance lets you have child classes with many parents
(and other strange class genealogies) doesn’t always mean it’s a good idea. If your
design calls for more than a few direct parent classes, chances are you need a new
design.

Multiple inheritance really shines with mix-ins, which are small classes that over-

ride a portion of another class to customize behavior. The SocketServer module,

for example, defines a generic TCP socket server class called TCPServer that han-

dles a single connection at a time. The module also provides several mix-ins, includ-

ing ForkingMixIn and ThreadingMixIn that provide their own process_request
method. This lets the TCPServer code remain simple while making it easy to create

multi-threaded or multi-process socket server classes:

class ThreadingServer(ThreadingMixIn, TCPServer): pass
class ForkingServer(ForkingMixIn, TCPServer): pass

Furthermore, you can use the same threading and forking code to create other

types of servers:

class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

See Chapter 15 for information on networking and socket servers.

Creating a custom list class
The UserList class (in the UserList module) provides a listlike base class that

you can extend to suit your needs. UserList accepts a list to use as an initializer,

and internally you can access the actual Python list via the data member. The fol-

lowing example creates an object that behaves like an ordinary list except that it

also provides a method to randomly reorder the items in the list:

Cross-
Reference

Tip

4807-7 ch07.F 5/24/01 8:58 AM Page 104

105Chapter 7 ✦ Object-Oriented Python

>>> import UserList, whrandom
>>> from whrandom import randint
>>> class MangleList(UserList.UserList):
... def mangle(self):
... data = self.data
... count = len(data)
... for i in range(count):
... data.insert(randint(0,count-1),data.pop())
>>> z = MangleList([1,2,3,4,5])
>>> z.mangle() ; print z
[1, 3, 5, 4, 2]
>>> z.mangle() ; print z
[5, 4, 1, 2, 3]

Creating a custom string class
You can also create your own custom string behaviors using the UserString class

in the UserString module. As with UserLists and lists, a UserString looks and

acts a lot like a normal string object:

>>> from UserString import *
>>> s = UserString(‘Goal!’)
>>> s.data # Access the underlying Python string.
‘Goal!’
>>> s
‘Goal!’
>>> s.upper()
‘GOAL!’
>>> s[2]
‘a’

Of course, the whole point of having the UserString class is so that you can sub-

class it. As an example, the UserString module also provides the MutableString
class:

>>> m = MutableString(‘2 + 2 is 5’)
>>> m
‘2 + 2 is 5’
>>> m[9] = ‘4’
>>> m
‘2 + 2 is 4’

MutableString does its magic by overriding (among other things) the
__setitem__ method, which is a special method Python calls to handle the
index-based assignment in the example above. We cover __setitem__ and
other special methods in the “Overloading Standard Behaviors” section later in
this chapter.

Cross-
Reference

4807-7 ch07.F 5/24/01 8:58 AM Page 105

106 Part I ✦ The Python Language

Creating a custom dictionary class
And finally, Python also has the UserDict class in the UserDict module so that

you can create your own subclasses of dictionaries:

>>> from UserDict import *
>>> d = UserDict({1:’one’,2:’two’,3:’three’})
>>> d
{3: ‘three’, 2: ‘two’, 1: ‘one’}
>>> d.data
{3: ‘three’, 2: ‘two’, 1: ‘one’}
>>> d.has_key(3)
1

The following example creates a dictionary object that, instead of raising an excep-

tion, returns None if you try to use a nonexistent key:

>>> from UserDict import *
>>> class NoFailDict(UserDict):
... def __getitem__(self,key):
... try:
... value = self.data[key]
... except KeyError:
... value = None
... return value
>>> q = NoFailDict({‘orange’:’0xFF6432’,’yellow’:’0xFFFF00’})
>>> print q[‘orange’]
0xFF6432
>>> print q[‘blue’]
None

Hiding Private Data
In other object-oriented languages such as C++ or Java, an object’s attributes may

or may not be visible outside the class definition (you can say a member is public,

private, or protected). Such conventions help keep the implementation details hid-

den and force you to work with objects through well-defined interfaces.

Python, however, takes more of a minimalist approach and assumes you know what

you’re doing when you try to access attributes of an object. Python programs usu-

ally have smaller and more straightforward implementations than their C++ or Java

counterparts, so private data members aren’t as useful or necessary (although if

you’re accustomed to using them you may feel a little “overexposed” for awhile).

Having said that, there still may come a time when you really don’t want users of an

object to have access to the implementation, or maybe you have some members in

a base class that you don’t want children classes to access. For these cases, you

can name attributes with a double underscore prefix, and those attributes will not

be directly visible to outsiders:

4807-7 ch07.F 5/24/01 8:58 AM Page 106

107Chapter 7 ✦ Object-Oriented Python

>>> class FooCounter:
... __secretCount = 0
... def foo(self):
... self.__secretCount += 1
... print self.__secretCount
>>> foo = FooCounter()
>>> foo.foo()
1
>>> foo.foo()
2
>>> foo.__secretCount
Traceback (innermost last):
File “<interactive input>”, line 1, in ?

AttributeError: ‘FooCounter’ instance has no attribute
‘__secretCount’

Python protects those members by internally changing the name to include the

class name. You can be sneaky and thwart this convention (valid reasons for

doing this are rare!) by referring to the attribute using its mangled name:

_className__attrName:

>>> foo._FooCounter__secretCount
2

Identifying Class Membership
Class definitions and instance objects each have their own data type:

>>> class Tree:
... pass
>>> class Oak(Tree):
... pass
>>> seedling = Oak()
>>> type(seedling); type(Oak)
<type ‘instance’>
<type ‘class’>

Refer to Chapter 4 for more on identifying the data types of an object.

Because the type is instance or class, all class definitions have the same type and

all instance objects have the same type. If you want to see if an object is an instance

of a particular class, you can use the isinstance(obj,class) function:

>>> isinstance(seedling,Oak)
1
>>> isinstance(seedling,Tree) # True because an Oak is a Tree.
1

The issubclass(class,class) checks to see if one class is a descendent of

another:

Cross-
Reference

4807-7 ch07.F 5/24/01 8:58 AM Page 107

108 Part I ✦ The Python Language

>>> issubclass(Oak,Tree)
1
>>> issubclass(Tree,Oak)
0

You can also retrieve the string name for a class using the __name__ member:

>>> seedling.__class__.__name__
‘Oak’
>>> seedling.__class__.__bases__[0].__name__
‘Tree’

Your programs will often be more flexible if, instead of depending on an object’s
type or class, they check to see if an object has a needed attribute. This enables
you and others to use your code with data types that you didn’t necessarily con-
sider when you wrote it. For example, instead of checking to see if an object
passed in is a file before you write to it, just check for a write method, and if pre-
sent, use it. Later you may find it useful to call the same routine passing in some
other object that also has a write method. “Using Filelike Objects” in Chapter 8
covers this theme in more detail.

Overloading Standard Behaviors
Suppose you’ve created a Vector class to represent two-dimensional vectors. What

happens when you use the plus operator to add them? Most likely Python will yell

at you. You could, however, define the __add__ method in your class to perform

vector addition, and then the plus operator would behave:

>>> class Vector:
... def __init__(self,a,b):
... self.a = a
... self.b = b
... def __str__(self):
... return ‘Vector(%d,%d)’ % (self.a,self.b)
... def __add__(self,other):
... return Vector(self.a+other.a,self.b+other.b)
>>> v1 = Vector(2,10)
>>> v2 = Vector(5,-2)
>>> print v1 + v2
Vector(7,8)

Not only do users now have an intuitive way to add two vectors (much better than

having them call some clunky function directly), but vectors also display them-

selves nicely when converted to strings (thanks to the __str__ method).

The operator module defines many functions for which you can overload or define

new behavior when used with your classes. The following sections describe these

functions and how to use them.

Tip

4807-7 ch07.F 5/24/01 8:58 AM Page 108

109Chapter 7 ✦ Object-Oriented Python

Note that some functions have two or even three very similar versions. For exam-

ple, in the numeric operators, you can create an __add__ function, an __iadd__
function, and an __radd__ function all for addition. The first is to implement nor-

mal addition (x + y), the second for in-place addition (x += y), and the third for x + y

when x does not have an __add__ method (so Python calls y.__radd(x) instead). If

you don’t define in-place operator methods, Python checks for an overloaded ver-

sion of the normal operator (for example, if you don’t define __iadd__, x += y

causes Python to still call __add__ if defined). For simplicity, it’s best to leave the

in-place operators undefined unless your class in some way benefits from special

in-place processing (such as a huge matrix class that could save memory by per-

forming addition in place).

Overloading basic functionality
Table 7-1 lists some generic functionality that you can override in your own classes.

Table 7-1
Base Overloading Methods

Method Sample Call

__init__ (self[, args...]) obj = className(args)

__del__ (self) del obj

__call__ (self[, args...]) , callable function obj(5)

__getattr__ (self, name) obj.foo

__setattr__ (self, name, value) obj.foo = 5

__delattr__ (self, name) del obj.foo

__repr__ (self) `obj` or repr(obj)

__str__ (self) str(obj)

__cmp__ (self, x) cmp(obj,x)

__lt__(self, x) obj < x

__le__(self,x) obj <= x

__eq__(self,x) obj == x

__ne__(self,x) obj != x

__gt__(self, x) obj > x

__ge__(self,x) obj >= x

__hash__ (self) hash(obj)

__nonzero__ (self) nonzero(obj)

4807-7 ch07.F 5/24/01 8:58 AM Page 109

110 Part I ✦ The Python Language

Note that with the del statement, Python won’t call the __del__ method unless the

object’s reference count is finally 0.

Python invokes the __call__ method any time someone tries to treat an instance

of your object as a function. Users can test for “callability” using the

callable(obj) function, which tries to determine if the object is callable

(callable may return true and be wrong, but if it returns false, the object really

isn’t callable).

Python calls the __getattr__ function only after a search through the instance dic-

tionary and base classes comes up empty-handed. Your implementation should

return the desired attribute or raise an AttributeError exception. If __setattr__
needs to assign a value to an instance variable, be sure to assign it to the instance

dictionary instead (self.__dict__[name] = val) to prevent a recursive call to

__setattr__. If your class has a __setattr__ method, Python always calls it to

set member variable values, even if the instance dictionary already contains the

variable being set.

The hash and cmp functions are closely related: if you do not implement __cmp__,

you should not implement __hash__. If you provide a __cmp__ but no __hash__,

then instances of your object can’t act as dictionary keys (which is correct if your

objects are mutable). Hash values are 32-bit integers, and two instances that are

considered equal should also return the same hash value.

The nonzero function performs truth value testing, so your implementation should

return 0 or 1. If not implemented, Python looks for a __len__ implementation to use,

and if not found, then all instances of your object will be considered “true.”

You use the __lt__, __gt__, and other methods to implement support for rich
comparisons where you have more complete control over how objects behave dur-

ing different types of comparisons. If present, Python calls any of these methods

before looking for a __cmp__ method. The following example prints a message each

time Python calls a comparison function so you can see what happens:

>>> class Simple:
... def __cmp__(self, obj):
... print ‘__cmp__’
... return 1
... def __lt__(self, obj):
... print ‘__lt__’
... return 0
>>> s = Simple()
>>> s < 5
__lt__ # Python uses rich comparisons first.
0
>>> s > 5
__cmp__ # Uses __cmp__ if there are no rich comparison methods.
1

4807-7 ch07.F 5/24/01 8:58 AM Page 110

111Chapter 7 ✦ Object-Oriented Python

Your rich comparison methods can return NotImplemented to tell Python that you

don’t want to handle a particular comparison. For example, the following class imple-

ments an equality method that works on integers. If the object to which it is compar-

ing isn’t an integer, it tells Python to figure out the comparison result on its own:

>>> class MyInt:
... def __init__(self, val):
... self.val = val
... def __eq__(self, obj):
... print ‘__eq__’
... if type(obj) != type(0):
... print ‘Skipping’
... return NotImplemented
... return self.val == obj
>>> m = MyInt(16)
>>> m == 10
__eq__
0
>>> m == ‘Hi’
__eq__
Skipping
0

Although __cmp__ methods must return an integer to represent the result of the
comparison, rich comparison methods can return data of any type or raise an
exception if a particular comparison is invalid or meaningless.

Rich comparisons are new in Python 2.1.

Overloading numeric operators
By overloading the numeric operators methods, your classes can correctly respond

to operators like +, -, and so on. Note that Python calls the right-hand side version

of operators (for example, __radd__) if the left-hand operator doesn’t have a corre-

sponding method defined (__add__):

>>> class Add:
... def __init__(self,val):
... self.val = val
... def __add__(self,obj):
... print ‘add’,obj
... return self.val + obj
... def __radd__(self,obj):
... print ‘radd’,obj
... return self.val + obj
>>> a = Add(10)
>>> a
<__main__.Add instance at 00E5D354>
>>> a + 5 # Calls a.__add__(5).

New
Feature

Tip

4807-7 ch07.F 5/24/01 8:58 AM Page 111

112 Part I ✦ The Python Language

add 5
15
>>> 5 + a # Calls a.__radd__(5).
radd 5
15

Table 7-2 lists the mathematic operations (and the right-hand and in-place variants)

that you can overload and examples of how to invoke them.

Table 7-2
Numeric Operator Methods

Method Sample Call

__add__ (self, obj), __radd__, __iadd__ obj + 10.5

__sub__ (self, obj), __rsub__, __isub__ obj – 16

__mul__ (self, obj), __rmul__, __imul__ obj * 5.1

__div__ (self, obj), __rdiv__, __idiv__ obj / 15

__mod__ (self, obj), __rmod__, __imod__ obj % 2

__divmod__ (self, obj), __rdivmod__ divmod(obj,3)

__pow__ (self, obj[, modulo]), pow(obj,3)
__rpow__(self,obj)

__neg__ (self) -obj

__pos__ (self) +obj

__abs__ (self) abs(obj)

__invert__ (self) ~obj

Overloading sequence and dictionary operators
If you create your own sequence or mapping data type, or if you just like those nifty

bracket operators, you can overload the sequence operators with the methods

listed in Table 7-3.

4807-7 ch07.F 5/24/01 8:58 AM Page 112

113Chapter 7 ✦ Object-Oriented Python

Table 7-3
Sequence and Dictionary Operator Methods

Method Sample Call

__len__ (self) len(obj)

__getitem__ (self, key) obj[‘cheese’]

__setitem__ (self, key, value) obj[5] = (2,5)

__delitem__ (self, key) del obj[‘no’]

__setslice__ (self, i, j, sequence) obj[1:7] = ‘Fellow’

__delslice__ (self, i, j) del obj[5:7]

__contains__(self,obj) x in obj

This class overrides the slice operator to provide an inefficient way to create a list

of numbers:

>>> class DumbRange:
... def __getitem__(self,slice):
... step = slice.step
... if step is None:
... step = 1
... return range(slice.start,slice.stop+1,step)
>>> d = DumbRange()
>>> d[2:5]
[2, 3, 4, 5]
>>> d[2:10:2] # Extended (step) slicing!
[2, 4, 6, 8, 10]

The argument to __getitem__ is either an integer or a slice object. Slice objects

have start, stop, and step attributes, so your class can support the extended slic-

ing shown in the example.

If the key passed to __getitem__ is of the wrong type, your implementation should

raise the TypeError exception, and the slice methods should reject invalid indices

by raising the IndexError exception.

If your __getitem__ method raises IndexError on an invalid index, Python can

iterate over object instances as if they were sequences. The following class behaves

like a range object with a user-supplied step, but it limits itself to only 6 iterations:

4807-7 ch07.F 5/24/01 8:58 AM Page 113

114 Part I ✦ The Python Language

>>> class Stepper:
... def __init__(self, step):
... self.step = step
... def __getitem__(self, index):
... if index > 5:
... raise IndexError
... return self.step * index
>>> s = Stepper(3)
>>> for i in s:
... print i
0 # Python calls __getitem__ with index=0
3
6
9
12
15 # Python stops after a __getitem__call raises an exception

Overloading bitwise operators
The bitwise operators let your classes support operators such as << and xor:

>>> class Vector2D:
... def __init__(self,i,j):
... self.i = i
... self.j = j
... def __lshift__(self,x):
... return Vector2D(self.i << x, self.j << x)
... def __repr__(self):
... return ‘Vector2D(%s,%s)’ % (`self.i`,`self.j`)
>>> v1 = Vector2D(5,2)
>>> v1 << 2
Vector2D(20,8)

Table 7-4 lists the methods you define to overload the bitwise operators.

Table 7-4
Bitwise Operator Methods

Method Sample Call

__lshift__ (self, obj), __rlshift__, obj << 3
__ilshift__

__rshift__ (self, obj), __rrshift__, obj >> 1
__irshift__

__and__ (self, obj), __rand__, __iand__ obj & 17

__or__ (self, obj), __ror__, __ior__ obj | otherObj

__xor__ (self, obj), __rxor__, __ixor__ obj ^ 0xFE

4807-7 ch07.F 5/24/01 8:58 AM Page 114

115Chapter 7 ✦ Object-Oriented Python

Overloading type conversions
By overloading type conversion methods, you can convert your object to different

data types as needed:

>>> class Five:
... def __int__(self):
... return 5
>>> f = Five()
>>> int(f)
5

Python calls these methods when you pass an object to one of the type conversion

routines. Table 7-5 lists the methods, sample Python code that would invoke them,

and sample output they might return.

Table 7-5
Type Conversion Methods

Method Sample Call Sample Output

__int__(self) int(obj) 53

__long__(self) long(obj) 12L

__float__(self) float(obj) 3.5

__complex__(self) complex(obj) 2 + 3j

__oct__(self) oct(obj) ‘012’

__hex__(self) hex(obj) ‘0xFE’

Python calls the __coerce__(self, obj) method, if present, to coerce two numer-

ical types into a common type before applying an arithmetic operation. Your imple-

mentation should return a 2-item tuple containing self and obj converted to a

common numerical type or None if you don’t support that conversion.

Using Weak References
Like many other high-level languages, Python uses a form of garbage collection to

automatically destroy objects that are no longer in use. Each Python object has a

reference count that tracks how many references to that object exist; when the ref-

erence count is 0, then Python can safely destroy the object.

While reference counting saves you quite a bit of error-prone memory management

work, there can be times when you want a weak reference to an object, or a refer-

ence that doesn’t prevent Python from garbage collecting the object if no other

4807-7 ch07.F 5/24/01 8:58 AM Page 115

116 Part I ✦ The Python Language

references exist. With the weakref module, you can create weak references to

objects, and Python will garbage collect an object if its reference count is 0 or if the

only references that exist are weak references.

The weakref module is new in Python 2.1.

Creating weak references
You create a weak reference by calling ref(obj[, callback]) in the weakref
module, where obj is the object to which you want a weak reference and callback
is an optional function to call when Python is about to destroy the object because

no strong references to it remain. The callback function takes a single argument, the

weak reference object.

Once you have a weak reference to an object, you can retrieve the referenced

object by calling the weak reference. The following example creates a weak refer-

ence to a socket object:

>>> ref = weakref.ref(a)
>>> from socket import *
>>> import weakref
>>> s = socket(AF_INET,SOCK_STREAM)
>>> ref = weakref.ref(s)
>>> s
<socket._socketobject instance at 007B4A94>
>>> ref
<weakref at 0x81195c; to ‘instance’ at 0x7b4a94>
>>> ref() # Call it to access the referenced object.
<socket._socketobject instance at 007B4A94>

Once there are no more references to an object, calling the weak reference returns

None because Python has destroyed the object.

Most objects are not accessible through weak references.

The getweakrefcount(obj) and getweakrefs(obj) functions in the weakref
module return the number of weak references and a list of referents for the given

object.

Weak references can be useful for creating caches of objects that are expensive to

create. For example, suppose you are building a distributed application that sends

messages between computers using connection-based network sockets. In order to

reuse the socket connections without keeping unused connections open, you

decide to keep a cache of open connections:

Note

New
Feature

4807-7 ch07.F 5/24/01 8:58 AM Page 116

117Chapter 7 ✦ Object-Oriented Python

import weakref
from socket import *

socketCache = {}
def getSocket(addr):

‘Returns an open socket object’
if socketCache.has_key(addr):

sock = socketCache[addr]()
if sock: # Return the cached socket.

return sock

No socket found, so create and cache a new one.
sock = socket(AF_INET,SOCK_STREAM)
sock.connect(addr)
socketCache[addr] = weakref.ref(sock)
return sock

In order to send a message to a remote computer, your program calls getSocket to

obtain a socket object. If a connection to the given address doesn’t already exist,

getSocket creates a new one and adds a weak reference to the cache. When all

strong references to a given socket are gone, Python destroys the socket object and

the next request for the same connection will cause getSocket to create a new one.

The mapping([dict[,weakkeys]]) function in the weakref module returns a

weak dictionary (initializing it with the values from the optional dictionary dict). If

weakkeys is 0 (the default), the dictionary automatically removes any entry whose

value no longer has any strong references to it. If weakkeys is nonzero, the dictio-

nary automatically removes entries whose keys no longer have strong references.

Creating proxy objects
Proxy objects are weak reference objects that behave like the object they reference

so that you don’t have to first call the weak reference to access the underlying

object. Create a proxy by calling weakref’s proxy(obj[, callback]) function.

You use the proxy object as if it was the actual object it references:

>>> from socket import *
>>> import weakref
>>> s = socket(AF_INET,SOCK_STREAM)
>>> ref = weakref.proxy(s)
>>> s
<socket._socketobject instance at 007E4874>
>>> ref # It looks like the socket object.
<socket._socketobject instance at 007E4874>
>>> ref.close() # The object’s methods work too.

4807-7 ch07.F 5/24/01 8:58 AM Page 117

118 Part I ✦ The Python Language

The callback parameter has the same purpose as the ref function. After

Python deletes the referenced object, using the proxy results in a

weakref.ReferenceError:

>>> del s
>>> ref
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

This example assumes that Python immediately destroys the object once the last
string is gone. While true of the current garbage collector implementation, future
versions may be different.

Summary
Python fully supports object-oriented programming while requiring minimal effort

from you, the programmer. In this chapter you:

✦ Created your own custom classes.

✦ Derived new classes from other classes.

✦ Extended built-in data types like strings and lists.

✦ Defined custom behaviors for operations on your classes.

In the next chapter you learn to create programs that interact with the user and

store and retrieve data.

✦ ✦ ✦

Note

4807-7 ch07.F 5/24/01 8:58 AM Page 118

Input and
Output

In order to be useful, most programs must interact with the

“outside world” in some way. This chapter introduces

Python’s functions for reading and writing files, printing to the

screen, and retrieving keyboard input from the user.

Printing to the Screen
The simplest way to produce output is using the print state-

ment, which converts the expressions you pass it to a string

and writes the result to standard output, which by default is

the screen or console. You can pass in zero or more expres-

sions, separated by commas, between which print inserts a

space:

>>> print ‘It is’,5+7,’past’,3
It is 12 past 3

Before printing each expression, print converts any non-

string expressions using the str function. If you don’t want

the spaces between expressions, you can do the conversions

yourself:

>>> a = 5.1; z = (0,5,10)
>>> print ‘(%0.1f + %0.1f) = \n%0.1f’ %
(a,a,a*2)
(5.1 + 5.1) =
10.2
>>> print ‘Move to ‘+str(z)
Move to (0, 5, 10)
>>> print ‘Two plus ten is ‘+`2+10` # `` is
the same as repr.
Two plus ten is 12

Chapter 3 covers converting different data types to strings.Cross-
Reference

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Printing to the screen

Accessing keyboard
input

Opening, closing,
and positioning files

Writing files

Reading files

Accessing standard
I/O

Using filelike objects

✦ ✦ ✦ ✦

4807-7 ch08.F 5/24/01 8:58 AM Page 119

120 Part I ✦ The Python Language

If you append a trailing comma to the end of the statement, print won’t move to

the next line:

>>> def addEm(x,y):
... print x,
... print ‘plus’,
... print y,
... print ‘is’,
... print x+y
>>> addEm(5,2)
5 plus 2 is 7

Python uses the softspace attribute of stdout (stdout is in the sys module) to

track whether it needs to output a space before the next item to be printed. You can

use this feature to manually shut off the space that would normally appear due to

using a comma:

>>> import sys
>>> def joinEm(a,b):
... print a,
... sys.stdout.softspace = 0
... print b
...
>>> joinEm(‘Thanks’,’giving’)
Thanksgiving

An extended form of the print statement lets you redirect output to a file instead

of standard output:

>>> print >> sys.stderr ,”File not found”
File not found

The extended form of print was introduced in Python 2.0.

Any filelike object will do, as you will see in the “Using Filelike Objects” section later

in this chapter.

Accessing Keyboard Input
Going the other direction, Python provides two built-in functions to retrieve a line

of text from standard input, which by default comes from the user’s keyboard. The

examples in this section use italics for text you enter in response to the prompts.

raw_input
The raw_input([prompt]) function reads one line from standard input and

returns it as a string (removing the trailing newline):

New
Feature

4807-7 ch08.F 5/24/01 8:58 AM Page 120

121Chapter 8 ✦ Input and Output

>>> s = raw_input()
Uncle Gomez
>>> print s
Uncle Gomez

You can also specify a prompt for raw_input to use while waiting for user input:

>>> s = raw_input(‘Command: ‘)
Command: launch missiles
>>> print ‘Ignoring command to’,s
Ignoring command to launch missiles

If raw_input encounters the end of file, it raises the EOFError exception.

input
The input([prompt]) function is equivalent to raw_input, except that it assumes

the input is a valid Python expression and returns the evaluated result to you:

>>> input(‘Enter some Python: ‘)
Enter some Python: [x*5 for x in range(2,10,2)]
[10, 20, 30, 40]

Note that input isn’t at all error-proof. If the expression passed in is bogus, input
raises the appropriate exception, so be wary when using this function in your

programs.

Chapter 38 covers the readline module for UNIX systems. If enabled, this mod-
ule adds command history tracking and completion to these input routines (and
Python’s interactive mode as well).

You may have noticed that you can’t read one character at a time (instead you
have to wait until the user hits Enter). To read a single character on UNIX systems
(or any system with curses support), you can use the getch function in the
curses module (Chapter 22). For Windows systems, you can use the getch func-
tion in the msvcrt module (Chapter 37).

Opening, Closing, and Positioning Files
The remaining sections in this chapter show you how to use files in your programs.

Part II of this book — “Files, Data Storage, and Operating System Services” — covers
many additional features you’ll find useful when using files.

Cross-
Reference

Cross-
Reference

Cross-
Reference

4807-7 ch08.F 5/24/01 8:58 AM Page 121

122 Part I ✦ The Python Language

open
Before you can read or write a file, you have to open it using Python’s built-in

open(name[, mode[, bufsize]]) function:

>>> f = open(‘foo.txt’,’wt’,1) # Open foo.txt for writing.
>>> f
<open file ‘foo.txt’, mode ‘wt’ at 010C0488>

The mode parameter is a string (similar to the mode parameter in C’s fopen
function) and is explained in Table 8-1.

Table 8-1
Mode Values for open

Value Description

R Opens for reading.

W Creates a file for writing, destroying any previous file with the
same name.

A Opens for appending to the end of the file, creating a new one if
it does not already exist.

r+ Opens for reading and writing (the file must already exist).

w+ Creates a new file for reading and writing, destroying any
previous file with the same name.

a+ Opens for reading and appending to the end of the file, creating
a new file if it does not already exist.

If you do not specify a mode string, open uses the default of ‘r’. To the end of the

mode string you can append a ‘t’ to open the file in text mode or a ‘b’ to open it in

binary mode:

>>> f = open(‘somepic.jpg’,’w+b’) # Open/create binary file.

If you omit the optional buffer size parameter (or pass in a negative number), open
uses the system’s default buffering. A value of 0 is for unbuffered reading and writing,

a value of 1 buffers data a line at a time, and any other number tells open to use a

buffer of that size (some systems round the number down to the nearest power of 2).

If for any reason the function call fails (file doesn’t exist, you don’t have permis-

sion), open raises the IOError exception.

The os module (Chapter 10) provides the fdopen, popen, popen2, and popen3
functions as additional ways to obtain file objects. You can also create a filelike object
wrapping an open socket with the socket.makefile function (Chapter 15).

Cross-
Reference

4807-7 ch08.F 5/24/01 8:58 AM Page 122

123Chapter 8 ✦ Input and Output

File object information
Once you have a file object, you can use the name, fileno(), isatty(), mode, and

closed methods and attributes to get different information about the object’s

status:

>>> f = open(‘foo.txt’,’wt’)
>>> f.mode # Get the mode used to create the file object.
‘wt’
>>> f.closed # Boolean: has the file been closed already?
0
>>> f.name # Get the name of the file.
‘foo.txt’
>>> f.isatty() # Is the file connected to a terminal?
0
>>> f.fileno() # Get the file descriptor number.
0

With the file descriptor returned by the fileno method you can call read and
other functions in the os module (Chapter 10).

close
The close() method of a file object flushes any unwritten information and closes

the file object, after which no more writing can occur:

>>> f = open(‘foo.txt’,’wt’)
>>> f.write(‘Foo!!’)
>>> f.close()

File position
The tell() method tells you the current position within the file (in other words,

the next read or write will occur at that many bytes from the beginning of the file):

>>> f = open(‘tell.txt’,’w+’) # Open for reading AND writing.
>>> f.write(‘BRAWN’) # Write 5 characters.
>>> f.tell()
5 # Next operation will occur at offset 5 (starting from 0).

The seek(offset[, from]) method changes the current file position. The follow-

ing example continues the previous one by seeking to an earlier point in the file,

overwriting some of the previous data, and then reading the entire file:

>>> f.seek(2) # Move to offset 2 from the start of the file.
>>> f.write(‘AI’)
>>> f.seek(0) # Now move back to the beginning.
>>> f.read() # Read everything from here on.
‘BRAIN’

Cross-
Reference

4807-7 ch08.F 5/24/01 8:58 AM Page 123

124 Part I ✦ The Python Language

You can pass an additional argument to seek to change how it interprets the first

parameter. Use a value of 0 (which is the default) to seek from the beginning of the

file, 1 to seek relative to the current position, and 2 to seek relative to the end of the

file. Using the previous example:

>>> f.seek(-4,2) # Seek 4 bytes back from the end of the file.
>>> f.read()
‘RAIN’

When you open a file in text mode on a Microsoft Windows system, Windows
silently and automatically translates newline characters (‘\n’) into ‘\r\n’ instead. In
such cases use seek only with an offset of 0 (to seek to the beginning or the end
of the file) or to seek from the beginning of the file with an offset returned from a
previous call to tell.

Writing Files
The write(str) method writes any string to an open file (keep in mind that

Python strings can have binary data and not just text). Notice that write does not

add a newline character (‘\n’) to the end of the string:

>>> f = open(‘snow.txt’,’w+t’)
>>> f.write(‘Once there was a snowman,\nsnowman, snowman.\n’)
>>> f.seek(0) # Move to the beginning of the file.
>>> print f.read()
Once there was a snowman,
snowman, snowman.

The writelines(list) method takes a list of strings to write to a file (as with

write, it does not append newline characters to the end of each string you pass

in). Continuing the previous example:

>>> lines = [‘Once there was a snowman ‘,’tall, tall,’,’tall!’]
>>> f.writelines(lines)
>>> f.seek(0)
>>> print f.read()
Once there was a snowman,
snowman, snowman.
Once there was a snowman tall, tall, tall!

Like stdout, all file objects have a softspace attribute (covered in the first sec-
tion of this chapter) telling whether or not Python should insert a space before
writing out the next piece of data. As with stdout, you can modify this attribute to
shut off that extra space.

The truncate([offset]) method deletes the contents of the file from the current

position until the end of the file:

Tip

Caution

4807-7 ch08.F 5/24/01 8:58 AM Page 124

125Chapter 8 ✦ Input and Output

>>> f.seek(10)
>>> f.truncate()
>>> f.seek(0)
>>> print f.read()
Once there

Optionally you can specify a file position at which to truncate instead of the current

file position:

>>> f.seek(0)
>>> f.truncate(5)
>>> print f.read()
Once

You can also use the flush() method to commit any buffered writes to disk.

See the pickle, shelve, and struct modules in Chapter 12 for information on
writing Python objects to files in such a way that you can later read them back in
as valid objects.

Reading Files
The read([count]) method returns the specified number of bytes from a file (or

less if it reaches the end of the file):

>>> f = open(‘read.txt’,’w+t’) # Create a file.
>>> for i in range(3):
... f.write(‘Line #%d\n’ % i)
>>> f.seek(0)
>>> f.read(3) # Read 3 bytes from the file.
‘Lin’

If you don’t ask for a specific number of bytes, read returns the remainder of the file:

>>> print f.read()
e #0
Line #1
Line #2

The readline([count]) method returns a single line, including the trailing new-

line character if present:

>>> f.seek(0)
>>> f.readline()
‘Line #0\012’

Cross-
Reference

4807-7 ch08.F 5/24/01 8:58 AM Page 125

126 Part I ✦ The Python Language

You can have readline return a certain number of bytes or an entire line

(whichever comes first) by passing in a size argument:

>>> f.readline(5)
‘Line ‘
>>> f.readline()
‘#1\012’

The readlines([sizehint]) method repeatedly calls readline and returns a list

of lines read:

>>> f.seek(0)
>>> f.readlines()
[‘Line #0\012’, ‘Line #1\012’, ‘Line #2\012’]

Once they reach the end of the file, the read and readline methods return
empty strings, and the readlines method returns an empty list.

The optional sizehint parameter limits how much data readlines reads into

memory instead of reading until the end of the file.

When you’re processing the lines of text in a file, you often want to remove the new-

line characters along with any leading or trailing whitespace. Here’s an easy way to

open the file, read the lines, and remove the newlines all in a single step (this exam-

ple assumes you have the read.txt file from above):

>>> [x.strip() for x in open(‘read.txt’).readlines()]
[‘Line #0’, ‘Line #1’, ‘Line #2’] # Yay, Python!

One drawback to the readlines method is that it reads the entire file into memory

before returning it to you as a list (unless you supply a sizehints parameter, in

which case you have to call readlines over and over again until the end of the

file). The xreadlines works like readlines but reads data into memory as

needed:

>>> for line in open(‘read.txt’).xreadlines():
... print line.strip().upper() # Print uppercase version of
lines.

The xreadlines function is new in Python 2.1.

Accessing Standard I/O
The sys module provides three file objects that you can always use: stdin
(standard input), stdout (standard output), and stderr (standard error). Most

often stdin holds input coming from the user’s keyboard while stdout and stderr
print messages to the user’s screen.

New
Feature

Note

4807-7 ch08.F 5/24/01 8:58 AM Page 126

127Chapter 8 ✦ Input and Output

Some IDEs like PythonWin implement their own version of stdin, stdout,
input, and so on, so redirecting them may behave differently. When in doubt, try
it out from the command line.

Routines like input and raw_input read from stdin, and routines like print write

to stdout, so an easy way to redirect input and output is to put file objects of your

own into sys.stdin and sys.stdout:

>>> import sys
>>> sys.stdout = open(‘fakeout.txt’,’wt’)
>>> print “Now who’s going to the restaurant?”
>>> sys.stdout.close()
>>> sys.stdout = sys.__stdout__
>>> open(‘fakeout.txt’).read()
“Now who’s going to the restaurant?\012”

As the example shows, the original values are in the __stdin__, __stdout__, and

__stderr__ members of sys; be a good Pythonista and point the variables to their

original values when you’re done fiddling with them.

External programs started via os.system or os.popen do not look in
sys.stdin or sys.stdout. As a result, their input and output come from the
normal sources, regardless of changes you’ve made to Python’s idea of stdin and
stdout.

Using Filelike Objects
One of the great features of Python is its flexibility with data types, and a neat

example of this is with file objects. Many functions or methods require that you

pass in a file object, but more often than not you can get away with passing in an

object that acts like a file instead.

The following example implements a filelike object that reverses the order of any-

thing you write to it and then sends it to the original version of stdout:

>>> import sys,string
>>> class Reverse:
... def write(self,s):
... s = list(s)
... s.reverse()
... sys.__stdout__.write(string.join(s,’’))
... sys.__stdout__.flush()

Not much of a file object is it? But, you’d be surprised at how often it’ll do the trick:

>>> sys.stdout = Reverse()
>>> print ‘Python rocks!’
!skcor nohtyP

Note

Note

4807-7 ch08.F 5/24/01 8:58 AM Page 127

128 Part I ✦ The Python Language

In fact, you can trick most of Python into using your new file object, even when

printing error messages:

>>> sys.stderr = Reverse()
>>> Reverse.foo # This action causes an error.
:)tsal llac tnecer tsom(kcabecarT
? ni ,1 enil ,”>nidts<” eliF rorrEetubirttA :oof

The point here is that no part of the Python interpreter or the standard libraries

has any knowledge of your special file class, nor does it need to. Sometimes a cus-

tom class can act like one of a different type even if it’s not derived from a common

base class (that is, files and Reverse do not share some common “generic file”

superclass).

One instance in which this feature is useful is when you’re building GUI-based

applications (see Chapter 19) and you want text messages to go to a graphical

window instead of to the console. Just write your own filelike class that sends a

Detecting Redirected Input

Suppose you’re writing a nifty utility program that would most often be used in a script
where the input would come from piped or redirected input, but you also want to provide
more of an interactive mode for other uses. Instead of having to pass in a command line
parameter to choose the mode, your program could use the isatty method of sys.stdin to
detect it for you.

To see this in action, save this tiny program to a file called myutil.py:

import sys
if sys.stdin.isatty():

print ‘Interactive mode!’
else:

print ‘Batch mode!’

Now run it from an MS-DOS or UNIX shell command prompt:

C:\temp>python myutil.py
Interactive mode!

Run it again, this time redirecting a file to stdin using the redirection character (any file
works as input — in the example below I chose myutil.py because you’re sure to have it in
your directory):

C:\temp>python myutil.py < myutil.py
Batch mode!

Likewise, a more complex (and hopefully more useful) utility could automatically behave
differently depending on whether a person or a file was supplying the input.

4807-7 ch08.F 5/24/01 8:58 AM Page 128

129Chapter 8 ✦ Input and Output

string to the window, replace sys.stdout (and probably sys.stderr), and

magically output goes to the right place, even if some third-party module that is

completely ignorant of your trickery generates the output.

This flexibility comes in handy at other times too. For example, map lets you pass in

the function to apply. The ability to recognize cases where it is both useful and intu-

itive is a talent worth cultivating.

As of Python 2.1, you can create a xreadlines object around any filelike object
that implements a readlines method:

import xreadlines
obj = SomeFileLikeObject()
for line in xreadlines.xreadlines(obj):

... do some work ...

Summary
Whether you’re using files or standard I/O, Python makes handling input and output

easy. In this chapter you:

✦ Printed information to the user’s console.

✦ Retrieved input from the keyboard.

✦ Learned to read and write text and binary files.

✦ Used filelike objects in place of actual file objects.

In the next chapter you’ll learn to use Python’s powerful string handling features.

With them you can easily search strings, match patterns, and manipulate strings in

your programs.

✦ ✦ ✦

Tip

4807-7 ch08.F 5/24/01 8:58 AM Page 129

4807-7 ch08.F 5/24/01 8:58 AM Page 130

Files, Data
Storage, and
Operating
System Services

✦ ✦ ✦ ✦

Chapter 9
Processing Strings
and Regular
Expressions

Chapter 10
Working with Files
and Directories

Chapter 11
Using Other
Operating System
Services

Chapter 12
Storing Data and
Objects

Chapter 13
Accessing Date
and Time

Chapter 14
Using Databases

✦ ✦ ✦ ✦

P A R T

IIII

4807-7 PO2.F 5/24/01 8:58 AM Page 131

4807-7 PO2.F 5/24/01 8:58 AM Page 132

Processing
Strings and
Regular
Expressions

Strings are a very common format for data display, input,

and output. Python has several modules for manipulat-

ing strings. The most powerful of these is the regular expres-

sion module. Python also offers classes that can blur the

separation between a string (in memory) and a file (on disk).

This chapter covers all of the things you can do with strings,

ordered from the crucial to the seldom used.

Using String Objects
String objects provide methods to search, edit, and format the

string. Because strings are immutable, these functions do not

alter the original string. They return a new string:

>>> bob=”hi there”
>>> bob.upper() # Say it LOUDER!
‘HI THERE’
>>> bob # bob is immutable, so he didn’t
mutate.
>>> ‘hi there’
>>> string.upper(bob) # Module function, same
as bob.upper
‘HI THERE’

String object methods are also available (except as noted

below) as functions in the string module. The corresponding

module functions take, as an extra first parameter, the string

object to operate on.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using string objects

Using the string
module

Defining regular
expressions

Creating and using
regular expression
objects

Using match objects

Treating strings as
files

Encoding text

Formatting floating
point numbers

✦ ✦ ✦ ✦

4807-7 ch09.F 5/24/01 8:58 AM Page 133

134 Part II ✦ Files, Data Storage, and Operating System Services

See Chapter 3 for an introduction to string syntax and formatting in Python.

String formatting methods
Several methods are available to format strings for printing or processing. You can

justify the string within a column, strip whitespace, or expand tabs.ljust(width),

center(width), or rjust(width). These methods right-justify, center, or left-justify a

string within a column of a given width. They pad the string with spaces as neces-

sary. If the string is longer than width, these methods return the original string.

This kind of formatting works in a monospaced font, such as Courier New, where all

characters have the same width. In a proportional font, strings with the same length

generally have different widths on the screen or printed page.

>>> “antici”.ljust(10)+”pation”.rjust(10)
‘antici pation’

lstrip, rstrip, strip
lstrip returns a string with leading whitespace removed, rstrip removes trailing

whitespace, and strip removes both. “Whitespace” characters are defined in

string.whitespace — whitespace characters include spaces, tabs, and newlines.

>>> “ hello world “.lstrip()
‘hello world ‘
>>> _.rstrip() # Interpreter trick: _ = last expression value
‘hello world’

expandtab([tabsize])
This method replaces the tab characters in a string with tabsize spaces, and returns

the result. The parameter tabsize is optional, defaulting to eight. This method is

equivalent to replace(“\t”,” “*tabsize).

String case-changing methods
You can convert strings to UPPERCASE, lowercase, and more.

lower, upper
These methods return a string with all characters shifted to lowercase and

uppercase, respectively. They are useful for comparing strings when case is not

important.

capitalize, title, swapcase
The method capitalize returns a string with the first character shifted to uppercase.

Cross-
Reference

4807-7 ch09.F 5/24/01 8:58 AM Page 134

135Chapter 9 ✦ Processing Strings and Regular Expressions

The method title returns a string converted to “titlecase.” Titlecase is similar to the

way book titles are written: it places the first letter of each word in uppercase, and

all other letters in lowercase. Python assumes that any group of adjacent letters

constitutes one word.

The method swapcase returns a string where all lowercase characters changed to

uppercase, and vice versa.

>>> “hello world”.title()
‘Hello World’
>>> “hello world”.capitalize()
‘Hello world’
>>> “hello world”.upper()
‘HELLO WORLD’

String format tests (the is-methods)
These methods do not have corresponding functions in the string module. Each

returns false for an empty string. For instance, “”.isalpha() returns 0.

✦ isalpha — Returns true if each character is alphabetic. Alphabetic characters

are those in string.letters. Returns false otherwise.

✦ isalnum — Returns true if each character is alphanumeric. Alphanumeric

characters are those in string.letters or string.digits. Returns false otherwise.

✦ isdigit — Returns true if each character is a digit (from string.digits). Returns

false otherwise.

✦ isspace — Returns true if each character is whitespace (from string.

whitespace). Returns false otherwise.

✦ islower — Returns true if each letter in the string is lowercase, and the string

contains at least one letter. Returns false otherwise. For example:

>>> “2 + 2”.islower() # No letters, so test fails!
0
>>> “2 plus 2”.islower() # A-ok!
1

✦ isupper — Returns true if each letter in the string is uppercase, and the string

contains at least one letter. Returns false otherwise.

✦ istitle — Returns true if the letters of the string are in titlecase, and the string

contains at least one letter. Returns false otherwise. (See the title formatting

method discussed previously for a description of titlecase.)

String searching methods
Strings offer various methods for simple searching. For more powerful searching,

use the regular expressions module (covered later in this chapter).

4807-7 ch09.F 5/24/01 8:58 AM Page 135

136 Part II ✦ Files, Data Storage, and Operating System Services

find(substring[, firstindex[, lastindex]])
Search for substring within the string. If found, return the index where the first

occurrence starts. If not found, return -1.

A call to str.find searches the slice str[firstindex:lastindex]. So, the

default behavior is to search the whole string, but you can pass values for firstindex
and lastindex to limit the search.

>>> str=”the rest of the story”
>>> str.find(“the”)
0
>>> str.find(“the”,1) # Start search at index 1.
12
>>> str.find(“futplex”)
-1

Here are some relatives of find, which you may find useful:

✦ index — Same syntax and effect as find, but raises the exception ValueError
if it doesn’t find the substring .

✦ rfind — Same as find, but returns the index of the last occurrence of the

substring.

✦ rindex — Same as index, but returns the index of the last occurrence of the

substring.

startswith(substr[,firstindex[,lastindex]])
Returns true if the string starts with substr. A call to str.startswith compares

substr against the slice str[firstindex:lastindex]. You can pass values for

firstindex and lastindex to test whether a slice of your string with substr. No equiva-

lent function in the string module.

endswith(substr[,firstindex[,lastindex]])
Same as startswith, but tests whether the string ends with substr. The string module

contains no equivalent function.

count(substr[,firstindex[,lastindex]])
Counts the number of occurrences of substr within a string. If you pass indices,

count searches within the slice [firstindex:lastindex].

This example gives the answer to an old riddle: “What happens once today, three

times tomorrow, but never in three hundred years?”

>>> RiddleStrings=[“today”,”tomorrow”,”three hundred years”]
>>> for str in RiddleStrings: print str.count(“o”)
...
1
3
0

4807-7 ch09.F 5/24/01 8:58 AM Page 136

137Chapter 9 ✦ Processing Strings and Regular Expressions

String manipulation methods
Strings provide various methods to replace substrings, split the string on delim-

iters, or join a list of strings into a larger string.

translate(table[,deletestr])
Returns a string translated according to the translation string table. If you supply a

string deletestr, translate removes all characters in that string before applying the

translation table. The string table must have a length of 256; a character with ASCII

value n is replaced with table[n]. The best way to create such a string is with a

call to string.maketrans, as described below.

For example, this line of code converts a string to “Hungarian style,” with words

capitalized and concatenated. It also swaps exclamation points and question marks:

>>>ProductName=”power smart report now?”
>>>ProductName.title().translate(string.maketrans(“?!”,”!?”),string.whitespace)
‘PowerSmartReportNow!’

replace(oldstr,newstr[,maxreplacements])
Returns a string with all occurrences of oldstr replaced by newstr. If you provide

maxreplacements, replace replaces only the first maxreplacements occurrences of

oldstr.

>>> “Siamese cat”.replace(“c”,”b”)
‘Siamese bat’

split([separators[,maxsplits]])
Breaks the string on any of the characters in the string separators, and returns a list

of pieces. The default value of separators is string.whitespace. If you supply a

value for maxsplits, then split performs up to maxsplits splits, and no more.

This method is useful for dealing with delimited data:

>>> StockQuoteLine = “24-Nov-00,45.9375,46.1875,44.6875,45.1875,3482500,45.1875”
>>> ClosingPrice=float(StockQuoteLine.split(“,”)[4])
>>> ClosingPrice
45.1875

splitlines([keepends])
Splits a string on line breaks (carriage return and/or line feed). If you set keepends
to true, splitlines retains the terminating character on each line. The string
module has no corresponding function. For example:

>>> “The\r\nEnd\n\n”.splitlines()
[‘The’, ‘End’, ‘’]
>>> “The\r\nEnd\n\n”.splitlines(1)
[‘The\015\012’, ‘End\012’, ‘\012’]

4807-7 ch09.F 5/24/01 8:58 AM Page 137

138 Part II ✦ Files, Data Storage, and Operating System Services

join(StringSequence)
Returns a string consisting of all the strings in StringSequence concatenated

together, using the string as a delimiter.

This method in generally used in the corresponding function form:

string.join(StringSequence[, Delimiter]). The default value of Delimiter is a

single space.

>>> Words=[“Ready”,”Set”,”Go”]
>>> “...”.join(Words) # weird-looking
‘Ready...Set...Go’
>>> string.join(Words,”...”) # equivalent, and more intuitive
‘Ready...Set...Go’

encode([scheme[,errorhandling]])
Returns the same string, encoded in the encoding scheme scheme. The parameter

scheme defaults to the current encoding scheme. The parameter errorhandling
defaults to “strict,” indicating that encoding problems should raise a ValueError

exception. Other values for errorhandling are “ignore” (do not raise any errors),

and “replace” (replace un-encodable characters with a replacement marker). See

the section “Encoding Text,” for more information.

Using the String Module
Because strings have so many useful methods, it is often not necessary to import

the string module. But, the string module does provide many useful members.

Character categories
The string module includes several constant strings that categorize characters as

letters, digits, punctuation, and so forth. Avoid editing these strings, as it may break

standard routines.

✦ letters — All characters considered to be letters; consists of lowercase +

uppercase.

✦ lowercase — All lowercase letters.

✦ uppercase — All uppercase letters.

✦ digits — The string ‘0123456789’.

✦ hexdigits — The string ‘0123456789abcdefABCDEF’.

4807-7 ch09.F 5/24/01 8:58 AM Page 138

139Chapter 9 ✦ Processing Strings and Regular Expressions

✦ octdigits — The string ‘01234567’.

✦ punctuation — String of all the characters considered to be punctuation.

✦ printable — All the characters that are considered printable. Consists of

digits, letters, punctuation, and whitespace.

✦ whitespace — All characters that are considered whitespace. On most sys-

tems this string includes the characters space, tab, linefeed, return, formfeed,

and vertical tab.

Miscellaneous functions
Most of the functions in the string module correspond to methods of a string

object, and are covered in the section on string methods. The other functions,

which have no equivalent object methods, are covered here.

atoi,atof,atol
The function string.atoi(str) returns an integer value of str, and raises a

ValueError if str does not represent an integer. It is equivalent to the built-in

function int(str).

The function atof(str) converts a string to a float; it is equivalent to the float
function.

The function atol(str) converts a string to a long integer; it is equivalent to the

long function.

>>> print string.atof(‘3.5’)+string.atol(‘2’)
5.5

capwords(str)
Splits a string (on whitespace) into words, capitalizes each word, then joins the

words together with one space between them:

>>> string.capwords(“The end...or is it?”)
‘The End...or Is It?’

maketrans(fromstring,tostring)
Creates a translation table suitable for passing to maketrans (or to regex.compile).

The translation table instructs maketrans to translate the nth character in fromstring
into the nth character in tostring. The strings fromstring and tostring must have the

same length.

The translation table is a string of length 256 representing all ASCII characters, but

with fromstring[n] replaced by tostring[n].

4807-7 ch09.F 5/24/01 8:58 AM Page 139

140 Part II ✦ Files, Data Storage, and Operating System Services

splitfields,joinfields
These functions have the same effect as split and join, respectively. (Before

Version 2.0, splitfields and joinfields accepted a string of separators, and

split and join did not.)

zfill(str,width)
Given a numeric string str and a desired width width, returns an equivalent numeric

string padded on the left by zeroes. Similar to rjust. For example:

>>> string.zfill(“-3”,5)
‘-0003’

Defining Regular Expressions
A regular expression is an object that matches some collection of strings. You can

use regular expressions to search and transform strings in sophisticated ways.

Regular expressions use their own special syntax to describe strings to match.

They can be very efficient, but also very cryptic if taken to extremes. Regular

expressions are widely used in UNIX world. The module re provides full support for

Perl-like regular expressions in Python.

The re module raises the exception re.error if an error occurs while compiling or

using a regular expression.

Prior to Version 1.5, the modules regex and regsub provided support for regular

expressions. These modules are now deprecated.

Regular expression syntax
The definition of a regular expression is a string. In general, a character in the regu-

lar expression’s definition matches a character in a target string. For example, the

regular expression defined by fred matches the string “fred,” and no others. Some

characters have special meanings that permit more sophisticated matching.

. A period (dot) matches any character except a newline. For example,

b.g matches “big,” “bag,” or “bqg,” but not “b\ng.” If the DOTALL flag is

set, then dot matches any character, including a newline.

[] Brackets specify a set of characters to match. For example, p[ie]n
matches “pin” or “pen” and nothing else. A set can include ranges: the set

[a-ex-z] is equivalent to [abcdexyz]. Starting a set with ^ means

“match any character except these.” For example, b[^ae]d matches “bid”

or “b%d,” but not “bad” or “bed.”

* An asterisk indicates that the preceding regular expression is optional,

and may occur any number of times. For example, ba*n* matches

“banana” or “baaaa” or “bn” or simply “b.”

4807-7 ch09.F 5/24/01 8:58 AM Page 140

141Chapter 9 ✦ Processing Strings and Regular Expressions

+ A plus sign indicates that the preceding regular expression must occur at

least once, and may occur many times. For example, [sweatrd]+
matches various words, the longest of which is “stewardesses.” The reg-

ular expression [0-9]+/[0-9]+ matches fractions like “13/64” or “2/3.”

? A question mark indicates that the preceding regular expression is

optional, and can occur, at most, once. For example, col?d matches

either “cod” or “cold,” but not “colld.” The question mark has other

uses, explained below in the sections on “Nongreedy matching” and

“Extensions.”

{m,n} The general notation for repetition is two numbers in curly-braces. This

syntax indicates that the preceding regular expression must appear at

least m times, but no more than n times. If m is omitted, it defaults to 0.

If n is omitted, it defaults to infinity. For example, [^a-zA-Z]{3,}
matches any sequence of at least three non-alphabetic characters.

^ A caret matches the beginning of the string. If the MULTILINE flag is set,

it also matches the beginning of a new line. For example, ^bob matches

“bobsled” but not “discombobulate.” Note that the caret has an unre-

lated meaning inside brackets [].

$ A dollar sign matches the end of the string. If the MULTILINE flag is set,

it also matches the end of a line. For example, is$ matches “this” but

not “fish.” It matches “This\nyear” only if the MULTILINE flag is set.

| A vertical slash splits a regular expression into two parts, and matches

either the first half or the last half. For example, ab|cd matches the

strings “ab” and “cd.”

() Enclosing part of a regular expression in parentheses does not change

matching behavior. However, Python flags the regular expression

enclosed in parentheses as a group. After the first match, you can match

the group again using backslash notation. For instance, the regular

expression ^[\w]*(\w)\1[\w]*$ matches a single word with double

letters, like “pepper” or “narrow” but not “salt” or “wide.” (The syntax

\w, explained below, matches any letter.) A regular expression can have

up to 99 groups, which are numbered starting from 1.

Grouping is useful even if the group is only matched once. For example,

Ste(ph|v)en matches “Stephen” or “Steven.” Without parens,

Steph|ven matches only the strings “Steph” and “ven.”

Python also uses parentheses in extensions (see “Extensions” later in

this chapter).

\ Escape special characters. You can use a backslash to escape any spe-

cial characters. For example, ca\$h matches the string “ca$h.” Note that

without the backslash, ca$h could never match anything (except in

MULTILINE mode). The backslash also forms character groups, as

described below.

4807-7 ch09.F 5/24/01 8:58 AM Page 141

142 Part II ✦ Files, Data Storage, and Operating System Services

Backslashes and raw strings
You should generally write the Python string defining a regular expression as a raw

string. Otherwise, because you must escape backslashes in the regular expression’s

definition, the excessive backslashes become confusing:

>>> ThePath=”c:\\temp\\download\\”
>>> print ThePath
c:\temp\download\
>>> re.search(r”c:\\temp”,ThePath) # Raw. Reasonably clear.
<SRE_Match object at 007CC7A8>
>>> re.search(“c:\\temp”,ThePath) # no match!
>>> re.search(“c:\\\\temp”,ThePath) # Less clear than raw
<SRE_Match object at 007ACFD0>

The second search fails to find a match, because the regular expression defined by

c:\temp matches only the string consisting of “c:,” then a tab, then “emp”!

Character groups and other backslash magic
In addition to escaping special characters, you can also use the backslash in con-

junction with a letter to match various things. A rule of thumb is that if backslash

plus a lowercase letter matches something, backslash plus the uppercase letter

matches the opposite.

\1, \2, etc. Matches a numbered group. If part of a regular expression is

enclosed in parentheses, Python flags it as a group. Python num-

bers groups, starting from 1 and proceeding to 99. You can match

groups again by number. For example, (.+)\1 matches the

names of 80’s bands “The The,” “Mister Mister,” and “Duran

Duran.”

Python interprets escaped three-digit numbers, or numbers start-

ing with 0, as the octal value of a character. For example, \012
matches a newline.

Inside set brackets [], Python treats all escaped numbers as

characters.

\A Matches the start of the string: equivalent to ^.

\b Matches a word boundary. Here “word” means “sequence of

alphanumeric characters.” For example, snow\b matches “snow

angel” but not “snowball.” Note that \b in the middle of a word

indicates backspace, just as it would in an ordinary string. For

instance, “bozo\b\b\b\bgentleman” matches the string consist-

ing of “bozo,” four backspace characters, then “gentleman.”

\B Matches a non-word-boundary. For example, \Bne\B matches

part of “planet,” but not “nest” or “lane.”

\d Matches a digit: equivalent to [0–9].

4807-7 ch09.F 5/24/01 8:58 AM Page 142

143Chapter 9 ✦ Processing Strings and Regular Expressions

\D Matches a non-digit: equivalent to [^0–9].

\s Matches a whitespace character: equivalent to [\t\n\r\f\v].

\S Matches a non-whitespace character: equivalent to [^ \t\n\r\f\v].

\w Matches an alphanumeric character: equivalent to

[a–zA–Z0–9_]. If the LOCALE flag is set, \w matches [0–9_] or any

character defined as alphabetic in the current locale. If the

UNICODE flag is set, matches [0–9_] or any character marked as

alphanumeric in the full Unicode character set.

\W Matches a non-alphanumeric character.

\Z Matches the end of the string: equivalent to $.

\\ Matches a backslash. (Similarly, \. matches a period, \? matches

a question mark, and so forth.)

Nongreedy matching
The repetition operators ?,+,* and {m,n} normally match as much as the target

string as possible. You can modify the operators with a question mark to be “non-

greedy,” and match as little of the target string as possible. For example, when

matched against the string “over the top,” \b.*\b would normally match the entire

string. The corresponding non-greedy version, \b.*?\b, matches only the first

word, “over.”

Extensions
Syntax n of the form (?...) marks a regular expression extension. The meaning of

the extension depends on the character after the question mark.

(?#...) Is a comment. Python ignores this portion of the regular

expression.

(?P<name>...) Creates a named group. Named groups work like numbered

groups. You can match them again using (?P=name). For example,

this regular expression matches a single word that begins and

ends with the same letter: ^(?P<letter>\w)\w*(?P=letter)$.

A named group receives a number, and can be referred to by num-

ber or by name.

(?:...) Are non-grouping parentheses. You can use these to enhance read-

ability; they don’t change the regular expression’s behavior. For

example, (?:\w+)(\d)\1 matches one or more letters followed

by a repeated digit, such as “bob99” or “x22.” The string (?:\w+)
does not create a group, so \1 matches the first group, (\d).

(?i), (?L), Are REs that set the flags re.I, re.L, re.M, re.S, re.U, and re.X

(?m),(?s), respectively. Note that (?L) uses an uppercase letter; the

(?u),(?x) others are lowercase.

4807-7 ch09.F 5/24/01 8:58 AM Page 143

144 Part II ✦ Files, Data Storage, and Operating System Services

(?=...) Is a lookahead assertion. Python matches the enclosed regular

expression, but does not “consume” any of the target string. For

example, blue(?=berry) matches the string “blue,” but only if

it is followed by “berry.”

(?!...) Is a negative lookahead assertion. The enclosed regular

expression must not match the target string. For example,

electron(?!ic\b) matches the string “electron” only when it

is not part of the word “electronic.”

Creating and Using Regular
Expression Objects

The function re.compile(pattern[, flags]) compiles the specified pattern
string and returns a new regular expression object. The optional parameter flags
tweak the behavior of the expression. Each flag value has a long name and an

equivalent short name.

You can combine flags using bitwise or. For example, this line returns a regular

expression that searches for two occurrences of the word “the,” ignoring case, with

any character (including newline) in between.

re.compile(“the.the”,re.IGNORECASE | re.DOTALL)

re.IGNORECASE, re.I Performs case-insensitive matching.

re.LOCALE, re.L Interprets words according to the current locale.

This interpretation affects the alphabetic group

(\w and \W), as well as word boundary behavior

(\b and \B).

re.MULTILINE, re.M Makes $ match the end of a line (not just the end

of the string) and makes ^ match the start of any

line (not just the start of the string).

re.DOTALL, re.S Makes a period (dot) match any character, includ-

ing a newline.

re.UNICODE, re.U Interprets letters according to the Unicode char-

acter set. This flag affects the behavior of \w, \W,

\b, \B.

re.VERBOSE, re.X Permits “cuter” regular expression syntax. It

ignores whitespace (except inside a set [] or when

escaped by a backslash), and treats unescaped #

as a comment marker. For example, the following

two lines of code are equivalent. They match a sin-

gle word containing three consecutive pairs of

doubled letters, such as “zrqqxxyy.” (Finding an

4807-7 ch09.F 5/24/01 8:58 AM Page 144

145Chapter 9 ✦ Processing Strings and Regular Expressions

English word matching this description is left as

an exercise for the reader.) Note that the second

VERBOSE form of the regular expression is a bit

more readable.

NewRE = re.compile(r”^\w*(\w)\1(\w)\2(\w)\3\w*$”)
NewRE = re.compile(r”^\w* (\w)\1 (\w)\2 (\w)\3 \w*$#three doubled letters”,

re.VERBOSE)

Using regular expression objects
You can use regular expressions to search, replace, split strings, and more.

search(targetstring[,startindex[,endindex]])
The core use of a regular expression! The method search(targetstring) scans

through targetstring looking for a match. If it finds one, it returns a MatchObject

instance. If it finds no match, it returns None. (See below for MatchObject meth-

ods.) The search method searches the slice targetstring[startindex:
endindex]— by default, the whole string.

The characters $ and ^ match the beginning and ending of the entire string, not nec-

essarily the start or end of the substring. For example, ^friends$ does not match

the string “are friends electric?” even if one takes the slice “friends” from index 4 to

index 11.

match(targetstring[,startindex[,endindex]])
Attempts to match the regular expression against the first part of targetstring. The

match method is more restrictive than search, as it must match the first zero or

more characters of targetstring. It returns a MatchObject instance if it finds a match,

None otherwise. The parameters startindex and endindex function here as they do

in search.

findall(targetstring)
Matches against targetstring and returns a list of nonoverlapping matches. For

example:

>>> re.compile(r”\w+”).findall(“the larch”) # Greedy matching
[‘the’, ‘larch’]
>>> re.compile(r”\w+?”).findall(“the larch”) # Nongreedy
[‘t’, ‘h’, ‘e’, ‘l’, ‘a’, ‘r’, ‘c’, ‘h’]

If the regular expression contains a group, the list returned is a list of group values

(in tuple form, if it contains multiple groups). For example:

>>> re.compile(r”(\w+)(\w+)”).findall(“the larch”)
[(‘th’, ‘e’), (‘larc’, ‘h’)]

4807-7 ch09.F 5/24/01 8:58 AM Page 145

146 Part II ✦ Files, Data Storage, and Operating System Services

split(targetstring[,maxsplit])
Breaks targetstring on each match of the regular expression, and returns a list of

pieces. If the regular expression consists of a single large group, then the list of

pieces includes the delimiting strings; otherwise, the list of pieces does not include

the delimiters. If you specify a nonzero value for maxsplit, then split makes, at

most, maxsplit cuts, and the remainder of the string remains intact.

For example, this regular expression removes all ifs, ands, and buts from a string:

>>> MyRE=re.compile(r”\bif\b|\band\b|\bbut\b”,re.I)
>>> LongString=”I would if I could, and I wish I could, but I
can’t.”””
>>> MyRE.split(LongString)
[‘I would ‘, ‘ I could, ‘, ‘ I wish I could, ‘, “ I can’t.”]
>>> MyRE=re.compile(r”(\bif\b|\band\b|\bbut\b)”,re.I)
>>> MyRE.split(LongString) # Keep the matches in the list.
[‘I would ‘, ‘if’, ‘ I could, ‘, ‘and’, ‘ I wish I could, ‘,
‘but’, “ I can’t.”]

sub(replacement, targetstring[, count])
Search for the regular expression in targetstring, and perform a substitution at each

match. The parameter replacement can be a string. It can also be a function that

takes a MatchObject as an argument, and returns a string. If you specify a nonzero

value for count, then sub makes, at most, count substitutions.

This example translates a string to “Pig Latin.” (It moves any leading consonant

cluster to the end of the word, then adds “ay” so that “chair” becomes “airchay.”)

>>> def PigLatinify(thematch):
>>> ... return thematch.group(2)+thematch.group(1)+”ay”
>>> ...
>>> WordRE=re.compile(r”\b([b-df-hj-np-tv-z]*)(\w+)\b”,re.I)
>>> WordRE.sub(PigLatinify, “fetch a comfy chair”)
‘etchfay aay omfycay airchay’

If replacement is a string, it can contain references to groups from the regular expres-

sion. For example, sub replaces a \1 or \g<1> in replacement with the first group

from the regular expression. You can insert named groups with the syntax \g<name>.

The sub method replaces empty (length-0) matches only if they are not adjacent to

another substitution.

subn(replacement, targetstring[, count])
Same as sub, but returns a two-tuple whose first element is the new string, and

whose second element is the number of substitutions made.

4807-7 ch09.F 5/24/01 8:58 AM Page 146

147Chapter 9 ✦ Processing Strings and Regular Expressions

Applying regular expressions without compiling
The methods of a regular expression object correspond to functions in the re
module. If you call these functions directly, you don’t need to call re.compile in

your code. However, if you plan to use a regular expression several times, it is more

efficient to compile and reuse it. The following module functions are available:

escape(str)
Returns a copy of str with all special characters escaped. This feature is useful for mak-

ing a regular expression for an arbitrary string. For example, this function searches for

a substring in a larger string, just like string.find, but case-insensitively:

def InsensitiveFind(BigString,SubString):
TheMatch = re.search(re.escape(SubString),BigString,re.I)
if (TheMatch):

return TheMatch.start()
else:

return -1

search(pattern,targetstring[,flags])
Compiles pattern into a regular expression object with flags set, then uses it to per-

form a search against targetstring.

match(pattern,targetstring[,flags])
Compiles pattern into a regular expression object with flags set, then uses it to per-

form a match against targetstring.

split(pattern,targetstring[,maxsplit])
Compiles pattern into a regular expression object, then uses it to split targetstring.

findall(pattern,targetstring)
Compiles pattern into a regular expression object, then uses it to find all matches in

targetstring.

sub(pattern,replacement,targetstring[,count])
Compiles pattern into a regular expression object, then calls its sub method with

parameters replacement, targetstring, and count. The function subn is similar, but

calls the subn method instead.

Using Match Objects
Searching with a regular expression object returns a MatchObject, or None if the

search finds no matches. The match object has several methods, mostly to provide

details on groups used in the match.

4807-7 ch09.F 5/24/01 8:58 AM Page 147

148 Part II ✦ Files, Data Storage, and Operating System Services

group([groupid,...])
Returns the substring matched by the specified group. For index 0, it returns the

substring matched by the entire regular expression. If you specify several group

identifiers, group returns a tuple of substrings for the corresponding groups. If the

regular expression includes named groups, groupid can be a string.

groups([nomatch])
Returns a tuple of substrings matched by each group. If a group was not part of

the match, its corresponding substring is nomatch. The parameter nomatch defaults

to None.

groupdict([nomatch])
Returns a dictionary. Each entry’s key is a group name, and the value is the sub-

string matched by that named group. If a group was not part of the match, its corre-

sponding value is nomatch, which defaults to None.

This example creates a regular expression with four named groups. The expression

parses fractions of the form “1 1/3,” splitting them into integer part, numerator, and

denominator. Non-fractions are matched by the “plain” group.

>>> FractionRE=re.compile(
... r”(?P<plain>^\d+$)?(?P<int>\d+(?=))?
?(?P<num>\d+(?=/))?/?(?P<den>\d+$)?”)
>>> FractionRE.match(“1 1/3”).groupdict()
{‘den’: ‘3’, ‘num’: ‘1’, ‘plain’: None, ‘int’: ‘1’}
>>> FractionRE.match(“42”).groupdict(“x”)
{‘den’: ‘x’, ‘num’: ‘x’, ‘plain’: ‘42’, ‘int’: ‘x’}

start([groupid]), end([groupid]), span([groupid])
The methods start and end return the indices of the substring matched by the

group identified by groupid. If the specified group didn’t contribute to the match,

they return -1.

The method span(groupid) returns both indices in tuple form:

(start(groupid),end(groupid)).

By default, groupid is 0, indicating the entire regular expression.

4807-7 ch09.F 5/24/01 8:58 AM Page 148

149Chapter 9 ✦ Processing Strings and Regular Expressions

re,string,pos,endpos,
These members hold the parameters passed to search or match:

✦ re — The regular expression object used in the match

✦ string — The string used in the match

✦ pos — First index of the substring searched against

✦ endpos — Last index of the substring searched against

Treating Strings as Files
The module StringIO defines a class named StringIO. This class wraps an in-memory

string buffer, and supports standard file operations. Since a StringIO instance does

not correspond to an actual file, calling its close method simply frees the buffer.

The StringIO constructor takes, as a single optional parameter, an initial string for

the buffer.

The method getvalue returns the contents of the buffer. It is equivalent to calling

seek(0) and then read().

See Chapter 8 for a description of the standard file operations.

The module cStringIO defines a similar class, also named StringIO. Because

cStringIO.StringIO is implemented in C, it is faster than StringIO.StringIO; the one

drawback is that you cannot subclass it. The module cStringIO defines two addi-

tional types: InputType is the type for StringIO objects constructed with a string

parameter, and OutputType is the type for StringIO objects constructed without a

string parameter.

The StringIO class is useful for building up long strings without having to do many

small concatenations. For instance, the function demonstrated in Listing 9-1 builds

up an HTTP request string, suitable for transmission to a Web server:

Listing 9-1: httpreq.py

import re
import urlparse
import cStringIO
import string
import socket

Continued

Cross-
Reference

4807-7 ch09.F 5/24/01 8:58 AM Page 149

150 Part II ✦ Files, Data Storage, and Operating System Services

Listing 9-1 (continued)

STANDARD_HEADERS = “””HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible)”””
def CreateHTTPRequest(URL, CookieDict):

“”” Create an HTTP request for a given URL (as returned by
urlparse.urlparse) and a dictionary of cookies (where key
is the host string, and the value is the cookie in the
form “param=value”. “””
Buffer = cStringIO.StringIO()
Buffer.write(“GET “)
FileString = URL[2] # File name
if URL[3]!=””: # Posted values

FileString = FileString + “;” + URL[3]
if URL[4]!=””: # Query parameters

FileString = FileString + “?” + URL[4]
FileString = string.replace(FileString,” “,”%20”)
Buffer.write(FileString+”\r\n”)
Buffer.write(STANDARD_HEADERS)
Add cookies to the request.
GotCookies=0
for HostString in CookieDict.keys():

Perform a case-insensitive search. (Call re.escape so
special characters like . are searched for normally.)
if (re.search(re.escape(HostString),URL[1],re.I)):

if (GotCookies==0):
Buffer.write(“\r\nCookie: “)
GotCookies=1

else:
Buffer.write(“; “)

Buffer.write(CookieDict[HostString])
if (GotCookies):

Buffer.write(“\r\n”)
Buffer.write(“Host: “+URL[1])
Buffer.write(“\r\n\r\n”)
RequestString=Buffer.getvalue()
Buffer.close()
return RequestString

if (__name__==”__main__”):
CookieDict={}
CookieDict[“python”]=”cookie1=value1”
CookieDict[“python.ORG”]=”cookie2=value2”
CookieDict[“amazon.com”]=”cookie3=value3”
URL = urlparse.urlparse(“http://www.python.org/2.0/”)
print CreateHTTPRequest(URL,CookieDict)

4807-7 ch09.F 5/24/01 8:58 AM Page 150

151Chapter 9 ✦ Processing Strings and Regular Expressions

Encoding Text
All digital data, including text, is ultimately represented as ones and zeroes. A

character set is a way of encoding text as binary numbers. For example, the ASCII

character set represents letters using a number from 0 to 255. The built-in function

ord returns the number corresponding to an ASCII character; the function chr
returns the ASCII character corresponding to a number:

>>> ord(‘a’)
97
>>> chr(97)
‘a’

The ASCII character set has limitations — it does not contain Cyrillic letters, Chinese

ideograms, et cetera. And so, various character sets have been created to handle

various collections of characters. The Unicode character set is the mother of all

character sets. Unicode subsumes ASCII and Latin-1. It also includes all widely used

alphabets, symbols of some ancient languages, and everything but the kitchen sink.

Using Unicode strings
A Unicode string behaves just like an ordinary string — it has the same methods.

You can denote a string literal as Unicode by prefixing it with a u. You can denote

Unicode characters with \u followed by four hexadecimal digits. For example:

>>> MyUnicodeString=u”Hello”
>>> MyString=”Hello”
>>> MyUnicodeString==MyString # Legal comparison
1
>>> MyUnicodeString=u”\ucafe\ubabe”
>>> len(MyUnicodeString)
2
>>> MyString=”\ucafe\ubabe” # No special processing!
>>> len(MyString)
12

For a reference on the Unicode character set, and its character categories, see

http://www.unicode.org/Public/UNIDATA/UnicodeData.html.

Reading and writing non-ASCII strings
You cannot use Unicode characters with an ordinary file object created by the open
function:

4807-7 ch09.F 5/24/01 8:58 AM Page 151

152 Part II ✦ Files, Data Storage, and Operating System Services

>>> MyUnicodeString=u”\ucafe\ubabe”
>>> ASCIIFile=open(“test.txt”,”w”) # This file can’t handle
unicode!
>>> ASCIIFile.write(MyUnicodeString)
Traceback (innermost last):
File “<pyshell#39>”, line 1, in ?
ASCIIFile.write(MyUnicodeString)

UnicodeError: ASCII encoding error: ordinal not in range(128)

The codecs module provides file objects to help read and write Unicode text.

open(filename,mode[,encoding[,errorhandler[,buffering]]])
The function codecs.open returns a file object that can handle the character set

specified by encoding. The encoding parameter is a string specifying the desired

encoding. The errorhandler parameter, which defaults to “strict,” specifies what to

do with errors. The “ignore” handler skips characters not in the character set; the

“strict” handler raises a ValueError for unacceptable characters. The mode and

buffering parameters have the same effect as for the built-in function open.

>>> Bob=codecs.open(“test-uni.txt”,”w”,”unicode-escape”)
>>> Bob.write(MyUnicodeString)
>>> Bob.close()
>>> Bob=codecs.open(“test-utf16.txt”,”w”,”utf16”)
>>> Bob.write(MyUnicodeString)
>>> Bob.close()

You should generally read and write files using the same character set, or extreme

garbling can result. The function sys.getdefaultencoding returns the name of

the current default encoding.

EncodedFile(fileobject,sourceencoding[,fileencoding[,errorhandler]])
The function codecs.EncodedFile returns a wrapper object for the file fileobject
to handle character set translation. This function translates data written to the file

from the sourceencoding character set to the fileencoding character set; data read

from the file does the reverse. For example, this code writes a file using UTF-8

encoding, then translates from UTF-8 to escaped Unicode:

>>> UTFFile=codecs.open(“utf8.txt”,”w”,”utf8”)
>>> UTFFile.write(MyUnicodeString)
>>> UTFFile.close()
>>> MyFile=open(“utf8.txt”,”r”)
>>> Wrapper=codecs.EncodedFile(MyFile,”unicode-escape”,”utf8”)
>>> Wrapper.read()
‘\\uCAFE\\uBABE’

4807-7 ch09.F 5/24/01 8:58 AM Page 152

153Chapter 9 ✦ Processing Strings and Regular Expressions

Using the Unicode database
The module unicodedata provides functions to check a character’s meaning in the

Unicode 3.0 character set.

Categorization
These functions give information about a character’s general category:

category(unichr) Returns a string denoting the category of unichr.
For example, underscore has category “PC” for

connector punctuation.

bidirectional(unichr) Returns a string denoting the bidirectional

category of unichr. For example, unicode.
bidirectional(u”e”) is “L,” indicating that

“e” is normally written left-to-right.

combining(unichr) Returns an integer indicating the combining class

of unichr. Returns 0 for non-combining characters.

mirrored(unichr) Returns 1 if unichr is a mirrored character, 0

otherwise.

decomposition(unichr) Returns the character-decomposition string corre-

sponding to unichr, or a blank string if no decom-

position exists.

Numeric characters
These functions give details about numeric characters:

decimal(unichr[,default]) Returns unichr’s decimal value as an integer. If

unichr has no decimal value, returns default or (if

default is unspecified) raises a ValueError.

numeric(unichr[,default]) Returns unichr’s numeric value as a float. If unichr
has no decimal value, returns default or (if default
is unspecified) raises a ValueError.

digit(unichr[,default]) Returns unichr’s digit value as an integer. If unichr
has no digit value, returns default or (if default is

unspecified) raises a ValueError.

4807-7 ch09.F 5/24/01 8:58 AM Page 153

154 Part II ✦ Files, Data Storage, and Operating System Services

Formatting Floating Point Numbers
The fpformat module provides convenience functions for displaying floating point

numbers.

fix(number,precision)
Formats floating point value number with at least one digit before the decimal point,

and at most precision digits after. The number is rounded to the specified precision

as needed. If precision is zero, this function returns a string with the number

rounded to the nearest integer. The parameter number can be either a float, or a

string that can be passed to the function float.

sci(number,precision)
Formats floating point value number in scientific notation — one digit before the

decimal point, and the exponent indicated afterwards. The parameters number and

precision behave as they do for the function fix.

Here are some examples of formatting with fpformat:

>>> fpformat.fix(3.5,0)
‘4’
>>> fpformat.fix(3.555,2)
‘3.56’
>>> fpformat.sci(3.555,2)
‘3.56e+000’
>>> fpformat.sci(“0.03555”,2)
‘3.56e-002’

These functions raise the exception fpformat.NotANumber (a subclass of ValueError)

if the parameter number is not a valid value. The exception argument is the value of

number.

Summary
Python offers a full suite of string-manipulation functions. It also provides regular

expressions, which enable even more powerful searching and replacing. In this

chapter you:

✦ Searched, formatted, and modified string objects.

✦ Searched and parsed strings using regular expressions.

✦ Formatted floating point numbers cleanly and easily.

In the next chapter you’ll learn how Python can handle files and directories.

✦ ✦ ✦

4807-7 ch09.F 5/24/01 8:58 AM Page 154

Working with
Files and
Directories

Chapter 8 discussed the basics of file input and output in

Python, but the routines covered there assume you

know what file you want to read and write and where it’s

located. This chapter explains operating system features that

Python supports such as finding a list of files that match a

given search pattern, navigating directories, and renaming

and copying files.

This chapter and the next cover many modules, primarily os,

os.path, and sys. Instead of organizing the chapters around

the functions provided in each module, we’ve tried to group

them by feature so that you can find what you need quickly. For

example, you can find a file’s size with os.stat(filename)
[stat.ST_SIZE] or with os.path.getsize(filename)
(something you wouldn’t know unless you read through both

the os and os.path modules), so I cover them in the same sec-

tion. Where this is not possible, I’ve added cross-references to

help guide you.

Retrieving File and Directory
Information

With the exception of a few oddballs, modern operating sys-

tems let you store files in directories (locations in a named

hierarchy or tree) for better organization. (Just imagine the

mess if everything was in one chaotic lump.) This and the

following sections consider a path to be a directory or file

name. You can refer to a path relative to another one

(..\temp\bob.txt means go up the tree a step, down into

the temp directory to the file called bob.txt) while others are

absolute (/usr/local/bin/destroystuff tells how to go

from the top of the tree all the way down to destroystuff).

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Retrieving file and
directory information

Building and
dissecting paths

Listing directories and
matching file names

Obtaining
environment and
argument information

Example: Recursive
Grep Utility

Copying, renaming,
and removing paths

Creating directories
and temporary files

Comparing files and
directories

Working with file
descriptors

Other file processing
techniques

✦ ✦ ✦ ✦

4807-7 ch10.F 5/24/01 8:58 AM Page 155

156 Part II ✦ Files, Data Storage, and Operating System Services

You can choose how you want to access path information: Python provides several

functions to retrieve a single bit of information (does this path exist?) or all of it in

one big glob (give me creation time, last access time, file size, and so forth).

Please note that many of the examples in this chapter use file and directory names
that may not exist in your system. Accept the examples on faith or substitute valid
file names of your own (just don’t go and erase something important, though).

The piecemeal approach
The access(path, mode) function tests to see that the current process has

permission to read, write, or execute a given path. The mode parameter can be any

combination of os.R_OK (read permission), os.W_OK (write permission), or

os.X_OK (execute permission):

>>> os.access(‘/usr/local’,os.R_OK | os.X_OK)
1 # I have read AND execute permissions...
>>> os.access(‘/usr/local’,os.W_OK)
0 # ...but not write permissions.

Note

The Secret Identities of os and os.path

The os module contains plenty of functions for performing operating system-ish stuff like
changing directories and removing files, while os.path helps extract directory names, file
names, and extensions from a given path.

The great thing is that these modules work on any Python-supported platform, making your
programs much more portable. For example, to join a directory name with a file name,
using os.path.join makes sure the result is correct for the current operating system:

>>> print os.path.join(‘maps’,’dungeon12.map’)
maps\dungeon12.map # Result when run on Windows
>>> print os.path.join(‘maps’,’dungeon12.map’)
maps/dungeon12.map # Result when run on UNIX

To make this happen, each platform defines two modules to do the platform-specific work.
(On Macintosh systems they are mac and macpath; on Windows they’re nt and ntpath,
and so on.) When the os module is imported, it looks inside sys.builtin_module_names
for the name of a platform-specific module (such as nt), loads its contents into the os
namespace, and then loads the platform-specific path module and renames it to os.path.

You can check the os.name variable to see which operating system-specific module os
loaded, but you should rarely need to use it. The whole point of os and os.path is to make
your programs blissfully ignorant of the underlying operating system.

4807-7 ch10.F 5/24/01 8:58 AM Page 156

157Chapter 10 ✦ Working with Files and Directories

You can also use a mode of os.F_OK to test if the given path exists. Or you can use

the os.path.exists(path) function:

>>> os.path.exists(‘c:\\winnt’) # ‘\\’ to “escape” the slash
1

The inverse of access is os.chmod(path, mode) which lets you set the mode for

the given path. The mode parameter is a number created by adding different octal

values listed in Table 10-1. For example, to give the owner read/write permissions,

group members read permissions, and others no access to a file:

os.chmod(‘secretPlans.txt’,0640)

The first few times you use this function you may forget that the values in Table
10-1 are octal numbers. This is a convention held over from the underlying C
chmod function; as octals, the different mode values combine in that cute way
while making the implementation easier. Remember to stick in the leading zero
on the mode so that Python sees it as an octal, and not a decimal, number.

Table 10-1
Values for os.chmod

Value Description

0400 Owner can read the path.

0200 Owner can write the path.

0100 Owner can execute the file or search the directory.

0040 Group members can read the path.

0020 Group members can write the path.

0010 Group members can execute the file or search the directory.

0004 Others can read the path.

0002 Others can write the path.

0001 Others can execute the file or search the directory.

Different operating systems handle permissions differently (Windows, for
example, doesn’t really manage file permissions with owners and groups). You
should try a few tests out before relying on a particular behavior. Also, consult the
UNIX chmod man page for additional mode values that vary by platform.

The os.path.isabs(path) function returns 1 if the given path is an absolute path.

On UNIX systems, a path is absolute if it starts with ‘/’; on Windows, paths are abso-

lute if they either start with a backlash or if they start with a drive letter followed

by a colon and a backslash:

Note

Tip

4807-7 ch10.F 5/24/01 8:58 AM Page 157

158 Part II ✦ Files, Data Storage, and Operating System Services

>>> os.path.isabs(‘c:\\temp’)
1
>>> os.path.isabs(‘temp\\foo’)
0

The following four functions in the os.path module, isdir(path), isfile(path),

islink(path), and ismount(path), test what kind of file system entry the given

path refers to:

>>> os.path.isdir(‘c:\\winnt’) # Is it a directory?
1
>>> os.path.isfile(‘c:\\winnt’) # Is it a normal file?
0
>>> os.path.islink(‘/usr/X11R6/bin/X’) # Is it a symbolic link?
1
>>> os.path.ismount(‘c:\\’) # It is a mount point?
1

On platforms that support symbolic links, isdir and isfile return true if the path

is a link to a directory or file, and the os.readlink(path) function returns the

actual path to which a symbolic link points.

A mounting point is essentially where two file systems connect. On UNIX, ismount
returns true if path and path/.. have a different device or inode. On Windows,

ismount returns true for paths like c:\ and \\endor\.

An inode is a UNIX file system data structure that holds information about a direc-
tory entry. Each directory entry is uniquely identified by a device number and an
inode number. Some of the following routines may return inode numbers; for UNIX
machines these are valid, but for other platforms they are just dummy values.

You can retrieve a file’s size in bytes using os.path.getsize(path):

>>> os.path.getsize(‘c:\\winnt\\uninst.exe’)
299520 # About 290K

The os.path.getatime(path) and os.path.getmtime(path) functions return

the path’s last access and modified times, respectively, in seconds since the epoch
(you know, New Year’s Eve 1969):

>>> os.path.getmtime(‘c:\\winnt\\readme.exe’)
786178800
>>> os.path.getatime(‘c:\\winnt\\readme.exe’)
956901600
>>> import time
>>> time.ctime(os.path.getatime(‘c:\\winnt\\readme.exe’))
‘Fri Apr 28 00:00:00 2000’

Note

4807-7 ch10.F 5/24/01 8:58 AM Page 158

159Chapter 10 ✦ Working with Files and Directories

Going the other direction, the os.utime(path, (atime, mtime)) function sets the

time values for the given path. The following example sets the last access and modi-

fication times of a file to noon on March 1, 1977:

>>> sec = time.mktime((1977,3,1,12,0,0,-1,-1,-1))
>>> os.utime(‘c:\\temp\\foo.txt’,(sec,sec))

You can also “touch” a file’s times so that they are set to the current time:

>>> os.utime(‘c:\\temp\\foo.txt’,None) # Set to current time.

See the time module in Chapter 13 for a discussion of its features and a better
definition of the epoch.

UNIX-compatible systems have the os.chown(path, userID, groupID) that

changes the ownership of a path to that of a different user and group:

os.chown(‘grumpy.png’,os.getuid(),os.getgid())

Chapter 11 covers functions to get and set group and user IDs.

Non-Windows systems include the os.path.samefile(path1,path2) and os.path.
sameopenfile(f1,f2) functions that return true if the given paths or file objects

refer to the same item on disk (they reside on the same device and have the same

inode).

The I-want-it-all approach
If you want to know several pieces of information about a path (for example, you

need to know a file’s size as well as the time it was last modified), the previous func-

tions are inefficient because each one results in a call to the operating system. The

os.stat(path) function solves this problem by returning a tuple with ten pieces of

information all at once (many of the previous section’s functions quietly call os.stat

behind the scenes and throw away the information you didn’t request):

>>> os.stat(‘c:\\winnt\\uninst.exe’)
(33279, 0, 2, 1, 0, 0, 299520, 974876400, 860551690, 955920365)

Don’t worry too much if the numbers returned look useless! The stat module pro-

vides names (listed in Table 10-2) for indexes into the tuple:

>>> import stat
>>> os.stat(‘c:\\winnt\\uninst.exe’)[stat.ST_SIZE] # File size
299520 # Hmm... still about 290K

Cross-
Reference

Cross-
Reference

4807-7 ch10.F 5/24/01 8:58 AM Page 159

160 Part II ✦ Files, Data Storage, and Operating System Services

Table 10-2
Index Names for os.stat Tuple

Name Description

ST_SIZE File size (in bytes)

ST_ATIME Time of last access (in seconds since the epoch)

ST_MTIME Time of last modification (in seconds since the epoch)

ST_MODE Mode (see below for possible values)

ST_CTIME Time of last status change (access, modify, chmod, chown, and so on)

ST_UID Owner’s user ID

ST_GID Owner’s group ID

ST_NLINK Number of links to the inode

ST_INO inode’s number

ST_DEV inode’s device

Once you have a path’s mode value (stat.ST_MODE), you can use other stat-

provided functions to test for certain types of path entries (see Table 10-3 for the

complete list):

>>> mode = os.stat(‘c:\\winnt’)[stat.ST_MODE]
>>> stat.S_ISDIR(mode) # Is it a directory?
1 # Yes!

Table 10-3
Path Type Test Functions

Function Returns true for

S_ISREG(mode) Regular file

S_ISDIR(mode) Directory

S_ISLNK(mode) Symbolic link

S_ISFIFO(mode) FIFO (named pipe)

S_ISSOCK(mode) Socket

S_ISBLK(mode) Special block device

S_ISCHR(mode) Special character device

4807-7 ch10.F 5/24/01 8:58 AM Page 160

161Chapter 10 ✦ Working with Files and Directories

When you call os.stat with a path to a symbolic link, it returns information about

the path that the link references. The os.lstat(path) function behaves just like

os.stat except that on symbolic links it returns information about the link itself

(although the OS still borrows much of the information from the file it references).

See “Working with File Descriptors” later in this chapter for coverage of the
os.fstat function that returns stats for open file descriptors.

On UNIX-compatible systems you can call os.samestat(stat1,stat2) to see if

two sets of stats refer to the same file (it compares the device and inode number).

The Python standard library also comes with the statcache module, which

behaves just like os.stat but caches the results for later use:

>>> import statcache
>>> statcache.stat(‘c:\\temp’)
(16895, 0, 2, 1, 0, 0, 0, 975999600, 969904112, 969904110)

You can call forget(path) to remove a particular cached entry, or reset() to

remove them all. The forget_prefix(prefix) function removes all entries that

start with a given prefix, and forget_except_prefix(prefix) removes all that do

not start with the prefix (removing a cache entry means a call to stat will have to

check with the operating system again). The forget_dir(prefix) function

removes all entries in a directory, but not in its subdirectories.

Building and Dissecting Paths
The different path conventions that operating systems follow can make path manip-

ulation a nuisance. Fortunately Python has plenty of routines to help.

Joining path parts
The os.path.join(part[, part...]) joins any number of path components into

a path valid for the current operating system:

>>> print os.path.join(‘c:’,’r2d2’,’c3po’,’r5d4’)
c:\r2d2\c3po\r5d4
>>> print os.path.join(os.pardir,os.pardir,’tmp’)
..\..\tmp

The separator character used is defined in os.sep. You can use os.curdir and

os.pardir with join when you want to refer to the current and parent directories,

respectively.

Cross-
Reference

4807-7 ch10.F 5/24/01 8:58 AM Page 161

162 Part II ✦ Files, Data Storage, and Operating System Services

Breaking paths into pieces
Given a path, it’s not too hard to separate it into its pieces (file name, extension,

directory name, and so on) using one of the os.path.split functions:

>>> os.path.split(r’c:\temp\foo.txt’) # Yay, raw strings!
(‘c:\\temp’, ‘foo.txt’) # Split into path and filename.
>>> os.path.splitdrive(r’c:\temp\foo.txt’)
(‘c:’, ‘\\temp\\foo.txt’) # Split off the drive.
>>> os.path.splitext(r’c:\temp\foo.txt’)
(‘c:\\temp\\foo’, ‘.txt’) # Split off the extension.
>>> os.path.splitunc(r’\\endor\temp\foo.txt’)
(‘\\\\endor\\temp’, ‘\\foo.txt’) # Split off machine and mount.

The splitdrive function is present on UNIX systems, but for any path just returns

the tuple (‘’,path); the splitunc function is available only on Windows.

The os.path.dirname(path) and os.path.basename(path) functions are short-

hand functions that together return the same information as split:

>>> os.path.dirname(r’c:\temp\foo.txt’)
‘c:\\temp’
>>> os.path.basename(r’c:\temp\foo.txt’)
‘foo.txt’

Other path modifiers
The os.path.normcase(path) function normalizes the case of a path (makes it all

lowercase on case-insensitive platforms, leaves it unchanged on others) and

replaces forward slashes with backwards slashes on Windows platforms:

>>> print os.path.normcase(‘kEwL/lAmeR/hAckUr/d00d’)
kewl\lamer\hackur\d00d

The os.path.normpath(path) function normalizes a given path by removing

redundant separator characters and collapsing references to the parent directory

(it also fixes forward slashes for Windows systems):

>>> print os.path.normpath(r’c:\work\\\temp\..\..\games’)
c:\games

The os.path.abspath(path) function normalizes the path and then converts it to

an absolute path:

>>> os.getcwd()
‘/export/home’
>>> os.path.abspath(‘fred/backup/../temp/cool.py’)
‘/export/home/fred/temp/cool.py’

4807-7 ch10.F 5/24/01 8:58 AM Page 162

163Chapter 10 ✦ Working with Files and Directories

The os.path.expandvars(path) function searches the given path for variable

names of the form $varname and ${varname}. If the variables are defined in the

environment, expandvars substitutes in their values, leaving undefined variable

references in place (you can use $$ to print $):

>>> os.environ.update({‘WORK’:’work’,’BAKFILE’:’kill.bak’})
>>> p = os.path.join(‘$WORK’,’${BAKFILE}’)
>>> print os.path.expandvars(p)
work\kill.bak

The os.path.expanduser(path) function replaces “~” or “~username” at the

beginning of a path with the path to the user’s home directory. For “~” (meaning the

current user), expanduser uses the value of the HOME environment variable if pre-

sent. On Windows, if HOME is not defined, then it also tries to find and join

HOMEDRIVE and HOMEPATH, returning the original path unchanged if it fails. For

users other than the current user (“~username”), Windows always returns the

original path and UNIX uses the pwd module to locate that user’s home directory.

See Chapter 38 to learn more about the pwd module.

Listing Directories and Matching File Names
This section lists several ways to retrieve a list of file names, whether they are all the

files in a particular directory or all the files that match a particular search pattern.

The os.listdir(dir) function returns a list containing all the files in the given

directory:

>>> os.listdir(‘c:\\sierra’)
[‘LAND’, ‘Half-Life’, ‘SETUP.EXE’]

The dircache module provides its own listdir function that maintains a cache to

increase the performance of repeated calls (and uses the modified time on the

directory to detect when a cache entry needs to be tossed out):

>>> import dircache
>>> dircache.listdir(‘c:\\sierra’)
[‘Half-Life’, ‘LAND’, ‘SETUP.EXE’]

The list returned is a reference, not a copy, so modifying it means your modifications

are returned to future callers too. The module also has an annotate(head,list)
function that adds a slash to the end of any entry in the list that is a directory:

>>> x = dircache.listdir(‘c:\\sierra’)[:] # Make a copy
>>> dircache.annotate(‘c:\\sierra’,x)
>>> x
[‘Half-Life/’, ‘LAND/’, ‘SETUP.EXE’]

Cross-
Reference

4807-7 ch10.F 5/24/01 8:58 AM Page 163

164 Part II ✦ Files, Data Storage, and Operating System Services

Use the head parameter to join to each item in the list so that annotate can then

call os.path.isdir.

The os.path.commonprefix(list) function takes a list of paths and returns the

longest prefix that all items have in common:

>>> l = [‘c:\\ax\\nine.txt’,’c:\\ax\\ninja.txt’,’c:\\axle’]
>>> os.path.commonprefix(l)
‘c:\\ax’

The os.path.walk(top,func,arg) function walks a directory tree starting at top,

calling func in each directory. The function func should take three arguments: arg
(whatever you passed to arg in the call to walk), dirname (the name of the current

directory being visited), and names (a list of directory entries in this directory).

The following example prints the names of any executable files in the d:\games
directory or any of its subdirectories:

>>> def walkfunc(ext,dir,files):
... goodFiles = [x for x in files if x.find(ext) != -1]
... if goodFiles:
... print dir,goodFiles
...
>>> os.path.walk(‘d:\\games’,walkfunc,’.exe’)
d:\games\Half-Life [‘10051013.exe’]
d:\games\q3a [‘quake3.exe’]
d:\games\q3a\Extras\cs [‘sysinfo.exe’]

With the fnmatch module you can test to see if a file name matches a specific pat-

tern. Asterisks match everything, question marks match any single character:

>>> import fnmatch
>>> fnmatch.fnmatch(‘python’,’p*n’)
1 # It’s a match!
>>> fnmatch.fnmatch(‘python’,’pyth?n’)
1

You can also enclose in square brackets a sequence of characters to match:

>>> fnmatch.fnmatch(‘python’,’p[a,e,i,o,u,y,0-9]thon’)
1 # Matches p + [any vowel or number] + thon
>>> fnmatch.fnmatch(‘p5thon’,’p[a,e,i,o,u,y,0-9]thon’)
1
>>> fnmatch.fnmatch(‘p5thon’,’p[!0-9]thon’)
0 # Doesn’t match p + [any char EXCEPT a digit] + thon
>>> fnmatch.fnmatch(‘python’,’p[!0-9]thon’)
1

The fnmatch module also has a fnmatchcase(filename,pattern) function that

forces a case-sensitive comparison regardless of whether or not the filesystem is

case-sensitive.

4807-7 ch10.F 5/24/01 8:58 AM Page 164

165Chapter 10 ✦ Working with Files and Directories

The glob module takes the fnmatch module a step further by returning all the

paths matching a search pattern you provide:

>>> import glob
>>> for file in glob.glob(‘c:\\da*\\?ytrack\\s*.*[y,e]’):
... print file
c:\dave\pytrack\sdaily.py
c:\dave\pytrack\std.py
c:\dave\pytrack\StkHistInfo.py
c:\dave\mytrack\sdkaccess1.exe
c:\dave\mytrack\sdkaccess2.exe

Obtaining Environment and
Argument Information

It’s often useful to know a little about the world around Python. This section

explains how to get and set environment variables, how to discover and change the

current working directory, and how to read in options from the command line.

Environment variables
When you import the os module, it populates a dictionary named environ with all

the environment variables currently in existence. You can use normal dictionary

access to get and set the variables, and child processes or shell commands your

programs execute see any changes you make:

>>> os.environ[‘SHELL’]
‘/usr/local/bin/tcsh’
>>> os.environ[‘BOO’] = `2 + 2` # Convert value to string.
>>> print os.popen(‘echo $BOO’).read() # Use %BOO% on Win32.
4

See Chapter 11 for information on child processes and executing shell commands.

The dictionary used is actually a subclass of UserDict, and requires that the value

you assign be a string.

Current working directory
The current working directory is initially the directory in which you started the

Python interpreter. You can find out what the current directory is and change to

another directory using the os.getcwd() and os.chdir(path) functions:

Cross-
Reference

4807-7 ch10.F 5/24/01 8:58 AM Page 165

166 Part II ✦ Files, Data Storage, and Operating System Services

>>> os.chdir(‘/usr/home’)
>>> os.chdir(‘..’)
>>> os.getcwd()
‘/usr’

Command-line parameters
The sys.argv variable is a list containing the command-line parameters passed to

the program on startup. Save the tiny program in Listing 10-1 to a file called

args.py and try the following example from a command prompt:

C:\temp>args.py pants beable
There are 3 arguments
[‘C:\\temp\\args.py’, ‘pants’, ‘beable’]

Listing 10-1: args.py – Display Command-Line Arguments

#!/usr/bin/env python
Prints out command-line arguments

import sys
print ‘There are %d arguments’ % len(sys.argv)
print sys.argv

The sys.argv list always has a length of at least one; as in C, the item at index zero

is the name of the script that is running. If you’re running the Python interpreter in

interactive mode, however, that item is present but is the empty string.

Example: Recursive Grep Utility
Listing 10-2 combines several of the features covered so far in this chapter to create

rgrep, a grep-like utility that searches for a string in a list of files in the current

directory or any subdirectory. The sample output below shows searching for “def”

in any file that matches the pattern “d*.py” or “h*”:

D:\Dev\pytrack>\rgrep.py def d*.py h*
D:\Dev\pytrack\dataio.py 185 def __init__(self,sTick):
D:\Dev\pytrack\dataio.py 189 def getData(self):
D:\Dev\pytrack\histInfo.py 9 def sum(self,count,tups,index):
D:\Dev\pytrack\histInfo.py 16 def ave(self,count,tups,index):
D:\Dev\pytrack\old\dataio.py 12 def __init__(self,sTick):
D:\Dev\pytrack\old\dataio.py 16 def getData(self):
...

4807-7 ch10.F 5/24/01 8:58 AM Page 166

167Chapter 10 ✦ Working with Files and Directories

Listing 10-2: rgrep.py – Recursive File Search Utility

#!/usr/bin/env python
Recursively searches for a string in a file or list of files.

import sys, os, fnmatch

def walkFunc(arg,dir,files):
“Called by os.path.walk to process each dir”
pattern,masks = arg

Cycle through each mask on each file.
for file in files:

for mask in masks:
if fnmatch.fnmatch(file,mask):

Filename matches!
name = os.path.join(dir,file)
try:

Read the file and search.
data = open(name,’rb’).read()

Do a quick check.
if data.find(pattern) != -1:

i = 0
data = data.split(‘\n’)

Now a line-by-line check.
for line in data:

i += 1
if line.find(pattern) != -1:

print name,i,line
except (OSError,IOError):

pass
break # Stop checking masks.

if __name__ == ‘__main__’:
if len(sys.argv) < 3:

print ‘Usage: %s pattern file [files...]’ % sys.argv[0]
else:

try:

os.path.walk(os.getcwd(),walkFunc,(sys.argv[1],sys.argv[2:]))
except KeyboardInterrupt:

print ‘** Halted **’

UNIX shells usually expand wildcards before your program gets them, so when
running this on UNIX you’d have to enclose in quotes command-line parameters
that contain asterisks:

/usr/bin> rgrep.py alligator “*.txt”

Tip

4807-7 ch10.F 5/24/01 8:58 AM Page 167

168 Part II ✦ Files, Data Storage, and Operating System Services

You can use rgrep as a starting point for a more powerful search tool. For example,

you could make it accept true regular expressions (as seen in Chapter 9) or make it

support case-insensitive searches too. Although performance is pretty decent, you

could fix the fact that rgrep reads the entire file into memory by reading the files

one piece at a time.

Copying, Renaming, and Removing Paths
The routines to copy, rename, and remove paths are in the os and shutil modules.

The shutil module aims to provide features normally found in command shells.

Copying and linking
The shutil.copyfile(src, dest) function copies a file from src to dest;

shutil.copy(src, dest) does about the same thing, except that if dest is a direc-

tory it copies the file into that directory (just like when you copy a file in an MS-DOS

or UNIX shell). copy also copies the permission bits of the file. The shutil.copy2
(src, dest) function is identical to copy except that it also copies last access and

last modification times of the original file. shutil.copyfileobj(src, dest[,
buflen]) copies two file-like objects, passing the optional buflen parameter to the

source object’s read function.

See Chapter 8 for more information on filelike objects.

The shutil.copymode (src, dest) function copies the permission bits of a file

(see os.chmod earlier in this chapter), as does shutil.copystat(src, dest),

which also copies last access and last modification times.

The shutil.copytree (src, dest[, symlinks]) function uses copy2 to recur-

sively copy an entire tree. copytree raises an exception if dest already exists. If

the symlinks parameter is 1, any symbolic links in the source tree also become

symbolic links in the new copy of the tree. If symlinks is omitted or equal to zero,

the copy of the tree contains copies of the files referenced by symbolic links.

On platforms that support links, os.symlink(src,dest) creates a symbolic link to

src and names it dest, and os.link(src,dest) creates a hard link to src named

dest.

Renaming
The os.rename(old,new) function renames a path, and os.renames(old,new)
renames an entire path from one thing to another, creating new directories as

needed and removing empty ones to cleanup when done. For example:

os.renames(‘cache/logs’,’/usr/home/dave/backup/0105’)

Cross-
Reference

4807-7 ch10.F 5/24/01 8:58 AM Page 168

169Chapter 10 ✦ Working with Files and Directories

basically moves the logs directory in cache to /usr/home/dave/backup and calls

it 0105. If the cache directory is empty after the move, the function deletes it.

Before the move, renames creates any intermediate directories along the way to

make /usr/home/dave/backup/0105 a valid path. The old and new parameters

can be individual files and not just entire directories.

Removing
The os.remove(filename) function deletes a file, os.rmdir(dir) removes an

empty directory, and os.removedirs(dir) removes an empty directory and all

empty parent directories.

If a directory is not empty, neither rmdir nor removedirs removes it. That job is

reserved for shutil.rmtree(path[, ignore_errors[, onerror]]), which

recursively deletes all files in the given directory (including the directory itself) as

well as any subdirectories and their files. ignore_errors is 0 by default, if you

supply a value of 1 then rmtree attempts to continue processing despite any errors

that occur, and won’t bother to tell you about them. You can provide a function in

the onerror parameter to handle any errors that occur. The function must take

three arguments, as shown in this example:

>>> def errFunc(raiser,problemPath,excInfo):
... print raiser.__name__,’had problems with’,problemPath
>>> shutil.rmtree(‘c:\\temp\\foo’,0,errFunc)
rmdir had problems with c:\temp\foo\bar\yeah
rmdir had problems with c:\temp\foo\bar
rmdir had problems with c:\temp\foo

The arguments passed to your error function are the function object that raised an

exception, the particular path it had a problem on, and information about the

exception, equivalent to a call to sys.exc_info().

Please be careful with rmtree; it assumes you’re smart and trusts your judgment.
If you tell it to erase all your files on your hard drive, it’ll obediently do so and with-
out hesitation.

Creating Directories and Temporary Files
The os.mkdir(dir[, mode]) function creates a new directory. The optional mode
parameter is for the permissions on the new directory, and they follow the form of

those listed for os.chmod in Table 10-1. (If you don’t supply mode, the directory has

read, write, and execute permissions for everyone.)

The os.makedirs(dir[, mode]) function creates a new directory and any inter-

mediate directories needed along the way:

>>> os.makedirs(r’c:\a\b\c\d\e\f\g\h\i’)
>>> os.removedirs(r’c:\a\b\c\d\e\f\g\h\i’)

Caution

4807-7 ch10.F 5/24/01 8:58 AM Page 169

170 Part II ✦ Files, Data Storage, and Operating System Services

Even though my computer didn’t have an a directory or an a\b directory, and so

on, makedirs took care of creating them until at last it created i, a subdirectory of

h (and then I used os.removedirs to clean up the mess).

The tempfile module helps when you need to use a file as a temporary storage

area for data. In such cases you don’t generally care about a file name or where the

file lives on disk, so tempfile takes care of that for you. Temporary files can help

conserve memory by storing temporary information on disk instead of keeping it all

loaded in memory.

The tempfile.mktemp([suffix]) function returns the absolute path to a unique

temporary file name that does not exist at the time of the call, and includes the suffix

in the file name if you supply it. Although two calls to mktemp won’t return the same

file name, it doesn’t create the file, so it’s possible (although quite unlikely) that if

you wait long enough someone else may create a file by the same name. While it’s

safe to use the file name as soon as you get it, it isn’t as safe to save a copy of the

name and then at a later date expect to create a file by that name, for example.

You can set the tempfile.tempdir variable to tell mktemp where to store tempo-

rary files. By default, it tries its best to find a good home for them, first checking the

values of the environment variables $TMPDIR, $TEMP, and $TMP. If none of them are

defined, it then checks if it can create temporary files in known temporary file

safe-havens such as /var/temp, /usr/tmp, or /tmp on UNIX and c:\temp or \temp

on Windows. If all these fail, it’ll try to use the current working directory.

tempfile.gettempprefix() returns the prefix of the temporary files you

have (you can set this value via tempfile.template).

The ultimate in hassle-free temporary files comes from the tempfile.
TemporaryFile class. It gives you a file or filelike object that you can read and

write to without worrying about cleanup when you’re done. You use

tempfile.TemporaryFile([mode[, bufsize[, suffix]]]) to create a new

instance object. The following example figures out how many digits it takes to write

out the numbers from 1 to high. (Of the many better ways to do this, the simplest

improvement is simply to add the length of each number to a counter instead of

building the entire string and taking its length, but that wouldn’t give me an oppor-

tunity to use TemporaryFile now would it?):

>>> def digitCount(high):
... import tempfile
... f = tempfile.TemporaryFile()
... for i in range(1,high+1):
... f.write(`i`)
... f.flush()
... f.seek(0)
... return len(f.read())
>>> digitCount(12)
15 # len(‘123456789101112’) = 15
>>> digitCount(100)
192
>>> digitCount(100000)
488895

4807-7 ch10.F 5/24/01 8:58 AM Page 170

171Chapter 10 ✦ Working with Files and Directories

By default, mode is ‘w+b’ so you can read and write data and not worry about the

type of data you’re writing (binary or text). The optional bufsize argument gets

passed to the open function, and the optional suffix argument is passed to

mktemp. On UNIX systems, the file doesn’t even have a directory entry, making it

more secure. Other systems delete the temporary file as soon as you call close or

when Python garbage collects the object.

On UNIX systems, the os module has three functions for working with temporary

files. os.tmpfile() creates a new file object that you can read and write to. As

with tempfile’s TemporaryFile class, the file has no directory entry and ceases

to exist when you close the file.

The os.tmpnam() function returns an absolute path to a unique file name suitable

for use as a temporary file (it doesn’t create an actual file). os.tempnam([dir,
[prefix]]) does the same as tmpnam except that it enables you to specify the

directory in which the file name will live, as well as supplies an optional prefix to

use in the temporary file’s name.

Comparing Files and Directories
The filecmp module aids in comparing files and directories. To compare two files,

call filecmp.cmp(f1,f2[,shallow[,use_statcache]]):

>>> import filecmp
>>> open(‘one’,’wt’).write(‘Hey’)
>>> open(‘two’,’wt’).write(‘Hey’)
>>> filecmp.cmp(‘one’,’two’)
1 # Files match

The shallow parameter defaults to 1, which means that if both are regular files

with the same size and modification time, the comparison returns true. If they

differ (or if shallow=0), the function compares the contents of the two. The

use_statcache parameter defaults to 0 and cmp calls os.stat for file info. If 1, cmp
calls statcache.stat.

The filecmp.cmpfiles(a, b, common[, shallow[, use_statcache]]) function

takes a list of file names located in two directories (each file is in both directory a
and b) and returns a three-tuple containing a list of files that compared equal, a list

of those that were different, and a list of files that weren’t regular files and therefore

weren’t compared. The shallow and use_statcache parameters behave the same

as for cmp.

The dircmp class in the filecmp module can help you generate that list of common

files, as well as do some other comparison work for you. You use filecmp.
dircmp(a, b[, ignore[, hide]]) to create a new instance:

4807-7 ch10.F 5/24/01 8:58 AM Page 171

172 Part II ✦ Files, Data Storage, and Operating System Services

>>> d = filecmp.dircmp(‘c:\\Program Files’,’d:\\Program Files’)
>>> d.report()
diff c:\Program Files d:\Program Files
Only in c:\Program Files : [‘Accessories’, ‘Adobe’, ...<snip>
Only in d:\Program Files : [‘AnalogX’, ‘Paint Shop Pro...<snip>
Common subdirectories : [‘WinZip’, ‘Yahoo!’,’work’]

The ignore function is a list of file names to ignore (it defaults to [‘RCS’, ‘CVS’, ‘tags’])

and hide is a list of file names not to show in the listings (it defaults to [os.curdir,

os.pardir], the entries corresponding to the current and parent directories).

The dircmp.report() method prints to standard output a comparison between a
and b. dircmp.report_partial_closure() does the same, but also compares

common immediate subdirectories. dircmp.report_full_closure() goes the

whole nine yards and compares all common subdirectories, no matter how deep.

After you create a dircmp object, you can access any of the attributes listed in

Table 10-4 for more information about the comparison.

Table 10-4
Other dircmp Object Attributes

Attribute Description

left_list Items in a after being filtered through hide and ignore

right_list Items in b after being filtered through hide and ignore

common Items in both a and b

left_only Items only in a

right_only Items only in b

common_dirs Subdirectories found in both a and b

common_files Files found in both a and b

common_funny Items found in both a and b, but either the type differs
between a and b or os.stat reports an error for that item

same_files Common_files that are identical

diff_files Common_files that are different

funny_files Common_files that couldn’t be compared

subdirs Dictionary of dircmp objects — keys are common_dirs

The Python distribution comes with ndiff (Tools/Scripts/ndiff.py), a utility that pro-
vides the details of what differs between two files (similar to the UNIX diff and
Windows windiff utilities).

Tip

4807-7 ch10.F 5/24/01 8:58 AM Page 172

173Chapter 10 ✦ Working with Files and Directories

Working with File Descriptors
An alternative to using Python’s file objects is to use file descriptors, a somewhat

lower level approach to working with files.

General file descriptor functions
You create a file descriptor with the os.open(file, flags[, mode]) function. You

can combine various values from the next table, Table 10-5, for the flags parame-

ter, and the mode values are those you pass to os.chmod:

>>> fd = os.open(‘fumble.txt’,os.O_WRONLY|os.O_CREAT)
>>> os.write(fd,’I like fudge’)
12 # Wrote 12 bytes.
>>> os.close(fd)
>>> open(‘fumble.txt’).read() # Use the nice Python way.
‘I like fudge’

The os.dup(fd) function returns a duplicate of the given descriptor, and

os.dup2(fd1,fd2) makes fd2 a duplicate of fd1, but closes fd2 first if necessary.

Given a file descriptor, you can use os.fdopen(fd[, mode[, bufsize]]) to create

an open Python file object connected to the same file. The optional mode and

bufsize arguments are the same as those used for the normal Python open function.

Table 10-5
File Descriptor Open Flags

Name Description

O_RDONLY Allow reading only

O_WRONLY Allow writing only

O_RDWR Allow reading and writing

O_BINARY Open in binary mode

O_TEXT Open in text mode

O_CREAT Create file if it does not exist

O_EXCL Return error if create and file exists

O_TRUNC Truncate file size to 0

O_APPEND Append to the end of the file on each write

O_NONBLOCK Do not block

4807-7 ch10.F 5/24/01 8:58 AM Page 173

174 Part II ✦ Files, Data Storage, and Operating System Services

The os module also has other flags such as O_DSYNC, O_RSYNC, O_SYNC, and

O_NOCTTY. Their behavior varies by platform so you should consult the UNIX open
man page for your system for details.

The os.openpty function returns two file descriptors for a new pseudo-terminal.
See Chapter 38 for details.

The following os file descriptor functions closely mirror their file method counter-

parts covered mostly in Chapter 8, “Input and Output”:

close(fd) isatty(fd) lseek(fd,pos,how) read(fd,n)
write(str) fstat(fd) ftruncate(fd,len)

UNIX systems can use the os.ttyname(fd) to retrieve the name of the terminal

device the file descriptor represents (if it is a terminal):

>>> os.ttyname(1) # 1 is stdout
‘/dev/ttyv1’

Pipes
A pipe is a communications mechanism through which you can read or write data

as if it were a file. You use os.pipe() to create two file descriptors connected via

a pipe:

>>> r,w = os.pipe() # One for reading, one for writing
>>> os.write(r,’Pipe dream’)
>>> os.write(w,’Pipe dream’)
10
>>> os.read(r, 1000)
‘Pipe dream’

On UNIX, the os.mkfifo(path[, mode]) function creates a named pipe (FIFO) that

you can use to communicate between processes. The mode defaults to read and

write permissions for everyone (0666). After you create the FIFO on disk, you open

it and read or write to it just like any other file.

Other File Processing Techniques
The modules below provide alternative methods for operating on file contents.

Randomly accessing lines in text files
The linecache module returns to you any line in any file you want:

>>> import linecache

Cross-
Reference

4807-7 ch10.F 5/24/01 8:58 AM Page 174

175Chapter 10 ✦ Working with Files and Directories

>>> linecache.getline(‘linecache.py’,5)
‘that name.\012’

The first time you request a line from a particular file, it reads the file and caches

the lines, but future calls for lines from the same file won’t have to go back to the

disk. Line numbers are 1-based (yes, line one is line one).

If keeping too many files around makes you nervous, you can call linecache.
clearcache() to empty the cache. Also, calling linecache.checkcache() tosses

out cached entries that are no longer valid.

This module was designed to read lines from modules (Python uses it to print
traceback information in exceptions), so if linecache can’t find the file you
named it also searches for the file in the module search path.

Using memory-mapped files
A memory-mapped file (in the mmap module) behaves like some sort of file-mutable

string hybrid. You can access individual characters and slices as well as change

them, and you can use memory-mapped files with many routines that expect strings.

(The re module, for example, is quite happy to do regular expression searching and

mapping on a memory-mapped file.) They also work well for routines that operate

on files, and you can commit to disk any changes you make to their contents.

When you create a new mmap object, you supply a file descriptor to a file opened for

reading and writing and a length parameter specifying the number of bytes from the

file the memory map will use:

>>> f = open(‘mymap’,’w+b’)
>>> f.write(‘And now for something completely different’)
>>> f.flush()
>>> import mmap
>>> m = mmap.mmap(f.fileno(),45) # Use the open file mymap.
>>> m[5:10] # It slices.
‘ow fo’
>>> m[5:10] = ‘ew fi’ # It dices.
>>> m[5:10]
‘ew fi’
>>> m.flush(); m.close() # But wait, there’s more!
1
>>> open(‘mymap’).read()
‘And new fir something completely different\000\000\000’

The Windows version for creating a new mmap object accepts an optional third argu-

ment of a string that represents the tag name for the mapping (Windows lets you

have many mappings for the same file). If you use a mapping that doesn’t exist,

Python creates a new one; otherwise the mapping by that name is opened.

Note

4807-7 ch10.F 5/24/01 8:58 AM Page 175

176 Part II ✦ Files, Data Storage, and Operating System Services

The UNIX version optionally takes flags and prot arguments. flags can be either

MAP_PRIVATE or MAP_SHARED (the default), signifying that changes are visible only

to the current process or are visible to all processes mapping the same portions of

the file. The prot argument is the logical OR of arguments specifying the type of

protection that mapping has, such as PROT_READ | PROT_WRITE (the default).

Avoid using the optional flags if possible so that your code will work on Windows
or UNIX.

You can use mmap.size() to retrieve the size of a mmap object, and

mmap.resize(newsize) to change it:

>>> m.size()
50
>>> m.resize(100)

Call mmap.flush([offset, size]) to save changes to disk. Passing no arguments

flushes all changes to disk, otherwise the memory map flushes only size bytes

starting at offset.

Don’t forget to flush. If you don’t call flush, you have no guarantee that your
changes will make it to disk.

All mmap objects have the close(), tell(), seek(), read(num), write(str),

readline(), and find(str[, start]) methods which behave just like their file

and string counterparts. The mmap.read_byte() and mmap.write_byte(byte)
methods are useful for reading and writing one byte at a time (the bytes are passed

and returned as strings of length 1). You can copy data from one location to another

within the memory-mapped file using mmap.move(dest, src, count). It copies

count bytes from src to dest.

Iterating over several files
The fileinput class lets you iterate over several files as if they were a single file,

eliminating a lot of the housekeeping involved. Its designed use is for iterating all

files passed in on the command line, processing each line individually:

>>> import fileinput
>>> for line in fileinput.input():
... print line

The above example iterates over the files listed in sys.argv[1:] and prints out each line.

The input(files,inplace,backup) function uses the command-line arguments if

you don’t pass it a files list. Any file (or command-line argument) that is just ‘-’ reads

from stdin instead. If the inplace parameter is 1, fileinput copies each file to a

backup and routes any output on stdout to the original file, thus enabling in-place

modification or filtering of each file. If inplace is 1 and you supply a value for backup
(in the form of ‘.ext’), fileinput uses backup’s value as an extension when creating

backups of the original files, and it doesn’t erase the backups when finished.

Caution

Tip

4807-7 ch10.F 5/24/01 8:58 AM Page 176

177Chapter 10 ✦ Working with Files and Directories

While iterating over the files, you can call fileinput.filename() to get the name of

the current file, and filename.isstdin() to test if the current file is actually stdin.

The fileinput.lineno() function gives you the overall line number of the line

just read, and fileinput.filelineno() returns the number of that line within the

current file. You can also call fileinput.isfirstline() to see if it is the first line

of that file.

The fileinput.nextfile() function skips the rest of the current file and moves

to the next one in the sequence, and fileinput.close() closes the sequence and

quits.

You can customize the fileinput functionality by subclassing the fileinput.
FileInput class.

Summary
Python gives you a full toolbox of high-level functions to manipulate files and paths.

In this chapter you learned to:

✦ Manipulate paths and retrieve file and directory information.

✦ Traverse directory trees and match file names to search patterns.

✦ Create and destroy directories and temporary files.

✦ Use file descriptors.

The next chapter covers more of Python’s operating system features. You’ll learn to

access process information, start child processes, and run shell commands.

✦ ✦ ✦

Tip

4807-7 ch10.F 5/24/01 8:58 AM Page 177

4807-7 ch10.F 5/24/01 8:58 AM Page 178

Using Other
Operating
System Services

This chapter finishes coverage of Python’s main operating

system services. One of the main points of focus is work-

ing outside the boundaries in which the interpreter is running.

After you’re done with this chapter you’ll be able to execute

commands in a sub-shell or spawn off an entirely new process.

Executing Shell Commands and
Other Programs

The simplest way to execute a shell command is with the

os.system(cmd) function (which is just a wrapper for the C

system function). The following example uses the shell com-

mand echo to write contents to a file, including an environ-

ment variable set from within the Python interpreter:

>>> import os
>>> os.environ[‘GRUB’] = ‘spam!’
>>> os.system(‘echo Mmm, %GRUB% > mm.txt’) #
Use $GRUB on UNIX
0
>>> print open(‘mm.txt’).read()
Mmm, spam!

The return values vary by system and command, but 0 gener-

ally means the command executed successfully.

Unfortunately, os.system has some limitations. On Windows,

your command runs in a separate MS-DOS window that rears

its ugly head until the command is done, and on all operating

systems it’s kind of a pain to retrieve the output from the com-

mand (especially if the output is on both stdout and

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Executing shell
commands and other
programs

Spawning child
processes

Handling process
information

Retrieving system
information

Managing
configuration files

Understanding error
names

Handling
asynchronous signals

✦ ✦ ✦ ✦

4807-7 ch11.F 5/24/01 8:59 AM Page 179

180 Part II ✦ Files, Data Storage, and Operating System Services

stderr). The next section shows how to get around this using the much cleaner

calls to os.popen and friends.

Windows systems can use os.startfile(path) to launch a program by sending a

file to the program associated with its file type. For example, if the current direc-

tory has a file called yoddle.html, you can launch a Web browser to view that file

like this:

>>> os.startfile(‘yoddle.html’)

The os.exec family of functions executes another program, but in doing so

replaces the current process — your program doesn’t continue when the exec func-

tion returns. Instead, your program terminates and at the same time launches a dif-

ferent program. Each of the exec functions comes in two versions: one that accepts

a variable number of arguments and one that takes all the program’s arguments in a

list or tuple. All arguments are strings, and you always need to provide argument 0,

which is just the name of the program being executed.

The os.execv(path,args) and os.execl(path, arg0, arg1, ...) functions

execute the program pointed to by path and pass it the arguments. The following

example shuts down the Python interpreter and launches the Windows calculator

(the location of the calc program may vary):

>>> os.execv(‘c:\\winnt\\system32\\calc’,[‘calc’])

The os.execvp(file, args) and os.execlp(file, arg0, arg1, ...) functions

work the same as execv, except they look in the PATH environment variable to find

the executable, so you don’t have to name its absolute path. This example calls

another Python interpreter, telling it to just print out a message. Note the use of the

variable-argument form (execlp) and that you still have to list the program twice,

once for the file argument, and once as argument 0:

>>> os.execlp(‘python’,’python’,’-c’,’”print \’Goodbye!\’”’)

If you need to modify the PATH environment variable, you can use os.defpath
to see the default PATH used if it isn’t set in the environment. os.pathsep is the
separator character used between each directory listed in the PATH variable.

The os.execve(path, args, env) and os.execle(path, arg0, arg1, ..., env)
functions are also like execv, except that you pass in a dictionary containing all the

environment variables to be defined for the new program. The dictionary should

contain string keys mapping to string values.

The final exec functions, os.execvpe(file, args, env) and os.execlpe(file,
arg0, arg1, ..., env), are like execve and execvp combined. You pass in a file

name instead of an absolute path because the functions search through the path for

you, and you also pass in a dictionary of environment variables to use.

Tip

4807-7 ch11.F 5/24/01 8:59 AM Page 180

181Chapter 11 ✦ Using Other Operating System Services

You don’t really have to name the program twice for the exec calls. When supply-
ing a value for argument 0, you can actually use any value you want. Be advised,
however, that some programs (like gzip and gunzip) may expect argument 0 to
have certain values.

Spawning Child Processes
Depending on your needs, you can start child processes using the popen, spawn,

and fork functions.

popen functions
The popen family of functions opens pipes to communicate with a child process.

The os.popen(cmd[, mode[, bufsize]]) function opens a single pipe to read or

write to another process. You pass in the command to execute in the cmd parame-

ter, followed by an optional mode parameter to tell whether you’ll be reading (‘r’)

or writing (‘w’) with the pipe. An optional third parameter is a buffer size like the

one used in the built-in open function. popen returns a file object ready for use:

>>> a = os.popen(‘dir /w /ad e:\\’) # Mode defaults to ‘r’.
>>> print a.read()
Volume in drive E has no label.
Volume Serial Number is 2C40-1AF5

Directory of e:\

[RACER] [maxdev] [VideoDub]
[FlaskMPEG] [Diablo II] [archive]
[VNC] [dxsdk] [VMware]
[AnalogX] [Python20]
...

The close() method of the file object returns None if the command was successful,

or an error code if the command was unsuccessful.

The os.popen2(cmd[, bufsize[, mode]]) function is a more flexible alternative

to popen; it returns to you the two-tuple (stdin, stdout) containing the standard

input and output of the child process (the mode parameter is ‘t’ for text or ‘b’ for

binary). The following example uses the external program grep to look through

lines of text and print any that have a colon character in them:

>>> someText = “””
... def printEvents():
... for i in range(100):
... if i % 2 == 0:
... print i

Note

4807-7 ch11.F 5/24/01 8:59 AM Page 181

182 Part II ✦ Files, Data Storage, and Operating System Services

... “””
>>> w,r = os.popen2(‘grep “:”’) # Grep for lines with ‘:’
>>> w.write(someText)
>>> w.close()
>>> print r.read()
def printEvents():
for i in range(100):
if i % 2 == 0:

Depending on the program you execute, you often need to flush or even close
stdin of the child process in order to have it produce its output.

The os.popen3(cmd[, bufsize[, mode]]) function does the same work as

popen2 but instead returns the three-tuple (stdin, stdout, stderr) of the child

process. os.popen4(cmd[, bufsize[, mode]]) does the same except that it

returns the output of stdout and stderr together in a single stream for conve-

nience. This function is a great way to execute arbitrary shell commands cleanly

because you have to look in only one place for the output, and no matter what the

command is, your users won’t see error output sneaking past you and onto the

screen. And on Windows systems, you don’t get the ugly MS-DOS window while

your command executes:

>>> w,r = os.popen4(‘iblahblahasdfasdfr *.foo’)
>>> print r.read()
‘iblahblahasdfasdfr’ is not recognized as an internal or
external command, operable program or batch file.

The popen2, popen3, and popen4 functions were new in Python 2.0.

spawn functions
The spawn functions start a child process that doesn’t replace the current process

(like the exec functions do) unless specifically asked to. For example, to start up

another Python interpreter (assuming it lives in D:\Python20) without stopping

the current one:

>>> os.spawnl(os.P_NOWAIT,’d:\\python20\\python’,’python’)
400 # Process ID of new interpreter

Like the exec functions, the spawn functions have many variations, as shown in the

following paragraphs.

os.spawnv(mode, path, args) and os.spawnl(mode, path, arg0, arg1, ...)
start a new child process.

os.spawnve(mode, path, args, env) and os.spawnle(mode, path, arg0,
arg1, ..., env) start a child process using the environment variables contained

in the dictionary env.

New
Feature

Tip

4807-7 ch11.F 5/24/01 8:59 AM Page 182

183Chapter 11 ✦ Using Other Operating System Services

On UNIX systems, variants of each of the above functions search the current path

for the program to execute, and are named spawnlp, spawnlpe, spawnvp, and

spawnvpe.

The arguments passed in should include the program name for argument 0. A mode
of os.P_WAIT forces the current thread to wait until the child process ends.

os.P_NOWAIT runs the child process concurrently, and os.P_OVERLAY terminates

the calling process before running the child process (making it identical to the exec
functions). os.P_DETACH also runs the process concurrently, but in the background

where it has no access to the console or the keyboard.

When you start a child process concurrently, the spawn function returns the pro-

cess ID of the child process. If you use os.P_WAIT instead, the function returns the

exit code of the child once the child process finally quits.

fork
The os.fork() function (available on UNIX systems) creates a new process that is

a duplicate of the current process. To distinguish between the two processes,

os.fork() returns 0 in the child process, and in the parent process it returns the

process ID of the child:

>>> def forkFunc():
... pid = os.fork()
... if pid == 0:
... print ‘I am the child!’
... os._exit(0)
... else:
... print ‘I am the parent. Child PID is’,pid
>>> forkFunc()
I am the parent. Child PID is 1844
I am the child!

Notice that the child process can force itself to terminate by calling

os._exit(status), which terminates a process without the usual cleaning up

(which is good because the parent and child processes access some of the same

resources, such as open file descriptors).

Chapter 38 has information on the pty (pseudo-terminal) module, its fork and
spawn functions, and the os.forkpty function.

Process management and termination
When you call os._exit() to end a process, Python skips the normal cleanup opera-

tions. The normal way to end the current process is by calling sys.exit([status]).

The status parameter can be a numerical status code that Python returns to the par-

ent process (which by convention is 0 for success and nonzero for an error), or any

other object. For non-numeric objects, sys.exit prints the object to stderr and then

Cross-
Reference

4807-7 ch11.F 5/24/01 8:59 AM Page 183

184 Part II ✦ Files, Data Storage, and Operating System Services

exits with a status code of 1, making it a useful way for programs to exit when users

supply invalid command-line arguments:

>>> import sys
>>> sys.exit(‘Usage: zapper [-force]’)
Usage: zapper [-force]

C:\>

Other ways to shut down
Another way to terminate the current process is by raising the SystemExit excep-

tion (which is what sys.exit does anyway). You can cause the process to termi-

nate abnormally by calling os.abort(), causing it to receive a SIGABRT signal.

The atexit module provides a way for you to register cleanup functions for Python

to call when the interpreter is shutting down normally. You can register multiple

functions, and Python calls them in the reverse order of how you registered them.

Use atexit.register(func [, args]) to register each function, where args are

any arguments (normal or keyword) that you want sent to the function:

>>> import atexit
>>> def bye(msg):
... print msg

>>> def allDone(*args):
... print ‘Here are my args:’,args

>>> atexit.register(bye,”I’m melting!”)
>>> atexit.register(allDone,1,2,3)
>>> raise SystemExit # Shut down.
Here are my args: (1, 2, 3)
I’m melting!

The atexit module was new in Python 2.0.

Waiting around
On UNIX systems, you can call os.wait([option]) to wait for any child process to

stop or terminate, or os.waitpid(pid,option) to wait for a particular child pro-

cess. The values available to use for the option parameter vary by system, but you

can always use os.WNOHANG to tell wait to return immediately if no processes have

a termination to report, or 0 to wait. The wait functions return a two-tuple

(pid,status), and you can decipher the status using any of the os functions listed

in Table 11-1. The following example forks off a child process that sleeps for five

seconds and then exits. The parent waits until the child finishes and then prints the

exit information for the child:

New
Feature

4807-7 ch11.F 5/24/01 8:59 AM Page 184

185Chapter 11 ✦ Using Other Operating System Services

>>> import os,time
>>> def useless():
... z = os.fork()
... if z == 0:
... for i in range(5):
... time.sleep(1)
... os._exit(5)
... else:
... print ‘Waiting on ‘,z
... status = os.waitpid(z,0)[1]
... print ‘Exited normally:’,os.WIFEXITED(status)
... print ‘Exit code:’,os.WEXITSTATUS(status)
>>> useless()
Waiting on 1915
Exited normally: 1
Exit code: 5

Table 11-1
Wait Status Interpretation Functions

Function Value returned

WIFSTOPPED(status) 1 if process was stopped (and not terminated)

WSTOPSIG(status) Signal that stopped the process if WIFSTOPPED was true

WIFSIGNALED(status) 1 if process was terminated due to a signal

WTERMSIG(status) Signal that terminated the process if WIFSIGNALED was true

WIFEXITED(status) 1 if the process exited due to _exit() or exit()

WEXITSTATUS(status) Status code if WIFEXITED was true

Instead of spawning off separate processes to do your bidding, you may just need
to use threads. Chapter 26 covers multithreaded Python programs.

Handling Process Information
Table 11-2 lists the plethora of functions in the os module for getting and setting

information about the current process. Except where noted, the functions are

available only on UNIX.

Cross-
Reference

4807-7 ch11.F 5/24/01 8:59 AM Page 185

186 Part II ✦ Files, Data Storage, and Operating System Services

Table 11-2
Process Information Functions in os

Functions Description

getpid() Gets the current process ID (Windows and UNIX).

getppid() Gets the parent process ID.

getegid() / setegid(id) Gets/sets effective group ID.

getgid() / setgid(id) Gets/sets group ID.

getuid() / setuid(id) Gets/sets user ID.

geteuid() / seteuid(id) Gets/sets effective user ID.

getprgrp() / setprgrp() Gets/sets process group ID.

ctermid() Gets the file name of the controlling terminal.

getgroups() Gets list of group IDs for this process.

getlogin() Gets actual login name for current process.

setpgid(pid, pgrp) Sets the process group for process pid (or the current
process if pid is 0).

setreuid(ruid, euid) Sets real and effective user IDs for the current process.

setregid(rgid, egid) Sets real and effective group IDs for the current process.

tcgetprgrp(fd) Gets the process group ID associated with fd (an open
file descriptor of a terminal device).

tcsetpgrp(fd, pg) Sets the process group ID associated with fd (an open
file descriptor of a terminal device).

setsid() Creates a new session/process group and returns the
process group ID. The calling process is the group
leader of the new process group.

umask(mask) Sets the process’s file mode creation mask and returns
the previous mask (Windows and UNIX).

Nice(inc) Adds inc to the process’s nice value. The more you
add, the lower the scheduling priority of that process
(nicer means less important to the task scheduler).

For example, the following gets the current process’s ID:

>>> os.getpid()
1072 # Hi, I’m process 1072.

4807-7 ch11.F 5/24/01 8:59 AM Page 186

187Chapter 11 ✦ Using Other Operating System Services

Retrieving System Information
Many programs don’t need to know too much about the platform on which they run,

but when they do need to know, there’s plenty of information available to them:

>>> import os, sys
>>> os.name # Name of the os module implementation
‘posix’
>>> sys.byteorder # Is the processor big or little endian?
‘little’
>>> sys.platform # Platform identifier
‘freebsd3’
>>> os.uname() # UNIX only
(‘FreeBSD’, ‘’, ‘3.4-RELEASE’, ‘FreeBSD 3.4-RELEASE #0’,’i386’)

The five-tuple returned by os.uname is (sysname, nodename, release, version,
machine).

See Chapter 38 for coverage of the UNIX statvfs module, useful for retrieving
file system information.

UNIX system configuration information is available through os.confstr,

os.sysconf, os.pathconf, and os.fpathconf:

os.confstr(name) Returns the string value for the specified

configuration item; the list of items defined

for the current platform is in os.confstr_
names.

os.sysconf(name) Similar to os.confstr(name) except that

the values os.sysconf(name) returns are

integers. It also lists the names of the items

you can retrieve.

os.pathconf(path,name) and Return system configuration information

os.fpathconf(fd,name) relating to a specific path of an open file

descriptor. os.pathconf_names lists valid

names.

For example, to retrieve the system memory page size you can use the following:

>>> os.sysconf(‘SC_PAGESIZE’)
8192

Chapter 37 covers the winreg module that lets you access system information
stored in the Windows registry.

Cross-
Reference

Cross-
Reference

4807-7 ch11.F 5/24/01 8:59 AM Page 187

188 Part II ✦ Files, Data Storage, and Operating System Services

Managing Configuration Files
The ConfigParser module makes reading and writing configuration files simple.

Users can simply edit the configuration files to set various run-time options to cus-

tomize your program’s behavior. The config files are normal text files, organized

into sections that contain key-value pairs. The files can have comments and can

contain variables that ConfigParser evaluates when your program accesses them.

If you save the file shown in Listing 11-1 to your current working directory as

sample.cfg, you can then follow along with the examples.

Listing 11-1: sample.cfg – Sample Configuration File

This listing is a sample configuration file.
Comment lines start with pound symbols or semicolons.
[Server]
Address=171.15.2.5
Port=50002

[Hoth]
ID: %(team)s-1
Team=gold
DefaultName=%(__name__)s_User

Notice that the file can contain blank and comment lines, and that key-value pairs

can be separated by equal signs or colons. A value can be anything, and you can

use variable substitution to create values from other values. For example,

%(team)s evaluates to the value of the team variable, and %(__name__)s evaluates

to the name of the current section. If ConfigParser does not find a variable name

in the current section, it also looks in a section named DEFAULT. The variable

name in parentheses should be lowercase.

You create a ConfigParser by calling ConfigParser.ConfigParser([defaults]),

where defaults is an optional dictionary containing values for the DEFAULT section.

The readfp(f[, filename]) method reads a config file from an open filelike object.

If the filelike object has a filename attribute, ConfigParser uses that for the config

file’s name (some exceptions it raises include the file name). You can also pass in an

optional file name to use. The read(filenames) method reads in the contents of one

or more config files. It fails silently on nonexistent files, making it safe to pass in a list

of potential config files that may or may not exist:

>>> import ConfigParser
>>> cfg = ConfigParser.ConfigParser()
>>> cfg.read(‘sample.cfg’)
[‘Server’, ‘Hoth’]

4807-7 ch11.F 5/24/01 8:59 AM Page 188

189Chapter 11 ✦ Using Other Operating System Services

When ConfigParser encounters an error while reading a file or retrieving values, it

raises one of the exceptions listed in Table 11-3.

Table 11-3
ConfigParser Exceptions

Exception Raised when

NoSectionError The specified section does not exist.

DuplicateSectionError A section with the specified name already exists.

NoOptionError An option with the specified name does not exist.

InterpolationError A problem occurred while performing variable
evaluation.

InterpolationDepthError The variable evaluation required too many
recursive substitutions.

MissingSectionHeaderError A key-value pair is not part of any section.

ParsingError ConfigParser encountered a syntactic problem
not covered by any of the other exceptions.

Once you have a valid ConfigParser instance object, you can use its methods to get

and set values or learn more about the configuration file. The defaults() method

returns a dictionary containing the default key-value pairs for this instance.

sections() returns a list of section names for this config file (not including

DEFAULT), and has_section(section) is a quick way to see if a given section exists.

For any section, the options(section) method returns a list of options in that sec-

tion, and has_option(section, option) tests for the existence of a particular

option in that section:

>>> cfg.has_option(‘Server’,’port’)
1
>>> cfg.options(‘Server’)
[‘address’, ‘port’]

Use the get(section, option[, raw[, vars]]) method to retrieve the value of

an option in a given section. If raw is 1, no variable evaluation takes place. You can

optionally pass in a dictionary of key-value pairs that get uses in the variable

evaluation:

>>> cfg.get(‘Hoth’,’ID’,1) # Raw version
‘%(team)s-1’
>>> cfg.get(‘Hoth’,’ID’) # After variable evaluation
‘gold-1’
>>> cfg.get(‘Hoth’,’ID’,vars={‘team’:’blue’})
‘blue-1’ # Override values in the file

4807-7 ch11.F 5/24/01 8:59 AM Page 189

190 Part II ✦ Files, Data Storage, and Operating System Services

ConfigParser has a few other get convenience methods. getint(section,
option) coerces the value into an integer before returning it, getfloat(section,
option) does the same for floats, and getboolean(section,option) makes sure

the value is a 0 or a 1 and returns it as an integer.

You can create a new section using the add_section(section) method, and you

can set the value for an option by calling set(section, option, value):

>>> cfg.get(‘Server’,’port’)
‘50002’
>>> cfg.set(‘Server’,’port’,’4000’) # Use string values!
>>> cfg.get(‘Server’,’port’)
‘4000’

The write(file) method writes the configuration file out to the given filelike

object. The output is guaranteed to be readable by a future call to read or readfp.

The remove_option(section, option) method removes the given option from

the given section. If the option didn’t exist, remove_option returns 0, otherwise 1.

remove_section(section) removes the given section from the config file. As with

remove_option, remove_section returns 0 if the section didn’t even exist, 1

otherwise.

Understanding Error Names
When an error occurs in the os module, it usually raises the OSError exception

(found in os.error). OSError is a class, and instances of this class have the errno
and strerror members that you can access to learn more about the problem:

>>> try:
... os.close(-1) # A bogus file descriptor
... except OSError, e:
... print ‘Blech! %s [Err #%d]’ % (e.strerror,e.errno)
...
Blech! Bad file descriptor [Err #9]

The strerror member is the result of calling os.strerror(code) with the errno
member of the exception:

>>> os.strerror(2)
‘No such file or directory’

The errno module contains the textual message for each error code. The list of

defined errors varies by system (for example, the Windows version includes some

Winsock error messages), but you can access the whole list through the errno.
errorcode dictionary.

4807-7 ch11.F 5/24/01 8:59 AM Page 190

191Chapter 11 ✦ Using Other Operating System Services

For errors involving files or directories, the filename member of OSError has a

non-empty value:

>>> try:
... os.open(‘asdfsf’,os.O_RDONLY)
... except OSError, e:
... print e.errno, e.filename, e.strerror
...
2 asdfsf No such file or directory

Handling Asynchronous Signals
The signal module lets your programs handle asynchronous process signals. If

you’ve used the underlying C equivalents, you’ll find that the Python version is

pretty similar. A signal is just a message sent from the operating system or a pro-

cess to the current process; most signals aren’t handled directly by the process but

are handled by default behavior in the operating system.

The signal module lets you register handler functions that override the default

behavior and let your process respond to the signal itself. To register a signal han-

dler, call signal.signal(num,handler) where num is the signal to handle and

handler is your handler function. A signal handler should take two arguments, the

signal number and a frame object containing the current stack frame. Instead of a

function, handler can also be signal.SIG_DFL (meaning that you want the default

behavior to occur for that signal) or signal.SIG_IGN (meaning that you want that

signal to be ignored). The signal function returns the previous value of handler.

The signals that you can process vary by platform and are defined in your plat-

form’s signal.h file, but Table 11-4 lists some of the most common signals.

Table 11-4
Common Signals

Name Description

SIGINT Interrupt (Ctrl-C hit)

SIGQUIT Quit the program

SIGTERM Request program termination

SIGFPE Floating point error occurred (for example, division by zero, overflow)

SIGALRM Alarm signal (not supported on Windows)

SIGBUS Bus error

SIGHUP Terminal line hangup

SIGSEGV Illegal storage access

4807-7 ch11.F 5/24/01 8:59 AM Page 191

192 Part II ✦ Files, Data Storage, and Operating System Services

The getsignal(signalnum) function returns the current handler for the specified

signal. It returns a callable Python object, SIG_DFL, SIG_IGN, or None (for non-

Python signal handlers). default_int_handler is the default Python signal handler.

Except for handlers for SIGCHD, all signal handlers ignore the underlying implementa-

tion and continue to work until they are reset. Even though the signal handling hap-

pens asynchronously, Python dispatches the signals between bytecode instructions,

so a long call into a C extension module could delay the arrival of some signals.

On UNIX, you can call signal.pause() to wait until a signal arrives (at which time

the correct handler receives it). signal.alarm(time) causes the system to send a

SIGALRM signal to the current process after time seconds; it returns the number of

seconds left until the previous alarm would have gone off (if any). alarm cancels

any previous alarm, and a time of 0 removes any current alarm. You can also call

os.kill(pid, sig) to send the given signal to the process with the ID of pid.

Be careful when using threads and signals in the same program. In such cases you
should call signal.signal only from the main thread (although other threads
can call alarm, pause, and getsignal). Be aware that signals are always sent to
the main thread, regardless of the underlying implementation.

The following example prompts the user for input, but times out if the user doesn’t

respond in the allotted time (it uses signal.alarm, so it works on UNIX systems):

import signal,sys

def handler(sig, frm):
raise ‘timeout’ # Raise an exception when time runs out.

signal.signal(signal.SIGALRM,handler) # Set up the handler.
try:

signal.alarm(2.5) # Send ALARM signal in 2.5 seconds.
while 1:

print ‘Enter code to halt detonation:’,
s = sys.stdin.readline()
if s.strip() == ‘stop’:

print ‘You did it!’
break

print ‘Sorry.’
signal.alarm(0) # Disable the alarm.

except: # Handle all exceptions so Ctrl-C will blow you up too.
print ‘\nSorry. Too late.\n*KABOOM*’

I saved the file as sig.py. Here’s some sample output:

/work> python sig.py
Enter code to halt detonation: [Wait a few seconds.]
Sorry. Too late.
KABOOM

Caution

4807-7 ch11.F 5/24/01 8:59 AM Page 192

193Chapter 11 ✦ Using Other Operating System Services

/work> python sig.py
Enter code to halt detonation: foo
Sorry.
Enter code to halt detonation: stop
You did it!

Summary
Python’s great support for executing shell commands makes it an ideal solution as

a scripting language or as a glue that holds various technologies together. Python

also has ample functionality for starting, controlling, and monitoring child pro-

cesses. In this chapter you learned to:

✦ Launch other programs in the foreground or the background.

✦ Access process and system configuration information.

✦ Read and write human-readable configuration files.

✦ Used file descriptors.

✦ Interpret os error message codes.

In the next chapter you’ll learn to covert data between various formats, compress

it, and decompress it. You’ll also learn to convert Python objects to byte streams

that can be saved for later retrieval or transmitted across a network.

✦ ✦ ✦

4807-7 ch11.F 5/24/01 8:59 AM Page 193

4807-7 ch11.F 5/24/01 8:59 AM Page 194

Storing Data
and Objects

This chapter covers the many ways that you can convert

Python objects to some form suitable for storage.

Storage, however, is not limited to just saving data to disk. By

the end of this chapter you’ll be able to take a Python object

and stick it in a database, compress it, send it across a net-

work connection, or even convert it to a format that a C pro-

gram could understand.

Data Storage Overview
Python’s data storage features are easy to use, but before you

say, “Hey, store this stuff” (it really is that easy), you should

put some thought into how you might use the data down the

road. The issues listed below are merely some things you

should keep in mind; don’t worry too much yet about how

actually to deal with them.

Text versus binary
If you’re storing data to file, you have to choose whether to

store it in text or binary mode. A configuration file, for exam-

ple, is in text mode because humans have to be able to read it

and edit it with a text editor. It’s often easier to debug your

program if the output is stored in some human-readable for-

mat, and you can easily pass such a file around and use it on

different platforms. Of course, storing it in a human-readable

format means you handle the details of parsing it back in if

you need to load it.

A binary mode representation of data often takes up less

space, and can be processed faster if it is stored in fixed-size

blocks or records.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Data storage
overview

Loading and saving
objects

Example: moving
objects across a
network

Using database-like
storage

Converting to and
from C structures

Converting data to
standard formats

Compressing data

✦ ✦ ✦ ✦

4807-7 ch12.F 5/24/01 8:59 AM Page 195

196 Part II ✦ Files, Data Storage, and Operating System Services

Compression
If the size of an object is an issue, compression may be something you want to con-

sider. In return for some additional processing power, compression often signifi-

cantly shrinks the size of your data, which could really help if you have a lot of data

or are transferring it over slow network connections.

Byte order (“Endianness”)
The way a processor stores multibyte numbers in memory is either big-endian or

little-endian:

>>> import sys
>>> print ‘“...%s-endian”, Gulliver said.’ % sys.byteorder
“...little-endian”, Gulliver said. # On my Intel box

Most Python programs wouldn’t care about such a low-level detail, but if your data

has the potential to end up on another platform (by copying a data file, for exam-

ple), the program on the other end has to know the byte order of the data in order

to understand the data.

Object state
Before you store an object, you need to remember that some objects have state

“outside” the Python interpreter. If you tried to save an open socket connection to

disk, you certainly couldn’t expect the connection to be open once you reload the

socket.

Destination
You should keep in mind the destination of your data, because knowing that may let

you take advantage of features particular to that medium. Is it going to a file on

disk? How about a network connection or a database?

On the receiving end
One last thing to consider is what the receiving end of your data will be (who will

read it in the future?). If you are saving a file that your same program will read later,

you can use just about whatever storage format you like. If a C program is on the

other end, maybe you need to send it data in the form of a C structure. Or maybe

you don’t even know who will read the data, so an industry standard format such as

XDR or XML may be the answer.

4807-7 ch12.F 5/24/01 8:59 AM Page 196

197Chapter 12 ✦ Storing Data and Objects

Loading and Saving Objects
To save an object to disk, you convert it to a string of bytes that the program can

later read back in to recreate the original object. If you’re coming from a Java or C++

background, then you recognize this process as marshaling or serialization, but

Python refers to making preserves out of your objects as pickling.

Pickling with pickle
The pickle module converts most Python objects to and from a byte representation:

>>> import pickle
>>> stuff = [5,3.5,’Alfred’]
>>> pstuff = pickle.dumps(stuff)
>>> pstuff
“(lp0\012I5\012aF3.5\012aS’Alfred’\012p1\012a.”
>>> pickle.loads(pstuff)
[5, 3.5, ‘Alfred’]

The pstuff variable in the above example is a string of bytes, so it’s easy to send it

to another computer via a network connection or write it out to a file.

The pickle.dumps(object[, bin]) function returns the serialized form of an

object, and pickle.dump(object, file[, bin]) sends the serialized form to an

open filelike object. If the optional bin parameter is 0 (the default), the object is

pickled in a text form. A value of 1 generates a slightly more compact but less read-

able binary form. Either form is platform-independent.

The pickle.loads(str) function unpickles an object, converting the given string

to its original object form. pickle.load(file) reads a pickled object from the

given filelike object and returns the original, unpickled object.

The load and dump methods are really shorthand ways of instantiating the Pickle
and Unpickler classes:

>>> s = StringIO.StringIO() # Create a temp filelike object.
>>> p = pickle.Pickler(s,1) # 1 = binary
>>> p.dump([1,2,3])
>>> p.dump(‘Hello!’)
>>> s.getvalue() # See the pickled form.
‘]q\000(K\001K\002K\003e.U\006Hello!q\001.’
>>> s.seek(0) # Reset the “file.”
>>> u = pickle.Unpickler(s)
>>> u.load()
[1, 2, 3]
>>> u.load()
‘Hello!’

4807-7 ch12.F 5/24/01 8:59 AM Page 197

198 Part II ✦ Files, Data Storage, and Operating System Services

Using the Pickler and Unpickler classes is convenient if you need to pickle many

objects, or if you need to pass the picklers around to other functions. You can also

subclass them to create a custom pickler.

The cPickle module is a C version of the pickle module, making it up to several

orders of magnitude faster than the pure Python pickle module. Anytime you need

to do lots of pickling, use cPickle. Objects pickled by cPickle are compatible

with those pickled by pickle, and vice versa. The only drawback to the cPickle
module is that you can’t subclass Pickler and Unpickler.

>>> import cPickle,pickle
>>> s = cPickle.dumps({‘one’:1,’two’:2})
>>> pickle.loads(s)
{‘one’: 1, ‘two’: 2}

As Python evolves, future versions could change the format of pickled objects. To

prevent disasters, each version of the format has a version number, and pickle has

a list of other versions (in addition to the current one) that it knows how to read:

>>> pickle.format_version
‘1.3’
>>> pickle.compatible_formats
[‘1.0’, ‘1.1’, ‘1.2’] # It can read some pretty old objects.

If you try to unpickle an unsupported version, pickle raises an exception.

What can I pickle?
You can pickle numbers, strings, None, and containers (tuples, lists, and dictionar-

ies) that contain “picklable” objects.

When you pickle built-in functions, your own functions, or class definitions, pickle
stores its name along with the module name in which it was defined, but not its

implementation. In order to unpickle such an object, pickle first imports its mod-

ule, so you must define the function or class at the top level of that module.

To save an instance object, pickle calls its __getstate__ method, which

should return whatever information you need to capture the state of the object.

When Python loads the object, pickle instantiates a new object and calls its

__setstate__ method, passing it the unpickled version of its state:

>>> class Point:
... def __init__(self,x,y):
... self.x = x; self.y = y
... def __str__(self):
... return ‘(%d,%d)’ % (self.x,self.y)
... def __getstate__(self):
... print ‘Get state called!’
... return (self.x,self.y)
... def __setstate__(self,state):
... print ‘Set state called!’

4807-7 ch12.F 5/24/01 8:59 AM Page 198

199Chapter 12 ✦ Storing Data and Objects

... self.x,self.y = state

...
>>> p = Point(10,20)
>>> z = pickle.dumps(p)
Get state called!
>>> newp = pickle.loads(z)
Set state called!
>>> print newp
(10,20)

If an object doesn’t have a __getstate__ member, pickle saves the contents of its

__dict__ member. When unpickling an object, the load function doesn’t normally

call the object’s constructor (__init__). If you really want load to call the con-

structor, implement a __getinitargs__ method. As it saves the object , pickle
calls __getinitargs__ for a tuple of arguments that it should pass to __init__
when the object is later loaded.

You can add pickling support for data types in C extension modules using the

copy_reg module. To add support, you register a reduction function and a con-

structor for the given type by calling copy_reg.pickle(type, reduction_func[,
constructor_ob]). For example, imagine you’re creating a C extension module

that determines the right stocks to trade on the stock market, and that the module

defines a new data type called StockType (representing a particular security). Your

constructor object (such as a function) returns a new StockType object and takes

as arguments whatever data needed to create such an object. Your reduction func-

tion takes a StockType object and returns a two-tuple containing a constructor

object for creating a new StockType object (most likely the same constructor

function mentioned above). The reduction function also takes a tuple containing

arguments to pass to that constructor. After registering your functions for the new

type, any serialized StockType objects can use them.

See Chapter 29 for information on writing your own extension modules.

Other pickling issues
Because pickling a class doesn’t store the class implementation, you can usually

change the class definition without breaking your pickled data (you can still

unpickle instance objects that were saved previously).

Multiple references to a particular object also reference a single object once you

unpickle it. In the following example, a list has two members that are both refer-

ences to another list. After pickling and unpickling it, the two members still refer to

a single object:

>>> z = [1,2,3]
>>> y = [z,z]
>>> y[0] is y[1] # Two references to the same object
1
>>> s = pickle.dumps(y)

Cross-
Reference

4807-7 ch12.F 5/24/01 8:59 AM Page 199

200 Part II ✦ Files, Data Storage, and Operating System Services

>>> x = pickle.loads(s)
>>> x
[[1, 2, 3], [1, 2, 3]]
>>> x[0] is x[1] # Both members still reference one object.
1

Of course, if you pickle an object, modify it, and pickle it again, pickle saves only

the first version of the object.

If, while pickling to a filelike object, an error occurs (for example, you try to serial-
ize a module), pickle raises the PicklingError exception, but it may have
already written bytes to the file. The contents of the file will be in an unknown
state and not too trustworthy.

The marshal module
Under the covers, the pickle module calls the marshal module to do some of its

work, but most programs should not use marshal at all. The one advantage of mar-
shal is that, unlike pickle, it can handle code objects (the implementation itself):

>>> def adder(a,b):
... return a+b
>>> adder(10,2)
12
>>> import marshal
>>> s = marshal.dumps(adder.func_code)
>>> def newadder():
... pass
>>> newadder.func_code = marshal.loads(s)
>>> newadder(20,10)
30

Chapter 33 shows you how to access code objects and other attributes of Python
objects such as functions.

Example: Moving Objects Across a Network
The example in this section puts all this pickling stuff to work for you. Listing 12-1 is

the swap module that creates a background thread that sends objects between two

Python interpreters running in interactive mode. Although it works on a single com-

puter, you can also run it between two separate computers if you change the IP

address it uses.

Cross-
Reference

Caution

4807-7 ch12.F 5/24/01 8:59 AM Page 200

201Chapter 12 ✦ Storing Data and Objects

Consider this example as a sneak preview. Chapter 15 covers networking and
Chapter 26 covers threads.

Here is some sample output from the program in Listing 12-1 (I opened two sepa-

rate MS-DOS Windows on the same computer). After the sample output is a short

explanation of how the program works. The first half shows what is happening in

the first window, and the second in the other window, although both programs are

running at the same time and interacting:

C:\temp>python -i -c “import swap”
Listen thread started.
Use swap.send(obj) to send an object
Look in swap.obj to see a received object

>>> swap.send([‘game’,’of’,’the’,’year’]) # See Obj1 below.

Received new object
(5, 10) # Obj2 from below
>>> swap.obj
(5, 10)
>>> swap.obj[1] # Yep, it’s a real Python object!
10

C:\temp>python -i -c “import swap”
Listen thread started.
Use swap.send(obj) to send an object
Look in swap.obj to see a received object
Received new object
[‘game’, ‘of’, ‘the’, ‘year’] # Obj1 from above

>>> swap.obj[2] # Poke around a little
‘the’
>>> swap.send((5,10)) # See Obj2 above

Once both interpreters are up and running, they connect to each other via a net-

work socket. Anytime you call swap.send(obj) in one interpreter, swap sends your

object to the other interpreter, which stores it in swap.obj. Either side can send

any picklable object to the other.

Notice that I started the Python interpreter using the “-c” argument (telling it to exe-

cute the command import swap) and the “-i” argument (telling it to keep the inter-

preter running after it executes its command). This feature lets you start with the

swap module already loaded and running.

Cross-
Reference

4807-7 ch12.F 5/24/01 8:59 AM Page 201

202 Part II ✦ Files, Data Storage, and Operating System Services

Listing 12-1: swap.py – Swap Objects Between Python
Interpreters

from socket import *
import cPickle,threading

ADDR = ‘127.0.0.1’ # ‘127.0.0.1’ = localhost
PORT = 50000
bConnected = 0

def send(obj):
“Sends an object to a remote listener”
if bConnected:

conn.send(cPickle.dumps(obj,1))
else:

print ‘Not connected!’

def listenThread():
“Receives objects from remote side”
global bServer, conn, obj, bConnected

while 1:
Try to be the server.
s = socket(AF_INET,SOCK_STREAM)
try:

s.bind((ADDR,PORT))
s.listen(1)
bServer = 1
conn = s.accept()[0]

except Exception, e:
Probably already in use, so I’m the client.
bServer = 0
conn = socket(AF_INET,SOCK_STREAM)
conn.connect((ADDR,PORT))

Now just accept objects forever.
bConnected = 1
while 1:

o = conn.recv(8192)
if not o: break;

obj = cPickle.loads(o)
print ‘Received new object’
print obj

bConnected = 0

Start up listen thread.
threading.Thread(target=listenThread).start()
print ‘Listen thread started.’
print ‘Use swap.send(obj) to send an object’
print ‘Look in swap.obj to see a received object’

4807-7 ch12.F 5/24/01 8:59 AM Page 202

203Chapter 12 ✦ Storing Data and Objects

For the sake of simplicity, the example leaves out a lot of error checking that you’d
want if you were to use this for something important.

This module has two functions: send and listenThread. send takes any object

you pass in, pickles it, and sends it out through the socket that is connected to the

other Python interpreter.

The listenThread function loops forever, waiting for objects to come in over the

socket. When the function first starts, it tries to bind to the given IP address and

port so it can act as the server side of the connection. If this attempt fails, it

assumes that the bind failed because the other interpreter is already acting as the

server, so listenThread tries to connect (thus becoming the client side of the

connection). Once connected, listenThread receives each object, unpickles it,

prints it out and also saves it to the global variable obj so that you can then fiddle

with it in your interpreter.

At the module level, a call to threading.Thread().start() starts the listening

thread. By placing the call there, the background thread starts up automatically as

soon as you import the module.

After you’ve played around with this a little, sit back and relish the fact that all this

power required a measly 50 lines of Python code!

Using Database-Like Storage
The shelve module enables you to save Python objects into persistent, database-

like storage, similar to the dbm module.

See Chapter 14 for information on dbm and other Python database modules.

The shelve.open(file[, mode]) function opens and returns a shelve object.

The mode parameter (which is the same as the mode parameter to dbm.open)

defaults to ‘c’, which means that the function opens the database for reading and

writing, and creates it if it doesn’t already exist. Use the close() method of the

shelve object when you are finished using it.

You access the data as if the database were a dictionary:

>>> import shelve
>>> db = shelve.open(‘objdb’) # Don’t use a file extension!
>>> db[‘secretCombination’] = [5,23,17]
>>> db[‘account’] = 5671012
>>> db[‘secretCombination’]
[5, 23, 17]
>>> del db[‘account’]
>>> db.has_key(‘account’)
0

Cross-
Reference

Note

4807-7 ch12.F 5/24/01 8:59 AM Page 203

204 Part II ✦ Files, Data Storage, and Operating System Services

>>> db.keys()
[‘secretCombination’]
>>> db.close()

The shelve module uses pickle, so you can store any objects that pickle can

store. shelve has the same limitations as dbm. Among other things, you should not

use it to store large Python objects.

Converting to and from C Structures
Although pickle makes converting Python objects to a byte stream easy, really

only Python programs can convert them back to objects. The struct module, how-

ever, lets you create a string of bytes equivalent to a C structure, so you could read

and write binary files generated by a non-Python program or send binary network

messages to something besides a Python interpreter.

To use struct, you call struct.pack(format, v1, v2, ...) with a format string

describing the layout of the data followed by the data itself. Construct the format

string using format characters listed in Table 12-1.

Table 12-1
struct Format Characters

Character C type Python type

c Char string of length 1

s char[] string

p (Pascal string) string

i Int integer

I Unsigned int integer or long*

b Signed char integer

B unsigned char integer

h Short integer

H unsigned short integer

l Long integer

L unsigned long long

f Float float

d Double float

x (pad byte) -

P void * integer or long*

* The type Python uses is based on whether a pointer for this platform is 32 or 64 bits.

4807-7 ch12.F 5/24/01 8:59 AM Page 204

205Chapter 12 ✦ Storing Data and Objects

For example, to create the equivalent of this C struct:

struct
{

int a;
int b;
char c;

};

with the values 10, 20, and ‘Z,’ use:

>>> import struct
>>> z = struct.pack(‘iic’,10,20,’Z’)
>>> z
‘\012\000\000\000\024\000\000\000Z’

Given a string of bytes in a particular format, you can convert them to Python

objects by calling struct.unpack(format, data). It returns a tuple of the recon-

structed data:

>>> struct.unpack(‘iic’,z)
(10, 20, ‘Z’)

The format string you pass to unpack must account for all the data in the string you

pass it, or struct raises an exception. Use the struct.calcsize(format) func-

tion to figure out how many bytes would be taken up by the given format string:

>>> struct.calcsize(‘iic’)
9
>>> len(z) # The earlier example verifies this.
9

As a shortcut, you can put a number in front of any format character to repeat that

data type that many times:

>>> struct.pack(‘3f’,1.2,3.4,5.6) # ‘3f’ is the same as ‘fff’
‘\232\231\231?\232\231Y@33\263@’

For clarity, you can put whitespace between format characters in your format string

(but not between the format character and a repeater number):

>>> struct.pack(‘2i h 3c’,5,6,7,’a’,’b’,’c’)
‘\005\000\000\000\006\000\000\000\007\000abc’

The repeater number works a little differently with the ‘s’ (string) format character.

The repeater tells the length of the string (5s means a 5 character string). 0s means

an empty string, but 0c means zero characters.

The ‘I’ format character unpacks the given number to a Python long integer if the C

int and long are the same size. If the C int is smaller than the C long, ‘I’ converts

the number to a Python integer.

4807-7 ch12.F 5/24/01 8:59 AM Page 205

206 Part II ✦ Files, Data Storage, and Operating System Services

The ‘p’ format character is for a Pascal string. Pascal uses the first byte to store the

length of the string (so Pascal first truncates strings longer than the maximum

length of 255) and then the characters in the string follow. If you supply a repeater

number with this format character, it represents the total number of bytes in the

string including the length byte. If the string is less than the specified number of

bytes, pack adds empty padding characters to bring it up to snuff.

By default, struct stores numbers using the native format for byte order and struc-

ture member alignment (whatever your current platform’s C compiler would use).

You can override this behavior by starting your format string with one of the modi-

fiers listed in Table 12-2. For example, you can force struct to use network order, a

standard byte ordering for network messages:

>>> struct.pack(‘ic’,65535,’D’) # Native is little-endian.
‘\377\377\000\000D’
>>> struct.pack(‘!ic’,65535,’D’) # Force network order.
‘\000\000\377\377D’

Table 12-2
Order, Alignment, and Size Modifiers

Modifier Byte order Alignment Size

< Little-endian None Standard

> or ! Big-endian (Network) None Standard

= Native None Standard

@ Native Native Native

If you don’t choose a modifier from Table 12-2, struct uses native byte ordering,

alignment, and size. When you use a modifier whose size is “standard,” a C short
takes up 2 bytes, an int, long, or float uses 4, and a double uses 8.

If you need to have alignment but aren’t using the ‘@’ (native alignment) modifier,

you can insert pad bytes using the ‘x’ format character from Table 12-1. If you need

to force the end of a structure to be aligned according to the alignment rules for a

particular type, you can end your format string with the format code for that type

with a count of 0. The following example shows how to force a single-character

structure to end on an integer boundary:

>>> struct.pack(‘c’,’A’)
‘A’
>>> struct.pack(‘c0i’,’A’)
‘A\000\000\000’

The ‘P’ (pointer) format character is available with native alignment only.

4807-7 ch12.F 5/24/01 8:59 AM Page 206

207Chapter 12 ✦ Storing Data and Objects

The struct module is very useful for reading and writing binary files. For example,

if you read the first 36 bytes of a Windows WAV file, you can use struct to extract

some information about the file. The header of a WAV file starts with:

‘RIFF’ (4 bytes)
little-endian length field (4 bytes)
‘WAVE’ (4 bytes)
‘fmt ‘ (4 bytes)
format subchunk length (4 bytes)
format specifier (2 bytes)
number of channels (2 bytes)
sample rate in Hertz (4 bytes)
bytes per second (4 bytes)
bytes per sample (2 bytes)
bits per channel (2 bytes)

One way to represent this header would be with the format string

‘<4s i 4s 4s ihhiihh’

The following code extracts this information from a WAV file:

>>> s = open(‘c:\\winnt\\media\\ringin.wav’,’rb’).read(36)
>>> struct.unpack(‘<4si4s4sihhiihh’,s)
(‘RIFF’, 10018, ‘WAVE’, ‘fmt ‘, 16, 1, 1, 11025, 11025, 1, 8)

Extending that example, the following function rates the sound quality of a given

WAV file:

>>> def rateWAV(filename):
... format = ‘<4si4s4sihhiihh’
... fsize = struct.calcsize(format)
... data = open(filename,’rb’).read(fsize)
... data = struct.unpack(format,data)
... if data[0] != ‘RIFF’ or data[2] != ‘WAVE’:
... print ‘Not a WAV file!’
... rate = data[7]
... if rate == 11025:
... print ‘Telephone quality!’
... elif rate == 22050:
... print ‘Radio quality!’
... elif rate == 44100:
... print ‘Oooh, CD quality!’
... else:
... print ‘Rate is %d Hz’ % rate

>>> rateWAV(r’c:\winnt\media\notify.wav’)
Radio quality!
>>> rateWAV(‘online.wav’)
Oooh, CD quality!

4807-7 ch12.F 5/24/01 8:59 AM Page 207

208 Part II ✦ Files, Data Storage, and Operating System Services

Converting Data to Standard Formats
Now that you have the struct module under your belt, you can build on that

knowledge to read and write just about any file format. If your data needs to be

readable by your own programs only, then you can create your own convention for

storing data. In other cases, however, you may find it useful to convert your data to

an industry-wide standard.

Sun’s XDR format
The XDR (eXternal Data Representation) format is a standard data format created

by Sun Microsystems. RFC 1832 defines the format, and it’s most common use is in

NFS (Network File System). Storing data in a standard format like XDR makes shar-

ing files easier for different hardware platforms and operating systems.

The xdrlib module implements a subset of the XDR format, leaving out some of

the less-used data types. To convert data to XDR, you create an instance of the

xdrlib.Packer class, and to convert from XDR, you create an instance of

xdrlib.Unpacker.

Packer objects
The Packer constructor takes no arguments:

>>> import xdrlib
>>> p = xdrlib.Packer()

Once you have a Packer object you can use any of its pack_<type> methods to

pack basic data types:

>>> p.pack_float(3.5) # 32-bit floating point number
>>> p.pack_double(10.5) # 64-bit floating point number
>>> p.pack_int(-15) # Signed 32-bit integer
>>> p.pack_uint(15) # Unsigned 32-bit integer
>>> p.pack_hyper(100) # Signed 64-bit integer
>>> p.pack_uhyper(200) # Unsigned 64-bit integer
>>> p.pack_enum(3) # Enumerated type
>>> p.pack_bool(1) # Booleans are 1 or 0
>>> p.pack_bool(“Hi”) # Value is true, so stores a 1

The pack_fstring(count, str) method packs a fixed-length string count charac-

ters long. The function does not store the size of the string, so to unpack it you

have to know how long it is beforehand. Better yet, use pack_string(str), which

lets you pack a variable-length string:

>>> p.pack_string(‘Lovely’)
>>> p.pack_fstring(3,’day’)

4807-7 ch12.F 5/24/01 8:59 AM Page 208

209Chapter 12 ✦ Storing Data and Objects

The pack_string function calls pack_uint with the size of the string and then

pack_fstring with the string itself. To more fully follow the XDR specification, a

Packer object also has pack_bytes and pack_opaque methods, but they are really

just calls to pack_string. Likewise, a call to pack_fopaque is really just a call to

pack_fstring.

The pack_farray(count, list, packFunc) function packs a fixed-length array

(count items long) of homogenous data. Unfortunately, pack_farray requires that

you pass in the count as well as the list itself, but it won’t let you use a count that is

different from the length of the list (go figure). As with pack_fstring, the function

does not store the length of the array with the data, so you have to know the length

when you unpack it. Or you can call pack_array(list, packFunc) to pack the

size and then the list itself. The packFunc tells Packer which method to use to

pack each item. For example, if each item in the list is an integer:

>>> p.pack_array([1,2,3,4],p.pack_int)

The pack_list(list,packFunc) method also packs an array of homogenous data, but

it works with sequence objects whose size might not be known ahead of time. For

example, you could create a class that defines its own __getitem__ method:

>>> class MySeq:
... def __getitem__(self,i):
... if i < 5:
... return i
... raise IndexError
>>> m = MySeq()
>>> for i in m:
... print i
0
1
2
3
4
>>> p.pack_list(m,p.pack_int)

The get_buffer() method returns a string representing the packed form of all the

data you’ve packed. reset() empties the buffer:

>>> p.reset()
>>> p.pack_int(10)
>>> p.get_buffer()
‘\000\000\000\012’
>>> p.reset()
>>> p.get_buffer()
‘’

4807-7 ch12.F 5/24/01 8:59 AM Page 209

210 Part II ✦ Files, Data Storage, and Operating System Services

Unpacker objects
Not surprisingly, an Unpacker object has methods that closely mirror those of a

Packer object. When you construct an Unpacker, you pass in a string of bytes for it

to decode, and then begin calling its unpack_<type> methods (each pack_ method

has a corresponding unpack_ method):

>>> import xdrlib
>>> p = xdrlib.Packer()
>>> p.pack_float(2.0)
>>> p.pack_fstring(4,’Dave’)
>>> p.pack_string(‘/export/home’)

>>> u = xdrlib.Unpacker(p.get_buffer())
>>> u.unpack_float()
2.0
>>> u.unpack_fstring(4)
‘Dave’
>>> u.unpack_string()
‘/export/home’
>>> u.done()

The done() method tells the Unpacker that you are finished decoding data. If

Unpacker still has data left in its internal buffer, it raises an Error exception to

inform you that the internal buffer has leftover data.

Calling the reset(str) method replaces the current buffer with the data in str. At

any time, you can call the get_buffer() method to retrieve the string representa-

tion of the data stream.

You can use the get_position() and set_position(pos) methods to track and

reposition where in the buffer the Unpacker decodes from next. To be safe, set a

position to 0 or to a value returned from get_position.

Other formats
Of course, you might use many other data formats. XML is gaining popularity as a

data storage markup language; see Chapter 18 for more information.

For any given file format, a quick search on a Web search engine locates many

documents describing the details of that format (for example, try searching for

“WAV spec”). Once you have that information, creating format strings that struct
can understand is usually a straightforward process.

Compressing Data
This final section covers the use of the zlib, a module wrapping the free zlib com-

pression library. The gzip and zipfile modules use zlib to manipulate GZIP and

ZIP files, respectively.

4807-7 ch12.F 5/24/01 8:59 AM Page 210

211Chapter 12 ✦ Storing Data and Objects

zlib
You can use the zlib module to compress any sort of data; if you are transferring

large messages over a network, it may be worthwhile to compress them first, for

example.

The most straightforward use of zlib is through the compress(string[, level])
and decompress(string[, wbits[, bufsize]]) functions. The level used dur-

ing compression is from 1 (fastest) to 9 (best compression), defaulting to 6. During

decompression, the wbits argument controls the size of the history buffer, and

should have a value between 8 and 15 (the default). A higher value consumes more

memory but increases the chances of better compression. The bufsize argument

determines the initial size of the buffer used to hold decompressed data. The

library modifies this size as needed, so you never really have to change it from its

default of 16384. Both compress and decompress take a string of bytes and return

the compressed or decompressed equivalent:

>>> import zlib
>>> longString = 100 * ‘That zlib module sure is fun!’
>>> compressed = zlib.compress(longString)
>>> len(longString); len(compressed)
2900
62 @code:# Yay, zlib!
>>> zlib.decompress(compressed)[:40]
‘That zlib module sure is fun!That zlib m’

To learn more about zlib’s features, visit the zlib Web site at http://
www.info-zip.org/pub/infozip/zlib/.

The zlib module has two functions for computing the checksum of a string (useful

in detecting changes and errors in data or as a way to warm your CPU),

crc32(string[, value]) and adler32(string[, value]). If present, the

optional value argument is the starting value of the checksum, so you can calcu-

late the checksum of several pieces of input. The following example shows you how

to use a checksum to detect data corruption:

>>> data = ‘My dog has no fleas!’
>>> zlib.adler32(data)
1193871046
>>> data = data[:5]+’z’+data[6:]
>>> data
‘My doz has no fleas!’ # A solar flare corrupts your data...
>>> zlib.adler32(data)
1212548825 # ...resulting in a different checksum.

The value returned from crc32 is more reliable than that returned from adler32,

but it also requires much more computation. (More reliable means that the function

is less likely to return the same checksum if the data changes at all.) Don’t forget to

dazzle your friends by informing them that Mark Adler wrote the decompression

portion of zlib.

Tip

4807-7 ch12.F 5/24/01 8:59 AM Page 211

212 Part II ✦ Files, Data Storage, and Operating System Services

If you have more data than you can comfortably fit in memory, zlib lets you

create compression and decompression objects. Create a compression object by

calling compressobj([level]). Once you have your object, you can repeatedly call

its compress(string) method. Each call returns another portion of the com-

pressed version of the data, although some is saved for later processing. Calling the

compression object’s flush([mode]) method finishes the compression and

returns the remaining compressed data:

>>> c = zlib.compressobj(9)
>>> out = c.compress(1000 * ‘I will not throw knives’)
>>> out += c.compress(200 * ‘or chairs’)
>>> out += c.flush()
>>> len(out) # out holds the entire compressed stream.
115

If you call flush with a mode of Z_FULL_FLUSH or Z_SYNCH_FLUSH, all the currently

buffered compressed data is returned, but you can later compress more data with

the same object. Without those mode values, the compression object assumes

you’re finished and doesn’t allow any additional compression.

You create a decompression object by calling zlib’s decompressobj([wbits])
function. A decompression object lets you decompress a stream of data one piece

at a time (for example, you could decompress a file by repeatedly reading a chunk

of data, decompressing that chunk, and writing the result to an output file).

Call the decompress(string) method of your decompression object to decom-

press the next chunk of data. decompress returns the largest amount of decom-

pressed data that it can, although it may need to buffer some until you supply more

data to decompress. The following code decompresses the output from the previ-

ous example 20 bytes at a time:

>>> d = zlib.decompressobj() # Create a decompressor.
>>> msg = ‘’
>>> while out:
... msg += d.decompress(out[:20]) # Decompress some.
... out = out[20:]
>>> msg += d.flush() # Let it know that we’re all done.
>>> len(msg)
24800
>>> 1000 * len(‘I will not throw knives’) +\
... 200 * len(‘or chairs’)
24800 # Length matches that of the original message.
>>> msg[:50] # Looks like the message itself matches too.
‘I will not throw knivesI will not throw knivesI wi’

Call the decompression object’s flush() method when you’re done giving it more

data (after this you can’t call decompress any more with that object).

4807-7 ch12.F 5/24/01 8:59 AM Page 212

213Chapter 12 ✦ Storing Data and Objects

Decompression objects also have an unused_data member that holds any leftover

compressed data from the last call to decompress. A nonempty unused_data
string means that the decompression object is still waiting on additional data to

finish decompressing this particular piece of data.

gzip
The gzip module lets you read and write .gz (GNU gzip) files as if they were ordi-

nary files (that is, your program can pretty much ignore the fact that compression/

decompression is taking place).

The GNU gzip and gunzip programs support additional formats (for example,
compress and pack), but the gzip Python module does not.

The gzip.GzipFile([filename[, mode[, compresslevel[, fileobj]]]])
function constructs a new GzipFile object. You must supply either the filename
or the fileobj argument, although the file object can be anything that looks like a

file such as a cStringIO object. The compresslevel parameter has the same

values as for zlib module earlier in this section.

If you don’t supply a mode, then gzip tries to use the mode of fileobj. If that’s not

possible, the mode defaults to ‘rb’ (open for reading). A GzipFile can’t be open

for both reading and writing, so you should use a mode of ‘rb’, ‘wb’, or ‘ab’.

When you call the close() method of a GzipFile, the file object (if you supplied

one) remains open.

To further the illusion of normal file I/O, you can call the open(filename[, mode[,
level]]) function in the gzip module. The filename argument is required, so the

call looks very similar to Python’s built-in open function:

>>> f = gzip.open(‘small.gz’,’wb’)
>>> f.write(‘’’Old woman!
... Man!
... Old Man, sorry. What knight lives in that castle over
there?
... I’m thirty-seven.
... What?
... I’m thirty-seven -- I’m not old!
... Well, I can’t just call you ‘Man’.
... Well, you could say ‘Dennis’.
>>> f.close()

>>> f = gzip.open(‘small.gz’)
>>> print f.read()

Old woman!
Man!
Old Man, sorry. What knight lives in that castle over there?
I’m thirty-seven.

Note

4807-7 ch12.F 5/24/01 8:59 AM Page 213

214 Part II ✦ Files, Data Storage, and Operating System Services

What?
I’m thirty-seven -- I’m not old!
Well, I can’t just call you ‘Man’.
Well, you could say ‘Dennis’.

zipfile
The zipfile module lets you read, write, and get information about files stored in

the common ZIP file format.

The zipfile module does not currently support ZIP files with appended com-
ments or files that span multiple disks.

The ipfile.is_zipfile(filename) function returns true if the given file name

appears to be a valid zip file.

The zipfile module defines the ZipFile, ZipInfo, and PyZipFile classes.

The ZipFile class
This class is the primary one used to read and write a ZIP file. You create a ZipFile

instance object by calling the ZipFile(filename[, mode[, compression]])
constructor:

>>> import zipfile
>>> z = zipfile.ZipFile(‘room.zip’)
>>> z.printdir() # Print formatted summary of the archive
File Name Modified Size
world 2000-09-05 09:25:14 10919
cryst.cfg 1999-03-07 06:14:34 27

The mode is ‘r’ (read, the default), ‘w’ (write), or ‘a’ (append). If you append to a ZIP

file, Python adds new files to it. If you append to a non-ZIP file, however, Python

adds a ZIP archive to the end of the file. Not all ZIP readers can understand this

format. The compression argument is either ZIP_STORED (no compressed) or

ZIP_DEFLATED (use compression).

The namelist() method of your ZipFile object returns the list of files the ZIP

contains. You can get a ZipInfo object (described in the next section) for any file

via the getinfo(name) method, or you can get a list of ZipInfos for the entire

archive with the infolist() method:

>>> z.namelist()
[‘world’, ‘cryst.cfg’] # The ZIP contains two files.
>>> z.getinfo(‘world’) # Get some info for file named ‘world.’
<zipfile.ZipInfo instance at 010FD14C>
>>> z.getinfo(‘world’).file_size
10919

Note

4807-7 ch12.F 5/24/01 8:59 AM Page 214

215Chapter 12 ✦ Storing Data and Objects

>>> z.infolist()
[<zipfile.ZipInfo instance at 010FD14C>,
<zipfile.ZipInfo instance at 010E116C>]

If you open the ZIP in read or append mode, read(name) decompresses the speci-

fied file and returns its contents:

>>> print z.read(‘cryst.cfg’)
[World]
MIXLIGHTS=true_rgb

The testzip() method returns the name of the first corrupt file or None if all files

are okay:

>>> z.testzip()
‘world’ # The file called ‘world’ is corrupt.

For ZIPs opened in write or append mode, the write(zipInfo, bytes) method

adds a new file to the archive. bytes contains the content of the file, and zipInfo
is a ZipInfo object (see the next section) with the file’s information. You don’t

have to fill in every attribute of ZipInfo, but at least fill in the file name and

compression type.

The write(filename[, arcname[, compress_type]]) function adds the con-

tents of the file filename to the archive. If you supply a value for arcname, that is

the name of the file stored in the archive. If you supply a value for compress_type,

it overrides whatever compression type you used when you created the ZipFile.

After making any changes to a ZIP file, calling the close() method is essential to

guaranteeing the integrity of the archive.

A ZipFile object has a debug attribute that you can use to change the level of
debug output messages. Most output comes with a value of 3, the least (no out-
put) is with a value of 0, the default.

The ZipInfo class
Information about each member of a ZIP archive is represented by a ZipInfo
object. You can use the ZipInfo([filename[, date_time]]) constructor to cre-

ate one; getinfo() and infolist() also return ZipInfo objects. The filename
should be the full path of the file and date_time is a six-tuple containing the last

modification timestamp (see the date_time attribute in Table 12-3).

Each ZipInfo instance object has many attributes; the most useful are listed in

Table 12-3.

Tip

4807-7 ch12.F 5/24/01 8:59 AM Page 215

216 Part II ✦ Files, Data Storage, and Operating System Services

Table 12-3
ZipInfo Instance Attributes

Name Description

filename Name of the archived file

compress_size Size of the compressed file

file_size Size of the original file

date_time Last modification date and time, a six-tuple consisting of year,
month (1–12), day (1–31), hour (0–23), minute (0–59),
second (0–59)

compress_type Type of compression (stored or deflated)

CRC The CRC32 of the original file

comment Comment for this entry

extract_version Minimum software version needed to extract the archive

header_offset Byte offset to the file’s header

file_offset Byte offset to the file’s data

The PyZipFile class
The PyZipFile class is a utility class for creating ZIP files that contain Python mod-

ules and packages. PyZipFile is a subclass of ZipFile, so its constructor and

methods are the same as for ZipFile.

The only method that PyZipFile adds is writepy(pathname), which searches for

*.py files and adds their corresponding bytecode files to the ZIP file. For each

Python module (for example, file.py), writepy archives file.pyo if it exists. If not, it

adds file.pyc if it exists. If that doesn’t exist either, writepy compiles the module to

create file.pyc and adds it to the archive.

If pathname is the name of a package directory (a directory containing the __init__.py

file), writepy searches that directory and all package subdirectories for all *.py files.

If pathname is the name of an ordinary directory, it searches for *.py files in that

directory only. Finally, if pathname is just a normal Python module (for example,

file.py), writepy adds its bytecode to the ZIP file.

Refer to Chapter 6 for more information on Python packages.Cross-
Reference

4807-7 ch12.F 5/24/01 8:59 AM Page 216

217Chapter 12 ✦ Storing Data and Objects

Summary
Python makes a breeze of serializing or marshaling objects to disk or over a net-

work, and its support for compression and data conversion only makes life easier.

In this chapter you:

✦ Serialized objects.

✦ Transported objects across a network connection.

✦ Converted objects to formats readable by C programs.

✦ Stored objects in the standard XDR format.

✦ Compressed data to save space.

In the next chapter you’ll learn to track how long parts of your program take to run,

retrieve the date and time, and print the date and time in custom formats.

✦ ✦ ✦

4807-7 ch12.F 5/24/01 8:59 AM Page 217

4807-7 ch12.F 5/24/01 8:59 AM Page 218

Accessing Date
and Time

Dates can be written in many ways. Converting between

date formats is a common chore for computers. Date

arithmetic — like finding the number of days between June 10

and December 13 — is another common task. Python’s time

and calendar modules help track dates and times. They even

handle icky details like daylight savings time and leap years.

Telling Time in Python
Time is usually represented as either a number or a tuple. The

time module provides functions for working with times, and

for converting between representations.

Ticks
You can represent a point in time as a number of “ticks” — the

number of seconds that have elapsed since the epoch. The

epoch is an arbitrarily chosen “beginning of time.” For UNIX

and Windows systems, the epoch is 12:00am, 1/1/1970. For

example, on my computer, my next birthday is 983347200 in

ticks (which translates into February 28, 2001).

The function time.time returns the current system time in

ticks. For example, here is the number of days from now until

my birthday:

>>> 983347200 - time.time()
7186162.7339999676

Note that Python uses a floating-point value for ticks. Because

time precision varies by operating system, time.time is

always an integer on some systems.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Telling time in Python

Converting between
time formats

Parsing and printing
dates and times

Accessing the
calendar

Using time zones

Allowing two-digit
years

✦ ✦ ✦ ✦

4807-7 ch13.F 5/24/01 8:59 AM Page 219

220 Part II ✦ Files, Data Storage, and Operating System Services

Date arithmetic is easy to do with ticks. However, dates before the epoch cannot be

represented in this form. Dates in the far future also cannot be represented this

way — the cutoff point is sometime in 2038 for UNIX and Windows.

Third-party modules such as mxDateTime provide date/time classes that function
outside the range 1970–2038.

TimeTuple
Many of Python’s time functions handle time as a tuple of 9 numbers, as shown in

Table 13-1:

Table 13-1
Time Functions

Index Field Values

0 4-digit year 1993

1 Month 1–12

2 Day 1–31

3 Hour 0–23 (0 is 12 a.m.)

4 Minute 0–59

5 Second 0–61 (60 or 61 are leap-seconds)

6 Day of week 0–6 (0 is Monday)

7 Day of year 1–366 (Julian day)

8 Daylight savings -1,0,1

Note that the elements of the tuple proceed from broadest (year) to most granular

(second). This means that one can do linear comparisons on TimeTuples:

>>> TimeA = (1972, 5, 15, 12, 55, 32, 0, 136, 1)
>>> TimeB = (1972, 5, 16, 7, 9, 10, 1, 137, 1)
>>> TimeA<TimeB # TimeA is a day before TimeB.
1

Note that a TimeTuple does not include a time zone. To pinpoint an actual time, one

needs a time zone as well as a TimeTuple.

Stopwatch time
The clock function acts as a stopwatch for timing Python code — you call clock
before doing something, call it again afterwards, and take the difference between

Note

4807-7 ch13.F 5/24/01 8:59 AM Page 220

221Chapter 13 ✦ Accessing Date and Time

numbers to get the elapsed seconds. The actual values returned by clock are

system-dependent and generally don’t translate into a time-of-day. This code

checks how quickly Python counts to one million:

>>> def CountToOneMillion():
... StartTime=time.clock()
... for X in xrange(0,1000000): pass
... EndTime=time.clock()
... print EndTime-StartTime
...
>>> CountToOneMillion() # Elapsed time, in seconds
0.855862726726

The proper way to pause execution is with time.sleep(n), where n is a floating
point number of seconds. In a Tkinter application, once can call the after
method on the root object to make a function execute after n seconds. (See
Chapter 19 for more on Tkinter.)

Converting Between Time Formats
The function localtime converts from ticks to a TimeTuple for the local time zone.

For example, this code gets the current time:

>>> time.localtime(time.time())
(2000, 12, 6, 20, 0, 9, 2, 341, 0)

Reading the fields of the TimeTuple, I can see that it is the year 2000, December 6,

at 20:00 (8 p.m.) and 9 seconds. The day of the week is 2 (Wednesday), it is the

341st day of the year, and local clocks are not currently on Daylight Savings Time.

The function gmtime also converts from EpochSeconds to a TimeTuple. It returns the

current TimeTuple for UTC (Universal Coordinated Time, formerly Greenwich Mean

Time). This call to gmtime shows that it is 4 a.m. in England (a bad time to telephone):

>>> time.gmtime(time.time())
(2000, 12, 7, 4, 4, 9, 3, 342, 0)

The function mktime converts from a TimeTuple to EpochSeconds. It interprets the

TimeTuple according to the local time zone. The function mktime is the inverse of

localtime, and it is useful for doing date arithmetic. (The inverse function of

gmtime is calendar.timegm.) This code finds the number of seconds between two

points in time:

>>> TimeA = (1972, 5, 15, 12, 55, 32, 0, 136, 1)
>>> TimeB = (1972, 5, 16, 7, 9, 10, 1, 137, 1)
>>> time.mktime(TimeB)-time.mktime(TimeA)
65618.0
>>> _ / (60*60) # How many hours is that?
18.227222222222224

Note

4807-7 ch13.F 5/24/01 8:59 AM Page 221

222 Part II ✦ Files, Data Storage, and Operating System Services

Parsing and Printing Dates and Times
The asctime function takes a TimeTuple, and returns a human-readable timestamp.

It is especially useful in log files:

>>> Now=time.localtime(time.time()) # Now is a TimeTuple.
>>> time.asctime(Now)
‘Sun Dec 10 10:09:41 2000’
>>> # In version 2.1, you can call asctime() and localtime()
>>> # with no arguments to use the current time:
>>> time.asctime()
‘Sun Dec 10 10:09:41 2000’

The function ctime returns a timestamp for a time expressed in ticks:

>>> time.ctime(time.time())
‘Sun Dec 10 10:11:29 2000’

Fancy formatting
The function strftime(format,timetuple) formats a TimeTuple in a format you

specify. The function strftime returns the string format after performing substitu-

tions on various codes marked with a percent sign, as shown in Table 13-2:

Table 13-2
Time Formatting Syntax

Code Substitution Example / Range

%a Abbreviated day name Thur

%A Full day name Thursday

%b Abbreviated month name Jan

%B Full month name January

%c Date and time representation 12/10/00 10:09:41
(equivalent to %x %X)

%d Day of the month 01–31

%H Hour (24-hour clock) 00–23

%h Hour (12-hour clock) 01–12

%j Julian day (day of the year) 001–366

%m Month 01–12

%M Minute 00–59

%p A.M. or P.M. AM

4807-7 ch13.F 5/24/01 8:59 AM Page 222

223Chapter 13 ✦ Accessing Date and Time

Code Substitution Example / Range

%S Second 00–61

%U Week number. Week starts with 00–53
Sunday; days before the first
Sunday of the year are in week 0.

%w Weekday as a number (0=Sunday) 0–6

%W Week number. Week starts with 00–53
Monday; days before the first Monday
of the year are in week 0.

%x Date 12/10/00

%X Time 10:09:41

%y 2-digit year 00–99

%Y 4-digit year 2000

%Z Time-zone name Pacific Standard Time

%% Literal % sign

For example, I can print the current week number:

>>> time.strftime(“It’s week %W!”,Now)
“It’s week 49!”

Here is the default formatting string (with the same results as calling ctime):

>>> time.strftime(“%a %b %d %I:%M:%S %Y”,Now)
‘Sun Dec 10 10:09:41 2000’

Parsing time
The function strptime(timestring[,format]) is the reverse of strftime; it

parses a string and returns a TimeTuple. It guesses at any unspecified time compo-

nents. It raises a ValueError if it cannot parse the string timestring using the format

format. The default format is the one that ctime uses: “%a %b %d %I:%M:%S %Y”.

The strptime function is available on most UNIX systems; however, it is unavail-
able on Windows.

Localization
Different countries write dates differently — for example, the string “2/5” means

“February 5” in the United States, but “May 2” in England. The function strftime
refers to the current locale when performing each substitution. For example, the

Note

4807-7 ch13.F 5/24/01 8:59 AM Page 223

224 Part II ✦ Files, Data Storage, and Operating System Services

format string “%x” uses the correct day-month ordering for the current locale.

However, you still need to take locale into account when writing code — for

instance, the format string “%m/%d” is not correct for all locales.

See Chapter 34 for an overview of the locale module and other information on
internationalization.

Accessing the Calendar
The calendar module provides high-level functions and constants that comple-

ment the lower-level functions in the time module. Because calendar uses ticks

internally to represent dates, it cannot provide calendars outside the epoch

(usually 1970–2038).

Printing monthly and yearly calendars
The following sections show examples of printing monthly and yearly calendars.

monthcalendar(yearnum,monthnum)
The function monthcalendar returns a list of lists, representing a monthly calen-

dar. Each entry in the main list represents a week. The sublists contain the seven

dates in that week. A 0 (zero) in the sublist represents a day from the previous or

next month:

>>> calendar.monthcalendar(2000,5) # 4 1/2 weeks in May, 2000
[[1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14], [15, 16,
17, 18, 19, 20, 21], [22, 23, 24, 25, 26, 27, 28], [29, 30, 31,
0, 0, 0, 0]]

month(yearnum,monthnum[,width[,linesperweek]])
The month function returns a multiline string that looks like a monthly calendar for

month monthnum of year yearnum. Months are numbered normally (from 1 for

January up to 12 for December). The parameter width specifies how wide each col-

umn is; the minimum (and default) value is 2. The parameter linesperweek specifies

how many rows to print for each week. It defaults to 1; setting it to a higher number

like 5 leaves space to write on a printed calendar. Here are two examples:

>>> print calendar.month(2002,5)
May 2002

Mo Tu We Th Fr Sa Su
1 2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Cross-
Reference

4807-7 ch13.F 5/24/01 8:59 AM Page 224

225Chapter 13 ✦ Accessing Date and Time

>>> # 2 rows per week; 3 cols per day
>>> print calendar.month(2002,5,3,2)

May 2002

Mon Tue Wed Thu Fri Sat Sun

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

The function prmonth(yearnum,monthnum[,width[,linesperweek]]) prints the

corresponding output of month.

calendar(yearnum[,width[,linesperweek[,columnpadding]]])
The function calendar prints a yearly calendar, with three months per row. The

parameters width and linesperweek function as for month. The parameter column-
padding indicates how many spaces to add between month-columns; it defaults to

6. The function prcalendar prints the corresponding output of calendar.

Calendar information
The weekday function looks up the day of the week for a particular date. The syntax

is weekday(year,month,day). Weekdays range from Monday (0) to Sunday (6).

Constants for each day (in all-caps) are available, for convenience and code-clarity:

>>> # Is May 1, 2002 a Wednesday?
>>> calendar.weekday(2002,5,1)==calendar.WEDNESDAY
1

The function monthrange(yearnum,monthnum) returns a two-tuple: The weekday

of the first day of month monthnum in year yearnum, and the length of the month.

>>> calendar.monthrange(2000,2) # 2000 was a leap year!
(1, 29)

By default, calendar starts its weeks on Monday, and ends them on Sunday. I like

this setting best, because the week ends with the weekend. But you can start your

calendar’s weeks on another day by calling setfirstweekday(weekday). The func-

tion firstweekday tells you which day of the week is currently the first day of the

week:

4807-7 ch13.F 5/24/01 8:59 AM Page 225

226 Part II ✦ Files, Data Storage, and Operating System Services

>>> calendar.setfirstweekday(calendar.WEDNESDAY)
>>> print calendar.month(2002,5)

May 2002
We Th Fr Sa Su Mo Tu
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
>>> calendar.firstweekday() # Weeks start with day #2 (Wed.)
2

Leap years
The function isleap(yearnum) returns true if year yearnum is a leap year. The

function leapdays(firstyear,lastyear) returns the number of leap days from

firstyear to lastyear, inclusive.

Using Time Zones
The value time.daylight indicates whether a local DST (Daylight Savings Time)

time zone is defined. A value of 1 indicates that a DST time zone is available.

The value time.timezone is the offset, in seconds, from the local time zone to

UTC. This makes it easy to convert between time zones. The value time.altzone
is an offset from the local DST time zone to UTC. The offset altzone is more accu-

rate, but it is available only if time.daylight is 1.

>>> Now=time.time()
>>> time.ctime(Now) # Time in Mountain time zone, USA
‘Sun Dec 10 10:44:49 2000’
>>> time.ctime(Now+time.altzone) # Time in England
‘Sun Dec 10 17:44:49 2000’

The value time.tzname is a tuple. The first entry is the name of the local time

zone. The second entry, if available, is the name of the local Daylight Savings Time

time zone. The second entry is available only if time.daylight is nonzero. For

example:

>>> time.tzname
(‘Pacific Standard Time’, ‘Pacific Daylight Time’)

4807-7 ch13.F 5/24/01 8:59 AM Page 226

227Chapter 13 ✦ Accessing Date and Time

Allowing Two-Digit Years
Two-digit dates are convenient, but they can be ambiguous. For example, the year

“97” should precede the year “03” if the years are 1997 and 2003, but not if they are

1997 and 1903.

In 1999, programmers around the world began rooting through legacy code to solve

the Y2K Bug — a blanket term for all bugs caused by indiscriminate use of two-digit

years. Some people worried that the Y2K Bug would cause The End Of The World

As We Know It on January 1, 2000. Fortunately, it didn’t and we can all sleep safely

at night — at least until 2038 when epoch-based time starts to overflow.

Normally, Python adds 2000 to a two-digit year from 00 to 68, and adds 1900 to two-

digit years from 69 to 99. However, for paranoia’s sake, the value

time.accept2dyear can be set to 0; this setting causes all two-digit years to be

rejected. If you set the environment variable PYTHON2K, the value

time.accept2dyear is initialized to 0. For example:

>>> Y4=(2000, 12, 10, 10, 9, 41, 6, 345, 0)
>>> Y2=(00, 12, 10, 10, 9, 41, 6, 345, 0) # Same date
>>> time.mktime(Y4)
976471781.0
>>> time.mktime(Y2) # 2-digit year below 69; add 2000
976471781.0
>>> time.accept2dyear=0 # Zero tolerance for YY!
>>> time.mktime(Y2)
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

ValueError: year >= 1900 required

Summary
Python includes standard libraries for telling time, doing date arithmetic, and con-

verting between time zones. In this chapter, you:

✦ Converted time between tuple and ticks representations.

✦ Formatted and parsed times in human-readable formats.

✦ Checked months and days on a yearly calendar.

✦ Handled various time zones, as well as Daylight Savings Time.

In the next chapter you will learn how to use Python to store and retrieve data from

databases.

✦ ✦ ✦

4807-7 ch13.F 5/24/01 8:59 AM Page 227

4807-7 ch13.F 5/24/01 8:59 AM Page 228

Using Databases

Databases support permanent storage of large amounts

of data. You can easily perform CRUD (Create, Read,

Update, and Delete) on database records. Relational

databases divide data between tables and support sophisti-

cated SQL operations.

Python’s standard libraries include a simple disk-dictionary

database. The Python DB API provides a standard way to

access relational databases. Various third-party modules

implement this API, providing easy access to many flavors of

database, including Oracle and MySQL.

Using Disk-Based Dictionaries
Python’s standard libraries provide a simple database that

takes the form of a single disk-based dictionary (or disktionary).

This functionality is based on the UNIX utility dbm — on UNIX,

you can access databases created by the dbm utility. Several

modules define such a database, as shown in Table 14-1.

Table 14-1
Disk-Based Dictionary Modules

Module Description

anydbm Portable database; chooses the best
module from among the others

dumbdbm Slow and limited, but available on all
platforms

dbm Wraps the UNIX dbm utility; available on
UNIX only

gdbm Wraps GNU’s improved dbm; available
on UNIX only

dbhash Wraps the BSD database library;
available on UNIX and Windows

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using disk-based
dictionaries

DBM example:
tracking telephone
numbers

Advanced disk-based
dictionaries

Accessing relational
databases

Example: “sounds-
like” queries

Examining relational
metadata

Example: creating
auditing tables

Advanced features of
the DB API

✦ ✦ ✦ ✦

4807-7 ch14.F 5/24/01 8:59 AM Page 229

230 Part II ✦ Files, Data Storage, and Operating System Services

In general, it is recommended that you use anydbm, as it is available on any plat-

form (even if it has to use dumbdbm!)

Each dbm module defines a dbm object and an exception named error. The fea-

tures in this section are available from every flavor of dbm; the “Advanced Disk-

Based Dictionaries” section describes extended features not available in dumbdbm.

The open function creates a new dbm object. The function’s syntax is open
(filename[,flag[,mode]]). The filename parameter is the path to the file used

to store the data. The flag parameter is normally optional, but is required for

dbhash. It has the following legal values:

r [default] Opens the database for read-only access

w Opens the database for read and write access

c Same as w, but creates the database file if necessary

n Same as w, but always creates a new, empty database file

The flag parameter is required for dbhash.open.

Some flavors of dbm (including dumbdbm) permit modifications to a database
opened read-only!

The optional parameter mode specifies the UNIX-style permissions to set on the

database file.

Once you have opened a database, you can access it much like a standard dictionary:

>>> SimpleDB=anydbm.open(“test”,”c”) # create a new datafile
>>> SimpleDB[“Terry”]=”Gilliam” # add a record
>>> SimpleDB[“John”]=”Cleese”
>>> print SimpleDB[“Terry”] # access a record
Gilliam
>>> del SimpleDB[“John”] # delete a record

The keys and values in a dbm must all be strings. For example:

>>> SimpleDB[“Eric”]=5 # illegal; value is not a string!
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

TypeError: bsddb value type must be string

Attempting to access a key with no value raises a KeyError exception. You can use

the has_key method to verify that a key exists, or call keys to get a list of keys.

However, the safe get method from a dictionary is not available:

Caution

Note

4807-7 ch14.F 5/24/01 8:59 AM Page 230

231Chapter 14 ✦ Using Databases

>>> SimpleDB.keys()
[‘Terry’]
>>> SimpleDB.has_key(“Eric”)
0

When you are finished with a dbm object, call its close method to sync it to disk

and free its used resources.

DBM Example: Tracking Telephone Numbers
The example shown in Listing 14-1 uses a dbm object to track telephone numbers.

The dictionary key is a person’s name; the value is his or her telephone number.

Listing 14-1: Phone list

import anydbm
import sys

def AddName(DB):
print “Enter a name. (Null name to cancel)”
Take the [:-1] slice to remove the \n at the end
NewName=sys.stdin.readline()[:-1]
if (NewName==””): return
print “Enter a phone number.”
PhoneNumber=sys.stdin.readline()[:-1]
DB[NewName]=PhoneNumber # Poke value into database!

def PrintList(DB):
Note: A large database may have MANY keys (too many to
casually put into memory). See Listing 14-2 for a better
way to iterate over keys in dbhash.
for Key in DB.keys():

print Key,DB[Key]

if (__name__==”__main__”):
PhoneDB= dbhash.open(“phone”,”c”)
while (1):

print “\nEnter a name to look up\n+ to add a name”
print “* for a full listing\n. to exit”
Command=sys.stdin.readline()[:-1]
if (Command==””):

continue # Nothing to do; prompt again
if (Command==”+”):

AddName(PhoneDB)
elif (Command==”*”):

PrintList(PhoneDB)

Continued

4807-7 ch14.F 5/24/01 8:59 AM Page 231

232 Part II ✦ Files, Data Storage, and Operating System Services

Listing 14-1 (continued)

elif (Command==”.”):
break # quit!

else:
try:

print PhoneDB[Command]
except KeyError:

print “Name not found.”
print “Saving and closing...”
PhoneDB.close()

Advanced Disk-Based Dictionaries
The various flavors of dbm don’t use compatible file formats — for example, a

database created using dbhash cannot be read using gdbm. This means that the

only database file-format available on all platforms is that used by dumbdbm. The

whichdb module can examine a database to determine which flavor of dbm created

it. The function whichdb.whichdb(filename) returns the name of the module that

created the datafile filename, returns None if the file is unreadable or does not exist,

and returns an empty string if it can’t figure out the file’s format. For example, the

following code uses anydbm to create a database, and then queries the database to

see what type it really is:

>>> MysteryDB=anydbm.open(“Unknown”,”c”)
>>> MysteryDB.close() # write file so we can check its db-type
>>> whichdb.whichdb(“Unknown”)
‘dbhash’

dbm
The dbm module provides an extra string variable, library, which is the name of

the underlying ndbm implementation.

gdbm
The gdbm module provides improved key navigation. The dbm method firstkey
returns the first key in the database; the method nextkey(currentkey) returns

the key after currentkey. After doing many deletions from a gdbm database, you can

call reorganize to free up space used by the datafile. In addition, the method sync
flushes any unwritten changes to disk.

4807-7 ch14.F 5/24/01 8:59 AM Page 232

233Chapter 14 ✦ Using Databases

dbhash
The dbhash module also provides key navigation. The dbm methods first and

last return the first and last keys, respectively. The methods next(currentkey)
and previous(currentkey) return the key before and after currentkey, respec-

tively. In addition, the method sync flushes any unwritten changes to disk.

Databases can be very large, so accessing the list of all keys returned by the keys
method of a database may eat a lot of memory. The key-navigation methods pro-

vided by gdbm and dbhash enable you to iterate over all keys without loading them

all into memory. The code in Listing 14-2 is an improved replacement for the

PrintList method in the previous telephone list example.

Listing 14-2: Improved list iteration with dbhash

def PrintList(DB):
Record=None
try:

first() raises a KeyError if there are no entries
Record = DB.first()

except KeyError:
return # Zero entries

while 1:
print Record
try:

next() raises a KeyError if no next entry
Record = DB.next()

except KeyError:
return # all done!

Using BSD database objects
The bsddb module, available on UNIX and Windows, provides access to the

Berkeley DB library. It provides hashtable, b-tree, and record objects for data stor-

age. The three constructors —hashopen, btopen, and rnopen— take the same

parameters (filename, flag, and mode) as the dbm constructor. The constructors

take other optional parameters — they are passed directly to the underlying BSD

code, and should generally not be used.

BSD data objects provide the same functionality as dbm objects, as well as some

additional methods. The methods first, last, next, and previous navigate through

(and return) the records in the database. The records are ordered by key value for a

b-tree object; record order is undefined for a hashtable or record. In addition, the

method set_location(keyvalue) jumps to the record with key keyvalue:

4807-7 ch14.F 5/24/01 8:59 AM Page 233

234 Part II ✦ Files, Data Storage, and Operating System Services

>>> bob=bsddb.btopen(“names”,”c”)
>>> bob[“M”]=”Martin”
>>> bob[“E”]=”Eric”
>>> bob[“X”]=”Xavier”
>>> bob.first() # E is first, since this is a b-tree
(‘E’, ‘Eric’)
>>> bob.next()
(‘M’, ‘Martin’)
>>> bob.next()
(‘X’, ‘Xavier’)
>>> bob.next() # navigating “off the edge” raises KeyError
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

KeyError
>>> bob.set_location(“M”)
(‘M’, ‘Martin’)

The sync method of a BSD database object flushes any changes to the datafile.

Accessing Relational Databases
Relational databases are a powerful, flexible way to store and retrieve many kinds

of data. There are many relational database implementations, which vary in scala-

bility and richness of features. The standard libraries do not include relational

database support; however, Python modules exist to access almost any relational

database, including Oracle, MySQL, DB/2, and Sybase.

The Python Database API defines a standard interface for Python modules that

access a relational database. Most third-party database modules conform to the API

closely, though not perfectly. This chapter covers Version 2.0 of the API.

Connection objects
The connect method constructs a database connection. The connection is used in

constructing cursors. When finished with a connection, call its close method to free

it. Databases generally provide a limited pool of connections, so a program should

not needlessly use them up.

The parameters of the connect method vary by module, but typically include dsn
(data source name), user, password, host, and database.

Transactions
Connections oversee transactions. A transaction is a collection of actions that must

execute atomically — completely, or not at all. For example, a bank transfer might

debit one account and credit another; this should be done within a single transac-

tion, as performing only one half of the transfer would obviously be unacceptable.

4807-7 ch14.F 5/24/01 8:59 AM Page 234

235Chapter 14 ✦ Using Databases

Calling the commit connection method completes the current transaction; calling

rollback cancels the current transaction. Not all databases support transactions —

for example, Oracle does, MySQL doesn’t (yet). The commit method is always avail-

able; rollback is only available where transaction support is provided.

Cursor objects
A cursor can execute SQL statements and retrieve data. The connection method

cursor creates and returns a new cursor. The cursor method execute(command
[,parameters]) executes the specified SQL statement command, passing any

necessary parameters. After executing a command that affects row data, the cursor

attribute rowcount indicates the number of rows altered or returned; and the

description attribute (described in the “Examining Relational Metadata” section)

describes the columns affected. After executing a command that selects data, the

method fetchone returns the next row of data (as a sequence, with one entry for

each column value). The method fetchmany([size]) returns a sequence of

rows — up to size of them. The method fetchall returns all the rows.

After using a cursor, call its close method to free it. Databases typically have a

limited pool of available cursors, so it is important to free cursors after use.

Example: “Sounds-Like” Queries
The example shown in Listing 14-3 uses the mxODBC module to look up people

whose names “sound like” another name. ODBC is a standard interface for rela-

tional databases; ODBC drivers are available for many databases, including Oracle

and MySQL. Therefore, the mxODBC module can handle most of the databases you

are likely to deal with. Listing 14-4 shows the output from the example.

Listing 14-3: Soundex.py

Replace this import with the appropriate one for your system:
import ODBC.Windows

Dictionary used for sounds-like coding
SoundexDict = {“B”:”1”,”P”:”1”,”F”:”1”,”V”:”1”,

“C”:”2”,”S”:”2”,”G”:”2”,”J”:”2”,
“K”:”2”,”Q”:”2”,”X”:”2”,”Z”:”2”,
“D”:”3”,”T”:”3”,
“L”:”4”,
“M”:”5”,”N”:”5”,
“R”:”6”,
“A”:”7”,”E”:”7”,”I”:”7”,”O”:”7”,”U”:”7”,”Y”:”7”,
“H”:”8”,”W”:”8”}

Continued

4807-7 ch14.F 5/24/01 8:59 AM Page 235

236 Part II ✦ Files, Data Storage, and Operating System Services

Listing 14-3 (continued)

These SQL statements may need to be tweaked for your database
(They work with MySQL)
CREATE_EMPLOYEE_SQL = “””CREATE TABLE EMPLOYEE (
EMPLOYEE_ID INT NOT NULL,
FIRST_NAME VARCHAR(20) NOT NULL,
LAST_NAME VARCHAR(20) NOT NULL,
MANAGER_ID INT
)”””
DROP_EMPLOYEE_SQL=”DROP TABLE EMPLOYEE”
INSERT_SQL = “INSERT INTO EMPLOYEE VALUES “

def SoundexEncoding(str):
“””Return the 4-character SOUNDEX code for a string. Take
first letter, then encode subsequent consonants as numbers.
Ignore repeated codes (e.g MM codes as 5, not 55), unless
separated by a vowel (e.g. SOS codes as 22)”””
if (str==None or str==””): return None
str = str.upper() # ignore case!
SoundexCode=str[0]
LastCode=SoundexDict[str[0]]
for char in str[1:]:

CurrentCode=SoundexDict[char]
if (CurrentCode==”8”):

pass # Don’t include, or separate used consonants
elif (CurrentCode==”7”):

LastCode=None # Include consonants after vowels
elif (CurrentCode!=LastCode): # Skip doubled letters

SoundexCode+=CurrentCode
if len(SoundexCode)==4: break # limit to 4 characters

Pad with zeroes (e.g. Lee is L000):
SoundexCode += “0”*(4-len(SoundexCode))
return SoundexCode

Create the EMPLOYEE table
def CreateTable(Conn):

NewCursor=Conn.cursor()
try:

NewCursor.execute(DROP_EMPLOYEE_SQL)
NewCursor.execute(CREATE_EMPLOYEE_SQL)

finally:
NewCursor.close()

insert a new employee into the table
def CreateEmployee(Conn,DataValues):

NewCursor=Conn.cursor()
try:

NewCursor.execute(INSERT_SQL+DataValues)
finally:

NewCursor.close()

Do a sounds-like query on a name
def PrintUsersLike(Conn,Name):

4807-7 ch14.F 5/24/01 8:59 AM Page 236

237Chapter 14 ✦ Using Databases

if (Name==None or Name==””): return
print “Users with last name similar to”,Name+”:”
SoundexName = SoundexEncoding(Name)
QuerySQL = “SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME FROM”
QuerySQL+= “ EMPLOYEE WHERE LAST_NAME LIKE ‘“+Name[0]+”%’”
NewCursor=Conn.cursor()
try:

NewCursor.execute(QuerySQL)
for EmployeeRow in NewCursor.fetchall():

if (SoundexEncoding(EmployeeRow[2])==SoundexName):
print EmployeeRow

finally:
NewCursor.close()

if (__name__==”__main__”):
pass clear_auto_commit=0, because MySQL doesn’t support
transactions (yet) and can’t handle autocommit flag
Replace “MyDB” with your datasource name!
Conn=ODBC.Windows.Connect(“MyDB”,clear_auto_commit=0)
CreateTable(Conn)
CreateEmployee(Conn,’(1,”Bob”,”Hilbert”,Null)’)
CreateEmployee(Conn,’(2,”Sarah”,”Pfizer”,Null)’)
CreateEmployee(Conn,’(3,”Sandy”,”Lee”,1)’)
CreateEmployee(Conn,’(4,”Pat”,”Labor”,2)’)
CreateEmployee(Conn,’(5,”Larry”,”Helper”,Null)’)
PrintUsersLike(Conn,”Heilbronn”)
PrintUsersLike(Conn,”Pfizer”)
PrintUsersLike(Conn,”Washington”)
PrintUsersLike(Conn,”Lieber”)

Listing 14-4: Soundex output

Users with last name similar to Heilbronn:
(1.0, ‘Bob’, ‘Hilbert’)
(5.0, ‘Larry’, ‘Helper’)
Users with last name similar to Pfizer:
(2.0, ‘Sarah’, ‘Pfizer’)
Users with last name similar to Washington:
Users with last name similar to Lieber:
(4.0, ‘Pat’, ‘Labor’)

Examining Relational Metadata
When a cursor returns data, the cursor attribute description is metadata —

definitions of the columns involved. A column’s definition is represented as a

seven-item sequence; description is a sequence of such definitions. The items in

the sequence are listed in Table 14-2.

4807-7 ch14.F 5/24/01 8:59 AM Page 237

238 Part II ✦ Files, Data Storage, and Operating System Services

Table 14-2
Metadata Sequence Pieces

Index Data

0 Column name

1 Type code

2 Display size (in columns)

3 Internal size (in characters or bytes)

4 Numeric scale

5 Numeric precision

6 Nullable (if 0, no nulls are allowed)

For example, the following is metadata from the Employee table of the Soundex

example:

>>> mc.execute(“select FIRST_NAME, MANAGER_ID from EMPLOYEE”)
>>> mc.description
((‘FIRST_NAME’, 12, None, None, 5, 0, 0), (‘MANAGER_ID’, 3,
None, None, 1, 0, 1))

The mxODBC module does not return display size and internal size.

Example: Creating Auditing Tables
Sometimes, it is useful to view old versions of data. For example, you may want to

know both someone’s current address and his or her old address. Or, a medical

database may track who changed a patient’s record, and when. One way to capture

this data is with a mirror table — whenever an insert or update or delete occurs

in the main table, a corresponding row is written to the mirror table. The mirror

rows contain data, a timestamp, and the ID of the editing user — therefore, they

provide a full audit trail of all data changes. Ideally, mirror rows should be inserted

in the same transaction as the data-manipulation, to ensure that the audit trail is

accurate.

The script shown in Listing 14-5 uses metadata to write SQL that creates a mirror

table for a data table. Listing 14-6 shows a sample of the script’s output.

Note

4807-7 ch14.F 5/24/01 8:59 AM Page 238

239Chapter 14 ✦ Using Databases

Listing 14-5: MirrorMaker.py

import ODBC.Windows
“”” MirrorMaker builds mirror tables, for purposes of auditing.
For a table TABLEX, we create SQL to add a mirror table
TABLEX_M. The mirror table tracks version numbers, update
times, and updating users. “””
Replace these constants with values for your database
SERVER_NAME = “MyDB”
USER_NAME = “eva”
PASSWORD = “destruction”
SAMPLE_TABLE = “EMPLOYEE”

Metadata for the mirror table’s special columns
VERSION_NUMBER_COLUMN=(“VERSION_NUMBER”,

ODBC.Windows.NUMERIC,None,None,0,0,0)
LAST_UPDATE_COLUMN=(“LAST_UPDATE”,

ODBC.Windows.TIMESTAMP,None,None,0,0,0)
UPDATE_USER_COLUMN=(“UPDATE_USER_ID”,

ODBC.Windows.NUMERIC,None,None,0,0,0)

def CreateColumnDefSQL(ColumnTuple):
ColumnSQL = ColumnTuple[0] #name
ColumnSQL += “ “
The mxODBC function sqltype returns the SQL name of a
(numeric) column type. (For a different database
module, you may need to code this translation yourself.)
OracleColumnType = ODBC.Windows.sqltype[ColumnTuple[1]]
ColumnSQL += OracleColumnType
width of character fields
if (OracleColumnType == “VARCHAR2” or

OracleColumnType == “VARCHAR”):
Internal size not returned by mxODBC; so, use scale
ColumnSQL += “(“+`ColumnTuple[4]`+”)” # width

if (OracleColumnType == “NUMBER”):
if (ColumnTuple[4]): # precision+scale
ColumnSQL += “(“ + `ColumnTuple[4]` +
“,”+`ColumnTuple[5]`+”)” #

if (ColumnTuple[6]): # nullable
ColumnSQL += “ NULL”

else:
ColumnSQL += “ NOT NULL”

return ColumnSQL

def CreateMirrorTableDefSQL(MyConnection,TableName):
MyCursor = MyConnection.cursor()
This query returns no rows (because 1!=2), but returns
metadata (the definitions of each column in the table).

Continued

4807-7 ch14.F 5/24/01 8:59 AM Page 239

240 Part II ✦ Files, Data Storage, and Operating System Services

Listing 14-5 (continued)

Analogous to the SQL command “describe TABLENAME”.
MyCursor.execute(“SELECT * from “+TableName+” where 1=2”);
SQLString = “CREATE TABLE “+TableName+”_M (“
Loop through columns, and create DDL for each
FirstColumn=1
for ColumnInfo in MyCursor.description:

if (FirstColumn!=1):
SQLString=SQLString+”,”

FirstColumn=0
SQLString += “\n”+CreateColumnDefSQL(ColumnInfo)

Add SQL to create the special mirror-table columns
SQLString += “,\n” +
CreateColumnDefSQL(VERSION_NUMBER_COLUMN)

SQLString += “,\n” +
CreateColumnDefSQL(LAST_UPDATE_COLUMN)

SQLString += “,\n” +
CreateColumnDefSQL(UPDATE_USER_COLUMN)
SQLString += “\n)\n”

MyCursor.close()
return SQLString

if (__name__==”__main__”):
MyConnection =

ODBC.Windows.Connect(SERVER_NAME,USER_NAME,PASSWORD)
print CreateMirrorTableDefSQL(MyConnection,SAMPLE_TABLE)

Listing 14-6: MirrorMaker output

CREATE TABLE EMPLOYEE_M (
EMPLOYEE_ID DECIMAL NOT NULL,
FIRST_NAME VARCHAR(0) NOT NULL,
LAST_NAME VARCHAR(0) NOT NULL,
MANAGER_ID DECIMAL NULL,
VERSION_NUMBER NUMERIC NOT NULL,
LAST_UPDATE TIMESTAMP NOT NULL,
UPDATE_USER_ID NUMERIC NOT NULL
)

Advanced Features of the DB API
Relational databases feature various column types, such as INT and VARCHAR. A

database module should export constants describing these datatypes; these con-

stants are used in description metadata. For example, the following code checks

a column type (12) against a module-level constant (VARCHAR):

4807-7 ch14.F 5/24/01 8:59 AM Page 240

241Chapter 14 ✦ Using Databases

>>> MyCursor.execute(“SELECT EMPLOYEE_NAME from EMPLOYEE where
FIRST_NAME=’Bob’”)
>>> MyCursor.description[0]
(‘FIRST_NAME’, 12, None, None, 3, 0, 0)
>>> MyCursor.description[0][1]==ODBC.Windows.VARCHAR
1

Some column types, such as dates, demand a particular kind of data. A database

module should export functions to construct date, time, and timestamp values. For

example, the function Date(year,month,day) constructs a date value (suitable for

insertion into the database) corresponding to the given year, month, and day. The

module mxDateTime provides the preferred implementation of date and time objects.

Input and output sizes
The cursor attribute arraysize specifies how many rows, by default, to return in

each call to fetchmany. It defaults to 1, but you can increase it if desired. Manipulating

arraysize is more efficient than passing a size parameter to fetchmany:

>>> MyCursor.execute(“SELECT FIRST_NAME FROM EMPLOYEE”)
>>> MyCursor.rowcount # total fetchable rows
5
>>> MyCursor.fetchmany() # default arraysize is 1
[(‘Bob’,)]
>>> MyCursor.arraysize=5 # get up to 5 rows at once
>>> MyCursor.fetchmany() # (only 4 left, so I don’t get 5)
[(‘Sarah’,), (‘Sandy’,), (‘Pat’,), (‘Larry’,)]

The cursor methods setinputsizes(size) and setoutputsize(size
[,columnindex]) let you set an “expected size” for columns before executing a

SQL statement. These methods are optional, and exist to improve performance and

memory usage.

The size parameter for setinputsizes is a sequence. Each entry in size should

specify the maximum length for each parameter. If an entry in size is None, then no

block of memory will be set aside for the corresponding parameter value (this is

the default behavior).

The method setoutputsize sets a maximum buffer size for data read from large

columns (LONG or BLOB). If columnindex is not specified, the buffer size is set for

all large columns in the result sequence. For example, the following code limits the

data read from the long DESCRIPTION column to 50 characters:

>>> MyCursor.setoutputsizes(1,50)
>>> MyCursor.execute(“select GAME_NAME, DESCRIPTION from GAME”)
>>> MyCursor.fetchone()
(‘005’, ‘ You play a spy who must take a briefcase and suc’)

4807-7 ch14.F 5/24/01 8:59 AM Page 241

242 Part II ✦ Files, Data Storage, and Operating System Services

Reusable SQL statements
Before a SQL statement can be executed, it must be parsed. Vendors such as Oracle

cache recently parsed SQL commands so that the commands need not be re-parsed

if they are used again. Therefore, you should build re-usable SQL statements with

marked parameters, instead of hard-coded values. This way, the parameters can be

passed into the execute method. The following example re-uses the same SQL

statement to query a video game database twice:

>>> SQLQuery = “select GAME_NAME from GAME where GAME_ID = ?”
>>> MyCursor.execute(SQLQuery,(60,)) # tuple provides ID of 60
>>> MyCursor.fetchall()
[(‘Air Combat 22’,)]
>>> MyCursor.execute(SQLQuery,(200,)) # no need to re-parse SQL
>>> MC.fetchall()
[(‘Badlands’,)]

The syntax for parameter marking is described by the module variable paramstyle
(see the next section, “Database library information”). The cursor method

executemany(command,parametersequence) runs the same SQL statement

command many times, once for each collection of parameters in parametersequence.

Database library information
The module variable apilevel is a string describing the supported DB API level. It

should be either 1.0 or 2.0; if it is not available, assume the supported API level is 1.0.

The module variable threadsafety describes what level of concurrent access the

module supports:

0 Threads may not share the module

1 Threads may share the module

2 Threads may share connections

3 Threads may share cursors

The module variable paramstyle describes which style of parameter marking the

module expects to see in SQL statements. Following are the legal values of param-

style and an example of such a marked parameter:

qmark WHERE NAME=?

numeric WHERE NAME=.1

named WHERE NAME=.name

format WHERE NAME=%s

pyformat WHERE NAME=%(name)s

4807-7 ch14.F 5/24/01 8:59 AM Page 242

243Chapter 14 ✦ Using Databases

Error hierarchy
Database warnings and errors are subclasses of the class StandardError from the

module exceptions. You can catch the Error class to do general error handling, or

catch more specific exceptions. Figure 14-1 shows the inheritance hierarchy of

database exceptions. See Table 14-3 for a description of each exception.

Figure 14-1: Database exception class hierarchy

Table 14-3
Database Exceptions

Type Meaning

Warning Significant warnings, such as data-value truncation during insertion.

Error Base class for other errors. Not raised directly.

InterfaceError Raised when the database module encounters an internal error.
An InterfaceError stems from the database module, not the
database itself.

DatabaseError Errors relating to the database itself. Mostly used as a base class
for other errors.

DataError Errors due to invalid data, such as an out-of-range numeric value.

Continued

Database Exceptions

exceptions.StandardError

Error Warning

DatabaseError

NotSupportedError

OperationalError

ProgrammingError

DataError

IntegrityError

InterfaceError

4807-7 ch14.F 5/24/01 8:59 AM Page 243

244 Part II ✦ Files, Data Storage, and Operating System Services

Table 14-3 (continued)

Type Meaning

OperationalError Operational errors, such as a failure to connect to the database.

IntegrityError Data integrity errors, such as a missing foreign key.

InternalError Internal database error, such as a cursor becoming disconnected.

ProgrammingError Invalid call to the database module; for example, trying to use a
cursor that has been closed, or calling fetch on a cursor before
executing a command that returns data.

NotSupportedError Some portions of the DB API are optional. A module that does
not implement optional methods may raise NotSupportedError if
you attempt to call them.

Summary
Python’s standard libraries include powerful tools for handling dictionaries on disk.

Modules implementing the Python Database API permit easy access to relational

databases. In this chapter, you:

✦ Learned about Python’s flavors of dbm.

✦ Stored and retrieved dictionary data on disk.

✦ Looked up employees with a “sounds-like” query.

✦ Used table metadata to easily build new relational tables.

In the next chapter, you learn how to harness Python for networking.

✦ ✦ ✦

4807-7 ch14.F 5/24/01 8:59 AM Page 244

Networking and
the Internet

✦ ✦ ✦ ✦

Chapter 15
Networking

Chapter 16
Speaking Internet
Protocols

Chapter 17
Handling Internet
Data

Chapter 18
Parsing XML and
Other Markup
Languages

✦ ✦ ✦ ✦

P A R T

IIIIII

4807-7 PO3.F 5/24/01 8:59 AM Page 245

4807-7 PO3.F 5/24/01 8:59 AM Page 246

Networking

The modules covered in this chapter teach you everything

you need to know to communicate between programs on

a network. The networking topics covered here don’t require

more than one computer, however; you can use networking

for interprocess communication on a single machine.

Networking Background
This section provides a brief introduction to some of the

terms you’ll encounter in the rest of this chapter.

A socket is a network connection endpoint. When your Web

browser requests the main Web page of www.python.org, for

example, your Web browser creates a socket and instructs it

to connect to the Web server hosting the Python Web site,

where the Web server is also listening on a socket for incom-

ing requests. The two sides use the sockets to send messages

and other data back and forth.

When in use, each socket is bound to a particular IP address

and port. An IP address is a sequence of four numbers in the

range of 0 to 255 (for example, 173.15.20.201); port numbers

range from 0 to 65535. Port numbers less than 1024 are

reserved for well-known networking services (a Web server, for

example, uses port 80); the maximum reserved value is stored

in the socket module’s IPPORT_RESERVED variable. You can

use other port numbers for your own programs, although tech-

nically, ports 1024 to 5000 (socket.IPPORT_USERRESERVED)

are used for officially registered applications (although nobody

will yell at you for using them).

Not all IP addresses are visible to the rest of the world. Some,

in fact, are specifically reserved for addresses that are never

public (such as addresses of the form 192.168.y.z or 10.x.y.z).

The address 127.0.0.1 is the localhost address; it always refers

to the current computer. Programs can use this address to

connect to other programs running on the same machine.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Networking
background

Working with
addresses and host
names

Communicating with
low-level sockets

Example: a multicast
chat application

Using SocketServers

Processing Web
browser requests

Handling multiple
requests without
threads

✦ ✦ ✦ ✦

4807-7 ch15.F 5/24/01 8:59 AM Page 247

248 Part III ✦ Networking and the Internet

Remembering more than a handful of IP addresses can be tedious, so you can also

pay a small fee and register a host name or domain name for a particular address

(not surprisingly, more people visit your Web site if they can point their Web

browser at www.threemeat.com instead of 208.114.27.12). Domain Name Servers
(DNS) handle the task of mapping the names to the IP addresses. Every computer

can have a host name, even if it isn’t an officially registered one.

Exactly how messages are transmitted through a network is based on many factors,

one of which is the different protocols that are in use. Many protocols build upon

simpler, lower-level protocols to form a protocol stack. HTTP, for example, is the

protocol used to communicate between Web browsers and Web servers, and it is

built upon the TCP protocol, which is in turn built upon a protocol named IP.

When sending messages between two programs of your own, you usually choose

between the TCP and UDP protocols. TCP creates a persistent connection between

two endpoints, and the messages that you send are guaranteed to arrive at their

destination and to arrive in order. UDP is connectionless, a bit faster, but less reli-

able. Messages you send may or may not make it to the other end; and if they do

make it, they might arrive out of order. Occasionally, more than one copy of a

message makes it to the receiver, even if you sent it only once.

You can find volumes full of additional information on networking; this section

doesn’t even scratch the surface. It does, however, give you a head start on under-

standing the following sections.

Working with Addresses and Host Names
The socket module provides several functions for working with host names and

addresses.

The socket module is a very close wrapper around the C socket library; and like
the C version, it supports all sorts of options. This chapter covers the most
common and useful features of sockets; consult the Winsock help file or the
UNIX socket man pages for coverage of more arcane features. In many cases, the
socket module defines variables that map directly to the C equivalent (for
example, socket.IP_MAX_MEMBERSHIPS is equivalent to the C constant of the
same name).

gethostname() returns the host name for the computer on which the program is

running:

>>> import socket
>>> socket.gethostname()
‘endor’

Note

4807-7 ch15.F 5/24/01 8:59 AM Page 248

249Chapter 15 ✦ Networking

gethostbyname(name) tries to resolve the given host name to an IP address. First

a check is made to determine whether the current computer can do the translation.

If it doesn’t know, a request is sent to a remote DNS server (which in turn may ask

other DNS servers too). gethostbyname returns the name or raises an exception if

the lookup fails:

>>> socket.gethostbyname(‘endor’)
‘10.0.0.6’
>>> socket.gethostbyname(‘www.python.org’)
‘132.151.1.90’

An extended form, gethostbyname_ex(name), returns a 3-tuple consisting of the

primary host name of the given address, a list of alternative host names for the

same IP address, and a list of other IP addresses for the same interface on that

same host (both lists may be empty):

>>> socket.gethostbyname(‘www.yahoo.com’)
‘64.58.76.178’
>>> socket.gethostbyname_ex(‘www.yahoo.com’)
(‘www.yahoo.akadns.net’, [‘www.yahoo.com’],
[‘64.58.76.178’, ‘64.58.76.176’, ‘216.32.74.52’,
‘216.32.74.50’, ‘64.58.76.179’, ‘216.32.74.53’,
‘64.58.76.177’, ‘216.32.74.51’, ‘216.32.74.55’])

The gethostbyaddr(address) function does the same thing, except that you

supply it an IP address string instead of a host name:

>>> socket.gethostbyaddr(‘132.151.1.90’)
(‘parrot.python.org’, [‘www.python.org’], [‘132.151.1.90’])

getservbyname(service, protocol) takes a service name (such as ‘telnet’ or

‘ftp’) and a protocol (such as ‘tcp’ or ‘udp’) and returns the port number used by

that service:

>>> socket.getservbyname(‘http’,’tcp’)
80
>>> socket.getservbyname(‘telnet’,’tcp’)
23
>>> socket.getservbyname(‘doom’,’udp’)
666 # id Software registered this for the game “Doom”

Often, non-Python programs store and use IP addresses in their 32-bit packed form.

The inet_aton(ip_addr) and inet_ntoa(packed) functions convert back and

forth between this form and an IP address string:

>>> socket.inet_aton(‘177.20.1.201’)
‘\261\024\001\311’ # A 4-byte string
>>> socket.inet_ntoa(‘\x7F\x00\x00\x01’)
‘127.0.0.1’

4807-7 ch15.F 5/24/01 8:59 AM Page 249

250 Part III ✦ Networking and the Internet

socket also defines a few variables representing some reserved IP addresses.

INADDR_ANY and INADDR_BROADCAST are reserved IP addresses referring to any IP

address and the broadcast address, respectively; and INADDR_LOOPBACK refers to

the loopback device, always at address 127.0.0.1. These variables are in the

numeric 32-bit form.

The getfqdn([name]) function returns the fully qualified domain name for the given

hostname (if omitted, it returns the fully qualified domain name of the local host):

>>> socket.getfqdn(‘’)
‘dialup84.lasal.net’

getfqdn was new in Python 2.0.

Communicating with Low-Level Sockets
Although Python provides some wrappers that make using sockets easier (you’ll

see them later in this chapter), you can always work with sockets directly too.

Creating and destroying sockets
The socket(family, type[, proto]) function in the socket module creates a

new socket object. The family is usually AF_INET, although others such as AF_IPX
are sometimes available, depending on the platform. The type is most often

SOCK_STREAM (for connection-oriented, reliable TCP connections) or SOCK_DGRAM
(for connectionless UDP messages):

>>> from socket import *
>>> s = socket(AF_INET,SOCK_STREAM)

The combination of family and type usually implies a protocol, but you can specify

it using the optional third parameter to socket using values such as IPPROTO_TCP
or IPPROTO_RAW. Instead of using the IPPROTO_ variables, you can use the

getprotobyname(proto) function:

>>> getprotobyname(‘tcp’)
6
>>> IPPROTO_TCP
6

fromfd(fd, family, type[, proto]) is a rarely used function for creating a

socket object from an open file descriptor (returned from a file’s fileno()
method). The descriptor should be connected to a real socket, and not to a file. The

fileno() method of a socket object returns the file descriptor (an integer) for this

socket. See the section “Handling Multiple Requests Without Threads” later in this

chapter for an idea of where this might be useful.

New
Feature

4807-7 ch15.F 5/24/01 8:59 AM Page 250

251Chapter 15 ✦ Networking

When you are finished with a socket object, you call the close() method, after

which no further operation on the object will succeed (sockets are automatically

closed when they are garbage collected, but it’s a good idea to explicitly close them

when possible, both to free up resources sooner and to make your program

clearer). Alternatively, you can use the shutdown(how) method to close one or

both halves of a connection. Passing a value of 0 prevents the socket from receiving

any more data, 1 prevents any additional sends, and 2 prevents additional transmis-

sion in either direction.

Connecting sockets
When two sockets connect (via TCP, for example), one side listens for and accepts

an incoming connection, and the other side initiates that connection. The listening

side creates a socket, calls bind(address) to bind it to a particular address and

port, calls listen(backlog) to listen for incoming connections, and finally calls

accept() to accept the new, incoming connection:

>>> s = socket(AF_INET,SOCK_STREAM)
>>> s.bind((‘127.0.0.1’,44444))
>>> s.listen(1)
>>> q,v = s.accept() # Returns socket q and address v

Note that the preceding code will block or appear to hang until a connection is pre-

sent to be accepted. No problem; just initiate a connection from another Python

interpreter. The connecting side creates a socket and calls connect(address):

>>> s = socket(AF_INET,SOCK_STREAM)
>>> s.connect((‘127.0.0.1’,44444))

At this point, the first side of the connection uses socket q to communicate with the

second side, using socket s. To verify that they are connected, enter the following

line on the first, or server, side:

>>> q.send(‘Hello from Python!’)
18 @code:# Number of bytes sent

On the other side, enter the following:

>>> s.recv(1024) # Receive up to 1024 bytes
‘Hello from Python!’

The addresses you pass to bind and connect are 2-tuples of (ipAddress,port) for

AF_INET sockets. Instead of connect, you can also call the connect_ex(address)
method. If the underlying call to the C connect returns an error, connect_ex will

also return an error (or 0 for success), instead of raising an exception.

4807-7 ch15.F 5/24/01 8:59 AM Page 251

252 Part III ✦ Networking and the Internet

When you call listen, you pass in a number specifying the maximum number of

incoming connections that will be placed in a wait queue. If more connections

arrive when the queue is full, the remote side is informed that the connection was

refused. The SOMAXCONN variable in the socket module indicates the maximum size

the wait queue can be.

The accept() method returns an address of the same form used by bind and

connect, indicating the address of the remote socket. The following uses the

v variable from the preceding example:

>>> v
(‘127.0.0.1’, 1039)

UDP sockets are not connection-oriented, but you can still call connect to

associate a socket with a given destination address and port (see the next section

for details).

Sending and receiving data
send(string[, flags]) sends the given string of bytes to the remote socket.

sendto(string[, flags], address) sends the given string to a particular

address. Generally, the send method is used with connection-oriented sockets, and

sendto is used with non-connection–oriented sockets, but if you call connect on a

UDP socket to associate it with a particular destination, you can then call send
instead of sendto.

Both send and sendto return the number of bytes that were actually sent. When

sending large amounts of data quickly, you may want to ensure that the entire

message was sent, using a function like the following:

def safeSend(sock,msg):
sent = 0
while msg:

i = sock.send(msg)
if i == -1: # Error

return -1
sent += i
msg = msg[i:]
time.sleep(25) # Wait a little while the queue empties

return sent

This keeps resending part of the message as needed until the entire message has

been sent.

An even better solution to this problem is to avoid sending data until you know at
least some if it can be written. See “Handling Multiple Requests Without Threads”
later in this chapter for details.

Tip

4807-7 ch15.F 5/24/01 8:59 AM Page 252

253Chapter 15 ✦ Networking

The recv(bufsize[,flags]) method receives an incoming message. If a lot of data

is waiting, it returns only the first bufsize bytes that are waiting. recvfrom
(bufsize[,flags]) does the same thing, except that with AF_INET sockets the

return value is (data, (ipAddress,port)) so that you can see from where the

message originated (this is useful for connectionless sockets).

The send, sendto, recv, and recvfrom methods all take an optional flags
parameter that defaults to 0. You can use a bitwise-OR on any of the socket.MSG_*
variables to create a value for flags. The values available vary by platform, but

some of the most common are listed in Table 15-1.

Table 15-1
Flag Values for send and recv

Flag Description

MSG_OOB Process out-of-band data.

MSG_DONTROUTE Don’t use routing tables; send directly to the interface.

MSG_PEEK Return the waiting data without removing it from the queue.

For example, if you have an open socket that has a message waiting to be received,

you can take a peek at the message without actually removing it from the queue of

incoming data:

>>> q.recv(1024,MSG_PEEK)
‘Hello!’
>>> q.recv(1024,MSG_PEEK) # You could call this over and over.
‘Hello!’

The makefile([mode[, bufsize]]) method returns a file-like object wrapping

this socket, so that you can then pass it to code that expects a file argument (or

maybe you prefer to use file methods instead of send and recv). The optional

mode and bufsize parameters take the same values as the built-in open function.

Chapter 8 explains the use of files and filelike objects.

Using socket options
A socket object’s getpeername() and getsockname() methods both return a 2-

tuple containing an IP address and a port (just as you’d pass to connect or bind).

getpeername returns the address and port of the remote socket to which it is con-

nected, and getsockname returns the same information for the local socket.

By default, sockets are blocking, which means that socket method calls don’t return

until the action completes. For example, if the outgoing buffer is full and you try to

Cross-
Reference

4807-7 ch15.F 5/24/01 8:59 AM Page 253

254 Part III ✦ Networking and the Internet

send more data, the call to send will try to block until it can put more data into the

buffer. You can change this behavior by calling the setblocking(flag) method

with a value of 0. When a socket is nonblocking, it will raise the error exception if

the requested action would cause it to block One useful application of this behavior

is that you can create servers that shut down gracefully:

s = socket(AF_INET,SOCK_STREAM)
s.bind((‘10.0.0.6’,55555))
s.listen(5)
s.setblocking(0)
while bKeepGoing:

try:
q,v = s.accept()

except error:
q = None

if q:
processRequest(q,v)

else:
time.sleep(0.25)

This server continuously tries to accept a new connection and send it off to the fic-

tional processRequest function. If a new connection isn’t available, it sleeps for a

quarter of a second and tries again. This means that some other part of your pro-

gram can set the bKeepGoing variable to 0, and the preceding loop will exit.

Another approach is to call select or poll on your listen socket to detect when
a new connection has arrived. See “Handling Multiple Requests Without Threads”
later in this chapter for more information.

Other socket options can be set and retrieved with the setsockopt(level, name,
value) and getsockopt(level, name[, buflen]) methods. Sockets represent

several layers of a protocol stack, and the level parameter specifies at what level

the option should be applied. (For example, the option may pertain to the socket

itself, an intermediate protocol such as TCP, or a lower protocol such as IP.) The

values for level start with SOL_ (SOL_SOCKET, SOL_TCP, and so on). The name of

the option identifies exactly which option you’re talking about, and the socket
module defines whatever option names are available on your platform.

The C version of setsockopt requires that you pass in a buffer for the value
parameter, but in Python you can just pass in a number if that particular option

expects a numeric value. You can also pass in a buffer (a string), but it’s up to you

to make sure you use the proper format. With getsockopt, not specifying the

buflen parameter means you’re expecting a numeric value, and that’s what it

returns. If you do supply buflen, getsockopt returns a string representing a

buffer, and its maximum length will be buflen bytes.

Although there’s a ton of options in existence, Table 15-2 lists some of the more

common ones you’ll need, along with what type of data the value parameter is sup-

posed to be. For example, use the following to set the send buffer size of a socket to

about 64 KB:

Tip

4807-7 ch15.F 5/24/01 8:59 AM Page 254

255Chapter 15 ✦ Networking

>>> s = socket(AF_INET,SOCK_STREAM)
>>> s.setsockopt(SOL_SOCKET, SO_SNDBUF, 65535)

To get the time-to-live (TTL) value or number of hops a packet can make before

being discarded by a router, use this:

>>> s.getsockopt(SOL_IP, IP_TTL)
32

See the sample chat application in the next section for more examples of using

setsockopt.

Table 15-2
Common setsockopt and getsockopt Options

Option Name Value Description

Options for SOL_SOCKET

SO_TYPE (Get only) Socket type (for example, SOCK_STREAM)

SO_ERROR (Get only) Socket’s last error

SO_LINGER Boolean Linger on close if data present

SO_RCVBUF Number Input (receive) buffer size

SO_SNDBUF Number Output (send) buffer size

SO_RCVTIMEO Time struct1 Input (receive) timeout delay

SO_SNDTIMEO Time struct1 Output (send) timeout delay

SO_REUSEADDR Boolean Enable multiple users of a local address/port

Options for SOL_TCP

TCP_NODELAY Boolean Send data immediately instead of waiting for
minimum send amount

Options for SOL_IP

IP_TTL 0–255 Maximum number of hops a packet can travel

IP_MULTICAST_TTL 0–255 Maximum number of hops a packet can travel

IP_MULTICAST_IF inet_aton(ip) Select interface over which to transmit

IP_MULTICAST_LOOP Boolean Enable sender to receive a copy of multicast
packets it sends out

IP_ADD_MEMBERSHIP ip_mreq2 Join a multicast group

IP_DROP_MEMBERSHIP ip_mreq2 Leave a multicast group

1 The struct is two C long variables to hold seconds and microseconds.

2 The struct is the concatenation of two calls to inet_aton—one for multicast address and one for local address.

4807-7 ch15.F 5/24/01 8:59 AM Page 255

256 Part III ✦ Networking and the Internet

Converting numbers
Because the byte ordering can vary by platform, a network order specifies a stan-

dard ordering to use when transferring numbers across a network. The nthol(x)
and ntohs(x) functions take a network number and convert it to the same number

using the current host’s byte ordering, and the htonl(x) and htons(x) functions

convert in the other direction (if the current host has the same byte ordering as

network order, the functions do nothing):

>>> import socket
>>> socket.htons(20000) # Convert a 16-bit value
8270
>>> socket.htonl(20000) # Convert a 32-bit value
541982720
>>> socket.ntohl(541982720)
20000

Example: A Multicast Chat Application
The example in this section combines material from several chapters to create a

chat application that also enables you to draw on a shared whiteboard, as shown in

Figure 15-1.

Figure 15-1: The chat/whiteboard application in action

Instead of using a client/server model, the program uses multicast sockets for its

communication. When you send a message to a multicast address (those addresses

in the range from 224.0.0.1 to 239.255.255.255, inclusive), the message is sent to all

computers that have joined that particular multicast group. This provides a simple

way to send messages to any number of other computers, without having to keep

4807-7 ch15.F 5/24/01 8:59 AM Page 256

257Chapter 15 ✦ Networking

track of which computers are listening. (This could also be considered a security

hole — were this a “real-world” application, you’d want to encrypt the messages or

use some other means to prevent eavesdropping.)

Save the program in Listing 15-1 to a file named multichat.py. To start the applica-

tion, specify on the command line your name or alias and your color. The color is

passed to Tkinter (the module in charge of the user interface), so normal color

names such as blue or red work, but you can also use any of Tkinter’s niftier colors:

C:\temp> python multitest.py Bob SlateBlue4

You don’t need several computers to try this program out; just start multiple copies

and watch them interact.

This application uses Tkinter for its user interface. To learn more about
Tkinter, see Chapters 19 and 20. It also uses threads, which you can learn about
in Chapter 26. Finally, read Chapter 12 to learn about serializing Python objects
with pickle and cPickle.

Listing 15-1: multichat – Multicast chat/
whiteboard application

from Tkinter import *
from socket import *
import cPickle, threading, sys

Each message is a command + data
CMD_JOINED,CMD_LEFT,CMD_MSG,CMD_LINE,CMD_JOINRESP = range(5)
people = {} # key = (ipaddr,port), value = (name,color)

def sendMsg(msg):
sendSock.send(msg,0)

def onQuit():
‘User clicked Quit button’
sendMsg(chr(CMD_LEFT)) # Notify others that I’m leaving
root.quit()

def onMove(e):
‘Called when LButton is down and mouse moves’
global lastLine,mx,my
canvas.delete(lastLine) # Erase temp line
mx,my = e.x,e.y

Draw a new temp line
lastLine = \

canvas.create_line(dx,dy,mx,my,width=2,fill=’Black’)

Continued

Cross-
Reference

4807-7 ch15.F 5/24/01 8:59 AM Page 257

258 Part III ✦ Networking and the Internet

Listing 15-1 (continued)

def onBDown(e):
‘User pressed left mouse button’
global lastLine,dx,dy,mx,my
canvas.bind(‘<Motion>’,onMove) # Start receiving move msgs
dx,dy = e.x,e.y
mx,my = e.x,e.y

Draw a temporary line
lastLine = \

canvas.create_line(dx,dy,mx,my,width=2,fill=’Black’)

def onBUp(e):
‘User released left mouse button’
canvas.delete(lastLine) # Erase the temporary line
canvas.unbind(‘<Motion>’) # No more move msgs, please!

Send out the draw-a-line command
sendMsg(chr(CMD_LINE)+cPickle.dumps((dx,dy,e.x,e.y),1))

def onEnter(foo):
‘User hit the [Enter] key’
sendMsg(chr(CMD_MSG)+entry.get())
entry.delete(0,END) # Clear the entry widget

def setup(root):
‘Creates the user interface’
global msgs,entry,canvas

The big window holding everybody’s messages
msgs = Text(root,width=60,height=20)
msgs.grid(row=0,col=0,columnspan=3)

Hook up a scrollbar to see old messages
s = Scrollbar(root,orient=VERTICAL)
s.config(command=msgs.yview)
msgs.config(yscrollcommand=s.set)
s.grid(row=0,col=3,sticky=N+S)

Where you type your message
entry = Entry(root)
entry.grid(row=1,col=0,columnspan=2,sticky=W+E)
entry.bind(‘<Return>’,onEnter)
entry.focus_set()

b = Button(root,text=’Quit’,command=onQuit)
b.grid(row=1,col=2)

A place to draw
canvas = Canvas(root,bg=’White’)
canvas.grid(row=0,col=5)
Notify me of button press and release messages

4807-7 ch15.F 5/24/01 8:59 AM Page 258

259Chapter 15 ✦ Networking

canvas.bind(‘<ButtonPress-1>’,onBDown)
canvas.bind(‘<ButtonRelease-1>’,onBUp)

def msgThread(addr,port,name):
‘Listens for and processes messages’

Create a listen socket
s = socket(AF_INET, SOCK_DGRAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
s.bind((‘’,port))

Join the multicast group
s.setsockopt(SOL_IP,IP_ADD_MEMBERSHIP,\

inet_aton(addr)+inet_aton(‘’))

while 1:
Get a msg and strip off the command byte
msg,msgFrom = s.recvfrom(2048)
cmd,msg = ord(msg[0]),msg[1:]

if cmd == CMD_JOINED: # New join
msgs.insert(END,’(%s joined the chat)\n’ % msg)

Introduce myself
sendMsg(chr(CMD_JOINRESP)+ \

cPickle.dumps((name,myColor),1))

elif cmd == CMD_LEFT: # Somebody left
who = people[msgFrom][0]
if who == name: # Hey, _I_ left, better quit

break
msgs.insert(END,’(%s left the chat)\n’ % \

who,’color_’+who)

elif cmd == CMD_MSG: # New message to display
who = people[msgFrom][0]
msgs.insert(END,who,’color_%s’ % who)
msgs.insert(END,’: %s\n’ % msg)

elif cmd == CMD_LINE: # Draw a line
dx,dy,ex,ey = cPickle.loads(msg)
canvas.create_line(dx,dy,ex,ey,width=2,\

fill=people[msgFrom][1])

elif cmd == CMD_JOINRESP: # Introducing themselves
people[msgFrom] = cPickle.loads(msg)
who,color = people[msgFrom]

Create a tag to draw text in their color
msgs.tag_configure(‘color_’ + who,foreground=color)

Continued

4807-7 ch15.F 5/24/01 8:59 AM Page 259

260 Part III ✦ Networking and the Internet

Listing 15-1 (continued)

Leave the multicast group
s.setsockopt(SOL_IP,IP_DROP_MEMBERSHIP,\

inet_aton(addr)+inet_aton(‘’))

if __name__ == ‘__main__’:
argv = sys.argv
if len(argv) < 3:

print ‘Usage:’,argv[0],’<name> <color> ‘\
‘[addr=<multicast address>] [port=<port>]’

sys.exit(1)

global name, addr, port, myColor
addr = ‘235.0.50.5’ # Default IP address
port = 54321 # Default port
name,myColor = argv[1:3]
for arg in argv[3:]:

if arg.startswith(‘addr=’):
addr = arg[len(‘addr=’):]

elif arg.startswith(‘port=’):
port = int(arg[len(‘port=’):])

Start up a thread to process messages
threading.Thread(target=msgThread,\

args=(addr,port,name)).start()

This is the socket over which we send out messages
global sendSock
sendSock = socket(AF_INET,SOCK_DGRAM)
sendSock.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
sendSock.connect((addr,port))

Don’t let the packets die too soon
sendSock.setsockopt(SOL_IP,IP_MULTICAST_TTL,2)

Create a Tk window and create the GUI
root = Tk()
root.title(‘%s chatting on channel %s:%d’ % \

(name,addr,port))
setup(root)

Join the chat!
sendMsg(chr(CMD_JOINED)+name)
root.mainloop()

Although this application will work on a local network, it may have trouble work-
ing between computers on the Internet. Some routers are configured to ignore
multicast data packets, and the time-to-live (TTL) setting for the packets must be
high enough to make the necessary number of hops between each computer.

Note

4807-7 ch15.F 5/24/01 8:59 AM Page 260

261Chapter 15 ✦ Networking

As with most Python programs, this one packs a lot of punch in very few lines of

code (it weighs in at about 120 lines, ignoring comments). The first thing to note is

the msgThread function, which creates a socket to listen for incoming multicast

messages. It uses the SO_REUSEADDR socket option to enable you to run multiple

copies on one computer (otherwise, bind would complain that someone else was

already bound to that address and port). It also uses IP_ADD_MEMBERSHIP to join a

multicast group, and IP_DROP_MEMBERSHIP to leave it. The first byte of each mes-

sage is a predefined command character, which msgThread uses to determine what

to do with the message.

When you type a message into the text entry box at the bottom of the dialog box,

onEnter sends the text from the entry box to the multicast channel. Likewise,

pressing the left mouse button, dragging a line, and releasing it causes onBUp to

send the message to draw a new line. Note that neither of these actually displays a

message or draws a line — they just send a message to the multicast group, and all

running copies, including the one that originated the message, receive the message

and process it. The socket that sends these messages doesn’t need to join the mul-

ticast group; anyone can send to a group, but only members can receive messages.

When msgThread calls recvFrom to get a new message, it also gets the IP address

and port of the sender. The program uses this tuple as a dictionary key to map to

the name and color of the sender (each line is drawn in the sender’s color, as is that

user’s name when they send a text message).

One final thing to note is how the listening thread decides when to shut down.

When you click the Quit button, the application notifies everyone that you are

leaving the chat group. Your listener also hears this message, and recognizing that

the sender is itself, it stops waiting for more messages.

Using SocketServers
The SocketServer module defines a base class for a group of socket server

classes — classes that wrap up and hide the details of listening for, accepting, and

handling incoming socket connections.

The SocketServer family
TCPServer and UDPServer are SocketServer subclasses that handle TCP and UDP

messages, respectively.

SocketServer also provides UnixStreamServer (a child class of TCPServer)
and UnixDatagramServer (a child of UDPServer), which are the same as their
parent classes except that the listening socket is created with a family of AF_UNIX
instead of AF_INET.

Note

4807-7 ch15.F 5/24/01 8:59 AM Page 261

262 Part III ✦ Networking and the Internet

By default, the socket servers handle connections one at a time, but you can use the

ThreadingMixIn and ForkingMixIn classes to create threading or forking versions

of any SocketServer. In fact, the SocketServer module helpfully provides the fol-

lowing classes to save you the trouble: ForkingUDPServer, ForkingTCPServer,

ThreadingUDPServer, ThreadingTCPServer, ThreadingUnixStreamServer, and

ThreadingUnixDatagramServer. Obviously, the threading versions work only on

platforms that support threads, and the forking versions work on platforms that

support os.fork.

See Chapter 7 for an overview of mix-in classes, Chapter 11 for forking, and
Chapter 26 for threads.

SocketServers handle incoming connections in a generic way; to make them useful,

you provide your own request handler class to which it passes a socket to handle. The

BaseRequestHandler class in the SocketServer module is the parent class of all

request handlers. Suppose, for example, that you need to write a multithreaded e-mail

server. First you create MailRequestHandler, a subclass of BaseRequestHandler,

and then you pass it to a newly created SocketServer:

import SocketServer

... # Create your MailRequestHandler class here

addr = (‘175.15.30.2’, 25) # Listen address and port
server = SocketServer.ThreadingTCPServer(addr,

MailRequestHandler)
server.serve_forever()

Each time a new connection comes in, the server creates a new MailRequestHandler
instance object and calls its handle() method so it can process the new request.

Because the server is derived from ThreadingTCPServer, with each new request it

starts a separate thread to handle the request, so that multiple requests will be

processed simultaneously. Instead of calling server_forever, you can also call

handle_request(), which waits for, accepts, and processes a single connection.

server_forever merely calls handle_request in an infinite loop.

Don’t worry too much about the details of the request handler just yet; the next

section covers everything you need to know.

Normally, you can use one of the socket servers as is, but if you need to create your

own subclass, you can override any of the following methods to customize it.

When the server is first created, the __init__ function calls the server_bind()
method to bind the listen socket (self.socket) to the correct address

(self.server_address). It then calls server_activate() to activate the server

(by default, this calls the listen method of the socket).

The socket server doesn’t do anything until the user calls either of the

handle_request or serve_forever methods. handle_request calls

get_request() to wait for and accept a new socket connection, and then calls

Cross-
Reference

4807-7 ch15.F 5/24/01 8:59 AM Page 262

263Chapter 15 ✦ Networking

verify_request(request, client_address) to see if the server should

process the connection (you can use this for access control — by default,

verify_request always returns true). If it’s okay to process the request,

handle_request then calls process_request(request, client_address), and

then handle_error(request, client_address) if process_request raised an

exception. By default, process_request simply calls finish_request(request,
client_address); the forking and threading mix-in classes override this behavior

to start a new process or thread, and then call finish_request. finish_request
instantiates a new request handler, which in turn calls its handle() method. If you

want to subclass a SocketServer, trace through this sequence of calls once or

twice to make sure it makes sense to you, and review the source code of

SocketServer for help.

When a SocketServer creates a new request handler, it passes to the handler’s

__init__ function the self variable, so that the handler can access information

about the server.

The SocketServer’s fileno() method returns the file descriptor of the listen

socket. The address_family member variable specifies the socket family of the

listen socket (for example, AF_INET), and server_address holds the address to

which the listen socket is bound. The socket variable holds the listen socket itself.

Request handlers
Request handlers have setup(), handle(), and finish() methods (none of which

do anything by default) that you can override to add your custom behavior. Normally,

you need to override only the handle method. The BaseRequestHandler’s

__init__ function calls setup() for initialization work, handle() to service the

request, and finish() to perform any cleanup, although finish isn’t called if

handle or setup raise an exception. Keep in mind that a new instance of your

request handler is created for each request.

The request member variable has the newly accepted socket for stream (TCP)

servers; for datagram (UDP) servers, it is a tuple containing the incoming message

and the listen socket. client_address holds the address of the sender, and

server has a reference to the SocketServer (through which you can access its

members, such as server_address).

The following example implements EchoRequestHandler, a handler that repeats

back to the remote side any data it sends:

>>> import SocketServer
>>> class EchoRequestHandler(SocketServer.BaseRequestHandler):
... def handle(self):
... print ‘Got new connection!’
... while 1:
... msg = self.request.recv(1024)
... if not msg:
... break

4807-7 ch15.F 5/24/01 8:59 AM Page 263

264 Part III ✦ Networking and the Internet

... print ‘ Received :’,msg

... self.request.send(msg)

... print ‘Done with connection’
>>> server = SocketServer.ThreadingTCPServer(\
... (‘127.0.0.1’,12321),EchoRequestHandler)
>>> server.handle_request() # It’ll wait here for a connection
Got new connection!
Received : Hello!
Received : I like Tuesdays!

Done with connection

In another Python interpreter, you can connect to the server and try it out:

>>> from socket import *
>>> s = socket(AF_INET,SOCK_STREAM)
>>> s.connect((‘127.0.0.1’,12321))
>>> s.send(‘Hello!’)
6
>>> print s.recv(1024)
Hello!
>>> s.send(‘I like Tuesdays!’)
16
>>> print s.recv(1024)
I like Tuesdays!
>>> s.close()

The SocketServer module also defines two subclasses of BaseRequestHandler:

StreamRequestHandler and DatagramRequestHandler. These override the setup
and finish methods and create two file objects, rfile and wfile, that you can use

for reading and writing data to the client, instead of using the usual socket methods.

Processing Web Browser Requests
Now that you have a SocketServer, what do you do with it? Why, extend it, of

course! The standard Python library comes with BaseHTTPServer,

SimpleHTTPServer, and CGIHTTPServer modules that implement increasingly

complex Web server request handlers.

Most likely, you would use them as starting points on which to build, but to some

extent they do work on their own as well. For example, how many lines does it take

to implement a multithreaded Web server that supports running CGI scripts? Well,

at a bare minimum, it takes the following:

import SocketServer,CGIHTTPServer
SocketServer.ThreadingTCPServer((‘127.0.0.1’,80),\

CGIHTTPServer.CGIHTTPRequestHandler).serve_forever()

Point your Web browser to http://127.0.0.1/file (where file is the name of

some text file in your current directory) and verify that it really does work.

4807-7 ch15.F 5/24/01 8:59 AM Page 264

265Chapter 15 ✦ Networking

BaseHTTPRequestHandler
The starting class for a Web server request handler is BaseHTTPRequestHandler
(in the BaseHTTPServer module), a child of StreamRequestHandler. This class

accepts an HTTP connection (usually from a Web browser), reads and extracts the

headers, and calls the appropriate method to handle the request.

Subclasses of BaseHTTPRequestHandler should not override the __init__ or

handle methods, but should instead implement a method for each HTTP command

they need to handle. For each HTTP command (GET, POST, and so on),

BaseHTTPRequestHandler calls its do_<command> method, if present. For

example, if your subclass needs to support the HTTP PUT command, just add a

do_PUT() method to your subclass and it will automatically be called for any

HTTP PUT requests.

The request handler stores the original request line in its raw_request instance

variable, and its parts in command (GET, POST, and so on), path (for example, /

index.html), and request_version (for example, HTTP/1.0). headers is an instance

of mimetools.Message, and contains the parsed version of the request headers.

See Chapter 17 for more information about the mimetools.Message class.
Alternatively, you can specify a different class to use for reading and parsing the
headers by changing the value of the BaseHTTPRequestHandler.
MessageClass class variable.

Use the rfile and wfile objects to read and write data. If the request has addi-

tional data beyond the request headers, rfile will be positioned at the beginning

of that data by the time the handler calls the appropriate do_<command> method.

BaseHTTPRequestHandler uses the value in server_version when writing out a

Server response header; you can customize this from its default of BaseHTTP/0.x.

Additionally, the protocol_version variable defaults to HTTP/1.0, but you can set

it to a different version if needed.

In your do_<command> method, the first output you send should be via the

send_response(code[, message]) method, where code is an HTTP code (such as

200) and message is an optional text message explaining the code. (If the request is

invalid, you can instead call send_error(code[, message]), and then return from

the command method.) When you call send_response, BaseHTTPRequestHandler
adds in Date and Server headers.

After a call to send_response, you can call send_header(key, value) as needed

to write out MIME headers; call end_headers() when you’re done:

def do_GET(self):
self.send_response(200)
self.send_header(‘Content-type’,’text/html’)
self.send_header(‘Content-length’,`len(data)`)
self.end_headers()
send the rest of the data

Cross-
Reference

4807-7 ch15.F 5/24/01 8:59 AM Page 265

266 Part III ✦ Networking and the Internet

Most Web servers generate logs for later analysis. Call the log_request([code[,
size]]) method to log a successful request (including the size, if known, makes

the logs more useful). log_message(format, arg0, arg1, ...) is a general-pur-

pose logging method; the format and arguments are similar to normal Python string

formatting:

self.log_message(‘%s : %d’, ‘Time taken’,425)

Each request is automatically logged to stdout using the NCSA httpd logging

format.

SimpleHTTPRequestHandler
Whereas the BaseHTTPRequestHandler doesn’t actually handle any HTTP com-

mands, SimpleHTTPRequestHandler (in the SimpleHTTPServer module) adds

support for both HEAD and GET commands by sending back to the client requested

files that reside in the current working directory or any of its subdirectories. If the

requested file is actually a directory, SimpleHTTPRequestHandler generates, on

the fly, a Web page containing a directory listing; and sends it back to the client.

Try the following example to see this in action. This code starts a Web server on

port 8000, and then opens a Web browser and begins browsing in the current

working directory. Because the server continuously loops to serve requests, the

example starts the server on a separate thread so you can still launch a Web

browser:

>>> import Webbrowser,threading,SimpleHTTPServer
>>> def go():
... t = SimpleHTTPServer.test
... threading.Thread(target=t).start()
... Webbrowser.open(‘http://127.0.0.1:8000’)
>>> go() # Below is the output after browsing around a little
Serving HTTP on port 8000 ...
endor - - [28/Dec/2000 18:00:48] “GET /3dsmax3/ HTTP/1.1” 200 -
endor - - [28/Dec/2000 18:00:50] “GET /3dsmax3/Maxsdk/
HTTP/1.1” 200 -
endor - - [28/Dec/2000 18:00:53] “GET /3dsmax3/Maxsdk/Include/
HTTP/1.1” 200 -

The test() function in the SimpleHTTPServer module simply starts a new server

on port 8000.

In addition to the variables inherited from BaseHTTPRequestHandler, this class

has an extensions_map dictionary that maps file extensions to MIME data types,

so that the user’s Web browser will correctly handle the file it receives. You can

expand this list to add new types you want to support.

4807-7 ch15.F 5/24/01 8:59 AM Page 266

267Chapter 15 ✦ Networking

CGIHTTPRequestHandler
The CGIHTTPRequestHandler (in the CGIHTTPServer module) takes

SimpleHTTPRequestHandler one step further and adds support for executing

CGI scripts. The CGI (Common Gateway Interface) is a standard for executing

server-side programs that can process input from the user’s browser (saving data

they entered in an HTML form, for example).

Before you ever make a Web server open to public use, take the time to learn
about what security risks are involved. This warning is doubly strong for modules
such as CGIHTTPRequestHandler that can execute arbitrary Python code; even
the smallest security hole is an invitation for intruders.

For each GET or POST command that comes in, CGIHTTPRequestHandler checks

whether the specified file is actually a CGI program and, if so, launches it as an exter-

nal program. If it is not, the file contents are sent back to the browser normally. Note

that the POST method is supported for CGI programs only.

To decide if a file is a valid CGI program, CGIHTTPRequestHandler checks the file’s

path against the cgi_directories member list, which, by default, contains the

directories /cgi-bin and htbin (you can add other directories if you want). If the file is

in one of those directories or any of their subdirectories and is either a Python mod-

ule or an executable file, the file is executed and its output returned to the client.

Example: form handler CGI script
The example in this section shows CGIHTTPRequestHandler at work. Follow these

steps to try it out:

1. Listing 15-2 is a tiny HTML form that asks you to enter your name. Save the file

to disk (anywhere you want) as form.html. I saved it to c:\temp, so in the

following steps, replace c:\temp with the directory you chose.

2. In the same directory, create a subdirectory called cgi-bin:

md c:\temp\cgi-bin (from an MS-DOS prompt)

3. Listing 15-3 is a small CGI script; save it to your new cgi-bin directory as

handleForm.py.

4. Switch to your original directory (c:\temp), start up a Python interpreter, and

enter the following lines to start a Web server:

>>> import CGIHTTPServer
>>> CGIHTTPServer.test()

5. Open a Web browser and point it to http://127.0.0.1:8000/form.html to

display the simple Web page shown in Figure 15-2.

Caution

4807-7 ch15.F 5/24/01 8:59 AM Page 267

268 Part III ✦ Networking and the Internet

Figure 15-2: The Python Web server returned this page; clicking Go
executes the CGI script.

6. Enter your name in the text box and click Go. The Web server executes the

Python CGI script and displays the results shown in Figure 15-3.

Figure 15-3: The Python Web server ran the CGI script and returned
the results.

4807-7 ch15.F 5/24/01 8:59 AM Page 268

269Chapter 15 ✦ Networking

Listing 15-2: form.html – A simple HTML form

<html><body>
<form method=GET
action=”http://127.0.0.1:8000/cgi-bin/handleForm.py”>
Your name:<input name=”User”>
<input type=”Submit” value=”Go!”>
</form>

</body></html>

Listing 15-3: handleForm.py – A Python CGI script

import os
print “Content-type: text/html\r\n<html><body>”
name = os.environ.get(‘QUERY_STRING’,’’)
print ‘Hello, %s!<p>’ % name[len(‘User=’):]
print ‘</body></html>’

To make use of this functionality, you should read up on CGI (which is certainly not

specific to Python). Although a complete discussion is outside the scope of this

chapter, the following few hints will help get you started:

✦ CGIHTTPRequestHandler stores the user information (including form values)

in environment variables. (Write a simple CGI script to print out all variables

and their values to test this.)

✦ Anything you write to stdout (via print or sys.stdout.write) is returned

to the client, and it can be text or binary data.

✦ CGIHTTPRequestHandler outputs some response headers for you, but you

can add others if needed (such as the Content-type header in the example).

✦ After the headers, you must output a blank line before any data.

✦ On UNIX, external programs run with the nobody user ID.

Handling Multiple Requests Without Threads
Although threads can help the Web servers in the previous sections handle more

than one connection simultaneously, the program usually sits around waiting for

data to be transmitted across the network. (Instead of being CPU bound, the pro-

gram is said to be I/O bound.) In situations where your program is I/O bound, a lot

4807-7 ch15.F 5/24/01 8:59 AM Page 269

270 Part III ✦ Networking and the Internet

of CPU time is wasted switching between threads that are just waiting until they can

read or write more data to a file or socket. In such cases, it may be better to use the

select and asyncore modules. These modules still let you process multiple

requests at a time, but avoid all the senseless thread switching.

The select(inList, outList, errList[, timeout]) function in the select
module takes three lists of objects that are waiting to perform input or output (or

want to be notified of errors). select returns three lists, subsets of the originals,

containing only those objects that can now perform I/O without blocking. If the

timeout parameter is given (a floating-point number indicating the number of

seconds to wait) and is non-zero, select returns when an object can perform I/O

or when the time limit is reached (whereupon empty lists are returned). A timeout
value of 0 does a quick check without blocking.

The three lists hold input, output, and error objects, respectively (objects that are

interested in reading data, writing data, or in being notified of errors that occurred).

Any of the three lists can be empty, and the objects can be integer file descriptors

or filelike objects with a fileno() method that returns a valid file descriptor.

See “Working with File Descriptors” in Chapter 10 for more information.

By using select, you can start several read or write operations and, instead of

blocking until you can read or write more, you can continue to do other work. This

way, your I/O-bound program spends as much time as possible being driven by its

performance-limiting factor (I/O), instead of a more artificial factor (switching

between threads). With select, it is possible to write reasonably high-performance

servers in Python.

On Windows systems, select() works on socket objects only. On UNIX systems,
however, it also works on other file descriptors, such as named pipes.

A slightly more efficient alternative to select is the select.poll() function,

which returns a polling object (available on UNIX platforms). After you create a

polling object, you call the register(fd[, eventmask]) method to register a par-

ticular file descriptor (or object with a fileno() method). The optional eventmask
is constructed by bitwise OR-ing together any of the following: select.POLLIN (for

input), select.POLLPRI (urgent input), select.POLLOUT (for output), or

select.POLLERR.

You can register as many file descriptors as needed, and you can remove them from

the object by calling the polling object’s unregister(fd) method.

Call the polling object’s poll([timeout]) method to see which file descriptors, if

any, are ready to perform I/O without blocking. poll returns a possibly empty list

of tuples of the form (fd, event), an entry for each file descriptor whose state has

changed. The event will be a bitwise-OR of any of the eventmask flags as well as

POLLHUP (hang up) or POLLNVAL (an invalid file descriptor).

Note

Cross-
Reference

4807-7 ch15.F 5/24/01 8:59 AM Page 270

271Chapter 15 ✦ Networking

asyncore
If you’ve never used select or poll before, it may seem complicated or confusing.

To help in creating select-based socket clients and servers, the asyncore module

takes care of a lot of the dirty work for you.

asyncore defines the dispatcher class, a wrapper around a normal socket object

that you subclass to handle messages about when the socket can be read or

written without blocking. Because it is a wrapper around a socket, you can often

treat a dispatcher object like a normal socket (it has the usual connect(addr),

send(data), recv(bufsize), listen([backlog]), bind(addr), accept(), and

close() methods).

Although the dispatcher is a wrapper around a socket, you still need to create the

underlying socket (either the caller needs to or you can create it in the dispatcher’s

constructor) by calling the create_socket(family, type) method:

d = myDispatcher()
d.create_socket(AF_INET,SOCK_STREAM)

create_socket creates the socket and sets it to nonblocking mode.

asyncore calls methods of a dispatcher object when different events occur. When

the socket can be written to without blocking, for example, the handle_write()
method is called. When data is available for reading, handle_read() is called. You

can also implement handle_connect() for when a socket connects successfully,

handle_close() for when it closes, and handle_accept() for when a call to

socket.accept will not block (because an incoming connection is available and

waiting).

asyncore calls the readable() and writable() methods of the dispatcher object

to see if it is interested in reading or writing data, respectively (by default, both

methods always return 1). You can override these so that, for example, asyncore
doesn’t waste time checking for data if you’re not even trying to read any.

In order for asyncore to fire events off to any dispatcher objects, you need to call

asyncore.poll([timeout]) (on UNIX, you can also call asyncore.poll2
([timeout]) to use poll instead of select) or asyncore.loop([timeout]). These

functions use the select module to check for a change in I/O state and then fire off

the appropriate events to the corresponding dispatcher objects. poll checks once

(with a default timeout of 0 seconds), but loop checks until there are no more

dispatcher objects that return true for either readable or writable, or until the

timeout is reached (a default of 30 seconds).

The best way to absorb all this is by looking at an example. Listing 15-4 is a very

simple asynchronous Web page retrieval class that retrieves the index.html page

from a Web site and writes it to disk (including the Web server’s response headers).

4807-7 ch15.F 5/24/01 8:59 AM Page 271

272 Part III ✦ Networking and the Internet

Listing 15-4: asyncget.py – Asynchronous
HTML page retriever

import asyncore, socket

class AsyncGet(asyncore.dispatcher):
def __init__(self, host):

asyncore.dispatcher.__init__(self)
self.host = host

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((host,80))

self.request = ‘GET /index.html HTTP/1.0\r\n\r\n’
self.outf = None
print ‘Requesting index.html from’,host

def handle_connect(self):
print ‘Connect’,self.host

def handle_read(self):
if not self.outf:

print ‘Creating’,self.host
self.outf = open(self.host,’wt’)

data = self.recv(8192)
if data:

self.outf.write(data)

def writeable(self):
return len(self.request) > 0

def handle_write(self):
Not all data might be sent, so track what did make it
num_sent = self.send(self.request)
self.request = self.request[num_sent:]

def handle_close(self):
asyncore.dispatcher.close(self)
print ‘Socket closed for’,self.host
if self.outf:

self.outf.close()

Now retrieve some pages
AsyncGet(‘www.yahoo.com’)
AsyncGet(‘www.cnn.com’)
AsyncGet(‘www.python.org’)
asyncore.loop() # Wait until all are done

4807-7 ch15.F 5/24/01 8:59 AM Page 272

273Chapter 15 ✦ Networking

Here’s some sample output:

C:\temp>asyncget.py
Requesting index.html from www.yahoo.com
Requesting index.html from www.cnn.com
Requesting index.html from www.python.org
Connect www.yahoo.com
Connect www.cnn.com
Creating www.yahoo.com
Connect www.python.org
Creating www.cnn.com
Creating www.python.org
Socket closed for www.yahoo.com
Socket closed for www.python.org
Socket closed for www.cnn.com

Notice that the requests did not all finish in the same order they were started.

Rather, they each made progress according to when data was available. By being

event-driven, the I/O-bound program spends most of its time working on its great-

est performance boundary (I/O), instead of wasting time with needless thread

switching.

Summary
If you’ve done any networking programming in some other languages, you’ll find

that doing the same thing in Python can be done with a lot less effort and bugs.

Python has full support for standard networking functionality, as well as utility

classes that do much of the work for you. In this chapter, you:

✦ Converted IP addresses to registered names and back.

✦ Created sockets and sent messages between them.

✦ Used SocketServers to quickly build custom servers.

✦ Built a working Web server in only a few lines of Python code.

✦ Used select to process multiple socket requests without threads.

The next chapter looks at more of Python’s higher-level support for Internet proto-

cols, including modules that hide the nasty details of “speaking” protocols such as

HTTP, FTP, and telnet.

✦ ✦ ✦

4807-7 ch15.F 5/24/01 8:59 AM Page 273

4807-7 ch15.F 5/24/01 8:59 AM Page 274

Speaking
Internet
Protocols

On the Internet, people use various protocols to transfer

files, send e-mail, and request resources from the World

Wide Web. Python provides libraries to help work with

Internet protocols. This chapter shows how you can write

Internet programs without having to handle lower-level

TCP/IP details such as sockets. Supported protocols include

HTTP, POP3, SMTP, FTP, and Telnet. Python also provides use-

ful CGI scripting abilities.

Python’s Internet Protocol Support
Python’s standard libraries make it easy to use standard

Internet protocols such as HTTP, FTP, and Telnet. These

libraries are built on top of the socket library, and enable

you to program networked programs with a minimum of

low-level code.

Each Internet protocol is documented in a numbered request for
comment (RFC). The name is a bit misleading for established

protocols such as POP and FTP, as these protocols are widely

implemented, and are no longer under much discussion!

These protocols are quite feature-rich — the RFCs for the

protocols discussed here would fill several hundred printed

pages. The standard Python modules provide a high-level

client for each protocol. However, you may need to know

more about the protocols’ syntax and meaning, and the RFCs

are the best place to learn this information. One good online

RFC repository is at http://www.rfc-editor.org/.

Refer to Chapter 15 for more information about the
socket module and a quick overview of TCP/IP.

Cross-
Reference

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Python’s Internet
protocol support

Retrieving Internet
resources

Sending HTTP
requests

Sending and
receiving e-mail

Transferring files via
FTP

Retrieving resources
using Gopher

Working with
newsgroups

Using the Telnet
protocol

Writing CGI scripts

✦ ✦ ✦ ✦

4807-7 ch16.F 5/24/01 8:59 AM Page 275

276 Part III ✦ Networking and the Internet

Retrieving Internet Resources
The library urllib provides an easy mechanism for grabbing files from the

Internet. It supports HTTP, FTP, and Gopher requests. Resource requests can take a

long time to complete, so you may want to keep them out of the main thread in an

interactive program.

The simplest way to retrieve a URL is with one line:

urlretrieve(url[,filename[,callback[,data]]])

The function urlretrieve retrieves the resource located at the address url and

writes it to a file with name filename. For example:

>>> MyURL=”http://www.pythonapocrypha.com”
>>> urllib.urlretrieve(MyURL, “pample2.swf”)
>>> urllib.urlcleanup() # clean the cache!

If you do not pass a filename to urlretrieve, a temporary filename will be magi-

cally generated for you. The function urlcleanup frees up resources used in calls

to urlretrieve.

The optional parameter callback is a function to call after retrieving each block of a

file. For example, you could use a callback function to update a progress bar show-

ing download progress. The callback receives three arguments: the number of

blocks already transferred, the size of each block (in bytes), and the total size of

the file (in bytes). Some FTP servers do not return a file size; in this case, the third

parameter is -1.

Normally, HTTP requests are sent as GET requests. To send a POST request, pass

a value for the optional parameter data. This string should be encoded using

urlencode.

To use a proxy on Windows or UNIX, set the environment variables http_proxy,

ftp_proxy, and/or gopher_proxy to the URL of the proxy server. On a Macintosh,

proxy information from Internet Config is used.

Manipulating URLs
Special characters are encoded in URLs to ensure they can be passed around easily.

Encoded characters take the form %##, where ## is the ASCII value of the character

in hexadecimal. Use the function quote to encode a string, and unquote to trans-

late it back to normal, human-readable form:

>>> print urllib.quote(“human:nature”)
human%3anature
>>> print urllib.unquote(“cello%23music”)
cello#music

4807-7 ch16.F 5/24/01 8:59 AM Page 276

277Chapter 16 ✦ Speaking Internet Protocols

The function quote_plus does the encoding of quote, but also replaces spaces

with plus signs, as required for form values. The corresponding function

unquote_plus decodes such a string:

>>> print urllib.quote_plus(“bob+alice forever”)
bob%2balice+forever
>>> print urllib.unquote_plus(“where+are+my+keys?”)
where are my keys?

Data for an HTTP POST request must be encoded in this way. The function

urlencode takes a dictionary of names and values, and returns a properly encoded

string, suitable for HTTP requests:

>>> print urllib.urlencode(
{“name”:”Eric”,”species”:”sea bass”})

species=sea+bass&name=Eric

See the module urlparse, covered in Chapter 17, for more functions to parse
and process URLs.

Treating a URL as a file
The function urlopen(url[,data]) creates and returns a filelike object for the

corresponding address url. The source can be read like an ordinary file. For exam-

ple, the following code reads a Web page and checks the length of the file (the full

HTML text of the page):

>>> Page=urllib.urlopen(“http://www.python.org”)
>>> print len(Page.read())
339

The data parameter, as for urlretrieve, is used to pass urlencoded data for a

POST request.

The filelike object returned by urlopen provides two bonus methods. The method

geturl returns the real URL — usually the same as the URL you passed in, but

possibly different if a Web page redirected you to another URL. The method info
returns a mimetools.Message object describing the file.

Refer to Chapter 17 for more information about mimetools.

URLopeners
The classes URLopener and FancyURLopener are what you actually build and use

with calls to urlopen and urlretrieve. You may want to subclass them to handle

new addressing schemes. You will probably always use FancyURLopener. It is a

Cross-
Reference

Cross-
Reference

4807-7 ch16.F 5/24/01 8:59 AM Page 277

278 Part III ✦ Networking and the Internet

subclass of URLopener that handles HTTP redirections (response code 301 and

302) and basic authentication (response code 401).

The opener constructor takes, as its first argument, a mapping of schemes (such as

HTTP) to proxies. It also takes the keyword arguments key_file and cert_file,

which, if supplied, allow you to request secure Web pages (using the HTTPS scheme).

The default Python build does not currently include SSL support. You must edit
Modules/Setup to include SSL, and then rebuild Python, in order to open https://
addresses with urllib.

Openers provide a method, open(url[,data]), that opens the resource with

address url. The data parameter works as in urllib.urlopen. To open new url

types, override the method open_unknown(url[,data]) in your subclass. By

default, this method returns an “unknown url type” IOError.

Openers also provide a method retrieve(url[,filename[,hook[,data]]]),

which functions like urllib.urlretrieve.

The HTTP header user-agent identifies a piece of client software to a Web server.

Normally, urllib tells the server that it is Python-urllib/1.13 (where 1.13 is the

current version of urllib). If you subclass the openers, you can override this by

setting the version attribute before calling the parent class’s constructor.

Extended URL opening
The module urllib2 is a new and improved version of urllib. urllib2 provides a

wider array of features, and is easier to extend. The syntax for opening a URL is the

same: urlopen(url[,data]). Here, url can be a string or a Request object.

The Request class gathers HTTP request information (it is very similar to the class

httplib.HTTP). Its constructor has syntax Request(url[,data[,headers]]).

Here, headers must be a dictionary. After constructing a Request, you can call

add_header(name,value) to send additional headers, and add_data(data) to

send data for a POST request. For example:

>>> # Request constructor is picky: “http://” and the
>>> # trailing slash are both required here:
>>> MyRequest=urllib2.Request(“http://www.python.org/”)
>>> MyRequest.add_header(“user-agent”,”Testing 1 2 3”)
>>> URL=urllib2.urlopen(MyRequest)
>>> print URL.readline() # read just a little bit
<HTML>

The module urllib2 can handle some fancier HTTP requests, such as basic

authentication. For further details, consult the module documentation.

The module urllib2 is new in Python Version 2.1.New
Feature

Note

4807-7 ch16.F 5/24/01 8:59 AM Page 278

279Chapter 16 ✦ Speaking Internet Protocols

Sending HTTP Requests
HyperText Transfer Protocol (HTTP) is a format for requests that a client (usually a

browser) sends to a server on the World Wide Web. An HTTP request includes vari-

ous headers. Headers include information such as the URL of a requested resource,

file formats accepted by the client, and cookies, parameters used to cache user-

specific information (see RFC 2616 for details).

The httplib module lets you build and send HTTP requests and receive server

responses. Normally, you retrieve Web pages using the urllib module, which is

simpler. However, httplib enables you to control headers, and it can handle POST

requests.

Building and using request objects
The module method HTTP([host[,port]]) constructs and returns an HTTP

request object. The parameter host is the name of a host (such as www.yahoo.com).

The port number can be passed via the port parameter, or parsed from the host

name; otherwise, it defaults to 80. If you construct an HTTP object without provid-

ing a host, you must call its connect(host[,port]) method to connect to a server

before sending a request.

To start a Web request, call the method putrequest(action,URL). Here, action
is the request method, such as GET or POST, and URL is the requested resource,

such as /stuff/junk/index.html.

After starting the request, you can (and usually will) send one or more headers, by

calling putheader(name, value[, anothervalue,...]). Then, whether you sent

headers or not, you call the endheaders method. For example, the following code

informs the server that HTML files are accepted (something most Web servers will

assume anyway), and then finishes off the headers:

MyHTTP.putheader(‘Accept’, ‘text/html’)
MyHTTP.endheaders()

You can pass multiple values for a header in one call to putheader.

After setting up any headers, you may (usually on a POST request) send additional

data to the server by calling send(data).

Now that you have built the request, you can get the server’s reply. The method

getreply returns the server’s response in a 3-tuple: (replycode, message,
headers). Here, replycode is the HTTP status code (200 for success, or perhaps the

infamous 404 for “resource not found”).

The body of the server’s reply is returned (as a file object with read and close
methods) by the method getfile. This is where the request object finally receives

what it asks for.

4807-7 ch16.F 5/24/01 8:59 AM Page 279

280 Part III ✦ Networking and the Internet

For example, the following code retrieves the front page from www.yahoo.com:

>>> Request=httplib.HTTP(“www.yahoo.com”)
>>> Request.putrequest(“GET”,”/”)
>>> Request.endheaders()
>>> Request.getreply()
(200, ‘OK’, <mimetools.Message instance at 0085EBD4>)
>>> ThePage=Request.getfile()
>>> print ThePage.readline()[:50]
<html><head><title>Yahoo!</title><base href=http:/

This example performs a Web search by sending a POST request. Data in a POST

request must be properly encoded using urllib.urlencode (see Listing 16-1).

This code uses an HTMLParser (from htmllib) to extract all links from the search

results.

See Chapter 18 for complete information about htmllib.

Listing 16-1: WebSearch.py

import httplib
import htmllib
import urllib
import formatter
Encode our search terms as a URL, by
passing a dictionary to urlencode
SearchDict={“q”:”Charles Dikkins”,

“kl”:”XX”,”pg”:”q”,”Translate”:”on”}
SearchString=urllib.urlencode(SearchDict)
print “search:”,SearchString
Request=httplib.HTTP(“www.altavista.com”)
Request.putrequest(“POST”,”/cgi-bin/query”)
Request.putheader(‘Accept’, ‘text/plain’)
Request.putheader(‘Accept’, ‘text/html’)
Request.putheader(‘Host’, ‘www.alta-vista.com’)
Request.putheader(“Content-length”,`len(SearchString)`)
Request.endheaders()
Request.send(SearchString)
print Request.getreply()
Read and parse the resulting HTML
HTML=Request.getfile().read()
MyParser=htmllib.HTMLParser(formatter.NullFormatter())
MyParser.feed(HTML)
Print all the anchors from the results page
print MyParser.anchorlist

Cross-
Reference

4807-7 ch16.F 5/24/01 8:59 AM Page 280

281Chapter 16 ✦ Speaking Internet Protocols

Sending and Receiving E-Mail
Python provides libraries that receive mail from, and send mail to, a mail server.

Electronic mail is transmitted via various protocols. The most common mail proto-

cols are POP3 (for receiving mail), SMTP (for sending mail), and IMAP4 (for reading

mail and managing mail folders). They are supported by the Python modules

poplib, smtplib, and imaplib, respectively.

Accessing POP3 accounts
To access a POP3 mail account, you construct a POP3 object. The POP3 object

offers various methods to send and retrieve mail. It raises the exception

poplib.error_proto if it encounters problems. See RFC 1939 for the full POP3

protocol.

Many of its methods return output as a 3-tuple: a server response string, response

lines (as a list), and total response length (in bytes). In general, you can access the

second tuple element and ignore the others.

Connecting and logging in
The POP3 constructor takes two arguments: host and port number. The port param-

eter is optional, and defaults to 110. For example:

Mailbox=poplib.POP3(“mail.gianth.com”) # connect to mail server

After connecting, you can access the mail server’s greeting by calling getwelcome.

You normally sign in by calling user(name) and then pass(password). To sign on

using APOP authentication, call apop(username, secret). To sign in using RPOP,

call rpop(username). (Currently, rpop is not supported.)

Once you log in, the mailbox is locked until you call quit (or the session times

out). To keep a session from timing out, you can call the method noop, which

simply keeps the session alive.

Checking mail
The method stat checks the mailbox’s status. It returns a tuple of two numbers:

the number of messages and the total size of your messages (in bytes).

The method list([index]) lists the messages in your inbox. It returns a 3-tuple,

where the second element is a list of message entries. A message entry is the mes-

sage number, followed by its size in bytes. Passing a message index to list makes

it return just that message’s entry:

>>> Mailbox.list()
(‘+OK 2 messages (10012 octets)’, [‘1 9003’, ‘2 1009’], 16)
>>> Mailbox.list(2)
+OK 2 1009

4807-7 ch16.F 5/24/01 8:59 AM Page 281

282 Part III ✦ Networking and the Internet

The method uidl([index]) retrieves unique identifiers for the messages in a mail-

box. Unique identifiers are unchanged by the addition and deletion of messages,

and they are unique across sessions. The method returns a list of message indexes

and corresponding unique IDs:

>>> Mailbox.uidl()
(‘+OK 2 messages (10012 octets)’, [‘1 2’, ‘2 3’], 10)
>>> Mailbox.uidl(2)
+OK 2 3

Retrieving mail
The method retr(index) retrieves and returns message number index from your

mailbox. What you get back is actually a tuple: the server response, a list of mes-

sage lines (including headers), and the total response length (in bytes). To retrieve

part of a message, call the method top(index, lines)—top is the same as retr,

but stops after lines lines.

Deleting mail
Use the method dele(index) to delete message number index. If you change your

mind, use the method rset to cancel all deletions you have done in the current

session.

Signing off
When you finish accessing a mailbox, call the quit method to sign off.

Example: retrieving mail
The code in Listing 16-2 signs on to a mail server and retrieves the full text of the

first message in the mailbox. It does no fancy error handling. It strips off all the

message headers, printing only the body of the message.

Listing 16-2: popmail.py

import poplib
Replace server, user, and password with your
mail server, user name, and password!
Mailbox=poplib.POP3(“mail.seanbaby.com”)
Mailbox.user(“dumplechan@seanbaby.com”)
Mailbox.pass_(“secretpassword”)
MyMessage=Mailbox.retr(1)
FullText=”” # Build up the message body in FullText
PastHeaders=0

4807-7 ch16.F 5/24/01 8:59 AM Page 282

283Chapter 16 ✦ Speaking Internet Protocols

for MessageLine in MyMessage[1]:
if PastHeaders==0:

A blank line marks the end of headers:
if (len(MessageLine)==0):

PastHeaders=1
else:

FullText+=MessageLine+”\n”
Mailbox.quit()
print FullText

Accessing SMTP accounts
The module smtplib defines an object, SMTP, that you use to send mail using the

Simple Mail Transport Protocol (SMTP). An enhanced version of SMTP, called

ESMTP, is also supported. See RFC 821 for the SMTP protocol, and RFC 1869 for

information about extensions.

Connecting and disconnecting
You can pass a host name and a port number to the SMTP constructor. This con-

nects you to the server immediately. The port number defaults to 25:

Outbox=smtplib.SMTP(“mail.gianth.com”)

If you do not supply a host name when you construct an SMTP object, you must call

its connect method, passing it a host name and (optionally) a port number. The

host name can specify a port number after a colon:

Outbox=smtplib.SMTP()
Outbox.connect(“mail.gianth.com:25”)

After you finish sending mail, you should call the quit method to close the

connection.

Sending mail
The method sendmail(sender, recipients, message[,options,
rcpt_options]) sends e-mail. The parameter sender is the message author (usu-

ally your e-mail address!). The parameter recipients is a list of addresses that should

receive the message. The parameter message is the message as one long string,

including all its headers. For example:

>>> MyAddress=bob@myserver.com
>>> TargetAddress=”earl@otherserver.com”
>>> HeaderText=”From: “+MyAddress+”\r\n”
>>> HeaderText+=”To: “+TargetAddress+”\r\n\r\n”
>>> Outbox.sendmail(MyAddress,[TargetAddress],HeaderText+”Hi!”)

4807-7 ch16.F 5/24/01 8:59 AM Page 283

284 Part III ✦ Networking and the Internet

To use extended options, pass a list of ESMTP options in the options parameter. You

can pass RCPT options in the rcpt_options parameter.

The method sendmail raises an exception if it could not send mail to any recipient.

If at least one address succeeded, it returns a dictionary explaining any failures. In

this dictionary, each key is an address. The corresponding value is a tuple: result

code and error message.

Other methods
The method verify(address) checks an e-mail address address for validity. It

returns a tuple: the first entry is the response code, the second is the server’s

response string. A response code of 250 is success; anything above 400 is failure:

>>> Outbox.verify(“dumplechan@seanbaby.com”)
(250, ‘ok its for <dumplechan@seanbaby.com>’)
>>> Outbox.verify(“dimplechin@seanbaby.com”)
(550, ‘unknown user <dimplechin@seanbaby.com>’)

An ESMTP server may support various extensions to SMTP, such as delivery ser-

vice notification. The method has_extn(name) returns true if the server supports

a particular extension:

>>> Outbox.has_extn(“DSN”) # is status-notification available?
1

To identify yourself to a server, you can call helo([host]) for an SMTP server; or

ehlo ([host]) for an ESMTP server. The optional parameter host defaults to the

fully qualified domain name of the local host. The methods return a tuple: result

code (250 for success) and server response string. Because the sendmail method

can handle the HELO command, you do not normally need to call these methods

directly.

Handling errors
Methods of an SMTP object may raise the following exceptions if they encounter an

error:

SMTPException Base exception class for all smtplib exceptions.

SMTPServerDisconnected The server unexpectedly disconnected, or no

connection has been made yet.

SMTPResponseException Base class for all exceptions that include an

SMTP error code. An SMTPResponseException

has two attributes: smtp_code (the response

code of the error, such as 550 for an invalid

address) and smtp_error (the error message).

SMTPSenderRefused Sender address refused. The exception

attribute sender is the invalid sender.

4807-7 ch16.F 5/24/01 8:59 AM Page 284

285Chapter 16 ✦ Speaking Internet Protocols

SMTPRecipientsRefused All recipient addresses refused. The errors for

each recipient are accessible through the

attribute recipients, which is a dictionary of

exactly the same sort as SMTP.sendmail()
returns.

SMTPDataError The SMTP server refused to accept the mes-

sage data.

SMTPConnectError An error occurred during establishment of a

connection with the server.

SMTPHeloError The server refused a “HELO” message.

Accessing IMAP accounts
IMAP is a protocol for accessing mail. Like POP, it enables you to read and delete

messages. IMAP offers additional features, such as searching for message text and

organizing messages in separate mailboxes. However, IMAP is harder to use than

POP, and is far less commonly used.

See RFC 2060 for the full description of IMAP4rev1.

The module imaplib provides a class, IMAP4, to serve as an IMAP client. The

names of IMAP4 methods correspond to the commands of the IMAP protocol. Most

methods return a tuple (code, data), where code is “OK” (good) or “NO” (bad), and

data is the text of the server response.

The IMAP protocol includes various magical behaviors. For example, you can move

all the messages from INBOX into a new mailbox by attempting to rename INBOX.

(The INBOX folder isn’t actually renamed, but its contents are moved to the other

mailbox!) Not all the features of the protocol are covered here; consult RFC 2060 for

more information.

Connection, logon, and logoff
The IMAP4 constructor takes host and port arguments, which function here just as

they do for a POP3 object. If you construct an IMAP4 object without specifying a

host, you must call open(host,port) to connect to a server before you can use

other methods. The port number defaults to 143.

To log in, call the method login(user,password). Call logout to log off. The

method noop keeps an existing session alive. For example:

>>> imap=imaplib.IMAP4(“mail.mundomail.net”)
>>> imap.login(“dumplechan”,”tacos”)
(‘OK’, [‘LOGIN completed’])
>>> imap.noop()
(‘OK’, [‘NOOP completed’])

Cross-
Reference

4807-7 ch16.F 5/24/01 8:59 AM Page 285

286 Part III ✦ Networking and the Internet

An IMAP server may use more advanced authentication methods. To authenticate

in fancier ways, call the method authenticate(machanism,handler). Here, mech-
anism is the name of the authentication mechanism, and handler is a function that

receives challenge strings from the server and returns response strings. (Base64

encoding is handled internally.)

Checking, reading, and deleting mail
Before you can do anything with messages, you must choose a mailbox. The mailbox

INBOX is always available. To select a mailbox, call select([mailbox[,
readonly]]). The parameter mailbox is the mailbox name, which defaults to

INBOX. If readonly is present and true, then modifications to the mailbox are forbid-

den. The return value includes the number of messages in the mailbox. For example:

>>> imap.select(“INBOX”)
(‘OK’, [‘2’])

When finished with a mailbox, call close to close it.

The method search(charset,criteria...) searches the current mailbox for

messages satisfying one or more criteria. The parameter charset, if not None,

specifies a particular character set to use. One or more values can be passed as

criteria; these are concatenated into one search string. A list of matching message

indexes is returned. Note that text (other than keywords) in criteria should be

quoted. For example, the following code checks for messages from the president

(none today), and then checks for messages whose subject contains “Howdy!” (and

finds message number 2):

>>> imap.search(None,”ALL”,”FROM”,’”president@whitehouse.gov”’)
(‘OK’, [None])
>>> imap.search(None,”ALL”,”SUBJECT”,’”Howdy!”’)
(‘OK’, [‘2’])

To retrieve a message, call fetch(messages,parts). Here, messages is a string

listing messages, such as “2”, or “2,7”, or “3:5” (for messages 3 through 5). The

parameter parts should be a parenthesized list of what parts of the message(s) to

retrieve — for instance, FULL for the entire message, BODY for just the body. For

example:

>>> imap.fetch(“2”,”(BODY[text])”)
(‘OK’, [(‘2 (BODY[text] {13}’, ‘Howdy cowboy!’), ‘)’, ‘2 (FLAGS
(\\SEEN))’])

To change a message’s status, call store(messages,command,flags). Here, com-
mand is the command to perform, such as “+FLAGS” or “-FLAGS”. The parameter

flags is a list of flags to set or remove. For example, the following line of code

deletes message 2:

>>> imap.store(“2”,”+FLAGS”,[“\Deleted”])
(‘OK’, [‘2 (FLAGS (\\SEEN \\DELETED))’])

4807-7 ch16.F 5/24/01 8:59 AM Page 286

287Chapter 16 ✦ Speaking Internet Protocols

The method expunge permanently removes all messages marked as deleted by a

\Deleted flag. Such messages are automatically expunged when you close the

current mailbox.

The method copy(messages,newmailbox) copies a set of messages to the mail-

box named newmailbox.

The method check does a mailbox “checkpoint” operation; what this means

depends on the server.

You normally operate on messages by index number. However, messages also have

a unique identifier, or uid. To use uids to name messages, call the method uid
(commandname, [args...]). This carries out the command commandname using

uids instead of message indices.

Administering mailboxes
To create a new mailbox, call create(name). To delete a mailbox, call delete(name).

Call rename(oldname,newname) to rename mailbox oldname to the name newname.

Mailboxes can contain other mailboxes. For example, the name “nudgenudge/

winkwink” indicates a sub-box named “winkwink” inside a master mailbox “nudge-

nudge.” The hierarchy separator character varies by server; some servers would

name the mailbox “nudgenudge.winkwink.”

A mailbox can be marked as subscribed. The effects of subscribing vary by server,

but generally subscriptions are a way of flagging mailboxes of particular interest.

Use subscribe(name) and unsubscribe(name) to toggle subscription status for

the mailbox name.

The command list([root[,pattern]]) finds mailbox names. The parameter root
is the base of a mailbox hierarchy to list. It defaults to “”(not a blank string, but a

string of two double-quotes) for the root level. The parameter pattern is a string to

search for; pattern may contain the wildcards * (matching anything) and % (match-

ing anything but a hierarchy delimiter). The output of list is a list of 3-tuples. Each

tuple corresponds to a mailbox. The first element is a list of flags, such as \Noselect.

The second element is the server’s hierarchy separator character. The third is the

mailbox name.

To list only subscribed mailboxes, use the command lsub([root[,pattern]]).

For example, the following code creates and lists some mailboxes:

>>> print imap.list()
(‘OK’, [‘() “/” “INBOX”’])
>>> imap.create(“x1”)
(‘OK’, [‘CREATE completed’])
>>> imap.create(“x1/y1”)
(‘OK’, [‘CREATE completed’])

4807-7 ch16.F 5/24/01 8:59 AM Page 287

288 Part III ✦ Networking and the Internet

>>> imap.create(“x1/y2”)
(‘OK’, [‘CREATE completed’])
>>> imap.rename(“x1/y2”,”x1/y3”)
(‘OK’, [‘RENAME completed’])
>>> imap.list()
(‘OK’, [‘() “/” “INBOX”’, ‘() “/” “x1”’, ‘() “/” “x1/y1”’, ‘()
“/” “x1/y3”’])
>>> print imap.list(‘“”’,”*y*”) # string “” for root
(‘OK’, [‘() “/” “x1/y1”’, ‘() “/” “x1/y3”’])
>>> imap.list(‘“”’,”*foo*”) # Nothing found: get list of “None”
(‘OK’, [None])
>>> imap.list(“x1”,”*3”)
(‘OK’, [‘() “/” “x1/y3”’])

You can check the status of a mailbox by calling status(mailbox,names). The

parameter mailbox is the name of a mailbox. The parameter names is a parenthe-

sized string of status items to check. For example:

>>> imap.status(“INBOX”,”(MESSAGES UIDNEXT)”)
(‘OK’, [‘“INBOX” (MESSAGES 1 UIDNEXT 3)’])

Other functions
You can add a message to a mailbox by calling the method append(mailbox,
flags, datetime, message). Here, mailbox is the name of the mailbox, flags is an

optional list of message flags, datetime is a timestamp for the message, and message
is the message text, including headers.

IMAP uses an INTERNALDATE representation for dates and times. Use the module

function Internaldate2tuple(date) to translate an INTERNALDATE to a

TimeTuple, and the function Time2Internaldate(tuple) to go from TimeTuple to

INTERNALDATE.

See Chapter 13 for more information about the time module’s tuple representation
of time.

The function ParseFlags(str) splits an IMAP4 FLAGS response into a tuple of flags.

Handling errors
The class IMAP4.error is the exception raised by any errors using an IMAP4 object.

The error argument is an error message string. It has subclasses IMAP4.abort (raised

for server errors) and IMAP4.readonly (raised if the server changed a mailbox

while you were reading mail, and you must re-open the mailbox).

Cross-
Reference

4807-7 ch16.F 5/24/01 8:59 AM Page 288

289Chapter 16 ✦ Speaking Internet Protocols

Transferring Files via FTP
The module ftplib provides the class FTP, which serves as an FTP client. The

Python source distribution includes a script, Tools/script/ftpmirror.py, that

uses ftplib to mirror an FTP site.

See RFC 959 for more on the FTP protocol.

Logging in and out
The FTP constructor takes several optional parameters. A call to FTP([host[,
user[,password[,acct]]]]) constructs and returns an FTP object. The con-

structor also connects to the specified host if host is supplied. If user is supplied,

the constructor logs in using the user user, the password password, and the

account acct.

You can also connect to a host by calling the FTP method connect(hostname
[,port]). The port number defaults to 21; you will probably never need to set it

manually. You can log in by calling login([user[,password[,acct]]]). If user is

not specified, anonymous login is performed. The following two examples demon-

strate the long and short way to log on to a server:

>>> # long way:
>>> session=ftplib.FTP()
>>> session.connect(“gianth.com”)
‘220 gianth Microsoft FTP Service (Version 5.0).’
>>> session.login() # anonymous login (login string returned)
‘230-Niao! Greetings from Giant H Laboratories!\015\012230
Anonymous user logged in.’
>>> # short way:
>>> session2=ftplib.FTP(“gianth.com”,”anonymous”,”bob@aol.com”)

The method getwelcome returns the server welcome string (the same string

returned by connect).

When finished with an FTP connection, call quit or close. (The only difference

between the two is that quit sends a “polite” response to the server.)

Navigating
The method pwd returns the current path on the server. The method cwd(path)
sets the path on the server. You can call mkd(path) to create a new directory; call

rmd(dirname) to delete an empty directory.

Cross-
Reference

4807-7 ch16.F 5/24/01 8:59 AM Page 289

290 Part III ✦ Networking and the Internet

The method nlst([dir[,args]]) returns directory contents as a list of file

names. By default, both functions list the current directory; pass a different path in

dir to list a different one. Extra string arguments are passed along to the server. The

function dir([dir[,args]]) gets a list of files for processing. If the last argument

to dir is a function, that function is used as a callback when retrieving each line

(see retrlines, in the next section); the default processor simply prints each line.

The method size(filename) returns the size of a particular file. You can delete a

file with delete(filename), and rename a file by calling rename(oldname,
newname).

Transferring files
To store (upload) a file, call storbinary(command,file,blocksize) for binary

files, or storlines(command,file) for plain text files. The parameter command is

the command passed to the server. The parameter file should be an opened file

object. The storbinary parameter blocksize is the block size for data transfer. For

example, the following code uploads a sound file to a server in 8K blocks, and then

verifies that the file exists on the server:

>>> Source=open(“c:\\SummerRain.mp3”)
>>> Session.storbinary(“STOR SummerRain.mp3”,Source,8192)
‘226 Transfer complete.’
>>> Session.nlst().index(“SummerRain.mp3”)

To retrieve (download) a file, call retrbinary(command,callback[,blocksize
[,rest]]) or retrlines(command[,callback]). The parameter command is the

command passed to the server. The parameter callback is a function to be called

once for each block of data received. Python passes the block of data to the call-

back function. (The default callback for retrlines simply prints each line.) The

parameter blocksize is the maximum size of each block. Supply a byte position for

rest to continue a download part way through a file. For example, the following code

retrieves a file from the server to a file:

>>> destination=open(“foo.mp3”,”w”)
>>> session.retrbinary(“RETR SummerRain.mp3”,dest.write)
‘226 Transfer complete.’
>>> destination.close()

A lower-level method for file transfer is ntransfercmd(command[,rest]), which

returns a 2-tuple: a socket object and the expected file size in bytes. The method

transfercmd(command[,rest]) is the same as ntransfercmd, but returns only a

socket object.

The method abort cancels a transfer in progress.

Other methods
The method set_pasv(value) sets passive mode to value. If value is true, the

PASV command is sent to the server for file transfers; otherwise, the PORT

4807-7 ch16.F 5/24/01 8:59 AM Page 290

291Chapter 16 ✦ Speaking Internet Protocols

command is used. (As of Python Version 2.1, passive mode is on by default; in previ-

ous versions, passive mode was not on by default.)

The method set_debuglevel(level) sets the level of debug output from ftplib —

0 (the default level) produces no debug output; 2 is the most verbose.

Handling errors
The module defines several exceptions: error_reply is raised when the server

unexpectedly sends a response; error_temp is raised for “temporary errors” (with

error codes in the range 400–499); error_perm is raised for “permanent errors”

(with error codes in the range 500–599); and error_proto is raised for errors with

unknown error codes.

Using netrc files
The supporting module netrc is used to parse .netrc files. These files cache user

information for various FTP servers, so that you don’t need to send it to the host by

hand each time. They can also store macros.

The module provides a class, netrc, for accessing netrc contents. The constructor

netrc([filename]) builds a netrc object by parsing the specified file. If filename
is not provided, it defaults to the file .netrc in your home directory.

The attribute hosts is a dictionary mapping from host names to authentication

information of the form (username, account, password). If the parsed .netrc file

includes a default entry, it is stored in hosts[“default”]. The attribute macros is

a dictionary, mapping macro names to string lists. The method

authenticators(hostname) returns either the authentication tuple for hostname,

the default tuple (if there is no tuple for hostname), or (if there is no default either)

None.

The netrc class implements a __retr__ method that returns .netrc file contents.

This means that you can edit an existing file. For example, the following code adds

(or overrides) an entry on disk:

MyNetrc=netrc.netrc(“.netrc”)
MyNetrc.hosts[“ftp.oracle.com”]=(“stanner”,””,”weeble”)
NetrcFile=open(“.netrc”)
NetrcFile.write(repr(MyNetrc))
NetrcFile.close()

Retrieving Resources Using Gopher
Gopher is a protocol for transferring hypertext and multimedia over the Internet.

With the rise of the World Wide Web, Gopher is no longer widely used. However, the

urllib module supports it, and the gopherlib module supports gopher requests.

4807-7 ch16.F 5/24/01 8:59 AM Page 291

292 Part III ✦ Networking and the Internet

See RFC 1436 for the definition of the Gopher protocol.

The function send_selector(selector,host[,port]) sends a selector (analo-

gous to a URL) to the specified host. It returns an open file object that you can read

from. The port-number parameter, port, defaults to 70. For example, the following

code retrieves and prints the Gopher Manifesto:

Manifesto=gopherlib.send_selector(
“0/the gopher manifesto.txt”,”gopher.heatdeath.org”)
print Manifesto.read()

The function send_query(selector,query,host[,port]) is similar to

send_selector, but sends the query string query to the server along with the selector.

Working with Newsgroups
Network News Transport Protocol, or NNTP, is used to carry the traffic of newsgroups
such as comp.lang.python. The module nntplib provides a class, NNTP, which is a

simple NNTP client. It can connect to a news server and search, retrieve, and post

articles.

See RFC 977 for the full definition of NNTP.

Most methods of an NNTP object return a tuple, of which the first element is the

server response string. The string begins with a three-digit status code.

Dates in nntplib are handled as strings of the form yymmdd, and times are han-

dled as strings of the form hhmmss. The two-digit year is assumed to be the year

closest to the present, and the time zone assumed is that of the news server.

Articles are identified in two ways. Articles are assigned numeric article numbers
within a group in ascending order. Each article also has a unique message-id, a

magic bracketed string unique across all articles in all newsgroups. For instance:

An article cross-posted to rec.org.mensa and alt.religion.kibology might be article

number 200 in rec.org.mensa, article number 500 in alt.religion.kibology, and have

message-id <mwb06.162488$e5.131709@newsfeeds.bigpond.com>.

Some methods are not available on all news servers — the names of these methods

begin with x (for “extension”).

Connecting and logging in
The constructor syntax is NNTP(host[,port[,user[,password
[,readermode]]]]). Here, host is the news server’s host name. The port number,

port, defaults to 119. If the server requires authentication, pass a username and

Cross-
Reference

Cross-
Reference

4807-7 ch16.F 5/24/01 8:59 AM Page 292

293Chapter 16 ✦ Speaking Internet Protocols

password in the user and password parameters. If you are connecting to a news

server on the local host, pass a non-null value for readermode.

Once connected, the getwelcome method returns the server’s welcome message.

When you are finished with the connection, call the quit method to disconnect

from the server.

Browsing groups
To select a particular newsgroup, call the method group(name). The method

returns a tuple of strings (response,count,first,last,name). Here, count is the approx-

imate number of messages in the group, first and last are the first and last article

numbers, and name is the group name.

The method list examines the newsgroups available on the server. It returns a tuple

(response,grouplist), where response is the server response. The list grouplist has one

element per newsgroup. Each entry is a tuple of the form (name,last,first,postable).

Here, name is the name of the newsgroup, last is the last article number, and first is

the first article number. The flag postable is either “y” if posting is allowed, “n” if post-

ing is forbidden, or “m” if the group is moderated.

There are thousands of newsgroups out there. Retrieving a list usually takes sev-
eral minutes. You may want to take a snack break when you call the list
method!

The following code finds all newsgroups with “fish” in their name:

GroupList=news.list()[1]
print filter(lambda x:x[0].find(“fish”)!=-1,GroupList)

New newsgroups appear on USENET constantly. The method newgroups
(date,time) returns all newsgroups created since the specified date and time, in

the same format as the listing from list.

Browsing articles
New news is good news. The method newnews(name,date,time) finds articles

posted after the specified moment on the group name. It returns a tuple of the form

(response, idlist), where idlist is a list of message-ids.

Once you have entered a group by calling group, you are “pointing at” the first arti-

cle. You can move through the articles in the group by calling the methods next
and last. These navigate to the next and the previous article, respectively. They

then return a tuple of the form (response,number,id), where number is the current

article number, and id is its message-id.

The method stat(id) checks the status of an article. Here, id is either an article

number (as a string) or a message-id. It returns the same output as next or last.

Caution

4807-7 ch16.F 5/24/01 8:59 AM Page 293

294 Part III ✦ Networking and the Internet

On most news servers, you can scan article headers to find the messages you want.

Call the method xhdr(header, articles) to retrieve the values of a header speci-

fied by header. The parameter articles should specify an article range of the form

first-last. The returned value is a tuple (response, headerlist). The entries in header-
list have the form (id, text), where id is the message-id of an article, and text is its

value for the specified header. For instance, the following code retrieves subjects

for articles 319000 through 319005, inclusive:

>>> news.xhdr(“subject”,”319000-319005”)
(‘221 subject fields follow’, [(‘319000’, ‘Re: I heartily
endorse: Sinfest!’), (‘319001’, ‘Re: Dr. Teg’), (‘319002’, ‘Re:
If you be my bodyguard’), (‘319003’, ‘Re: Culture shock’),
(‘319004’, ‘Re: Dr. Teg’), (‘319005’, ‘Todays lesson’)])

The method xover(start,end) gathers more detailed header information for

articles in the range [start,end]. It returns a tuple of the form (response, articlelist).

There is one element in the list articlelist for each article. Each such entry contains

header values in a tuple of the form (article number, subject, poster, date, message-

id, references, size, lines).

The method xgtitle(name) finds all the newsgroups matching the specified name

name, which can include wildcards. It returns a tuple of the form (response, grou-

plist). Each element of grouplist takes the form (name, description). For example,

here is another (much faster) way to search for groups that talk about fish:

print news.xgtitle(“*fish*”)

Reading articles
The method article(id) retrieves the article with the specified id. It returns a

tuple of the form (response, number, id, linelist), where number is the article num-

ber, id is its message-id, and linelist is a list whose elements are the lines of text of

the article. The text in linelist includes all its headers. The method head(id) and

body(id) retrieve head and body, respectively.

For example, the simple code in Listing 16-3 dumps all articles by a particular

poster on a newsgroup into one long file:

Listing 16-3: NewsSlurp.py

import nntplib
import sys
def dump_articles(news,TargetGroup,TargetPoster):

GroupInfo=news.group(TargetGroup)
ArticleList=news.xhdr(“from”,GroupInfo[2]+”-”+GroupInfo[3])

dumpfile = open(“newsfeed.txt”,”w”)
for ArticleTuple in ArticleList:

(MessageID,Poster)=ArticleTuple

4807-7 ch16.F 5/24/01 8:59 AM Page 294

295Chapter 16 ✦ Speaking Internet Protocols

if (Poster.find(TargetPoster)!=-1):
ArticleText=news.body(MessageID)[3]
for ArticleLine in ArticleText:

dumpfile.write(ArticleLine+”\n”)
dumpfile.flush()

dumpfile.close()

news=nntplib.NNTP(“news.fastpointcom.com”)
dump_articles(news,”alt.religion.kibology”,”kibo@world.std.com”
)

Posting articles
The method post(file) posts, as a new article, the text read from the file object

file. The file text should include the appropriate headers.

The method ihave(id,file) informs the server that you have an article whose

message-id is id. If the server requests the article, it is posted from the specified file.

Other functions
The helper method date returns a tuple of the form (response, date, time), where

date and time are of the form yymmdd and mmhhss, respectively. It is not available

on all news servers.

Call set_debug(level) to set the logging level for an NNTP object. The default, 0,

is silent; 2 is the most verbose.

The method help returns a tuple of the form (response, helplines), where helplines
is the server help text in the form of a list of strings. Server help is generally not

especially helpful, but may list the extended commands that are available.

Call the slave method to inform the news server that your session is a helper

(or “slave”) news server, and return the response. This notification generally has no

special effect.

Handling errors
An NNTP object raises various exceptions when things go horribly wrong. NNTPError
is the base class for all exceptions raised by nntplib. NNTPReply is raised if the server

unexpectedly sends a reply. For error codes in the range of 400–499 (for example,

calling next without selecting a newsgroup), NNTPTemporaryError is raised. For

error codes in the range of 500–599 (for example, passing a bogus header to xhdr),

NNTPPermanentError is raised. For unknown error codes, NNTPProtocolError is

raised. Finally, NNTPDataError is raised for bogus response data.

4807-7 ch16.F 5/24/01 8:59 AM Page 295

296 Part III ✦ Networking and the Internet

Using the Telnet Protocol
The Telnet protocol is used for remote access to a server. Telnet is quite low-level,

only a little more abstract than using socket directly. For example, you can (if you

are a masochistic) read USENET by telnetting to port 119 and entering NNTP com-

mands by hand.

See RFC 854 for a definition of the Telnet protocol.

The module telnetlib defines a class, Telnet, which you can use to handle a Telnet

connection to a remote host.

Connecting
The Telnet constructor has the syntax Telnet([host[,port]]). If you pass a host

name in the parameter host, a session will be opened to the host. The port number,

optionally passed via the parameter port, defaults to 23. If you don’t connect when

constructing the object, you can connect by calling open(host[,port]). Once you

are finished with a session, call the close method to terminate it.

After establishing a connection, do not call the open method again for the same
Telnet object.

Reading and writing
You can run a simple Telnet client (reading from stdin and printing server

responses to stdout) by calling the interact method. The method mtinteract is

a multithreaded version of interact. For example, the following lines would con-

nect you to an online MUD (Multi-User Dungeon) game:

>>> link=telnetlib.Telnet(“materiamagica.com”,4000)
>>> link.interact()

Writing data is simple: To send data to the server, call the method write(string).

Special IAC (Interpret As Command) characters such as chr(255) are escaped

(doubled).

Reading data from the server is a bit more complicated. The Telnet object keeps a

buffer of data read so far from the server; each read method accesses buffered (or

“cooked”) data before reading more from the server. Each returns data read as a

(possibly empty) string. The following read methods are available:

✦ read_all — Read until EOF. Block until the server closes the connection.

✦ read_some — Read at least one character (unless EOF is reached). Block if

data is not immediately available.

Note

Cross-
Reference

4807-7 ch16.F 5/24/01 8:59 AM Page 296

297Chapter 16 ✦ Speaking Internet Protocols

✦ read_very_eager — Read all available data, without blocking unless in the mid-

dle of a command sequence.

✦ read_eager — Same as read_very_eager, but does not read more from the

server if cooked data is available.

✦ read_lazy — Reads all cooked data. Does not block unless in the middle of a

command sequence.

✦ read_very_lazy — Reads all cooked data. Never blocks.

The read methods, except read_all and read_some, raise an EOFError if the con-

nection is closed and no data is buffered. For example, if you use read_very_lazy

exclusively for reading, the only way to be certain the server is finished is if an

EOFError is raised. For most purposes, you can just call read_some and ignore the

other methods.

For example, the following code connects to port 7 (the echo port) and talks to

itself:

echo=telnetlib.Telnet(“gianth.com”,7)
echo.write(“Hello!”)
print echo.read_very_eager()

Watching and waiting
The method read_until(expected[,timeout]) reads from the server until it

encounters the string expected, or until timeout seconds have passed. If timeout is

not supplied, it waits indefinitely. The method returns whatever data was read, pos-

sibly the empty string. It raises EOFError if the connection is closed and no data is

buffered.

A more powerful method expect(targets[,timeout]) watches for a list of

strings or regular expression objects, provided in the parameter targets. It returns

a tuple of the form (matchindex, match, text), where matchindex is the index (in

targets) of the first matched item, match is a match object, and text is the text read

up to and including the match. If no match was found, matchindex is -1, match is

None, and text is the text read, if any.

Other methods
The method set_debug(level) sets the level of debug logging. A level of 0 (the

default) is silent; level 2 is the most verbose.

The method get_socket returns the socket object used internally by a Telnet

object. The method fileno returns the file descriptor of the socket object.

4807-7 ch16.F 5/24/01 8:59 AM Page 297

298 Part III ✦ Networking and the Internet

Writing CGI Scripts
Many Web pages respond to input from the user — these pages range from simple

feedback forms to sophisticated shopping Web sites. Common Gateway Interface
(CGI) is a standard way for the Web server to pass user input into a script. The

module cgi enables you to build Python modules to handle user requests to your

Web site.

Your CGI script should output headers, a blank line, and then content. The one

required header is Content-type, and its usual value is “text/html.” For example,

Listing 16-4 is a very simple CGI script, which returns a static Web page:

Listing 16-4: HelloWorld.py

(add #! line here under UNIX, or if using Apache on Windows)
import cgi
Part 1: Content-Type header, followed by a blank line
to indicate the end of the headers.
print “Content-Type: text/html\n”
Part 2: A simple HTML page
print “<title>Gumby</title>”
print “<html><body>My brain hurts!</body></html>

Setting up CGI scripts
Making your Web server run a script is half the battle. In general, you must do the

following:

1. Put the script in the right place.

2. Make it executable.

3. Make it execute properly.

Configuration details vary by Web server and operating system, but the following

sections provide information for some common cases.

Windows Internet Information Server (IIS)
First, create a directory (below your root Web directory) for CGI files. A common

name is cgi-bin.

Next, bring up the Internet Services Manager — in Windows 2000, go to Start ➪
Control Panel ➪ Administrative Tools ➪ Internet Services Manager.

In Internet Services Manager, edit the properties of the CGI directory. In the

Application section, click Configuration... (if Configuration is disabled, click

4807-7 ch16.F 5/24/01 8:59 AM Page 298

299Chapter 16 ✦ Speaking Internet Protocols

Add first). This brings up the Application Configuration dialog. On the App

Mappings tab, add an entry mapping the extension .py to python.exe -u %s %s.

The -u setting makes Python run in unbuffered binary mode. The %s %s ensures that

IIS runs your script (and not just an instance of the interpreter!).

UNIX
Put your scripts in the appropriate CGI directory, probably cgi-bin. Make sure the

script is executable by everyone (chmod 077 script.py). In addition, make sure any

files it reads or writes are accessible by everyone. To make sure the script is executed

as a python script, add a “pound-bang” line to the very top of the script, as follows:

#!/usr/local/bin/python

Apache (any operating system)
To set up a CGI directory under Apache, add a ScriptAlias line to httpd.conf that

points at the directory. In addition, make sure there is a <Directory> entry for that

folder, and that it permits execution. For example, my configuration file includes the

following lines:

ScriptAlias /cgi-bin/ “C:/Webroot/cgi-bin/”
<Directory “C:/Webroot/cgi-bin”>

AllowOverride None
Options None

</Directory>

Apache uses the “pound-bang hack” to decide how to execute CGI scripts, even on

Windows. For example, I use the following simple test script to test CGI under

Apache:

#!python
import cgi
cgi.test() # the test function exercises many CGI features

Accessing form fields
To access form fields, instantiate one (and only one) cgi.FieldStorage object.

The master FieldStorage object can be used like a dictionary. Its keys are the sub-

mitted field names. Its values are also FieldStorage objects. (Actually, if there are

multiple values for a field, then its corresponding value is a list of FieldStorage

objects.)

The FieldStorage object for an individual field has a value attribute containing the

field’s value as a string. It also has a name attribute containing the field name (pos-

sibly None).

For example, the script in Listing 16-5 (and its corresponding Web page) gathers

and e-mails site feedback. Listing 16-6 is a Web page that uses the script to handle

form input.

4807-7 ch16.F 5/24/01 8:59 AM Page 299

300 Part III ✦ Networking and the Internet

Listing 16-5: Feedback.py

#!python
import cgi
import smtplib
import sys
import traceback

Set these e-mail addresses appropriately
SOURCE_ADDRESS=”robot_form@gianth.com”
FEEDBACK_ADDRESS=”dumplechan@seanbaby.com”

sys.stderr = sys.stdout
print “Content-Type: text/html\n”
try:

fields=cgi.FieldStorage()
if (fields.has_key(“name”) and fields.has_key(“comments”)):

UserName=fields[“name”].value
Comments=fields[“comments”].value
Mail the feedback:
Mailbox=smtplib.SMTP(“mail.seanbaby.com”)
MessageText=”From: <”+SOURCE_ADDRESS+”>\r\n”
MessageText+=”To: “+FEEDBACK_ADDRESS+”\r\n”
MessageText+=”Subject: Feedback\r\n\r\n”
MessageText+=”Feedback from “+UserName+”:\r\n”+Comments
Mailbox.sendmail(SOURCE_ADDRESS, FEEDBACK_ADDRESS,

MessageText)
Print a simple thank-you page:
print “<h1>Thanks!</h1>Thank you for your feedback!”

else:
They must have left “name” and/or “comments” blank:
print “<h1>Sorry...</h1>”
print “You must provide a name and some comments too!”

except:
Print the traceback to the response page, for debugging!
print “\n\n<PRE>”
traceback.print_exc()

Listing 16-6: Feedback.html

<html>
<title>Feedback form</title>
<h1>Submit your comments</h1>
<form action=”cgi-bin/Feedback.py” method=”POST”>
Your name: <input type=”text” size=”35” name=”name”>

4807-7 ch16.F 5/24/01 8:59 AM Page 300

301Chapter 16 ✦ Speaking Internet Protocols

Comments:

<textarea name=”comments” rows=”5” cols=”35”></textarea>
<input type=”submit” value=”Send!”>
<form>
</html>

Advanced CGI functions
You can retrieve field values directly from the master FieldStorage object by calling

the method getvalue(fieldname[,default]). It returns the value of field field-
name, or (if no value is available) the value default. If not supplied, default is None. If

there are multiple values for a field, getvalue returns a list of strings.

If a field value is actually a file, accessing the value attribute of the corresponding

FieldStorage object returns the file’s contents as one long string. In this case, the

filename attribute is set to the file’s name (as given by the client), and the file
attribute is an opened file object.

A FieldStorage object provides some other attributes:

✦ type— Content-type as a string (or None if unspecified)

✦ type_options— Dictionary of options passed with the content-type header

✦ disposition— Content-disposition as a string (or None if unspecified)

✦ disposition_options— Dictionary of options passed with the content-

disposition header

✦ headers— Map of all headers and their values

A note on debugging
Debugging CGI scripts can be difficult, because the traceback from a crashed script

may be buried deep in the bowels of the Web server’s logging. Listing 16-7 uses a

trick to make debugging easier.

Listing 16-7: CGIDebug.py

import sys
import traceback
sys.stderr = sys.stdout
print “Content-Type: text/html\n”
try:

The script body goes here!
except:

print “\n\n<PRE>”
traceback.print_exc()

4807-7 ch16.F 5/24/01 8:59 AM Page 301

302 Part III ✦ Networking and the Internet

Pointing stderr at stdout means that the output of print_exc goes to the resulting

Web page. The <PRE> tag ensures that the text is shown exactly as printed.

A note on security
Internet security is crucial, even for casual users and simple sites. A common

vulnerability is a CGI script that executes a command string passed from a Web

request. Therefore, avoid passing user-supplied values to os.system, or accessing

file names derived from user data. Remember that hidden fields on forms are hid-

den for presentation purposes only — enterprising users can see and manipulate

their values.

For a good introduction to Web security, see the World Wide Web Consortium’s

security FAQ at http://www.w3.org/Security/Faq/www-security-faq.html.

Summary
Python provides simple client implementations of many Internet protocols. Python

also makes a great CGI scripting language. In this chapter, you:

✦ Sent and received e-mail.

✦ Retrieved Web pages and files in various ways.

✦ Created a Web page with a simple feedback form.

In the next chapter, you will meet various modules that help handle many flavors of

Internet data.

✦ ✦ ✦

4807-7 ch16.F 5/24/01 8:59 AM Page 302

Handling
Internet Data

Internet data takes many forms. You may find yourself

working with e-mail messages, mailboxes, cookies, URLs,

and more. Python’s libraries include helper modules for han-

dling this data. This chapter introduces modules to help han-

dle several common tasks in Internet programming —

handling URLs, sending e-mail, handling cookies from the

World Wide Web, and more.

Manipulating URLs
A Uniform Resource Locator (URL) is a string that serves as the

address of a resource on the Internet. The module urlparse
provides functions to make it easier to manipulate URLs.

The function

urlparse(url[,default_scheme[,allow_fragments]])
parses the string url, splitting the URL into a tuple of the form

(scheme, host, path, parameters, query, fragment). For example:

>>> URLString=”http://finance.yahoo.com/q?s=MWT&d=v1”
>>> print urlparse.urlparse(URLString)
(‘http’, ‘finance.yahoo.com’, ‘/q’, ‘’, ‘s=MWT&d=v1’, ‘’)

The optional parameter default_scheme specifies an address-

ing scheme to use if none is specified. For example, the follow-

ing code parses a URL with and without a default scheme:

>>> URLString=”//gianth.com/stuff/junk/DestroyTheWorld.exe”
>>> print urlparse.urlparse(URLString) # no scheme!
(‘’, ‘gianth.com’, ‘ /stuff/junk/DestroyTheWorld.exe’, ‘’, ‘’, ‘’)
>>> print urlparse.urlparse(URLString,”ftp”)
(‘ftp’, ‘gianth.com’, ‘/stuff/junk/DestroyTheWorld.exe’, ‘’, ‘’, ‘’)

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Manipulating URLs

Formatting text

Reading Web spider
robot files

Viewing files in a
Web browser

Dissecting e-mail
messages

Working with MIME
encoding

Encoding and
decoding message
data

Working with UNIX
mailboxes

Using Web cookies

✦ ✦ ✦ ✦

4807-7 ch17.F 5/24/01 8:59 AM Page 303

304 Part III ✦ Networking and the Internet

The parameter allow_fragments defaults to true. If set to false, no fragments are

permitted in the parsed URL:

>>> URLString=”http://www.penny-arcade.com/#food”
>>> print urlparse.urlparse(“URLString”)
(‘http’, ‘www.penny-arcade.com’, ‘/’, ‘’, ‘’, ‘food’)
>>> print urlparse.urlparse(“URLString”,None,0)
(‘http’, ‘www.penny-arcade.com’, ‘/#food’, ‘’, ‘’, ‘’)

The function urlunparse(tuple) unparses a tuple back into a URL string.

Parsing and then unparsing yields a URL string that is equivalent (and quite pos-

sibly identical) to the original.

The function urljoin(base, url[,allow_fragments]) merges a base URL (base)

with a new URL (url) to create a new URL string. It is useful for processing anchors

when parsing HTML. For example:

>>> CurrentPage=”http://gianth.com/stuff/junk/index.html”
>>> print urlparse.urljoin(CurrentPage,”../../foo.html”)
http://gianth.com/foo.html

The parameter allow_fragments has the same usage as urlparse.

The module urllib includes functions to encode strings as valid URL components.
See “Manipulating URLs” in Chapter 16.

Formatting Text
The formatter module defines interfaces for formatters and writers. A formatter
handles requests for various kinds of text formatting, such as fonts and margins. It

passes formatting requests along to a writer. In particular, it keeps a stack of fonts

and margins, so that they know which settings to revert to after turning off the “cur-

rent” font or margins. Formatters and writers are useful for translating text between

formats, or for displaying formatted text. They are used by htmllib.HTMLParser.

Formatter interface
The formatter attribute writer is the writer object corresponding to the formatter.

Writing text
The methods add_flowing_data(text) and add_literal_data(text) both

send text to the writer. The difference between the two is that add_flowing_data
collapses extra whitespace; whitespace is held in the formatter before being passed

to the writer. The method flush_softspace clears buffered whitespace from the

formatter.

Cross-
Reference

4807-7 ch17.F 5/24/01 8:59 AM Page 304

305Chapter 17 ✦ Handling Internet Data

The method add_label_data(format, counter) sends label text (as used in a

list) to the writer. If format is a string, it is used to format the numeric value counter
(in a numbered list). Otherwise, format is passed along to the writer directly.

If you manipulate the writer directly, call flush_softspace beforehand, and call

assert_line_data([flag]) after adding any text. The parameter flag, which

defaults to 1, should be true if the added data finished with a line break.

Spacing, margins, and alignment
The method set_spacing(spaces) sets the desired line spacing to lines.

The methods push_alignment(align) and pop_alignment set and restore

alignment. Here, align is normally left, right, center, justify (full), or None (default).

The methods push_margin(name) and pop_margin increase and decrease the

current level of indentation; the parameter name is a name for the new indentation

level. The initial margin level is 0; all other margin levels must have names that eval-

uate to true.

The method add_line_break adds a line break (at most, one in succession), but

does not finish the current paragraph. The method end_paragraph(lines) ends

the current paragraph and inserts at least lines blank lines. Finally, the method

add_hor_rule adds a horizontal rule; its parameters are formatter- and writer-

dependent, and are passed along to the writer’s method send_line_break.

Fonts and styles
The method push_font(font) pushes a new font definition, font, of the form

(size,italics,bold,teletype). Values set to formatter.AS_IS are left unchanged. The

new font is passed to the writer’s new_font method. The method pop_font
restores the previous font.

The method push_style(*styles) passes any number of style definitions. A tuple

of all style definitions is passed to the writer’s method new_styles. The method

pop_style([count]) pops count styles (by default, 1), and passes the revised

stack to new_styles.

Writer interface
Writers provide various methods to print or display text. Normally, the formatter

calls these methods, but a caller can access the writer directly.

Writing text
The methods send_flowing_data(text) and send_literal_data(text) both

output text. The difference between the two is that send_literal_data sends

4807-7 ch17.F 5/24/01 8:59 AM Page 305

306 Part III ✦ Networking and the Internet

pre-formatted text, whereas send_flowing_data sends text with redundant

whitespace collapsed. The method send_label_data(text) sends text intended

for a list label; it is called only at the beginning of a line.

The method flush is called to flush any buffered output.

Spacing, margins, and alignment
The method send_line_break breaks the current line. The method send_
paragraph(lines) is called to end the current paragraph and send at least lines
blank lines. The method set_spacing(lines) sets the level of line spacing to

lines. The method send_hor_rule is called to add a horizontal rule; its arguments

are formatter- and writer-dependent.

The method new_margin(name,level) sets the margin level to level, where the

indentation level’s name is name.

The method new_alignment(align) sets line alignment. Here, align is normally

left, right, center, justify (full), or None (default).

Fonts and styles
The method new_font(font) sets the current font to font, where font is either None
(indicating default font), or a tuple of the form (size,italic,bold,teletype).

The method new_styles(styles) is called to set new style(s); pass a tuple of new

style values in styles.

Other module resources
The AbstractFormatter is a simple formatter that you can use for most applica-

tions. The NullFormatter is a trivial implementation of the formatter interface — it

has all the available methods, but they do nothing. It is useful for creating an

HTTPParser that does not format Web pages.

The NullWriter is a writer that does nothing. The AbstractWriter is useful for

debugging formatters; method calls are simply logged. The DumbWriter is a simple

writer that outputs word-wrapped text. Its constructor has the syntax DumbWriter
([file[,maxcol]]). Here, file is an open filelike object for output (if none is

specified, text is written to standard output); and maxcol (which defaults to 72) is

the maximum width, in characters, of a line. For example, this function prints a

text-only version of a Web page:

import htmllib
import urllib
import formatter

def PrintTextPage(URL):
URLFile = urllib.urlopen(URL)
HTML = URLFile.read()

4807-7 ch17.F 5/24/01 8:59 AM Page 306

307Chapter 17 ✦ Handling Internet Data

URLFile.close()
parser=htmllib.HTMLParser(
formatter.AbstractFormatter(formatter.DumbWriter()))

parser.feed(HTML)

Reading Web Spider Robot Files
A robot is a program that automatically browses the Web. For example, a script

could programmatically check CD prices at several online sites in order to find the

best price. Some Webmasters would prefer that robots not visit their systems.

Therefore, a well-behaved robot should check a host’s Web root for a file named

robots.txt, which specifies any URLs that are off-limits.

The module robotparser provides a class, RobotFileParser, which makes it easy

to parse robots.txt. Once you instantiate a RobotFileParser, call its

set_url(url) to point it at the robots.txt file at the specified URL url. Then,

call its read method to parse the file. Before retrieving a URL, call

can_fetch(useragent, url) to determine whether the specified URL is allowed.

The parameter useragent should be the name of your robot program. For example,

Listing 17-1 tests a “polite get” of a URL:

Listing 17-1: PoliteGet.py

import robotparser
import urlparse
import urllib

def PoliteGet(url):
“””Return an open url-file, or None if URL is forbidden”””
RoboBuddy=robotparser.RobotFileParser()
Grab the host-name from the URL:
URLTuple=urlparse.urlparse(url)
RobotURL=”http://”+URLTuple[1]+”/robots.txt”
RoboBuddy.set_url(RobotURL)
RoboBuddy.read()
if RoboBuddy.can_fetch(“I,Robot”,url):

return urllib.urlopen(url)
else:

return None

if (__name__==”__main__”):
URL=”http://www.nexor.com/cgi-bin/rfcsearch/location?2449”
print “Forbidden:”,(PoliteGet(URL)==None)
URL=”http://www.yahoo.com/r/sq”
print “Allowed:”,(PoliteGet(URL)==None)

4807-7 ch17.F 5/24/01 8:59 AM Page 307

308 Part III ✦ Networking and the Internet

You can manually pass a list of robots.txt lines to a RobotFileParser by calling

the method parse(lines).

If your parser runs for many days or weeks, you may want to re-read robots.txt
periodically. RobotFileParser keeps a “last updated” timestamp. Call the method

modified to set the timestamp to the current time. (This is done automatically

when you call read or parse.) Call mtime to retrieve the timestamp, in ticks.

Viewing Files in a Web Browser
The module webbrowser provides a handy interface for opening URLs in a browser.

The function open(url[,new]) opens the specified URL using the default browser.

If the parameter new is true, a new browser window is opened if possible. The func-

tion open_new(url) is a synonym for open(url,1).

Normally, pages are displayed in their own window. However, on UNIX systems for

which no graphical browser is available, a text browser will be opened (and the

program will block until the browser session is closed).

If you want to open a particular browser, call the function register(name,
class[,instance]). Here, name is one of the names shown in Table 17-1, and either

class is the corresponding class, or instance is an instance of the corresponding class.

Table 17-1
Available Browsers

Name Class Platform

netscape Netscape All

kfm Konquerer UNIX

grail Grail All

windows-default WindowsDefault Windows

internet-config InternetConfig Macintosh

command-line CommandLineBrowser All

Once a browser is registered, you can call get(name) to retrieve a controller for it.

The controller provides open and open_new methods similar to the functions of

the same names. For example, the following code asks for the Grail browser by

name, and then uses it to view a page:

>>> Webbrowser.register(“grail”,Webbrowser.Grail)
>>> Controller=Webbrowser.get(“grail”)
>>> Controller.open(“www.python.org”)

4807-7 ch17.F 5/24/01 8:59 AM Page 308

309Chapter 17 ✦ Handling Internet Data

Dissecting E-Mail Messages
E-mail messages have headers with a standard syntax. The syntax, described in RFC

822, is a bit complicated. Fortunately, the module rfc822 can parse these headers

for you. It also provides a class to help handle lists of addresses.

Parsing a message
To parse a message, call the constructor Message(file[,seekable]). Here, file is

an open file. The file is parsed, and all headers are matched case-insensitively.

The file parameter can be any filelike object with a readlines method; it must also

have seek and tell methods in order for Message.rewindbody to work. If file is

unseekable (for example, it wraps a socket), set seekable to 0 for maximum portability.

Retrieving header values
The method get(name[,default]) returns the last value of header name, or default
(by default, None) if no value was found. Leading and trailing whitespace is trimmed

from the header; newlines are removed if the header takes up multiple lines. The

method getheader is a synonym for get. The method getrawheader(name)
returns the first header name with whitespace (including trailing linefeed) intact, or

None if the header was not found.

If a header can have multiple values, you can use getallmatchingheaders(name)
to retrieve a (raw) list of all header lines matching name. The method

getfirstmatchingheader(name) returns a list of lines for the first match:

>>> MessageFile=open(“msg1.txt”)
>>> msg=rfc822.Message(MessageFile)
>>> msg.get(“received”) # The last value
‘from 216.20.160.186 by lw8fd.law8.hotmail.msn.com with
HTTP;\011Thu, 28 Dec 2000 23:37:18 GMT’
>>> msg.getrawheader(“RECEIVED”) # the first value:
‘ from hotmail.com [216.33.241.22] by mail3.oldmanmurray.com
with ESMTP\012 (SMTPD32-6.05) id AB8884C01EE; Thu, 28 Dec 2000
18:23:52 -0500\012’
>>> msg.getallmatchingheaders(“Received”) # ALL values:
[‘Received: from hotmail.com [216.33.241.22] by
mail3.oldmanmurray.com with ESMTP\012’, ‘ (SMTPD32-6.05) id
AB8884C01EE; Thu, 28 Dec 2000 18:23:52 -0500\012’, ‘Received:
from mail pickup service by hotmail.com with Microsoft
SMTPSVC;\012’, ‘\011 Thu, 28 Dec 2000 15:37:19 -0800\012’,
‘Received: from 216.20.160.186 by lw8fd.law8.hotmail.msn.com
with HTTP;\011Thu, 28 Dec 2000 23:37:18 GMT\012’]

4807-7 ch17.F 5/24/01 8:59 AM Page 309

310 Part III ✦ Networking and the Internet

Some headers are dates. Call getdate(name) to retrieve the value of header name

as a TimeTuple. Alternatively, call getdate_tz(name) to retrieve a 10-tuple; its first

nine entries form a TimeTuple, and the tenth is the time zone’s offset (in ticks) from

UTC. (Entries 6, 7, and 8 are unusable in each case.) For example:

>>> msg.getdate(“date”)
(2000, 12, 28, 16, 37, 18, 0, 0, 0)
>>> msg.getdate_tz(“date”)
(2000, 12, 28, 16, 37, 18, 0, 0, 0, -25200)

The method getaddr(name) helps parse To: and From: headers, returning their

values in the form (full name, e-mail address). If the header name is not found, it

returns (None,None). For example:

>>> msg.getaddr(“From”)
(‘Stephen Tanner’, ‘dumplechan@hotmail.com’)
>>> msg.getaddr(“PurpleHairySpiders”)
(None, None)

Other members
The method rewindbody seeks to the start of the message body (if the filelike

object parsed supports seeking).

A Message object supports the methods of a dictionary — for example, keys
returns a list of headers found. The attribute fp is the original file parsed, and the

attribute headers is a list of all header lines.

If you need to subclass Message, you may want to override some of its parsing

methods. The method islast(line) returns true if line marks the end of header

lines. By default, islast returns true when passed a blank line. The method

iscomment(line) returns true if line is a comment that should be skipped. Finally,

the method isheader(line) returns the header name if line is a valid header line,

or None if it is not.

Address lists
The class AddressList holds a list of e-mail addresses. Its constructor takes a list

of address strings; passing None results in an AddressList with no entries.

You can take the length of an AddressList, add (merge) two AddressLists, remove

(subtract) one of AddressList’s elements from another AddressList, and retrieve a

canonical string representation:

>>> List1=rfc822.AddressList(msg.getheader(“To”))
>>> List2=rfc822.AddressList(msg.getheader(“From”))
>>> MergedList=List1+List2 # Merge lists
>>> len(MergedList) # access list length
2

4807-7 ch17.F 5/24/01 8:59 AM Page 310

311Chapter 17 ✦ Handling Internet Data

>>> str(MergedList) # canonical representation
‘dumplechan@seanbaby.com, “Stephen Tanner”
<dumplechan@hotmail.com>’
>>> str(MergedList-List1) # remove one list’s elements
‘“Stephen Tanner” <dumplechan@hotmail.com>’

An AddressList also provides the attribute addresslist, a list of tuples of the form

(full name, e-mail address):

>>> MergedList.addresslist
[(‘’, ‘dumplechan@seanbaby.com’), (‘Stephen Tanner’,
‘dumplechan@hotmail.com’)]

rfc822 utility functions
The functions parsedata(str) and parsedata_tz(str) parse the string str, in
the manner of the Message methods getdate and getdate_tz. The function

mktime_tz(tuple) does the reverse — it converts a TimeTuple into a UTC

timestamp.

MIME messages
The class mimetools.Message is a subclass of rfc822.Message. It provides some

extra methods to help parse content-type and content-transfer-encoding headers.

The method gettype returns the message type (in lowercase) from the content-

type header, or text/plain if no content-type header exists. The methods

getmaintype and getsubtype get the main type and subtype, respectively.

The method getplist returns the parameters of the content-type header as a list

of strings. For parameters of the form name=value, name is converted to lowercase

but value is unchanged.

The method getparam(name) gets the first value (from the content-type header)

for a given name; any quotes or brackets surrounding the value are removed.

The method getencoding returns the value of the content-transfer-encoding

header, converted to lowercase. If not specified, it returns 7bit.

This example scrutinizes some headers from an e-mail message:

>>> MessageFile=open(“message.txt”,”r”)
>>> msg=mimetools.Message(MessageFile)
>>> msg.gettype()
‘text/plain’
>>> msg.getmaintype()
‘text’
>>> msg.getsubtype()
‘plain’

4807-7 ch17.F 5/24/01 8:59 AM Page 311

312 Part III ✦ Networking and the Internet

>>> msg.getplist()
[‘format=flowed’]
>>> msg.get(“content-type”)
‘text/plain; format=flowed’
>>> msg.getparam(“format”)
‘flowed’
>>> msg.getencoding()
‘7bit’

Working with MIME Encoding
Multipurpose Internet Mail Extensions (MIME) are a mechanism for tagging the doc-

ument type of a message — or for several parts of one message. (See RFC 1521 for a

full description of MIME.) Several Python modules help handle MIME messages —

most functions you need are there, though they may be spread across libraries.

The module mimetools provides functions to handle MIME encoding. The function

decode(input,output,encoding) decodes from the filelike object input to output,
using the specified encoding. The function encode(input,output,encoding)
encodes. Legal values for encoding are base64, quoted-printable, and uuencode.

These encodings use the modules base64, quopri, and uu, discussed in the section

“Encoding and Decoding Message Data.”

The function choose_boundary returns a unique string for use as a boundary

between MIME message parts.

Encoding and decoding MIME messages
The module mimify provides functions to encode and decode messages in MIME

format. The function mimify(input, output) encodes from the filelike object

input into output. Non-ASCII characters are encoded using quoted-printable encod-

ing, and MIME headers are added as necessary. The function unmimify(input,
output[,decode_base64) decodes from input into output; if decode_base64 is

true, then any portions of input encoded using base64 are also decoded. You can

pass file names (instead of files) for input and output.

The functions mime_encode_header(line) and mime_decode_header(line)
encode and decode a single string.

The mimify module assumes that any line longer than mimify.MAXLEN (by default,

200) characters needs to be encoded. Also, the variable mimify.CHARSET is a

default character set to fill in if not specified in the content-type header; it defaults

to ISO-8859-1 (Latin1).

4807-7 ch17.F 5/24/01 8:59 AM Page 312

313Chapter 17 ✦ Handling Internet Data

Parsing multipart MIME messages
A MIME message can have several sections, each with a different content-type. The

sections of a MIME message, in turn, can be divided into smaller subsections. The

multifile module provides a class, MultiFile, to wrap multi-part messages. A

MultiFile behaves like a file, and can treat section boundaries like an EOF.

The constructor has syntax MultiFile(file[,seekable]). Here, file is a filelike

object, and seekable should be set to false for nonseekable objects such as sockets.

Call the method push(str) to set str as the current boundary string; call pop to

remove the current boundary string from the stack. The MultiFile will raise an

error if it encounters an invalid section boundary — for example, if you call

push(X), and then push(Y), and the MultiFile encounters the string X before

seeing Y. A call to next jumps to the next occurrence of the current boundary

string. The attribute level is the current nesting depth.

The read, readline, readlines, seek, and tell methods of a MultiFile operate

on only the current section. For example, seek indices are relative to the start of

the current section, and readlines returns only the lines in the current section.

When you read to the end of a section, the attribute last is set to 1. At this point, it

is not possible to read further, unless you call next or pop.

The method is_data(str) returns false if str might be a section boundary. It is used

as a fast test for section boundaries. The method section_divider(str) converts

str into a section-divider line, by prepending “--”. The method end_marker(str)
converts str into an end-marker line, by adding “--” at the beginning and end of str.

Writing out multipart MIME messages
The module MimeWriter provides the class MimeWriter to help write multipart

MIME messages. The constructor takes one argument, an open file (or filelike

object) to write the message to.

To add headers, call addheader(header, value[,prefix]). Here, header is the

header to add, and value is its value. Set the parameter prefix to true to add the new

header at the beginning of the message headers, or false (the default) to append it to

the end. The method flushheaders writes out all accumulated headers; you should

only call it for message parts with an empty body (which, in turn, shouldn’t happen).

To write a single-part message, call startbody(content[,plist[,prefix]]) to

construct a filelike object to hold the message body. Here, content is a value for the

content-type header, and plist is a list of additional content-type parameter tuples of

the form (name,value). The parameter prefix defaults to true, and functions as in

addheader.

4807-7 ch17.F 5/24/01 8:59 AM Page 313

314 Part III ✦ Networking and the Internet

To write a multipart message, first call startmultipartbody(subtype
[,boundary[,plist[,prefix]]]). The content-type header has main type

“multipart,” subtype subtype, and any extra parameters you pass in plist. For each

part of the message, call nextpart to get a MimeWriter for that part. After finishing

each part of the message, call lastpart to finish the message off. The call to

startmultipartbody also returns a filelike object; it can be used to store a

message for non-MIME-capable software.

You should not close the filelike objects provided by the MimeWriter, as each
one is a wrapper for the same file.

For example, Listing 17-2 writes out a multipart message and then parses it back

again.

Listing 17-2: MimeTest.py

import MimeWriter
import mimetools
import base64
import multifile

def TestWriting():
Write out a multi-part MIME message. The first part is
some plain text. The second part is an embedded
multi-part message; its two parts are an HTML document
and an image.
MessageFile=open(“BigMessage.txt”,”w”)
msg=MimeWriter.MimeWriter(MessageFile)
msg.addheader(“From”,”dumplechan@hotmail.com”)
msg.addheader(“To”,”dave_brueck@hotmail.com”)
msg.addheader(“Subject”,”Pen-pal greetings (good times!)”)
Generate a unique section boundary:
OuterBoundary=mimetools.choose_boundary()
Start the main message body. Write a brief message
for non-MIME-capable readers:
DummyFile=msg.startmultipartbody(“mixed”,OuterBoundary)
DummyFile.write(“If you can read this, your mailreader\n”)
DummyFile.write(“can’t handle multi-part messages!\n”)
Sub-part 1: Simple plain-text message
submsg=msg.nextpart()
FirstPartFile=submsg.startbody(“text/plain”)
FirstPartFile.write(“Hello!\nThis is a text part.\n”)
FirstPartFile.write(“It was a dark and stormy night...\n”)
FirstPartFile.write(“ * * TO BE CONTINUED * *\n”)
Sub-part 2: Message with parallel html and image
submsg2=msg.nextpart()
Generate boundary for sub-parts:
InnerBoundary=mimetools.choose_boundary()
submsg2.startmultipartbody(“mixed”,InnerBoundary)

Note

4807-7 ch17.F 5/24/01 8:59 AM Page 314

315Chapter 17 ✦ Handling Internet Data

submsg2part1=submsg2.nextpart()
Sub-part 2.1: HTML page
SubTextFile=submsg2part1.startbody(“text/html”)
SubTextFile.write(“<html><title>Hello!</title>\n”)
SubTextFile.write(“<body>Hello world!</body></html>\n”)
Sub-part 2.2: Picture, encoded with base64 encoding
submsg2part2=submsg2.nextpart()
submsg2part2.addheader(“Content-Transfer-Encoding”,

“base64”)
ImageFile=submsg2part2.startbody(“image/gif”)
SourceImage=open(“pic.gif”,”rb”)
base64.encode(SourceImage,ImageFile)
Finish off the sub-message and the main message:
submsg2.lastpart()
msg.lastpart()
MessageFile.close() # all done!

def TestReading():
MessageFile=open(“BigMessage.txt”,”r”)
Parse the message boundary using mimetools:
msg=mimetools.Message(MessageFile)
OuterBoundary=msg.getparam(“boundary”)
reader=multifile.MultiFile(MessageFile)
reader.push(OuterBoundary)
print “**Text for non-MIME-capable readers:”
print reader.read()
reader.next()
print “**Text message:”
print reader.read()
reader.next()
Parse the inner boundary:
msg=mimetools.Message(reader)
InnerBoundary=msg.getparam(“boundary”)
reader.seek(0) # rewind!
reader.push(InnerBoundary)
reader.next() # seek to part 2.1
print “**HTML page:”
print reader.read()
reader.next()
print “**Writing image to pic2.gif...”
seek to start of (encoded) body:
msg=mimetools.Message(reader)
msg.rewindbody()
decode the image:
ImageFile=open(“pic2.gif”,”wb”)
base64.decode(reader,ImageFile)

if (__name__==”__main__”):
TestWriting()
TestReading()

4807-7 ch17.F 5/24/01 8:59 AM Page 315

316 Part III ✦ Networking and the Internet

Handling document types
There is no official mapping between MIME types and file extensions. However, the

module mimetypes can make reasonable guesses. The function guess_extension
(type) returns a reasonable extension for files of content-type type, or None if it

has no idea.

The function guess_type(filename) returns a tuple of the form (type, encoding).

Here, type is a content-type that is probably valid, based on the file’s extension. If

guess_type doesn’t have a good guess for type, it returns None. The value encod-
ing is the name of the encoding program used on the file, or None:

>>> mimetypes.guess_extension(“text/plain”)
‘.txt’
>>> mimetypes.guess_type(“fred.txt”)
(‘text/plain’, None)
>>> mimetypes.guess_type(“Spam.mp3”)
(None, None)

You can customize the mapping between extensions and types. Many systems store

files named mime.types to hold this mapping; the mimetools module keeps a list of

common UNIX paths to such files in knownfiles. The function read_mime_types
(filename) reads mappings from the specified file. Each line of the file should

include a mime-type and then one or more extensions, separated by whitespace.

Listing 17-3 shows a sample mime.types file:

Listing 17-3: sample mime.types file

plain/text txt
application/mp3 mp3 mp2

The function init([files]) reads mappings from the files in the list files, which

defaults to knownfiles. Files later in the list override earlier files in the case of a

conflict. The module variable inited is true if init has been called; calling init
multiple times is allowed. The following shows an easy way to customize the

mapping:

>>> MyPath=”c:\\python20\\mime.types” # (customize this)
>>> mimetools.init([MyPath]) # old settings may be overridden

You can also directly access the mapping from extensions to encodings

(encodings_map), and the mapping from extensions to MIME-types (types_map).

The mapping suffix_map is used to map the extensions .tgz, .taz, and .tz to

.tar.gz.

4807-7 ch17.F 5/24/01 8:59 AM Page 316

317Chapter 17 ✦ Handling Internet Data

Parsing mailcap files
A mailcap (for “mail capability”) file maps document MIME-types to commands

appropriate for each type of document. Mailcap files are commonly used on UNIX

systems. (On Windows, file associations are normally stored in the registry.)

See RFC 1524 for a definition of the file format.

The module mailcap provides functions to help retrieve information from mailcap

files. The function getcaps returns a dictionary of mailcap information. You use it

by passing it to findmatch(caps,MIMEType[,key[,filename[,plist]]]). Here,

caps is the dictionary returned by getcaps, and MIMEType is the type of document

to access. The parameter key is the type of access (such as view, compose, or edit);

it defaults to view. The return value of findmatch is the command line to execute

(through os.system, for example). You can pass a list of extra parameters in plist.
Each entry should take the form name=value — for example, colors=256.

The function getcaps parses /etc/mailcap, /usr/etc/mailcap, /usr/local/etc/mailcap,

and $HOME/mailcap. The user mailcap file, if any, overrides the system mailcap

settings.

Encoding and Decoding Message Data
E-mail messages must pass through various systems on their way from one person

to another. Different computers handle data in different (sometimes incompatible)

ways. Therefore, most e-mail programs encode binary data as 7-bit ASCII text. The

encoded file is larger than the original, but is less likely to be mangled in transit.

Python provides modules to help use three such encoding schemes — uuencode,

base64, and quoted-printable.

Uuencode
The module uu provides functions to encode (binary-to-ASCII) and decode

(ASCII-to-binary) binary files using uuencoding. The function encode(input,
output[,name[,mode]]) uuencodes the file input, writing the resulting output to

the file output. If passed, name and mode are put into the file header as the file name

and permissions.

The function decode(input,output) decodes from the file input to the file output.

For example, the following lines encode a Flash animation
file.>>> source=open(“pample2.swf”,”rb”)
>>> destination=open(“pample2.uu”,”w”)
>>> uu.encode(source,destination)

Cross-
Reference

4807-7 ch17.F 5/24/01 8:59 AM Page 317

318 Part III ✦ Networking and the Internet

In this case, the file must be opened in binary mode (“rb”) under Windows or
Macintosh; this is not necessary on UNIX.

These lines decode the file, and then launch it in a browser window:

>>> source=open(“pample2.uu”,”r”)
>>> destination=open(“pample.swf”,”wb”)
>>> uu.decode(source,destination)
>>> destination.close()
>>> Webbrowser.open(“pample.swf”)

It is possible to pass file names (instead of open files) to encode or decode.
However, this usage is deprecated.

Base64
Base64 is another algorithm for encoding binary data as ASCII. The module base64
provides functions for working with MIME base64 encoding.

The function encodestring(data) encodes a string of binary data, data, and

returns a string of base64-encoded data. The function encode(input, output)
reads data from the filelike object input, and writes an encoded base64 string to the

filelike object output.

To decode a base64 string, call decodestring(data). To decode from one filelike

object to another, call decode(input,output).

Base64 is sometimes used to hide data from prying eyes. It is no substitute for

encryption, but is better than nothing. The code in Listing 17-4 uses base64 to hide

the files from one directory in another directory:

Listing 17-4: Conceal.py

import base64
import string
import os
“”” Hide files by base64-encoding them. Use Conceal to hide
files, and Reveal to un-hide them. “””

not ok for filenames:
EvilChars=”/\n”
not Base64 characters, ok for filenames:
GoodChars=”_ “
TranslateEvil = string.maketrans(EvilChars,GoodChars)
UnTranslateEvil = string.maketrans(GoodChars,EvilChars)

Note

Note

4807-7 ch17.F 5/24/01 8:59 AM Page 318

319Chapter 17 ✦ Handling Internet Data

def GetEncodedName(OldName):
MagicName = base64.encodestring(OldName)
MagicName = string.translate(MagicName,TranslateEvil)
return MagicName

def GetDecodedName(OldName):
MagicName = string.translate(OldName,UnTranslateEvil)
MagicName = base64.decodestring(OldName)
return MagicName

def Conceal(SourceDir,DestDir):
“”” Encode the files in sourcedir as files in destdir “””
for FileName in os.listdir(SourceDir):

FilePath = os.path.join(SourceDir,FileName)
Note: need “rb” here! (on UNIX, just “r” is ok)
InFile=open(FilePath,”rb”)
OutputFilePath=os.path.join(

DestDir,GetEncodedName(FileName))
OutFile=open(OutputFilePath,”w”)
base64.encode(InFile,OutFile)
InFile.close()
OutFile.close()

def Reveal(SourceDir,DestDir):
“”” Decode the files in sourcedir into destdir “””
for FileName in os.listdir(SourceDir):

FilePath = os.path.join(SourceDir,FileName)
InFile=open(FilePath,”r”)

OutputFilePath=os.path.join(DestDir,GetDecodedName(FileName))
OutFile=open(OutputFilePath,”wb”)
base64.decode(InFile,OutFile)
InFile.close()
OutFile.close()

Quoted-printable
Quoted-printable encoding is another scheme for encoding binary data as ASCII

text. It works best for strings with relatively few non-ASCII characters (such as

German text, with occasional umlauts); for binary files such as images, base64 is

more appropriate.

The module quopri provides functions to handle quoted-printable encoding. The

function decode(input,output) decodes from the filelike object input to the file-

like object output. The function encode(input,output,quotetabs) encodes from

input to output. The parameter quotetabs indicates whether tabs should be quoted.

4807-7 ch17.F 5/24/01 8:59 AM Page 319

320 Part III ✦ Networking and the Internet

Working with UNIX Mailboxes
Many UNIX mail programs store all e-mail in one file or directory called a mailbox.

The module mailbox provides utility classes for parsing such a mailbox. Each class

provides a single method, next, which returns the next rfc822.Message object.

Mailbox parser constructors each take either a file object or directory name as

their only argument. Table 17-2 lists the available mailbox parser classes.

Table 17-2
Mailbox Parsers

Class Mailbox Type

UnixMailbox Classic UNIX-style mailbox, as used by elm or pine

MmdfMailbox MMDF mailbox

MHMailbox MH mailbox (directory)

Maildir Qmail mailbox (directory)

BabylMailbox Babyl mailbox

Working with MH mailboxes
The module mhlib provides advanced features for managing MH mailboxes. It

includes three classes: MH represents a collection of mail folders, Folder represents

a single mail folder, and Message represents a single message.

MH objects
The constructor has the syntax MH([path[,profile]]). You can pass path and/or

profile to override the default mailbox directory and profile.

The method openfolder(name) returns a Folder object for the folder name. The

method setcontext(name) sets the current folder to name; getcontext retrieves

the current folder (initially “inbox”).

The method listfolders returns a sorted list of top-level folder names;

listallfolders returns a list of all folder names. listsubfolders(name) returns

a list of immediate child folders of the folder name; listallsubfolders(name)
returns a list of all subfolders of the folder name.

The methods makefolder(name) and deletefolder(name) create and destroy a

folder with the given name.

4807-7 ch17.F 5/24/01 8:59 AM Page 320

321Chapter 17 ✦ Handling Internet Data

The method getpath returns the path to the mailbox. The method

getprofile(key) returns the profile entry for key (or None, if none is set). And

the method error(format,arguments) prints the error message (format %
arguments) to stderr.

Folder objects
The methods getcurrent and setcurrent(index) are accessors for the current

message number. getlast returns the index of the last message (or 0 if there are no

messages). listmessages returns a list of message indices.

The method getsequences returns a dictionary of sequences, where each key is a

sequence name and the corresponding value is a list of the sequence’s message

numbers. putsequences(dict) writes such a dictionary of sequences back to the

sequence files. The method parsesequence(str) parses the string str into a list of

message numbers.

You can delete messages with removemessages(list), or move them to a new

folder with refilemessages(list, newfolder). Here, list is a list of message

numbers on which to operate. You can move one message by calling

movemessage(index, newfolder,newindex), or copy one message by calling

copymessage(index,newfolder,newindex). Here, newindex is the desired

message number in the new folder newfolder.

The path to the folder is accessible through getfullname, while

getsequencesfilename returns the path to the sequences file, and

getmessagefilename(index) returns the full path to message index. The

method error(format,arguments) prints the error message (format %
arguments) to stderr.

Message objects
The class mh.Message is a subclass of mimetools.Message. It provides one extra

method, openmessage(index), which returns a new Message object for message

number index.

Using Web Cookies
A cookie is a token used to manage sessions on the World Wide Web. Web servers

send cookie values to a browser; the browser then regurgitates cookie values when

it sends a Web request. The module Cookie provides classes to handle cookies. It is

especially useful for making a robot, as many Web sites require cookies to function

properly.

4807-7 ch17.F 5/24/01 8:59 AM Page 321

322 Part III ✦ Networking and the Internet

Cookies
The class SimpleCookie is a dictionary mapping cookie names to cookie values.

Each cookie value is stored as a Cookie.Morsel. You can pass a cookie string (as

received from the Web server) to SimpleCookie’s constructor, or to its load
method.

To retrieve cookie values in a format suitable for inclusion in an HTTP request, call

the method output([attributes[,header[,separator]]]). To retrieve only

some cookie attributes, pass a list of desired attributes in attributes. The parameter

header is the header to use (by default, “Set-Cookie:”). Finally, separator is the

separator to place between cookies (by default, a newline).

For example, the following lines capture cookies as returned from a Web request:

>>> Request=httplib.HTTP(“www.mp3.com”)
>>> Request.putrequest(“GET”,URLString)
>>> Request.endheaders()
>>> Response=Request.getreply()
>>> # Response[2] is the header dictionary
>>> CookieString=Response[2][“set-cookie”]
>>> print CookieString
LANG=eng; path=/; domain=.mp3.com
>>> CookieJar=Cookie.SimpleCookie()
>>> CookieJar.load(CookieString)
>>> print CookieJar.output()
‘Set-Cookie: LANG=eng; Path=/; Domain=.mp3.com;’
>>> print CookieJar.output([“domain”])
‘Set-Cookie: LANG=eng; Domain=.mp3.com;’

The method js_output([attributes]) also outputs cookies, this time in the

form of a JavaScript snippet to set their values.

Morsels
A morsel stores a cookie name in the attribute key, its value in the attribute value,

and its coded value (suitable for sending) in the attribute coded_value. The conve-

nience function set(key, value, coded_value) sets all three attributes.

Morsels provide output and js_output methods mirroring those of their owning

cookie; they also provide an OutputString([attributes]) method that returns

the morsel as a human-readable string.

A morsel also functions as a dictionary, whose keys are cookie attributes (expires,

path, comment, domain, max-age, secure, and version). The method

isReservedKey(key) tests whether key is one of the reserved cookie attributes.

4807-7 ch17.F 5/24/01 8:59 AM Page 322

323Chapter 17 ✦ Handling Internet Data

When sending cookies in an HTTP request, you should only send cookies whose
domain is a substring of the host’s name. Otherwise, you might confuse the host.
Or, you may send it information it shouldn’t know about, such as passwords for an
unrelated site. Moreover, be aware that the Cookie class only handles one value
for a given name; setting a new value for that name overwrites the old one.

Example: a cookie importer
The code in Listing 17-5 provides functions to import cookies from Internet

Explorer 5.0 or Netscape.

Listing 17-5: CookieMonster.py

import Cookie
import os

def AddMorsel(CookieJar,CookieName,CookieValue,HostString):
Cookie set expects a string, so CookieJar[“name”]=”value”
is ok, but CookieJar[“name”]=Morsel is not ok.
But, cookie get returns a Morsel:
CookieJar[CookieName]=CookieValue
CookieJar[CookieName][“domain”]=HostString

def ParseNetscapeCookies(filename):
Netscape stores cookies in one tab-delimited file,
starting on the fourth line
CookieFile=open(filename)
CookieLines=CookieFile.readlines()[4:]
CookieFile.close()
CookieJar=Cookie.SimpleCookie()
for CookieLine in CookieLines:

CookieParts = CookieLine.strip().split(‘\t’)
AddMorsel(CookieJar,CookieParts[-2],

CookieParts[-1],CookieParts[0])
return CookieJar

def ParseIECookies(dir):
CookieJar=Cookie.SimpleCookie()
for FileName in os.listdir(dir):

Skip non-cookie files:
if len(FileName)<3 or FileName[-3:].upper()!=”TXT”:

continue
CookieFile=open(os.path.join(dir,FileName))
CookieLines=CookieFile.readlines()
CookieFile.close()
LineIndex=0

Continued

Caution

4807-7 ch17.F 5/24/01 8:59 AM Page 323

324 Part III ✦ Networking and the Internet

Listing 17-5 (continued)

while (LineIndex+2)<len(CookieLines):
:-1 removes trailing newline
CookieName=CookieLines[LineIndex][:-1]
CookieValue=CookieLines[LineIndex+1][:-1]
HostString=CookieLines[LineIndex+2][:-1]
AddMorsel(CookieJar,CookieName,

CookieValue,HostString)
LineIndex+=9

return CookieJar

def OutputForHost(CookieJar,Host,attr=None,
header=”Set-Cookie:”,sep=”\n”):

Return only cookie values matching the specified host.
CookieHeader=””
for OneMorsel in CookieJar.values():

MorselHost=OneMorsel.get(“domain”,None)
if (MorselHost==None or Host.find(MorselHost)!=-1):

CookieHeader+=OneMorsel.output(attr,header)+sep
return CookieHeader

if (__name__==”__main__”):
Cookies=ParseIECookies(

“C:\\Documents and Settings\\Administrator\\Cookies\\”)
print OutputForHost(Cookies,”www.thestreet.com/”)

Summary
Python’s standard libraries help with many common tasks in Internet programming.

In this chapter, you:

✦ Parsed robots.txt to create a well-behaved robo-browser.

✦ Handled various e-mail headers.

✦ Imported cookies from a browser cache.

In the next chapter, you learn simple, powerful ways to make your Python programs

parse HTML and XML.

✦ ✦ ✦

4807-7 ch17.F 5/24/01 8:59 AM Page 324

Parsing XML
and Other
Markup
Languages

Markup languages are a powerful way to store text,

complete with formatting and metadata. HTML is the

format for about half a billion pages on the World Wide Web.

Extensible Markup Language (XML) promises to facilitate data

exchange of all types.

Python includes standard libraries to parse HTML and XML.

This chapter shows you how to use these libraries to create a

Web robot, a data importer/exporter, and more.

Markup Language Basics
HyperText Markup Language, or HTML, is used for nearly all

the pages on the World Wide Web. It defines tags to control

the formatting of text, graphics, and so forth, by a browser.

Extensible Markup Language, or XML, is a tool for data

exchange. It includes metadata tags to explain what text items

mean. For instance, a person (or program) reading the

number “120/80” might not know that it represents a blood

pressure, but XML can include tags to make this clear:

<blood-pressure>120/80</blood-pressure>

Standard general markup language, or SGML, is very general

and rarely used.

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Markup language
basics

Parsing HTML files

Example: bold only

Example: Web robot

Parsing XML with
SAX

Parsing XML with
DOM

Parsing XML with
xmllib

✦ ✦ ✦ ✦

4807-7 ch18.F 5/24/01 8:59 AM Page 325

326 Part III ✦ Networking and the Internet

Tags are for metatext
Markup languages are a way to store text together with tags. Tags are metatext that

govern the text’s formatting or describe its meaning. Tags are enclosed in brackets

<like this>. An opening tag has a corresponding closing tag, which includes a back-

slash </like this>. The text between (inside) the tags is the text they describe or

modify. For example, the following HTML fragment formats a sentence:

Presentation tags can set bold type or <i>italics</i>

Tags may have attributes to refine their meanings. For example, in HTML, the font
tag sets the font, and the color attribute specifies the desired font color:

white text

In XML, the information contained between a start tag and its end tag is called an

element. Elements store data, and may contain sub-elements. Start and end tags

may be collapsed into a single tag for the element:

<blood type=”A” color=”red” />

XML data can be stored in the element attributes, or in text. For example, these

lines are both reasonable ways to store a person’s name:

<Person name=”Bob Hope” />
<Person>Bob Hope</Person>

Tag rules
In XML, each start tag must have a corresponding end tag. This is a good idea in

HTML as well. Many HTML documents do not close all their tags; however, the

World Wide Web Consortium (W3C) has proposed a new standard, XHTML, that

requires an end tag for each start tag.

Tags may be nested within other tags. It is best to close a child tag before closing

its parent tag. This is mandatory in XML. It is recommended in HTML, as bad test-

ing may make a Web page render badly:

I’m not dead <i>yet</i> Bad!
I’m not dead <i>yet</i> Good!

The available tags in HTML are described in the HTML standard. The available tags

in XML vary from file to file — because XML is Extensible Markup Language, one

extends it by adding new tags. A Document Type Descriptor, or DTD, lists available

tags for an XML document. A DTD also includes rules for tag placement — which

tags are parents of other tags, and so on.

4807-7 ch18.F 5/24/01 8:59 AM Page 326

327Chapter 18 ✦ Parsing XML and Other Markup Languages

Namespaces
XML files can organize tag and attribute names into namespaces. A name within a

namespace takes the form NamespacePrefix:Name. For example, this tag’s local

name is Name, and its namespace prefix is Patient:

<Patient:Name>Alfred</Patient:Name>

A namespace prefix maps to a particular URI, which is often the URL of a Web page

explaining the namespace. In general, when parsing XML, you can ignore names-

paces. But, they are a handy tool for designing a good XML DTD.

Processing XML
There are two main ways of processing XML. You can parse the entire document

into memory, and navigate the tree of tags and attributes at your leisure. The

Document Object Model (DOM) API is an interface for such a parser. Or, you can

perform event-driven parsing, handling each tag as you read it from the file. The

Simple API for XML (SAX) is an interface for such a parser. (The module xmllib is

also an event-driven parser.)

Of the two interfaces, I find DOM to be the easiest. Also, DOM can change an XML

file without doing direct string manipulation, which gives it big points in my book.

One disadvantage of DOM is that it must read the entire XML file into memory

upfront, so SAX may be a better choice if you must parse mammoth XML files. Both

interfaces are very rich, offering more features than you are likely to need or want;

this chapter covers only the core of the two parsing APIs.

In order to process XML with Python, you will need a third-party XML parser. The

Python distribution for Windows currently includes the Expat non-validating parser.

But on UNIX, you will need to build the Expat library, and make sure that the pyex-

pat module is built as well.

Parsing HTML Files
The module htmllib defines the HTMLParser class. You create a subclass of

HTMLParser to build your own HTML parser. The HTMLParser class is itself a

subclass of sgmllib.SGMLParser, but you will probably never use the superclass

directly.

The HTMLParser constructor takes a formatter, as defined in the formatter mod-

ule. (See Chapter 17 for information about formatter.) The formatter is used to

output the text in the HTML stream. The member formatter is a reference to the

parser’s formatter. If you don’t need to use a formatter, you can use a null formatter,

as the following subclass does:

4807-7 ch18.F 5/24/01 8:59 AM Page 327

328 Part III ✦ Networking and the Internet

class SimpleHTMLParser(htmllib.HTMLParser):
def __init__(self):

initialize the superclass
htmllib.HTMLParser.__init__(self,

formatter.NullFormatter())
... override other methods here ...

HTMLParser methods
Call the method feed(text) to send the HTML string text into the parser. You can

feed the parser an entire file at one time, or one piece at a time; its behavior is the

same. The reset method causes the parser to forget everything it was doing and

start over. The close method finishes off the current file; it has the same effect as

feeding an end-of-file marker to the parser. If you override close, your subclass’s

close method should call the close method of the superclass.

The method get_starttag_text returns the text of the most recently opened tag.

The method setnomoretags tells the parser to stop processing tags. Similarly, the

method setliteral tells the parser to treat the following text literally (ignoring tags).

Handling tags
To handle a particular tag, define start_xxx and end_xxx methods in your class,

where xxx is the tag (in lowercase). A start_xxx method takes one parameter — a

list of name-value pairs corresponding to the HTML tag’s arguments. An end_xxx
method takes no arguments.

You can also handle a tag with a method of the form do_xxx(arguments). The do
method is called only if start and end methods are not defined.

For example, the following method prints the name of any background image for

the page, as defined in a <BODY> tag:

def do_body(self,args):
for ValTuple in args:

convert arg-name to upper-case
if string.upper(ValTuple[0])==”BACKGROUND”:

print “Page background image:”,ValTuple[1]

Other parsing methods
The method handle_data(data) is called to handle standard text that is not part

of a tag. Note that handle_data may be called one or several times for one contigu-

ous “block” of data.

The method anchor_bgn(href, name, type) is called for the start of an anchor

tag, <a>. The method anchor_end is called at the end of an anchor. By default,

these methods build up a list of links in the member anchorlist.

4807-7 ch18.F 5/24/01 8:59 AM Page 328

329Chapter 18 ✦ Parsing XML and Other Markup Languages

The method handle_image(source,alt[,ismap[,align[,width[,height]]]])
is called when an image is encountered. The default implementation simply hands

the string alt over to handle_data.

The method save_bgn starts storing data, instead of sending it to the formatter via

handle_data. The method save_end returns all the data buffered since the call to

save_bgn. These calls may not be nested, and save_end may not be called before

save_bgn.

If a tag handler (of the form start_xxx or do_xxx) is defined for a tag, the method

handle_starttag(tag,method,arguments) is called. The parameter tag is the

tag name (in lowercase), and method is the start or do method for the tag. By

default, handle_starttag calls method, passing arguments.

Similarly, the method handle_endtag(tag,method) is called for a tag if you have

defined an end method for that tag.

The method handle_charref(ref) processes character references of the form

&#ref. By default, ref is interpreted as an ASCII character value from 0 to 255, and

handed over to handle_data.

The method handle_entityref(ref) processes entity references of the form

&ref. By default, it looks at the attribute entitydefs, which should be a dictionary

mapping from entity names to meanings. The variable htmlentitydefs.
entitydefs defines the default entity definitions for HTMLParser. For example,

the codes &, &apos, >, <, and " translate into the characters & ‘ > < “.

The method handle_comment(commenttext) is called when a comment of the

form <!-commenttext-> is encountered.

The attribute nofill is a flag governing the handling of whitespace. Normally, nofill

is false, which causes whitespace to be collapsed. It affects the behavior of han-
dle_data and save_end.

Handling unknown or bogus elements
The HTMLParser defines methods to handle unknown HTML elements. By default,

these methods do nothing; you may want to override them (to report an error, for

example).

The method unknown_starttag(tag, attributes) is called when a tag with no

start method is encountered. (For a given tag, either handle_starttag or

unknown_starttag is called.) The method unknown_endtag(tag) is called for

unknown end tags. The methods unknown_charref(ref) and unknown_enti-
tyref(ref) handle unknown character and entity references, respectively.

The method report_unbalanced(tag) is called if the parser encounters a closing

tag tag with no corresponding opening tag.

4807-7 ch18.F 5/24/01 8:59 AM Page 329

330 Part III ✦ Networking and the Internet

Example: Bold Only
Listing 18-1 illustrates a simple subclass of HTMLParser that filters out only bold

text from an HTML stream. Listing 18-2 shows sample output from the parser.

Listing 18-1: BoldOnly.py

import htmllib
import formatter

TEST_HMTL_STRING=”””<html>
<title>A poem</title>
There once was a poet named Dan

Who could not make limericks scan

He’d be doing just fine

Till the very last line
Then he’d squeeze in too many syllables
and it wouldn’t even rhyme

</html>”””

class PrintBoldOnly(htmllib.HTMLParser):
def __init__(self):

AAbbssttrraaccttFFoorrmmaatttteerr hhaannddss ooffff tteexxtt ttoo tthhee wwrriitteerr..
htmllib.HTMLParser.__init__(self,

formatter.AbstractFormatter(formatter.DumbWriter()))
self.Printing=0 ## ddoonn’’tt pprriinntt uunnttiill wwee sseeee bboolldd
NNoottee:: TThhee bboolldd ttaagg <<bb>> ttaakkeess nnoo aattttrriibbuutteess,, ssoo tthhee
aattttrriibbuutteess ppaarraammeetteerr ffoorr ssttaarrtt__bb wwiillll aallwwaayyss bbee aann
eemmppttyy lliisstt))

def start_b(self,attributes):
self.Printing=1

def end_b(self):
self.Printing=0

def handle_data(self,text):
if (self.Printing):

CCaallll ssuuppeerrccllaassss mmeetthhoodd,, ppaassss tteexxtt ttoo ffoorrmmaatttteerr::
htmllib.HTMLParser.handle_data(self,text)

if (__name__==”__main__”):
Test=PrintBoldOnly()
Test.feed(TEST_HMTL_STRING)
Test.close()

4807-7 ch18.F 5/24/01 8:59 AM Page 330

331Chapter 18 ✦ Parsing XML and Other Markup Languages

Listing 18-2: BoldOnly output

poet named Dan
limericks
very last line too many syllables

Example: Web Robot
A robot is a program that browses the World Wide Web automatically. Listing 18-3 is

a simple robot. It follows links between pages, and saves pages to the local disk. It

overrides several methods of the HTMLParser in order to follow various links.

Listing 18-3: Robot.py

import htmllib
import formatter
import urlparse
import re
import os
import string
import urllib

Redefine this to a directory where you want to put files
ROOT_DIR = “c:\\python20\\robotfiles\\”

Web page file extensions that usually return HTML
HTML_EXTENSION_DICT={“”:1,”HTM”:1,”HTML”:1,”PHTML”:1,”SHTML”:1,
”PHP”:1,”PHP3”:1,”HTS”:1,”ASP”:1,”PL”:1,”JSP”:1,”CGI”:1}

Use this string to limit the robot to one site—only URLs
that contain this string will be retrieved. If this is null,
the robot will attempt to pull down the whole WWW.
REQUIRED_URL_STRING=”kibo.com”
Compile a regular expression for case-insensitive matching of
the required string
RequiredUrlRE = re.compile(re.escape(REQUIRED_URL_STRING),

re.IGNORECASE)

Keep track of all the pages we have visited in a dictionary,
so that we don’t hit the same page repeatedly.
VisitedURLs={}

Queue of target URLs
TargetURLList=[“http://www.kibo.com/index.html”]

Continued

4807-7 ch18.F 5/24/01 8:59 AM Page 331

332 Part III ✦ Networking and the Internet

Listing 18-3 (continued)

def AddURLToList(NewURL):
Skip duplicate URLs
if (VisitedURLs.has_key(NewURL)): return
Skip URLs that don’t contain the proper substring
if (not RequiredUrlRE.search(NewURL)): return
Add URL to the target list
TargetURLList.append(NewURL)

Chop file-extension from the end of a URL
def GetExtensionFromString(FileString):

DotChunks=string.split(FileString,”.”)
if len(DotChunks)==1: return “”
LastBlock=DotChunks[-1] # Take stuff after the last .
if string.find(LastBlock,”/”)!=-1:

return “”
if string.find(LastBlock,”\\”)!=-1:

return “”
return string.upper(LastBlock)

class HTMLRobot(htmllib.HTMLParser):
def StartNewPage(self,BaseURL):

self.BaseURL=BaseURL
def __init__(self):

Initialize the master class
htmllib.HTMLParser.__init__(

self,formatter.NullFormatter())
def do_body(self,args):

Retrieve background image, if any
for ValTuple in args:

if string.upper(ValTuple[0])==”BACKGROUND”:
ImageURL = urlparse.urljoin(
self.BaseURL, ValTuple[1])

AddURLToList(ImageURL)
def do_embed(self,args):

Handle embedded content
for ValTuple in args:

if string.upper(ValTuple[0])==”SRC”:
self.HandleAnchor(ValTuple[1])

def do_area(self,args):
Handle areas inside an imagemap
for ValTuple in args:

if string.upper(ValTuple[0])==”HREF”:
self.HandleAnchor(ValTuple[1])

def handle_image(self, source, alt, ismap,
align, width, height):

Retrieve images
ImageURL = urlparse.urljoin(self.BaseURL, source)
AddURLToList(ImageURL)

def anchor_bgn(self,TempURL,name,type):
Anchors (links). Skip mailto links.

4807-7 ch18.F 5/24/01 8:59 AM Page 332

333Chapter 18 ✦ Parsing XML and Other Markup Languages

if TempURL[0:7].upper() == “MAILTO:”: return
NewURL=urlparse.urljoin(self.BaseURL,TempURL)
AddURLToList(NewURL)

def do_frame(self,args):
Handle a sub-frame as a link
for ValTuple in args:

if string.upper(ValTuple[0])==”SRC”:
self.anchor_bgn(ValTuple[1],””,””)

def do_option(self,args):
for ValTuple in args:

if string.upper(ValTuple[0])==”VALUE”:
This might be a Webpage...

TheExtension = \
GetExtensionFromString(ValTuple[1])

if HTML_EXTENSION_DICT.has_key(TheExtension):
self.anchor_bgn(ValTuple[1],””,””)

if (__name__==”__main__”):
Parser = HTMLRobot()
while (len(TargetURLList)>0):

Take the next URL off the list
NextURL = TargetURLList[0]
del TargetURLList[0]
VisitedURLs[NextURL]=1 # flag as visited
print “Retrieving:”,NextURL
Parse the URL, and decide whether
we think it’s HTML or not:
URLTuple=urlparse.urlparse(NextURL,”http”,0)
TheExtension=GetExtensionFromString(URLTuple[2])
Get a local filename; make directories as needed
TargetPath=os.path.normpath(ROOT_DIR+URLTuple[2])
If no extension, assume it’s a directory and
retrieve index.html.
if (TheExtension==””):

TargetDir=TargetPath
TargetPath=os.path.normpath(
TargetPath+”/index.html”)

else:
(TargetDir,TargetFile)=os.path.split(TargetPath)

try:
os.makedirs(TargetDir)

except:
pass # Ignore exception if directory exists

if HTML_EXTENSION_DICT.has_key(TheExtension):
This is HTML - retrieve it to disk and then
feed it to the parser
URLFile=urllib.urlopen(NextURL)
HTMLText = URLFile.read()
URLFile.close()
HTMLFile=open(TargetPath,”w”)
HTMLFile.write(HTMLText)

Continued

4807-7 ch18.F 5/24/01 8:59 AM Page 333

334 Part III ✦ Networking and the Internet

Listing 18-3 (continued)

HTMLFile.close()
Parser.StartNewPage(NextURL)
Parser.feed(HTMLText)
Parser.close()

else:
This isn’t HTML - save to disk
urllib.urlretrieve(NextURL,TargetPath)

Parsing XML with SAX
SAX is a standard interface for event-driven XML parsing. Parsers that implement

SAX are available in Java, C++, and (of course) Python. The module xml.sax is the

overseer of SAX parsers.

The method xml.sax.parse(xmlfile,contenthandler[,errorhandler])
creates a SAX parser and parses the specified XML. The parameter xmlfile can be

either a file or the name of a file to read from. The parameter contenthandler must

be a ContentHandler object. If specified, errorhandler must be a SAX ErrorHandler

object. If no error handler is provided and an error occurs, the parser will

raise a SAXParseException if it encounters errors. Similarly, the method

parseString(xmlstring,contenthandler[,errorhandler]) parses XML

from the supplied string xmlstring.

Parsing XML with SAX generally requires you to create your own ContentHandler,

by subclassing xml.sax.ContentHandler. Your ContentHandler handles the par-

ticular tags and attributes of your flavor(s) of XML.

Using a ContentHandler
A ContentHandler object provides methods to handle various parsing events. Its

owning parser calls ContentHandler methods as it parses the XML file. The method

setDocumentLocator(locator) is normally called first. The methods

startDocument and endDocument are called at the start and the end of the XML

file. The method characters(text) is passed character data of the XML file via

the parameter text.

The ContentHandler is called at the start and end of each element. If the parser is

not in namespace mode, the methods startElement(tag, attributes) and

endElement(tag) are called; otherwise, the corresponding methods

startElementNS and endElementNS are called. Here, tag is the element tag, and

attributes is an Attributes object.

4807-7 ch18.F 5/24/01 8:59 AM Page 334

335Chapter 18 ✦ Parsing XML and Other Markup Languages

The methods startPrefixMapping(prefix,URI) and endPrefixMapping(pre-
fix) are called for each namespace mapping; normally, namespace processing is

handled by the XMLReader itself. For a given prefix, endPrefixMethod will be

called after the corresponding call to startPrefixMapping, but otherwise the

order of calls is not guaranteed.

The method ignorableWhitespace(spaces) is called for a string spaces of

whitespace. The method processingInstruction(target,text) is called when

a processing instruction (other than an XML declaration) is encountered. The

method skippedEntity(entityname) is called when the parser skips any entity.

A ContentHandler receives an Attributes object in calls to the startElement
method. The Attributes object wraps a dictionary of attributes (keys) and their val-

ues. The method getLength returns the number of attributes. The methods items,

keys, kas_key, and values wrap the corresponding dictionary methods. The

method getValue(name) returns the value for an attribute name; if namespaces

are active, the method getValueByQName(name) returns the value for a qualified

attribute name.

Example: blood-type extractor
Listing 18-4 uses a SAX parser to extract a patient’s blood type from the same exam

data XML uses in Listing 18-5 and Listing 18-6.

Listing 18-4: BloodTypeSax.py

import xml.sax
import cStringIO

SAMPLE_DATA = “””<?xml version=”1.0”?>
<exam date=”12/11/99”>
<patient>Pat</patient>
<bloodtype>B</bloodtype>
</exam >”””

class ExamHandler(xml.sax.ContentHandler):
def __init__(self):

self.CurrentData=””
self.BloodType=””

def characters(self,text):
if self.CurrentData==”bloodtype”:

self.BloodType+=text
We use the non-namespace-aware element handlers:
def startElement(self,tag,attributes):

self.CurrentData=tag
def endElement(self,tag):

Continued

4807-7 ch18.F 5/24/01 8:59 AM Page 335

336 Part III ✦ Networking and the Internet

Listing 18-4 (continued)

if self.CurrentData==”bloodtype”:
print “Blood type:”,self.BloodType

self.CurrentData=””

if (__name__==”__main__”):
create an XMLReader
MyParser = xml.sax.make_parser()
turn off namepsaces
MyParser.setFeature(xml.sax.handler.feature_namespaces, 0)
override the default ContextHandler
Handler=ExamHandler()
MyParser.setContentHandler(Handler)
Build and parse an InputSource
StringFile=cStringIO.StringIO(SAMPLE_DATA)
MySource = xml.sax.InputSource(“1”)
MySource.setByteStream(StringFile)
MyParser.parse(MySource)

Using parser (XMLReader) objects
The base parser class is xml.sax.xmlreader.XMLReader. It is normally not

necessary to instantiate parser objects directly. However, you can access a parser

to exercise tighter control on XML parsing.

The method xml.sax.make_parser([parserlist]) creates and returns an XML

parser. If you want to use a specific SAX parser (such as Expat), pass the name of its

module in the parserlist sequence. The module in question must define a

create_parser function.

Once you have an XML parser, you can call its method parse(source), where

source is a filelike object, a URL, or a file name.

An XML parser has properties and features, which can be set and queried by name.

For example, the following lines check and toggle namespace mode for a parser:

>>> MyParser=xml.sax.make_parser()
>>> MyParser.getFeature(\

“http://xml.org/sax/features/namespaces”)
0
>>> # Activate namespace processing
>>> MyParser.setFeature(\

“http://xml.org/sax/features/namespaces”,1)

The features and properties available vary from parser to parser.

4807-7 ch18.F 5/24/01 8:59 AM Page 336

337Chapter 18 ✦ Parsing XML and Other Markup Languages

An XMLReader has several helper classes. You can access the parser’s

ContentHandler with the methods getContentHandler and

setContentHandler(Handler). Similarly, you can access the parser’s

ErrorHandler (with getErrorHandler and setErrorHandler), its EntityResolver,

and its DTDHandler. The helper classes let you customize the parser’s behavior

further.

ErrorHandler
An ErrorHandler implements three methods to handle errors: error, fatalError,

and warning. Each method takes a SAXParseException as its single parameter.

DTDHandler
A DTDHandler handles only notation declarations and unparsed entity declara-

tions. The method notationDecl(name,PublicID,SystemID) is called when a

notation declaration is encountered. The method

unparsedEntityDecl(name,PublicID,SystemID,text) is called when an

unparsed entity declaration is encountered.

EntityResolver
The XMLReader calls the EntityResolver to handle external entity references. The

method resolveEntity(PublicID,SystemID) is called for each such reference —

it returns either the system identifier (as a string), or an InputSource.

Locator
Most XMLReaders supply a locator to their ContentHandler by calling its

setDocumentLocator method. The locator should only be called by the

ContentHandler in the context of a parsing method (such as characters). The

locator provides the current location, via methods getColumnNumber,

getLineNumber, getPublicId, and getSystemId.

SAX exceptions
The base exception is SAXException. It is extended by SAXParseException,

SAXNotRecognizedException, and SAXNotSupportedException. The construc-

tors for SAXNotSupportedException and SAXNotRecognizedException take two

parameters: an error string and (optionally) an additional exception object. The

SAXParseException constructor requires these parameters, as well as a locator.

The message and exception associated with a SAXException can be retrieved by

the methods getMessage and getException, respectively.

4807-7 ch18.F 5/24/01 8:59 AM Page 337

338 Part III ✦ Networking and the Internet

Parsing XML with DOM
The DOM API parses an entire XML document, and stores a DOM (a tree representa-

tion of the document) in memory. It is a very convenient way to parse, although it

does require more memory than SAX. In addition, you can manipulate the DOM

itself, and then write out the new XML document. This is a relatively painless way

to make changes to XML documents.

A DOM is made up of nodes. Each element, each attribute, and even each comment

is a node. The most important node is the document node, which represents the

document as a whole.

The module xml.dom.minidom provides a simple version of the DOM interface. It

provides two functions, parse(file[,parser]) or

parseString(XML[,parser]), to parse XML and return a DOM. (Here parser, if
supplied, must be a SAX parser object —minidom uses SAX internally to generate

its DOM.)

DOM nodes
A node object has a type, represented by the integer attribute nodeType. The valid

node types are available as members of xml.dom.minidom.Node, and include

DOCUMENT_NODE, ELEMENT_NODE, ATTRIBUTE_NODE, and TEXT_NODE.

A node can have a parent (given by its parentNode member), and a list of children

(stored in its childNodes member). You can add child nodes by calling

appendChild(NewChild), or insertBefore(NewChild,OldChild). You can also

remove children by calling removeChild(OldChild). For example:

>>> DOM=xml.dom.minidom.parse(“Mystic Mafia.xml”) # Build DOM
>>> print DOM.parentNode # The document node has no parent
None
>>> print DOM.childNodes
[<DOM Element: rdf at 10070740>]
>>> print DOM.childNodes[0].childNodes
[<DOM Text node “\n”>, <DOM Text node “\n”>, <DOM Text node “
“>, <DOM Element: rdf:Description at 10052084>, <DOM Text node
“\n”>]

Elements, attributes, and text
An element has a name, given by its member tagName. If the element is part of a

namespace, prefix holds its namespace’s name, localName within the namespace,

and namespaceURI is the URL of the namespace definition. You can retrieve an

4807-7 ch18.F 5/24/01 8:59 AM Page 338

339Chapter 18 ✦ Parsing XML and Other Markup Languages

element’s attribute values with the method getAttribute(AttributeName), set

attribute values with setAttribute(AttributeName, Value), and remove

attributes with the method removeAttribute(AttributeName).

The text of an element is stored in a child node of type TEXT_NODE. A text node has

an attribute, data, containing its text as a string.

For example, this code examines and edits an element:

>>> print TagNode.tagName,TagNode.prefix
rdf:Description rdf
>>> print TagNode.localName,TagNode.namespaceURI
Description http://www.w3.org/1999/02/22-rdf-syntax-ns#
>>> TagNode.getAttribute(“type”) # Value is Unicode
u’catalog’
>>> CNode.setAttribute(“arglebargle”,”test”)
>>> CNode.getAttribute(“arglebargle”)
‘test’
>>> CNode.removeAttribute(“arglebargle”)
>>> # Getting a nonexistent attribute returns “”
>>> CNode.getAttribute(“arglebargle”)
‘’

The document node (DOM)
A document node, or DOM, provides a handy method,

getElementsByTagName(Name), which returns a list of all the element nodes with

the specified name. This is a quick way to find the elements you care about, with-

out ever iterating through the other nodes in the document.

A DOM also provides methods to create new nodes. The method

createElement(TagName) creates a new element node, createTextNode(Text)
creates a new text node, etc. The method toxml returns the DOM as an XML string.

When you are finished with a DOM, call its method unlink to clean it up.

Otherwise, the memory used by the DOM may not get garbage-collected until your

program terminates.

Example: data import and export with DOM
XML is great for data interchange. Listing 18-5 is an example of XML’s power: It

exports data from a relational database to an XML file, and imports XML back into

the database. It uses the mxODBC module for database access. This test code

assumes the existence of an EMPLOYEE table (see Chapter 14 for the table’s

definition, and more information on the Python DB API).

4807-7 ch18.F 5/24/01 8:59 AM Page 339

340 Part III ✦ Networking and the Internet

Listing 18-5: XMLDB.py

import xml.dom.minidom
import ODBC.Windows # Replace for your OS as needed
import sys
import traceback
IMPORTABLE_XML = “””<?xml version=”1.0”?><tabledata><row>
<EMPLOYEE_ID>55</EMPLOYEE_ID><FIRST_NAME>Bertie</FIRST_NAME>
<LAST_NAME>Jenkins</LAST_NAME><MANAGER_ID></MANAGER_ID>
</row></tabledata>”””

def ExportXMLFromTable(Cursor):
We build up a DOM tree programatically, then
convert the DOM to XML. We never have to process
the XML string directly (Hooray for DOM!)
DOM=xml.dom.minidom.Document()
TableElement=DOM.createElement(“tabledata”)
DOM.appendChild(TableElement)
while (1):

DataRow=Cursor.fetchone()
if DataRow==None: break # There is no more data
RowElement=DOM.createElement(“row”)
TableElement.appendChild(RowElement)
for Index in range(len(Cursor.description)):

ColumnName=Cursor.description[Index][0]
ColumnElement=DOM.createElement(ColumnName)
RowElement.appendChild(ColumnElement)
ColumnValue=DataRow[Index]
if (ColumnValue):

TextNode=DOM.createTextNode(\
str(DataRow[Index]))

ColumnElement.appendChild(TextNode)
print DOM.toxml()

def ImportXMLToTable(Cursor,XML,TableName):
Build up the SQL statement corresponding to the XML
DOM=xml.dom.minidom.parseString(XML)
DataRows=DOM.getElementsByTagName(“row”)
for RowElement in DataRows:

InsertSQL=”INSERT INTO %s (“%TableName
for ChildNode in RowElement.childNodes:

if ChildNode.nodeType==\
xml.dom.minidom.Node.ELEMENT_NODE:
InsertSQL+=”%s,”%ChildNode.tagName

InsertSQL=InsertSQL[:-1] # Remove trailing comma
InsertSQL+=”) values (“
for ChildNode in RowElement.childNodes:

if ChildNode.nodeType==\
xml.dom.minidom.Node.ELEMENT_NODE:
ColumnValue=GetNodeText(ChildNode)
InsertSQL+=”%s,”%SQLEscape(ColumnValue)

4807-7 ch18.F 5/24/01 8:59 AM Page 340

341Chapter 18 ✦ Parsing XML and Other Markup Languages

InsertSQL=InsertSQL[:-1] # Remove trailing comma
InsertSQL+=”)”
Cursor.execute(str(InsertSQL))

def SQLEscape(Value):
if (Value in [None,””]):

return “Null”
else:

return “‘%s’”%Value.replace(“‘“,”’’”)

def GetNodeText(ElementNode):
Concatenate all text child-nodes into one large string.
(The normalize() method, available in version 2.1, makes
this a little easier by conglomerating adjacent
text nodes for us)
NodeText=””
for ChildNode in ElementNode.childNodes:

if ChildNode.nodeType==xml.dom.minidom.Node.TEXT_NODE:
NodeText+=ChildNode.data

return NodeText

if (__name__==”__main__”):
print “Testing XML export...”
Replace this line with your database connection info:
Conn=ODBC.Windows.connect(“AQUA”,”aqua”,”aqua”)
Cursor=Conn.cursor()
Cursor.execute(“select * from EMPLOYEE”)
print ExportXMLFromTable(Cursor)
Delete employee 55 so that we can import him again
Cursor.execute(“DELETE FROM EMPLOYEE WHERE\

EMPLOYEE_ID = 55”)
print “Testing XML import...”
ImportXMLToTable(Cursor,IMPORTABLE_XML,”EMPLOYEE”)
Remove this line if your database does not have
transaction support:
Conn.commit()

Parsing XML with xmllib
The module xmllib defines a single class, XMLParser, whose methods are similar

to that of htmllib.HTMLParser. You can define start and end handlers for any tag.

Listing 18-6 is a simple example that parses a patient’s blood type from examination

data.

Unlike xml.sax and xml.dom, xmllib doesn’t require any extra modules to be built.
Also, it is quite simple, and similar to htmllib. However, it is not a fast parser, and
is deprecated as of Version 2.0.

Caution

4807-7 ch18.F 5/24/01 8:59 AM Page 341

342 Part III ✦ Networking and the Internet

This example stores the blood type using one or more calls to handle_data.
Strings may be passed to handle_data all at once or in several pieces.

Listing 18-6: BloodType.py

import xmllib
SAMPLE_DATA = “””<?xml version=”1.0”?>
<exam date=”5/13/99”>
<patient>Pat</patient>
<bloodtype>B</bloodtype>
</exam >”””

class ExamParser(xmllib.XMLParser):
def __init__(self):

xmllib.XMLParser.__init__(self)
self.CurrentData=”” # Track current data item
self.BloodType=””

def start_bloodtype(self,args):
self.CurrentData=”blood”

def end_bloodtype(self):
if (self.CurrentData==”blood”):

print “Blood type:”,self.BloodType
self.CurrentData=””

def handle_data(self,text):
if (self.CurrentData==”blood”):

self.BloodType+=text

if (__name__==”__main__”):
MyParser = ExamParser()
MyParser.feed(SAMPLE_DATA)
MyParser.close()

Elements and attributes
The XMLParser attribute elements is a dictionary of known tags. If you subclass

XMLParser with a parser that handles a particular tag, then that tag should exist as

a key in elements. The corresponding value is a tuple (StartHandler,EndHandler),

where StartHandler and EndHandler are functions for handling the start and end of

that tag. Normally, you don’t need to access elements directly, as handlers of the

form start_xxx and end_xxx are inserted automatically.

The attribute attributes is a dictionary tracking the valid attributes for tags. The

keys in attributes are known tags. The values are dictionaries that map all valid

attributes for the tag to a default value (or to None, if there is no default value). If

any other attribute is encountered in parsing, the method syntax_error is called.

By default, attributes is an empty dictionary, and any attributes are permitted for

any tag.

Note

4807-7 ch18.F 5/24/01 8:59 AM Page 342

343Chapter 18 ✦ Parsing XML and Other Markup Languages

XML handlers
XMLParser defines various methods to handle XML elements. These methods do

nothing by default, and are intended to be overridden in a subclass.

The method handle_xml(encoding,standalone) is called when the <?xml?> tag

is parsed. The parameters encoding and standalone equal the corresponding

attributes in the tag.

The method handle_doctype(root_tag,public_id,sys_id,data) is called

when the <!DOCTYPE> tag is parsed. The parameters root_tag, public_id, sys_id, and

data are the root tag name, the DTD public identifier, the system identifier, and the

unparsed DTD contents, respectively.

The method handle_cdata(text) is called when a CDATA tag of the form

<!CDATA[text]> is encountered. (Normal data is passed to handle_data.)

The method handle_proc(name,text) is called when a processing instruction of

the form <?name text?> is encountered.

The method handle_special(text) is called for declarations of the form <!text>.

Other XMLParser members
The method syntax_error(errormessage) is called when unparsable XML is

encountered. By default, this method raises a RuntimeError exception.

The method translate_references(text) translates all entity and character

references in text, and returns the resulting string.

The method getnamespace returns a dictionary mapping abbreviation from the

current namespace to URIs.

Summary
You can easily parse HTML by subclassing the standard parser. There are several

varieties of parsers for XML, which you can customize to handle any kind of docu-

ment. In this chapter, you:

✦ Parsed HTML with and without an output-formatter.

✦ Built a robot to automatically retrieve Web pages.

✦ Parsed and generated XML files for data exchange.

In the next chapter, you’ll meet Tkinter, Python’s de facto standard library for user

interfaces.

✦ ✦ ✦

4807-7 ch18.F 5/24/01 8:59 AM Page 343

4807-7 ch18.F 5/24/01 8:59 AM Page 344

User Interfaces
and Multimedia

✦ ✦ ✦ ✦

Chapter 19
Tinkering with Tkinter

Chapter 20
Using Advanced
Tkinter Widgets

Chapter 21
Building User
Interfaces with
wxPython

Chapter 22
Using Curses

Chapter 23
Building Simple
Command
Interpreters

Chapter 24
Playing Sound

✦ ✦ ✦ ✦

P A R T

IVIV

4807-7 PO4.F 5/24/01 9:00 AM Page 345

4807-7 PO4.F 5/24/01 9:00 AM Page 346

Tinkering with
Tkinter

Tkinter is a package used for building a graphical user inter-

face (GUI) in Python. It runs on many operating systems,

including UNIX, Windows, and Macintosh. Tkinter is the de-facto

standard GUI library for Python, and is often bundled with it.

Tkinter is very easy to use; it is built on top of the high-level

scripting language Tcl.

Getting Your Feet Wet
If you’re dying to see Tkinter in action, the program shown in

Listing 19-1 should provide some instant gratification. It

displays some text in a window. Notice how little code it

takes — such are the joys of Tkinter!

Listing 19-1: HelloWorld.py

import Tkinter
Create the root window:
root=Tkinter.Tk()
Put a label widget in the window:
LabelText=”Ekky-ekky-ekky-ekky-z’Bang, zoom-
Boing,\
z’nourrrwringmm”
LabelWidget=Tkinter.Label(RootWindow,text=Labe
lText)
Pack the label (position and display it):
LabelWidget.pack()
Start the event loop. This call won’t return
until the program ends:
RootWindow.mainloop()

Run the code, and you’ll see something resembling the screen-

shot shown in Figure 19-1.

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a GUI

Using common
options

Gathering user input

Using text widgets

Building menus

Using Tkinter dialogs

Handling colors and
fonts

Drawing graphics

Using timers

✦ ✦ ✦ ✦

4807-7 ch19.F 5/24/01 9:00 AM Page 347

348 Part IV ✦ User Interfaces and Multimedia

Figure 19-1: Greetings from Tkinter

On Windows, Tkinter applications look more professional when you run them with
pythonw.exe instead of python.exe. Giving a script a .pyw extension sends it to
pythonw instead of python. Pythonw does not create a console window; the dis-
advantage of this is that you can’t see anything printed to sys.stdout and
sys.stderr.

Creating a GUI
To use Tkinter, import the Tkinter module. Many programmers import it into the

local namespace (from Tkinter import *); this is less explicit, but it does save

some typing. This chapter’s examples don’t import Tkinter into the local names-

pace, in order to make it obvious when they use Tkinter.

Building an interface with widgets
A user interface contains various widgets. A widget is an object displayed onscreen

with which the user can interact. (Java calls such things components, and Microsoft

calls them controls.) Tkinter provides a button widget (Tkinter.Button), a label

widget (Tkinter.Label), and so on. Most widgets are displayed on a parent wid-

get, or owner. The first argument to a widget’s constructor is its parent widget.

Note

4807-7 ch19.F 5/24/01 9:00 AM Page 348

349Chapter 19 ✦ Tinkering with Tkinter

A Toplevel widget is a special widget with no parent; it is a top-level window in its

own right. Most applications need only one Toplevel widget — the root widget

created when you call Tkinter.Tk().

For example, a frame is a widget whose purpose in life is to contain other widgets.

Putting related widgets in one frame is a great way to group them onscreen:

MainWindow=Tkinter.Tk() # Create a top-level window
UpperFrame=Tkinter.Frame(MainWindow)
The label and the button both live inside UpperFrame:
UpperLabel=Tkinter.Label(Frame)
UpperButton=Tkinter.Button(Frame)

Widget options
Widgets have options (or attributes) that control their look and behavior. Some

options are used by many widgets. For example, most widgets have a background
option, specifying the widget’s normal background color. Other options are specific

to a particular kind of widget. For example, a button widget has a command option,

whose value is a function to call (without arguments) when the button is clicked.

You can access options in various ways:

You can set options in the constructor:
NewLabel=Tkinter.Label(ParentFrame,background=”gray50”)
You can access options dictionary-style (my favorite!)
NewLabel[“background”]=”#FFFFFF”
You can set options with the config method:
NewLabel.config(background=”blue”)
You can retrieve an option’s current value:
CurrentColor=NewLabel[“background”]
Another way to get the current value:
CurrentColor=NewLabel.cget(“background”)

A few option names are, coincidentally, reserved words in Python. When necessary,

append an underscore to such option names:

“from” is a reserved word. Use from_ in code:
VolumeWidget=Tkinter.Scale(ParentFrame,from_=0,to=200)
Use “from” when passing the option name as a string:
VolumeWidget[“from”]=20 # “from_” is *not* ok here

See “Using Common Options” for an overview of the most useful widget options.

Laying Out Widgets
The geometry manager is responsible for positioning widgets onscreen. The sim-

plest geometry manager is the packer. The packer can position a widget on the left

4807-7 ch19.F 5/24/01 9:00 AM Page 349

350 Part IV ✦ User Interfaces and Multimedia

(Tkinter.LEFT), right, top, or bottom side of its parents. You invoke the packer by

calling the pack method on a widget.

The grid geometry manager divides the parent widget into a grid, and places each

child widget on a square of the grid. You invoke the grid geometry manager by

calling the grid(row=x,column=y) method on a widget. Grid square numbering

starts with 0.

You can also position a widget precisely using place. However, using place is

recommended only for perfectionists and masochists! If you use the placer, then

whenever you add a widget to your design, you’ll need to reposition all the other

widgets.

Different geometry managers don’t get along well — if you pack one child widget

and grid another, Tkinter may enter a catatonic state. You can use pack and grid
in the same program, but not within the same parent widget!

Remember to call pack, grid, or place on every widget. Otherwise, the widget
will never be displayed, making it rather difficult to click on!

Packer options
Following are options you can pass to the pack method. These options override the

default packing. The default packing lays widgets out from top to bottom within

their parent (side=TOP). Each widget is centered within the available space

(anchor=CENTER). It does not expand to fill its space (expand=NO), and it has no

extra padding on the sides (padx=pady=0).

side
Passing a side option to pack places the widget on the specified side of its parent.

Valid values are LEFT, RIGHT, TOP, and BOTTOM. The default is TOP. If two widgets are

both packed on one side of a parent, the first widget packed is the closest to the edge:

Label1=Tkinter.Label(root,text=”PackedLast”)
Label2=Tkinter.Label(root,text=”PackedFirst”)
Label2.pack(side=Tkinter.LEFT) # leftmost!
Label1.pack(side=Tkinter.LEFT) # Placed to the right of label2

Mixing LEFT/RIGHT with TOP/BOTTOM in one parent widget often yields creepy-

looking results. When packing many widgets, it’s generally best to use intermediate

frame widgets, or use the grid geometry manager.

fill, expand
Pass a value of YES for expand to let a widget expand to fill all available space. Pass

either X, Y, or BOTH for fill to specify which dimensions will expand. These options

are especially useful when a user resizes the window. For example, the following

code creates a canvas that stretches to the edges of the window, and a status bar

(at the bottom) that stretches horizontally:

Note

4807-7 ch19.F 5/24/01 9:00 AM Page 350

351Chapter 19 ✦ Tinkering with Tkinter

DrawingArea=Tkinter.Canvas(root)
DrawingArea.pack(expand=Tkinter.YES,fill=Tkinter.BOTH)
StatusBar=Tkinter.Label(root,text=”Ready.”)
StatusBar.pack(side=Tkinter.BOTTOM,expand=\

Tkinter.YES,fill=Tkinter.X)

anchor
If the widget has more screen space than it needs, the anchor option determines

where the widget sits, within its allotted space. This does not affect widgets with

fill=BOTH. Valid values are compass directions (N, NW, W, SW, S, SE, E, NE) and

CENTER.

padx,pady
These options give a widget some additional horizontal or vertical “elbow room.”

Putting a little space between buttons makes them more readable, and makes it

harder to click the wrong one:

Button1=Tkinter.Button(root,text=”Fire death ray”,
command=FireDeathRay)

10 empty pixels on both sides:
Button1.pack(side=Tkinter.LEFT,padx=10)
Button2=Tkinter.Button(root,text=”Send flowers”,

command=PatTheBunny)
10+10=20 pixels between buttons:
Button2.pack(side=Tkinter.LEFT,padx=10)

Grid options
Following are options to pass to the grid method. You should specify a row and a

column for every widget; otherwise, things get confusing.

row, column
Pass row and column options to specify which grid square your widget should live

in. The numbering starts at 0; you can always add new rows and columns. For exam-

ple, the following code lays out some buttons to look like a telephone’s dial pad:

for Digit in range(9):
Tkinter.Button(root,text= Digit+1).grid(row=Digit/3,\

column=Digit%3)

sticky
This option specifies which side of the square the widget should “stick to.” It is sim-

ilar to anchor (for the packer). Valid values are compass directions and CENTER. You

can combine values to stretch the widget within its cell. For example, the following

button fills its grid cell:

4807-7 ch19.F 5/24/01 9:00 AM Page 351

352 Part IV ✦ User Interfaces and Multimedia

BigButton=Tkinter.Button(root,text=”X”)
Using “from Tkinter import *” would let this next line
be much less messy:
BigButton.grid(row=0,column=0,sticky=Tkinter.W+Tkinter.E+\

Tkinter.N+Tkinter.S)

columnspan,rowspan
These options let you create a big widget (one that spans multiple rows or

columns).

Example: Breakfast Buttons
Listing 19-2 presents a beefier Tkinter program. It provides a food menu, with

several buttons you can click to build up a complete breakfast. Your selection is

displayed on a multiline label. Figure 19-2 shows the resulting user interface.

This example initializes widgets in several different ways. In practice, you’ll want to

do it the same way every time. (Personally, I like the pattern for the “Spam” button,

and I hate the pattern for the “Beans” button.)

Listing 19-2: FoodChoice.py

import Tkinter

In Tkinter, a common practice is to subclass Tkinter.Frame, and make
the subclass represent “the application itself”. This is
convenient (although, in some cases, the separation
between logic and UI should be clearer). FoodWindow is our application:
class FoodWindow(Tkinter.Frame):

def __init__(self):
Call the superclass constructor explicitly:
Tkinter.Frame.__init__(self)
self.FoodItems=[]
self.CreateChildWidgets()

def CreateChildWidgets(self):
ButtonFrame=Tkinter.Frame(self)
The fill parameter tells the Packer that this widget should
stretch horizontally to fill its parent widget:
ButtonFrame.pack(side=Tkinter.TOP,fill=Tkinter.X)

Create a button, on the button frame:
SpamButton=Tkinter.Button(ButtonFrame)
Button[“text”] is the button label:
SpamButton[“text”]=”Spam”
Button[“command”] is the function to execute (without arguments)
when someone clicks the button:
SpamButton[“command”]=self.BuildButtonAction(“Spam”)
SpamButton.pack(side=Tkinter.LEFT)

4807-7 ch19.F 5/24/01 9:00 AM Page 352

353Chapter 19 ✦ Tinkering with Tkinter

You can specify most options by passing keyword-arguments
to the widget’s constructor:
EggsAction=self.BuildButtonAction(“Eggs”)
EggsButton=Tkinter.Button(ButtonFrame,text=”Eggs”,command=EggsAction)
This is the second widget packed on the LEFT side of ButtonFrame, so
it goes to the right of the “Spam” button:
EggsButton.pack(side=Tkinter.LEFT)

Some people like to do everything all in one go:
Tkinter.Button(ButtonFrame,text=”Beans”,\

command=self.BuildButtonAction(“Beans”)).pack(side=Tkinter.LEFT)

You can also set widget options with the “config” method:
SausageButton=Tkinter.Button(ButtonFrame)
SausageAction=self.BuildButtonAction(“Sausage”)
SausageButton.config(text=”Sausage”,command=SausageAction)
SausageButton.pack(side=Tkinter.LEFT)

It’s often good for parent widgets to keep references to their
children. Here, we keep a reference (self.FoodLabel) to the label, so
we can change it later:
self.FoodLabel=Tkinter.Label(self, wraplength=190,\

relief=Tkinter.SUNKEN,borderwidth=2,text=””)
self.FoodLabel.pack(side=Tkinter.BOTTOM,pady=10,fill=Tkinter.X)

Packing top-level widgets last often saves some repainting:
self.pack()

def ChooseFood(self,FoodItem):
Add FoodItem to our list of foods, and build a nice
string listing all the food choices:
self.FoodItems.append(FoodItem)
LabelText=””
TotalItems=len(self.FoodItems)
for Index in range(TotalItems):

if (Index>0):
LabelText+=”, “

if (TotalItems>1 and Index==TotalItems-1):
LabelText+=”and “

LabelText+=self.FoodItems[Index]
self.FoodLabel[“text”]=LabelText

Lambda forms are a convenient way to define commands, especially when
several buttons do similar things. I put the lambda-construction in its
own function, to prevent duplicated code for each button:
def BuildButtonAction(self,Label):

Note: Inside a lambda definition, you can’t see any names
from the enclosing scope. So, we must pass in self and Label:
Action=lambda Food=self,Text=Label: Food.ChooseFood(Text)
return Action

if (__name__==”__main__”):
MainWindow=FoodWindow()
MainWindow.mainloop()

4807-7 ch19.F 5/24/01 9:00 AM Page 353

354 Part IV ✦ User Interfaces and Multimedia

Figure 19-2: Responding to buttons

Using Common Options
The following sections provide an overview of the most commonly used widget

options, organized by category. Those options that apply to button widgets also

apply to check button and radio button widgets.

Color options
The following options control the colors of a widget:

background, foreground Background and foreground colors. A synonym for

background is bg; a synonym for foreground is fg.

activebackground, For a button or menu, these options provide

activeforeground colors used when the widget is active.

disabledforeground Alternative foreground color for a disabled button

or menu.

selectforeground, Alternative colors for the selected element(s) of a

selectbackground Canvas, Entry, Text, or Listbox widget.

highlightcolor, Colors for the rectangle around a menu.

highlightbackground

4807-7 ch19.F 5/24/01 9:00 AM Page 354

355Chapter 19 ✦ Tinkering with Tkinter

Size options
The following options govern the size and shape of a widget.

width Widget width, as measured in average-sized characters of the

widget’s font. A value of 0 (the default) makes the widget just

large enough to hold its current text.

height Widget height, as measured in average-sized characters.

padx, pady Amount of extra internal horizontal or vertical padding, in

pixels. Generally ignored if the widget is displaying a bitmap

or image.

Appearance options
The following options, together with the color and size options, control a widget’s

appearance:

text Text to display in the widget.

image Image for display in a button or label. If an image is supplied,

any text option is ignored. Pass an empty string for image to

remove an image.

relief Specifies a 3-D border for the widget. Valid values are FLAT,

GROOVE, RAISED, RIDGED, SOLID, and SUNKEN.

borderwidth Width of the widget’s 3-D border, in pixels.

font The font to use for text drawn inside the widget.

Behavior options
The following options affect the behavior of a widget:

command Specifies a function to be called, without parameters, when

the widget is clicked. Applies to buttons, scales, and scroll-

bars.

state Sets a widget state to NORMAL, ACTIVE, or DISABLED. A DIS-
ABLED widget ignores user input, and (usually) appears

grayed-out. The ACTIVE state changes the widget’s color

(using the activebackground and activeforeground colors).

underline Widgets can use keyboard shortcuts. The underline option

is the index of a letter in the widget’s text; this letter becomes

the “hot key” for using the widget.

takefocus If true, the widget is part of the “tab order” — when you cycle

through widgets by hitting Tab, this widget will get the focus.

4807-7 ch19.F 5/24/01 9:00 AM Page 355

356 Part IV ✦ User Interfaces and Multimedia

Gathering User Input
Many widgets collect input from the user. For example, the Entry widget enables

the user to enter a line of text and the Checkbox widget can be switched on and off.

Most such widgets store their value in a Tkinter variable. Tkinter variable classes

include StringVar, IntVar, DoubleVar, and BooleanVar. Each Tkinter variable

class provides set and get methods to access its value:

>>> Text=Tkinter.StringVar()
>>> Text.get()
‘’
>>> Text.set(“Howdy!”)
>>> Text.get()
‘Howdy!’

You hook a widget to a variable by setting one of the widget’s options. A check but-

ton generally uses a BooleanVar, attached using the variable option:

SmokingFlag=BooleanVar()
B1=Checkbutton(ParentFrame,text=”Smoking”,variable=SmokingFlag)
This line sets the variable *and* checks the Checkbutton:
SmokingFlag.set(1)

The Entry and OptionMenu widgets generally use a StringVar, attached using a

textvariable option:

PetBunnyName.get() and NameEntry.get() will both
return the contents of the entry widget:
PetBunnyName=StringVar()
NameEntry=Entry(ParentFrame,text=”Bubbles”,

textvariable=PetBunnyName)
ChocolateName=StringVar()
FoodChoice=OptionMenu(ParentFrame,ChocolateName,

“Crunchy Frog”,”Spring Surprise”,”Anthrax Ripple”)

Several Radiobutton widgets can share one variable, attached to the variable
option. The value option stores that button’s value; I like to make the value the

same as the radio button’s label:

Flavor=StringVar()
Chocolate=Radiobutton(ParentFrame,variable=Flavor,

text=”Chocolate”,value=”Chocolate”)
Strawberry=Radiobutton(ParentFrame,variable=Flavor,

text=”Strawberry”,value=”Strawberry”)
Albatross=Radiobutton(ParentFrame,variable=Flavor,

text=”Albatross”,value=”Albatross”)

4807-7 ch19.F 5/24/01 9:00 AM Page 356

357Chapter 19 ✦ Tinkering with Tkinter

Some widgets, such as Listbox and Text, use custom methods (not Tkinter vari-

ables) to access their contents. Accessors for these widgets are described together

with the widgets.

Example: Printing Fancy Text
The program in Listing 19-3 can print text in various colors and sizes. It uses vari-

ous widgets, attached to Tkinter variables, to collect user input. Figure 19-3 shows

the program in action.

Listing 19-3: UserInput.py

import Tkinter
import tkFont # the Font class lives here!

class MainWindow(Tkinter.Frame):
def __init__(self):

Tkinter.Frame.__init__(self)
Use Tkinter variables to hold user input:
self.Text=Tkinter.StringVar()
self.ColorName=Tkinter.StringVar()
self.BoldFlag=Tkinter.BooleanVar()
self.UnderlineFlag=Tkinter.BooleanVar()
self.FontSize=Tkinter.IntVar()
Set some default values:
self.Text.set(“Ni! Ni! Ni!”)
self.FontSize.set(12)
self.ColorName.set(“black”)
self.TextItem=None
Create all the widgets:
self.CreateWidgets()

def CreateWidgets(self):
Let the user specify text:
TextFrame=Tkinter.Frame(self)
Tkinter.Label(TextFrame,text=”Text:”).pack(side=Tkinter.LEFT)
Tkinter.Entry(TextFrame,textvariable=self.Text).pack(side=Tkinter.LEFT)
TextFrame.pack()
Let the user select a color:
ColorFrame=Tkinter.Frame(self)
Colors=[“black”,”red”,”green”,”blue”,”deeppink”]
Tkinter.Label(ColorFrame,text=”Color:”).pack(side=Tkinter.LEFT)
Tkinter.OptionMenu(ColorFrame,self.ColorName,”white”,*Colors).pack(\

side=Tkinter.LEFT)
ColorFrame.pack()

Continued

4807-7 ch19.F 5/24/01 9:00 AM Page 357

358 Part IV ✦ User Interfaces and Multimedia

Listing 19-3 (continued)

Let the user select a font size:
SizeFrame=Tkinter.Frame(self)
Tkinter.Radiobutton(SizeFrame,text=”Small”,variable=self.FontSize,

value=12).pack(side=Tkinter.LEFT)
Tkinter.Radiobutton(SizeFrame,text=”Medium”,variable=self.FontSize,

value=24).pack(side=Tkinter.LEFT)
Tkinter.Radiobutton(SizeFrame,text=”Large”,variable=self.FontSize,

value=48).pack(side=Tkinter.LEFT)
SizeFrame.pack()
Let the user turn Bold and Underline on and off:
StyleFrame=Tkinter.Frame(self)
Tkinter.Checkbutton(StyleFrame,text=”Bold”,variable=\

self.BoldFlag).pack(side=Tkinter.LEFT)
Tkinter.Checkbutton(StyleFrame,text=”Underline”,variable=\

self.UnderlineFlag).pack(side=Tkinter.LEFT)
StyleFrame.pack()
Add a button to repaint the text:
GoFrame=Tkinter.Frame(self)
Tkinter.Button(GoFrame,text=”Go!”,command=self.PaintText).pack()
GoFrame.pack(anchor=Tkinter.W,fill=Tkinter.X)
Add a canvas to display the text:
self.TextCanvas=Tkinter.Canvas(self,height=100,width=300)
self.TextCanvas.pack(side=Tkinter.BOTTOM)
Pack parent-most widget last:
self.pack()

def PaintText(self):
Erase the old text, if any:
if (self.TextItem!=None):

self.TextCanvas.delete(self.TextItem)
Set font weight:
if (self.BoldFlag.get()):

FontWeight=tkFont.BOLD
else:

FontWeight=tkFont.NORMAL
Create and configure a Font object.
(Use tkFont.families(self) to get a list of available font-families)
TextFont=tkFont.Font(self,”Courier”)
TextFont.configure(size=self.FontSize.get(),

underline=self.UnderlineFlag.get(), weight=FontWeight)

self.TextItem=self.TextCanvas.create_text(5,5,anchor=Tkinter.NW,
text=self.Text.get(),fill=self.ColorName.get(),font=TextFont)

if (__name__==”__main__”):
App=MainWindow()
App.mainloop()

4807-7 ch19.F 5/24/01 9:00 AM Page 358

359Chapter 19 ✦ Tinkering with Tkinter

Figure 19-3: Printing fancy text

Using Text Widgets
The text widget (Tkinter.Text) is a fancy, multiline text-editing widget. It can

even contain embedded windows and graphics. It is an Entry widget on steroids!

The contents of a text widget are indexed by line and column. A typical index has

the form n.m, denoting character m in line n. For example, 5.8 would be character

8 from line 5. The first line of text is line 1, but the first character in a line has col-

umn 0. Therefore, the beginning of a text widget has index 1.0. You can also use the

special indices END, INSERT (the insertion cursor’s location), and CURRENT (the

mouse pointer’s location).

You can retrieve text from a text widget via its method get(start[,end]). This

returns the text from index start up to (but not including!) index end. If end is

omitted, get returns the single character at index start:

TextWidget.get(“1.0”,Tkinter.END) # Get ALL of the text
TextWidget.get(“3.0”,”4.0”) # Get line 3
TextWidget.get(“1.5”) # get the 6th character only

4807-7 ch19.F 5/24/01 9:00 AM Page 359

360 Part IV ✦ User Interfaces and Multimedia

The method delete(start[,end]) deletes text from the widget. The indexes start
and end function as they do for the get method. The method insert(pos,str)
inserts the string str just before the index pos:

TextWidget.insert(“1.0”,”Bob”) # Prepend Bob to the text
TextWidget.insert(Tkinter.END,”Bob”) # Append Bob to the text
insert Bob wherever the mouse is pointing:
TextWidget.insert(Tkinter.CURRENT,”Bob”)
Clear the widget (remove all text):
TextWidget.delete(“1.0”,Tkinter.END)

Building Menus
To build a menu in Tkinter, you use a menu widget (Tkinter.Menu). You then flesh

out the menu by adding entries. The method add_command(label=?,command=?)
adds a menu line with the specified label. When the user chooses the menu line, the

specified command is executed. add_separator adds a separator line to a menu,

suitable for grouping commands.

A call to add_cascade(label=?,menu=?) attaches the specified menu as a sub-

menu of the current menu. And add_checkbutton(label=?[,...]) adds a check

button to the menu. You can pass other options for the new Checkbutton widget

(such as variable) to add_checkbutton.

Create one instance of Menu to represent the menu bar itself, and then create one

Menu instance for each “real” menu. Unlike most widgets, a menu is never packed.

Instead, you attach it to a window using the menu option of a TopLevel widget, as

shown in the following example:

root=Tkinter.Tk()
MenuBar=Tkinter.Menu(root) # Menu bar must be child of Toplevel
root[“menu”]=MenuBar # attach menubar to window!
FileMenu=Tkinter.Menu(MenuBar) # Submenu is child of menubar
FileMenu.add_command(label=”Load”,command=LoadFile)
FileMenu.add_command(label=”Save”,command=SaveFile)
HelpMenu=Tkinter.Menu(MenuBar)
HelpMenu.add_command(label=”Contents”,command=HelpIndex)
Attach menus to menubar:
MenuBar.add_cascade(label=”File”,menu=FileMenu)
MenuBar.add_cascade(label=”Help”,menu=HelpMenu)

You can create pop-up menus in Tkinter. Call the menu method

tk_popup(x,y[,default]) to bring a menu up as a pop-up. The pop-up is posi-

tioned at (x,y). If default is supplied, the pop-up menu starts with the specified label

selected, as shown in Listing 19-4:

4807-7 ch19.F 5/24/01 9:00 AM Page 360

361Chapter 19 ✦ Tinkering with Tkinter

Listing 19-4: Popup.py

import Tkinter
def MenuCommand():

print “Howdy!”
def ShowMenu():

PopupMenu.tk_popup(*root.winfo_pointerxy())
root=Tkinter.Tk()
PopupMenu=Tkinter.Menu(root)
PopupMenu.add_command(label=”X”,command=MenuCommand)
PopupMenu.add_command(label=”Y”,command=MenuCommand)
Tkinter.Button(root,text=”Popup”,command=ShowMenu).pack()
root.mainloop()

Using Tkinter Dialogs
The module tkMessageBox provides several functions that display a pop-up

message box. Each takes title and message parameters to control the window’s

title and the message displayed.

Table 19-1
Message Boxes

Function Description

showinfo Shows an informational message.

showwarning Displays a warning message.

showerror Displays an error message.

Askyesno Displays Yes and No buttons. Returns true if the user chose Yes.

Askokcancel Displays OK and Cancel buttons. Returns true if the user chose OK.

Askretrycancel Displays Retry and Cancel buttons. Returns true if the user chose Retry.

Askquestion Same as askyesno, but returns Yes or No as a string.

This snippet of code uses tkMessageBox to get user confirmation before quitting:

def Quit(self):
if self.FileModified:

if (not tkMessageBox.askyesno(“Confirm”,\
“File modified. Really quit?”):

return # don’t quit!
sys.exit()

4807-7 ch19.F 5/24/01 9:00 AM Page 361

362 Part IV ✦ User Interfaces and Multimedia

File dialogs
The module tkFileDialog provides functions to bring up file-selection dialogs.

The function askopenfile lets the user choose an existing file. The function

asksaveasfilename lets the user choose an existing file or provide a new file

name. Both functions return the full path to the selected file (or an empty string, if

the user cancels out).

Optionally, pass a filetypes parameter to either function, to limit the search to par-

ticular file types. The parameter should be a list of tuples, where each tuple has the

form (description,extension):

MusicFileName=tkFileDialog.askopenfilename(
filetypes=[(“Music files”,”mp3”)])

Example: Text Editor
The example in Listing 19-5 is a simple text editor. With it, you can open, save, and

edit text files. The code illustrates the use of the text widget, Tkinter menus, and

some of Tkinter’s standard dialog boxes. Figure 19-4 shows what the text editor

looks like.

Listing 19-5: TextEditor.py

import Tkinter
import tkFileDialog
import tkMessageBox
import os
import sys

Filetype selections for askopenfilename and asksaveasfilename:
TEXT_FILE_TYPES=[(“Text files”,”txt”),(“All files”,”*”)]

class TextEditor:
def __init__(self):

self.FileName=None
self.CreateWidgets()

def CreateWidgets(self):
self.root=Tkinter.Tk()
self.root.title(“New file”)
MainFrame=Tkinter.Frame(self.root)
Create the File menu:
MenuFrame=Tkinter.Frame(self.root)

4807-7 ch19.F 5/24/01 9:00 AM Page 362

363Chapter 19 ✦ Tinkering with Tkinter

MenuFrame.pack(side=Tkinter.TOP,fill=Tkinter.X)
FileMenuButton=Tkinter.Menubutton(MenuFrame,

text=”File”,underline=0)
FileMenuButton.pack(side=Tkinter.LEFT,anchor=Tkinter.W)
FileMenu=Tkinter.Menu(FileMenuButton,tearoff=0)
FileMenu.add_command(label=”New”,underline=0,

command=self.ClearText)
FileMenu.add_command(label=”Open”,underline=0,command=self.Open)
FileMenu.add_command(label=”Save”,underline=0,command=self.Save)
FileMenu.add_command(label=”Save as...”,underline=5,

command=self.SaveAs)
FileMenu.add_separator()
self.FixedWidthFlag=Tkinter.BooleanVar()
FileMenu.add_checkbutton(label=”Fixed-width”,

variable=self.FixedWidthFlag,command=self.SetFont)
FileMenu.add_separator()

FileMenu.add_command(label=”Exit”,underline=1,command=sys.exit)
FileMenuButton[“menu”]=FileMenu
Create Help menu:
HelpMenuButton=Tkinter.Menubutton(MenuFrame,text=”Help”,underline=0)
HelpMenu=Tkinter.Menu(HelpMenuButton,tearoff=0)
HelpMenu.add_command(label=”About”,underline=0,command=self.About)
HelpMenuButton[“menu”]=HelpMenu
HelpMenuButton.pack(side=Tkinter.LEFT,anchor=Tkinter.W)
Create the main text field:
self.TextBox=Tkinter.Text(MainFrame)
self.TextBox.pack(fill=Tkinter.BOTH,expand=Tkinter.YES)
Pack the top-level widget:
MainFrame.pack(fill=Tkinter.BOTH,expand=Tkinter.YES)

def SetFont(self):
if (self.FixedWidthFlag.get()):

self.TextBox[“font”]=”Courier”
else:

self.TextBox[“font”]=”Helvetica”
def About(self):

tkMessageBox.showinfo(“About textpad...”,”Hi, I’m a textpad!”)
def ClearText(self):

self.TextBox.delete(“1.0”,Tkinter.END)
def Open(self):

FileName=tkFileDialog.askopenfilename(filetypes=TEXT_FILE_TYPES)
if (FileName==None or FileName==””):

return
try:

File=open(FileName,”r”)
NewText=File.read()
File.close()
self.FileName=FileName
self.root.title(FileName)

Continued

4807-7 ch19.F 5/24/01 9:00 AM Page 363

364 Part IV ✦ User Interfaces and Multimedia

Listing 19-5 (continued)

except IOError:
tkMessageBox.showerror(“Read error...”,

“Could not read from ‘%s’”%FileName)
return

self.ClearText()
self.TextBox.insert(Tkinter.END,NewText)

def Save(self):
if (self.FileName==None or self.FileName==””):

self.SaveAs()
else:

self.SaveToFile(self.FileName)
def SaveAs(self):

FileName=tkFileDialog.asksaveasfilename(filetypes=TEXT_FILE_TYPES)
if (FileName==None or FileName==””):

return
self.SaveToFile(FileName)

def SaveToFile(self,FileName):
try:

File=open(FileName,”w”)
NewText=self.TextBox.get(“1.0”,Tkinter.END)
File.write(NewText)
File.close()
self.FileName=FileName
self.root.title(FileName)

except IOError:
tkMessageBox.showerror(“Save error...”,

“Could not save to ‘%s’”%FileName)
return

def Run(self):
self.root.mainloop()

if (__name__==”__main__”):
TextEditor().Run()

4807-7 ch19.F 5/24/01 9:00 AM Page 364

365Chapter 19 ✦ Tinkering with Tkinter

Figure 19-4: A text editor with dialogs

Handling Colors and Fonts
You can customize the color (or colors) of your widgets, as well as the font used to

paint widget text.

Colors
Colors are defined using three numbers. The three numbers specify the intensity of

red, green, and blue. Tkinter accepts colors in the form of a string of the form #RGB,

or #RRGGBB, or #RRRGGGBBB. For example, #FFFFFF is white, #000000 is black, and

#FF00FF is purple. The longer the string, the more precisely one can specify colors.

Tkinter also provides many predefined colors — for example, red and green are

valid color names. The list also includes some exotic colors, such as thistle3 and

burlywood2.

4807-7 ch19.F 5/24/01 9:00 AM Page 365

366 Part IV ✦ User Interfaces and Multimedia

Fonts
Font descriptors are tuples of the form (family,size[,styles]). For example,

the following lines display a button whose label is in Helvetica 24-point italics:

root=Tkinter.Tk()
Tkinter.Button(root,text=”Fancy”,

font=(“Helvetica”,24,”italic”)).pack()

If the name of a font family does not contain spaces, a string of the form “family
size styles” is an equivalent font descriptor. You can also use X font descriptors:

Tkinter.Button(root,text=”Fixed-width”,
font=”-*-Courier-bold-r-*-*-12-*-*-*-*-*-*-*’).pack()

Drawing Graphics
The PhotoImage class enables you to add images to your user interface. Images in

GIF, PPM, and PGM format are supported. The constructor enables you (optionally)

to name the image. You can also specify a file to read the image from, or pass in raw

image data:

MisterT=PhotoImage(“Mr. T”,file=”mrt.gif”)
Another way to get the same image:
ImageFile=open(“mrt.gif”)
ImageData=ImageFile.read()
ImageFile.close()
MisterT=PhotoImage(data=ImageData) # no name

Once you have a PhotoImage object, you can attach it to a label or button using the

image option:

MisterT=Tkinter.PhotoImage(file=”mrt.gif”)
Tkinter.Button(root,image=MisterT).pack()

You can query the size of a PhotoImage using the width and height methods.

You can construct PhotoImage objects only after you instantiate a TopLevel
instance.

The canvas widget
The canvas widget (Tkinter.Canvas) is a window in which you can programmati-

cally draw ovals, rectangles, lines, and so on. For example, the following code

draws a smiley-face:

Figure=Tkinter.Canvas(root,width=50,height=50)
Figure.pack()

Note

4807-7 ch19.F 5/24/01 9:00 AM Page 366

367Chapter 19 ✦ Tinkering with Tkinter

Figure.create_line(10,10,10,20)
Figure.create_line(40,10,40,20)
Figure.create_arc(5,15,45,45,start=200,extent=140,

style=Tkinter.ARC)

Several different canvas items are available for your drawing pleasure:

create_line(x1,y1,x2, Draws lines connecting the points (x1,y1)

y2,...,xn,yn) through (xn,yn), in order. The lines are nor-

mally straight; set the smooth option to true

to draw smooth lines.

create_polygon(x1,y2, Similar to create_line. Fills the area

x2,y2,...,xn,yn) spanned by the lines with the color supplied

for the fill option (by default, “transparent”).

Pass a color for the outline option to control

the line color. Set the smooth option to true

to draw smooth lines.

create_image(x,y, Draw the specified image on the canvas at

image=?[,anchor=?]) (x,y). The image option can be either a

PhotoImage instance or the name of a previ-

ously created PhotoImage. The anchor
option, which defaults to CENTER, specifies

which portion of the image lies at (x,y).

create_oval(x1,y1,x2,y2) Draw an oval inside the rectangle defined by

the points (x1,y1) and (x2,y2). Pass a color

in the outline option to control the outline’s

color. Pass a color in the fill option to fill the

oval with that color. You can control the out-

line’s width (in pixels) with the width option.

create_rectangle Draw a rectangle. The fill, outline, and

(x1,y2,x2,y2) width options have the same effect as for

create_oval.

create_text(x,y,text=? Draw the specified text on the canvas. Uses

[,font=?]) the supplied font, if any.

Manipulating canvas items
The items drawn on a canvas are widgets in their own right — they can be moved

around, have events bound to them, and so on. The create_* methods return an ID

for the canvas item. You can use that ID to manipulate the canvas item, using the

canvas’s methods. For example, the canvas method delete(ID) deletes the

specified item. The method move(ID, DeltaX, DeltaY) moves the canvas item

horizontally by DeltaX units, and vertically by DeltaY units.

4807-7 ch19.F 5/24/01 9:00 AM Page 367

368 Part IV ✦ User Interfaces and Multimedia

Using Timers
Tkinter also provides a timer mechanism. Call the method after(wait,function)
on a TopLevel widget to make the specified function execute after wait millisec-

onds. To make a timed action recur (for example, once every five minutes), make

another call to after at the end of function. For example, the code in Listing 19-6

calls a function every ten seconds:

Listing 19-6: Timer.py

import Tkinter

def MinuteElapsed():
print “Ding!”
root.after(1000*60,MinuteElapsed)

root=Tkinter.Tk()
root.after(10000,MinuteElapsed)
root.mainloop()

Example: A Bouncing Picture
The program in Listing 19-7 displays a picture that moves around, bouncing off the

sides of the window, as shown in Figure 19-5. It uses a PhotoImage object and a

canvas to handle the display and the TopLevel after method to schedule calls to

MoveImage.

Listing 19-7: CanvasBounce.py

import Tkinter
class Bouncer:

def __init__(self,Master):
self.Master=Master
self.X=0
self.Y=0
self.DeltaX=5
self.DeltaY=5
self.Figure=Tkinter.Canvas(self.Master)
self.GrailWidth=GrailPicture.width()
self.GrailHeight=GrailPicture.height()
self.GrailID=self.Figure.create_image(

0,0,anchor=Tkinter.NW,image=GrailPicture)
self.Figure.pack(fill=Tkinter.BOTH,expand=Tkinter.YES)
Move the image after 100 milliseconds:
root.after(100,self.MoveImage)

4807-7 ch19.F 5/24/01 9:00 AM Page 368

369Chapter 19 ✦ Tinkering with Tkinter

def MoveImage(self):
Move the image:
self.X+=self.DeltaX
self.Y+=self.DeltaY
self.Figure.coords(self.GrailID,self.X,self.Y)
Bounce off the sides:
if (self.X<0):

self.DeltaX=abs(self.DeltaX)
if (self.Y<0):

self.DeltaY=abs(self.DeltaY)
if (self.X+self.GrailWidth>self.Figure.winfo_width()):

self.DeltaX=-abs(self.DeltaX)
if (self.Y+self.GrailHeight >\

self.Figure.winfo_height()):
self.DeltaY=-abs(self.DeltaY)

Do it again after 100 milliseconds:
self.Master.after(100,self.MoveImage)

if (__name__==”__main__”):
root=Tkinter.Tk()
GrailPicture=Tkinter.PhotoImage(file=”HolyGrail.gif”)
Bouncer(root)
root.mainloop()

Figure 19-5: A bouncing picture

4807-7 ch19.F 5/24/01 9:00 AM Page 369

370 Part IV ✦ User Interfaces and Multimedia

Summary
After working with Tkinter, you will understand why it is so popular. Creating and

customizing an interface is simple. In this chapter, you:

✦ Created a GUI with buttons, labels, menus, and other Tkinter widgets.

✦ Used Tkinter’s standard dialogs.

✦ Set up timers.

✦ Drew pictures on a canvas.

The next chapter delves into Tkinter in more detail. It covers events, drag-and-drop

operations, and some more widgets.

✦ ✦ ✦

4807-7 ch19.F 5/24/01 9:00 AM Page 370

Using Advanced
Tkinter Widgets

This chapter introduces some of Tkinter’s fancier features —

custom event handlers, advanced widgets, and more.

Tkinter scales up painlessly from quick-and-dirty interfaces to

sophisticated, full-featured applications.

Handling Events
A GUI program spends most of its time waiting for something

to happen. When something does happen — the user clicking

the mouse, for example — events are sent to the affected wid-

get(s). Events are sometimes called messages or notifications.

A widget responds to an event using a function called an event
handler.

Creating event handlers
Often, Tkinter’s standard event handlers are good enough. As

you saw in the last chapter, you can create an interesting UI

without ever writing event handlers. However, you can

always define a custom event handler for a widget. To define

a custom handler, call the widget method bind(EventCode,
Handler[,Add=None]). Here, EventCode is a string identify-

ing the event, and Handler is a function to handle the event.

Passing a value of + for Add causes the new handler to be

added to any existing event binding.

You can also bind event handlers for a particular widget class

with a call to bind_class(ClassName,EventCode,
Handler[,Add]), or bind event handlers for application-level

events with bind_all(EventCode,Handler[,Add]).

When the widget receives a matching event, Handler is called,

and passed one argument — an event object. For example, the

following code creates a label that beeps when you click it:

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Handling events

Advanced widgets

Creating dialogs

Supporting drag-and-
drop operations

Using cursors

Designing new
widgets

Further Tkinter
adventures

✦ ✦ ✦ ✦

4807-7 ch20.F 5/24/01 9:00 AM Page 371

372 Part IV ✦ User Interfaces and Multimedia

BeepLabel=Tkinter.Label(root,text=”Click me!”)
BeepHandler=lambda Event,Root=root:Root.bell()
BeepLabel.bind(“<Button-1>”,BeepHandler)
BeepLabel.pack()

Binding mouse events
Mouse buttons are numbered — 1 is the left button, 2 is the middle button (if any),

and 3 is the right button. Table 20-1 lists the available mouse event codes.

Table 20-1
Mouse Events

Event code Description

<Button-1> Button 1 was pressed on the widget. Similarly for <Button-2>
and <Button-3>.

<B1-Motion> The mouse pointer was dragged over the widget, with button 1
pressed.

<ButtonRelease-1> Button 1 was released over the widget.

<Double-Button-1> Button 1 was double-clicked over the widget.

Binding keyboard events
The event code <Key> matches any keypress. You can also match a particular key,

generally by using that key’s character as an event code. For example, the event

code x matches a press of the x key. Some keystrokes have special event codes.

Table 20-2 lists the event codes for some of the most common special keystrokes.

Table 20-2
Common Special Keystrokes

Event code Keystroke

<Up> Up arrow key

<Down> Down arrow key

<Left> Left arrow key

<Right> Right arrow key

4807-7 ch20.F 5/24/01 9:00 AM Page 372

373Chapter 20 ✦ Using Advanced Tkinter Widgets

Event code Keystroke

<F1> Function key 1

<Shift_L>,<Shift_R> Left and right Shift key

<Control_L>,<Control_R> Left and right Control key

<space> Spacebar

Event objects
An event object, as passed to an event handler, has various attributes that specify

just what happened. The attribute widget is a reference to the affected widget.

For mouse events, the attributes x and y are the coordinates of the mouse pointer,

in pixels, as measured from the top-left corner of the widget. The attributes x_root
and y_root are mouse pointer coordinates, as measured from the top-left corner of

the screen.

For keyboard events, the attribute char is the character code, as a string.

Example: A Drawing Canvas
The program in Listing 20-1 provides a canvas on which you can draw shapes by

left- and right-clicking. In addition, you can move the Quit button around by using

the arrow keys. Figure 20-1 shows the program in action.

Listing 20-1: Events.py

import Tkinter
import sys

def DrawOval(Event):
Event.widget will be the main canvas:
Event.widget.create_oval(Event.x-5,Event.y-5,

Event.x+5,Event.y+5)
def DrawRectangle(Event):

Event.widget.create_rectangle(Event.x-5,Event.y-5,
Event.x+5,Event.y+5)

def MoveButton(Side):
The methods pack_forget() and grid_forget() unpack
a widget, but (unlike the destroy() method)

Continued

4807-7 ch20.F 5/24/01 9:00 AM Page 373

374 Part IV ✦ User Interfaces and Multimedia

Listing 20-1 (continued)

do not destroy it; it can be re-displayed later.
QuitButton.pack_forget()
QuitButton.pack(side=Side)

root=Tkinter.Tk()
MainCanvas=Tkinter.Canvas(root)
MainCanvas.bind(“<Button-1>”,DrawOval)
MainCanvas.bind(“<Button-3>”,DrawRectangle)
MainCanvas.pack(fill=Tkinter.BOTH,expand=Tkinter.YES)
QuitButton=Tkinter.Button(MainCanvas,text=”Quit”,

command=sys.exit)
QuitButton.pack(side=Tkinter.BOTTOM)
root.bind(“<Up>”,lambda e:MoveButton(Tkinter.TOP))
root.bind(“<Down>”,lambda e:MoveButton(Tkinter.BOTTOM))
root.bind(“<Left>”,lambda e:MoveButton(Tkinter.LEFT))
root.bind(“<Right>”,lambda e:MoveButton(Tkinter.RIGHT))
root.geometry(“300x300”) # Set minimum window size
root.mainloop()

Figure 20-1: A canvas with custom mouse and keyboard event handlers

4807-7 ch20.F 5/24/01 9:00 AM Page 374

375Chapter 20 ✦ Using Advanced Tkinter Widgets

Advanced Widgets
This section introduces three more widgets for your Tkinter widget toolbox: list-

box, scale, and scrollbar.

Listbox
A listbox (Tkinter.Listbox) displays a list of options. Each option is a string, and

each takes up one row in the listbox. Each item is assigned an index (starting from 0).

The option selectmode governs what kind of selections the user can make. SINGLE
allows one row to be selected at a time; MULTIPLE permits the user to select many

rows at once. BROWSE (the default) is similar to SINGLE, but allows the user to drag

the mouse cursor across rows. EXTENDED is similar to MULTIPLE, but allows fancier

selections to be made by Control- and Shift-clicking.

The option height, which defaults to 10, specifies how many rows a listbox displays

at once. If a listbox contains more rows than it can display at once, you should

attach a scrollbar — see the section “Scrollbar” for details.

Editing listbox contents
To populate the listbox, call the method insert(before,element[,...]). This

inserts one or more elements (which must be strings!) prior to index before. Use the

special index Tkinter.END to append the new item(s) to the end of the listbox.

The method delete(first[,last]) deletes all items from index first to index last,
inclusive. If last is not specified, the single item with index first is deleted.

Checking listbox contents
The method size returns the number of items in the listbox.

The method get(first[,last]) retrieves the items from index first to index last,
inclusive. Normally, get returns a list of strings; if last is omitted, the single item

with index first is returned.

The method nearest(y) returns the index of the row closest to the specified

y-coordinate. This is useful for determining what row a user is clicking.

Checking and changing the selection
The method curselection returns the current selection, in the form of a list of

indices. If no row is selected, curselection returns an empty string. The method

selection_includes(index) returns true if the item with the specified index is

selected.

4807-7 ch20.F 5/24/01 9:00 AM Page 375

376 Part IV ✦ User Interfaces and Multimedia

The method selection_set(first[,last]) selects the items from index first to

index last, inclusive. The method selection_clear(first[,last]) deselects the

specified items.

When you specify a range of listbox indices, the list is inclusive, not exclusive. For
example, MyList.selection_set(2,3) selects the items with index 2 and 3.

Scale
A scale widget (Tkinter.Scale) looks like a sliding knob. The user drags the

slider to set a numeric value. You can attach a scale to a Tkinter variable (using the

variable option), or use its get and set methods to access its value directly.

Range and precision
The options from and to specify the numeric range available; the default is the

range from 0 to 100. The option resolution is the smallest possible change the user

can make in the numeric value. By default, resolution is 1 (so that the scale’s value

is always an integer).

Remember to use from_ , not from, when passing the “from” option as a keyword
argument.

Widget size
The option orient determines the direction in which the scale is laid out; valid val-

ues are HORIZONTAL and VERTICAL. The option length specifies the length (in pix-

els) of the scale; it defaults to 100. The option sliderlength determines the length of

the sliding knob; it defaults to 30.

Labeling
By default, a scale displays the current numeric value above (or to the left of) the

sliding scale. Set the showvalue option to false to disable this display.

You can label the axis with several tick-marks. To do so, pass the distance between

ticks in the option tickinterval.

Scrollbar
A scrollbar widget (Tkinter.Scrollbar) is used in conjunction with another wid-

get when that widget has more to show than it can display all at once. The scrollbar

enables the user to scroll through the available information.

The orient option determines the scrollbar’s orientation; valid values are VERTICAL

and HORIZONTAL.

Note

Note

4807-7 ch20.F 5/24/01 9:00 AM Page 376

377Chapter 20 ✦ Using Advanced Tkinter Widgets

To attach a vertical scrollbar to a Listbox, Canvas, or Text widget, set the scroll-

bar’s command option to the yview method of the widget. Then, set the widget’s

yscrollcommand option to the scrollbar’s set method. (To attach a horizontal

scrollbar, perform a similar procedure, but use xview and xscrollcommand.)

For example, the following two lines “hook together” a scrollbar (MyScrollbar) and

a listbox (MyListbox):

MyScrollbar[“command”]= MyListbox.yview
MyListbox[“yscrollcommand”]= MyScrollbar.set

Example: Color Scheme Customizer
Tkinter allows you to use a predefined color scheme. These colors are used as

defaults for the foreground and background options of widgets. The TopLevel

method option_readfile(filename) reads in default colors and fonts from a file.

You should call option_readfile as early in your program as possible, because it

doesn’t affect any widgets already displayed onscreen.

A typical line in the file has the form *Widget*foreground: Color, where Widget
is a widget class and Color is the default color for that sort of widget. The line

*foreground: Color sets a default foreground for all other widgets. Similar lines

set the default background colors.

The example shown in Listing 20-2 lets you define a new color scheme. It uses a list-

box, a scrollbar, and three sliding scales (for setting red, green, and blue levels). See

Figure 20-2 for an example.

Listing 20-2: ColorChooser.py

import Tkinter
import os
import sys

WIDGET_NAMES = [“Entry”,”Label”,”Menu”,”Text”,”Button”,”Listbox”,”Scale”,
“Scrollbar”,”Canvas”]

OPTION_FILE_NAME=”TkinterColors.ini”
COLOR_COMPONENTS=[“Red”,”Green”,”Blue”]

class ColorChooser:
def __init__(self):

self.root = Tkinter.Tk()
Dictionary of options and values - corresponds to
the option database (TkinterColors.ini):
self.Options={}

Continued

4807-7 ch20.F 5/24/01 9:00 AM Page 377

378 Part IV ✦ User Interfaces and Multimedia

Listing 20-2 (continued)

Flag linked to the “Option set?” checkbox:
self.OptionSetFlag=Tkinter.BooleanVar()
self.GetOptionsFromFile()
self.BuildWidgets()
self.SelectedColorItem=None
self.SelectNewColorItem(0)

def SaveCurrentColorValues(self):
“Use Scale-widget values to set internal color value”
if (self.SelectedColorItem!=None):

if (self.OptionSetFlag.get()):
ColorString=”#”
for ColorComponent in COLOR_COMPONENTS:

ColorString+=”%02X”%self.ColorValues[ColorComponent].get()
self.Options[self.SelectedColorItem]=ColorString

else:
The user un-checked the “option set” box:
if (self.Options.has_key(self.SelectedColorItem)):

del self.Options[self.SelectedColorItem]
def UpdateControlsFromColorValue(self):

“Use internal color value to update Scale widgets”
if (self.SelectedColorItem!=None and self.OptionSetFlag.get()):

ColorString=self.Options.get(self.SelectedColorItem,””)
if len(ColorString)!=7:

ColorString=”#000000” # default
else:

ColorString=”#000000”
RedValue=int(ColorString[1:3],16)
self.ColorValues[“Red”].set(RedValue)
GreenValue=int(ColorString[3:5],16)
self.ColorValues[“Green”].set(GreenValue)
BlueValue=int(ColorString[5:],16)
self.ColorValues[“Blue”].set(BlueValue)

def OptionChecked(self):
“””Callback for clicking the “Option set” checkbox”””
if (self.OptionSetFlag.get()):

self.EnableColorScales()
else:

self.DisableColorScales()
def EnableColorScales(self):

for ColorComponent in COLOR_COMPONENTS:
self.ColorScales[ColorComponent][“state”]=Tkinter.NORMAL

def DisableColorScales(self):
for ColorComponent in COLOR_COMPONENTS:

self.ColorScales[ColorComponent][“state”]=Tkinter.DISABLED
def SelectNewColorItem(self,NewIndex):

“””Choose a new color item - save the current item, select the
new entry in the listbox, and update the scale-widgets from the
new entry”””

4807-7 ch20.F 5/24/01 9:00 AM Page 378

379Chapter 20 ✦ Using Advanced Tkinter Widgets

self.SaveCurrentColorValues()
self.SelectedColorItem=self.ItemList.get(NewIndex)
self.ItemList.activate(NewIndex)
self.ItemList.selection_set(NewIndex)
print “sel:”,self.SelectedColorItem
print self.Options.has_key(self.SelectedColorItem)
self.OptionSetFlag.set(self.Options.has_key(self.SelectedColorItem))
print self.OptionSetFlag.get()
self.OptionChecked()
self.UpdateControlsFromColorValue()

def ListboxClicked(self,ClickEvent):
“Event handler for choosing a new Listbox entry”
NewIndex=self.ItemList.nearest(ClickEvent.y)
self.SelectNewColorItem(NewIndex)

def BuildWidgets(self):
“””Set up all the application widgets”””
self.LeftPane=Tkinter.Frame(self.root)
self.RightPane=Tkinter.Frame(self.root)
self.ItemList=Tkinter.Listbox(self.LeftPane,

selectmode=Tkinter.SINGLE)
self.ItemList.pack(side=Tkinter.LEFT,expand=Tkinter.YES,

fill=Tkinter.Y)
self.ListBoxScroller=Tkinter.Scrollbar(self.LeftPane)
self.ListBoxScroller.pack(side=Tkinter.RIGHT,expand=Tkinter.YES,

fill=Tkinter.Y)
Add entries to listbox:
self.ItemList.insert(Tkinter.END,”*foreground”)
self.ItemList.insert(Tkinter.END,”*background”)
for WidgetName in WIDGET_NAMES:

self.ItemList.insert(Tkinter.END,”*%s*foreground”%WidgetName)
self.ItemList.insert(Tkinter.END,”*%s*background”%WidgetName)

Attach scrollbar to listbox:
self.ListBoxScroller[“command”]=self.ItemList.yview
self.ItemList[“yscrollcommand”]=self.ListBoxScroller.set
Handle listbox selection events specially:
self.ItemList.bind(“<Button-1>”,self.ListboxClicked)
Add checkbox for setting and un-setting the option:
ColorSetCheck=Tkinter.Checkbutton(self.RightPane,

text=”Option set”, variable=self.OptionSetFlag,
command=self.OptionChecked)

ColorSetCheck.pack(side=Tkinter.TOP,anchor=Tkinter.W)
Build red, green, and blue scales for setting colors:
self.ColorValues={}
self.ColorScales={}
for ColorComponent in COLOR_COMPONENTS:

ColorValue=Tkinter.IntVar()
self.ColorValues[ColorComponent]=ColorValue
NewScale=Tkinter.Scale(self.RightPane,

orient=Tkinter.HORIZONTAL,from_=0,to=255,
variable=ColorValue)

self.ColorScales[ColorComponent]=NewScale

Continued

4807-7 ch20.F 5/24/01 9:00 AM Page 379

380 Part IV ✦ User Interfaces and Multimedia

Listing 20-2 (continued)

Tkinter.Label(self.RightPane,text=ColorComponent).pack\
(side=Tkinter.TOP)

NewScale.pack(side=Tkinter.TOP,pady=10)
Add “SAVE” and “QUIT” buttons:
ButtonFrame=Tkinter.Frame(self.RightPane)
ButtonFrame.pack()
Tkinter.Button(ButtonFrame,text=”Save”,

command=self.SaveOptionsToFile).pack(side=Tkinter.LEFT)
Tkinter.Button(ButtonFrame,text=”Quit”,

command=sys.exit).pack(side=Tkinter.LEFT)
Pack the parentmost widgets:
self.LeftPane.pack(side=Tkinter.LEFT,expand=Tkinter.YES,

fill=Tkinter.BOTH)
self.RightPane.pack(side=Tkinter.RIGHT,expand=Tkinter.YES,

fill=Tkinter.BOTH)
def Run(self):

self.root.mainloop()
def SaveOptionsToFile(self):

Update internal color-settings from scale-widgets:
self.SaveCurrentColorValues()
File=open(OPTION_FILE_NAME,”w”)
Save *foreground and *background first:
if self.Options.has_key(“*foreground”):

File.write(“*foreground: %s\n”%self.Options[“*foreground”])
del self.Options[“*foreground”]

if self.Options.has_key(“*background”):
File.write(“*background: %s\n”%self.Options[“*background”])
del self.Options[“*background”]

for Key in self.Options.keys():
File.write(“%s: %s\n”%(Key,self.Options[Key]))

File.close()
print “Saved!”

def GetOptionsFromFile(self):
if os.path.exists(OPTION_FILE_NAME):

Read the colors in:
File=open(OPTION_FILE_NAME,”r”)
for Line in File.readlines():

LineHalves=Line.split(“:”)
if len(LineHalves)!=2:

Not a proper setting
continue

Value = LineHalves[1].strip()
Index = LineHalves[0].strip()
self.Options[Index] = Value

File.close()
Tell Tkinter to use these colors, too!
self.root.option_readfile(OPTION_FILE_NAME)

if (__name__==”__main__”):
ColorChooser().Run()

4807-7 ch20.F 5/24/01 9:00 AM Page 380

381Chapter 20 ✦ Using Advanced Tkinter Widgets

Figure 20-2: Using scales and listboxes to design a color scheme

Creating Dialogs
Instead of using the standard dialogs (as described in Chapter 19), you can create

dialog boxes of your own. The module tkSimpleDialog provides a class, Dialog,

that you can subclass to create any dialog box. When you construct a Dialog

instance, the dialog is (synchronously) displayed, and the user can click OK or

Cancel. The constructor has the syntax Dialog(master[,title]).

Override the method body(master) with a method that creates the widgets in the

dialog body. If the body method returns a widget, that widget receives the initial

focus when the dialog is displayed. Override the apply method with a function to

be called when the user clicks OK.

In addition, you can create custom buttons by overriding the buttonbox method.

The buttons should call the ok and cancel methods. In addition, binding <Return>
to OK, and <Escape> to Cancel, is generally a good idea.

The example in Listing 20-3 displays a simple dialog when the user presses a button.

4807-7 ch20.F 5/24/01 9:00 AM Page 381

382 Part IV ✦ User Interfaces and Multimedia

Listing 20-3: Complaint.py

import Tkinter
import tkSimpleDialog

class ComplaintDialog(tkSimpleDialog.Dialog):
def body(self,Master):

Tkinter.Label(self,
text=”Enter your complaint here:”).pack()

self.Complaint=Tkinter.Entry(self)
self.Complaint.pack()
return self.Complaint # set initial focus here!

def apply(self):
self.ComplaintString=self.Complaint.get()

def Complain():
This next line doesn’t return until the user
clicks “Ok” or “Cancel”:
UserDialog=ComplaintDialog(root,”Enter your complaint”)
if hasattr(UserDialog,”ComplaintString”):

They must have clicked “Ok”, since
apply() got called.
print “Complaint:”,UserDialog.ComplaintString

root=Tkinter.Tk()
Tkinter.Button(root,text=”I wish to register a complaint”,

command=Complain).pack()
root.mainloop()

Supporting Drag-and-Drop Operations
The module Tkdnd provides simple drag-and-drop support for your Tkinter applica-

tions. To implement drag-and-drop, you need to have suitable draggable objects,

and suitable targets. A draggable object (which can be a widget) should implement

a dnd_end method. A target can be any widget that implements the methods

dnd_accept, dnd_motion, dnd_enter, dnd_leave, and dnd_commit.

To support drag-and-drop, bind a handler for <ButtonPress> in the widget from

which you can drag. In the event handler, call Tkdnd.dnd_start(draggable,
event), where draggable is a draggable object and event is the event you are

handling. The call to dnd_start returns a drag-and-drop object. You can call this

object’s cancel method to cancel an in-progress drag; otherwise, you don’t use

the drag-and-drop object.

4807-7 ch20.F 5/24/01 9:00 AM Page 382

383Chapter 20 ✦ Using Advanced Tkinter Widgets

As the user drags the object around, Tkdnd constantly looks for a new target widget.

It checks the widget under the mouse cursor, then that parent’s widget, and so on.

When it sees a widget with a dnd_accept method, it calls dnd_accept(draggable,
event), where draggable is the object being dragged. If the call to dnd_accept
returns anything but None, that widget becomes the new target.

Whenever the dragged object moves, one of the following happens:

✦ If the old target and the new target are both None, nothing happens.

✦ If the old and new targets are the same widget, its method dnd_motion
(draggable,event) is called.

✦ If the old target is None and the new target is not, its method

dnd_enter(draggable,event) is called.

✦ If the new target is None and the old target is not, its method

dnd_leave(draggable, event) is called.

✦ If the old and new targets are not None and are different, dnd_leave is called

on the old one and then dnd_enter is called on the new one.

If the draggable object is dropped on a valid target, dnd_commit(draggable,event)
is called on that target. If the draggable object is not dropped on a valid target,

dnd_leave is called on the previous target (if any). In either case, a call to

dnd_end(target,event) is made on the draggable object when the user drops it.

The program in Listing 20-4 illustrates drag-and-drop through the use of two custom

listboxes. Entries can be dragged around within a listbox, or dragged between list-

boxes. Figure 20-3 shows what the program looks like.

Listing 20-4: DragAndDrop.py

import Tkinter
import Tkdnd

class DraggableRow:
def __init__(self,Index,ItemStr,Widget):

self.Index=Index
self.ItemStr=ItemStr
self.Widget=Widget
self.PreviousWidget=Widget

def dnd_end(self,Target,Event):
if Target==None:

Put the item back in its original widget!
self.PreviousWidget.insert(Tkinter.END,

self.ItemStr)

Continued

4807-7 ch20.F 5/24/01 9:00 AM Page 383

384 Part IV ✦ User Interfaces and Multimedia

Listing 20-4 (continued)

class DragAndDropListbox(Tkinter.Listbox):
def __init__(self,Master,cnf={},**kw):

Tkinter.Listbox.__init__(self,Master,cnf)
self.bind(“<ButtonPress>”,self.StartDrag)

def StartDrag(self,Event):
Index=self.nearest(Event.y)
ItemStr=self.get(Index)
Tkdnd.dnd_start(DraggableRow(Index,ItemStr,self),Event)

def dnd_accept(self,Item,Event):
return self

def dnd_leave(self,Item,Event):
self.delete(Item.Index)
Item.PreviousWidget=self
Item.Widget=None
Item.Index=None

def dnd_enter(self,Item,Event):
if (Item.Widget==self and Item.Index!=None):

self.delete(Item.Index)
Item.Widget=self
NewIndex=self.nearest(Event.y)
NewIndex=max(NewIndex,0)
self.insert(NewIndex,Item.ItemStr)
Item.Index=NewIndex

def dnd_commit(self,Item,Event):
pass

def dnd_motion(self,Item,Event):
if (Item.Index!=None):

self.delete(Item.Index)
NewIndex=self.nearest(Event.y)
NewIndex=max(NewIndex,0)
Item.Index=NewIndex
self.insert(NewIndex,Item.ItemStr)

root=Tkinter.Tk()
LeftList=DragAndDropListbox(root)
LeftList.pack(side=Tkinter.LEFT,fill=Tkinter.BOTH,

expand=Tkinter.YES)
RightList=DragAndDropListbox(root)
RightList.pack(side=Tkinter.RIGHT,fill=Tkinter.BOTH,

expand=Tkinter.YES)
Add some elements to the listbox, for testing:
for Name in [“Nene”,”Syvia”,”Linna”,”Priscilla”]:

LeftList.insert(Tkinter.END,Name)
root.mainloop()

4807-7 ch20.F 5/24/01 9:00 AM Page 384

385Chapter 20 ✦ Using Advanced Tkinter Widgets

Figure 20-3: Dragging and dropping elements between two listboxes

Using Cursors
The standard widget option cursor specifies the name of a cursor image to use when

the mouse is positioned over the widget. Setting cursor to an empty string uses the

standard system cursor. For example, the following code creates a Quit button, and

changes the cursor to a skull-and-crossbones when it is positioned over the button:

Tkinter.Button(root,text=”Quit”,command=sys.exit,
cursor=”pirate”).pack()

Many cursors are available, which range from the useful to the silly. Table 20-3

describes some useful cursors.

4807-7 ch20.F 5/24/01 9:00 AM Page 385

386 Part IV ✦ User Interfaces and Multimedia

Table 20-3
Cursors

Name Description

left_ptr Pointer arrow; a good default cursor

watch Stopwatch; used to tell the user to wait while some
operation finishes

pencil Pencil; good for drawing

xterm Insertion cursor; the default for Text and Entry widgets

trek, gumby, box_spiral Some cute, silly cursors

The TopLevel method after executes a function after a specified amount of

time has passed. (See “Using Timers” in Chapter 19). The related method

after_idle(function) executes a specified function as soon as Tkinter

empties its event queue and becomes idle. It is a handy way for restoring the

cursor to normal after an operation has finished.

The example in Listing 20-5 finds .mp3 files in the current directory and all its

subdirectories, and adds them to a playlist. It displays a busy cursor while it is

searching the directories. (A fancier approach would be to spawn a child thread to

do the search.)

Listing 20-5: WaitCursor.py

import Tkinter
import os
OldCursor=””
def DoStuff():

Save the old cursor, so we can restore it later.
(In this example, we know the old cursor is just “”)
OldCursor=root[“cursor”]
Change the cursor:
root[“cursor”]=”watch”
Wait for Tkinter to empty the event loop. We must do
this, in order to see the new cursor:
root.update()
Tell Tkinter to RestoreCursor the next time it’s idle:
root.after_idle(RestoreCursor)
File=open(“PlayList.m3u”,”w”)
os.path.walk(os.path.abspath(os.curdir),CheckDir,File)
File.close()

def CheckDir(File,DirName,FileNames):
Write all the MP3 files in the directory to our playlist:
for FileName in FileNames:

4807-7 ch20.F 5/24/01 9:00 AM Page 386

387Chapter 20 ✦ Using Advanced Tkinter Widgets

if os.path.splitext(FileName)[1].upper()==”.MP3”:
File.write(os.path.join(DirName,FileName)+”\n”)

def RestoreCursor():
root[“cursor”]=OldCursor

root=Tkinter.Tk()
Tkinter.Button(text=”Find files!”,command=DoStuff).pack()
root.mainloop()

Designing New Widgets
You can create new widgets by combining or subclassing existing ones. However,

before you do, do a quick search online — any widget you can imagine has probably

been created already!

Listing 20-6 shows a simple example — a progress bar, which keeps track of

progress as a percentage from 0 to 100. Figure 20-4 shows the program partway

through its run.

Listing 20-6: ProgressBar.py

import Tkinter
import time
import sys

class ProgressBar:
def __init__(self, Parent, Height=10, Width=100,

ForegroundColor=None,BackgroundColor=None,Progress=0):
self.Height=Height
self.Width=Width
self.BarCanvas = Tkinter.Canvas(Parent,

width=Width,height=Height,
background=BackgroundColor,borderwidth=1,
relief=Tkinter.SUNKEN)

if (BackgroundColor):
self.BarCanvas[“backgroundcolor”]=BackgroundColor

self.BarCanvas.pack(padx=5,pady=2)
self.RectangleID=self.BarCanvas.create_rectangle(\

0,0,0,Height)
if (ForegroundColor==None):

ForegroundColor=”black”
self.BarCanvas.itemconfigure(\

self.RectangleID,fill=ForegroundColor)
self.SetProgressPercent(Progress)

def SetProgressPercent(self,NewLevel):

Continued

4807-7 ch20.F 5/24/01 9:00 AM Page 387

388 Part IV ✦ User Interfaces and Multimedia

Listing 20-6 (continued)

self.Progress=NewLevel
self.Progress=min(100,self.Progress)
self.Progress=max(0,self.Progress)
self.DrawProgress()

def DrawProgress(self):
ProgressPixel=(self.Progress/100.0)*self.Width
self.BarCanvas.coords(self.RectangleID,

0,0,ProgressPixel,self.Height)
def GetProgressPercent(self):

return self.Progress

Simple demonstration:
def IncrememtProgress():

OldLevel=Bar.GetProgressPercent()
if (OldLevel>99): sys.exit()
Bar.SetProgressPercent(OldLevel+1)
root.after(20,IncrememtProgress)

root=Tkinter.Tk()
root.title(“Progress bar!”)
Bar=ProgressBar(root)
root.after(20,IncrememtProgress)
root.mainloop()

Figure 20-4: A custom widget for displaying a progress bar

4807-7 ch20.F 5/24/01 9:00 AM Page 388

389Chapter 20 ✦ Using Advanced Tkinter Widgets

Further Tkinter Adventures
There are many more widgets, options, and tricks in Tkinter than are covered here.

Following are some places to learn more.

Additional widgets
Python MegaWidgets (Pmw) is a large collection of Tkinter widgets. Examples

include Notebook (a tabbed display) and Balloon (a class for adding popup help).

Pmw is a nice way to develop fancier interfaces without becoming a Tk Jedi Master.

Visit http://www.dscpl.com.au/pmw/ to check it out.

There are other collections of Tk widgets — such as Tix and BLT — that may help

you save time developing a GUI.

Learning more
The Tkinter distribution is lacking in documentation, but there are several good

Tkinter references out there:

✦ An Introduction to Tkinter, by Fredrik Lundh. Comprehensive, with many good

examples.

http://www.pythonware.com/library/tkinter/introduction/
index.htm

✦ Python and Tkinter Programming, by John E. Grayson. Many interesting exam-

ples. Covers Pmw in great detail. The book’s Web site is at

http://www.manning.com/Grayson/

✦ The Tkinter topic guide — a good starting point for all things Tkinter.

http://www.python.org/topics/tkinter/doc.html

✦ The Tkinter Life Preserver, by Matt Conway.

http://www.python.org/doc/life-preserver/index.html

When all else fails, read up on Tk. The correspondence between Tkinter and Tk is

straightforward, so anything you learn about Tk will carry over to Tkinter too.

4807-7 ch20.F 5/24/01 9:00 AM Page 389

390 Part IV ✦ User Interfaces and Multimedia

Summary
Tkinter can handle sophisticated GUIs without much trouble. You can use the lay-

out managers and event handler to get your program’s appearance and behavior

just right. In this chapter, you:

✦ Handled various events.

✦ Created advanced widgets and dialogs.

✦ Used custom mouse cursors.

In the next chapter, you learn all about the Curses module — a good user interface

choice for terminals on which graphics (and hence Tkinter) aren’t available.

✦ ✦ ✦

4807-7 ch20.F 5/24/01 9:00 AM Page 390

Building User
Interfaces with
wxPython

Although it is not Python’s official user interface library,

wxPython is becoming an increasingly popular set of

tools for building graphical user interfaces. Like Tkinter, it is

powerful, easy to use, and works on several platforms. This

chapter gives you a jump start on using wxPython in your

own applications.

Introducing wxPython
wxPython (http://wxpython.org) is an extension module

that wraps a C++ framework called wxWindows

(http://wxwindows.org). Both wxPython and wxWindows

provide cross-platform support and are free for private as well

as commercial use. This chapter focuses on the cross-plat-

form GUI support provided by wxPython, but wxWindows also

gives you cross-platform APIs for multithreading, database

access, and so on.

Visit the wxPython Web site for straightforward download-
ing and installing instructions, as well as the latest news
and support. You can also join the wxPython community
by subscribing to a free mailing list for questions, answers,
and announcements. Visit http://wxpros.com for infor-
mation about professional support and training.

The full feature set of wxPython deserves an entire book of its

own, and a single chapter will all but scratch the surface. The

purpose of this chapter, therefore, is to give you a high-level

picture of what it supports, and to get you started on writing

some wxPython programs of your own. You’ll still want to

Tip

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing wxPython

Creating simple
wxPython programs

Choosing different
window types

Using wxPython
controls

Controlling layout

Using built-in dialogs

Drawing with device
contexts

Adding menus and
keyboard shortcuts

Accessing mouse and
keyboard input

Other wxPython
features

✦ ✦ ✦ ✦

4807-7 ch21.F 5/24/01 9:00 AM Page 391

392 Part IV ✦ User Interfaces and Multimedia

later sift through the documentation for additional options and features. Because

wxPython is so easy to use, however, by the end of this chapter you’ll be able to

write some very functional programs, and with very little effort.

In addition to its built-in features, wxPython can also detect and use some popular

Python extension modules such as Numerical Python (NumPy) and PyOpenGL, the

OpenGL bindings for Python.

See Chapter 32 for an introduction to NumPy.

wxPython often outperforms Tkinter, both with large amounts of data and overall

responsiveness; it comes with a good set of high-level controls and dialogs; and it

does a pretty good job of giving applications a native look and feel (which isn’t nec-

essarily a goal of Tkinter anyway). For these reasons, and because I find using

wxPython very straightforward and intuitive, I personally prefer wxPython over

Tkinter even though it doesn’t ship as a standard part of the Python distribution.

Creating Simple wxPython Programs
Most wxPython programs have a similar structure, so once you have that under

your belt, you can quickly move on to programs that are more complex. Listing 21-1

is a simple program that opens up a main window with a giant button in it. Clicking

the button pops up a dialog box, as shown in Figure 21-1.

Listing 21-1: wxclickme.py — A wxPython application
with buttons

from wxPython.wx import *

class ButtonFrame(wxFrame):
‘Creates a frame with a single button in the center’
def __init__(self):

wxFrame.__init__(self, NULL, -1, ‘wxPython’,
wxDefaultPosition, (200, 100))

button = wxButton(self, 111, ‘Click Me!’)
EVT_BUTTON(self, 111, self.onButton)

def onButton(self, event):
‘Create a message dialog when the button is clicked’
dlg = wxMessageDialog(self, ‘Ow, quit it.’, \

‘Whine’, wxOK)
dlg.ShowModal()
dlg.Destroy()

Cross-
Reference

4807-7 ch21.F 5/24/01 9:00 AM Page 392

393Chapter 21 ✦ Building User Interfaces with wxPython

class App(wxApp):
def OnInit(self):

‘Create the main window and insert the custom frame’
frame = ButtonFrame()
frame.Show(true)
return true # Yes, continue processing

Create the app and start processing messages
app = App(0)
app.MainLoop()

Figure 21-1: The program in Listing 21-1 opens
the dialog box on the button click event.

To understand this program, start at the end and work your way back. All wxPython

programs instantiate a wxApp (or subclass) object and call its MainLoop method to

start the message handling (MainLoop doesn’t return until the application window

is closed). The wxApp subclass in the example, App, overloads the OnInit method

that is called during initialization. OnInit creates a custom frame, ButtonFrame,

makes it visible, and returns true (actually, wx.true) to signal success. These lines

of code will be nearly identical for almost all your wxPython programs; for each

new program, I usually cut and paste them from the previous program I wrote,

changing only the name of the frame class to use.

A frame is a top-level window like the main window in most applications (it usually

has a title bar, is resizable, and so forth). The __init__ method of the

ButtonFrame class calls the parent (wxFrame) constructor to set the title to

“wxPython” and the size to 200 pixels wide and 100 tall. It adds a button with the

label Click Me!, and tells wxPython to route button-click messages for that button to

ButtonFrame’s onButton method. Notice how trivial it is to set up event routing.

The line

EVT_BUTTON(self, 111, self.onButton)

tells wxPython to take all button-click events generated in the current window

(self) with an ID of 111 (a random number I chose and assigned to the button) and

send them to the onButton method. The only requirement for the onButton
method is that it take an event argument. You can use a method such as onButton
as the handler for many different events (if it makes sense to do so) because it

receives as an argument the event to process. Each event is derived from the

4807-7 ch21.F 5/24/01 9:00 AM Page 393

394 Part IV ✦ User Interfaces and Multimedia

wxEvent class and has methods that identify the event source, type, and so on. For

example, if you registered onButton to handle events from several different but-

tons, onButton could call the event’s GetId() method to determine which button

was clicked.

Use the wxNewId() function to generate unique ID numbers.

The onButton method pops open a standard message dialog, waits for you to click

OK, and closes it.

Fiddle around with the program until the basic structure makes sense and you’re

comfortable with what’s happening. Conceptually, that’s the bulk of programming in

wxPython — now you can just learn about other widgets besides buttons, and other

events besides button-clicks. There’s plenty more to learn, of course, but the

designers of wxPython have done an excellent job of insulating us from a lot of

nasty details.

Choosing Different Window Types
The wxWindow class is the base class of all other windows (everything from the

main application window to a button or a text label is considered a window). Of the

window types that can contain child windows, there are two types: managed and

nonmanaged.

Repeat ten times out loud: “A button is a window.” Nearly everything is a descen-
dent of wxWindow; therefore, for example, if the documentation tells you that you
can call some method to add a child window to a parent, bear in mind that the
child window can be a panel, a button, a scrollbar, and so on.

Managed windows
A managed window is one that is directly controlled by the operating system’s win-

dow manager. The first type is one you’ve already seen, wxFrame, which often has a

title bar, menus, and a status bar, and is usually resizable and movable by the user.

wxMiniFrame is a wxFrame subclass that creates a tiny frame suitable for floating

toolbars.

A wxDialog window is similar to a wxFrame window and is usually used to request

input or display a message. When created with the wxDIALOG_MODAL style, the

calling program can’t receive any user input until the dialog box is closed.

Managed window constructors are generally like wxWindow(parent, id, title[,
position][, size][, style]), where parent can be None for managed windows,

id can be –1 for a default ID, and style is a bitwise OR combination of several

class-specific flags:

Tip

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 394

395Chapter 21 ✦ Building User Interfaces with wxPython

>>> from wxPython.wx import *
>>> f = wxFrame(None,-1,’’, size=(200,100),

style=wxRESIZE_BORDER)
>>> f.Center(); f.Show(1) # Later, use f.Show(0) to kill it

Nonmanaged windows
Nonmanaged windows are controlled by wxPython, and you use them by placing

them inside other windows. For example, the following creates a window with a

resizable vertical split like the one shown in Figure 21-2:

>>> f = wxFrame(None,-1,’SplitterWindow’,size=(200,100))
>>> s = wxSplitterWindow(f,-1)
>>> s.SplitVertically(wxWindow(s,-1),wxWindow(s,-1))
1
>>> f.Show(1)
1

Figure 21-2: A user-resizable splitter window

Notice that wxSplitterWindow’s SplitVertically method takes as parameters

the two windows it splits; for simplicity, I just created two plain windows. A

wxPanel window is like a dialog box in that you place controls (buttons, text entry

fields, and so on) in it, except that a panel lives inside another window such as a

frame. The wxHtmlWindow class displays HTML files; you can even embed any

wxPython widget within an HTML page and have it respond to events normally.

Consult demo.py in the wxPython distribution for information about embedding
widgets in HTML pages. The demo also contains terrific examples of many other
wxPython features.

You can add scrolling to any window by first placing it inside a wxScrolledWindow
instance. Be sure to call its SetScrollBars method to initialize the size of the

scrollbars. Some windows, such as wxHtmlWindow, are derived from

wxScrolledWindow, or already have scrolling support to save you the trouble.

The wxGrid class gives your application a spreadsheet-like table with rows and

columns. It has plenty of standard helpers for controlling user input or displaying

data in certain ways, or you can implement your own grid cell renderers.

The wxStatusBar and wxToolBar classes enable you to add a status bar and a

toolbar to any frame (call the frame’s SetStatusBar and SetToolBar methods,

respectively). In the wxPython.lib.floatbar module, you’ll find wxFloatBar, a

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 395

396 Part IV ✦ User Interfaces and Multimedia

wxToolBar subclass implemented in Python that provides “dockable” toolbars that

users can pull out of the frame and move elsewhere.

Applications such as Microsoft Visual Studio enable you to open several files at a

time, each in a separate child window that can’t leave the boundaries of a single

parent window. wxPython enables you to create applications with this style of inter-

face using the wxMDIChildFrame, wxMDIClientWindow, and wxMDIParentFrame
classes.

The program in Listing 21-2 creates a viewer for HTML files stored locally. Notice in

Figure 21-3 that it uses a wxNotebook window to enable you to open several HTML

files simultaneously, and the toolbar has buttons for adding and removing pages as

well as quitting the application.

Listing 21-2: grayul.py — A local HTML file viewer

from wxPython.wx import *
from wxPython.html import *
from wxPython.lib.floatbar import *
import time,os

class BrowserFrame(wxFrame):
‘Creates a multi-pane viewer for local HTML files’
ID_ADD = 5000
ID_REMOVE = 5001
ID_QUIT = 5002

Load support for viewing GIF files
wxImage_AddHandler(wxGIFHandler())

def __init__(self):
wxFrame.__init__(self, NULL, -1, ‘Grayul’)

Create a toolbar with Add, Remove, and Quit buttons
tb = wxFloatBar(self,-1)
addWin = wxButton(tb,self.ID_ADD,’Add new window’)
removeWin = wxButton(tb,self.ID_REMOVE,

‘Remove current window’)
quit = wxButton(tb,self.ID_QUIT,’Quit’)

Tie button clicks to some event handlers
EVT_BUTTON(tb,self.ID_ADD,self.OnAdd)
EVT_BUTTON(tb,self.ID_REMOVE,self.OnRemove)
EVT_BUTTON(tb,self.ID_QUIT,self.OnQuit)

Add the buttons to the toolbar
tb.AddControl(addWin)

4807-7 ch21.F 5/24/01 9:00 AM Page 396

397Chapter 21 ✦ Building User Interfaces with wxPython

tb.AddControl(removeWin)
tb.AddSeparator()
tb.AddControl(quit)
tb.Realize()

self.SetToolBar(tb)
tb.SetFloatable(1)

Create a notebook to hold each window
self.note = wxNotebook(self,-1)

def GetFileName(self):
‘Gets the name of an HTML file from the user’
types = ‘HTML files|*.html;*.htm’ # Limit types to view
dlg = wxFileDialog(self,style=wxOPEN|wxFILE_MUST_EXIST,

wildcard=types)
dlg.ShowModal()
file = dlg.GetFilename()
dlg.Destroy()
return file

def OnAdd(self,event):
‘Adds a new HTML window’
file = self.GetFileName()
if file:

newWin = wxHtmlWindow(self.note,-1)
self.note.AddPage(newWin,os.path.split(file)[1],1)
newWin.LoadPage(file)

def OnRemove(self,event):
‘Removes the current HTML window’
page = self.note.GetSelection()
if page != -1:

self.note.DeletePage(page)
self.note.AdvanceSelection()

def OnQuit(self,event):
self.Destroy()

class App(wxApp):
def OnInit(self):

‘Create the main window and insert the custom frame’
frame = BrowserFrame()
frame.Show(true)
return true

Create an app and go!
app = App(0)
app.MainLoop()

4807-7 ch21.F 5/24/01 9:00 AM Page 397

398 Part IV ✦ User Interfaces and Multimedia

Figure 21-3: Build this simple viewer to display the documentation that
ships with Python.

This application uses an instance of the wxFloatBar class (a wxToolbar child) to

create a floating toolbar. (Try it out — click on the toolbar and drag it around the

screen. Close it or move it back over its original location to dock it.) Although I just

added some normal buttons, you can use the AddTool method to add icons like the

ones you find on toolbars in many applications.

Using the wxNotebook class is straightforward; for each tab, create a new window

that is a child of the notebook, and add it with a call to AddPage or InsertPage.

Likewise, the wxHtmlWindow class is an easy way to display HTML pages. The

BrowserFrame class definition contains a call to wxImage_AddHandler so that it

can view CompuServe GIF files.

A PyShellWindow enables users to access a Python interpreter running in interac-

tive mode:

from wxPython.wx import *
from wxPython.lib.pyshell import PyShellWindow

class App(wxApp):
def OnInit(self):

frame = wxFrame(None,-1,’MyPyShell’)
PyShellWindow(frame,-1)
frame.Show(true)
return true

app = App(0)
app.MainLoop()

4807-7 ch21.F 5/24/01 9:00 AM Page 398

399Chapter 21 ✦ Building User Interfaces with wxPython

Using wxPython Controls
wxPython ships with a comprehensive set of high-level controls, or widgets. Most

often, you place them in a wxPanel or wxDialog, but they can be used elsewhere,

such as in a status bar or toolbar. This section shows you what controls are avail-

able and how to use some of them; the process of controlling their layout is cov-

ered in the Controlling Layout section.

Common controls
Figure 21-4 shows most of the common controls available to you in wxPython.

Figure 21-4: Names and examples of the common wxPython controls

You can use wxButton and wxBitmapButton to trigger an event; use the

EVT_BUTTON(id, func) function to link a button ID and an event handler. The

FileBrowseButton button combines a button, a file dialog, and a text entry widget

so that when clicked, the user browses for a file and the chosen file name ends up

in the text entry field. FileBrowseButtonWithHistory’s text entry field has a

drop-down list in which you can store previous choices. The wxGenButton class is

a button class that is implemented by wxPython (and not natively) so that you can

customize how the button behaves and how it looks when pressed. See the

wxGenBitmapButton, wxGenToggleButton, and wxGenBitmapToggleButton for

additional variations.

Most controls let you attach event handlers when the user modifies the control’s

state. For example, by using the EVT_CHECKBOX(id, func) function, your handler

function will be called anytime the checkbox is toggled.

4807-7 ch21.F 5/24/01 9:00 AM Page 399

400 Part IV ✦ User Interfaces and Multimedia

Controls with a user-defined value (such as a text entry widget) usually have one or

more Get methods to retrieve the user’s input. wxSlider.GetValue(), for exam-

ple, returns the current position of the slider. Controls that let users choose from a

predefined set of values usually have methods such as GetSelection.

wxChoice.GetSelection() returns the 0-based index of the currently selected

string. Each Get method of a control usually has a corresponding Set method that

you can use to programmatically set the control’s state.

Tree controls
wxTreeCtrl is the standard tree control in wxPython. Use the code in Listing 21-3

to create the tree shown in Figure 21-5.

Figure 21-5: wxPython’s tree control
showing the results of nested dir() calls

Listing 21-3: treedemo.py — Sample using wxTreeCtrl

from wxPython.wx import *

class TreeFrame(wxFrame):
def __init__(self):

wxFrame.__init__(self, NULL, -1,
‘Tree Demo’,size=(300,400))

Make it a scrolled window so all data fits
scroll = wxScrolledWindow(self,-1)
self.tree = wxTreeCtrl(scroll)
EVT_SIZE(scroll,self.OnSize)

4807-7 ch21.F 5/24/01 9:00 AM Page 400

401Chapter 21 ✦ Building User Interfaces with wxPython

Populate a small tree
parent = self.tree.AddRoot(‘dir()’)
for i in dir():

child = self.tree.AppendItem(parent,i)
for j in dir(i):

grandchild = self.tree.AppendItem(child,j)

def OnSize(self, event):
Make the tree control the size of the client area
self.tree.SetSize(self.GetClientSizeTuple())

class App(wxApp):
def OnInit(self):

‘Create the main window and insert the custom frame’
frame = TreeFrame()
frame.Show(true)
return true

app = App(0)
app.MainLoop()

Apart from the usual initialization work, there is code to populate the tree and to

ensure that the tree control fills the entire client area of the frame (using the

EVT_SIZE event function). You create a root node with a call to AddRoot, and then

add children with AppendItem calls. Refer to the documentation for information

about other features, including support for event notification, editing items, and

using icons in the tree.

wxPython.lib.mvctree has the wxMVCTree class, which is a tree control that uses

a model-view-control architecture in which code to display the information is

largely independent of the code to store the data. Such a model enables you to

change one with little or no change to the other.

Editor controls
The wxEditor and wxPyEditor classes (in wxPython.lib.editor) are rudimen-

tary text editor controls (wxPyEditor is a wxEditor subclass that adds syntax

highlighting). A more heavyweight and advanced edit control is wxStyledTextCtrl
(in wxPython.stc). It enables you to mix different fonts and font attributes much

like a word processor, and it has built-in syntax highlighting for a few languages,

including Python.

Controlling Layout
When you put more than one control into a panel, dialog box, or other container,

you have to decide how you want to lay out, or organize, them. In some cases, you

4807-7 ch21.F 5/24/01 9:00 AM Page 401

402 Part IV ✦ User Interfaces and Multimedia

can get by with specifying exact x and y coordinates for the controls. Other times,

you need to correctly handle layout if there is a change in window size, default font

(vision-impaired users often use a larger default font, for example), or platform (this

is Python, after all). wxPython gives you several mechanisms to control the layout.

It’s important to learn what layout options are available to you, but if you plan to
build a lot of user interfaces, consider acquiring a tool such as wxDesigner, Boa
Constructor, or wxStudio to help you out.

As you learn about the different types of layout mechanisms, don’t be fooled into

thinking that you always have to choose one to the exclusion of another. You

should use whatever works best for your particular situation, and that may mean

mixing them together. You can’t combine them within the same container (a panel,

window, and so on), but you can have child containers use different methods. For

example, your GUI could have two panels, one that uses sizers and one that uses

layout constraints; and then you can lay them both out in the main window using

hard-coded coordinates.

Specifying coordinates
The simplest way is occasionally the best. The constructor for every control takes

two optional parameters, size and pos, that specify the control’s size and position,

respectively:

>>> from wxPython.wx import *
>>> dlg = wxDialog(None,-1,’Hey’,size=(200,200))
>>> dlg.Show(1)
1
>>> dlg.SetSize((200,200))
>>> wxButton(dlg,-1,’Quit’,pos=(10,100),size=(100,25))

Using size and pos, you can manually control the exact size and position of each

control. It can be pretty tedious, however, so if this is the route you choose, build

your GUI in an interactive Python session so that you can fine-tune it without hav-

ing to re-run your program.

After you’ve added a control to a container, you can adjust its size and position by
calling its SetSize and SetPosition methods:

myButton.SetSize((200,100)) # Both methods take a tuple

wxWindows ships with a simple dialog editor (and documentation) that creates a

WXR file describing the layout of your dialog box, and you can use WXR files in

wxWindows or wxPython programs. For example, if you have a file called

sample.wxr and it contains the definition for a dialog box named ‘myDialog’, you

could open the dialog as follows:

...
wxResourceParseFile(‘sample.wxr’)
dlg = wxDialog(parent, -1, ‘’)

Tip

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 402

403Chapter 21 ✦ Building User Interfaces with wxPython

dlg.LoadFromResource(parent,’MyDialog’)
dlg.ShowModal()
...

The call to wxResourceParseFile needs to happen only once, so you could call it

during initialization.

If your dialog box looks great in wxPython’s dialog editor, but looks compressed or
otherwise messed up in your program, toggle the useDialogUnits flag in the
dialog box’s properties in the editor.

The downside to using fixed coordinates is that, well, they’re fixed. A well-organized

dialog box on one platform may look lousy on another, and if you have to change

something later, you might end up doing a lot of extra work. One alternative is to

create a different version of the resource file for each platform, and load the appro-

priate one on startup. Despite these potential problems, precise widget layout

sometimes requires less effort than wxPython’s other layout mechanisms, so you’ll

have to judge for yourself. One approach that has helped me is to sketch out on

paper the GUI I plan to build and then divide it up into small groups of controls.

Implement each group with a wxPanel that has its controls laid out at specific

coordinates, and then use sizers (see the next section) to add the different groups

to the window.

Sizers
Sizers are objects that help control window layout by dividing a window into sub-

windows that are laid out according to sizer rules. A sizer talks to all of its child

objects to determine its own minimum size, which it reports to its parent. You can

nest sizers inside other sizers to form an arbitrarily complex and deep nesting. The

sizers you’ll use are children classes of wxSizer, but if you want to create your own

sizer type, you should derive it from wxPySizer.

Box sizers
wxBoxSizer and wxStaticBoxSizer are the simplest forms of sizers, and the two

are the same except that wxStaticBoxSizer includes a wxStaticBox control

around the outside of all of its children objects. A box sizer lays out controls to

form either a row or a column, which you choose when you create the sizer:

sizer = wxBoxSizer(wxVERTICAL) # A sizer that creates a column

box = wxStaticBox(myFrame, -1, ‘Stuff’)
sizer = wxStaticBoxSizer(box, wxHORIZONTAL) # A row with border

The direction you choose is called its primary orientation, so a wxBoxSizer with

wxVERTICAL has a vertical primary orientation. Once you have your sizer, you add

objects to it using its Add or Prepend methods (Add puts the new object at the end

of the group, Prepend at the beginning), which have the following forms:

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 403

404 Part IV ✦ User Interfaces and Multimedia

sizer.Add(window, option, flag, border) # Add window or widget
sizer.Add(sizer, option, flag, border) # Add a child sizer
sizer.Add(w, h, option, flag, border) # Add a spacer

When you add a window or control, keep in mind that when you create the control,

it is still a child of a window, not a sizer (so don’t try to use the sizer as the parent
argument in the control’s constructor). You can pass to Add (or Prepend) a control

or window, a child sizer (which may in turn contain other sizers), or the width and

height of an invisible spacer object to pad between two items.

When the sizer is laying out its items and has extra space along its primary orienta-

tion, it looks at the option argument to determine how much extra space to give to

each one. A value of 0 means that that item does not change size. If one item has an

option value of 1 and another has a value of 2, the second item will get twice as

much space as the first.

The flag argument is a bitwise OR of several values that tell the sizer the border

type to use around the item and what it should do with extra space along the

opposite, or secondary, orientation. The border can be any combination of wxTOP,

wxBOTTOM, wxLEFT, or wxRIGHT (wxALL puts them all together for you). For exam-

ple, if you want a blank border around the top and left sides of your widget, you

could use a flag of wxTOP | wxLEFT.

If the flag value contains wxGROW (or wxEXPAND), the item will grow to fill the avail-

able extra space. A value of wxSHAPED means that it will grow proportionally so that

it always maintains the original aspect (width-to-height) ratio. Instead of growing,

the item can remain aligned against a side (by using wxALIGN_LEFT, wxALIGN_
CENTER, wxALIGN_RIGHT, wxALIGN_TOP, or wxALIGN_BOTTOM).

The border argument is the number of pixels of padding around the item, and it

makes sense only if the flag argument specifies one or more borders (such as

wxTOP).

The sizers also have an AddMany method that you can use to combine multiple
Add calls.

Call the parent window’s SetSizer(sizer) method to tell it to use your new sizer.

When the window’s Layout() method is called, the window will lay out its contents

with help from the sizer. An alternative is to call the window’s SetAutoLayout(1)
method so that it automatically calls Layout anytime the window size changes.

The sizer.Fit(window) method resizes the parent window to the minimum

acceptable size of its contents. If you then call sizer.SetSizeHints(window), the

sizer will remember the current size as the minimum and prevent the user from

ever making the window smaller than that minimum.

Before all of this seeps out of your brain, try the following code so you can see a

wxBoxSizer in action:

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 404

405Chapter 21 ✦ Building User Interfaces with wxPython

>>> from wxPython.wx import *
>>> f = wxFrame(None,-1,’Sizer Test’)
>>> f.Show(1)
>>> sizer = wxBoxSizer(wxVERTICAL)
>>> sizer.Add(wxButton(f,-1,’One’),1,wxALL|wxALIGN_LEFT,3)
>>> sizer.Add(wxButton(f,-1,’Two’),2,wxALIGN_RIGHT)
>>> sizer.Add(wxButton(f,-1,’Three’),2,wxALL|wxALIGN_CENTER,3)
>>> sizer.Add(10,10,2,wxALL,3)
>>> sizer.Add(wxButton(f,-1,’Four’),4,wxALL|wxGROW,3)
>>> sizer.Add(wxButton(f,-1,’Five’),4,wxALL,3)
>>> f.SetAutoLayout(1)
>>> f.SetSizer(sizer)
>>> sizer.Fit(f)
>>> sizer.SetSizeHints(f)

Resize the window in each direction, and once you’re done playing, use f.Show(0) to

make the window go away. As shown in Figure 21-6, vertically (the primary orienta-

tion) the buttons grow according to the option value used (for example, button Five

is four times as tall as button One). Most of the buttons have a three-pixel border on

all sides, and their horizontal alignment, or stretching, follows the flag values.

Figure 21-6: Buttons resize and align according to
the rules of the box sizer.

A good exercise for you to try now would be to replace one of the buttons with a

horizontal wxBoxSizer that also contains buttons of its own. This forms a row of

buttons that are treated as a single unit by the parent sizer, but are laid out individ-

ually by the child sizer. This will help you see how you can use a hierarchy of

nested sizers to achieve a complex layout.

Grid sizers
wxGridSizer lays out objects in a table. The width of each column is the width of

the widest item in the grid; and the height of each row is that of the tallest item. You

4807-7 ch21.F 5/24/01 9:00 AM Page 405

406 Part IV ✦ User Interfaces and Multimedia

create this sizer by calling wxGridSizer([rows|cols]=n), where n is the number

of rows or columns you want. You choose either rows or cols to limit the number

of rows or columns, and wxGridSizer figures out the correct value for the other

dimension. For example, if you set a limit of two rows and then added seven but-

tons to the sizer, the first row would have the first four buttons, and then second

row would have the last three buttons.

wxFlexGridSizer is like wxGridSizer except that instead of having uniform

column and row sizes, each column is the width of the widest item in that column

only; and the height of each row is that of the tallest item in that row only.

Layout constraints
Layout constraints define the size and position of an item in terms of its siblings or

parents. Each item has eight constraints that you can define: four for the edges

(left, right, top, and bottom), two for the size (width and height), and two for its

center (x, y). For example, you might constrain a button by specifying that its

height should be left unchanged, its left edge should be aligned with that of some

other button, its width should be half that of the parent panel, and its center y
coordinate should match that of some other widget’s top:

wc = wxLayoutConstraints()
wc.height.AsIs() # “Don’t change it”
wc.left.SameAs(someButton, wxLeft)
wc.width.PercentOf(parentPanel, 50)
wc.centerY.SameAs(someOtherWidget, wxTop)
myButton.SetConstraints(wc)

You usually have to specify four of the eight constraints in order for the widget to

be fully constrained. Once it is fully constrained, the layout algorithm can deduce

the remaining constraints on its own.

The constraint names are left, right, top, bottom, width, height, centerX, and

centerY. You can call the following methods for each constraint:

Above(win[, margin]), Sets the constraint to be above, below, to the

Below(win[, margin]), left of, or to the right of the window win, with

LeftOf(win[, margin]), an optional margin
RightOf(win[,margin])

Absolute(value) Sets the constraint to this value. For example,

wc.left.Absolute(10) gives the left edge an

x coordinate of 10.

AsIs() Does not change the constraint’s current value

Unconstrained() Returns this constraint to its default state

4807-7 ch21.F 5/24/01 9:00 AM Page 406

407Chapter 21 ✦ Building User Interfaces with wxPython

PercentOf Makes the current constraint a percentage of

(win,edge,percent) the given edge of the given window

SameAs Makes the current constraint the same as the

(win, edge[, margin]) given edge of the given window

As with sizers, you can call a window’s Layout() method to perform the layout, or

you can call SetAutoLayout(1) so that Layout is called each time the parent win-

dow is resized.

Layout algorithms
For MDI or SDI applications, you can use the wxLayoutAlgorithm class to lay out

subwindows. Study the wxLayoutAlgorithm and wxSashLayoutWindow documen-

tation for more information.

Using Built-in Dialogs
One of wxPython’s strengths is its rich set of built-in dialogs that you can use to get

user input. In general, the way you use each dialog follows this pattern (the exam-

ple here uses a dialog that has the user choose a directory name):

dlg = wxDirDialog(None) # Create it
if dlg.ShowModal() == wxID_OK: # Check the return code

path = dlg.GetPath() # Read user’s input
dlg.Destroy() # Destroy it

The dialog’s ShowModal method usually returns wxID_OK or wxID_CANCEL, and

each dialog has its own set of methods you use to retrieve the user’s input.

Table 21-1 describes some of wxPython’s useful built-in dialogs.

Table 21-1
Useful wxPython Dialogs

Class Use the Dialog To

wxDirDialog Browse for a directory name

wxFileDialog Browse for a file name

wxFontDialog Choose a font, point size, color, and so on

wxColourDialog Choose a color

wxPrintDialog Select a printer

Continued

4807-7 ch21.F 5/24/01 9:00 AM Page 407

408 Part IV ✦ User Interfaces and Multimedia

Table 21-1 (continued)

Class Use the Dialog To

wxPageSetupDialog Modify page orientation and margins

wxProgressDialog Display a moving progress meter

wxMessageDialog Display a simple message

wxScrolledMessageDialog Display a longer message in a scrollable window

wxSingleChoiceDialog Choose an item from a list

wxMultipleChoiceDialog Choose one or more items from a list

wxTextEntryDialog Enter a line of text

wxBusyInfo Notify the user that the program is temporarily busy

The wxBusyInfo dialog is unique in that the dialog appears as soon as you create

it, and it disappears when the object goes out of scope:

def rollbackChanges(self):
wxBusyInfo(‘Reverting to previous state...’)
Do some work, dialog destroyed automagically when done

Drawing with Device Contexts
Like some other GUI frameworks, wxPython uses device contexts as an abstraction

for displaying information on some output device. All device contexts are descen-

dents of the wxDC class, so code that outputs to a device context automatically

works whether the output device is the screen, a printer, or just a file. Table 21-2

lists some common device context classes.

Table 21-2
wxPython Device Context Classes

Class Outputs To

wxWindowDC An entire window, including title bars and borders

wxClientDC Window client area outside of the OnPaint method

wxPaintDC Window client area during a call to OnPaint

wxPrinterDC A Microsoft Windows printer

wxPostScriptDC A PostScript file or printer

wxMemoryDC A bitmap

wxMetaFileDC A Microsoft Windows metafile

4807-7 ch21.F 5/24/01 9:00 AM Page 408

409Chapter 21 ✦ Building User Interfaces with wxPython

Device contexts give you a large number of methods to perform all sorts of actions,

including clipping; writing text; converting between different units; and drawing

graphics primitives, including lines, arcs, and splines.

To ensure that your programs work on Microsoft Windows, before drawing, call the
device context’s BeginDrawing() method; and call its EndDrawing() method
when you’re done.

The device context uses the current pen to draw lines and outlines; pens (wxPen)

have attributes such as line thickness and color. Text color is not affected by pen

color. To fill in regions, it uses the current brush (wxBrush), which can have both a

color and a pattern that it uses when filling.

The program in Listing 21-6 shows you how to use a device context to paint on the

screen, and generates output as shown in Figure 21-7.

Listing 21-6: wxcanvas.py – An example of
drawing with device contexts

from wxPython.wx import *
import whrandom

class CanvasFrame(wxFrame):
A list of stock brushes we can use instead of
creating our own
brushes = [wxBLACK_BRUSH,wxBLUE_BRUSH,

wxCYAN_BRUSH,wxGREEN_BRUSH,
wxGREY_BRUSH,wxRED_BRUSH,wxWHITE_BRUSH]

def __init__(self):
wxFrame.__init__(self,None,-1,

‘CanvasFrame’,size=(550,350))
self.SetBackgroundColour (wxNamedColor(“WHITE”))

Capture the paint message
EVT_PAINT(self, self.OnPaint)

def OnPaint(self, event):
dc = wxPaintDC(self)
dc.BeginDrawing()

Draw a grid of randomly colored boxes
for y in range(15):

for x in range(10):
dc.SetBrush(whrandom.choice(self.brushes))
dc.DrawRectangle(x*20,y*20,20,20)

Draw a random polygon over the boxes
(Outline is in blue, but fill color is that

Continued

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 409

410 Part IV ✦ User Interfaces and Multimedia

Listing 21-6 (continued)

of the last box it drew)
dc.SetPen(wxPen(wxNamedColour (‘BLUE’)))
pts = []
for i in range(20):

pts.append((whrandom.randint(0,200),
whrandom.randint(0,300)))

dc.DrawPolygon(pts)

Draw some rotated text
font = wxFont(20, wxNORMAL, wxNORMAL, wxNORMAL)
font.SetFaceName(‘Jokerman LET’)
dc.SetFont(font)
for a in range(0, 360, 20):

c = a * 0.71 # 360/255, fit angle into color range
dc.SetTextForeground(wxColour (c,c,c))
dc.DrawRotatedText(“ wxPython”, 350, 150, a)

dc.EndDrawing()

class App(wxApp):
def OnInit(self):

‘Create the main window and insert the custom frame’
frame = CanvasFrame()
frame.Show(true)
return true

app = App(0)
app.MainLoop()

Figure 21-7: Using device contexts to draw graphics

4807-7 ch21.F 5/24/01 9:00 AM Page 410

411Chapter 21 ✦ Building User Interfaces with wxPython

The __init__ function calls EVT_PAINT so that the OnPaint method will be called

each time the screen needs to be redrawn. Notice that OnPaint creates a

wxPaintDC for drawing, and that it begins and ends with calls to BeginDrawing
and EndDrawing.

Adding Menus and Keyboard Shortcuts
Your wxPython application can have popup menus or groups of menus on a menu

bar at the top of a frame. Individual menu items can be disabled or grayed out, and

each can have an associated line of help text.

A menu consists of one or more menu items, each of which has a unique numerical

identifier. Create a menu by calling wxMenu([title]), and add items with its

Append(id, name) method:

menu = wxMenu()
menu.Append(10, ‘Load’)
menu.Append(11, ‘Save’)
menu.Append(12, ‘Quit’)

The menu title is displayed as part of the menu’s contents. Create a menu bar by

calling wxMenuBar(). Attach a menu to a menu bar by calling the menu bar’s

Append(menu, title) method:

mb = wxMenuBar()
mb.Append(menu, ‘File’)

Finally, call a frame’s SetMenuBar(bar) method to attach the menu bar to the

frame:

frame.SetMenuBar(mb)

By creating menu items separately as wxMenuItems, you can create more power-
ful menu items, such as menu items with bitmaps.

Accelerators are keyboard shortcuts for commands users would normally have to

generate with the mouse (clicking a menu item, for example). By calling a window’s

SetAcceleratorTable(table) method, you can assign a group of shortcuts to

that window. You create an accelerator table by calling the

wxAcceleratorTable(list) constructor, where list is a list of accelerator entry

tuples of the form (flag, code, command). flag is a bitwise-OR combination of

keypress modifiers such as wxACCEL_ALT and wxACCEL_SHIFT, and code is the

ASCII code of the keypress or one of wxPython’s many special key variables, such

as WXF_10 (for the F10 key) or WXK_END (the End key). command is the menu item

identifier. For example:

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 411

412 Part IV ✦ User Interfaces and Multimedia

accel = [(wxACCEL_CTRL,WXK_ESCAPE,10),
(wxACCEL_NORMAL,WXK_ESCAPE,11),
(wxACCEL_CTRL|wxACCEL_SHIFT,WXK_F1,12)]

frame.SetAcceleratorTable(wxAcceleratorTable(accel))

enables Ctrl-Esc, Esc, and Ctrl-Shift-F1 as accelerators for menu commands 10

through 12.

Accessing Mouse and Keyboard Input
Most input events are handled by wxPython directly. When a user clicks a button,

for example, the window automatically processes the clicking and releasing of the

mouse button. If necessary, however, you can intercept and handle this lower-level

input.

When you call EVT_CHAR(win, func), future keystrokes (“normal” keys, but not

modifiers such as Ctrl or Shift) directed to win will cause wxKeyEvents to be sent

to func. Use EVT_CHAR_HOOK to catch modifier keypresses, and EVT_KEY_UP and

EVT_KEY_DOWN to be notified when keys are pressed or released.

Only one window has keyboard focus at any time, so your window will receive
keystroke notifications only if it has the focus. Use the window’s SetFocus()
method to acquire keyboard focus.

If you want only to intercept some input but let wxPython handle the rest, your han-

dler function can pass the input on to the window’s normal handler. For example, if

you want a keypress to be interpreted using the normal behavior, your handler

should call the window’s OnChar method.

For catching mouse button click events, use EVT_LEFT_DOWN, EVT_LEFT_UP, and

EVT_DCLICK to capture mouse left button presses, releases, and double-clicks, respec-

tively. There are corresponding functions for the middle and right buttons as well.

EVT_MOTION causes each mouse movement to be reported, and use

EVT_ENTER_WINDOW and EVT_LEAVE_WINDOW to be notified when the window has

mouse focus. If you want to process all mouse events, just use EVT_MOUSE_EVENTS
to capture them all.

Other wxPython Features
As mentioned before, wxPython has far more features than can adequately be cov-

ered in one chapter. This final section is here to pique your interest enough to do

some investigating on your own, and to ensure that you don’t invest a lot of time

implementing something that wxPython already has.

Tip

4807-7 ch21.F 5/24/01 9:00 AM Page 412

413Chapter 21 ✦ Building User Interfaces with wxPython

Clipboard, drag and drop, and cursors
You can create and change mouse cursors and tool tips with the wxCursor and

wxToolTip classes and their children.

The wxClipboard, wxDataFormat, and wxDataObject class hierarchies implement

support for transferring data to and from the clipboard and converting it between

different formats. The wxDragImage class is useful for implementing your own

visual representation of dragging a file or other object in your application. See the

wxDropSource and wxDropTarget classes too.

By calling a window’s SetCursor(cursor) method, the mouse cursor will change

to the given cursor any time it enters the window. You can create your own cursor

or use one of the built-in cursors:

myFrame.SetCursor(wxStockCursor(wxCURSOR_BULLSEYE))

Graphics
The Object Graphics Library (OGL) is a library for creating and easily manipulating

flowcharts and other graphs. See the wxShapeCanvas, wxShape, and wxDiagram
classes for more information.

wxBitmap, wxImage, and wxIcon all deal with loading and displaying images in dif-

ferent ways. For each file type you use, you must load a wxImageHandler instance

that handles decoding the image data (wxPython comes with several, such as

wxJPEGHandler and wxGIFHandler). See also the wxMask and wxPalette classes.

If you have installed the PyOpenGL extension module, you can use wxGLCanvas to

include an OpenGL window in your application.

Date and time
wxPython has powerful date and time support (covering dates even hundreds of

millions of years in the future). wxDateTime represents a specific point in time,

whereas wxDateSpan and wxTimeSpan represent intervals.

The wxCalendarCtrl is a control that looks like a wall calendar and is useful for

both displaying and inputting dates.

Fonts
wxFont objects hold information about fonts, and wxFontData objects hold infor-

mation about the dialogs users use to choose fonts and set font properties.

4807-7 ch21.F 5/24/01 9:00 AM Page 413

414 Part IV ✦ User Interfaces and Multimedia

HTML
The wxPython.html module contains classes for parsing, printing, and displaying

HTML pages in a window or a device context.

Printing
wxPrintDialog and wxPageSetupDialog wrap two dialogs used for configuring

the printer and page in preparation for printing, and wxPrinter and wxPrintout
take care of the actual printing. There are also the wxPrintPreview and

wxPreviewFrames classes for supporting print preview.

Other
Finally, if you’re using Windows and want to use COM, you can dynamically create a

wxWindows-like class to embed any ActiveX control in your application by using

wxPython.lib.activexwrapper.MakeActiveXClass.

Summary
wxPython is a powerful library for creating cross-platform GUI applications. It has a

full set of simple and high-level controls, including built-in support for trees and

tables; and it is very easy to use. In this chapter you:

✦ Learned the basic structure of most wxPython applications.

✦ Created powerful and functional GUI-based applications in very few lines of

code.

✦ Used wxPython’s built-in dialogs for browsing for files, choosing colors, and

so on.

✦ Reviewed the different types of windows, controls, and features that

wxPython provides.

The next chapter shows you how to use the curses (not the spoken kind) library to

create text-based user interfaces.

✦ ✦ ✦

4807-7 ch21.F 5/24/01 9:00 AM Page 414

Using Curses

Curses is a library for handling a text-based display termi-

nal. It is widely used on UNIX. It can handle text windows,

colors, and keyboard input. Moreover, it saves you the trouble

of learning the control codes for every kind of terminal.

A Curses Overview
In ancient days of yore, there was not a computer in every

office. People used terminals like the VT100 to connect to a

central system. These terminals displayed a grid on which

each square contained a text character. Sending control codes

to the terminal could change the color, move the cursor, and

so on. However, the magical control codes varied between

systems. Therefore, a program that produced cute output on a

Tektronix 4105 terminal might have produced bizarre symbol

salad on a VT230.

The curses library was born as a portable tool for text display.

It has been eclipsed by ncurses, which adds some features.

The Python module curses is a thin wrapper for the ncurses

API. The various functions in the curses API have some over-

lap — for example, the window methods addch, addstr, and

addnstr all print text. For purposes of brevity, this chapter

omits many redundant items.

Curses provides a class, WindowObject, for display. You can

use one or more windows, resize them, move them, and so

forth.

In curses, the top-left corner square of the screen has coor-
dinates (0,0). Screen coordinates in curses are given with
vertical position first — (y, x). This is the opposite of the
usual ordering, so be careful not to get your coordinates
reversed!

Listing 22-1 provides a simple curses program. Run it to get

some quick gratification (and to make sure that curses is

installed on your system!)

Note

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A Curses overview

Starting up and
shutting down

Displaying and
erasing text

Moving the cursor

Getting user input

Managing windows

Editing text

Using color

Example: a simple
maze game

✦ ✦ ✦ ✦

4807-7 ch22.F 5/24/01 9:00 AM Page 415

416 Part IV ✦ User Interfaces and Multimedia

Listing 22-1: CurseWorld.py

import curses
try:

MainWindow=curses.initscr() # initialize curses
MainWindow.addstr(“Hello, damn it!”)
MainWindow.refresh()
MainWindow.getch() # Read a keystroke

finally:
curses.endwin() # de-initialize curses

Starting Up and Shutting Down
The function initscr initializes curses and returns a Window object representing

the whole screen. The function endwin de-initializes curses. The function isendwin
returns true if endwin has been called.

The module function wrapper(mainfunc,*args) handles typical setup and

shutdown for you. Calling wrapper sets up curses, creates a window, and calls

mainfunc(window,*args). It also restores the terminal to normal when your main

function completes, even if it terminates abnormally. This is important, because a

curses program that doesn’t call endwin may leave the shell in a highly weird state!

For reference, wrapper does (and later undoes) the following things:

✦ Creates a window (curses.initscr())

✦ Turns off echo (curses.noecho())

✦ Turns off keyboard buffering (curses.cbreak())

✦ Activates color, where available (curses.start_color())

The functions filter and use_env, which must be called before initscr, do
not work (as of Python 2.0 and 2.1).

Displaying and Erasing Text
The window method addstr([y,x,]text[,attributes]) prints the string text at

screen position (y, x) — by default, at the current cursor position. You can specify

attributes to control the appearance of the text. Attributes can be combined by bit-

wise-OR. See Table 22-1 for a list of available text attributes:

Caution

4807-7 ch22.F 5/24/01 9:00 AM Page 416

417Chapter 22 ✦ Using Curses

Table 22-1
Text Attributes

Attribute Meaning

A_BLINK Blinking text

A_BOLD Bold text

A_DIM Dim text

A_NORMAL Ordinary text

A_STANDOUT Highlighted text

A_UNDERLINE Underlined text

For example, the following code prints a bold, blinking “Howdy!” at column 50 of

row 5:

MainWindow.addstr(5,50,”Howdy!”,curses.A_BLINK | curses.A_BOLD)

Inserting
addstr overwrites any text that was already on the window. To insert text, call

insstr([y,x,]str[,attributes]). Any characters on the line are moved to the

right; characters moved off the right edge of the screen are lost. A call to insertln
inserts a blank row under the cursor; all following rows move down by one.

Default attributes
The method attrset(attributes) sets the default attributes for all subsequent

calls to addstr. The methods attron(attribute) and attroff(attribute) tog-

gle one default attribute.

Reading from the window (screen-scraping)
The method inch(y,x) returns the character at the given window position.

Actually, it returns the character as a number in the lower eight bits, and the

attributes in the upper twenty-four bits. Therefore, the following code would check

for a bold X at row 3, column 10:

Character= MainWindow.inch(3,10)
Letter = chr(Character & 0xFF)
Attributes = Character & (~0xFF)
return ((Attributes & curses.A_BOLD) and (Letter==”X”))

The method instr([y,x,]n) returns a string of n characters, extracted from the

specified screen position. It ignores attribute information.

4807-7 ch22.F 5/24/01 9:00 AM Page 417

418 Part IV ✦ User Interfaces and Multimedia

Erasing
The method erase clears the window. clrtoeol erases from the current cursor

position to the end of the line; clrtobot also clears all lines below the cursor. The

method delch([y,x]) erases a single character (by default, the one under the cur-

sor) — characters to its right move left by one square. deleteln deletes the line

under the cursor — any following lines move up by one row.

Refreshing
After changing the contents of a window, call its refresh method to repaint the

actual screen. If you get tired of calling refresh, call immedok(flag) to set the

“immediate refresh” flag — if the flag is set, the window will be repainted after every

change. However, note that this can result in reduced speed and/or flickering.

If you are using several windows at once, the most efficient way to repaint is to call

the noutrefresh method of a window (instead of refresh), and then call the

doupdate function.

You can flag a window as “dirty” to ensure that it will be redrawn at the next refresh

call. The methods touchwin and untouchwin mark the entire window as dirty or

clean, respectively. touchline(y,count) marks count lines as dirty, starting with

line y. The methods is_linetouched(y) and is_wintouched return true if the

specified line, or the window itself, is dirty.

Boxes and lines
The method border draws a border around the window’s edges. The border is

made up of individual characters. If you like, you can specify the characters to dis-

play, by passing them (as integers) to border(W,E,N,S,NW,NE,SW,SE). Here, S is

the character to use for the bottom edge, NE is the character to use for the top-

right corner, and so forth. Pass 0 as a character to use the default.

You can draw an arbitrary box by calling

curses.textpad.rectangle(window,Top,Left,Bottom,Right). The box uses

line-drawing characters where available. Otherwise, it will fall back to standard

ASCII-art pluses, pipes, and dashes.

The window background
Windows have a background. The method bkgdset(character[,attributes])
changes the window’s background. When the window (or a portion of it) is erased,

it is painted with character, with the specified attributes. Furthermore, the specified

attributes are combined with any nonblank characters drawn on the window. The

similar method bkgd(character[,attributes]) immediately paints blank

squares of the window with character.

4807-7 ch22.F 5/24/01 9:00 AM Page 418

419Chapter 22 ✦ Using Curses

Example: masking a box
Listing 22-2 illustrates a simple Mask class, for temporarily covering a part of the

screen. A mask can cover a rectangular block of a window with a call to cover, and

then restore the original text with a call to reveal.

Listing 22-2: Mask.py

import curses
class Mask:

def __init__(self,Window,Top,Bottom,Left,Right):
self.Window=Window
self.Top=Top
self.Bottom=Bottom
self.Left=Left
self.Right=Right
self.OldText=None

def Cover(self,Character=”X”,Attributes=curses.A_DIM):
Cover the current screen contents. Store
them in OldText[RowIndex][ColumnIndex] for later:
self.OldText=[]
for Row in range(self.Top,self.Bottom+1):

self.OldText.append([])
for Col in range(self.Left, self.Right+1):

self.OldText[-1].append(\
self.Window.inch(Row,Col))

self.Window.addstr(Row,Col,
Character,Attributes)

def Reveal(self):
if (self.OldText==None): return
for Row in range(self.Top,self.Bottom+1):

CurrentLine=self.OldText[Row-self.Top]
for Col in range(self.Left, self.Right+1):

CurrentCol=(Col-self.Left)
Character=chr(CurrentLine[CurrentCol] & 0xFF)
Attributes=CurrentLine[CurrentCol] & (~0xFF)
self.Window.addstr(Row,Col,

Character,Attributes)

def Main(MainWindow):
MainWindow.addstr(10,10,”Yes it is!”)
MainWindow.addstr(11,10,”No it isn’t!”,curses.A_BOLD)
MainWindow.addstr(12,10,”Yes it is!”,curses.A_UNDERLINE)
MainWindow.addstr(13,10,”No it isn’t!”,curses.A_STANDOUT)
MainWindow.addstr(14,10,”YES IT IS!”,curses.A_BOLD)
MyMask=Mask(MainWindow,10,20,10,40)
MainWindow.refresh()
MainWindow.getch()

Continued

4807-7 ch22.F 5/24/01 9:00 AM Page 419

420 Part IV ✦ User Interfaces and Multimedia

Listing 22-2 (continued)

MyMask.Cover()
MainWindow.refresh()
MainWindow.getch()
MyMask.Reveal()
MainWindow.refresh()
MainWindow.getch()

if (__name__==”__main__”):
curses.wrapper(Main)

Moving the Cursor
The function getsyx returns the cursor’s screen position in the form of a tuple (y,

x). The function setsyx(y,x) moves the cursor to the specified position.

The window methods getyx and move(y,x) check and set the cursor position

within a window. If the window fills the screen (as the window returned by a call to

initscr does), window positioning is the same as screen positioning.

The window method getparyx returns the window’s coordinates relative to its

parent window. These coordinates are the location (in the parent) of the window’s

top-left corner. If the window has no parent, getparyx returns (-1, -1). Note that

cursor position is tracked independently by every window.

The window method getmaxyx returns the size of the window in a tuple of the form

(height, width). Note that getmaxyx()[0] is not a valid y-coordinate, as row num-

bering is 0-based; the last row of the screen has y-coordinate getmaxyx()[0]-1.

The same is true for x-coordinates.

The window method leaveok (flag) toggles the “Leave-the-cursor-where-it-is-

after-repainting-the screen” flag. Calling leaveok(1) is a good idea if a blinking

cursor won’t convey useful information to the user. If the flag is set, getsyx returns

(-1, -1); calling setsyx(-1,-1) sets the flag to true.

The function curs_set(visibility) sets the cursor visibility to 0 (invisible); 1

(visible — often an underline); or 2 (very visible — often a block). The return value

of curs_set is the old visibility level.

Listing 22-3 paints a spiral pattern on the window, using cursor positioning.

4807-7 ch22.F 5/24/01 9:00 AM Page 420

421Chapter 22 ✦ Using Curses

Listing 22-3: Spiral.py

import curses
import math

def DrawSpiral(Window,CenterY,CenterX,Height,Width):
ScalingFactor=1.0
Angle=0
HalfHeight = float(Height)/2
HalfWidth = float(Width)/2
while (ScalingFactor>0):

Y = CenterY +
(HalfHeight*math.sin(Angle)*ScalingFactor)

X = CenterX + (HalfWidth*math.cos(Angle)*ScalingFactor)
Window.move(int(Y),int(X))
Window.addstr(“*”)
Angle+=0.05
ScalingFactor=ScalingFactor - 0.001
Window.refresh()

def Main(Window):
(Height,Width)=Window.getmaxyx()
Height-=1 # Don’t make the spiral too big
Width-=1
CenterY=Height/2
CenterX=Width/2
DrawSpiral(Window,CenterY,CenterX,Height,Width)
Window.getch()

if __name__==”__main__”:
curses.wrapper(Main)

Getting User Input
Curses starts out in cooked mode — the user’s keyboard input is buffered and pro-

cessed one line at a time. In raw mode, buffering is turned off, and keys are pro-

cessed as they are pressed. Call the functions raw and noraw to toggle between

modes.

In addition, you can call cbreak and nocbreak to switch cbreak mode (also known

as “rare” mode) on and off. The difference between cbreak and raw is that special

characters (such as suspend) lose their normal effects in raw mode. The four

modes (raw, noraw, cbreak, and nocbreak) are mutually exclusive.

The window method keypad(flag) toggles keypad mode for a window. If keypad

mode is not set, special character codes are not interpreted by curses. This means

that special keystrokes such as function keys will put several special characters

4807-7 ch22.F 5/24/01 9:00 AM Page 421

422 Part IV ✦ User Interfaces and Multimedia

into the keyboard buffer, extended keystrokes will not be available, and mouse

events will not be available. In general, you want keypad mode on!

Call echo and noecho to toggle the automatic echoing of user input to the screen.

By default, echoing is on; curses.wrapper turns echoing off and switches to

cbreak mode.

Reading keys
The window method getch reads a character and returns it as an integer. For an

ASCII character, the value returned is the character’s ASCII value (as returned by

ord); other characters (such as function keys) may return non-ASCII values. The

method getkey reads a character, returning it as a string.

Both getch and getkey are normally synchronous; they wait until the user presses

a key. The method nodelay(flag) makes them synchronous if flag is true. In

synchronous mode, if no keypress is available, the methods return getch and

getkey which return -1 and “-1”, respectively.

The method getstr reads a string from the user, handling things such as backspac-

ing in the process. Note that getstr doesn’t play well with nodelay or noecho. In

fact, getstr is quite primitive; see “Editing Text” for a more pleasant way to extract

input from your users.

Other keyboard-related functions
You can throw a character onto the keyboard buffer by calling the function

ungetch(character). The next call to getch will return character. You can only

“un-get” one character at a time.

A call to the function flushinp clears out the input buffers, throwing away any

pending input that you haven’t processed yet.

Fancy characters
When keypad mode is active, control characters are interpreted for you by curses.

Most of these characters have corresponding constants. For example, the following

code fragment checks whether the user pressed F5:

Char=Window.getch()
if Char==curses.KEY_F5:

do stuff!

Arrow keys (where available) are represented by KEY_UP, KEY_LEFT, KEY_RIGHT,

and KEY_DOWN. See the curses documentation for a complete list of these con-

stants.

4807-7 ch22.F 5/24/01 9:00 AM Page 422

423Chapter 22 ✦ Using Curses

In addition, the module curses.ascii provides constants and functions for cleanly

handling ASCII characters. For example, curses.ascii.SP is equal to 32 (the ASCII

value for a space); curses.ascii.BEL is 7 (the bell-character; Ctrl-G on most systems).

Reading mouse input
In order to detect mouse events, you must call the function mousemask(mask),

where mask represents the mouse events you want to see. The return value has the

form (available,old). Here, available is a mask of the events that will be

reported (hopefully, the same as mask), and old is the old event mask. For example,

the following code tries to watch for clicks and double-clicks of button 1 (the left

button):

(available,old) = curses.mousemask(curses.BUTTON1_PRESSED |
curses.BUTTON2_PRESSED)

if (available & curses.BUTTON1_PRESSED):
CanSeeClick=1

else:
CanSeeClick=0

You also need to turn keypad mode on; otherwise, mouse events are not visible.

Mouse events are first signaled by a value of KEY_MOUSE passed to getch. At this

point, you can examine the mouse input with a call to the function getmouse. The

return value is a tuple of the form (id, x, y, z, state). Here, x and y are the coordi-

nates of the mouse click, state is the event type, and id and z can be safely ignored.

Table 22-2 describes all the available mouse events. A particular event (or event

mask) may be a bitwise-OR or several of them. The pound sign (#) represents a

number from 1 to 4.

Table 22-2
Mouse Events

Name Meaning

BUTTON#_PRESSED Button # was pressed

BUTTON#_RELEASED Button # was released

BUTTON#_CLICKED Button # was clicked

BUTTON#_DOUBLE_CLICKED Button # was double-clicked

BUTTON#_TRIPLE_CLICKED Button # was triple-clicked

BUTTON_SHIFT Button was Shift-clicked

BUTTON_CTRL Button was Control-clicked

BUTTON_ALT Button was Alt-clicked

4807-7 ch22.F 5/24/01 9:00 AM Page 423

424 Part IV ✦ User Interfaces and Multimedia

The function ungetmouse(id,x,y,z,state), similar to ungetch, pushes a mouse

event back onto the buffer.

Example: yes, no, or maybe
The program shown in Listing 22-4 provides three options, and lets the user choose

one either by clicking it or by pressing a key.

Listing 22-4: Deathray.py

import curses
import curses.textpad
import whrandom

class CursesButton:
def __init__(self,Window,Y,X,Label,Hotkey=0):

self.Y=Y
self.X=X
self.Label=Label
self.Width=len(Label)+2 # label, plus lines on side
self.Underline=Underline
Draw the button:
curses.textpad.rectangle(Window,Y,X,Y+2,X+self.Width)
Draw the button label:
Window.addstr(Y+1,X+1,Label,curses.A_BOLD)
Make the hotkey stand out:
Window.addstr(Y+1,X+Underline+1,Label[Underline]

,curses.A_REVERSE)
Window.refresh()

def KeyPressed(self,Char):
if (Char>255): return 0 # skip control-characters
if chr(Char).upper()==self.Label[self.Underline]:

return 1
else:

return 0
def MouseClicked(self,MouseEvent):

(id,x,y,z,event)=MouseEvent
if (self.Y <= y <= self.Y+2) and \

(self.X <= x < self.X+self.Width):
return 1

else:
return 0

def ShowDialog(Window):
curses.mousemask(curses.BUTTON1_PRESSED)
Window.addstr(5,0,”Really, REALLY fire death ray?”)
YesButton=CursesButton(Window,8,10,”Yes”)
NoButton=CursesButton(Window,8,20,”No”)
MaybeButton=CursesButton(Window,8,30,”Maybe”)
Buttons=[YesButton,NoButton,MaybeButton]
Window.nodelay(1)

4807-7 ch22.F 5/24/01 9:00 AM Page 424

425Chapter 22 ✦ Using Curses

Action=””
while 1:

Key=Window.getch()
if (Key==-1):

continue
for Button in Buttons:

if Button.KeyPressed(Key):
Action=Button.Label

Handle mouse-events:
if (Key==curses.KEY_MOUSE):

MouseEvent=curses.getmouse()
for Button in Buttons:

if Button.MouseClicked(MouseEvent):
Action=Button.Label

if Action!=””: break
Handle the actions
if (Action==”Yes”):

FireDeathRay(Window)
if (Action==”No”):

pass
if (Action==”Maybe” and whrandom.random() > 0.5):

FireDeathRay(Window)

def FireDeathRay(Window):
Window.clear()
Kra-ppoowwww! Frrrraapppp!!
Window.bkgd(“X”)
Window.nodelay(0)
Window.getch()

if __name__==”__main__”:
curses.wrapper(ShowDialog)

Managing Windows
You can create a new, parentless window by calling the function

newwin([lines,columns,]y,x). The new window’s top-left corner will be at

(y, x). It will have height lines and width columns — by default, it will stretch to the

bottom-right edge of the screen. Similarly, you can create a subwindow within an

existing window by calling the method subwin([lines,columns,]y,x).

The method mvwin(y,x) moves a window so that its upper-left corner is at (y, x).

Pads
A pad is similar to a window, except that it can be larger than the screen. It is a con-

venient way to make more data available than you can show all at once. It supports

all the methods of a window, but has a different refresh method.

4807-7 ch22.F 5/24/01 9:00 AM Page 425

426 Part IV ✦ User Interfaces and Multimedia

The function newpad(rows, columns) creates a pad of the given size. To draw the

pad’s contents, call refresh(screenY,screenX,padTop,padLeft,padBottom,
padRight). A region within the pad will be displayed, with its top-left corner at

(screenY,screenX). The pad contents displayed lie in the rectangle with corners

(padTop,padLeft) and (padBottom,padRight).

Stacking windows
The module curses.panel allows you to cleanly “stack” windows on top of each

other so that only the visible portion of each window is displayed. The function

new_panel(Window) returns a panel that wraps the specified window. You can

change the panel’s stacking position by calling its methods bottom and top. You

can hide and reveal panels by calling hide and show. After changing patterns, call

the function update_panels to update the virtual screen, then curses.doupdate
to repaint the screen. The function bottom_panel returns the bottom-most panel,

and top_panel returns the topmost panel.

Editing Text
The module curses.textpad provides a class, Textbox, for convenient text edit-

ing. The constructor takes one argument: the window in which to place the

Textbox.

Once you have a Textbox, you can call edit([validator]) to let the user enter

data, and call gather to retrieve the Textbox’s contents (as a string). The user can

type text, scroll around the Textbox, and finish input by pressing Ctrl-G (or Enter, if

the window has only one line). Because gather returns the entire window’s con-

tents, you generally want to create a special window for use by only your Textbox.

Table 22-3 describes the commands available within a Textbox.

Table 22-3
Textbox Commands

Keystroke Action

Ctrl-A Go to left edge of window

Ctrl-B Cursor left, wrapping to previous line if appropriate

Ctrl-D Delete character under cursor

Ctrl-E Go to right edge (stripspaces off) or end of line (stripspaces on)

Ctrl-F Cursor right, wrapping to next line when appropriate

4807-7 ch22.F 5/24/01 9:00 AM Page 426

427Chapter 22 ✦ Using Curses

Keystroke Action

Ctrl-G Terminate, returning the window contents

Ctrl-H Delete character backward

Ctrl-J Terminate if the window is one line; otherwise, insert newline

Ctrl-K If line is blank, delete it; otherwise, clear to end of line

Ctrl-L Refresh screen

Ctrl-N Cursor down; move down one line

Ctrl-O Insert a blank line at cursor location

Ctrl-P Cursor up; move up one line

You can, optionally, pass a callback function to edit([validator]). This function

is called whenever the user presses a key, and the keystroke is passed as a parame-

ter. The return value of validator, if any, is passed along to the Textbox. For instance,

use the following if you want Esc to finish input in your Textbox:

def Validator(Ch):
if Ch==curses.ascii.ESC:

return curses.ascii.BEL
else:

return Ch

Using Color
The function has_colors returns true if the terminal can display colors. The method

start_color initializes color display; it should be called immediately after initscr.

Numbering
Colors come in two forms: color numbers and color pairs. Color numbers range

from 0 to COLORS; they identify a color in the curses palette. Color pairs are valid

attributes to pass to Window.addstr; they identify a foreground color number and

a background color number. Therefore, each color pair is basically a pair of color

numbers.

Just to make things more interesting, color pairs are also numbered. Try not to

confuse pair numbers with color numbers. (Go on, I dare you — try! Actually, the

whole system starts to make sense after a while.)

4807-7 ch22.F 5/24/01 9:00 AM Page 427

428 Part IV ✦ User Interfaces and Multimedia

The function color_pair(number) returns the color pair corresponding to the

given pair number; the opposite function, pair_number(pair), returns the pair

number of a color pair.

Setting colors
Color pair 0 is always white on black. You can change the colors of the other pairs by

calling init_pair(pair_number, foreground, background). Here background and

foreground are color numbers. The function pair_content(pair_number) returns

the pair’s current colors as a tuple of the form (foreground,background).

The constants COLOR_BLACK, COLOR_RED, COLOR_GREEN, COLOR_YELLOW,

COLOR_BLUE, COLOR_MAGENTA, COLOR_CYAN and COLOR_WHITE are available

to denote the corresponding color numbers. For example, the following code draws

a simple German flag:

In the next line, 1 is the number of a
color-pair, while curses.WHITE is a
color-number:
curses.init_pair(1,curses.WHITE,curses.BLACK)
curses.init_pair(2,curses.WHITE,curses.RED)
curses.init_pair(3,curses.WHITE,curses.YELLOW)
Window.addstr(0,0,” “*10,curses.color_pair(1))
Window.addstr(1,0,” “*10,curses.color_pair(2))
Window.addstr(2,0,” “*10,curses.color_pair(3))

Tweaking the colors
Defining colors is not possible on most terminals. The function can_change_color
returns true on those terminals where it is. A call to init_color(number, red,
green, blue) redefines color number to have the specified intensities of red,

green, and blue. Intensity ranges from 0 to 1,000. The function

color_content(number) returns the current definition of color number as a tuple

of the form (red, green, blue).

Example: A Simple Maze Game
I have a soft spot in my heart for curses because I have spent more time than I care

to admit playing ASCII-based games such as Angband and Nethack. The program

shown in Listing 22-5 is far simpler, but it does use several curses features. It uses a

pad to hold a large maze, which the user can move around in.

4807-7 ch22.F 5/24/01 9:00 AM Page 428

429Chapter 22 ✦ Using Curses

Listing 22-5: Maze.py

import curses
import curses.ascii
import whrandom
Possible contents of maze-squares:
MAZE_WALL=”X”
MAZE_ENTRANCE=”*”
MAZE_HALLWAY=”.”
Attributes for displaying maze squares:
MAZE_ATTRIBUTE={MAZE_WALL:curses.A_NORMAL,

MAZE_ENTRANCE:curses.A_BOLD,
MAZE_HALLWAY:curses.A_DIM,}

Simple class representing a compass direction:
class Direction:

def __init__(self,Name,XDelta,YDelta):
self.Name=Name
self.XDelta=XDelta
self.YDelta=YDelta
self.Marker=Name[0]

def SetOpposite(self,Dir):
self.Opposite=Dir
Dir.Opposite=self

NORTH=Direction(“North”,0,-1)
SOUTH=Direction(“South”,0,1)
EAST=Direction(“East”,1,0)
WEST=Direction(“West”,-1,0)
NORTH.SetOpposite(SOUTH)
EAST.SetOpposite(WEST)
VALID_DIRECTIONS=[NORTH,SOUTH,EAST,WEST]
Maze creation uses direction “markers” to indicate how we got
to a square, so that we can (later) backtrack:
MARKED_DIRECTIONS={NORTH.Marker:NORTH,SOUTH.Marker:SOUTH,

EAST.Marker:EAST,WEST.Marker:WEST}
Map keystrokes to compass directions:
KEY_DIRECTIONS={curses.KEY_UP:NORTH,curses.KEY_DOWN:SOUTH,

curses.KEY_LEFT:WEST,curses.KEY_RIGHT:EAST}
class Maze:

def __init__(self,Size=11):
Maze size must be an odd number:
if (Size%2==0):

Size+=1
self.Size=Size
self.Pad=curses.newpad(self.Size+1,self.Size+1)
self.FillWithWalls()

def FillWithWalls(self):
for Y in range(0,self.Size):

self.Pad.addstr(Y,0,MAZE_WALL*self.Size,MAZE_ATTRIBUTE[MAZE_WALL])
def Set(self,X,Y,Char):

self.Pad.addstr(Y,X,Char,MAZE_ATTRIBUTE.get(Char,curses.A_NORMAL))

Continued

4807-7 ch22.F 5/24/01 9:00 AM Page 429

430 Part IV ✦ User Interfaces and Multimedia

Listing 22-5 (continued)

def Get(self,X,Y):
return self.Pad.instr(Y,X,1)

def BuildRandomMaze(self):
self.FillWithWalls()
CurrentX=1
CurrentY=1
self.Set(CurrentX,CurrentY,MAZE_ENTRANCE)
while (1):

Direction=self.GetValidDirection(CurrentX,CurrentY)
if (Direction!=None):

Take one step forward
self.Set(CurrentX+Direction.XDelta,

CurrentY+Direction.YDelta,MAZE_HALLWAY)
CurrentX+=Direction.XDelta*2
CurrentY+=Direction.YDelta*2
self.Set(CurrentX,CurrentY,Direction.Marker)

else:
Backtrack one step
BackDirectionMarker=self.Get(CurrentX,CurrentY)
BackDirection=MARKED_DIRECTIONS[BackDirectionMarker].Opposite
CurrentX+=BackDirection.XDelta*2
CurrentY+=BackDirection.YDelta*2
If we backtracked to the entrance, the maze is done!
if self.Get(CurrentX,CurrentY)==MAZE_ENTRANCE:

break
Fix up the maze:
for X in range(0,self.Size):

for Y in range(0,self.Size):
if self.Get(X,Y) not in [MAZE_HALLWAY,MAZE_WALL, MAZE_ENTRANCE]:

self.Set(X,Y,MAZE_HALLWAY)
def GetValidDirection(self,X,Y):

DirectionIndex=whrandom.randint(0,len(VALID_DIRECTIONS)-1)
FirstIndex=DirectionIndex
while (1):

Direction=VALID_DIRECTIONS[DirectionIndex]
NextSquare=(X+Direction.XDelta*2,Y+Direction.YDelta*2)
if ((0 < NextSquare[0] < self.Size) and

(0 < NextSquare[1] < self.Size) and
self.Get(NextSquare[0],NextSquare[1])==MAZE_WALL):

return Direction
DirectionIndex+=1
if (DirectionIndex>=len(VALID_DIRECTIONS)):

DirectionIndex=0
if (DirectionIndex==FirstIndex):

return None
def ShowSelf(self,ScreenLeft,ScreenTop,PlayerX,PlayerY,Radius):

Top=PlayerY-Radius
Bottom=PlayerY+Radius
Left=PlayerX-Radius

4807-7 ch22.F 5/24/01 9:00 AM Page 430

431Chapter 22 ✦ Using Curses

Right=PlayerX+Radius
ScreenRight=ScreenLeft+Radius*2+1
ScreenBottom=ScreenTop+Radius*2+1
if (Top<0):

ScreenTop -= Top
Top=0

if (Left<0):
ScreenLeft -= Left
Left=0

if (Right>self.Size-1):
ScreenRight-=(self.Size-1-Right)
Right=self.Size-1

if (Bottom>self.Size-1):
ScreenBottom-=(self.Size-1-Bottom)
Bottom=self.Size-1

self.Pad.refresh(Top,Left,ScreenTop,ScreenLeft,ScreenBottom,ScreenRight)

def Main(Window):
Set up colors:
curses.init_pair(1,curses.COLOR_GREEN,curses.COLOR_BLACK)
curses.init_pair(2,curses.COLOR_BLUE,curses.COLOR_BLACK)
curses.init_pair(3,curses.COLOR_RED,curses.COLOR_BLACK)
MAZE_ATTRIBUTE[MAZE_HALLWAY] |= curses.color_pair(1)
MAZE_ATTRIBUTE[MAZE_ENTRANCE] |= curses.color_pair(2)
MAZE_ATTRIBUTE[MAZE_WALL] |= curses.color_pair(3)
curses.curs_set(0) # invisible cursor
MyMaze=Maze(20)
MyMaze.BuildRandomMaze()
PlayerX=19
PlayerY=19
LightRadius=3
MazeWindow=curses.newwin(10,10,10+LightRadius*2+1,10+LightRadius*2+1)
while 1:

MazeWindow.erase()
MyMaze.ShowSelf(10,10,PlayerX,PlayerY,LightRadius)
Window.addch(10+LightRadius,10+LightRadius,”@”,

curses.color_pair(2) & curses.A_STANDOUT)
Window.refresh()
Key=Window.getch()
if (Key==ord(‘q’) or Key==curses.ascii.ESC):

break
Direction=KEY_DIRECTIONS.get(Key,None)
if (Direction):

TargetSquare=MyMaze.Get(PlayerX+Direction.XDelta,
PlayerY+Direction.YDelta)

if TargetSquare==MAZE_ENTRANCE:
MazeFinished(Window)
break

if TargetSquare==MAZE_HALLWAY:
PlayerX += Direction.XDelta
PlayerY += Direction.YDelta

Continued

4807-7 ch22.F 5/24/01 9:00 AM Page 431

432 Part IV ✦ User Interfaces and Multimedia

Listing 22-5 (continued)

def MazeFinished(Window):
Window.clear()
Window.addstr(5,5,”CONGRATULATION!”,curses.color_pair(2))
Window.addstr(6,5,”A WINNER IS YOU!”,curses.color_pair(3))
Window.getch()
pass

if (__name__==”__main__”):
curses.wrapper(Main)
print “Bye!”

Summary
The curses library is an easy, portable way to create a text-mode user interface. In

this chapter, you used curses to:

✦ Display and read text onscreen.

✦ Handle mouse and keyboard input.

✦ Use Textboxes for easy input.

✦ Draw colorful text.

The next chapter demonstrates various ways to create a command interpreter in

Python, including the spiffy graphics language Lepto.

✦ ✦ ✦

4807-7 ch22.F 5/24/01 9:00 AM Page 432

Building Simple
Command
Interpreters

When someone says “user interface,” I usually think of

a GUI with nice buttons and menus, but sometimes a

more appropriate and powerful interface uses a custom mini-

language in which your users write small programs or scripts.

This chapter introduces Python’s support for such a user

interface and walks you through the process of creating a

graphical plotting application that is driven by a small, cus-

tom scripting language called Lepto.

Beginning with the End in Mind
The Python libraries covered in this chapter are the shlex
and cmd modules. The nature of these two modules makes it

difficult to cover each feature in isolation, so each section of

this chapter builds a portion of a single application. Once

you’ve seen the modules in that larger context, rereading the

explanations of the modules’ features will make more sense.

The application that you will build is a simple plotter (sort of

like the turtle graphics you find in languages like LOGO). It is

controlled by user-provided scripts, and the scripting lan-

guage provides basic movement commands and support for

creating subroutines (procedures).

If you imagine a spectrum on which you position program-

ming languages according to their power and flexibility, the

high end would contain Python, and the low end would con-

tain this chapter’s language. Because one of the world’s

largest snakes is a type of Python (around 10 meters long), I

named this new language Lepto, short for Leptotyphlopidae, a

type of blind snake that ranks as one of the world’s smallest,

around 13 centimeters.

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Beginning with the
end in mind

Understanding the
Lepto language

Creating a Lepto
Lexical analyzer

Adding interactive-
mode features

Executing Lepto
commands

✦ ✦ ✦ ✦

4807-7 ch23.F 5/24/01 9:00 AM Page 433

434 Part IV ✦ User Interfaces and Multimedia

The following is a sample Lepto program, and Figure 23-1 shows the result of run-

ning it through the finished application from this chapter:

Listing 23-1: leptogui.py – A sample Lepto program

C:\temp>leptogui.py
Welcome to Lepto!
Enter a command or type ‘help’
: color blue
: scale 30
: sub kochedge # A subroutine to draw an edge
.. f 1 l 60 # f = forward
.. f 1 r 120 # l and r = turn
.. f 1 l 60
.. f 1
.. r 120
.. end
: repeat 3 kochedge
: scale 0.5
: repeat 3 kochedge
: scale 0.5
: repeat 3 kochedge
: scale 0.5
: repeat 3 kochedge

Figure 23-1: The result of running a simple Lepto program

4807-7 ch23.F 5/24/01 9:00 AM Page 434

435Chapter 23 ✦ Building Simple Command Interpreters

Understanding the Lepto Language
Lepto programs are very simple; each line of a Lepto script contains one or more

complete statements. Blank lines and other whitespace are ignored, and comments

will be like Python’s and consist of a pound symbol (#) and everything after it on

the same line.

Table 23-1 explains the statements Lepto supports.

Table 23-1
Valid Lepto Statements

Statement Description

f amnt Move forward (in the current direction) amnt units

b amnt Move backward (away from the current direction) amnt units

l amnt Turn left amnt degrees

r amnt Turn right amnt degrees

scale amnt Multiply the current scale by amnt. Initially the scale is 1, meaning
one pixel for each unit of movement.

color name Change the current drawing color to name. A color name is any
valid Tkinter color.

push arg Save a state attribute to its own stack for later retrieval. arg can
be one of color, direction, scale, or position.

pop arg Restore a previously saved state attribute. arg is one of color,
direction, scale, or position. No effect results if the stack is
empty.

reset arg Restore a state attribute to its original value. arg can be one of
direction, color, screen, scale, position, or all.

include file Read and execute the contents of the file named file as if the
contents had been entered from the console.

sub name Begin the creation of a new subroutine called name. Overwrites
any previous subroutine of the same name.

end Finish creating a new subroutine

call name Execute the subroutine called name

repeat count sub Repeatedly execute the subroutine called sub count times

The features of this language are obviously limited so that the example isn’t too

cumbersome, but it has enough functionality to be interesting.

4807-7 ch23.F 5/24/01 9:00 AM Page 435

436 Part IV ✦ User Interfaces and Multimedia

Creating a Lepto Lexical Analyzer
Users will create Lepto programs using a text editor or by entering them in via an

interactive console. Either way, their input will be plain text, so the first step

toward a finished application is parsing the text input and spitting out Lepto com-

mands in some internal format that the rest of the program can understand. During

this conversion, the parser will also verify that the Lepto commands are valid

according to the simple grammar explained in the previous section.

The shlex module
Python’s shlex module provides basic lexical analysis for simple shell-like lan-

guages. It defines the shlex class, which you can use as is or through your own

subclass. You create a shlex object by calling shlex([instream[, infile]]),

where instream is an open filelike object and infile is the file’s name (printed

with error messages). If you provide neither, then shlex uses stdin. shlex breaks

the input down into individual words, or tokens.

A shlex object has several members, which you can modify to affect how it inter-

prets the input stream. The commenters member is a string of all valid comment

characters (defaulting to ‘#’), and quotes is a string with all valid quote characters

(defaulting to single and double quotes). If a comment character is in the middle of

a token (with no surrounding whitespace), it counts as a single token that just so

happens to contain the comment character.

The whitespace member is a string of token separators (by default, whitespace is

any combination of tabs, spaces, carriage returns, and linefeeds). wordchars
defaults to alphanumeric characters (letters and numbers) and the underscore; it

represents all valid token characters. Any character not in whitespace,

wordchars, quotes, or commenters is returned as a single-character token.

source is a string holding the keyword shlex uses as the “import” or “include”

equivalent found in Python or C, telling shlex to read and parse the contents of a

file. Setting it to a value of beable, for example, means a user can use the following

command to include the contents of the file foofoo.txt:

beable “foofoo.txt”

infile is the name of the current file (the original input file name, or the name of

the file currently being included), and instream has the filelike object from which

data is being read. The lineno member is the current source line number. For

debugging purposes, you can set the debug member to 1 or more to have shlex
generate more verbose output.

With your shlex object configured the way you want, all you need to do is repeat-

edly call its get_token() method to retrieve the next token from the stream. When

all the input has been read, get_token returns an empty string. push_token(str)
pushes str onto the token stack (so that the next call to get_token returns str).

4807-7 ch23.F 5/24/01 9:00 AM Page 436

437Chapter 23 ✦ Building Simple Command Interpreters

When a user includes a file’s contents (using the keyword stored in source), the

sourcehook(path) method is called to locate and open the file called path. You

can override this method to implement your own file location algorithm; source-
hook returns a 2-tuple (file name, open file object).

If you need to print out an error message, prefix your message with the string

returned from the object’s error_leader([file[, line]]) method. Unless you

indicate otherwise, it uses the current file name and line number to return a mes-

sage header string that is friendly to editors such as Emacs. For example:

>>> print s.error_leader()+’Expected a number’
“foofoo.txt”, line 17: Expected a number

Putting shlex to work
The parser in Listing 23-2 understands the simple Lepto language as described ear-

lier in this chapter. At the highest level, it repeatedly calls shlex.get_token to get

a command and then calls a corresponding parse_<command> method to read and

verify that command’s arguments. Each finished command is stored in a LeptoCmd
object (a simple container), all of which are buffered and eventually returned as a

list of commands.

Listing 23-2: leptoparser.py – Coverts tokens
to LeptoCmd objects

import shlex,sys

class LeptoCmd:
‘Simple container class’
def __init__(self,cmd,**kwargs):

self.cmd = cmd
self.__dict__.update(kwargs)

def __repr__(self):
s = ‘LeptoCmd %s(‘ % self.cmd
for item in self.__dict__.items():

if item[0] != ‘cmd’:
s += ‘ %s=%s’ % item

return s + ‘)’
class LeptoParser:

def __init__(self,stopOnError=1):
self.stopOnError = stopOnError

def err(self,msg,dest=sys.stderr):
dest.write(self.lexer.error_leader()+msg+’\n’)

Continued

4807-7 ch23.F 5/24/01 9:00 AM Page 437

438 Part IV ✦ User Interfaces and Multimedia

Listing 23-2 (continued)

def next_token(self):
‘Returns the next token or None on error’
tok = self.lexer.get_token()
if tok == ‘’:

self.err(‘Unexpected end of file’)
return tok

def next_number(self,func=float):
‘Returns the next token as a number’
tok = self.next_token()
if tok:

try: tok = func(tok)
except ValueError:

return self.err(‘Expected a number, not ‘+tok)
return tok

def parse_reset(self):
tok = self.next_token()
if tok:

if not tok in [‘all’,’direction’,’color’,\
‘screen’,’scale’,’position’,\
‘stacks’]:

return self.err(‘Invalid reset argument’)
return LeptoCmd(‘reset’,arg=tok)

def parse_push(self):
tok = self.next_token()
if tok:

if not tok in [‘color’,’direction’,\
‘scale’,’position’]:

return self.err(‘Invalid push argument’)
return LeptoCmd(‘push’,arg=tok)

def parse_pop(self):
tok = self.next_token()
if tok:

if not tok in [‘color’,’direction’,\
‘scale’,’position’]:

return self.err(‘Invalid push argument’)
return LeptoCmd(‘pop’,arg=tok)

def amntcmd(self,cmd):
‘Util for commands with a single numerical arg’
num = self.next_number()
if num: return LeptoCmd(cmd,amnt=num)

These are all nearly identical
def parse_f(self): return self.amntcmd(‘f’)
def parse_b(self): return self.amntcmd(‘b’)
def parse_l(self): return self.amntcmd(‘l’)

4807-7 ch23.F 5/24/01 9:00 AM Page 438

439Chapter 23 ✦ Building Simple Command Interpreters

def parse_r(self): return self.amntcmd(‘r’)
def parse_scale(self): return self.amntcmd(‘scale’)

def namecmd(self,cmd):
‘Util for commands with a single string arg’
tok = self.next_token()
if tok: return LeptoCmd(cmd,name=tok)

More nearly identical stuff
def parse_color(self): return self.namecmd(‘color’)
def parse_sub(self): return self.namecmd(‘sub’)
def parse_call(self): return self.namecmd(‘call’)

def parse_end(self): return LeptoCmd(‘end’)

def parse_repeat(self):
num = self.next_number()
if num:

n = self.next_token()
if n:

return LeptoCmd(‘repeat’,count=num,name=n)

def parse(self, stream=None, name=None):
‘Returns a list of LeptoCmd objects’
lexer = shlex.shlex(stream,name)
lexer.source = ‘include’
lexer.wordchars += ‘.,-’ # For numbers
self.lexer = lexer
cmds = []
while 1:

tok = lexer.get_token()
if tok == ‘’: # End of the file

break

See if there’s a parser for this token
parser = ‘parse_’+tok
if not hasattr(self,parser):

self.err(‘Unknown command: ‘+tok)
if self.stopOnError:

break
else:

continue

Call the parser to convert to a LeptoCmd object
cmd = getattr(self,parser)()
if cmd is None:

if self.stopOnError: break
else: continue

cmds.append(cmd)

return cmds

4807-7 ch23.F 5/24/01 9:00 AM Page 439

440 Part IV ✦ User Interfaces and Multimedia

Basically, you create a LeptoParser object, pass it a stream, and it returns to you a

list of LeptoCmd objects, checking for errors along the way. Later sections will make

use of the LeptoParser class, but you can already verify that it works correctly:

>>> import leptoparser
>>> p = leptoparser.LeptoParser()
>>> p.parse()
color red # You enter this
f 10 l 20 f 10 l 5 f 5 # You enter this
^Z # Hit Ctrl-Z (Win) or Ctrl-D (Unix)
[LeptoCmd color(name=red),
LeptoCmd f(amnt=10.0), LeptoCmd l(amnt=20.0),
LeptoCmd f(amnt=10.0), LeptoCmd l(amnt=5.0),
LeptoCmd f(amnt=5.0)]

Adding Interactive-Mode Features
The next step toward a finished application is the addition of a “shell” similar to

when you use Python in interactive mode. The shell passes the commands through

to the parser, and also provides online help.

Using the cmd module
The cmd module defines the Cmd class that provides some scaffolding for building

an interactive, command-line interpreter. Because it is just scaffolding, you nor-

mally don’t use it directly, but instead create a subclass. If the readline module is

present, cmd automatically uses its editing and history features.

The readline module is an optional UNIX module, covered in Chapter 38.

The Cmd constructor takes no arguments, but once you have a Cmd object (or an

object of your subclass), you can use the following members to customize it.

The prompt member is the input prompt displayed while the user enters a com-

mand. identchars is a string containing all acceptable characters in a command

prefix (defaulting to letters, numbers, and underscores). By default the prompt is

‘(Cmd) ‘.

For each line of input from a user, Cmd considers the first token to be a command
prefix, and it uses that prefix to dispatch the input to a handler method. For exam-

ple, if the first word on the line of input is the string reverse, then Cmd sends the

remainder of the line to its do_reverse(line) method, if present. If no handler is

present, the line is sent to the default(line) method.

Cross-
Reference

4807-7 ch23.F 5/24/01 9:00 AM Page 440

441Chapter 23 ✦ Building Simple Command Interpreters

Cmd comes with a few special commands. If a user enters help reverse or just ?

reverse, a built-in do_help method calls help_reverse(), if present, which you

can implement to print online help (just print it to stdout using one or more print
statements). A command prefix of just an exclamation point sends the remaining

arguments to a do_shell(line) method if it exists. If the input is just a blank line,

the emptyline() method is called, which by default repeats the previous input (by

calling self.onecmd(self.lastcmd)). Finally, when the end of user input is

reached, the do_EOF() method is called.

onecmd(line) takes an entire line of input and processes it as if it had been

entered by the user.

The cmdloop([intro]) method makes Cmd repeatedly prompt the user for input

and then dispatches it. intro is a message to display before entering the loop; if

omitted, Cmd displays the message in self.intro, which is empty by default. You

can implement the preloop() and postloop() methods to do work immediately

before and after Cmd goes into its loop (i.e., they will both be called once per call to

the cmdloop method).

For each line of input, Cmd performs a series of calls like the following:

stop = None
line = raw_input(self.prompt)
line = self.precmd(line)
stop = self.onecmd(line)
stop = self.postcmd(stop, line)

It receives user input, sends it to precmd (where you can modify it if you want), and

then passes it off to onecmd, where the correct do_<command> method is called. If,

at the end of the loop, stop has a value besides None, cmdloop calls postloop and

then returns.

If a user enters help with no other argument, do_help displays a sort of table of

contents of available help topics:

print self.doc_header
print self.ruler * len(self.doc_header)
print <all do_ methods that have a help_ method>
print self.misc_header
print self.ruler * len(self.misc_header)
print <all help_ methods that don’t have a do_ method>
print self.undoc_header
print self.ruler * self.undoc_header
print <all do_ methods without a help_ method>

4807-7 ch23.F 5/24/01 9:00 AM Page 441

442 Part IV ✦ User Interfaces and Multimedia

Sample output might look something like the following:

Documented commands (type help <topic>):
==
go stop add subtract
delete

Miscellaneous help topics:
==========================
overview rules

Undocumented commands:
======================
quit

Subclassing cmd.Cmd
Listing 23-3 contains the next piece of the Lepto application, and it’s a good way to

see a Cmd object in action; it defines LeptoCon, a Cmd subclass that wraps the Lepto

parser so that users have online help and readline support, if present.

Listing 23-3: leptocon.py — Lepto interactive console

import cmd, leptoparser, cStringIO

def defaultHandler(cmds):
‘Simple handler for testing’
for cmd in cmds:

print cmd

class LeptoCon(cmd.Cmd):
normalPrompt = ‘: ‘
subPrompt = ‘.. ‘

def __init__(self,handler=defaultHandler):
cmd.Cmd.__init__(self)
self.timeToQuit = 0
self.prompt = self.normalPrompt
self.parser = leptoparser.LeptoParser()
self.doc_header = “Type ‘help <topic>’ for info on:”
self.intro = ‘Welcome to Lepto!\n’\

“Enter a command or type ‘help’”
self.misc_header = ‘’
self.undoc_header = ‘’
self.handler = handler

def do_sub(self,line):
‘Change the prompt for subroutines’
self.prompt = self.subPrompt
self.default(‘sub ‘+line) # Now process normally

4807-7 ch23.F 5/24/01 9:00 AM Page 442

443Chapter 23 ✦ Building Simple Command Interpreters

def do_end(self,line):
‘Change the prompt back after subroutines’
self.prompt = self.normalPrompt
self.default(‘end ‘+line) # Now process normally

def default(self,line):
‘Called on normal commands’
sio = cStringIO.StringIO(line)
cmds = self.parser.parse(sio,’Console’)
self.handler(cmds)

def do_quit(self,line):
self.timeToQuit = 1

def postcmd(self,stop,line):
if self.timeToQuit:

return 1
return stop

Now come all the online documentation functions
def help_help(self): print ‘I need help!’
def help_quit(self): print ‘Duh.’

def help_reset(self):
print ‘reset <all | direction | color | ‘\

‘screen | scale | position | stacks>’
print ‘Reverts to default settings’

def help_color(self):
print ‘color <name | None>’
print ‘Changes current color to <name> or no color’\

‘ for invisible movement’

def help_push(self):
print ‘push <color | direction | scale | position>’
print ‘Saves an attribute to its own stack’

def help_pop(self):
print ‘pop <color | direction | scale | position>’
print ‘Retrieves a previously pushed attribute’

def help_f(self):
print ‘f <amnt>’
print ‘Moves forward in the current direction’

def help_b(self):
print ‘b <amnt>’
print ‘Moves opposite of the current direction’

def help_l(self):
print ‘l <amnt>’
print ‘Turns left the specified number of degrees’

Continued

4807-7 ch23.F 5/24/01 9:00 AM Page 443

444 Part IV ✦ User Interfaces and Multimedia

Listing 23-3 (continued)

def help_r(self):
print ‘r <amnt>’
print ‘Turns right the specified number of degrees’

def help_scale(self):
print ‘scale <amnt>’
print ‘Multiplies the current scaling factor by amnt’

def help_sub(self):
print ‘sub <name>’
print ‘Creates a new subroutine called name’
print ‘Be sure to terminate it using the end command’

def help_end(self):
print ‘end\nEnds a subroutine definition’

def help_call(self):
print ‘call <name>\nCalls a subroutine’

def help_include(self):
print ‘include “file”\nExecutes the contents of a file’

def help_repeat(self):
print ‘repeat <count> <name>’
print ‘Calls a subroutine several times’

if __name__ == ‘__main__’:
c = LeptoCon()
c.cmdloop()

Because the parser handles entire commands, most commands are routed to the

default method, which passes the whole line on to the parser. Once again, this is

part of a still larger program, but you can test this portion of it to make sure every-

thing’s working. Here’s an example session from a Windows command line (text in

bold is what I typed):

C:\temp>python leptocon.py
Welcome to Lepto!
Enter a command or type ‘help’
: help

Type ‘help <topic>’ for info on:
================================
help quit
sub include b r push
pop l scale color f
end repeat call reset

4807-7 ch23.F 5/24/01 9:00 AM Page 444

445Chapter 23 ✦ Building Simple Command Interpreters

: help call
call <name>
Calls a subroutine
: color red
LeptoCmd color(name=red)
: f 10 r 20 f 10
LeptoCmd f(amnt=10.0)
LeptoCmd r(amnt=20.0)
LeptoCmd f(amnt=10.0)
: quit

C:\temp>

Notice that you can enter more than one command per line as long as the entire

command is on that line. The default command handler does nothing but print the

commands to stdout, but it at least lets you see what’s happening.

It may seem like overkill to use both shlex and cmd because there is some overlap

in what they do (I could have just implemented methods such as do_color,

do_reset, and so on, for example). But as you’ve seen, using both made it easy to

test these first two parts independently, which could be important for languages

with more complex grammars. It also makes it easy to later re-use LeptoParser for

handling input directly from a file. Furthermore, it enables you to easily add interac-

tive-mode features (such as online help and using a different prompt when the user

is defining a subroutine) without cluttering the parsing code.

Executing Lepto Commands
Now that you have a Lepto parser and a user-friendly interface, all you need is some-

thing to act on those commands. The code in Listing 23-4 builds upon the previous

two sections and creates a graphical display showing the results of the Lepto scripts

(the display is nothing more than a Tkinter window with a single canvas widget).

Listing 23-4: leptgui.py – Plots Lepto commands

from Tkinter import *
import leptocon, threading, math

deg2rad = math.pi * 2.0 / 360.0

class LeptoGUI:
def __init__(self,canvas):

self.canvas = canvas
self.subs = {}
self.newSub = None
self.firstCmd = 1

Continued

4807-7 ch23.F 5/24/01 9:00 AM Page 445

446 Part IV ✦ User Interfaces and Multimedia

Listing 23-4 (continued)

def do_reset_direction(self): self.direction = 0
def do_reset_color(self): self.color = ‘black’
def do_reset_scale(self): self.scale = 1.0

def do_reset_position(self):
Move to center of canvas
x = self.canvas.winfo_width() / 2
y = self.canvas.winfo_height() / 2
self.position = (x,y)

def do_reset_screen(self):
ids = self.canvas.find_all()
self.canvas.delete(*ids)

def do_reset_stacks(self):
self.direction_stk = []
self.color_stk = []
self.scale_stk = []
self.position_stk = []

def do_reset_all(self):
self.do_reset_direction()
self.do_reset_color()
self.do_reset_scale()
self.do_reset_position()
self.do_reset_screen()
self.do_reset_stacks()

def do_reset(self,cmd):
‘Reset color, position, etc’
getattr(self,’do_reset_’+cmd.arg)()

def do_color(self,cmd):
‘Change color’
self.color = None
if cmd.name.lower() != ‘none’:

self.color = cmd.name

def do_push(self,cmd):
‘Push a color, position, etc’
arg = cmd.arg
getattr(self,arg+’_stk’).append(getattr(self,arg))

def do_pop(self,cmd):
‘Pop a color, position, etc’
stk = getattr(self,cmd.arg+’_stk’)
if len(stk):

setattr(self,cmd.arg,stk.pop())

4807-7 ch23.F 5/24/01 9:00 AM Page 446

447Chapter 23 ✦ Building Simple Command Interpreters

def do_f(self,cmd):
‘Move forward’
x,y = self.position
dir = self.direction * deg2rad
amnt = self.scale * cmd.amnt
nx = x + amnt * math.cos(dir)
ny = y - amnt * math.sin(dir)
if self.color:

self.canvas.create_line(x, y, nx, ny, width=1,\
fill=self.color)

self.position = (nx,ny)

def do_b(self,cmd):
‘Move backward’
self.direction = (self.direction + 180) % 360
self.do_f(cmd)
self.direction = (self.direction - 180) % 360

def do_l(self,cmd):
‘Turn left’
self.direction = (self.direction + cmd.amnt) % 360

def do_r(self,cmd):
‘Turn right’
self.direction = (self.direction - cmd.amnt) % 360

def do_scale(self,cmd):
‘Change scale’
self.scale *= cmd.amnt

def do_sub(self,cmd):
‘Create a new subroutine’
if self.newSub:

print “Can’t create nested subroutines”
return

self.newSub = cmd.name
self.subs[cmd.name] = []

def do_end(self,cmd):
‘Finish creating a subroutine’
if not self.newSub:

print ‘No subroutine to end’
return

self.newSub = None

def do_call(self,cmd):
‘Invoke a subroutine’
sub = cmd.name
if self.subs.has_key(sub):

self.cmdHandler(self.subs[sub])
else:

print ‘Unknown subroutine’,sub

Continued

4807-7 ch23.F 5/24/01 9:00 AM Page 447

448 Part IV ✦ User Interfaces and Multimedia

Listing 23-4 (continued)

def do_repeat(self,cmd):
‘repeat - Just do_call <count> times’
c = leptocon.leptoparser.LeptoCmd(‘call’,name=cmd.name)
for i in range(cmd.count):

self.do_call(c)

def cmdHandler(self,cmds):
‘Called for each command object’
if self.firstCmd:

Widget info (w,h) won’t be ready in the
constructor, but it will be ready by now
self.firstCmd = 0
self.do_reset_all()

for cmd in cmds:
if self.newSub and cmd.cmd != ‘end’:

self.subs[self.newSub].append(cmd)
else:

getattr(self,’do_’+cmd.cmd)(cmd)

if __name__ == ‘__main__’:
Create a Tk window with a canvas
root = Tk()
root.title(‘LeptoGUI’)
canvas = Canvas(root,bg=’White’)
canvas.pack()

gui = LeptoGUI(canvas)

Let Tkinter run in the background
threading.Thread(target=root.mainloop).start()

Repeatedly get commands and process them
c = leptocon.LeptoCon(gui.cmdHandler)
c.cmdloop()
root.quit()

leptogui.py uses the usual trick of dispatching commands by taking a command

name (such as scale), converting it to a method name (do_scale), and then invok-

ing it. Because so much work was taken care of by the parser, the final pieces of the

graphical application ended up being quite simple and straightforward.

Launch leptogui.py to give Lepto a try. Following is a sample session; the result-

ing output is shown in Figure 23-2.

4807-7 ch23.F 5/24/01 9:00 AM Page 448

449Chapter 23 ✦ Building Simple Command Interpreters

C:\temp>leptogui.py
Welcome to Lepto!
Enter a command or type ‘help’
: color blue f 40 r 90
: color green f 40 r 90
: color red f 40 r 90
: color brown f 40 r 90
: l 90 color none f 20 # Please step away from the box
: color black
: sub rayrot # Draws a ray and then rotates left
.. push position
.. f 100
.. pop position
.. l 5
.. end
: repeat 10 rayrot

Figure 23-2: Sample output from a program written
in the custom language called Lepto

You can store useful subroutines in a separate file and import them using the

include command. For example, save the Lepto code that follows in Listing 23-5 to

a file called shapes.lep, and try the following (the output is shown in Figure 23-3):

C:\temp>leptogui.py
Welcome to Lepto!
Enter a command or type ‘help’
: include “shapes.lep”
: color blue
: call circle
: color black
: scale 10
: call tri

4807-7 ch23.F 5/24/01 9:00 AM Page 449

450 Part IV ✦ User Interfaces and Multimedia

: r 180
: color green
: call box
: sub cirrot # draw a circle and rotate a little
.. push color push position
.. color none
.. f 50
.. pop color
.. call circle
.. pop position
.. r 20
.. end
: reset scale reset position reset color
: repeat 18 cirrot

Listing 23-5: shapes.lep – Sample Lepto include file

sub circedge f 10 r 15 end
sub circle repeat 24 circedge end
sub box f 10 r 90 f 10 r 90 f 10 r 90 f 10 r 90 end
sub tri f 10 r 120 f 10 r 120 f 10 r 120 end

Figure 23-3: Lepto program using subroutines stored in a separate file

Lepto is a simple, yet realistic, example of how you can benefit from the shlex and

cmd modules. A good exercise to try now would be to expand the grammar of Lepto

to make it more powerful. For example, you could add support for variables and

expressions (let Python do the work of evaluation via the eval function), or you

could let the repeat statement accept a sequence of commands instead of forcing

users to define a subroutine first.

4807-7 ch23.F 5/24/01 9:00 AM Page 450

451Chapter 23 ✦ Building Simple Command Interpreters

Summary
A scripting interface to a program gives your users powerful tools to work with.

Python’s shlex module makes lexical analysis a lot less tedious, and cmd gives

you a base upon which you can build a flexible command-line interface. In this

chapter, you:

✦ Created a parser for a simple scripting language.

✦ Wrapped the parser in a command-line interface complete with built-in online

help.

✦ Built an interpreter for the parser output that plots drawings graphically.

The next chapter covers Python’s support for processing and playing sound files in

various formats.

✦ ✦ ✦

4807-7 ch23.F 5/24/01 9:00 AM Page 451

4807-7 ch23.F 5/24/01 9:00 AM Page 452

Playing Sound

Sound is stored in a bewildering range of formats.

Fortunately, Python’s standard libraries can read, write,

and convert a wide range of audio files. You can also play

back sounds on a variety of platforms.

Sound File Basics
Sound is basically vibration in the air. The louder the sound,

the more forceful the vibration. The higher the sound, the

faster the vibration.

To store sound digitally, a microphone or other recorder mea-

sures (or samples) the analog sound waveform many times

per second. Each sample takes the form of a number, and this

number measures the amplitude of the sound waves at an

instant in time. A speaker can later translate digitized sound

(this long list of integers) back into sound waves.

There are many, many ways to digitize and store sound. They

can differ in several ways:

✦ Sample rate — How many times per second the ampli-

tude of the sound waves is measured. A common sample

rate is 44100 Hz (samples per second), the rate used on

audio compact discs.

✦ Sample encoding — The simplest (and most common) is

linear encoding, where each sample is a linear measure-

ment of amplitude. Other encoding types include u-LAW,

in which measurement is performed on a logarithmic

scale.

✦ Sample width — A sample can be an 8-bit, 16-bit, or 32-

bit integer.

✦ Channels — Sound can be recorded with one, two, or

more channels. This boils down to the storage of one or

more audio streams together in one file. The corre-

sponding samples from each channel are normally

stored together in one frame.

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Sound file basics

Playing sounds

Examining audio files

Reading and writing
audio files

Handling raw audio
data

✦ ✦ ✦ ✦

4807-7 ch24.F 5/24/01 9:00 AM Page 453

454 Part IV ✦ User Interfaces and Multimedia

All sound formats make some trade-offs between sound quality (how much informa-

tion is lost in digitizing the sound) and file size (the better the sound quality, the

more data needs to be stored). For example, one second of sound could be stored

in 8-bit mono at a sample rate of 22050; the total space used would be 22050 bytes.

Storing the same sound in 16-bit stereo at a sampling rate of 44100 would require

44100 frames at 4 bytes per frame, for a total of 176400 bytes (8 times as much

space).

Playing Sounds
Because playing sound is tied to the operating system (OS), the libraries for playing

sound are also OS-specific.

Playing sound on Windows
The module winsound plays sound on a Windows system. The function

Beep(frequency,duration) uses the computer’s internal speaker to play a

sound at pitch frequency for duration milliseconds. The frequency can range from

37 to 32767. If Beep can’t play the sound, it raises a RuntimeError. For example,

the following code plays a tinny-sounding major scale, starting from middle C.

Each note lasts half a second:

ScalePitches=[262,294,330,349,392,440,494,523]
for Pitch in ScalePitches:

winsound.Beep(Pitch,500)

The function PlaySound(sound,flags) plays a WAV file, using any available sound

card. The parameter sound can be a file name, an alias, an audio stream, or None.

The parameter flags should equal one or more constants, combined using

bitwise-OR.

Specify one (and only one) flag to indicate where the sound should come from:

✦ SND_FILENAME indicates that the sound is the path to a WAV file.

✦ SND_ALIAS indicates that sound is the name of a control panel sound-

association.

✦ SND_MEMORY indicates that sound is the contents of a WAV file.

For example:

Play a sound file from disk:
SoundFileName=”JudyGarlandKraftCheese.wav”
winsound.PlaySound(SoundFileName,winsound.SND_FILENAME)

4807-7 ch24.F 5/24/01 9:00 AM Page 454

455Chapter 24 ✦ Playing Sound

Play the “Exclamation” sound, as set up in Control Panel:
winsound.PlaySound(“Exclamation”,winsound.SND_ALIAS)
Read sound file from disk, then play it:
SoundFile=open(SoundFileName,”rb”)
winsound.PlaySound(SoundFile.read(),winsound.SND_MEMORY)

Other flags let you tweak behavior:

SND_ASYNC Start playing the sound and return immediately.

Otherwise, the call to PlaySound doesn’t return until the

sound has finished playing.

SND_LOOP Keep playing the sound indefinitely. (This flag should be

combined with SND_ASYNC.)

SND_PURGE Stop the specified sound.

SND_NOSTOP Don’t stop currently playing sounds. (Raise RuntimeError

if a sound is playing.)

SND_NOWAIT Return immediately if the sound driver is busy.

SND_NODEFAULT If the sound is not found, don’t play a default beep.

Playing and recording sound on SunOS
The Sun audio hardware can play audio data in u-LAW format, with a sample rate of

8000 Hz. The module sunaudiodev enables you to manipulate the Sun audio hard-

ware using a filelike object. The related module SUNAUDIODEV provides various con-

stants for use with sunaudiodev.

The function open(mode) returns an audio device object. The parameter mode can

be r for recording, w for playback, rw for both, or control for control access.

Playing sound
The method write(samples) plays sound, where samples is audio data as a string.

A call to write adds the audio data into the audio device’s buffer. If the buffer

doesn’t have enough room to contain samples, write will not return immediately.

The method obufcount returns the number of samples currently buffered for

playback.

The method flush stops any currently playing sound, and clears the audio output

buffer. The method drain waits until playback is complete, and then returns.

Recording sound
The method read(size) reads exactly size samples from the audio input, and

returns them as a string. It blocks until enough data is available.

4807-7 ch24.F 5/24/01 9:00 AM Page 455

456 Part IV ✦ User Interfaces and Multimedia

The method ibufcount returns the number of samples buffered for recording; you

can read up to this many samples without blocking.

Controlling the audio device
The audio device provides a status object. The object has no methods, but has

attributes as described in the audio man page. The device object provides acces-

sors getinfo and setinfo for the status object.

The method fileno returns the file descriptor for the audio device.

Examining Audio Files
Because there are so many file formats for storing sound, it is sometimes difficult to

know which format a particular file uses. The module sndhdr provides a function,

what(filename), that examines the file filename and returns its storage format.

(The function whathdr is a synonym for what.)

The return value of what is a 5-tuple of the form (type, SampleRate, channels,

frames, BitsPerSample). Here, type is the data type; its possible values are aifc, aiff,

au, hcom, sndr, sndt, voc, wav, 8svx, sb, ub, and ul. The value BitsPerSample is A for

A-LAW encoding, U for u-LAW encoding, or the number of bits for standard encoding.

The values SampleRate and channels are 0 if they cannot be determined. The value

frames is -1 if it cannot be determined. If what is completely stumped (for example,

if the file isn’t a sound file at all), it returns None.

For example, the following code examines a .wav file. The file has a sampling rate of

11024. It is in mono, and uses 8 bits per sample:

>>> print sndhdr.what(“bond.wav”)
(‘wav’, 11025, 1, -1, 8)

This file is in SunAudio format, in mono, with 188874 frames in all:

>>> params=sndhdr.what(“fallofthephoton.au”)
>>> params
(‘au’, 8012, 1, 188874, ‘U’)
>>> float(params[3])/params[1] # sound length (in seconds)
23.573889166250623

Reading and Writing Audio Files
The modules aifc, wave, and sunau handle AIFF, WAV, and AU files, respectively.

The interfaces for the modules are almost identical. The aifc module is docu-

mented first, followed by an accounting of the differences.

4807-7 ch24.F 5/24/01 9:00 AM Page 456

457Chapter 24 ✦ Playing Sound

Reading and writing AIFF files with aifc
The method open(file[, mode]) returns an audiofile object. The parameter file is

either a file name or an open filelike object. If file is a file name, use the mode
parameter to control how the file is opened.

File format
An audiofile object provides accessors for the file format. You can access each com-

ponent of the file format on any audiofile. You can also set the file format on a new

audiofile, but only before writing any frames:

✦ getnchannels, setnchannels(channels)— Access the number of channels.

✦ getsampwidth, setsampwidth(size)— Access the size, in bytes, of each

sample.

✦ getframerate,setframerate(frames)— Access the number of frames per

second.

✦ getnframes, setnframes(frames)— Access the number of frames in the

entire file.

✦ getcomptype, getcompname, setcomptype(type,name)— Access the com-

pression scheme. getcomptype returns the compression scheme as a code:

NONE, ALAW, ULAW, or G722. getcompname returns the compression scheme

as a human-readable string. Of the parameters to setcomptype, type should

be a code (as returned by getcomptype), and name should be a human-

readable name (as returned by getcompname).

The method setparams sets all five components at once. Its argument is a tuple of

the form (Channels,SampleWidth,FrameRate,CompType,CompName). The method

getparams returns the parameters in the same order.

Usually, you need not call setnframes to write out a new file, because the
number of frames is written to the file’s header when you call close. However, if
you open a filelike object that does not support seeking, then you must call
setnframes before writing out audio data.

Input
The method readframes(count) reads count frames of audio data from the file,

returning them (decompressed) in a string.

Output
The method writeframes(data) writes the audio data data to the file. The method

writeframesraw(data) writes audio data without updating the header; it is useful

for writing to a filelike object with no seek method.

Note

4807-7 ch24.F 5/24/01 9:00 AM Page 457

458 Part IV ✦ User Interfaces and Multimedia

Frame numbers
When reading, the method setpos(framenumber) jumps to frame framenumber,
and the method rewind jumps to the beginning of the file (frame 0).

When writing, the method tell returns the current frame number.

Using markers
An AIFF file can have one or more markers. A marker has an id number, a position

(frame number), and a name. To create a marker when writing a file, call

setmark(id,position,name). When reading a file, you can access a list of

markers by calling getmarkers. Each list element is a tuple of the form

(id,position,name). You can also access a particular marker with getmark(id).

Reading and writing AU files with sunau
The interface of the sunau module is basically the same as that of aifc, with the

following two exceptions:

✦ The available compression types are limited to ALAW, ULAW, and NONE.

✦ Markers are not available. Stub marker methods are provided for compatibil-

ity with aifc.

Reading and writing WAV files with wave
The interface of the wave module is basically the same as that of aifc, with these

two exceptions:

✦ Compression is not available; the only supported scheme is NONE.

✦ Markers are not available. Stub marker methods are provided for compatibil-

ity with aifc.

Example: Reversing an audio file
Listing 24-1 reads in an audio file, and then writes out the same sound played back-

wards. Note that this could also be accomplished by one call to audioop.reverse
(see “Handling Raw Audio Data,” later in this chapter). This example does things

the long way for purposes of exposition.

4807-7 ch24.F 5/24/01 9:00 AM Page 458

459Chapter 24 ✦ Playing Sound

Listing 24-1: ReverseSound.py

“””Reverse a sound file. Handy for finding subliminal
messages.”””
import sndhdr
import aifc
import sunau
import wave

def ReverseAudioStream(AudioFileIn,AudioFileOut):
“””
Reverse an audio file (takes two opened audiofiles
as arguments)
“””
Get header info from the input file; write it out to
the output file.
Params=AudioFileIn.getparams()
AudioFileOut.setparams(Params)
Collect all the frames into a list, then write them out
in reversed order:
FrameCount=AudioFileIn.getnframes()
FrameDataList=[]
for FrameIndex in range(FrameCount):

FrameDataList.append(AudioFileIn.readframes(1))
for FrameIndex in range(FrameCount-1,-1,-1):

AudioFileOut.writeframes(FrameDataList[FrameIndex])
We’re done! Close the files.
AudioFileIn.close()
AudioFileOut.close()

def ReverseAudioFile(InputFileName,OutputFileName):
“””
Reverse an audio file (takes two file names as arguments)
“””
First, check to see what kind of file it is:
FileInfo=sndhdr.what(InputFileName)
if (FileInfo==None):

print “Unkown sound format - can’t reverse:”,
InputFileName

return
FileType=FileInfo[0]
try:

if FileType==”aifc” or FileType==”aiff”:
aiff/aifc: use aifc module
InFile=aifc.open(InputFileName,”rb”)
OutFile=aifc.open(OutputFileName,”wb”)

elif FileType==”au”:
Sun Audio format: use sunau module
InFile=sunau.open(InputFileName,”rb”)
OutFile=sunau.open(OutputFileName,”wb”)

Continued

4807-7 ch24.F 5/24/01 9:00 AM Page 459

460 Part IV ✦ User Interfaces and Multimedia

Listing 24-1 (continued)

elif FileType==”wav”:
Wave format: use wave module
InFile=wave.open(InputFileName,”rb”)
OutFile=wave.open(OutputFileName,”wb”)

else:
print “Sorry, can’t reverse type”,FileType
return

ReverseAudioStream(InFile,OutFile)
except IOError:

print “Unable to open file!”
return

if (__name__==”__main__”):
Reverse a file. Then reverse it again, to get
(hopefully) the same thing we started with:
ReverseAudioFile(“test.wav”,”backwards.wav”)
ReverseAudioFile(“backwards.wav”,”forwards.wav”)
Try another audio format, too:
ReverseAudioFile(“test.au”,”backwards.au”)
ReverseAudioFile(“backwards.au”,”forwards.au”)

Reading IFF chunked data
Some sound files are divided into chunks, including AIFF files and Real Media File

Format (RMFF) files. The chunk module provides a class, Chunk, to make it easier to

read these files.

Each chunk consists of an ID (4 bytes), a length (4 bytes), data (many bytes), and

possibly one byte of padding to make the next chunk start on a 2-byte boundary.

The length generally does not include the 8 header bytes. The length is normally

stored in big-endian format (most-significant bit first).

The constructor has the following syntax:

Chunk(file[,align[,bigendian[,inclheader]]]). Here, file is an opened file-

like object that contains chunked data. The flag align indicates whether chunks are

aligned. The flag bigendian indicates whether the chunk length is a big-endian num-

ber. And the flag inclheader indicates whether the length includes the 8 header

bytes. Parameters align and bigendian default to true; inclheader defaults to false.

The methods getname and getsize return the ID and the size of the chunk, respec-

tively. The method close skips to the end of the current chunk, but does not close

the underlying file. After calling close on a chunk, you can no longer read or

seek it.

4807-7 ch24.F 5/24/01 9:00 AM Page 460

461Chapter 24 ✦ Playing Sound

The method read([size]) reads up to size bytes of data from the chunk, and

returns them as a string. If size is omitted or is negative, it reads the entire chunk. If

no data is left in the chunk, it returns a blank string.

The method tell returns the current offset into the chunk. The method skip
jumps to the end of the current chunk. And the method seek(pos[,whence])
jumps to the position pos. If whence is 0 (the default), pos is measured from the

start of the file. If whence is 1, pos is measured relative to the current file position.

And if whence is 2, pos is measured relative to the start of the chunk. In addition,

the method isatty is defined and returns 0 (for compatibility with normal file

objects).

Normally, one iterates over chunks of a file by creating, reading, and closing several

chunk instances, as follows:

def PrintChunkInfo(ChunkedFile):
try:

while (1):
CurrentChunk=Chunk(ChunkedFile)
print “ID:”,CurrentChunk.getname()
print “Size:”,CurrentChunk.getsize()
Chunk.close()

except EOFError:
Constructing a chunk failed, because we
finished reading the file. Exit loop:
break

Handling Raw Audio Data
The module audioop is a big box of handy functions for working with audio data. It

is implemented in C, for speed. Each function takes audio data as a fragment, a

sequence of linear-encoded samples, stored as a string. Most functions can handle

1-byte, 2-byte, or 4-byte sample widths, and they take the sample width as an argu-

ment; a few can only handle 2-byte samples.

Examining a fragment
These following functions each take two arguments — a fragment and a sample

width:

avg returns the average of all the samples in the fragment. avgpp returns the aver-

age peak-peak (with no filtering done). max returns the largest sample value. maxpp
returns the largest peak-peak value. minmax returns a tuple of the minimum and

maximum samples. cross returns the number of zero-crossings in the fragment. To

measure the power of the fragment audio signal, call rms (root-mean-square).

4807-7 ch24.F 5/24/01 9:00 AM Page 461

462 Part IV ✦ User Interfaces and Multimedia

The function getsample(fragment,width,n) returns the nth sample from a frag-

ment. The sample is frame number index if fragment is in mono.

Searching and matching
The function findfactor(target,fragment) attempts to match fragment with tar-
get. It returns a float X such that fragment multiplied by X is as similar to target as

possible. The samples target and fragment should be 2-byte samples of the same

length:

>>> QuietData=audioop.mul(Data,2,0.5) # half as loud
>>> audioop.findfactor(Data,QuietData)
2.0001516619075197

The function findfit(target,fragment) searches for fragment in target. It
returns a tuple of the form (offset,X). The closest match found starts at frame offset,
and is scaled by a factor of X. Here, target and fragment are 2-byte samples, where

fragment is no longer than target.

The function findmax(fragment,length) looks for the loudest part of a sound. It

finds a slice length samples long for which the audio signal (as measured by rms) is

as large as possible. It returns the offset of the start of the slice.

Translating between storage formats
The audioop module can handle linear encoding, u-LAW, and Intel/DVI ADPCM. It

provides several functions for converting between these schemes, as shown in

Table 24-1.

Table 24-1
Audio Format Conversion Functions

Function Effect

lin2lin(fragment, Converts a linear-encoded sample to a new sample width;
width, NewWidth) returns the converted sample. Decreasing sample width

lowers sound quality but saves space; increasing sample
width just uses up more space.

lin2adpcm(fragment, Converts a linear-encoded sample to 4-bit ADPCM encoding.
width,state) The value state represents the encoder’s internal state. The

return value is (newfragment,newstate), where newstate
should be passed for state to the next call to lin2adpcm.
Pass None for state in the first call. lin2adpcm3 is a variant
of lin2adpcm, using only 3 (not 4) bits per sample-
difference.

4807-7 ch24.F 5/24/01 9:00 AM Page 462

463Chapter 24 ✦ Playing Sound

Function Effect

adpcm2lin(fragment, Converts an ADPCM-encoded fragment to linear encoding.
width,state) Returns a tuple of the form (NewFragment,NewState).

adpcm32lin is a variant of adpcm2lin, for conversion from
3-bit ADPCM.

lin2ulaw Converts a linear-encoded sound fragment to u-LAW
(fragment,width) encoding

ulaw2lin Converts a u-LAW encoded fragment to linear encoding.
(fragment,width) (u-LAW encoding always uses 1-byte samples, so width

affects only the output fragment.)

In addition, you can convert linear-encoded fragments between mono and stereo.

tomono(fragment,width,lfactor,rfactor) converts a stereo fragment to a

mono fragment by multiplying the left channel by lfactor, the right channel by rfactor,
and adding the two channels. tostereo(fragment,width,lfactor,rfactor)
converts a mono fragment to stereo. The left channel of the new fragment is the

original fragment multiplied by lfactor, and similarly on the right.

Most audioop functions do not differentiate between the left and right channels of

stereo audio. Consider using tostereo and tomono:

>>> audioop.max(Data,2) # max over both channels
26155
>>> LeftChannel=audioop.tomono(Data,2,1,0) # left*1,right*0
>>> RightChannel=audioop.tomono(Data,2,0,1)
>>> audioop.max(RightChannel,2)
26155
>>> audioop.max(LeftChannel,2)
25556
>>> LoudLeftChannel=audioop.mul(LeftChannel,2,2)
>>> QuietRightChannel=audioop.mul(RightChannel,2,0.5)
>>> # Add the two channels back together:
>>> NewData=audioop.add(audioop.tostereo(LeftChannel,2,1,0),

audioop.tostereo(RightChannel,2,0,1),
2)

Manipulating fragments
The function add(fragment1, fragment2, width) combines two fragments of the

same length and sample width by adding each pair of samples.

The function reverse(fragment,width) reverses a sound fragment.

The function mul(fragment,width,factor) multiplies each sample in fragment by

factor, truncating any overflow. This has the effect of making the sound louder or

softer.

4807-7 ch24.F 5/24/01 9:00 AM Page 463

464 Part IV ✦ User Interfaces and Multimedia

The function bias(fragment,width,bias) adds bias to each sample in fragment
and returns the result.

You can speed up or slow down a fragment by calling

ratecv(fragment,width,channels,inrate,outrate,state[,weightA[,
weightB]]). Here, inrate and outrate are the frame rates of the input and output

fragments; what is important is the ratio between inrate and outrate. The parameter

state represents the internal state of the converter. ratecv returns a tuple of the

form (fragment,newstate), where the value newstate should be passed in as state for

the next call to ratecv. You can pass None for state in your first call. Finally, the val-

ues weightA and weightB are used for a simple audio filter; weightA (which must

be at least 1) is a weight for the current sample, and weightB (which must be at

least 0) is a weight for the previous sample.

For example, the following code reads an audio file and slows it down to half-speed:

>>> WavFile=wave.open(“green1.wav”,”rb”)
>>> Params=WavFile.getparams()
>>> Data=WavFile.readframes(Params[3]) # Params[3]=framecount
>>> # outrate=2*inrate; twice as many frames per second means
>>> # the sound is half as fast:
>>> NewData=audioop.ratecv(Data,Params[1],Params[0],1,2,None)
>>> NewFile=wave.open(“green2.wav”,”wb”)
>>> (NewData,State)=audioop.ratecv(

Data,Params[1],Params[0],1,2,None)
>>> NewFile.setparams(Params)
>>> NewFile.writeframes(NewData)
>>> NewFile.close()
>>> winsound.PlaySound(“green2.wav”,winsound.SND_FILENAME)

Summary
Sound can be stored in many file formats. Python’s standard libraries can read and

write most sound files, and perform low-level manipulation of audio data. They also

enable you to play sound on many operating systems. In this chapter, you:

✦ Played a musical scale on a PC speaker.

✦ Parsed sound files in various formats, and stored sounds in reverse.

✦ Manipulated raw audio data.

In the next chapter, you learn how to create and manage multiple threads in your

Python programs.

✦ ✦ ✦

4807-7 ch24.F 5/24/01 9:00 AM Page 464

Advanced
Python
Programming

✦ ✦ ✦ ✦

Chapter 25
Processing Images

Chapter 26
Multithreading

Chapter 27
Debugging, Profiling,
and Optimization

Chapter 28
Security and
Encryption

Chapter 29
Writing Extension
Modules

Chapter 30
Embedding the
Python Interpreter

Chapter 31
Number Crunching

Chapter 32
Using NumPy

Chapter 33
Parsing and
Interpreting
Python Code

✦ ✦ ✦ ✦

P A R T

VV

4807-7 PO5.F 5/24/01 9:00 AM Page 465

4807-7 PO5.F 5/24/01 9:00 AM Page 466

Processing
Images

This chapter describes the modules that help you work

with graphics files. Python comes with modules that help

you identify image file types, convert between different color

systems, and handle raw image data.

Image Basics
Computer images are made up of a group of pixels, or picture

elements, and an image’s size is usually specified by its width

and height in pixels.

There is a mind-boggling number of file formats that you can

use to store images; fortunately, however, a few (such as GIF,

JPEG, and PNG) are popular enough to be considered stan-

dard. Some image file formats limit the number of different

colors you can have in the image (GIFs, for example, can be

any 256 out of 16,777,217 different colors), and some repre-

sent each pixel by its index in a palette of color definitions.

Image file formats store the data in either raw, or uncom-

pressed, form, or they apply some sort of compression to

make the date smaller. Compression techniques fall into two

categories: Lossless compression (as is used by GIF files)

means that no data is lost and that when a viewer decom-

presses the image and displays it, it is identical to the original.

Lossy compression (as is used by JPEG files) means some

detail is thrown away in order to achieve better compression.

Some image file formats also support transparency, so that if

you display the image over another image, the parts that were

marked as transparent leave that part of the original image

visible. Index-based formats tag a particular color as the

transparent color (so that pixels having that index value are

completely transparent), and other formats include an alpha
channel that tells the degree of transparency of each pixel.

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Image basics

Identifying image file
types

Converting between
color systems

Handling raw image
data

Using the Python
imaging library

✦ ✦ ✦ ✦

4807-7 ch25.F 5/24/01 9:00 AM Page 467

468 Part V ✦ Advanced Python Programming

Identifying Image File Types
The imghdr module makes an educated guess as to the type of image stored in a

file:

>>> import imghdr
>>> imghdr.what(‘c:\\temp\\jacobSwingSleep.jpg’)
‘jpeg’

It looks at the first few bytes of the header, not the entire file, so it doesn’t guaran-

tee file integrity, but it does serve to differentiate between valid types. Instead of

passing in a file name, you can pass in a string that contains the first few bytes of a

file:

>>> hdr = open(‘snake.bmp’,’rb’).read(50) # Read a little
>>> imghdr.what(‘’,h=hdr)
‘bmp’

Table 25-1 lists the values that the what function returns and the different file types

that imghdr recognizes.

Table 25-1
Image Types Recognized by imghdr

Image Type Value Returned

CompuServe Graphics Interchange gif

JFIF Compliant JPEG jpeg

Windows or OS/2 Bitmap bmp

Portable Network Graphics png

SGI Image Library (RGB) rgb

Tagged Image File Format tiff

Portable Bitmap pbm

Portable Pixmap ppm

Portable Graymap pgm

Sun Raster Image rast

X11 Bitmap xbm

4807-7 ch25.F 5/24/01 9:00 AM Page 468

469Chapter 25 ✦ Processing Images

By adding to imghdr’s tests list of functions, you can have it check for additional

file types. The module is just testing for known file types; it is not doing anything

specific to images. The following example looks for the special prefix at the begin-

ning of all bytecode-compiled Python (.pyc) files:

>>> def test_pyc(h,f):
... import imp
... if h.startswith(imp.get_magic()):
... return ‘pyc’
>>> imghdr.tests.append(test_pyc)
>>> imghdr.what(‘leptolex.pyc’)
‘pyc’

Custom test functions like the one shown in the preceding example take two param-

eters. The first contains a string of bytes representing either the first few bytes of

the file (if what was called with a file name) or the string of bytes the user passed in

to what. If the user called what with a file name, the f parameter is an open filelike

object positioned just past the read to retrieve the bytes for the h parameter.

Converting Between Color Systems
A color system is a model that represents the different colors that exist; color sys-

tems make it possible to refer to colors numerically. By converting a color to a num-

ber, things like television signals and computer graphics become possible. Each

color system has its own set of advantages, and the colorsys module helps you

convert colors from one system to another.

Color systems
colorsys supports conversion between four of the most popular color systems;

and in each, a color is represented by a 3-tuple of numbers from 0.0 to 1.0.

RGB
If you’ve worked with computer graphics, then the RGB or red-green-blue color sys-

tem is probably somewhat familiar; it’s the color system used by most computer

software and hardware. This model is derived from the tristimulus theory of vision,
which states that there are three visual pigments in the cones in the retinas of our

eyes. When they are stimulated, we perceive color. The pigments are red, green,

and blue.

4807-7 ch25.F 5/24/01 9:00 AM Page 469

470 Part V ✦ Advanced Python Programming

YIQ
The YIQ color system is the one used by the National Television System Committee

(NTSC), the standards body for television signals in the United States. Unlike RGB,

which has three distinct signals, TVs have only a single composite signal. To make

matters more complicated, the same signal must work with both black-and-white

and color televisions sets. The Y component in a YIQ color is the brightness

(luminance) of the color. It is the only component used by black-and-white televi-

sions, and is given the overwhelming majority of the TV signal bandwidth. The

I component contains orange-cyan hue information, which provides the coloring

used in flesh tones. The Q component has green-magenta hue information, and is

given the least amount of signal bandwidth.

HLS
For people, the HLS, or hue-lightness-saturation, color system is more intuitive than

RGB because you can specify a color by first choosing a pure hue (such as pure

green) and then adding different amounts of black and white to produce tints,

tones, and shades. The L component is the lightness, where 1.0 is white and 0.0 is

black. S is the saturation level of the hue; 1.0 is fully saturated (the pure hue),

whereas 0.0 is completely unsaturated, giving you just a shade of gray.

HSV
The HSV, or hue-saturation-value, system is very close to the HLS model except that

the pure hues have a V (corresponding to L in HLS) component value of 0.5.

Converting from one system to another
colorsys contains functions for converting from RGB to any of the other systems,

and from any of the others to RGB:

>>> import colorsys
>>> colorsys.hls_to_rgb(0.167,0.5,1.0) # Yellow
(0.998, 1.0, 0.0)

To convert from HLS to YIQ, for example, you use a two-step process — converting

first to RGB and then from RGB to YIQ. Of course, if you were planning to do many

such conversions, it would be worthwhile to write your own function to convert

directly between the two.

Although these routines use color parameters in the range from 0.0 to 1.0, it’s also

common to see each parameter specified using an integer range from 0 to 255 (the

values that fit in a single byte of memory). To convert to that format, just multiply

each component by 255. This format reduces the number of unique colors you can

specify (down to around 16.8 million), but don’t worry: the human eye can’t really

distinguish between more than about 83,000 anyway.

4807-7 ch25.F 5/24/01 9:00 AM Page 470

471Chapter 25 ✦ Processing Images

Listing 25-1 is a color choosing utility. You choose a color using the HLS color sys-

tem and it shows that color along with its RGB equivalent, as shown in Figure 25-1.

Listing 25-1: choosecolor.py — A HLS-to-RGB color converter

from Tkinter import *
import colorsys

def update(*args):
‘Get the scale values and change the canvas color’
r,g,b = colorsys.hls_to_rgb(h.get()/255.0,

l.get()/255.0,s.get()/255.0)
r,g,b = r*255,g*255,b*255
rgb.configure(text=’RGB:(%d,%d,%d)’ % (r,g,b))
c.configure(bg=’#%02X%02X%02X’ % (r,g,b))

Create a window with 3 scales and a canvas
root = Tk()
hue = Label(root,text=’Hue’)
hue.grid(row=0,column=0)
light = Label(root,text=’Lightness’)
light.grid(row=0,column=1)
sat = Label(root,text=’Saturation’)
sat.grid(row=0,column=2)
rgb = Label(root,text=’RGB:(0,0,0)’)
rgb.grid(row=0,column=3)

h = Scale(root,from_=255,to=0,command=update)
h.grid(row=1,column=0)
l = Scale(root,from_=255,to=0,command=update)
l.grid(row=1,column=1)
s = Scale(root,from_=255,to=0,command=update)
s.grid(row=1,column=2)

c = Canvas(root,width=100,height=100,bg=’Black’)
c.grid(row=1,column=3)

root.mainloop()

4807-7 ch25.F 5/24/01 9:00 AM Page 471

472 Part V ✦ Advanced Python Programming

Figure 25-1: This utility converts colors
from the HLS system to the RGB system.

Handling Raw Image Data
Python works well as a general-purpose programming language, and often leaves

special-purpose functionality up to third-party developers. As such, Python’s built-

in support for handling raw image data is meager at best.

The imageop module manipulates raw image data that you pass it as a Python

string of bytes. The data must be either 8-bit (each pixel is represented by one char-

acter in the string) or 32-bit (4 characters per pixel; each group of 4 characters rep-

resents red, green, blue, and alpha or transparency components for that pixel). How

you go about obtaining data in that format is up to you, but if you’re on an SGI com-

puter, you can use the imgfile module. In addition, if you have an SGI RGB file, you

can load it using the rgbimg module, and then pass its contents to imageop.

imageop has a few functions for cropping and scaling images, but the bulk of its

functions have to do with converting between grayscale images of different color

depths (for example, converting from a 2-bit grayscale image to an 8-bit grayscale

image).

For real image processing, see the next section for information about available

third-party modules.

Using the Python Imaging Library
If you plan to do a lot of image processing, check out the Python Imaging Library

(PIL) from Pythonware (www.pythonware.com). It is free for both private and com-

mercial use, and Pythonware also has commercial support plans available. It’s pain-

less to install and is well worth the download.

PIL is fast, and its wide range of features enables you to perform a number of image

processing tasks, including converting between different file formats; processing

images (cropping, resizing, and so forth); annotating existing images with text; and

creating new images from scratch with its drawing functions.

4807-7 ch25.F 5/24/01 9:00 AM Page 472

473Chapter 25 ✦ Processing Images

The next few sections show you how to get started with PIL; consult its online doc-

umentation for even more features.

Visit the Graphics section in the Vaults of Parnassus (www.vex.net/parnassus/)
for plenty of other graphics and image processing utilities.

Retrieving image information
The main module in PIL is Image, and you use it to open and create images:

>>> import Image
>>> i = Image.open(‘shadowtest.bmp’)
>>> i.mode
‘RGB’
>>> i.size
(320, 240)
>>> i.format
‘BMP’
>>> i.getbands()
(‘R’, ‘G’, ‘B’)
>>> i.show() # Displays the image

An image’s mode specifies its color depth and storage; some of the common values

are listed in Table 25-2.

Table 25-2
PIL Mode Values

Mode Description

1 1-bit pixels, black and white

L 8-bit pixels, black and white

P 8-bit pixels, using a 256-color palette

RGB 3 bytes per pixel, true color

RGBA 4 bytes per pixel, true color with alpha (transparency) band

I 32-bit integer pixels

F 32-bit floating point pixels

Images have one or more bands, or components, of data. For example, each pixel in

an RGB image has a red, green, and blue component; that image is said to have

three bands.

Tip

4807-7 ch25.F 5/24/01 9:00 AM Page 473

474 Part V ✦ Advanced Python Programming

An image’s show() method is a debugging facility that saves the image to a tempo-

rary file and launches the default viewer for that file type.

Sometimes the show() command has trouble working from inside IDEs such as
PythonWin.

One nice feature about PIL is that it waits to read and decode file data until it really

needs to. This means, for example, that you can open an enormous image and read

its size and type information very quickly.

Copying and converting images
The copy() method returns a new image object identical to the old one, so that

you can make changes without modifying the original.

convert(mode) returns a new image in the given mode (there are also variations

on this method that let you pass in a palette or even a conversion matrix). The fol-

lowing example loads a full-color JPEG image, converts it to a 1-bit black-and-white

image, and displays it as shown in Figure 25-2:

>>> img = Image.open(‘binky.jpg’)
>>> img.show() # Show the original
>>> img.convert(‘1’).show() # Show the new version

The save(filename) method writes the contents of the current image to a file. PIL

looks at the extension you give the file name, and converts it to the appropriate for-

mat. For example, if you have an image file named test.jpg, you can convert it to

a GIF as follows:

>>> Image.open(‘test.jpg’).save(‘test.gif’)

Because JPEG files are true color, but GIF uses a 256-color palette, PIL takes care of

the necessary conversion as it saves the file.

As mentioned earlier, PIL waits as long as possible before loading and decoding file

data, so even if you open an image, its pixel data isn’t read until you display it or

apply some conversion. Therefore, you can use the draft(mode, (w,h)) method

to instruct the image loader to convert the image as it is loaded. For example, if you

have a huge 5,000 × 5,000–pixel, full-color image and you only want to work on a

smaller, 256-color copy of it, you can use something like the following:

img = Image.open(‘huge.jpg’).draft(‘P’,(250,250))

Note

4807-7 ch25.F 5/24/01 9:00 AM Page 474

475Chapter 25 ✦ Processing Images

Figure 25-2: A true color image (on the left) and a 1-bit version (on the right) after using
the convert() method

Using PIL with Tkinter
The ImageTk module provides two classes, BitmapImage and PhotoImage, that

create Tkinter-compatible bitmaps and images that can be used anywhere Tkinter

expects a bitmap (black-and-white image) or image (color image). Not only can you

then use PIL’s image processing features in any Tkinter program, you can also use it

to load image formats that Tkinter doesn’t understand.

Refer to Chapters 19 and 20 for coverage of Tkinter.

PIL also has functions for creating a Windows-compatible bitmap (DIB) that can
be drawn into a Windows device context, and functionality for writing images out
to PostScript files or printers.

Note

Cross-
Reference

4807-7 ch25.F 5/24/01 9:00 AM Page 475

476 Part V ✦ Advanced Python Programming

Cropping and resizing images
The crop((left, top, right, bottom)) method returns a rectangle portion of an

image.

resize((w, h)[, filter) returns a resized copy of an image. The filter argu-

ment controls what sort of sampling is used against the original image, and can be

one of BILINEAR, BICUBIC, or NEAREST (the default).

One other useful method is thumbnail((w, h)), which resizes the object in place

while maintaining the original aspect (width-to-height) ratio. Because of this, it may

not use the exact size you pass in.

Modifying pixel data
You can access and change the value of any image pixel by its (x,y) coordinates,

with (0,0) being the upper-left corner. Like Python slices, coordinates refer to the

spaces between pixels, so a rectangle with its upper-left and lower-right corners at

(0,0) and (20,10) would be 20 pixels wide and 10 tall.

The getpixel((x, y)) and putpixel((x, y), value) methods get and set indi-

vidual pixels, where value is in the appropriate form for the image’s mode. The fol-

lowing code opens an image, paints a black band across it, and displays the results

(shown in Figure 25-3):

>>> i = Image.open(‘shadowtest.bmp’)
>>> i.getpixel((10,25))
(156, 111, 56)
>>> for y in xrange(50,60):
... for x in xrange(i.size[0]):
... i.putpixel((x,y), (0,0,0))
>>> i.show()

Figure 25-3: Use getpixel and putpixel
to operate on individual pixel values.

4807-7 ch25.F 5/24/01 9:00 AM Page 476

477Chapter 25 ✦ Processing Images

getdata() returns a list of tuples representing each pixel in the image, and

putdata(data, [,scale][, offset]) places a sequence of tuples into the image

(the offset defaults to the beginning of the image, and the scale defaults to 1.0).

PIL’s ImageDraw module provides Draw objects that let you draw shapes and text

on an image. The following example displays the image shown in Figure 25-4:

>>> import Image, ImageDraw
>>> from whrandom import randrange
>>> img = Image.open(‘happy.jpg’)
>>> draw = ImageDraw.Draw(img)
>>> points = [] # Create a list of random points
>>> for i in xrange(10):
... points.append((randrange(img.size[0]), # x

randrange(img.size[1]))) # y
>>> draw.line(points)
>>> img.show()

Figure 25-4: The ImageDraw module lets you draw
shapes and text on images.

Listing 25-2 takes the current time and creates a GIF file containing an analog clock

face image, as shown in Figure 25-5. On-the-fly image generation is often useful in

creating dynamic content for Web pages (and if there’s anything the world needs,

it’s yet another time display on a Web page).

4807-7 ch25.F 5/24/01 9:00 AM Page 477

478 Part V ✦ Advanced Python Programming

Listing 25-2: clockgif.py — Generates a clock
face showing the current time

import time,Image,ImageDraw

def centerbox(rmax,perc):
‘Returns a coordinate box perc % of rmax’
sub = rmax*perc/100.0
return (rmax-sub,rmax-sub,rmax+sub,rmax+sub)

r = 100 # clock face radius
img = Image.new(‘RGB’,(r*2,r*2),color=(128,128,128))
draw = ImageDraw.Draw(img)

Make the clock body
draw.pieslice(centerbox(r,100),0,360,fill=(0,0,0))
draw.pieslice(centerbox(r,98),0,360,fill=(80,80,255))
draw.pieslice(centerbox(r,94),0,360,fill=(0,0,0))
draw.pieslice(centerbox(r,93),0,360,fill=(255,255,255))

Draw the tick marks
for i in range(12):

deg = i * 30
draw.pieslice(centerbox(r,90),deg-1,deg+1,fill=(0,0,0))

draw.pieslice(centerbox(r,75),0,360,fill=(255,255,255))
Get the current time
now = time.localtime(time.time())
hour = now[3] % 12
minute = now[4]

Draw the hands
hdeg = hour * 30 + minute / 2
mdeg = minute * 6
draw.pieslice(centerbox(r,50),hdeg-4,hdeg+4,fill=(100,100,100))
draw.pieslice(centerbox(r,85),mdeg-2,mdeg+2,fill=(100,100,100))

#img.rotate(90).show() # For debugging
img.rotate(90).save(‘currenttime.gif’)

4807-7 ch25.F 5/24/01 9:00 AM Page 478

479Chapter 25 ✦ Processing Images

Figure 25-5: With PIL, it’s easy
to create on-the-fly images.

As you may have noticed, this example makes heavy use of Draw’s

pieslice((left, top, right, bottom, startangle, stopangle[, fill][,
outline]) method. In order to make it easy to use a different size clock, all mea-

surements are calculated as percentages of the radius (therefore, changing the

value of r is all you need to do). The centerbox function is a helper function that

returns a square enclosing a circle of the right size.

One other thing to notice is that an angle of zero is directly to the right of center,

and angle measurements are clockwise from there. Instead of working around that

in the calculations for the placement of the clock hands, it was easier to just draw

them as if the clock were on its side, and then rotate the entire image by 90 degrees

(note that image rotation degrees are counterclockwise).

The following list contains the more common methods of a Draw object:

setink(ink)

setfill(onoff)

setfont(font)

arc((x1, y1, x2, y2), start, end[, fill])

bitmap((x, y), bitmap[, fill])

chord((x1, y1, x2, y2), start, end[, fill][, outline])

ellipse((x1, y1, x2, y2)[, fill][, outline])

line((x, y)[, fill])

pieslice((x1, y1, x2, y2), start, end[, fill][, outline])

point((x, y)[, fill])

polygon((x, y)[, fill][, outline])

rectangle((x1, y1, x2, y2)[, fill][, outline])

text((x, y), text[, fill][, font][, anchor])

4807-7 ch25.F 5/24/01 9:00 AM Page 479

480 Part V ✦ Advanced Python Programming

Other PIL features
New versions of PIL continue to add powerful new features; check the Pythonware

Web site (www.pythonware.com) for new versions and more documentation. Other

interesting PIL modules and features include:

✦ ImageEnhance— Contains classes for adjusting the color, brightness, con-

trast, and sharpness of an image

✦ ImageChops— Provides arithmetic image operations (adding and subtracting

images) as well as functions for lightening, darkening, and inverting images

✦ Support for creating animated (multiframe) GIF and FLI/FLC images

✦ Transformations, including rotating at arbitrary angles and applying a Python

function to each pixel

✦ Image filters for blurring images or finding edges

✦ The capability to add your own decoders for new image types

Summary
Python offers helpful support for processing images, such as modules for identify-

ing image file types. In this chapter, you:

✦ Learned about the information commonly stored in image files.

✦ Identified file types using the imghdr module.

✦ Converted colors between different color systems such as RGB and HLS.

✦ Modified images using the Python Imaging Library.

The next chapter shows you how to create multithreaded applications so that your

programs can work on more than one task at a time.

✦ ✦ ✦

4807-7 ch25.F 5/24/01 9:00 AM Page 480

Multithreading

Running several threads is similar to running several

different programs concurrently, but with the following

benefits:

✦ Threads can easily share data, so writing threads that

cooperate is simpler than making different programs

work together.

✦ Threads do not require much memory overhead; they

are cheaper than processes. (In the UNIX world, threads

are often called light-weight processes.)

Understanding Threads
Threads are useful in many situations where your program

needs to perform several tasks that aren’t necessarily interde-

pendent. Programs with a GUI, for example, often use two

threads: one to handle user interface jobs such as repainting

the window, and one to handle the “heavy lifting,” such as

talking to a database. Other times, threads are useful because

it’s more logical to divide work into distinct parts. For exam-

ple, a game might have a separate thread for each computer-

controlled player or object.

A thread may be interrupted by another thread at any time.

After any line of code, the Python interpreter may switch to

another thread.

Some programmers call this interruption timeslicing.
However, strictly speaking, timeslicing refers to the vaguely
Communist notion of giving every thread equal amounts of
CPU time.

The interpreter checks for thread switching once every few

bytecode instructions; sys.setcheckinterval (which

defaults to 10) is the number of bytecodes between switches.

Note

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
threads

Spawning, tracking,
and killing threads

Avoiding concurrency
issues

Preventing deadlock

Example:
downloading from
multiple URLs

Porting threaded
code

Weaving threads
together with Queue

✦ ✦ ✦ ✦

4807-7 ch26.F 5/24/01 9:01 AM Page 481

482 Part V ✦ Advanced Python Programming

The switching is transparent to you, and exactly when the switch happens is up to

the Python interpreter, the operating system, and the phase of the moon: In a multi-

threaded program, the order of execution may change from one run to the next.

This unpredictability is the reason why multithreading can be trickier than single-

threaded programming: A buggy program might work nine times out of ten, and

then crash the tenth time because the order of execution was different.

In general, you create all threads (other than the main thread) yourself. However, a

C extension may create dummy threads to do its work. Talking to these threads from

Python is difficult, so be forewarned if you want to communicate with dummy

threads. A long-running calculation in an extension module effectively counts as

one instruction, so be aware that other threads may have to wait a while for a

dummy thread to take its turn!

Spawning, Tracking, and Killing Threads
Python features two multithreading modules, thread and threading. The modules

overlap enough that you can choose the one you like best and use it exclusively.

threading is a high-level module that calls thread for lower-level operations.

threading includes a Thread class similar to Java’s thread class, so it is a good

choice for Java veterans. We included two versions of this chapter’s example — one

using thread and one using threading— to illustrate the workings of both.

Creating threads with the thread module
To spawn another thread, call

start_new_thread (function, args[, kwargs])

The function call returns immediately and the child thread starts and calls function;

when function returns, the thread terminates. function can be an object method. args
is a tuple of arguments; use an empty tuple to call function without passing any

arguments. kwargs is an optional dictionary of keyword arguments.

Here are two ways of starting a new thread:

thread.start_new_thread(NewThread.run,())
thread.start_new_thread(CalcDigitsOfPi,(StartDigit,NumDigits))

Each thread has an ID number, which you can see by calling thread.get_ident().

The ID is unique at any given time, but if a thread dies, a new thread may re-use

its ID.

If several threads print log messages, it can become hard to determine which

thread said what; something like a party where everyone talks at once. The follow-

ing example uses thread identifiers to indicate which thread is talking:

4807-7 ch26.F 5/24/01 9:01 AM Page 482

483Chapter 26 ✦ Multithreading

def PrintDebugMessage(ThreadNameDict,Message):
CurrentThreadID = thread.get_ident()
Look up the thread name in the name dictionary. If
there is no name entry for this ID, use the ID.
CurrentThreadName = ThreadNameDict.get(\

CurrentThreadID, `CurrentThreadID`)
print CurrentThreadName,Message

A thread terminates when its target function terminates, when it calls

thread.exit(), or when an unhandled SystemExit exception is raised.

Python raises the exception thread.error if a threading error occurs.

Starting and stopping threads with the threading
module
threading defines a Thread class to handle threads. To spawn a new thread, you

first create a Thread object and then call its start() method. start() creates the

actual thread and starts the target function; you should call start only once per

thread.

The Thread constructor takes several keyword arguments, all of which are

optional:

✦ target — Function to call when you start() the thread. Defaults to None. You

should pass a value for target unless you override the run() method of

Thread in a subclass; otherwise, your thread will not do anything.

✦ name — String name of this thread. The default name is of the form “Thread-

n,” where n is a small decimal number.

✦ args — A tuple of arguments to pass to the target function. Empty by default.

✦ kwargs — Keyword argument dictionary to pass to the target function. Empty

by default.

✦ group — Currently unused. In the future, it will designate a thread group.

This code uses a Thread object to run the function CalcDigitsOfPi in a new thread:

PiThread = \
Thread(target=CalcDigitsOfPi,args=(StartDigit,NumDigits))

PiThread.start()

You can create a subclass of the Thread class, and override the run() method to

do what you want. This is a good approach if you are tracking thread-specific data.

You should not override methods other than __init__() and run(). If you

override __init__, you should call the __init__ method of the parent class in

your constructor:

4807-7 ch26.F 5/24/01 9:01 AM Page 483

484 Part V ✦ Advanced Python Programming

class SearchThread(threading.Thread):
def __init__(self):

threading.Thread.__init__(self)
Now carry on constructing...
self.Matches={}

Threads can be flagged as daemon threads. The main thread (and therefore, your

Python program) keeps running as long as there are non-daemon threads running; if

only daemonic threads are running, the script exits. You set daemon status with

setDaemon(boolean) and check it with isDaemon(). You must set a thread’s dae-

mon status before calling start(). Child threads inherit their daemonic status

from their parents.

In a programming context, a daemon is a process or thread that silently handles
some ongoing, invisible task. If you should encounter a daemon outside a pro-
gramming context, we recommend you avoid signing anything.

Thread status and information under threading
You can check whether a Thread object is running with the method isAlive().

isAlive() returns true if someone has called start(), and the run() method has

not returned yet.

Each thread has a name, an arbitrary string which you can access by getName()
and setName(newName).

Finding threads under threading
threading.enumerate() returns a list of all active Thread objects. This includes

dummy threads, daemon threads, and the main thread. Because the list contains

the main thread, it is never empty. threading.activeCount() returns the number

of active threads; this number is equal to the length of the list returned by thread-
ing.enumerate().

A call to threading.currentThread() returns an object corresponding to the cur-

rent thread of control. (Even the main thread has a corresponding Thread object.)

Waiting for a thread to finish
To wait for a Thread to terminate, call its join method. join blocks until the

thread dies; it returns immediately if the thread has not started, or has already

terminated.

For example, the following lines of code (executed in the main thread) wait until all

the other currently active threads have terminated:

ThisThread = threading.currentThread()

Note

4807-7 ch26.F 5/24/01 9:01 AM Page 484

485Chapter 26 ✦ Multithreading

while (threading.activeCount()>1):
CurrentActiveThreads = threading.enumerate()
for WaitThread in CurrentActiveThreads:

Don’t wait for myself:
if (WaitThread != ThisThread):

WaitThread.join()
Now all those threads have finished. We are now the
only running thread, unless someone spawned new threads
while we were waiting. If that happened, we make
another pass through the while loop. (If that can’t
happen, the whiling is superfluous)

Avoiding Concurrency Issues
“Oh, what a tangled web we weave, when first we practice to...implement multi-
threaded database access.”

— Sir Walter Scott, as reinterpreted by an unnamed programmer at 2 a.m.

Imagine a chalkboard on which three professors are each writing some information.

The professors are so deep in thought that they are blissfully unaware of one

another’s presence. Each professor erases some chalk marks, writes on the board,

pauses to think, and then continues. In the process, the professors erase bits of

each other’s writings, and the resulting blackboard is a mess of unrelated word

salad.

Threads run in the same address space, so they can access the same data.

Unfortunately, threads can also break other thread’s data if they do not cooperate.

The professors and the chalkboard illustrate what can go wrong. The phrase concur-
rency issues is a catchall term for all the ways in which two threads, working

together, may put data into an unusable form. A program or object free of concur-

rency issues is called thread-safe.

Returning to the chalkboard example: Everything would have been fine if the pro-

fessors had taken turns, and the second professor had waited until the first was

done with the chalkboard. You can solve most concurrency issues by restricting

data access to one thread at a time. A lock, or mutex (from “mutually exclusive”), is

the way you make your threads take turns. A lock has two states: acquired and

released. A thread must acquire the lock before it is allowed to access the data.

When the thread is done, it releases the lock. If a lock has been acquired, other

threads must wait, or block, until the lock is released before they can acquire it.

Locking with thread
To create a new lock, call thread.allocate_lock(), which returns a lock object.

4807-7 ch26.F 5/24/01 9:01 AM Page 485

486 Part V ✦ Advanced Python Programming

To acquire the lock, call the method acquire([waitflag]). Call acquire(1) to wait

for the lock as long as necessary. Call acquire(0) to return immediately if the lock

isn’t available. If you pass a value for waitflag, acquire() returns 1 if it acquired

the lock, 0 if it didn’t. If you don’t pass a waitflag, acquire() waits for the lock, and

returns None.

This code snippet uses locks to access some data in a thread-safe way:

Acquire the employee lock. Block until acquired.
EmployeeLock.acquire(1)
Try to acquire the Company lock, and return immediately.
if (CompanyLock.acquire(0)):

Do stuff with the company object, then release it
else:

Don’t do stuff with the company object, because
you don’t have its lock!

To release a lock, call its release() method. You can release a lock that was

acquired by another thread. If you release a lock that isn’t currently acquired, the

exception thread.error is raised.

You can check whether a lock is acquired with the locked() method. When first

created, the object is in its released state.

Use acquire(0), and not just a call to locked() if you don’t want your code to

wait for a lock. For example, the following code may block if another thread grabs

the lock between our call to locked() and our call to acquire():

if (not RecordLock.locked()):
RecordLock.acquire() # We may be here a while!

Locking with threading
The threading module offers several flavors of concurrency control. The Lock
class is a simple wrapper for the lock class of the thread module; most of the other

concurrency-control classes are variations on the Lock class.

Lock — simple locking
When you create a Lock object, it starts in the released state. The Lock object has

two methods: acquire() and release(). These methods are wrappers for the

acquire() and release() methods in the thread module; see the previous sec-

tions for details.

RLock — reentrant locking
RLock (“reentrant lock”) is a variation on Lock, and its acquire() and release()
methods have the same syntax. An RLock may be acquired multiple times by the

same thread. The RLock keeps track of how many times it has been acquired. Other

4807-7 ch26.F 5/24/01 9:01 AM Page 486

487Chapter 26 ✦ Multithreading

threads cannot acquire the RLock until the owning thread has called release()
once for each call to acquire(). An RLock must be released by the same thread

that acquired it.

Semaphore — n-at-a-time locking
A semaphore is also a kind of lock. The Semaphore class has acquire() and

release() methods with the same syntax as Lock. However, whereas a lock

restricts access to one thread at a time, a semaphore may permit access by several

threads at a time. A semaphore keeps an internal counter of “available slots.”

Releasing the semaphore increases the counter; acquiring the semaphore

decreases the counter. The counter is not allowed to go below zero. If the counter is

at zero, no thread can acquire the semaphore until it has been released at least

once, and so threads that try to acquire it will block until the semaphore has an

available slot. Passing an integer to the Semaphore constructor gives the counter

an initial value; it defaults to 1.

For example, assume several threads want to call a function that is memory-intensive.

More than one thread can call it at once, but if too many calls happen at once, the

system will run out of physical memory and slow down. You could limit the number

of simultaneous calls with a semaphore:

Create a semaphore, for later use:
MemorySemaphore = Semaphore(MAXIMUM_CALLERS)

This is a safe wrapper for the function MemoryHog:
def SafeMemoryHog():

MemorySemaphore.acquire(1)
MemoryHog()
MemorySemaphore.release()

Event — simple messages between threads
An event lets one thread block until triggered by another. The Event class has an

internal true/false flag that is initially false. This flag is similar to a traffic light,

where false means stop and true means go. You can check the flag’s value with the

isSet() method, set it to true with set(), and set it to false with clear(). Calling

clear() is like a stop sign to other threads; calling set() is a go sign.

You can make a thread wait until the flag is true. Call the event’s wait() method to

block until the event’s flag is set. You can pass a number to wait(), indicating a

timeout. For example: If the flag is not set within 2.5 seconds, a call to wait(2.5)
will return anyway.

For example, this code snippet is part of a script that munges data. The munging

can be stopped and started by setting the global Event object, MungeEvent:

def StopMunging():
MungeEvent.clear() # stop!

4807-7 ch26.F 5/24/01 9:01 AM Page 487

488 Part V ✦ Advanced Python Programming

def StartMunging():
MungeEvent.set() # go!

def MungeData():
while (1):

MungeEvent.wait() # wait until we get the green light
MungeOneRecord()

Condition — wrapper for a lock
The Condition class wraps a lock. You can pass a Lock object to the Condition
constructor; if not, it creates an RLock internally. A condition object has acquire()
and release() methods, which wrap those of the underlying lock object.

Condition objects have other methods: wait([timeout]), notify(), and

notifyAll(). A thread should acquire the lock before calling these methods.

A call to the wait([timeout]) method immediately releases the lock, blocks until

notification is received (when another thread calls notify() or notifyAll()),

acquires the lock again, and then returns. If you supply a value for timeout, the call

will return after that many seconds have passed, whether or not it was notified or

reacquired the lock.

You call notify to wake up other threads that have called wait on the condition. If

there are waiting threads, notify awakens at least one of them. (Currently, notify
never awakens more than one, but this is not guaranteed for future versions.)

notifyAll wakes up all the waiting threads.

A word of warning
When threads share data, examine every piece of data to ensure that thread inter-

action can’t put the data into an invalid state. A program that is not thread-safe may

work for months, waiting for a dramatic time to fail. Eternal vigilance is the price of

multithreading!

Preventing Deadlock
Assume one thread acquires a lock, but hangs without releasing it. Now, no other

threads can acquire that lock. If another thread waits for the lock (by calling the

acquire(1) method), it will be frozen, waiting for the lock forever. This state is

called deadlock. Deadlock is not as sneaky a bug as some concurrency issues, but

it’s definitely not good!

The section of code between acquiring a lock and releasing it is called a critical sec-
tion. To guard against deadlock, there should be only one code path into the critical

section, and only one way out. The critical section should be as short as possible,

to prevent deadlock bugs from creeping in. In addition, the critical section should

4807-7 ch26.F 5/24/01 9:01 AM Page 488

489Chapter 26 ✦ Multithreading

execute as quickly as possible — other threads may be waiting for the lock, and if

they spend a long time waiting, nothing happens in parallel and the benefits of mul-

tithreading evaporate.

It is generally good practice to put a try...finally clause in a critical section,

where the finally clause releases the lock. For example, here is a short function

that tags a string with the current thread ID and writes the string to a file:

def LogThreadMessage(LogFile,Message):
LogFileLock.acquire(1)
try:

LogFile.write(`thread.get_ident()`+Message+”\n”)
finally:

If we do not release the lock, then another thread
might wait forever to acquire it:
LogFileLock.release()

Example: Downloading from Multiple URLs
The following code is a more complex example of some of the features covered in

this chapter. The script retrieves files from a list of target URLs. It spawns several

threads, each of which retrieves one file at once. Multithreading makes the whole

process faster, because thread A can receive data while thread B is waiting for a

response from the server.

See “Multitasking Without Threads” in Chapter 13 for an alternate solution to this
problem using the asyncore and select modules.

We wrote two versions of the URLGrabber script — one using the threading mod-

ule (see Listing 26-1), and one using thread (see Listing 26-2). Most of the code is

the same; unique code is bolded in the source listing.

Listing 26-1: URLGrabber — threading version

URLGrabber retrieves a list of target files from the network to
the local disk. Each file has a particular URL, indicating where
and how we should request it.
#
This version of URLGrabber uses the threading module. It uses
a Lock object to limit access to the URLList. (Without this lock,
two threads might both grab the same URL)

import threading
import urllib
import urlparse
import os

Continued

Cross-
Reference

4807-7 ch26.F 5/24/01 9:01 AM Page 489

490 Part V ✦ Advanced Python Programming

Listing 26-1 (continued)

import sys
import traceback

The optimal number of worker threads depends on one’s bandwidth
WORKER_COUNT = 4

Default filename of our url list
URL_FILE_NAME = “MyURLList.txt”

“”” A WorkerThread downloads files from URLs to disk. Each
WorkerThread object corresponds to a single flow of control.
WorkerThread is a subclass of Thread, overriding the run()
and __init__() methods. (Thread’s other methods should
not be overridden!) “””

class WorkerThread(threading.Thread):
def __init__(self, URLList, URLListLock):

Call the Thread constructor (Python subclasses do *not*
automatically invoke parent class constructors)
threading.Thread.__init__(self)
Cache references...
self.URLList=URLList
self.URLListLock = URLListLock

“”” Acquire the URLList lock, grab the first URL from the list,
cross the URL off the list, and release the URLList lock.
(This code could be part of run(), but it’s good to put critical
sections in their own function) “””
def GrabNextURL(self):

self.URLListLock.acquire(1) # 1 means we block
if (len(self.URLList)<1):

NextURL=None
else:

NextURL=self.URLList[0]
del self.URLList[0]

self.URLListLock.release()
return NextURL

“”” We override Thread’s run() method with one that does
what we want. Namely: Take URLs from the list, and retrieve them.
When we run out of URLs, the function returns, and the thread dies. “””
def run(self):

while (1):
NextURL = self.GrabNextURL()
if (NextURL==None):

The URL list is empty! Exit the loop.
break

try:
self.RetrieveURL(NextURL)

except:
self.LogError(NextURL)

def RetrieveURL(self,NextURL):
urlparse splits a URL into pieces;
piece #2 is the file path

4807-7 ch26.F 5/24/01 9:01 AM Page 490

491Chapter 26 ✦ Multithreading

FilePath=urlparse.urlparse(NextURL)[2]
FilePath = FilePath[1:] # strip leading slash
If file name is blank, invent a name
if (FilePath==””): FilePath=”index.html”
Strip trailing newline, if we have one
if (FilePath[-1]==”\n”): FilePath=FilePath[:-1]
Create subdirectories as necessary.
(Directory,FileName)=os.path.split(FilePath)
try:

os.makedirs(Directory) # make directories as needed
except:

os.makedirs raises an exception if the directory exists.
We ignore the exception.
pass

LocalPath = os.path.normpath(FilePath)
urllib.urlretrieve(NextURL,FilePath)

def LogError(self,URL):
print “Error retrieving URL:”,URL
Quick-and-dirty error logging: This code prints the
stack-trace that you see normally when an unhandled
exception crashes your script.
(ErrorType,ErrorValue,ErrorTB)=sys.exc_info()
print “\n\n***ERROR:”
print sys.exc_info()
traceback.print_exc(ErrorTB)

Main function
if __name__ == ‘__main__’:

Open the URL-list file. Take the first command-line
argument, or just use the hard-coded name.
if (len(sys.argv)>=2):

URLFileName = sys.argv[1]
else:

URLFileName=URL_FILE_NAME
try:

URLFile = open(URLFileName)
URLList = URLFile.readlines()
URLFile.close()

except:
print “Error reading URLs from:”,URLFileName
sys.exit()

Create some worker threads, and start them running
URLListLock = threading.Lock()
WorkerThreadList = []
for X in range(0,WORKER_COUNT):

NewThread = WorkerThread(URLList,URLListLock)
NewThread.setName(`X`)
WorkerThreadList.append(NewThread)
call start() to spawn a new thread (not run()!)
NewThread.start()

Wait for each worker in turn, then exit.
join() is the “vulture method” - it waits until the thread dies
for X in range(0,WORKER_COUNT):

WorkerThreadList[X].join()

4807-7 ch26.F 5/24/01 9:01 AM Page 491

492 Part V ✦ Advanced Python Programming

Listing 26-2: URLGrabber — thread version

URLGrabber retrieves a list of target files from the network to
the local disk. Each file has a particular URL, indicating where
and how we should request it. Several threads run in parallel,
each downloading one file at once. Multithreading makes the
whole process faster, since thread A can receive data while
thread B is waiting on the server.
#
This version of URLGrabber uses the thread module. It uses
a lock to limit access to the URLList. (Without this lock,
two threads might both grab the same URL)

import thread
import urllib
import urlparse
import os
import sys
import traceback

The optimal number of worker threads depends on one’s bandwidth
WORKER_COUNT = 4

Default filename of our url list
URL_FILE_NAME = “MyURLList.txt”

“”” A WorkerThread downloads files from URLs to disk. Each
WorkerThread object corresponds to a single flow of control. “””

class WorkerThread:
def __init__(self, URLList, URLListLock):

Cache references...
self.URLList=URLList
self.URLListLock = URLListLock

“”” Acquire the URLList lock, grab the first URL from the list,
cross the URL off the list, and release the URLList lock.
(This code could be part of run(), but it’s good to put critical
sections in their own function) “””
def GrabNextURL(self):

self.URLListLock.acquire(1) # 1 means we block
if (len(self.URLList)<1):

NextURL=None
else:

NextURL=self.URLList[0]
del self.URLList[0]

self.URLListLock.release()
return NextURL

“”” run() is the target-function of our worker threads “””
def run(self):

IncrementThreadCount()
while (1):

NextURL = self.GrabNextURL()

4807-7 ch26.F 5/24/01 9:01 AM Page 492

493Chapter 26 ✦ Multithreading

if (NextURL==None):
The URL list is empty! Exit the loop.
break

try:
self.RetrieveURL(NextURL)

except:
self.LogError(NextURL)

DecrementThreadCount()
def StartFirstWorker(self):

MainThreadLock.acquire(1)
self.run()

def RetrieveURL(self,NextURL):
urlparse splits a URL into pieces;
piece #2 is the file path
FilePath=urlparse.urlparse(NextURL)[2]
FilePath=FilePath[1:] # strip leading slash
If file name is blank, invent a name
if (FilePath==””): FilePath=”index.html”
Strip trailing newline, if we have one
if (FilePath[-1]==”\n”): FilePath=FilePath[:-1]
Create subdirectories as necessary.
(Directory,FileName)=os.path.split(FilePath)
try:

os.makedirs(Directory) # make directories as needed
except:

os.makedirs raises an exception if the directory exists.
We ignore the exception.
pass

LocalPath = os.path.normpath(FilePath)
urllib.urlretrieve(NextURL,FilePath)

def LogError(self,URL):
print “Error retrieving URL:”,URL
Quick-and-dirty error logging: This code prints the
stack-trace that you see normally when an unhandled
exception crashes your script.
(ErrorType,ErrorValue,ErrorTB)=sys.exc_info()
print “\n\n***ERROR:”
print sys.exc_info()
traceback.print_exc(ErrorTB)

def DecrementThreadCount():
ThreadCountLock.acquire()
global WorkerThreadCount
WorkerThreadCount = WorkerThreadCount - 1
if (WorkerThreadCount<1):

MainThreadLock.release()
ThreadCountLock.release()

def IncrementThreadCount():
ThreadCountLock.acquire()
global WorkerThreadCount
WorkerThreadCount = WorkerThreadCount + 1

Continued

4807-7 ch26.F 5/24/01 9:01 AM Page 493

494 Part V ✦ Advanced Python Programming

Listing 26-2 (continued)

ThreadCountLock.release()

Main function
if __name__ == ‘__main__’:

Open the URL-list file. Take the first command-line
argument, or just use the hard-coded name.
if (len(sys.argv)>=2):

URLFileName = sys.argv[1]
else:

URLFileName=URL_FILE_NAME
try:

URLFile = open(URLFileName)
URLList = URLFile.readlines()
URLFile.close()

except:
print “Error reading URLs from:”,URLFileName
sys.exit()

Create some worker threads, and start them running
URLListLock = thread.allocate_lock()
ThreadCountLock = thread.allocate_lock()
We acquire the MainThreadLock. The last worker thread to exit
releases the lock, so that we can acquire it again (and exit)
MainThreadLock = thread.allocate_lock()
MainThreadLock.acquire()
WorkerThreadCount = 0
for X in range(0,WORKER_COUNT):

NewThread = WorkerThread(URLList,URLListLock)
thread.start_new_thread(NewThread.run,())

This call will block until the last thread releases the main
thread lock in DecrementThreadCount().
MainThreadLock.acquire()

Porting Threaded Code
Not all operating systems include support for multithreading — an OS may multi-

task without including native thread support. Note some minor differences in how

threading works on different platforms:

✦ On most platforms, child threads are immediately killed (without executing

object destructors or try...finally clauses) when the main thread exits.

However, child threads keep running on SGI IRIX. We recommend terminating

all threads before the main thread exits anyway, to ensure proper cleanup.

✦ Signals generally go to the main thread. Therefore, if your script handles sig-

nals, the main thread should not block. In particular, if you are using Tkinter,

you should run mainloop() from the main thread. However, on platforms

where the signal module is not available, signals go to an arbitrary thread.

4807-7 ch26.F 5/24/01 9:01 AM Page 494

495Chapter 26 ✦ Multithreading

Weaving Threads Together with Queues
The Queue module defines a thread-safe queue class (Queue.Queue). A queue is

similar to a list. A queue handles concurrency control internally, which saves you

the bother of handling it in your code.

Call the constructor Queue.Queue(maxsize) to create a queue. If maxsize is

greater than zero, the queue will be limited to that many elements; otherwise, the

length of the queue is unlimited.

To add an item to the queue, call put(item, block). The method get(block),

returns the next item in the queue. Setting block to 1 makes these methods wait

until they can successfully add or retrieve an item.

Setting block to 0 causes get and put to return immediately. You can also use the

synonym methods get_nowait(item) and put_nowait(item). A nonblocking call

to put raises the exception Queue.Full if the queue is full. (If the queue’s length is

not limited, put will always succeed.) A nonblocking call to get raises the excep-

tion Queue.Empty if no items are on the queue.

The Queue class includes some methods to inspect the queue. qsize() returns the

queue length. isEmpty() returns 1 if the queue is empty, and 0 otherwise.

isFull() returns 1 if the queue is full, and 0 if the queue is empty. Be careful: other

threads may have touched the queue while you were inspecting it! Therefore, you

must take the output of these methods with a grain of salt. For instance, the follow-

ing code may raise a Queue.Empty exception:

if (not MyQueue.isEmpty()):
FirstItem = MyQueue.get() # unsafe!

To safely modify a queue synchronously, use get_nowait() and put_nowait(),

and catch any Full or Empty exceptions.

Technical Note: How Simultaneous Is
Simultaneous?

A CPU can only handle one flow of control at a time. Computers switch between

processes quickly, so in a single second, a processor may execute some instruc-

tions for thread A and thread B. To the user, the threads appear to run at the same

time. We say that these programs are “simultaneous,” although they are actually

taking turns. On a multiprocessor machine, threads can be literally simultaneous —

CPU 1 is running program A at the same instant that CPU 2 is running program B.

4807-7 ch26.F 5/24/01 9:01 AM Page 495

496 Part V ✦ Advanced Python Programming

Currently, Python maintains a global interpreter lock, so that it executes only one

Python thread at once. The disadvantage here is that a multiprocessor machine can

devote only one processor to a particular Python program. This limitation doesn’t

matter much (especially if you’re using a single processor machine!), but you may

want to work around it for performance reasons. A C extension can create parallel

dummy threads, as long as those threads do not manipulate Python objects

directly. Alternatively, you can run separate processes if your program’s work can

be cleanly split.

For More Information
The Python threading SIG is a group working to document and improve the state of

threading in Python; mailing list archives are available. See the Python SIG page at

http://www.python.org/sigs/.

Stackless Python is an alternate implementation of the Python interpreter that sup-

ports, among other things, microthreads, or ultra-lightweight processes, which

enables your program to handle hundreds or even thousands of threads without

getting bogged down just switching between them. Visit www.stackless.org for

more information.

Summary
Threads enable your programs to perform multiple tasks at once. Untamed threads

can break one another’s data, but Python’s locking mechanisms let you direct

threads to work together. In this chapter, you:

✦ Created threads with the thread and threading modules.

✦ Controlled data access with locks and semaphores.

✦ Built easy thread-safe code with the Queue class.

In the next chapter, you’ll learn tools and techniques to help you debug and profile

your Python applications.

✦ ✦ ✦

4807-7 ch26.F 5/24/01 9:01 AM Page 496

Debugging,
Profiling, and
Optimization

Bugs can surface in the best of code — often at the worst

possible times. Fortunately, Python features a debugger

to help squash bugs. You can also use Python’s profiler to

identify bottlenecks in your code. A few optimization tricks

can go a long way toward speeding up a sluggish script.

Debugging Python Code
Adding print statements is no substitute for stepping

through code. The Python debugger, pdb, lets you set break-

points, examine and set variables, and view source code. pdb

is similar to the C/C++ debugger gdb (which, in turn, was

based on xdb), so the gdb veterans in the audience will recog-

nize most commands. Most commands can be written in a

long way or a short way. For reference, this chapter lists them

in the following form: Long way (abbreviation). For exam-

ple: continue (c). A list of commands is also available within

pdb by typing help (h).

See Appendix B for a guide to debugging under IDLE and
PythonWin. Both provide excellent debuggers that are
more powerful than pdb.

Starting and stopping the debugger
To use the debugger, import the module pdb. Then, you can

start the debugger by calling pdb.run(statement[,glob-
als[,locals]]). Here, statement is code to execute (as a

string). You can run in a particular context by passing global

and local namespace-dictionaries for globals and locals. The

debugger will stop and wait for input before actually running

the code; this is a handy time to set breakpoints:

Cross-
Reference

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Debugging Python
code

Working with
docstrings

Automating tests

Finding bottlenecks

Common
optimization tricks

Taking out the
trash — the Garbage
Collector

✦ ✦ ✦ ✦

4807-7 ch27.F 5/24/01 9:01 AM Page 497

498 Part V ✦ Advanced Python Programming

>>> import pdb
>>> pdb.run(“import DebugMe”)
> C:\PYTHON20\<string>(0)?()
(Pdb) print “I can execute arbitrary commands at this prompt!”
I can execute arbitrary commands at this prompt!
(Pdb) fred=25
(Pdb) fred
25

You can do whatever you want from the pdb prompt. However, it provides some

useful special commands, described next.

The function runeval is the same as run, except that runeval returns the value of

the statement executed in the debugger. The function runcall(function[,
arguments...]) executes the function function in the debugger, passing along

any arguments to the function. It returns the return-value of function.

The function post_mortem(traceback) enters post-mortem debugging of a partic-

ular traceback. The function pm starts debugging the most recent traceback; it is a

synonym for post_mortem(sys.last_traceback).

The function set_trace enters the debugger immediately. It is a useful function to

put in code that encounters (or raises) an AssertionError.

To get back out of the debugger, use the command quit (q).

Examining the state of things
The all-important command list (l) shows the source code you are debugging.

Use list FirstLine LastLine to list a range of lines (by default, pdb shows up to

five lines above and five lines below the current line).

The command where (w) shows the current stack trace, while up (u) and down (d)

move through the stack. (Note that running w under an IDLE shell shows about 10

extra stack frames, because IDLE is running above your code.)

You can display a variable’s value with print (p).

For example, here is a simple debugging session. Looking at the code, plus some

variables in context, gives me a pretty good idea what went wrong:

>>> FancyPrimeFinder.FindPrimes(100)
Traceback (innermost last):
File “<pyshell#19>”, line 1, in ?
FancyPrimeFinder.FindPrimes(100)

File “C:\PYTHON20\FancyPrimeFinder.py”, line 9, in FindPrimes
NumList=filter(lambda y,x=NumList[Index]:

4807-7 ch27.F 5/24/01 9:01 AM Page 498

499Chapter 27 ✦ Debugging, Profiling, and Optimization

IndexError: list index out of range
>>> import pdb
>>> pdb.pm() # Post mortem!
> C:\PYTHON20\FancyPrimeFinder.py(9)FindPrimes()
-> NumList=filter(lambda y,x=NumList[Index]:
(Pdb) l
4 NumList = range(2,EndNumber)
5 Index=0
6 while (Index<len(NumList)):
7 Index += 1
8 -> NumList=filter(lambda y,x=NumList[Index]:
9 (y<=x or y%x!=0), NumList)
10 return NumList
[EOF]
(Pdb) p NumList
[2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97]
(Pdb) Index
26
(Pdb) p len(NumList)
26
(Pdb) p NumList[Index]
*** IndexError: <exceptions.IndexError instance at 0098E714>

Setting breakpoints
The break (b) command handles breakpoints. You set breakpoints in two ways:

break [name:]index sets a breakpoint on line index of file name. break function[,
condition] sets a breakpoint on the specified function, but only when condition is

true. Breakpoints are given sequential ID numbers, starting with 1. Running break
(b) with no arguments prints a list of the current breakpoints:

(Pdb) b
(Pdb) b FancyPrimeFinder.py:9
Breakpoint 1 at C:\PYTHON20\FancyPrimeFinder.py:9
(Pdb) b
Num Type Disp Enb Where
1 breakpoint keep yes at C:\PYTHON20\FancyPrimeFinder.py:9

Use clear (cl) to clear breakpoints. Pass their ID numbers, or just type cl to clear

them all. Similarly, use disable to disable breakpoints. You can re-enable a break-

point with enable (but a cleared breakpoint is gone forever).

The command ignore id [count] ignores breakpoint id up to count times. The

command tbreak, with the same arguments as break, sets a temporary break-

point, which is automatically cleared the first time it is hit. Finally, the command

condition id [expr] attaches the condition expr to breakpoint id; if expr is omit-

ted, the breakpoint becomes unconditional.

4807-7 ch27.F 5/24/01 9:01 AM Page 499

500 Part V ✦ Advanced Python Programming

Running
The command continue (c) tells pdb to start running the program again. The com-

mand return (r) keeps running until the current function returns. The commands

next (n) and step (s) execute only the current statement. The difference between

the two is that step “steps into” functions (it breaks inside the function call), and

next “steps over” function calls (it runs the whole function call, and then breaks on

the next line of the current source file).

Aliases
The command alias [name [command]] creates an alias, name, which executes

command. The alias can take arguments. These arguments replace %1, %2, and so

on, in command, while %* is replaced by all the arguments. Calling alias without

passing a command shows the current command for name; calling alias with no

arguments lists the current aliases. Aliases can be nested. They only apply to the

first word typed at the pdb command line.

For example, here is an alias to print an object’s members, and a shortcut for print-

ing the members of self:

(Pdb) alias pi for k in %1.__dict__.keys(): print “%1.”+k+”=”+%1.__dict__[k]
(Pdb) alias ps pi self
(Pdb) pi TempFile
TempFile.BackupFileName=C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\~3400-1
TempFile.File=<open file ‘fred.txt’, mode ‘w’ at 008053D8>
TempFile.FileName=fred.txt

You can put alias definitions (or any other pdb commands) into a file named .pdbrc

in your home directory or the current directory. pdb will execute the commands

from .pdbrc on startup. If .pdbrc files exist in your home directory and the current

directory, the home directory’s .pdbrc executes first, followed by the local file.

Debugging tips
Bugs in destructors can be especially hard to track down. Any exceptions thrown in

a destructor are spewed to stderr and ignored. Therefore, destructors are a great

place to call pdb.set_trace:

def __del__(self):
try:

self.cleanup()
except:

If we don’t catch it, NO ONE CAN!
pdb.set_trace()

4807-7 ch27.F 5/24/01 9:01 AM Page 500

501Chapter 27 ✦ Debugging, Profiling, and Optimization

If an object is still around when the program finishes running, its destructor may

execute after the Python interpreter has freed any imported modules. Therefore, an

innocent-looking call to os.remove may result in the error “‘None’ object has no

attribute ‘remove’”. A trick that sometimes works is to prefix a module-level vari-

able with an underscore; such items are destroyed before other members. Safest of

all is not to do anything too clever in destructors, unless you carefully get rid of

objects as you go.

Working with docstrings
Documentation helps people use each other’s Python modules. But documentation

often becomes out-of-date, which is sometimes worse than no documentation at all!

By using docstrings, you can maintain code and documentation in one place. You

can also use the pydoc module to extract your code’s docstrings into professional-

looking text or HTML documentation, so that people can use your modules without

ever needing to read code.

You can use pydoc interactively. Call pydoc.help(object) to view Python docu-

mentation for an object. This can be much more convenient than leaving the inter-

preter to read documentation. For example:

>>> pydoc.help(string.strip)
Help on function strip in module string:

strip(s)
strip(s) -> string

Return a copy of the string s with leading and trailing
whitespace removed.

You can also use pydoc from the command line. To view module documentation as

text, pass the module name as an argument, like this:

python pydoc.py urllib

Or, use the -w argument to write out documentation to an HTML file. For example,

this commend writes HTML documentation of urllib to the file urllib.html:

python pydoc.py -w urllib

The pydoc module has one more trick up its sleeve: Run it with no command line

arguments, and it will run as a documentation Web server. You can read documenta-

tion for all the modules in your PYTHONPATH, all from the comfort of your browser!

The pydoc module is new in Python 2.1. (However, it runs on versions 1.5 and
up.)

New
Feature

4807-7 ch27.F 5/24/01 9:01 AM Page 501

502 Part V ✦ Advanced Python Programming

Automating Tests
Testing code is not as fun as writing code. But testing is essential to avoid poor-

quality code. Luckily, Python comes with tools to help you build automated tests.

The unittest module (also known as PyUnit) is a framework for testing your code.

The doctest module helps you keep documentation and code in synch.

Both doctest and unittest are new in Python 2.1.

Synching docstrings with code
The doctest module helps you defend against out-of-date documentation. To use

doctest, copy the text of a successful interpreter session and then paste it into

your code’s docstrings. Later, run doctest.testmod(module) to re-run that inter-

preter session, and make sure that the output is the same.

For example, suppose I am parsing some comma-delimited files that I exported from

Microsoft Excel. Normally, I could use string.split to split a line into fields. But

Excel uses some special rules to deal with commas within data. So, I write a func-

tion called SplitCommaFields to split fields, and test it in the interpreter. It

works — so far, so good. To make sure my code’s documentation doesn’t become

out-of-date, I copy my interpreter session into the docstring. Listing 27-1 shows the

resulting file:

Listing 27-1: CSV.py

import doctest
import CSV # Import ourselves!
def SplitCommaFields(Line):

“””
SplitCommaFields breaks up a comma-delimited .csv file into
fields:
>>> SplitCommaFields(‘a,b,c’)
[‘a’, ‘b’, ‘c’]

It handles commas within fields:
>>> SplitCommaFields(‘Atlas shrugged,”Rand,Ayn”,1957’)
[‘Atlas shrugged’, ‘Rand,Ayn’, ‘1957’]

Also, it handles double-quotes within fields:
>>> SplitCommaFields(‘“Are “”you”” happy?”,”Stuff,is,fun”’)
[‘Are “you” happy?’, ‘Stuff,is,fun’]
“””
Fields=Line.split(“,”)
RealFields=[]
InsideQuotes=0
BigField=””

New
Feature

4807-7 ch27.F 5/24/01 9:01 AM Page 502

503Chapter 27 ✦ Debugging, Profiling, and Optimization

for Field in Fields:
if InsideQuotes:

BigField+=”,”+Field
if BigField[-1]==’”’:

BigField=BigField[:-1] # kill trailing “
RealFields.append(BigField)
InsideQuotes=0

elif len(Field)==0 or Field[0]!=’”’:
RealFields.append(Field)

else: # we saw a start-quote
if (Field[-1]==’”’):

RealFields.append(Field[1:-1])
else:

BigField=Field[1:]
InsideQuotes=1

return map(lambda x:x.replace(‘“”’,’”’), RealFields)

if __name__==”__main__”:
doctest.testmod(CSV) # Test this module

When I run CSV.py from the command line, I get no output, indicating that my func-

tion still runs as documented. As a sanity check, I can pass the -v argument to see

doctest do its work:

C:\source\test>python CSV.py -v
Running CSV.__doc__
0 of 0 examples failed in CSV.__doc__
Running CSV.SplitCommaFields.__doc__
Trying: SplitCommaFields(‘Atlas shrugged,”Rand,Ayn”,1957’)
Expecting: [‘Atlas shrugged’, ‘Rand,Ayn’, ‘1957’]
ok
[...deleted for brevity...]
3 passed and 0 failed.
Test passed.

Unit testing
The unittest module is a Python version of Kent Beck’s unit testing framework. It

belongs to the same illustrious lineage as JUnit and CppUnit. You can use it to build

one or more test cases for a class or module and group test cases into test suites.

To build an automated test, create a subclass of unittest.TestCase. Your class

should override the runTest method to perform some test, using the assert to

flag errors. For example, this class tests the SplitCommaFields function defined

earlier:

4807-7 ch27.F 5/24/01 9:01 AM Page 503

504 Part V ✦ Advanced Python Programming

class CommaContentsTestCase(unittest.TestCase):
def runTest(self):

Line=’one,two,”three,three,thr,ee”,”fo,ur”,five’
assert SplitCommaFields(Line)==\

[‘one’,’two’,’three,three,thr,ee’,’fo,ur’,’five’]

You can run the test interactively by calling the run method of a TestRunner
object, such as the TextTestRunner:

>>> TestRunner=unittest.TextTestRunner()
>>> TestRunner.run(CSV.CommaContentsTestCase())
.

Ran 1 tests in 0.000s

OK
<unittest._TextTestResult run=1 errors=0 failures=0>

You can also run tests from the command line. One method is to change your script

to call unittest.main():

if __name__==”__main__”:
unittest.main()

Then, calling your script from the command line will run all its test cases.

Test suites
The TestSuite class is a handy way to group related test cases. It provides a

method, addTest(TestCase), for adding test cases to a list. For example, this func-

tion returns a suite of test cases:

def CSVSuite():
Suite=unittest.TestSuite()
Suite.add(CommaContentsTestCase())
Suite.add(QuoteCommentsTestCase())
return Suite

If you define a function (such as CSVSuite previously) to return a TestCase or

TestSuite object, you can invoke your unit test(s) from the command line like

this:

python unittest.py CSV.CSVSuite

Repeated testing tasks
The TestCase class provides setUp and tearDown methods, called before and after

the main runTest method. These methods help you build test cases without

repeating the same setup and cleanup steps in your test code. For example, sup-

pose you have several tests that must create a temporary file. This base class takes

4807-7 ch27.F 5/24/01 9:01 AM Page 504

505Chapter 27 ✦ Debugging, Profiling, and Optimization

care of file creation and cleanup, so that your test cases can freely write to

self.File in the runTest method:

class FileTestCase(unittest.TestCase):
def setUp(self):

self.FileName=tempfile.mktemp()
self.File=open(self.FileName,”w”)

def tearDown(self):
self.File.close()
os.remove(self.FileName)

Finding Bottlenecks
Python is a high-level language, often used in situations where speed is not crucial.

Programmer time is usually more expensive than processor time. However, it is

sometimes important to optimize your Python program — to make them conserve

time, memory, or some other resource, such as database cursors.

Note some rules of thumb for optimization:

1. Optimize last. Life is too short to spend time optimizing code that may be

rewritten or scrapped.

2. Test your optimizations by timing them on realistic runs. Optimization often

means some sacrifice of simplicity, readability, or maintainability; it’s best to

make sure the sacrifice is worth the gains.

3. Comment all but the most glaringly obvious optimizations. This helps inno-

cent bystanders understand your code, and (it is hoped) ensures that no one

will undo the optimizations for the sake of readability.

Profiling code
To quickly profile a statement, import the profile module, and then call

profile.run(statement). For example, the following code profiles a script that

sorts MP3 files by artist:

>>> profile.run(“SortMP3s()”)

30289 function calls (30166 primitive calls) in 10.560 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.029 0.029 9.685 9.685 <string>:1(?)

271 0.020 0.000 0.020 0.000 ID3Tag.py:105(__init__)

4807-7 ch27.F 5/24/01 9:01 AM Page 505

506 Part V ✦ Advanced Python Programming

9 0.000 0.000 0.000 0.000 ID3Tag.py:130(theTitle)
9 0.000 0.000 0.000 0.000 ID3Tag.py:137(theArtist)
1 0.292 0.292 0.704 0.704 ID3Tag.py:20(?)
1 0.000 0.000 0.000 0.000 ID3Tag.py:23(ID3Tag)

271 0.151 0.001 0.168 0.001 ID3Tag.py:304(Read)
45 0.016 0.000 0.016 0.000 ID3Tag.py:333(RemovePadding)

[...truncated for brevity...]

Each line of the output corresponds to a function. The columns show the following:

✦ ncalls — How many times the function was called. If a function recurses, two

numbers are shown: total calls, and then total primitive calls. For instance,

the script made one call to os.path.walk, which resulted in 123 other calls:

124/1 0.500 0.004 8.862 8.862 ntpath.py:255(walk)

✦ tottime — Total CPU time spent in the function.

✦ percall — Average CPU time. Equal to tottime divided by ncalls.

✦ cumtime — Cumulative CPU time spent in the function and its subfunctions.

✦ percall — Average cumulative time. Equal to cumtime divided by ncalls.

✦ filename:lineno(function) — Source file name, line number, and function name.

The first line of output corresponds to the code passed to run; its filename is

listed as “<string>”.

When profiling from a Python shell window in IDLE or PythonWin, any code that
prints to stdout will trigger function calls within the IDE’s framework. These func-
tion calls will show up in the profiler’s output! Running Python from the command
line works around this problem.

Using Profile objects
The Profile class provides a run(command) method to profile the specified command.

Normally, the command runs in the current namespace. To run the command in a

particular namespace context, pass the global and local dictionaries (as returned by

built-in functions globals and locals) to runctx(command, globals, locals). To

profile a function call, you can call runcall(functionname[,arguments...]).

After running a command, call the print_stats method to print statistics, or the

dump_stats(filename) to write out stats (in nonreadable format) to the specified

file.

A call to profile.run(command[,filename]) creates a Profile object, calls

run(command), and then calls either print_stats or dump_stats(filename).

The Profile class can be subclassed. For example, the class HotProfile is a sub-

class of Profile. It calculates less data (ignores caller-callee relationships), but

runs faster.

Note

4807-7 ch27.F 5/24/01 9:01 AM Page 506

507Chapter 27 ✦ Debugging, Profiling, and Optimization

Calibrating the profiler
There is a small time lag between the time that an event happens and the time that

profiler records. The call to time.clock is not free. This lag adds up over the course

of many function calls, and can make timing information less accurate.

Calibrating the profiler compensates for this lag by adding a “fudge factor.” This

makes the profiler’s statistics more accurate. To calibrate the profiler, call its

calibrate method:

>>> import profile
>>> Prof=profile.Profile()
>>> “%f” % Prof.calibrate(100000)
‘0.000017’

The number returned is your fudge factor. To use it, you must edit the library code

(in lib\profile.py). In the trace_dispatch method, replace the line

t = t[0] + t[1] - self.t # No Calibration constant

with this line:

t = t[0] + t[1] - self.t - (your calibration constant)

Profiling with calibration is more accurate overall. However, the profiler may occa-
sionally report that a negative amount of time was spent in a function. This results
from the imperfection of the fudge factor, and is not a cause for panic.

Customizing statistics
The module pstats provides a class, Stats, for storing and printing statistics gath-

ered in a profiling run.

The Stats constructor takes either a file name or a Profile object. You can either

pass in a Profile object (after calling run), or pass the name of a stats file created

by the profiler. You can also pass one (or more) file names or Profile instances to

Stats.add.

For example, the following code runs the same command several times, and com-

bines the statistics, on the assumption that behavior may vary from one run to the

next:

def ProfileSeveralRuns(Command,Times):
if (Times<1): return
StatsFiles=[]
for RunIndex in range(Times):

FileName=”stats%d”%(RunIndex)
profile.run(Command, FileName)

Note

4807-7 ch27.F 5/24/01 9:01 AM Page 507

508 Part V ✦ Advanced Python Programming

StatsFiles.append(FileName)
Pass one filename to the constructor:
AggregateStats=pstats.Stats(StatsFiles[0])
Pass along all other filenames:
if len(StatsFiles)>1:

AggregateStats.add(*(StatsFiles[1:]))
AggregateStats.print_stats()

It is generally a good idea to call strip_dirs to trim the path to each function’s file

name.

You can change the ordering of statistics by calling the method sort_stats
(field[,...]). Here, field is the name of a field to sort on. You can pass several

field names. In this case, subsequent fields are used to sort if values of the first field

are equal. Alphabetic fields are sorted in ascending order; numeric fields are sorted

in descending order. (The method reverse_order reverses the ordering.) Table

27-1 lists the available fields.

Table 27-1
Stats Field Names

Name Meaning

cumulative Cumulative time spent in a function

calls Total calls to a function

time Time spent in a function (not including subfunctions)

name Function name

file Source filename

module Source filename (same meaning as file)

line Source line number

nfl Name/File/Line. sort_stats(“nfl”) is the same as
sort_stats(“name”,”file”,”line”)

pcalls Total primitive (nonrecursive) calls to a function

stdname Standard name

The method print_stats([restrictions...]) prints the statistics. You can

pass one or more arguments to filter which lines are printed. Pass an integer, n, to

print only the first n lines. Pass a decimal between 0 and 1 to print that percentage

of the lines. Or, pass a regular expression (as a string) to print only lines whose file

name matches the regular expression.

4807-7 ch27.F 5/24/01 9:01 AM Page 508

509Chapter 27 ✦ Debugging, Profiling, and Optimization

This example runs some code and then prints statistics for the most time-

consuming functions:

>>> Prof=profile.Profile()
>>> Prof.run(“import FancyPrimeFinder”)
<profile.Profile instance at 00854E54>
>>> MyStats=pstats.Stats(Prof)
>>> MyStats.sort_stats(“time”) # expensive functions first
<pstats.Stats instance at 007E48DC>
>>> MyStats.strip_dirs().print_Stats(10) # top 10 only

Note that most methods of Profile and Stats return the object itself; this makes

it easy to chain several method calls in one line, as the last line of the preceding

code does.

The method print_callers([restrictions...]) shows all the callers for each

function. On the left is the called function; on the right is its caller, with the number

of calls in parentheses. Similarly, print_callees([restrictions...]) shows

each function on the left column; functions it called are on the right.

Common Optimization Tricks
The following sections outline some ways to speed up Python code. Use these on

bottleneck code, after you have identified the bottlenecks using the profile mod-

ule. Keep in mind that sometimes the best way to speed up a function is simply to

write it as an extension module in C.

See Chapter 29 for more information about how you can create C libraries usable
from your Python programs.

Sorting
Sorting a sequence with the sort method is very fast for numbers and strings. If

you need to perform custom sorting (e.g., a comparison of two objects), you can

pass a comparison function to sort. You can also customize sorting for a class by

defining a __cmp__ method. However, passing a function to sort is faster than

implicit use of the __cmp__ method. Compare the following two lines:

PointList.sort(Point) # Uses Point.__cmp__ implicitly
PointList.sort(Point.__cmp__) # Trickier, but faster!

When sorting a list of objects, one trick is to find a “key” that you can sort on. The

key values should be an easy-to-sort type (for example, numbers); and they should

be mostly unique across list entries. The following function provides an example:

Cross-
Reference

4807-7 ch27.F 5/24/01 9:01 AM Page 509

510 Part V ✦ Advanced Python Programming

def SortByKey(List,KeyMaker):
“””Sort a list. The parameter KeyMaker is a function that
returns a key for the list element. The keys are used
sort the list.”””
Replace each element x with (KeyMaker(x),x):
TempList=map(lambda x,f=KeyMaker: (f(x),x), List)
Tuples sorted by comparing just the first elements:
If the first elements match, the second elements
are compared; so if KeyMaker(x)==KeyMaker(y), then we
will end up comparing x and y directly.
TempList.sort()
Get rid of the keys - replace (KeyMaker(x),x) with x:
return map(lambda(key,x):x, TempList)

For instance, I wrote code to sort a list of points according to their distance from

the origin. Using SortByKey (instead of passing a function to sort) made the code

roughly three times faster.

Looping
Use xrange for looping across long ranges; it uses much less memory than range,

and may save time as well. Both versions are likely to be faster than a while loop:

for x in range(10000): pass # memory hog
for x in xrange(10000): pass # good!

You can often eliminate a loop by calling map instead.

I/O
Each call to a file’s readline method is quite slow. It is much faster to read the

entire file into memory by calling readlines; however, this uses up a lot of RAM.

Another approach is to read blocks of lines. Best of all — in Python 2.1 — is to use

the xreadlines method of a file:

1 - Slow:
while 1:

FileLine=file.readline()
if (FileLine==””): break # EOF
DoStuff(FileLine)

2 - Fast, but possibly memory-intensive:
FileLines=file.readlines()
for FileLine in FileLines:

DoStuff(FileLine)
3 - Faster than 1, without hogging too much memory:
(Use this for filelike objects without an
xreadlines() method)
while 1:

FileLines=file.readlines(100)

4807-7 ch27.F 5/24/01 9:01 AM Page 510

511Chapter 27 ✦ Debugging, Profiling, and Optimization

if len(FileLines)==0: break # EOF
for FileLine in FileLines:

DoStuff(FileLine)
4 - Fast and simple; requires version 2.1:
for FileLine in file.xreadlines():

DoStuff(FileLine)

Strings
Building up strings with the concatenation operator + can be slow, because it often

involves copying strings several times. Formatting using the % operator is generally

faster, and uses less memory. For example:

HTMLString=HTMLHeader+HTMLBody+HTMLFooter # slow!
HTMLString=”%s%s%s”%(HTMLHeader,HTMLBody,HTMLFooter) # fast!

If you are building up a string with an unknown number of components, consider

using string.join to combine them all, instead of concatenating them as you go:

Slow way:
Str=””
for X in range(10000):

Str+=`X`
Fast way (10 times as fast on my machine):
List=[]
for X in range(10000):

List.append(`X`)
Str=string.join(List,””)

When using regular expressions, create a reusable regular expression object using

re.compile instead of re.search and re.match directly. This saves time, because

the regular expression doesn’t have to be repeatedly parsed. Following is a con-

trived example:

PATTERN=r”^[0-9]+(\.[0-9]+)*$” # Match valid version numbers
ValidDottedDecimal=re.compile(PATTERN)
for Index in range(100):

re.search(PATTERN,”2.4.5.3”) # slow way!
for Index in range(100):

ValidDottedDecimal.search(“2.4.5.3”) # fast way!

Threads
If your script uses only one thread, you can save time by forcing the interpreter

to check for other threads less often. The method sys.setcheckinterval(codes)
tells Python to consider switching threads after codes bytecodes. The default

check-interval is 10; setting it to something large (like 1,000) may improve your

performance. On my Windows machine, the gain is negligible.

4807-7 ch27.F 5/24/01 9:01 AM Page 511

512 Part V ✦ Advanced Python Programming

Taking out the Trash — the Garbage Collector
Python doesn’t require you to explicitly allocate and free memory. When you need

more memory to hold some data, the Python interpreter allocates it for you. When

you are finished with data, the interpreter usually gets rid of it.

Python cleans up memory by using reference counting: For each chunk of memory

you use, Python keeps track of how many references to the object exist. When you

assign a reference to an object, its reference count increases; when you get rid of a

reference, the object’s reference count decreases. When there are no more refer-

ences to an object, Python frees the object’s memory:

>>> class Thingy:
... def __init__(self,Name):
... self.Name=Name
... def __del__(self):
... print “Deleting:”,self.Name
...
>>> A=Thingy(“X”) # The variable A holds only reference
>>> A=”Crunchy frog” # Refcount goes to 0 -> object is freed!
Deleting: X
>>> A=Thingy(“X”)
>>> B=Thingy(“Y”)
>>> A.ref=B # Y’s Refcount goes from 1 to 2
>>> B=None # Y’s Refcount goes from 2 to 1
>>> # This takes X’s refcount to 0, so X is deleted. Deleting
>>> # X takes Y’s refcount to 0, so Y is deleted too:
>>> A=None
Deleting: X
Deleting: Y

Note that the built-in function del does not (necessarily) delete an object; it deletes

a variable (and thus decrements the object’s reference count):

>>> A=Thingy(“X”)
>>> B=Thingy(“Y”)
>>> A.ref=B
>>> del B # Variable B is gone, but object Y still exists
>>> A. ref.Name # See! Object Y is still there!
‘Y’

Reference counts and Python code
Reference counting is different from automatic garbage collection (as seen in Java).

For example, as long as two objects hold references to each other, Python won’t

free them. If an object is no longer usable by a program, but its memory is not

freed, the object is leaked. Leaked memory normally gets cleaned up when the pro-

gram terminates. However, a program that runs for a long time can leak many

4807-7 ch27.F 5/24/01 9:01 AM Page 512

513Chapter 27 ✦ Debugging, Profiling, and Optimization

megabytes of memory, a few bytes at a time. For example, after you run the follow-

ing statements, the two objects each have a reference count of 1, and so will stick

around until you exit the interpreter:

>>> A=Thingy(“X”)
>>> B=Thingy(“Y”)
>>> A.ref=B # Y’s refcount is now 2
>>> B.ref=A # X’s refcount is now 2
>>> del A
>>> del B
>>> # Congratulations! You just leaked memory!

Normally, these memory leaks are not big or common enough to worry about. If you

find yourself running low on memory, however, you may need to start worrying. In

order to rid yourself of an object, you must get rid of all references to it — and to do

that, you must keep track of all the references.

Reference counts and C/C++ code
Shooting yourself in the foot is downright difficult in Python, but very easy in C.

When writing C extensions, you must keep track of the reference counts of each

Python object. Losing track of reference counts can lead to memory hemorrhaging

(as opposed to mere memory leaks), and even core dumps.

The macros Py_INCREF(x) and Py_DECREF(x) increment and decrement the refer-

ence counts of a Python object x. At any given time, each reference is considered to

be owned by some function. When that function exits, it must transfer ownership of

the reference, or else get rid of the reference with a call to Py_DECREF. A function

can also borrow a reference — the borrower uses the reference, never touches the

reference count, and lets go of the reference before the owner does. Owning and

borrowing are not explicit in the code, but the comments generally indicate to

whom a reference belongs.

When writing C extensions, it is important to track reference counts properly.

Linking Python with Py_REF_DEBUG and Py_TRACE_REFS turned on provides extra

information for debugging reference counts. In addition, you can call

_Py_PrintReferences to print out all the objects and their refcounts.

Summary
Debugging is never a painless process, but pdb helps make it as easy as possible. In

addition, IDEs like PythonWin provide debugging with a snappier interface. The

Python profiler helps you find bottlenecks in your code. In addition, a review of

Python’s garbage collector can save a lot of memory. In this chapter, you:

4807-7 ch27.F 5/24/01 9:01 AM Page 513

514 Part V ✦ Advanced Python Programming

✦ Debugged Python programs using pdb.

✦ Profiled code to find the most expensive functions.

✦ Optimized various types of code.

✦ Learned how to leak memory (and how not to leak memory).

In the next chapter, you learn how to combine the speed of C with the power of

Python by writing C extensions.

✦ ✦ ✦

4807-7 ch27.F 5/24/01 9:01 AM Page 514

Security and
Encryption

With the explosive growth of the Internet and with

countries shifting to more global economies, the

issue of security is increasingly important. Banks, businesses,

governments, and consumers routinely transfer sensitive

information; and computers attached to the Internet are

potentially accessible by anyone. This chapter describes

Python’s modules for creating digital fingerprints of messages,

running Python code in a safe sandbox, and using basic

encryption and decryption. Online, you can also find strong

encryption extension modules for triple DES, Blowfish, and

the like.

Checking Passwords
The most basic and common form of security is restricting

access until the user enters a valid username and password.

When you prompt a user for his or her password, however,

you don’t want the password to be displayed on the screen,

lest a “neighbor” with wandering eyes sees the password too.

For these situations, use the getpass module.

There really isn’t a safe and platform-independent way to have

the user enter a password, so getpass has a different imple-

mentation for UNIX, Windows, and Macintosh systems. If for

some reason it can’t use any of the special implementations, it

will at least warn the user that the password might acciden-

tally be displayed on the screen.

The Windows version uses getch() in the msvcrt mod-
ule, which doesn’t behave quite how you’d expect in some
IDEs, such as IDLE or PythonWin, so if you want to try
getpass out, run it in an interpreter started on the com-
mand line.

Caution

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Checking passwords

Running in a
restricted environment

Creating message
fingerprints

Using 1940s-era
encryption

✦ ✦ ✦ ✦

4807-7 ch28.F 5/24/01 9:01 AM Page 515

516 Part V ✦ Advanced Python Programming

Use the getpass([prompt]) function to request the user’s password. The follow-

ing function queries the user for a name and password and then returns them as a

tuple:

>>> import getpass
>>> def getLogin():
... name = raw_input(‘Name:’)
... passwd = getpass.getpass(‘Password:’)
... return name,passwd
...
>>> getLogin()
Name:robinhood
Password: # Characters typed are not echoed
(‘robinhood’, ‘littlejohn’)

getpass also has the getuser() function, which returns the login name of the

user:

>>> getpass.getuser()
‘dave’

getuser checks the values of the LOGNAME, USER, LNAME, and USERNAME environ-

ment variables, returning the value of the first one that is present and not empty. If

all fail and the system has the pwd module (UNIX), then that is used; otherwise, an

exception is raised.

Chapter 38 provides the pwd module, which you can use for accessing the UNIX
user account database. You can also use the crypt module to check whether the
password a user entered is correct (i.e., matches their login password).

Most GUI toolkits have their own method for prompting a user for a password. For

example, in wxPython, you can set a flag in the text entry field that holds a pass-

word, so that anything typed is displayed with asterisks.

UNIX users that have the readline module activated need not worry that after
entering their password it will show up in the command history. getpass uses its
own implementation of raw_input in order to avoid that security hole.

Running in a Restricted Environment
Imagine that you decided to create an online game in which players from all over

the world would upload virtual robots to traverse a maze and destroy one another.

Not only did you decide to implement most of the game in Python, you chose to let

the players program their robots using Python too. One problem, though, is that a

malicious entrant could include code to erase files on your computer, install a

Trojan horse, or cause damage in any number of other ways. How could you deal

with that danger?

Note

Cross-
Reference

4807-7 ch28.F 5/24/01 9:01 AM Page 516

517Chapter 28 ✦ Security and Encryption

The rexec sandbox
The rexec module helps prevent such a scenario. It enables you to run Python

code in a sandbox, a restricted environment in which you control what resources it

can access — just as a child in a sandbox imagines it to be the entire world when in

reality it’s quite isolated and small. You can, for example, enable Python programs

to do whatever they want as long as they don’t try to create any socket connec-

tions, or enable them to create files only in a particular directory. With rexec, you

can more safely run Python programs that didn’t necessarily come from a trusted

source.

To create an execution sandbox, you call RExec([hooks][verbose]) to create an

RExec object (or call the constructor of a subclass you’ve created in order to over-

ride or add to its access policies). hooks is an instance of the RHooks class (or a

subclass), which is itself a subclass of the Hooks class in the ihooks module; and is

what is called when it’s time to import a module. By providing your own import

hooks, you can monitor or log what modules are loaded, or even load them from a

different source. The verbose argument is passed to the Hooks constructor and,

if 1, prints extra debugging information.

Refer to Chapter 34 for information about the ihooks module and implementing
your own module import behavior.

Before creating your RExec instance object, you can change some of its class vari-

ables to tailor what modules and functions will be available to the executing code.

(Changing these class variables does not affect instances already created — only

those subsequent to your changes will see the effects.) For security reasons, you

should be careful about what values you change. If you want to change the list of

prohibited built-in functions, for example, consider adding to the list instead of

completely replacing it, so that you don’t inadvertently create a security hole.

ok_path is a tuple containing the paths to search when importing a module. By

default, it matches the value of sys.path.

ok_builtin_modules is a tuple of built-in (not implemented in Python) modules

that are safe to import. The default value contains the names of the following

modules:

audioop imageop parser strop
array marshal regex struct
binascii math pcre time
cmath md5 rotor
errno operator select

ok_posix_names is a tuple of allowed functions from the os module (if present in

the current platform’s implementation of os). The default value contains the names

of the following modules:

Cross-
Reference

4807-7 ch28.F 5/24/01 9:01 AM Page 517

518 Part V ✦ Advanced Python Programming

error readlink getpid getgid
fstat stat getppid geteuid
listdir times getcwd getegid
lstat uname getuid

ok_sys_names is a tuple of variables and functions from the sys module that

restricted access programs can use. The default value contains the following:

ps1 copyright platform maxint
ps2 version exit

nok_builtin_names is a tuple of built-in function names that programs are not
allowed to use. By default, the list contains ‘open’, ‘reload’, and ‘__import__’,

so functions such as map are still allowed (most built-in functions are relatively

safe).

RExec intercepts calls from the restricted program to import, reload, and unload
and routes the calls through the internal module loader and importer (which makes

use of the custom import hooks). You can override RExec’s r_reload(module),

r_unload(module), and r_import(modulename[, globals[, locals], from-
list]]]) methods to provide custom behavior. If a module isn’t safe to be loaded,

r_import should raise in ImportError exception.

Calls to open are sent to RExec’s r_open(filename[, mode[, bufsize]]). By

default, files can be opened for reading only, but you can override this with differ-

ent behavior if needed.

Once you (finally!) have your RExec object, you can actually execute Python code

in a restricted object by calling its r_eval(code), r_exec(code), or r_exec-
file(filename) methods, all of which run the code in the __main__ module of

your new sandbox. r_eval takes as an argument either a Python expression as a

string or a compiled code object, and returns the value of the expression:

>>> import rexec
>>> r = rexec.RExec()
>>> r.r_eval(‘2 + 2’)
4

r_exec can take a string containing one or more lines of Python code or a compiled

code object:

>>> s = “””
... print ‘My name is George’
... q = range(10)
... print q
... “””
>>> r.r_exec(s)
My name is George
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

4807-7 ch28.F 5/24/01 9:01 AM Page 518

519Chapter 28 ✦ Security and Encryption

Chapter 33 has information about code objects and Python introspection
capabilities.

r_execfile executes the contents of a Python file in the restricted environment.

For example, first save the code in Listing 28-1 to a file called bad.py.

Listing 28-1: bad.py — “Untrusted” code to test in the rexec
sandbox

SECRET_VIRUS_CODES = ‘...<bad stuff here>...’
f = open(‘cmd.exe’,’w+b’) # This will fail
f.write(SECRET_VIRUS_CODES)
f.close()

RExec halts as soon as the program tries to do something illegal (in this case, open

a file for writing).

The RExec’s add_module(modulename) method returns a module object existing in

the restricted environment (loading it first if necessary). Because __main__ is also

a module, you can use this as a gateway between the normal and restricted environ-

ments. For example, you can have some variables already present when the

restricted code runs:

>>> r = rexec.RExec()
>>> rmain = r.add_module(‘__main__’)
>>> rmain.happyFactor = 10
>>> r.r_eval(‘happyFactor * 2’)
20

You can also use it to retrieve values after the code has finished. Continuing the

previous example:

>>> r.r_exec(‘sadFactor = happyFactor / 2’)
>>> rmain.sadFactor
5

For each r_<func> method (such as r_eval and r_exec), RExec also has a corre-

sponding s_<func> method that behaves similarly except that the s_<func> ver-

sion will have access to restricted versions of stdin, stdout, and stderr. The

restricted versions have the following methods:

fileno read seek writelines
flush readline tell
isatty readlines write

Cross-
Reference

4807-7 ch28.F 5/24/01 9:01 AM Page 519

520 Part V ✦ Advanced Python Programming

RExec handles some security problems for you, but there are other things to con-
sider too. For example, nothing in RExec protects against code with an infinite loop,
or even one that rapidly creates objects until it consumes all available memory.

Using a class fortress
Most classes were not designed with restricted execution in mind. By using the

Bastion module, you can create wrappers for objects that are suitable for use with

rexec. The wrapped version of the object has the same attributes as the original,

but code in a restricted environment can access the attributes only if the wrapper

allows it.

Call Bastion(object[, filter[, name[, bastionclass]]]) to create a wrap-

per, where object is the object you wish to wrap. filter is a function that accepts

an argument name and returns true if that attribute can be used (the default filter

grants access to all attributes that do not start with an underscore). If the function

returns 0, the wrapper will raise an AttributeError. The name argument is the

name to use when printing the object; bastionclass is an alternate wrapper class

to use, although you would rarely need to supply your own.

As an example, suppose your robot game provides each robot with a reference to

an Environment object through which the robot can query information about the

“world” in which it is running (for example, number of robots still alive, amount of

time left in the current round, and so on). The robots call different get methods,

but outside the restricted environment, the rest of your program can set various

world attributes via some set methods:

class Environment:
def __init__(self):

self._robots = 0
self._timeLeft = 0

def SetNumRobots(self, num):
self._robots = num

def GetNumRobots(self):
return self._robots

def SetTimeLeft(self, left):
self._timeLeft = left

def GetTimeLeft(self):
return self._timeLeft

In order to make sure a player doesn’t fiddle with the time left in the game, for

example, you can give the robots a “bastionified” version of the environment, one

that doesn’t grant access to the ‘set’ methods:

Caution

4807-7 ch28.F 5/24/01 9:01 AM Page 520

521Chapter 28 ✦ Security and Encryption

def noPrivateOrSet(name):
if name[:1] == ‘_’:

return 0
if name[:3] == ‘set’:

return 0
return 1

import Bastion, rexec
e = Environment()
be = Bastion.Bastion(e,noPrivateOrSet)

Now your main code could make calls like the following:

e.SetNumRobots(5)

Code running in the restricted environment, however, could not. This next call

would raise an AttributeError exception:

r.r_exec(‘environment.SetTimeLeft(100)’)

As with access policies in rexec, the planning and consideration you use when
designing a Bastion filter should be proportional to the damage that could occur
if you leave a security hole open. It’s best to err on the side of being overly restric-
tive so that later you’re not sorry.

Creating Message Fingerprints
A message digest is like a digital fingerprint or hash that can be used in security and

data integrity checks. For any string of bytes, the corresponding fingerprint will

change if the original string of bytes changes.

One common use for these types of digests is to verify that a file transferred cor-

rectly across an unreliable network connection. For example, a Web site with down-

loadable ZIP files might list the digital fingerprints next to each file. After

downloading a file, you compute the fingerprint of what you downloaded, and if the

two match, you know the file transferred without errors.

It’s mathematically infeasible to create a file whose fingerprint has a chosen value.

That is to say, if someone knows the fingerprint of a file, for example, and wants to

create another file with the same fingerprint, they aren’t going to succeed. In the

example just described, this property of message digests verifies that what you

download truly matches what is on that remote Web server (and that someone

along the network route didn’t slip you a different version of the file that contains a

virus or something).

Caution

4807-7 ch28.F 5/24/01 9:01 AM Page 521

522 Part V ✦ Advanced Python Programming

MD5
The md5 module implements the MD5 message digest algorithm (developed by MIT

and RSA Data Security, Inc.) to generate 128-bit message digests for arbitrarily long

strings of bytes. Create a new md5 object by calling the new([msg]) function. You

then repeatedly call the object’s update(msg) method until you have passed it all

your data. At any time, you can call the digest() method to get the md5 checksum

at that point in time:

>>> import md5
>>> m = md5.new()
>>> data = open(‘c:\\temp\\skeleton.exe’,’rb’).read()
>>> m.update(data)
>>> m.digest()
‘\252\221\205\274\015\317\032\304\207\266\312~$\032\204 ‘

Using the optional argument to the new function is the same as calling new without

any arguments and then passing msg to update:

>>> m = md5.new(‘The quick brown fox’)
>>> m.digest()
‘\242\000O7s\013\224Eg\012s\217\240\374\236\345’
>>> m = md5.new()
>>> m.update(‘The quick brown fox’)
>>> m.digest()
‘\242\000O7s\013\224Eg\012s\217\240\374\236\345’

The digest is in binary form, so md5’s hexdigest() method returns a printable hex-

adecimal version of the current digest (this is the text you’d display next to the file

on the Web site, for example):

>>> m.hexdigest()
‘a2004f37730b9445670a738fa0fc9ee5’

If two strings share a common initial substring, you can process the common por-

tion of the two strings first and then create a copy of the object using its copy()
method, after which you’d use the two copies to continue computing the digest.

SHA
The sha module implements the National Institute of Standards and Technology’s

Secure Hash Algorithm. It is slightly slower than MD5, but the digest it produces is

larger (160 bits). Therefore, it is more secure against brute force–style attacks.

You use the sha module just as you do the md5 module:

>>> import sha
>>> s = sha.new()
>>> s.update(‘Python’)

4807-7 ch28.F 5/24/01 9:01 AM Page 522

523Chapter 28 ✦ Security and Encryption

>>> s.hexdigest()
‘6e3604888c4b4ec08e2837913d012fe2834ffa83’

Like md5, a sha object has update(msg), digest(), hexdigest(), and copy()
methods.

Other uses
One nice property of message fingerprints is that the slightest change in the mes-

sage results in a very different fingerprint:

>>> sha.new(‘Star wars’).hexdigest()
‘7dede4f3d3fa32215aad874a34225a9a159addfe’
>>> sha.new(‘Star wart’).hexdigest()
‘4d87932ef50601c54a4e83182a92063302ccfe31’

In the preceding example, out of the entire string only one byte changed; its value

was incremented by 1. Despite the tiny change, the digest is completely different.

This makes it nearly impossible to hide or mistakenly overlook even small changes

to a message or file.

Message digests can also be useful for performing rapid comparisons of large

objects. If you have a list or tree of large images, for example, you could compute

the checksum of each image as it is added to the list. When it comes time to add a

new image, you compute its checksum value and then rapidly compare it against

the other checksums to make sure it is not already in the list (comparing a 128-bit

MD5 digest is a lot cheaper than comparing two images).

Using 1940s-Era Encryption
The rotor module implements a basic encryption scheme using groups of permu-

tations or rotors that map one character to another. Each character of a message is

encrypted using the rotor, and the initial rotor positions are the “key” that can be

used to decrypt the message.

The most famous use of rotor-based encryption was by the German military during

World War II. They used Enigma (a typewriter-like machine originally built for use

by businesses) to transmit orders and allied ship coordinates without having to

worry about the messages being understood by others. Fortunately for the allied

troops, a few Enigma machines were captured, and a team of British geniuses

cracked the codes. (You can see an entertaining but historically inaccurate version

of this story in the movie U-571.)

To create a new rotor object, call newrotor(key[, numrotors]). Like the message

you intend to encrypt, key can contain binary and not just printable text charac-

ters. numrotors defaults to 6; using more rotors is more secure, but more costly to

encrypt and decrypt:

4807-7 ch28.F 5/24/01 9:01 AM Page 523

524 Part V ✦ Advanced Python Programming

>>> import rotor
>>> r = rotor.newrotor(‘Will I ever tire of spam?’, 10)
>>> msg = r.encrypt(‘Move into position at midnight’)
>>> msg
‘5\232\001A\267\312\375d\340I\375\201\315}\324\214\311...
>>> r.decrypt(msg)
‘Move into position at midnight’

Obviously, both the sender and the receiver need the key. One way to handle this is

to have a predefined set of keys such that each party knows when to use which one

(for example, on Tuesdays use key #12). Another way is to transfer the key to your

partner without letting others realize that it’s a key (work it into a casual conversa-

tion about the surprise of the Spanish Inquisition, for example).

Calls to encrypt(msg) and decrypt(msg) reset the rotors to their initial state and

encrypt or decrypt the message. If the message is in more than one part, however,

you can subsequently call encryptmore(msg) and decryptmore(msg) instead;

these methods do the same thing without first resetting the rotors:

>>> msg1 = r.encrypt(‘The ATM PIN is 1234’)
>>> msg2 = r.encryptmore(‘My lucky number is 15’)
>>> r.decrypt(msg1)
‘The ATM PIN is 1234’
>>> r.decryptmore(msg2)
‘My lucky number is 15’

You may think that using such old encryption technology is a waste because it is

relatively “easy” to crack (although still relatively difficult for most people).

Consider the security differences between a wooden fence and a ten-foot tall elec-

tric fence covered in razor wire. Although both can be circumvented by a deter-

mined enough intruder, one is definitely stronger than the other. Likewise, a

completely foolproof encryption scheme does not exist, and probably never will.

Even the most basic encryption scheme will ward off 99 percent of potential intrud-

ers simply because it’s not worth the effort to crack, especially if you don’t adver-

tise the type of encryption you use. Depending on your situation, something as

simple as rotor may be suitable (kind of like a chain-link fence with a “Beware of

Dog” sign).

Many modern encryption schemes use public-key encryption, in which each party

has a public and private key. Everyone has access to public keys; if someone wants

to send you a message, they encrypt their message using your public key. The keys

are generated in such a way, however, that only the person with the matching pri-

vate key can decrypt the message.

4807-7 ch28.F 5/24/01 9:01 AM Page 524

525Chapter 28 ✦ Security and Encryption

Summary
You can protect sensitive information and ensure message integrity using some of

the modules covered in this chapter. For example, in this chapter, you:

✦ Used getpass to safely request the user to enter a password.

✦ Executed Python code in an environment with restricted access to different

resources.

✦ Calculated unique digital “fingerprints” for checking message integrity.

✦ Encrypted and decrypted messages using the rotor module.

In the next chapter, you learn how to add new functionality by writing your own

extension modules.

✦ ✦ ✦

4807-7 ch28.F 5/24/01 9:01 AM Page 525

4807-7 ch28.F 5/24/01 9:01 AM Page 526

Writing
Extension
Modules

While Python excels as a stand-alone language, it also

shines as a glue language, a language that combines or

ties together “chunks” of functionality from other languages or

third-party libraries. After reading this chapter you’ll be able to

extend Python by writing your own C modules, and you’ll be

able to embed a Python interpreter in a C program.

This chapter is closely tied to the next chapter; together, the

two chapters cover most of what you need to know to use the

Python/C API.

Extending and Embedding
Overview

A Python extension is an external module written in C that

behaves as if it were just another Python module. In fact, to

most Python programs, an extension module is indistinguish-

able from a “normal” module written in Python.

Python can interface with both C and C++ programs, but
for conciseness, they are lumped together here and
referred to as C programs.

Why would you want to write an extension module? The most

common reason is to make available to Python programs a

third-party library written in some other language. It’s these

wrapper modules that enable Python programs to use

OpenGL, GUI toolkits such as wxWindows and Qt, and com-

pression libraries such as zlib. Why create something from

Note

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Extending and
embedding overview

Writing a simple
extension module

Building and linking

Converting Python
data to C

Converting C data to
Python

Embedding the
interpreter

Running Python code
from C

Using extension tools

✦ ✦ ✦ ✦

4807-7 ch29.F 5/24/01 9:01 AM Page 527

528 Part V ✦ Advanced Python Programming

scratch if you can write a quick extension module around an existing C library?

Along the same lines, through an extension module, your Python programs can

access platform-specific functionality such as the Win32 APIs on Windows, or low-

level resources such as network sockets.

Another benefit of extension modules is that they run at the speed of compiled

code, rather than the slower speed of interpreted Python code. Python is often fast

enough “as is” even though it is an interpreted language, but if you do have special

performance requirements, you can move CPU-intensive operations into an exten-

sion module. The approach I take is to first build my entire application in Python,

profile it, and then move performance bottlenecks into C as needed. This lets me

use Python as a rapid prototyping language in which I can still make changes

cheaply (when compared to C) without having to rewrite the entire program if a few

parts end up being too slow.

Proprietary information or algorithms locked away in an extension module are

more difficult to reverse engineer; and extension modules can significantly extend

the Python language itself by introducing new built-in data types.

The opposite of writing an extension module is embedding the Python interpreter

in a C program. This is useful if you have a lot of functionality that is just plain eas-

ier to do in Python (what isn’t?), or when you have an existing application to which

you want to add Python power.

Embedded Python is great as an internal control language, or even as a sort of

macro language to customize the behavior of your application.

Because this chapter deals with combining C and Python, you do need a working
C compiler; and actually knowing how to program in C wouldn’t hurt. If you don’t
have a commercial compiler, compilers such as gcc are available free on all major
platforms, including Windows. If you have Microsoft Visual Studio, use that,
because Python comes with all the workspace and project files you need.

It is also a good idea to download and build Python from the source code. This
ensures that your setup is correct and also makes it possible for you to debug your
modules during development.

Writing a Simple Extension Module
The best way to understand extension modules is to look at a simple one. Listing

29-1 is a C program that creates a Python module called simple, which contains the

add and count functions. The Python documentation and the next section describe

compiling and linking extension modules, so for now, just examine the source code.

Note

4807-7 ch29.F 5/24/01 9:01 AM Page 528

529Chapter 29 ✦ Writing Extension Modules

Listing 29-1: simple.c — A basic Python extension module

#include “Python.h”

// Add two arbitrary objects
static PyObject *simple_add(PyObject *pSelf, PyObject *pArgs)
{
PyObject *pX, *pY;

if (!PyArg_ParseTuple(pArgs,”OO”, &pX, &pY))
return NULL;

return PyNumber_Add(pX,pY);
}

// A doc string
static char count_doc[] = “Returns the number of arguments
passed in”;

static PyObject *simple_count(PyObject *pSelf, PyObject *pArgs)
{
long count = PyTuple_Size(pArgs);
return PyInt_FromLong(count);

}

// Map of function names to functions
static PyMethodDef simple_methods[] =
{
{“add”, simple_add, METH_VARARGS, NULL},
{“count”, simple_count, METH_VARARGS, count_doc},
{NULL, NULL} // End of functions

};

// For C++, initsimple should be declared ‘extern “C”’
DL_EXPORT(void) initsimple()
{
Py_InitModule(“simple”, simple_methods);

}

The following example uses the preceding module after compiling and linking:

>>> import simple
>>> simple.add(5,2.5) # Add two numbers
7.5
>>> simple.add([‘a’,’b’],[‘c’,’d’,’e’]) # Add other types
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
>>> simple.count.__doc__
‘Returns the number of arguments passed in’
>>> simple.count(‘hello’,’there’,5,6) # Count args
4

4807-7 ch29.F 5/24/01 9:01 AM Page 529

530 Part V ✦ Advanced Python Programming

Familiarize yourself with the pattern of the example C file because most extension

modules follow this basic form. After including the appropriate headers, it creates

two functions and a doc string.

Notice that each function is declared static, which means that they are not visible

outside this file. The functions are made visible to Python because each is listed in

the simple_methods table. When the module is imported, its initsimple function

is called, which in turn calls Py_InitModule to inform Python of a new module

called “simple” whose function pointers are in simple_methods. The file name of

the module should match its name used in the code, so the compiled form of this

module would probably be in simple.dll or simple.so, depending on the plat-

form. If Python can’t find an init<name> function (where <name> is the name of the

module), it will be unable to import the module.

Each module function takes two arguments and returns one, all of which are

PyObject pointers. The self argument is NULL unless the function is actually a

method for a Python class you’ve implemented in C; and args is a Python tuple

containing the arguments passed in.

The simple_add function calls PyArg_ParseTuple (a function discussed in detail

in “Converting Python Data to C” in this chapter) to break args into the objects in

the tuple; it takes a format string and pointers to receive the object references. In

this case, the format string “OO” is saying that the function is expecting any two

Python objects. simple_add takes the two objects and returns a new object by call-

ing PyNumber_Add. As shown in the example usage of this module, the object can

be numbers, strings, and so on. PyNumber_Add is part of the Python/C API’s high-

level abstract object layer.

Chapter 30 covers both the abstract and concrete object layers that enable you to
work with either general or very specific types of Python objects.

The simple_count function has its own doc string in count_doc, and it just

returns the number of arguments contained in args. Keep in mind that in Python,

even plain old numbers are actually objects. Therefore, before returning, the func-

tion has to convert from the C long variable called count to an actual Python

object.

The source code for Python includes the files that create the standard built-in
modules. These modules are a great source of examples of using the Python/C
API because these modules are guaranteed to work; and more than likely, you’re
familiar with what they do.

You can create a module doc string by calling Py_InitModule3 instead of

Py_InitModule:

static char simple_doc [] =
“This is an example of a C extension module.\n\
Programming in C is great because\n\

Tip

Cross-
Reference

4807-7 ch29.F 5/24/01 9:01 AM Page 530

531Chapter 29 ✦ Writing Extension Modules

it reminds me of how much fun Python is\n\
by comparison.”;

DL_EXPORT(void) initsimple()
{
Py_InitModule3(“simple”, simple_methods, simple_doc);

}

The initsimple() function must be visible outside the library; on Windows, that

means using _declspec(dllexport) or a .DEF file to export a function from a DLL.

Building and Linking
Before proceeding, you should download the Python source distribution and build

a debug version of at least the main executable and the runtime library. The source

comes with excellent build instructions (including an example project that you can

use as a template), so this section provides only a brief overview and a few tips.

You can now find debug Windows builds on the Python Web site
(www.python.org).

With an extension module, you have two options: It can be statically linked into

Python, or your module can be dynamically loaded at run time when the user

imports it. The latter option is easier if you want to distribute your module to other

people, and it gives Python a smaller initial memory footprint.

To statically link your module into Python for a UNIX build, you add it to the list of

modules to build in the Modules/Setup file; for Windows, add it to the PC\config.c

file; and then rebuild Python.

For dynamic linking, building the module is straightforward:

1. Create a project (Makefile, IDE project file, and so on) that builds a shared

object. This varies by platform, but for gcc you can use the link option

–shared; for Windows, you create a DLL project.

2. Add to the include search path the directory containing Python.h.

3. Add to the link search path the directory containing the Python library (for

example, pythonxx_d.lib or libpythonxx_d.a) and include the library in your

list of files to link.

4. Compile and link.

If you’re using Visual Studio, under the C/CC++ tab in the Project Settings for your
module, be sure to choose the Code Generation category; and then choose Debug
Multithreaded under Use Run-time Library.

Note

Tip

4807-7 ch29.F 5/24/01 9:01 AM Page 531

532 Part V ✦ Advanced Python Programming

The name of your module should match the name used in the source code.

When you create a debug build of Python, files have a _d appended to the end (for

example, the executable is named python_d); and when loading extension mod-

ules, Python looks for the same suffix, so debug versions of your module should

have that suffix as well. For example, if your module is named junk, normally your

extension would be built as junk.so, and the debug version should be named

junk_d.so.

You can also name the debug and release versions of your module as
<module>_d.pyd and <module>.pyd, and Python will load them correctly. The
.pyd extension is preferable to the system default (usually .so or .dll) because
your module may be a wrapper for an existing library of the same name (for exam-
ple, there already exists an opengl.dll file, so it’s less confusing if the Python wrap-
per module for it is named opengl.pyd).

The Python maintainers have done a lot of work to ensure that building extension

modules and Python itself go as smoothly as possible. If your extension refuses to

build, don’t get discouraged: it’s probably something minor. Try starting with one of

the example modules and adding to it.

If you install a compiler just so you can build Python extension modules, it’ll save
you a lot of frustration if you take your time and make sure everything is set up
properly before attempting to build your module. First, build a stand-alone C pro-
gram (such as Hello World or something equally simple). Next, build Python from
the sources. If these two steps are successful, then proceed to build your exten-
sion module.

Converting Python Data to C
When a C extension function is called, it needs to unpack the arguments before it

can operate on them.

Unpacking normal arguments
In the example extension module earlier in this chapter, the simple_add function

called the PyArg_ParseTuple function to unpack the Python function arguments.

The format string tells the type of objects your function expects; the different types

are listed in Table 29-1, along with the type of C pointers to use. A pointer variable

follows the format string, to hold the address of each object after it is unpacked.

Tip

Tip

4807-7 ch29.F 5/24/01 9:01 AM Page 532

533Chapter 29 ✦ Writing Extension Modules

Table 29-1
PyArg_ParseTuple Object Types

Format Python Object C Variable Type(s)

i Integer int1

b Integer char

h Integer short

l Integer long

f floating-point float

d floating-point double

D Complex Py_complex

c 1 character string char

s string char *

s# string or buffer char *, int (stores length)2

z string or None char *

z# string, buffer, or None char *, int

es string, Unicode, or buffer const char *encoding, char
**buffer

es# string, Unicode, or buffer const char *encoding, char
**buffer, int

S String PyStringObject

O any object PyObject

O! any object typeobject, PyObject

O& any object convert_func, anytype

t# read-only char buffer char *, int

w read-write char buffer char *

w# read-write char buffer char *, int

u Unicode object Py_UNICODE

u# Unicode object Py_UNICODE

U Unicode string PyUnicodeObject

1 For types that take a Python integer, you can pass in a Python long integer, but no range checking or
conversion is performed, to ensure that the long value fits in an integer.

2 Consult the Python online documentation for more information about buffer objects.

4807-7 ch29.F 5/24/01 9:01 AM Page 533

534 Part V ✦ Advanced Python Programming

For the D format type, the complex number is stored in a C structure that has two

double members: real and imag.

Many format characters have a similar form, differing with an appended pound sign

(for example, s and s#). The second version of these formats works the same

except that you supply two C variables, one to receive a pointer to the value and

another to receive the length of the string:

char * pStr;
int len;

if (!PyArg_ParseTuple(pArgs,”s#”, &pStr, &len))
return NULL;

As shown in this example, you do not provide the storage for formats that give you

a string value; PyArg_ParseTuple just gives you a pointer to the string. The only

exception to this rule is with es and es#, which convert values to Unicode using the

encoding you provide (or the default encoding if encoding is NULL). For es, Python

allocates a buffer for the encoded value, and it is your responsibility to free it (with

PyMem_Free) when you’re finished. The es# format behaves a little differently if

buffer is not initially NULL: You can create your own buffer and pass it in along

with its maximum length. In both cases, the returned length will be the length of the

encoded value.

With the s format, the string passed to your function is NULL-terminated, so it obvi-

ously can’t contain embedded NULL characters. With the s# format, however, any

Python string can be used. The z and z# formats work the same way except that the

entire string may legally be None in Python, in which case your C pointer will be set

to NULL.

You can use the O format to get a pointer to a Python object instead of converting it

to a C data type. The O! format works the same except that you also supply a type

argument so that your function receives objects only of a certain type (a

TypeError is raised if the caller uses an incorrect type):

PyObject * pObject;

if (!PyArg_ParseTuple(pArgs,”O!”, &PyList_Type, &pObject))
return NULL;

The type names all follow the Py<Name>_Type convention; for example,

PyInt_Type, PyDict_Type, and so on. The S and U formats are shortcuts for O!

that ensure that the argument is a string or Unicode string.

By using the O& format, you can supply a conversion function for an object (which

can be useful if you have to perform the same conversion in many places):

4807-7 ch29.F 5/24/01 9:01 AM Page 534

535Chapter 29 ✦ Writing Extension Modules

typedef struct // An internally-used structure
{
char * pIP;
unsigned short port;

} Addr;

// Converts an IP address and port to an Addr struct
int addr_converter(PyObject *pObj, Addr *pAddr)
{
return PyArg_ParseTuple(pObj, “sh”, &pAddr->pIP,

&pAddr->port);
}

static PyObject *simple_addhost(PyObject *pSelf,
PyObject *pArgs)

{
char * pName;
Addr newA;

if (!PyArg_ParseTuple(pArgs,”sO&”, &pName,addr_converter,
&newA))

return NULL;

printf(“Added host %s (%s:%d)\n”,pName,newA.pIP,newA.port);
return Py_BuildValue(“”);

}

Here’s the output of a call to simple_addhost:

>>> simple.addhost(‘Foo Corp.’,(‘176.201.15.5’,1234))
Added host Foo Corp. (176.201.15.5:1234)

The conversion function should return 1 for success and 0 for failure, and should

also raise an exception if conversion fails.

Chapter 30 covers raising and handling Python exceptions in C.

Python doesn’t increment an object’s reference count when it gives it to you via the

O formats, but very often in C extension modules, you will have to keep track of ref-

erence counts. The next chapter covers this in more detail.

Using special format characters
PyArg_ParseTuple accepts a few special characters in its format string. The fol-

lowing sections show you how to handle sequences and a variable number of argu-

ments, and how to generate error messages when callers supply incorrect

parameters.

Cross-
Reference

4807-7 ch29.F 5/24/01 9:01 AM Page 535

536 Part V ✦ Advanced Python Programming

Sequence unpacking
Instead of calling a conversion function, you can use parentheses in your format

string and PyArg_ParseTuple unpacks sequence arguments on the fly:

int a,b,c,d;
if (!PyArg_ParseTuple(pArgs, “i(ii)i”, &a, &b, &c, &d))

return NULL;

The Python call to this function would take three arguments, the second of which is

a sequence:

simple.somefunc(5, (10,20), 8)
simple.somefunc(0, [1,2], 3)

You can also nest sequences:

char *a, *b, *c, *d;
if (!PyArg_ParseTuple(pArgs, “(((ss)s)s)”, &a, &b, &c, &d))

return NULL;

The corresponding Python call would be as follows:

simple.somefunc((((‘This’,’is’),’really’),’ugly’))

Optional and variable number arguments
A pipe (|) character in the format list means that the remaining arguments to the

function are optional. You should initialize the corresponding C variables to their

default values:

int i, j=15, k=20;

if (!PyArg_ParseTuple(pArgs, “i|ii”, &i, &j, &k))
return NULL;

From Python, you could call this function in any of the following ways:

simple.myfunc(10)
simple.myfunc(10,15)
simple.myfunc(10,15,20)

You can use this method to create functions that handle a variable number of argu-

ments, but you do have to supply an upper bound on how many arguments the

user can pass in. If you truly need to handle a varying number of arguments, you

can avoid calling PyArg_ParseTuple altogether and process the pArg variable

using the abstract and concrete object layers described in the next chapter.

4807-7 ch29.F 5/24/01 9:01 AM Page 536

537Chapter 29 ✦ Writing Extension Modules

Error messages
At the end of the format list, you can add a colon followed by a string to change the

function name used if PyArg_ParseTuple raises an exception:

if (!PyArg_ParseTuple(pArgs, “iii:bleh”, &i, &j, &k))
return NULL;

Calling this function with the wrong number of arguments results in the following

exception:

myFunc(1,2,3,4)
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

TypeError: bleh() takes at most 3 arguments (4 given)

Instead of a colon, you can use a semicolon followed by a string to be used as the

error message:

if (!PyArg_ParseTuple(pArgs, “iii;Doh!”, &i, &j, &k))
return NULL;

Now a call with the wrong number of arguments yields the following:

myFunc(1,2,[5])
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

TypeError: Doh!

Unpacking keyword arguments
In order to handle keyword arguments, you first need to change the function’s entry in

the module function table from METH_VARARGS to METH_VARARGS | METH_KEYWORDS:

static PyMethodDef mymodule_methods[] =
{
...
{“func”, mymodule_func, METH_VARARGS | METH_KEYWORDS},
...
{NULL, NULL} // End of functions

};

The C function takes a third parameter to hold the keyword arguments, and you call

PyArg_ParseTupleAndKeywords to unpack the arguments, passing in a list contain-

ing the names of the arguments. The following example accepts three keyword argu-

ments, one of which is optional:

// Argument names
static char *ppNames[] = {“name”,”age”,”weight”,NULL};

4807-7 ch29.F 5/24/01 9:01 AM Page 537

538 Part V ✦ Advanced Python Programming

static PyObject *simple_kwd(PyObject *pSelf, PyObject *pArgs,
PyObject *pKwds)
{
char * pName;
int age;
int weight = -1; // weight is optional, so set a default

if (!PyArg_ParseTupleAndKeywords(pArgs, pKwds, “si|i”,
ppNames, &pName, &age, &weight))

return NULL;

printf(“Name: %s Age: %d Weight: %d\n”,
pName, age, weight);

return Py_BuildValue(“”);
}

The format string must have an entry for each entry in the list of names (ppNames),

and the list of names must end with a NULL member. Following are some sample

calls to this function:

>>> simple.kwd(‘Bob’,5)
Name: Bob Age: 5 Weight: -1
>>> simple.kwd(age=10,name=’Beable’)
Name: Beable Age: 10 Weight: -1
>>> simple.kwd(‘Fred’,weight=150,age=25)
Name: Fred Age: 25 Weight: 150

Unpacking zero arguments
If your C function takes no arguments, you should still call PyArg_ParseTuple with

an empty format string to make sure no one calls your function incorrectly:

if (!PyArg_ParseTuple(pArgs, “”))
return NULL;

There is also a utility macro, PyArg_NoArgs(pArgs), that does the same thing,
but as of Python 2.1, it requires that the function’s entry in the module function
table use an obsolete form of argument passing, METH_OLDARGS.

Converting C Data to Python
The Py_BuildValue(format, ...) function does the opposite of

PyArg_ParseTuple, creating a Python object from C values. It is very common to

use a call to this function when returning to Python from your C function. The fol-

lowing example uses Py_BuildValue to create a function that takes no parameters

and returns a Python string object with the value ‘Hello’:

Note

4807-7 ch29.F 5/24/01 9:01 AM Page 538

539Chapter 29 ✦ Writing Extension Modules

static PyObject *simple_hello(PyObject *pSelf, PyObject *pArgs)
{
if (!PyArg_ParseTuple(pArgs,””))
return NULL;

return Py_BuildValue(“s”,”Hello!”);
}

Besides Py_BuildValue, you can use functions in the concrete object layer to
convert from C data types. Chapter 30 covers functions such as
PyInt_FromLong, which creates a Python integer object from a C long value.

Creating simple Python objects
Py_BuildValue takes a format string and the necessary C values to populate the

Python object. Table 29-2 lists the characters you can use in the format string.

Table 29-2
Py_BuildValue Object Types

Format C Type Python Object

i Int integer

b Char integer

h Short integer

l Long integer

f Float floating-point number

d Double floating-point number

c Char 1-character string

s or z char * string

s# or z# char*, int string

S PyStringObject * new string object

O PyObject * object with reference count incremented

O& converter, any new object passed through converter function

N PyObject * object with reference count unchanged

u Py_UNICODE * new Unicode object

u# Py_UNICODE *, int new Unicode object

U PyUnicodeObject * new Unicode object

Cross-
Reference

4807-7 ch29.F 5/24/01 9:01 AM Page 539

540 Part V ✦ Advanced Python Programming

s, z, and u take NULL-terminated strings and convert them to Python strings; the

forms that also take a length parameter can have embedded NULLs.

With string conversion (for example, -s, s#, u), empty C strings convert to empty

Python strings, and NULL pointers in C are returned as None in Python. Any time

you pass a string or memory buffer to Py_BuildValue, it copies the data passed in,

so it’s immediately safe to destroy whatever buffers you were using to hold your

original copy of the data.

Py_BuildValue raises PyExc_SystemError and returns NULL if any problems

occur during conversion. Likewise, a conversion function used with the O& format

should return a new Python object if possible, or raise an exception and return

NULL on error.

Unlike PyArg_ParseTuple, you can add whitespace, colons, and commas to the
format string for Py_BuildValue. They do not affect the value returned, but help
improve C code readability.

With an empty format string, Py_BuildValue returns the None object; with a single

format specifier, it returns an object of that type; and with two or more, it returns a

tuple containing the Python objects (this matches the behavior of normal Python).

In order to force Py_BuildValue to return a tuple containing 0 or 1 objects, wrap

the formats in parentheses:

Py_BuildValue(“()”); // Creates an empty tuple
Py_BuildValue(“(i)”,5); // Creates the tuple (5,)

A slightly more efficient idiom for returning None is

Py_INCREF(Py_None);
return Py_None;

Creating complex Python objects
In addition to atomic Python objects, you can use Py_BuildValue to create

sequence and mapping objects too. This function call creates a tuple containing a

list and another tuple:

// Creates ([5, 6, 7], (‘a’, ‘b’))
Py_BuildValue(“[iii](cc)”,5,6,7,’a’,’b’);

You can nest sequences to create complex objects as needed:

// Creates ([(1,), (2,), [3, 4]], (5, [6]))
Py_BuildValue(“[(i)(i)[ii]](i[i])”,1,2,3,4,5,6);

Dictionaries are simple to make; each pair of C values form a key-value pair:

// Creates {2: 2.5, 1: ‘one’}
Py_BuildValue(“{i:s,i:f}”,1,”one”,2,2.5);

Tip

Tip

4807-7 ch29.F 5/24/01 9:01 AM Page 540

541Chapter 29 ✦ Writing Extension Modules

Embedding the Interpreter
Instead of extending Python with C, sometimes it’s advantageous to extend a C pro-

gram with Python.

A simple example
Once you have extension modules under your belt, embedding the Python inter-

preter in a C program is a cinch:

#include “Python.h”

int main(int argc, char ** argv)
{
Py_Initialize(); // Prepare the interpreter
PyRun_SimpleString(“print ‘Hello from Python!’\n”);
Py_Finalize(); // Clean up resources used
return 0;

}

The build steps are similar to those for extension modules: Modify the include and

link paths to get the Python files, and link in Python’s library. Instead of creating a

shared library, of course, your project or Makefile should create a stand-alone

executable.

With the exception of a few setup and threading functions, Py_Initialize() is the

first Python API function that your program should use as it prepares the inter-

preter for operation, which includes setting up built-in modules such as

__builtin__ and __main__. Call Py_Finalize() to free the resources used by the

Python subsystem; after Py_Finalize has been called, you need to call

Py_Initialize again if you want to run more Python code without restarting your

program. If your program is unsure of the current state, it can at any time call

Py_IsInitialized() to check.

PyRun_SimpleString is one of many functions you can use to actually execute

the Python code; “Running Python Code from C,” later in this chapter, has more

information.

Py_Finalize does not unload dynamically loaded extension modules; those
stay around until your program terminates.

Shutting down
At any time, you can call Py_FatalError(char *message) to print an error mes-

sage to stderr and kill the current process without performing any cleanup. The

process exits with a call to the abort() function in the standard C library, so on

UNIX systems it will attempt to create a core file.

Caution

4807-7 ch29.F 5/24/01 9:01 AM Page 541

542 Part V ✦ Advanced Python Programming

For normal exiting, call Py_Exit(int code) to gracefully shut down the current

process. Py_Exit calls Py_Finalize first, and then calls the C exit(code) func-

tion using the exit code you supply.

Use Py_AtExit(func) to register a shutdown function that will be called by

Py_Finalize. Your shutdown function should take no arguments and return no

value. Py_AtExit returns 0 if successful, or –1 if you try to register more than 32

functions. Each shutdown function is called only once per call to Py_Finalize, and

they are called in the opposite order in which they were registered (LIFO).

Py_Finalize does all of its own cleanup work before calling the shutdown func-

tions, so your functions should not use Python/C API calls.

Other setup functions
By default, the program’s name (the value of argv[0]) is ‘Python’, but you can

change that with a call to Py_SetProgramName(char *name), which must be called

before Py_Initialize. The program’s name is used internally to help locate run-

time libraries. Py_SetProgramName does not copy the string but keeps a pointer to

it. You can call Py_GetProgramName() to get this value.

Use PySys_SetArgv(int argc, char **argv) to set the command-line parameters

for the Python interpreter (sys.argv). This call must follow Py_Initialize, and

in current versions, if you don’t call PySys_SetArgv, the sys module will not have

an argv member at all.

Py_SetPythonHome(char *) lets you programmatically override or set the value of

the PYTHONHOME environment variable. Use Py_GetPythonHome() to retrieve the

current value, which is empty by default.

System information functions
Many functions return information about the program’s operating environment; this

section describes the more useful ones. Note that these are not specific to embed-

ded interpreters but can also be used from extension modules.

Py_GetProgramFullPath() returns a pointer to a string representing the complete

path to the currently running executable (either the normal Python interpreter or

an application that embeds the interpreter).

To access the default module search path, call Py_GetPath(). The returned

pointer refers to a list of paths from sys.path, separated by the system path delim-

iter character (for example,:on UNIX). Although you can modify the list from Python

via sys.path, do not modify the value returned from Py_GetPath.

Py_GetVersion() returns a pointer to a string showing the version of the Python

interpreter:

4807-7 ch29.F 5/24/01 9:01 AM Page 542

543Chapter 29 ✦ Writing Extension Modules

2.1 (#9, Jan 1 2001, 02:49:28) [MSC 32 bit (Intel)]

This is the same string displayed when starting an interactive Python session, and

is accessible from Python as sys.version.

Py_GetPlatform() returns a platform identifier string such as win32 or freebsd4. If

Python can’t determine the platform name, this function returns the string

“unknown.” Python code accesses this value as sys.platform.

Py_GetPrefix() returns the path prefix for installed platform-independent files,

and Py_GetExecPrefix() returns the path prefix for installed platform-dependent
files. For example, if the program name is /usr/local/bin/python, the prefix is

/usr/local, although the values are actually calculated based on the program

name and environment variables. These values are available from Python as

sys.prefix and sys.exec_prefix. On UNIX, they refer to the --prefix and --
exec-prefix Makefile settings; on Windows, they are empty.

Running Python Code from C
The abstract object layer covered in the next chapter has functions, such as

PyObject_CallFunction, that let C extension functions call Python functions

directly, just like a normal function call in a Python program. In some cases, how-

ever, you might not need such direct, low-level communication between Python and

C. If your C program just needs to execute some Python code without much interac-

tion with the Python interpreter, you can use the functions listed in this section

instead.

As shown in the previous section’s example, PyRun_SimpleString(char *com-
mand) executes a string containing one or more lines of Python code. The function

returns 0 if successful and –1 if an unhandled exception was raised, although

there’s no way to retrieve information about what exception it was.

PyRun_SimpleString runs the code in the __main__ module, creating the module

first if needed.

PyRun_SimpleFile(FILE *f, char *fname) works just like

PyRun_SimpleString, except that it uses the contents of the file f as the code to

execute. fname is the name of the file being use.

PyRun_InteractiveOne(FILE *f, char *fname) waits for and then executes a

single statement from f, which is a file representing an interactive device. fname is a

name to be used when printing out error messages.

PyRun_InteractiveLoop(FILE *f, char *fname) repeatedly calls

PyRun_InteractiveOne until the end of file is reached. The following code creates

an interactive interpreter, somewhat similar to the one you get when you load the

Python executable in interactive mode:

4807-7 ch29.F 5/24/01 9:01 AM Page 543

544 Part V ✦ Advanced Python Programming

#include “Python.h”

int main(int argc, char ** argv)
{
Py_Initialize();
Py_Exit(PyRun_InteractiveLoop(stdin,”<stdin>”));

}

PyRun_AnyFile(FILE *f, char *fname) is a utility function that calls

PyRun_InteractiveLoop if f is attached to an interactive device, and

PyRun_SimpleFile if it is not. This function uses Py_FdIsInteractive(FILE *f,
char *fname) to decide which to call.

If you have a block of code that you intend to execute many times, you can parse it

a single time and create a code object that stores the code in its ready-to-execute

form so that later executions will be quicker. PyParser_SimpleParseString(char
*command, int start) parses code from a string in memory, and

PyParser_SimpleParseFile(FILE *f, char *fname, int start) parses code

from the file you provide. The start parameter is used to tell what sort of code it’ll

be parsing; legal values are described in Table 29-3.

Table 29-3
Grammar start Codes

Code Use if the Python code to parse is... Example

Py_eval_input an isolated expression x * 6

Py_single_input a single statement print blue

Py_file_input a sequence of statements (an entire program)

Both of these functions return a pointer to a newly allocated node structure, which

you can then convert into a code object:

#include “Python.h”
#include “compile.h”
#include “node.h”
...

PyCodeObject *co;
node * n;

n = PyParser_SimpleParseString(“print ‘Hello’”,
Py_single_input);

co = PyNode_Compile(n, “<stdin>”);
PyNode_Free(n);
if (co)

4807-7 ch29.F 5/24/01 9:01 AM Page 544

545Chapter 29 ✦ Writing Extension Modules

{
... // Do some work here
Py_DECREF(co);

}

For a shortcut that does the same thing, call Py_CompileString(char *cmd, char
*fname, int start), which returns a new reference to a code object. This example

creates a code object that prints ‘Hello’, and then executes the code object 10 times

(it uses functions you won’t learn until the next chapter, so don’t worry if it looks a

little strange):

#include “Python.h”
#include “compile.h”
#include “eval.h”

int main(int argc, char ** argv)
{
PyObject *co, *m;

Py_Initialize(); // Setup
m = PyImport_AddModule(“__main__”); // Force creation of main
co = Py_CompileString(“print ‘Hello’”, “<stdin>”,

Py_single_input);
if (co && m)
{
int i;
PyObject *d = PyModule_GetDict(m); // Get main dictionary
// Repeatedly execute the code object
for (i = 0; i < 10; i++)
{
PyObject * res = PyEval_EvalCode((PyCodeObject *)co,

d, d);
Py_XDECREF(res);

}

Py_DECREF(co); // We’re done with this object!
}

Py_Exit(0);
}

If you only need to evaluate a string, use the PyRun_String(char *cmd, int
start, PyObject *globals, PyObject *locals) function, which returns a new

reference to a Python object containing the result of running the code. globals and

locals are Python objects that reference the global and local dictionaries in which

to run the code. The following example takes a Python expression as a string, evalu-

ates it, and converts the result to a C integer:

#include “Python.h”

int main(int argc, char ** argv)
{

4807-7 ch29.F 5/24/01 9:01 AM Page 545

546 Part V ✦ Advanced Python Programming

PyObject *m, *d, *result;
char * cmd = “2 * 11”;

Py_Initialize(); // Set up
m = PyImport_AddModule(“__main__”);
d = PyModule_GetDict(m); // Get dictionary to use

// Evaluate it and get a PyObject back
result = PyRun_String(cmd, Py_eval_input, d, d);

// Convert the PyObject to something chicken and print it
printf(“%s is %d\n”,cmd,(int)PyInt_AsLong(result));

Py_Exit(0);
}

The result is printed on stdout:

2 * 11 is 22

Finally, if your input is coming from a file, you can do the same thing with PyRun_File
(FILE *f, char *fname, int start, PyObject *globals, PyObject *locals).

PyRun_AnyFile, PyRun_SimpleFile, and PyRun_File all have extended ver-
sions (for example, PyRun_AnyFileEx) that take an integer third parameter,
which, if non-zero, tells the function to close the file descriptor when finished.

Using Extension Tools
Writing code to create the interface between Python and C is generally very

straightforward and, therefore, often boring. After you’ve been spoiled by develop-

ment in Python, you may find that your extension modules have bugs because you

have to manually manage object reference counts. Fortunately, several popular

tools are available to help you automate these tasks.

In addition to the tools mentioned here, the Vaults of Parnassus have others that
you can try too. Visit the Python Tools/Extensions section at http://www.vex.
net/parnassus.

SWIG
The Simplified Wrapper and Interface Generator (SWIG) is a development tool

designed to connect C and C++ programs with high-level languages, including, but

not limited to, Python, Perl, and Tcl/Tk. It is especially useful for creating an exten-

sion module from an existing C or C++ library. In some cases, it can generate all the

interface code automatically. SWIG is free for commercial and private use and is

available from www.swig.org.

Tip

Tip

4807-7 ch29.F 5/24/01 9:01 AM Page 546

547Chapter 29 ✦ Writing Extension Modules

Some areas in which SWIG shines include the following:

✦ Wrapping existing libraries (your own or third-party libraries)

✦ Rapid prototyping and application development

✦ Interactive debugging (use your library in an interactive Python session)

✦ Regression testing (Python scripts that test your C/C++ code)

✦ Creating a GUI front-end in Python for an underlying C program

Using SWIG
To use SWIG, you create an interface file that lists the variables and functions you

want to be available to Python. The format of the file is very C-like (it’s read by a C

preprocessor), and in some cases you can even use your source code as the inter-

face file itself.

Once the interface file is ready, you run SWIG to generate the wrapper code. You

then compile the wrapper code and link in your original C code, and you end up

with a ready-to-use Python module.

A SWIG example
SWIG has many features, but the following simple example gives you an idea of

what it does. Suppose I want to create (or have already created) a C library called

useless and I want to be able to access its powerful features from Python. The

source code is in useless.c:

#include “stdio.h”

int getnum()
{
return 42;

}

void message()
{
printf(“Hello, SWIG!\n”);

}

int addem(int j, int k)
{
return j + k;

}

The next step is to create the interface file called useless.i:

%module useless
%include useless.c

4807-7 ch29.F 5/24/01 9:01 AM Page 547

548 Part V ✦ Advanced Python Programming

The %module directive says that the finished module will be called useless. The rest

of the file contains C variable and function declarations; because the original

source code is clean, I decide to pass it all to SWIG verbatim. Alternatively, I could

have used the following:

%module useless
int getnum();
void message();
int addem(int j, int k);

Often, the second form is what you’ll use, because you might not want every library

function exported to Python, and the interface file lets you add features specific to

the Python version of your library.

The next step is to run SWIG and generate the wrappers:

/home/dave/swig> swig –python useless.i
Generating wrappers for Python

SWIG creates useless_wrap.c and useless_wrap.doc (a documentation file). The

–python argument selects Python as the output language. Now it’s time to build the

module:

home/dave/swig> gcc –shared useless.c useless_wrap.c –o \
uselessmodule.so –I/usr/local/include/python2.0 \
–DHAVE_CONFIG –I/usr/local/lib/python2.0/config

If you do this more than once, you’ll obviously want to wrap this into a Makefile.

The SWIG Web site also has instructions for using Microsoft Developer Studio.

The new module is complete. Here’s a test:

>>> import useless
>>> dir(useless)
[‘__doc__’, ‘__file__’, ‘__name__’, ‘addem’,
‘getnum’, ‘message’]
>>> useless.addem(10,5)
15
>>> useless.message()
Hello, SWIG!
>>> useless.getnum()
42

Other nifty features
SWIG works with both C++ classes and templates; but for some C++ features, you

have to put forth a little extra effort to get them to work (it’s all well documented,

but a little less intuitive). SWIG does a great job of making the common case fast

(the creators of SWIG cite the example of creating a Python module for OpenGL in

15 minutes or so); more complex C++ features require more work to make them

callable from Python.

4807-7 ch29.F 5/24/01 9:01 AM Page 548

549Chapter 29 ✦ Writing Extension Modules

With structures and classes, the Python equivalents become Classname_method-
name. The print(msg) method in a List class would be List_print(instance,
msg), which is sort of klunky, but SWIG’s –shadow command line option has it cre-

ate a shadow class that makes the Python version easier to use; for example,

myList.print(msg).

Your interface file can also implement the special methods that Python classes use.

For example, you could implement in C a __getitem__ method to handle attribute

access.

One final feature worth mentioning here is a typemap, which automatically handles

conversion to and from Python data types when calling your C functions. For exam-

ple, if you have a C writeToFile function that takes a C FILE pointer, you can cre-

ate a typemap that converts to and from FILE pointers and Python file objects.

Then, without changing the original C code, Python routines can pass in file objects

to any C functions that expect FILEs.

CXX
CXX is a set of C++ facilities that helps you write Python extensions easily and with

fewer bugs. You can download CXX from http://cxx.sourceforge.net. CXX has

two main parts: CXX_Objects and CXX_Extensions.

SCXX (Simplified CXX) is another Python/C++ API library that is also free to use for
commercial and private applications. Its main purpose is to wrap Python objects
and manage reference counts, and it stays away from C++ features found only in
newer compilers. Visit http://www.mcmillan-inc.com for more information.

CXX_Objects
The main idea behind CXX_Objects is that too much of the work of writing Python

extension modules deals with checking return codes for errors and managing refer-

ence counts, and that using the standard Python/C API is too low-level.

CXX_Objects is a set of high-level C++ classes (named Float, Tuple, String, Dict, and

so on) that wrap their Python counterparts. Their constructors and destructors

keep track of reference count details; and as a group, they use C++ exceptions to

signify error conditions and as a cleanup mechanism. In short, it makes writing C++

extension modules cleaner by using the features that make C++ a higher-level lan-

guage than C.

Because you rarely use PyObject pointers directly, and instead use high-level wrap-

per objects, your extension module code is more “Pythonic,” less buggy, and easier

to maintain.

Unhandled Python API errors or uncaught CXX exceptions are automatically con-

verted to Python exceptions and passed back to the caller, although you always

have the option of handling the exceptions yourself.

Note

4807-7 ch29.F 5/24/01 9:01 AM Page 549

550 Part V ✦ Advanced Python Programming

CXX_Extensions
CXX_Extensions is a more recent addition to CXX. As with CXX_Objects, the motiva-

tion behind it is that the Python/C API way of doing things can be improved upon

by using the features of C++.

A garden-variety C extension module has numerous static functions and a single

public initialization function that is called when the module is imported. The init
function passes back to Python a table that has pointers to the various functions

implemented by the module.

The CXX_Extensions approach is that all extension modules are actually C++

classes that are derived from ExtensionModule (a base class template). Each func-

tion in your module is implemented as a method of that class.

CXX_Extensions also includes PythonExtension, a C++ class from which you derive

new Python extension types. Unlike other objects, PythonExtension objects can be

created either on the Python heap or in automatic (stack) storage. Creating and

destroying objects on the heap can be relatively expensive, so programs that

can create and use PythonExtension objects created on the stack enjoy better

performance.

Extension classes
Although you can create new Python types in a C extension module, Python types

in general aren’t very object-oriented (you can’t directly subclass floating point

numbers, for example). Digital Creations (the maker of Zope) has created extension
classes, which are Python extension types that look and act as if they were really

classes.

With extension classes, you can create an extension base class in C or C++ and then

subclass it in Python. As with normal classes, it is trivial to create new instances of

them, and they even work with multiple inheritance (for example, a Python sub-

class is derived from both a C extension class and a Python class).

One advantage of extension classes is that instance data can be stored in a dictio-

nary as usual, as instance data in a C++ object, or some combination of the two. You

could have a few special members stored in a C struct for performance reasons, for

example, and let the other object attributes remain in the instance dictionary.

Extension classes also enable you to invoke unbound methods (unlike normal

Python classes, for which you need an instance object in order to use them).

You can download extension classes from www.digicool.com.

4807-7 ch29.F 5/24/01 9:01 AM Page 550

551Chapter 29 ✦ Writing Extension Modules

Summary
This chapter introduced what you need to know to begin using Python with C. By

reading this chapter, you learned how to:

✦ Write a complete C extension module.

✦ Pass data from Python and convert it to C data types.

✦ Return data from a C extension to a Python program.

✦ Use popular third-party packages to automatically generate Python-C inter-

face code.

✦ Embed the interpreter in a C program.

Chapter 30 finishes our coverage of the Python/C API. In it, you’ll learn about the

different object layers available and how you can properly handle and report errors

from C.

✦ ✦ ✦

4807-7 ch29.F 5/24/01 9:01 AM Page 551

4807-7 ch29.F 5/24/01 9:01 AM Page 552

Embedding the
Python
Interpreter

This chapter is the second of a two-part look at the

Python/C API. Whereas the previous chapter introduced

the concepts of using Python and C/C++ together, this chapter

is a reference for the functions used to manipulate Python

objects from C. It also deals with other issues, such as error

handling and C memory management.

Tracking Reference Counts
Each Python object always knows how many variables refer-

ence it; and when there are no remaining variables, the object

magically goes away. To remind you how much you enjoy pro-

gramming in Python, when using the C API, you have to do

some of the reference counting yourself. Each time you use a

PyObject pointer (or one of its subtypes), you need to track

the type of reference ownership that goes along with that

object pointer. There’s nothing in the code itself that contains

this information; the Python/C API has a few documented

terms and conventions that act as guidelines.

Types of reference ownership
Suppose you have a PyObject pointer named x. You use the

Py_INCREF(x) macro to tell Python, “Hey, I’m using the

object pointed to by x; I need a new reference to it”; and you

use Py_DECREF(x) to say, “I’m done with (my reference to) x.”

If you don’t do this, it’s quite possible that somewhere else

the last reference to x is released, the object is cleaned up,

and you’re left with a pointer to memory that has already

been freed. Your well-behaved C extension module suddenly

becomes the cause of strange crashes and other evils.

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Tracking reference
counts

Using the abstract
and concrete object
layers

Working with number
objects

Working with
sequence objects

Working with
mapping objects

Using other object
types

Creating threads and
sub-interpreters

Handling errors and
exceptions

Managing memory

✦ ✦ ✦ ✦

4807-7 ch30.F 5/24/01 9:01 AM Page 553

554 Part V ✦ Advanced Python Programming

The first type of reference is an owned reference. If your block of code owns a refer-

ence to an object, then it’s safe to store the object pointer, for example, because the

object won’t be destroyed at least until you release your reference to it. One way to

gain a reference is to call Py_INCREF, another is when a function returns to you a

new reference.

You can cease to own a reference by calling Py_DECREF or by transferring the refer-

ence to someone else. When you own a reference and call a function that assumes

ownership of that reference, that function is said to steal the reference from you.

The second type of reference is a borrowed reference. Because you’re using C point-

ers to Python objects, it’s possible to pass objects to another function that doesn’t

modify the reference counts at all. If this is intentional, such a function is said to

borrow references to objects (otherwise, it’s a bug). One case in which this is safe is

in a function that uses the object pointer to perform some operation and then

returns control to the caller without storing the pointer or modifying the reference

count. If the caller owns a reference, then the object is guaranteed to exist until pro-

gram control is returned to the caller. The rule here is that the borrower can’t use

the reference any longer than the true owner does. To change a borrowed reference

to an owned reference, simply call Py_INCREF.

Although these references are called borrowed references, they aren’t really bor-
rowed at all, as the caller still owns the reference. Another way to think of it is that
the reference owner gives permission to another function to access the object
temporarily.

To sum it up, you become an owner of a reference by calling Py_INCREF or by

receiving a new reference from someone else. There are two legal ways to rid your-

self of an owned reference: decrease the reference count or give the reference to

someone else. Anything else is a reference leak and, in turn, a memory leak (and

potentially a leak of other resources).

Py_XINCREF and Py_XDECREF modify reference counts, but first check to make
sure the object is non-NULL.

Reference conventions
The Python/C API documentation specifies whether references are borrowed or

owned (although occasionally it doesn’t hurt to look at the function source code

just to convince yourself).

As a general rule of thumb, the API functions that return some type of PyObject
pointer return a new reference to that Python object. For example, many C exten-

sion functions return with a call to Py_BuildValue; it returns a new reference to

you, which you pass on to the caller of your function. The main exceptions to this

rule (we’ll remind you again later) are PyTuple_GetItem and PyList_GetItem,

which return borrowed references to tuple and list items.

Tip

Note

4807-7 ch30.F 5/24/01 9:01 AM Page 554

555Chapter 30 ✦ Embedding the Python Interpreter

When you pass object references to functions, those functions generally borrow the

references (if they want a reference, they’ll call Py_INCREF). The main exceptions

are PyTuple_SetItem and PyList_SetItem, which steal references from their

callers.

Along the same lines, C functions called from Python borrow references to their

arguments because the objects are basically guaranteed to exist until the function

returns. If you need to store a pointer to an object, however, be sure to grab your

own reference to it.

Common pitfalls
Usually, tracking reference counts isn’t too much hassle, but two very common but

subtle bugs are confusing enough to warrant mention here. Don’t be surprised if

you run into these exact bugs or close variants.

One common mistake occurs in multithreaded programs. There is a global lock (dis-

cussed in the “Creating Threads and Sub-Interpreters” section later in this chapter)

that the current thread must hold in order to operate on Python objects. Before

potentially long operations (a blocking socket call, for example), it is customary to

release this lock so that other threads can do work. Problems arise if the other

threads end up deleting the last reference to an object to which you have only a

borrowed reference. In this case, when you regain control of the global lock, your

once valid object has now been deleted. The solution is to increment the reference

count before releasing the lock and decrement it on return — even if no other refer-

ences remain, your owned reference will still exist.

A similar problem occurs when an object’s reference count is implicitly decre-

mented. Calling PyList_SetItem, for example, puts an object in a list (such as the

Python code a[5] = ‘hello’). The object originally in that position is replaced, its

reference count is decremented by 1, and, if that was the last reference, the object

is deleted. Any borrowed references you have to that object (perhaps from a call to

PyList_GetItem) may now be bogus. Again, the solution is to explicitly get a new

reference to the object so that you can guarantee that it is not destroyed too soon.

Using the Abstract and Concrete Object
Layers

The Python/C API contains functions to perform all possible operations on Python

objects. The functions used to manipulate objects are organized hierarchically

according to object type, and it has two main layers: abstract and concrete.

4807-7 ch30.F 5/24/01 9:01 AM Page 555

556 Part V ✦ Advanced Python Programming

Object layers
The abstract object layer is an API layer that enables you to work with general cate-

gories of objects. For example, you can call PyNumber_Add to add two numbers

without worrying too much about their exact type. The abstract layer also has func-

tions for dealing with sequence types and mapping types.

The concrete object layer has functions specific to each type of object. PyFloat_Check
checks to see if an object is a floating-point number, for example; and

PyComplex_FromDoubles creates a complex number object from two C numbers.

In general, API functions that return a pointer use NULL to denote an error, and
those that return an integer use –1 for errors. In both cases, the functions also set
an error condition so that the Python caller ends up with an exception. See
“Handling Errors and Exceptions” later in this chapter for more information about
error handling.

If you have a choice between functions in the abstract and concrete object layers,

use the more general abstract functions, for greater flexibility.

Working with generic objects
At the top of the hierarchy is a group of general-purpose functions for working with

any Python object. Table 30-1 lists common object operations in Python and their

corresponding C function call. Calls that return PyObject pointers return a new ref-

erence unless otherwise noted.

Table 30-1
General Object Functions

Python Equivalent C Function Call

repr(o) or `o` PyObject *PyObject_Repr(PyObject *o)

str(o) PyObject *PyObject_Str(PyObject *o)

PyObject *PyObject_Unicode(PyObject *o)

len(o) int PyObject_Length(PyObject *o)

hasattr(o, name) int PyObject_HasAttrString(PyObject *o, char *name)

int PyObject_HasAttr(PyObject *o, PyObject *name)

getattr(o, name) PyObject *PyObject_GetAttrString(PyObject *o, char
*name)

PyObject *PyObject_GetAttr(PyObject *o, PyObject
*name)

Cross-
Reference

4807-7 ch30.F 5/24/01 9:01 AM Page 556

557Chapter 30 ✦ Embedding the Python Interpreter

Python Equivalent C Function Call

o.name = v int PyObject_SetAttrString(PyObject *o, char
*name,PyObject *v)

int PyObject_SetAttr(PyObject *o, PyObject *name,
PyObject *v)

del o.name int PyObject_DelAttrStr(PyObject *o, char *name)

int PyObject_DelAttr(PyObject *o, PyObject *name)

cmp(o1, o2) int PyObject_Compare(PyObject *o1, PyObject *o2)

int PyObject_Cmp(PyObject *o1, PyObject *o2, int
*result)

int PyObject_RichCompare(PyObject *o1, PyObject *o2,
int op)

o[key] PyObject *PyObject_GetItem(PyObject *o, PyObject
*key)

o[key] = val int PyObject_SetItem(PyObject *o, PyObject *key,
PyObject *val)

del o[key] int PyObject_DelItem(PyObject *o, PyObject *key)

print >> fp, `o` int PyObject_Print(PyObject *o, FILE *fp, 0)

print >> fp, o int PyObject_Print(PyObject *o, FILE *fp,
Py_PRINT_RAW)

type(o) PyObject *PyObject_Type(PyObject *o)

hash(o) int PyObject_Hash(PyObject *o)

not not o (is o true?) int PyObject_IsTrue(PyObject *o)

callable(o) int PyCallable_Check(PyObject *o)

The PyObject_RichCompare function compares two objects using the comparison

you specify in the op parameter. If neither object supports the necessary compari-

son function, Python compares them using its own methods. The op parameter can

be any of the following global variables that correspond to the rich comparison

function names:

Py_LT
Py_LE
Py_EQ
Py_NE
Py_GT
Py_GE

4807-7 ch30.F 5/24/01 9:01 AM Page 557

558 Part V ✦ Advanced Python Programming

To compare using an object’s __lt__ function, for example, you’d call

PyObject_RichCompare with an op of Py_LT. As of Python 2.1, the

PyObject_Compare function checks for the presence of rich comparison functions

before using Python’s default comparison functionality.

PyObject_RichCompare is new in Python 2.1.

You can read more about the rich comparison functions in Chapter 7.

The equivalent of apply(o, args) or o(*args) is PyObject_CallObject
(PyObject *o, PyObject *args), where args can be NULL if a function takes no

arguments. PyObject_CallObject returns a new reference to an object containing

the function call result.

PyObject_CallFunction(PyObject *o, char *format, ...) works the same

way except that you use a Py_BuildValue-like format string to specify the argu-

ment types, or a NULL format string to denote no arguments. When calling methods

of instance objects, use PyObject_CallMethod(PyObject *o, char *method,
char *format, ...). Note that you can’t call special methods (for example,

__add__) this way; the API provides individual functions for calling those methods

(for example, PyNumber_Add).

Even if there isn’t a public C API for a particular Python method, you can still call it
using these functions. For example, mapping objects (for example, dictionaries)
have an items() method to return a list of key-value pairs, so you could invoke it
as follows:

PyObject_CallMethod(O,”items”,NULL)

PyObject_AsFileDescriptor(PyObject *o) is a utility function for getting an

integer file descriptor from an object. If the Python object is an integer or long num-

ber, it returns its value. Otherwise, it returns the result from calling the object’s

fileno() method, if present.

Working with Number Objects
The abstract object layer has the PyNumber family of functions for dealing with any

numerical object; and the concrete layer has functions specific to integers, long

integers, floating-point numbers, and complex numbers.

Any numerical type
Use PyNumber_Check(PyObject *o) to determine whether a particular Python

object supports numerical operations.

Tip

Cross-
Reference

New
Feature

4807-7 ch30.F 5/24/01 9:01 AM Page 558

559Chapter 30 ✦ Embedding the Python Interpreter

Table 30-2 lists numerical operations in Python and their Python/C API equivalents.

As usual, PyObject pointers returned from functions represent a new reference to a

Python object, or are NULL to indicate an error.

Table 30-2
Numerical Functions

Python Equivalent C Function Call

a + b PyObject *PyNumber_Add(PyObject *a, PyObject *b)

a – b PyObject *PyNumber_Subtract(PyObject *a, PyObject
*b)

a * b PyObject *PyNumber_Multiply(PyObject *a, PyObject
*b)

a / b PyObject *PyNumber_Divide(PyObject *a, PyObject *b)

a % b PyObject *PyNumber_Remainder(PyObject *a, PyObject
*b)

divmod(a, b) PyObject *PyNumber_Divmod(PyObject *a, PyObject *b)

-a PyObject *PyNumber_Negative(PyObject *a)

+a PyObject *PyNumber_Positive(PyObject *a)

~a PyObject *PyNumber_Invert(PyObject *a)

abs(a) PyObject *PyNumber_Absolute(PyObject *a)

a << b PyObject *PyNumber_Lshift(PyObject *a, PyObject *b)

a >> b PyObject *PyNumber_Rshift(PyObject *a, PyObject *b)

a & b PyObject *PyNumber_And(PyObject *a, PyObject *b)

a | b PyObject *PyNumber_Or(PyObject *a, PyObject *b)

a ^ b PyObject *PyNumber_Xor(PyObject *a, PyObject *b)

int(a) PyObject *PyNumber_Int(PyObject *a)

long(a) PyObject *PyNumber_Long(PyObject *a)

float(a) PyObject *PyNumber_Float(PyObject *a)

a,b = coerce(a,b) int PyNumber_Coerce(PyObject **a, PyObject **b)

The Python pow(a,b,c) function is accessible as PyNumber_Power(PyObject *a,
PyObject *b, PyObject *c). The third parameter, c, can be a Python number

object or Py_None.

4807-7 ch30.F 5/24/01 9:01 AM Page 559

560 Part V ✦ Advanced Python Programming

For many of the functions in Table 30-2, there are corresponding functions for the

in-place version of the same operation. For example, PyObject*
PyNumber_InPlaceLshift (PyObject *a, PyObject *b) is the C way of doing a
<<= b in Python.

Integers
Python integer objects are represented in C by the PyIntObject structure.

PyInt_Check(PyObject *o) returns 1 if the given object is an integer object (it

has the type PyInt_Type).

PyInt_FromLong(long val) takes a C long integer and returns a new reference to

a Python integer object. PyInt_AsLong(PyObject *o) converts an integer object

back to a C long, coercing the object to a Python integer object first if needed. If

you already know that it is an integer, you can use the PyInt_AS_LONG(PyOBject
*o) macro to do the same thing, but without coercion and error checking.

The largest value that can be stored in an integer object is defined as LONG_MAX in

the header files; you can use PyInt_GetMax() to retrieve this value.

Longs
Python long integers are stored in PyLongObject structures, their type is

PyLong_Type (this is the same as types.LongType in Python), and you can call

PyLong_Check(PyObject *o) to test whether an object is a long number object.

PyLong_FromLong(long val), PyLong_FromUnsignedLong(unsigned long val),

and PyLong_FromDouble(double val) return a new reference to a long integer

object having the given value.

One other way to create a new Python long object is by passing a character string

to PyLong_FromString(char *str, char **end, int base). The base or radix of

the number is specified by the base argument; values can be in the range from 2 to

36, or 0, which means that the function should look at the string itself to determine

the base. It will use base 16 if the string starts with 0x or 0X, base 8 if it starts with

0, and base 10 otherwise. PyLong_FromString ignores leading spaces, and stores

the position of the first character after the end of the number in end if it is not

NULL.

PyLong_AsLong(PyObject *o) and PyLong_AsUnsignedLong(PyObject *o) con-

vert long integer objects to C long and unsigned long variables. Because Python

long integers can be any size, values that cannot be converted to C cause an

OverflowError exception to be raised. PyLong_AsDouble(PyObject *o) returns

the value of a long integer in a C double.

4807-7 ch30.F 5/24/01 9:01 AM Page 560

561Chapter 30 ✦ Embedding the Python Interpreter

Floating-point numbers
Floating-point numbers are stored in PyFloatObject structures; their type is

PyFloat_Type and you can ensure that an object is a floating-point number by call-

ing PyFloat_Check(PyObject *o).

PyFloat_FromDouble(double val) returns a new reference to a Python floating-

point number object.

Given a Python floating-point number, you can convert it to a C double by calling

PyFloat_AsDouble(PyObject *o). This function has some overhead due to error

checking, so if you are already sure your object is a floating-point number, you can

just call PyFloat_AS_DOUBLE(PyObject *o).

Complex numbers
Python complex numbers live in PyComplexObject structures and have the type

PyComplex_Type (equivalent to types.ComplexType in Python).

PyComplex_Check(PyObject *o) returns 1 if the given object is a Python complex

number.

To create a complex number object, call PyComplex_FromDoubles(double real,
double imag) to specify its real and imaginary components. You can also use

PyComplex_FromCComplex(Py_complex *c). Py_complex is a C structure

declared as follows:

typedef struct {
double real;
double imag;

} Py_complex;

Given a Python complex number object, you can extract its real and imaginary

parts by calling PyComplex_RealAsDouble(PyObject *o) and

PyComplex_ImagAsDouble(PyComplex *o). Both functions return a C double. You

can also call PyComplex_AsCComplex(PyObject *o) to place the values into a

Py_complex structure.

Working with Sequence Objects
The functions in this section enable you to manipulate Python objects that are lists,

tuples, and strings.

When using functions that return slices, keep in mind that generally what is

returned to you is a new reference, and that each item in it had its reference count

incremented before it was sent back to you.

4807-7 ch30.F 5/24/01 9:01 AM Page 561

562 Part V ✦ Advanced Python Programming

Any sequence type
These functions are part of Python’s abstract object layer and work on any

sequence object. PySequence_Check(PyObject *o) returns a nonzero value if the

object supports sequence functions.

Table 30-3 lists C function calls for corresponding sequence operations in Python.

Functions that return a PyObject pointer return a new reference of that object or

NULL if an error occurs. Those that return integers use a value of -1 to denote failure.

Table 30-3
C Sequence Functions

Python Equivalent C Function Call

len(s) int PySequence_Length(PyObject *s)

s[i] PyObject *PySequence_GetItem(PyObject *s, int i)

s[a:b] PyObject *PySequence_GetSlice(PyObject *s, int a, int b)

s[i] = v int PySequence_SetItem(PyObject *s, int i, PyObject *v)

s[a:b] = v int PySequence_SetSlice(PyObject *s, int a, int b,
PyObject *v)

del s[i] int PySequence_DelItem(PyObject *s, int i)

del s[a:b] int PySequence_DelSlice(PyObject *s, int a, int b)

s1 + s2 PyObject *PySequence_Concat(PyObject *s1, PyObject *s2)

s1 += s2 PyObject *PySequence_InPlaceConcat(PyObject *s1,
PyObject *s2)

s * count PyObject *PySequence_Repeat(PyObject *s, int count)

s *= count PyObject *PySequence_InPlaceRepeat(PyOBject *s, int
count)

s.count(v) int PySequence_Count(PyObject *s, PyObject *v)

v in s int PySequence_Contains(PyObject *s, PyObject *v)

s.index(v) int PySequence_Index(PyObject *s, PyObject *v)

tuple(s) PyObject *PySequence_Tuple(PyObject *s)

list(s) PyObject *PySequence_List(PyObject *s)

Two sequence functions perform less error checking to increase performance.

PySequence_Fast (PyObject *o, const char *m) returns a new reference to o
after converting it to a tuple, leaving it unchanged (except for the reference count)

4807-7 ch30.F 5/24/01 9:01 AM Page 562

563Chapter 30 ✦ Embedding the Python Interpreter

if it is already a tuple or a list. If the object o can’t be converted to a sequence, the

function returns NULL and raises a TypeError with m as the message text. You can

then pass the returned object to PySequence_Fast_GET_ITEM(PyObject *o, int
index) to get borrowed references to sequence members.

PySequence_Fast_GET_ITEM assumes that the index values you pass in are
valid and doesn’t check for errors.

Strings
A PyStringObject is a specific type of sequence used to hold Python strings.

PyString_Check(PyObject *o) returns 1 if the given object is a string object; it

verifies that o’s type is PyString_Type (equivalent to types.StringType in

Python).

You create a new string object from a null-terminated C string by calling

PyString_FromString(const char *s). It returns a PyObject pointer that is a new

reference to a string object of that value. For strings that might have embedded null

characters, use PyString_FromStringAndSize(const char *s, int len).

PyString_Format(PyObject *format, PyObject *args) returns a new reference

to a string object created using a format string and a tuple of arguments, equivalent

to the Python format % args.

After creating a new string object, you can call PyString_Resize(PyObject **s,
int newsize) to change its size to newsize. To Python, strings are immutable, so it

is safe to call this function only if no other part of the program knows about the

string yet (for example, when you just created it).

Going the other direction, PyString_AsString(PyObject *s) returns a char
pointer to the string data, converting the object to a string first if needed.

PyString_AsStringAndSize(PyObject *s, char **buffer, int *len) sets

buffer to point at a string representation of the object, returns the string length in

len (len can be NULL as long as the string has no embedded null characters), and

returns -1 on failure. Both functions return pointers to internal buffers that you

shouldn’t modify or de-allocate.

PyString_AsStringAndSize works on both string and Unicode string objects.

PyString_Size(PyObject *s) returns the length of the string. If the object is not

already a string, the function first calls PyString_AsStringAndSize and then

returns the size.

In cases where you know the object really is a string object, you can call

PyString_AS_STRING(PyObject *s) and PyString_GET_SIZE(PyObject *s) for

better performance.

Tip

Caution

4807-7 ch30.F 5/24/01 9:01 AM Page 563

564 Part V ✦ Advanced Python Programming

PyString_Concat(PyObject **s, PyObject *new) concatenates new onto the

end of s. The function itself returns no value; s contains a new reference to the con-

catenated string object, or NULL on failure. PyString_Concat calls Py_DECREF on

the s object you pass in; in effect, you are transferring your reference to it and it

gives you a new reference back. PyString_ConcatAndDel(PyObject **s,
PyObject *new) is a utility function that calls PyString_Concat and then calls

Py_XDECREF on new so you don’t have to.

PyString_InternInPlace(PyObject **s) is equivalent to the Python intern func-

tion. When you call this function, you transfer ownership of the reference and receive

back a new reference. The object that you receive will be either the original object or a

previously interned string of the same value. PyString_InternFromString
(const char *s) is a utility function that converts a C string to a Python string

object, interns it, and returns to you a new reference of the result.

PyString_Encode(Py_UNICODE *s, int size, char *encoding, char *errors)
returns a new reference to an encoded string object. The encoding and errors
arguments are the same as those for the encode Python function (for example,

errors can have values strict, ignore, and replace).

PyString_AsEncodedString (PyObject *unicode, const char *encoding,
const char *errors) works the same way, but takes a PyUnicodeObject.

PyString_Decode(char *s, int size, char *encoding, char *errors) returns

a new reference to a decoded string object, like the Python unicode function.

See “Unicode strings” later in this chapter for more functions to handle Unicode
objects.

Lists
A PyListObject holds a Python list; it has the type PyList_Type (equivalent to

Python’s types.ListType). PyList_Check(PyObject *p) returns 1 if the given

object is a list.

Table 30-4 lists Python list operations and their equivalent C function calls. Unless

returning an actual numeric value, functions returning integers return 0 to denote

success.

Table 30-4
C List Functions

Python Equivalent C Function Call

len(t) int PyList_Size(PyObject *t)

t[i] PyObject *PyList_GetItem(PyObject *t, int i)

t[i] = o int PyList_SetItem(PyObject *t, int i, PyObject *o)

Cross-
Reference

4807-7 ch30.F 5/24/01 9:01 AM Page 564

565Chapter 30 ✦ Embedding the Python Interpreter

Python Equivalent C Function Call

t.insert(i, o) int PyList_Insert(PyObject *t, int i, PyObject *o)

t.append(o) int PyList_Append(PyObject *t, PyObject *o)

t[a:b] PyObject *PyList_GetSlice(PyObject *t, int a, int b)

t[a:b] = t2 int PyList_SetSlice(PyObject *t, int a, int b, PyObject
*t2)

t.sort() int PyList_Srt(PyObject *t)

t.reverse() int PyList_Reverse(PyObject *t)

tuple(t) PyObject *PyList_AsTuple(PyObject *t)

The list functions that take an index parameter assume that the index you supply is

valid. PyList_GetItem returns a borrowed reference to an item; and with

PyList_SetItem, you give up (transfer) ownership of the reference, but

PyList_Insert behaves “normally” (it increments the reference count of the

object passed in). Don’t forget that setting a list item replaces another item, causing

its reference count to be decremented (which could in turn call its destructor).

PyList_GetSlice returns a new reference to a list object containing the requested

objects; those objects are also new references to the originals. PyList_SetSlice
requires that both arguments (t and t2) be list objects. PyList_AsTuple returns a

new reference to a tuple object, and each member of the tuple is a new reference as

well.

PyList_New(int len) returns a new reference to a list object that has an initial

length of len.

PyList_GET_SIZE(PyObject *t) is a slightly faster way to retrieve a list’s size; it

doesn’t verify that the object t is really a list. The same is true for

PyList_GET_ITEM(PyObject *t, int i) and PyList_SET_ITEM(PyObject *t,
int i, PyObject *o).

Tuples
A PyTupleObject is the C version of a Python tuple; it has the type PyTuple_Type,

which is the same as Python’s types.TupleType. Call PyTuple_Check(PyObject
*o) to determine whether an object is a tuple.

PyTuple_New(int len) returns a new reference to a tuple object of length len.

PyTuple_Resize(PyObject *o, int newsize, 0) resizes a given tuple; as with

the list resize function, it is safe to call only if no other references to this object

exist. This function returns 0 on success.

Table 30-5 lists the C function calls for common tuple operations.

4807-7 ch30.F 5/24/01 9:01 AM Page 565

566 Part V ✦ Advanced Python Programming

Table 30-5
C Tuple Functions

Python Equivalent C Function Call

len(t) int PyTuple_Size(PyObject *t)

t[i] PyObject *PyTuple_GetItem(PyObject *t, int i)

t[i] = o int PyTuple_SetItem(PyObject *t, int i, PyObject *o)

t[a:b] PyObject *PyTuple_GetSlice(PyObject *t, int a, int b)

PyTuple_GET_ITEM(PyObject *t, int i) and PyTuple_SET_ITEM(PyObject *t,
int i, PyObject *o) are faster versions of PyTuple_GetItem and

PyTuple_SetItem; they assume you’re honest and pass in tuple objects.

The same rules apply here as for lists: index values are assumed to be valid,

PyTuple_GetItem returns a borrowed reference, and PyTuple_GetSlice incre-

ments the reference count for each object in the slice. In addition,

PyTuple_SetItem transfers ownership of the reference to the tuple, and the refer-

ence count of the item being replaced is decremented by 1.

Buffers
Python objects in C can implement a buffer interface, which is a group of functions

that let an object expose the memory where it stores its data. Buffer interfaces are

often low-level or performance-conscious functions that want to access data in its

raw byte format without having to copy the data.

The C PyBufferObject structure is used to represent a Python buffer. These

objects have a type of PyBuffer_Type. As usual, you can call

PyBuffer_Check(PyObject *o) to determine whether an object is a buffer.

Given an object that has an internal buffer, PyBuffer_FromObject(PyObject *o,
int offset, int size) creates a read-only buffer object to access the data start-

ing at the given offset. If the object allows reading and writing of its buffer data,

using PyBuffer_FromReadWriteObject(PyOBject *o, int offset, int size)
creates a buffer object that supports writing too. Both functions return a new refer-

ence to a buffer object, and for size you can use the constant Py_END_OF_BUFFER
to include all data from the given offset to the end of the object.

You can wrap a block of memory into a read-only buffer object by calling

PyBuffer_FromMemory(void *p, int size). Py_Buffer_FromReadWriteMemory
(void *p, int size) does the same thing but allows writing to the buffer as well.

Of course, for both of these functions you need to ensure the block of memory is

valid for as long as the buffer object exists. An alternative is to let the buffer own

4807-7 ch30.F 5/24/01 9:01 AM Page 566

567Chapter 30 ✦ Embedding the Python Interpreter

and manage the block of memory itself; call PyBuffer_New(int size) to create a

memory buffer of the given size.

PyObject_AsReadBuffer(PyObject *o, const void **buffer, int *size)
returns a pointer and a size value for a given object’s internal buffer. For objects

that support it, PyObject_AsWriteBuffer(PyObject *o, void **buffer, int
*size) returns the same information for a writeable buffer.

Unicode strings
Unicode strings have the type PyUnicode_Type and are stored in a

PyUnicodeObject structure. Call PyUnicode_Check(PyObject *o) to determine

whether an object is a Unicode string. The actual characters of the string are stored

in a member of this structure having the type Py_UNICODE, which is a C typedef for

16-bit values.

On platforms such as Windows, which provide a usable wide character type
(wchar_t), Python uses this type and its supporting functions for better perfor-
mance and compatibility.

PyUnicode_GET_SIZE(PyObject *o) returns the number of characters in the

string, and PyUnicode_GET_DATA_SIZE(PyObject *o) returns the number of

bytes used to store the string (string length * size of each character).

PyUnicode_GetSize(PyObject *o) returns the string’s length after verifying that

the object is a Unicode string.

Converting to and from Unicode
PyUnicode_AS_UNICODE(PyObject *o) returns a read-only pointer to the struc-

ture’s internal Py_UNICODE member, and PyUnicode_AS_DATA(PyObject *o) does

the same but casts the return pointer to char *. PyUnicode_AsUnicode(PyObject
*o) returns a pointer to the internal data but first ensures that the object really is a

Unicode string. PyUnicode_AsWideChar(PyUnicodeObject *o, wchar_t *buff,
int length) copies the Unicode string into the given buffer, copying at most

length characters, and returns the number of characters copied.

PyUnicode_FromUnicode(const Py_UNICODE *buff, int length) returns a new

reference to a Unicode string object of the given length whose contents were

copied from buff if it was not NULL. PyUnicode_FromWideChar(const wchar_t
*buff, int length) does the same but copies from a wide character buffer

pointer that must not be NULL.

PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding,
const char *errors) uses encoding and errors to coerce an encoded object to a

Unicode object if needed, and returns a new reference to the Unicode object. Set

encoding and errors to NULL to use the defaults.

Note

4807-7 ch30.F 5/24/01 9:01 AM Page 567

568 Part V ✦ Advanced Python Programming

PyUnicode_FromObject(PyObject *obj) is a utility function that calls

PyUnicode_FromEncodedObject with encoding set to NULL, and errors set to

“strict”.

PyUnicode_Decode(const char *s, int length, const char *encoding, const
char *errors) takes a string length bytes long that uses the given encoding and

converts it to Unicode, returning to you a new reference to the Unicode object.

PyUnicode_Encode (const Py_UNICODE *s, int length, const char *
encoding, const char *errors) encodes a Py_UNICODE buffer and returns a

Python string object.

The API also provides shortcut routines for encoding and decoding strings using
standard encodings such as 7-bit ASCII, UTF8, UTF16, Latin-1, and so on. See uni-
codeobject.h for details.

Checking and converting individual characters
Py_UNICODE_ISSPACE(Py_UNICODE ch) returns 1 if the given Unicode character is

whitespace. Additionally, you can use the following to perform other similar checks:

Py_UNICODE_ISLOWER Py_UNICODE_ISUPPER
Py_UNICODE_ISTITLE Py_UNICODE_ISLINEBREAK
Py_UNICODE_ISDECIMAL Py_UNICODE_ISDIGIT
Py_UNICODE_ISNUMERIC Py_UNICODE_ISALPHA
Py_UNICODE_ISALNUM

Py_UNICODE_TOLOWER(Py_UNICODE ch), Py_UNICODE_TOUPPER, and Py_UNI-
CODE_TOTITLE return the given character converted to lowercase, uppercase, and

titlecase, respectively.

Py_UNICODE_TODECIMAL(Py_UNICODE ch) and Py_UNICODE_TODIGIT return the

given character converted to an integer decimal and an integer digit (usually the

same thing). Py_UNICODE_TONUMERIC(Py_UNICODE ch) returns a double holding

the numeric value of the given character (for example, given the single-character

symbol for one-half, it would return the number 0.5).

Using string manipulation functions
The following PyUnicode functions work like their PySequence and PyString
counterparts:

PyObject *PyUnicode_Concat(PyObject *a, PyObject *b)
PyObject *PyUnicode_Split(PyObject *s, PyObject *sep, int

maxsplit)
PyObject *PyUnicode_Join(PyObject *sep, PyObject *sequence)
int PyUnicode_Count(PyObject *str, PyObject *substr, int

start, int end)

Note

4807-7 ch30.F 5/24/01 9:01 AM Page 568

569Chapter 30 ✦ Embedding the Python Interpreter

int PyUnicode_Contains(PyObject *container, PyObject *element)
int PyUnicode_Compare(PyObject *left, PyObject *right)
PyObject* PyUnicode_Format(PyObject *format, PyObject *args)

PyUnicode_Replace(PyObject *str, PyObject *substr, PyObject *replstr,
int maxcount) works like the normal string replace function; maxcount is the max-

imum number of replacements to perform.

PyUnicode_Find(PyObject *str, PyObject *substr, int start, int end, int
direction) returns the index of the first match of substr in str[start:end],

searching left-to-right if direction is 1, and right-to-left if direction is -1.

PyUnicode_Splitlines (PyObject *s, int maxsplit) returns a list of strings

split at line breaks (the line break characters are removed), stopping after all text

has been processed or maxsplit splits have occurred.

PyUnicode_Tailmatch (PyObject *str, PyObject *substr, int start, int
end, int direction) checks whether substr matches a portion of str. If direc-
tion is -1, the function returns 1 if str[start:end] starts with substr. If direc-
tion is greater than or equal to 0, the function returns 1 if str[start:end] ends

with substr.

PyUnicode_Translate (PyObject *str, PyObject *table, const char
*errors) maps characters to new values using a lookup table. The table object

can be a dictionary or sequence (or anything that has a __getitem__ method). For

each character in str, the function looks up its entry in table and inserts the new

value in the result (a Unicode object returned to you as a new reference). If the

character’s entry in the table has a value of None, the character is deleted in the

result (not copied); and if there is no entry in the table (the lookup causes a

LookupError), the character is copied as is.

Working with Mapping Objects
Although Python currently has only one mapping object type, the Python/C API still

makes a distinction between the abstract and concrete object layers.

Functions for any mapping type
PyMapping_Check(PyObject *o) returns 1 if the object is a mapping object. Table

30-6 lists Python code for common mapping object operations and the correspond-

ing C function calls.

4807-7 ch30.F 5/24/01 9:01 AM Page 569

570 Part V ✦ Advanced Python Programming

Table 30-6
C Mapping Functions

Python Equivalent C Function Call

len(o) PyMapping_Length(PyObject *o)

o[key] PyMapping_GetItemString(PyObject *o, char *key)

o[key]=val PyMapping_SetItemString(PyObject *o, char *key,
PyObject *val)

del o[key] PyMapping_DelItem(PyObject *o, PyObject *key)

PyMapping_DelItemString(PyObject *o, char *key)

o.has_key(k) PyMapping_HasKey(PyObject *o, PyObject *k)

PyMapping_HasKeyString(PyObject *o, char *key)

o.keys() PyMapping_Keys(PyObject *o)

o.values() PyMapping_Values(PyObject *o)

o.items() PyMapping_Items(PyObject *o)

Dictionaries
Dictionaries are represented by PyDictObject structures, and they have the type

PyDict_Type (types.DictionaryType in Python). PyDict_Check(PyObject *o)
returns 1 if the given object is a dictionary.

Table 30-7 lists dictionary operations in Python and C.

Table 30-7
C Dictionary Functions

Python Equivalent C Function Call

d = {} PyDict_New()

d.clear() PyDict_Clear(PyObject *d)

len(d) PyDict_Size(PyObject *d)

d[key] PyDict_GetItem(PyObject *d, PyObject *key) ¥

PyDict_GetItemString(PyObject *d, char *key) ¥

d[key] = val PyDict_SetItem(PyObject *d, PyObject *key, PyObject *val)
PyDict_SetItemString(PyObject *d, char *key, PyObject *val)

4807-7 ch30.F 5/24/01 9:01 AM Page 570

571Chapter 30 ✦ Embedding the Python Interpreter

Python Equivalent C Function Call

del d[key] PyDict_DelItem(PyObject *d, PyObject *key)
PyDict_DelItemString(PyObject *d, char *key)

d.keys() PyDict_Keys(PyObject *d)

d.values() PyDict_Values(PyObject *d)

d.items() PyDict_Items(PyObject *d)

d.copy() PyDict_Copy(PyObject *d)

¥ Returns a borrowed reference to the value object

Using Other Object Types
The following sections describe a few other miscellaneous object types available in

the Python/C API.

Type
PyTypeObject structures describe Python’s built-in types. These objects have the

type PyTypeObject, and PyType_Check(PyObject *o) returns 1 if the given

object is a type object.

None
Py_None is the C equivalent of Python’s None. Use this anyplace to denote a lack of

value instead of using NULL, because the Python/C API uses NULL to indicate an

error.

Py_None is an actual object, so treat it like any other with respect to reference
counting. For example, when a C extension module function has no return value,
it should use the following idiom:

Py_INCREF(Py_None);
return Py_None;

File
Python file objects are thin wrappers around FILE objects in the standard C

libraries. The Python/C API uses a PyFileObject structure to represent a file

object; these structures have the type PyFile_Type, and you can call

PyFile_Check(PyObject *o) to verify that an object is a file.

Note

4807-7 ch30.F 5/24/01 9:01 AM Page 571

572 Part V ✦ Advanced Python Programming

PyFile_FromFile(FILE *f, char *name, char *mode, int (close*)(FILE*))
creates a Python file object from a C file of the given name and mode. The file

pointer f must be an already open file or NULL (although you should fill in a valid

FILE structure before letting any other code use it). The close argument is the

function to call to close the file; you can pass in the standard C fclose function if

you don’t need anything special.

PyFile_FromString(char *fname, char *mode) uses mode to open (or create,

depending on the mode) a file named fname. Like PyFile_FromFile, it returns a

new reference to a Python file object.

You can access the FILE pointer of a Python file object using

PyFile_AsFile(PyObject *f), and PyFile_Name(PyObject *f) returns a bor-

rowed reference to a string object containing the file’s name.

To simulate f.readline(n), call PyFile_GetLine (PyObject *f, int n). If the

end of file has been reached, the function still returns a string object (but of length

0). If n is 0, the function reads one line, and if n is greater than 0, the function will

read up to n bytes. If n is less than 0, the function reads one line of data but raises

EOFError if the end of file has been reached already.

You can set or clear the softspace flag of a file or filelike object by calling

PyFile_SoftSpace(PyObject *f, int flag). A value of 1 means that a space will

be output before the next data is written to the file.

PyFile_WriteString(char *s, PyObject *f) writes a string to an open file.

PyFile_WriteObject(PyObject *o, PyObject *f, int flags) writes a string

representation of the given object o to the file f. By default, it gets the output by

calling repr; use a flags value of Py_PRINT_RAW to have it call str instead.

Module
The Python/C API has functions for working with module objects and importing

them, as described in the following sections.

Module objects
PyModuleObject structures have the type PyModule_Type, and

PyModule_Check(PyObject *o) returns 1 if the object o is a module.

PyModule_New(char *name) returns a new reference to a new module object and

creates the module’s namespace dictionary. The module’s __name__ member is set

to name, and its __doc__ member is set to an empty string. Before letting other parts

of the program use the new module, you should at least set its __file__ member.

PyModule_GetDict(PyObject *m) returns a borrowed reference to the module’s

dictionary (__dict__). PyModule_GetName(PyObject *m) returns a char pointer

4807-7 ch30.F 5/24/01 9:01 AM Page 572

573Chapter 30 ✦ Embedding the Python Interpreter

to the value of the module’s __name__ member, and

PyModule_GetFilename(PyObject *m) returns a char pointer to the value of its

__file__ member.

The following functions were introduced in Python 2.0.

PyModule_AddObject(PyObject *m, char *name, PyObject *value) adds the

object value to the module m. This function steals a reference to value.

PyModule_AddIntConstant(PyObject *m, char *name, int value) is a utility

function that creates an integer object with the given value and adds it to the mod-

ule. PyModule_AddStringConstant(PyObject *m, char *name, char *value)
does the same for a string variable.

Importing modules
PyImport_ImportModule(char *name) loads the requested module and returns a

new reference to it. Internally, PyImport_ImportModule calls

PyImport_ImportModuleEx (char *name, PyObject *globals, PyObject
*locals, PyObject *fromlist), which loads a module with the given global and

local dictionaries, which may be NULL. Python’s __import__ function calls

PyImport_ImportModuleEx.

PyImport_Import(PyObject *name) also loads a module, but it uses the current

import hooks to do the loading.

Chapter 35 shows you how to override importing behavior using import hooks.

PyImport_ReloadModule (PyObject *m) reloads the given module (just like the

Python reload() function) and returns a new reference to it.

PyImport_AddModule(char *name) returns a borrowed reference to a module

called name, creating an empty module object if necessary.

PyImport_GetModuleDict() returns a borrowed reference to the module dictio-

nary (stored in sys.modules).

PyImport_ExecCodeModule(char *name, PyObject *co) returns a new reference

to a module object. The module is created and imported using co, which is a code

object (obtained from a call to compile or read in from a .pyc file). If the module

already exists, it is reloaded using the given code object.

PyImport_GetMagicNumber() returns a C long containing the little-endian, 4-byte

magic number at the start of all .pyc and .pyo files.

Before a call to Py_Initialize, you can add your module to the list of built-in mod-

ules by calling PyImport_AppendInittab(char *name, void (*initfunc)
(void)), passing in the module name and initialization function to call. To add

Cross-
Reference

New
Feature

4807-7 ch30.F 5/24/01 9:01 AM Page 573

574 Part V ✦ Advanced Python Programming

several modules, call PyImport_ExtendInittab(struct _inittab *newtab),

where newtab is an array of entries for each module, with an extra entry on the end

with a NULL name to denote the end of the list. The _inittab structure has the fol-

lowing format:

struct _inittab {
char *name;
void (*initfunc)(void);

};

PyImport_ImportFrozenModule(char *name) loads a frozen module (created

with the Freeze utility). This function only loads the module; you still need to call

PyImport_ImportModule to import it.

The Freeze utility is covered in Chapter 36.

CObjects
Occasionally, it’s necessary to pass a C object (well, a pointer) from a function

through Python code and back into C again. The PyCObject structure is the

Python/C API equivalent of a void pointer for just this purpose. Your code can call

PyCObject_Check(PyObject *o) to determine whether an object is of this type.

To create a PyCObject, call PyCObject_FromVoidPtr (void* cobj, void
(*destr)(void *)), which returns a new reference to the object. destr is a func-

tion that will be called when Python is about to destroy the object. If you don’t

need to do any cleanup, this argument can be NULL.

PyCObjects can also contain some extra information called a description. Call

PyCObject_FromVoidPtrAndDesc (void* cobj, void* desc, void
(*destr)(void *, void *)) to create an object with a description. Note that the

destructor function receives both the object and its description when called.

PyCObject_GetDesc(PyObject *o) returns a pointer to the description data, and

PyCObjcet_AsVoidPtr(PyObject *o) returns the original C pointer used to create

the PyCObject.

Creating Threads and Sub-Interpreters
One application can have multiple interpreters running, and each interpreter can

have multiple threads, but they all share the Global Interpreter Lock (GIL). In order

to operate on a Python object, a thread must have control of the GIL or it risks cor-

rupting memory.

Cross-
Reference

4807-7 ch30.F 5/24/01 9:01 AM Page 574

575Chapter 30 ✦ Embedding the Python Interpreter

The interpreter releases and reacquires the lock often to ensure that each thread

gets a chance to run; you can set how many bytecode instructions it processes

before releasing the lock by calling sys.setcheckinterval(n); the current default

is 10 instructions.

Before potentially blocking I/O routines or long computations that don’t require

working with Python objects, your code should manually release the lock and then

reacquire it when the work is complete.

Threads
Each thread has some state information stored in a PyThreadState structure, and

a global variable holds a pointer to the current thread’s state. To release and reac-

quire the GIL, use the standard Python macros:

Py_BEGIN_ALLOW_THREADS
... // Some work
Py_END_ALLOW_THREADS

Among other things, these macros call PyEval_ReleaseLock and

PyEval_AcquireLock on the global lock.

When working with the global interpreter lock, pay close attention to when you
release it and acquire it. Trying to acquire it once you already have it (through a
recursive call, for example) is an excellent way to cause deadlock and bring your
program to a screeching halt.

PyEval_InitThreads() initializes the thread subsystem and acquires the GIL (cre-

ating it if necessary). It’s safe to call this before Py_Initialize, although this is

normally called automatically so that you don’t need to.

Before a new thread created in C can access Python objects, it has to manually cre-

ate its own thread state, acquire the GIL, and then set the current thread state to

point to the new thread’s state. When finished, it needs to reset the old thread state

and release the lock. The Python/C API has several pairs of functions for working

with the GIL and the current thread state.

PyThreadState_New(PyInterpreterState *interp) creates a new thread state

structure. The interp argument is the current interpreter’s state, which is accessi-

ble as the interp variable of any thread state structure. Call

PyThreadState_Get() to get a pointer to the current thread state. Although you

must have the GIL to get the current state, you do not need to have it to create a

new thread state structure.

Call PyThreadState_Clear(PyThreadState *state) to clear a thread’s state

before calling PyThreadState_Delete(PythreadState *state) to free the thread

state memory. You must have the GIL to clear a thread state structure, but not to

delete it.

Caution

4807-7 ch30.F 5/24/01 9:01 AM Page 575

576 Part V ✦ Advanced Python Programming

PyEval_AcquireLock() and PyEvalReleaseLock() acquire and release the

global interpreter lock, respectively.

PyEval_AcquireThread(PyThreadState *state) acquires the GIL and sets the

current state to state. PyEval_ReleaseThread(PyThreadState *state) sets the

current thread state to NULL and releases the GIL. You have to pass in your thread

state as a safety check to ensure that the correct thread is releasing the lock.

PyThreadState_Swap(PyThreadState *state) swaps the current thread state

with state, which can be NULL (leaving the thread state selection up to the inter-

preter). You must have the GIL to call this function.

Sub-interpreters
The global state for the interpreter is stored in a PyInterpreterState structure.

PyInterpreterState_New() creates a new state structure,

PyInterpreterState_Clear(PyInterpreterState *state) clears it before you

release it, and PyInterpreterState_Delete(PyInterpreterState *state)
frees its associated memory. You don’t need to have the GIL to create or destroy an

interpreter state structure, but you do need to hold it to clear one.

Py_NewInterpreter() creates a new sub-interpreter that is almost completely

independent of other interpreters (it still shares the global interpreter lock, how-

ever). The function returns a PyThreadState pointer that represents the now-cur-

rent thread state in the new interpreter. Do not call this function until after you’ve

called Py_Initialize and you have the GIL. Although the thread state has been

created, you still need to create a new thread.

Py_EndInterpreter(PyThreadState *state) destroys the sub-interpreter to

which the given thread state belongs. All thread states for that interpreter are also

destroyed; and on return, the current thread state is NULL. You must hold the global

lock to call this function.

Py_Finalize automatically destroys all sub-interpreters.

Handling Errors and Exceptions
The general error convention used in the Python/C API is that when a function fails,

it returns an error value (usually NULL) and sets an error flag to indicate that an

exception has been raised. Other functions shouldn’t also raise an exception, only

the “source” of the problem.

Tip

4807-7 ch30.F 5/24/01 9:01 AM Page 576

577Chapter 30 ✦ Embedding the Python Interpreter

Checking for errors
In addition to checking return codes, you can call PyErr_Occurred(). If an excep-

tion has been raised, this function returns a borrowed reference to the exception

object, and NULL otherwise. PyErr_Print() prints the stack traceback for the

exception that was raised and then clears the error flag. You can also call

PyErr_Clear() to clear the error flag; use this if you don’t want a raised exception

to make it back to the rest of the program.

After an error occurs, you can see if it matches a specific type by calling

PyErr_ExceptionMatches(PyObject *e), which returns 1 to indicate a match.

The value e is a pointer to an exception object. Exceptions in C are named the same

as in Python, but with a “PyExc_” prefix. For example, if a function returned NULL
to indicate an error and you want to see if it was an ImportError, you’d use some-

thing like the following:

if (PyErr_ExceptionMatches(PyExc_MemoryError))
...

PyErr_GivenExceptionMatches(PyObject *given, PyObject *e) returns 1 if

the two exceptions match.

Both of these functions let you perform multiple checks with a single call. The
object e can be a Python tuple containing a sequence of exceptions (or other
tuples too) to compare against.

Signaling error conditions
PyErr_SetString(PyExc *e, char *info) signals that the exception e has

occurred (where e is one of Python’s exception objects as explained above). info
is an extra message to be displayed with the exception name.

PyErr_Format(PyObject *e, const char *format, ...) sets the error indicator

and displays a formatted message using printf-style formatting. The recognized for-

mat codes are c (character), d (decimal), x (hex), and s (string).

Instead of a string, you can set the extra information to be any Python object with

PyErr_SetObject(PyObject *e, PyObject *value). If you don’t want to provide

any extra information with your error, just call PyErr_SetNone(PyObjcet *e).

Many C library calls fail and set the per-thread error variable errno. Use

PyErr_SetFromErrno() to raise an exception, and use the value in errno to come

up with an appropriate informational message.

You do not need to increment reference counts on any of the Python objects
passed to the error functions listed above.

Note

Tip

4807-7 ch30.F 5/24/01 9:01 AM Page 577

578 Part V ✦ Advanced Python Programming

If you need to temporarily save and restore the current error state, call

PyErr_Fetch(PyObject **type, PyObject **value, PyObject **traceback)
to save it, and call PyErr_Restore(PyOBject *type, PyObject *value,
PyObject *traceback) to restore it.

Several functions raise exceptions for common problems. For example, if a direct

call to one of Python’s memory manager routines fails, you should call

PyErr_NoMemory(). If one of your functions is called with a wrong argument type,

call PyErr_BadArgument() to raise a TypeError.

Sometimes an error occurs but an exception cannot be raised (inside an object

destructor, for example). In this case, PyErr_WriteUnraisable(PyObject *obj)
can be called to write a warning to stderr. It also prints the repr representation

of obj.

When an error occurs, don’t forget to release owned references before your func-
tion exits. In addition, when raising exceptions, use the exception type that best
matches the type of error that occurred.

Creating custom exceptions
It’s pretty easy to create a new exception type in C. For example, suppose you are

writing a caching extension module called cache and need to create an exception

that will be known in Python as cache.error. Use the following steps to create an

exception type:

1. Declare a static PyObject pointer for the error:

static PyObject *Cache_Error;

2. In the module’s initialization function, create the error object:

Cache_Error = PyErr_NewException(“cache.error”, NULL, NULL);

3. Using the module’s dictionary object, add the exception to its namespace:

PyDict_SetItemString(d, “error”, Cache_Error);

Raising warnings
The PyErr_Warn(PyObject *category, char *message) function sends the warn-

ing pointed to by message to the user, which Python by default displays on stan-

dard error. The category parameter can be any of the following global warning

variables:

PyExc_Warning
PyExc_DeprecationWarning

Tip

4807-7 ch30.F 5/24/01 9:01 AM Page 578

579Chapter 30 ✦ Embedding the Python Interpreter

PyExc_RuntimeWarning
PyExc_SyntaxWarning
PyExc_UserWarning

Under normal circumstances PyErr_Warn returns 0, but if the user configures

Python to escalate warnings to errors, then the function returns -1 to indicate that

it raised an exception. If it does raise an exception, be sure to treat it like any other

exception by releasing owned references and returning an error code from the cur-

rent function.

Warnings are new in Python 2.1.

PyErr_WarnExplicit(PyObject *category, char *message, char *filename,
int lineno, char *module, PyObject *registry) lets you raise a warning and

have complete control over all warning attributes. This function calls the

warn_explicit function in the Python warnings module.

Chapter 5 covers the warning module through which you can control how
Python handles warning messages.

Managing Memory
Python has its own private memory pool, or heap, in which it stores all Python

objects and their data. Because it has its own memory allocation and de-allocation

routines, you shouldn’t use malloc, free, new, and delete on Python objects. In

fact, although it’s safe for you to use the normal C memory allocators for your own

private memory usage, it doesn’t hurt to always use the Python memory manager.

PyMem_MALLOC(size_t n) returns a void pointer to a block of memory, and

PyMem_FREE(void *p) frees a pointer p if it is not NULL.

PyMem_NEW(TYPE, size_t n) allocates enough memory to store n items of type

TYPE, where TYPE is any C data type (that is, it allocates sizeof(TYPE) * n bytes of

memory). It returns a pointer of the same type. PyMem_DEL(p) frees the memory

associated with p.

PyObject_NEW(TYPE, PyTypeObject *t) creates a new Python object using the

given C structure type and its corresponding Python type object:

PyObject_NEW(dictobject, &PyDict_Type) // Create a dictionary

PyObject_DEL(p) frees an object’s memory.

Cross-
Reference

New
Feature

4807-7 ch30.F 5/24/01 9:01 AM Page 579

580 Part V ✦ Advanced Python Programming

Summary
The Python/C API must be full-featured because it’s the same set of functions used

to create the built-in modules and much of the interpreter itself. While not as easy

to use as Python, the API makes working with Python objects in C at least tolerable.

In this chapter, you learned about:

✦ Tracking the reference counts of Python objects.

✦ Using the abstract and concrete object layers to manipulate objects.

✦ Raising and handling Python exceptions in C.

✦ Managing memory using Python’s memory heap functions.

In the next chapter, you learn to use NumPy, a set of numerical extensions for

Python that let you do things such as efficiently handle large arrays of data.

✦ ✦ ✦

4807-7 ch30.F 5/24/01 9:01 AM Page 580

Number
Crunching

Python can crunch numbers with the best of them. It

offers built-in complex numbers, functions to handle

advanced mathematics, random number generators, and more.

This chapter covers Python’s number-crunching abilities.

Using Math Routines
The math module provides various higher-math functions.

The functions raise a ValueError if passed an input not in

their domain.

The math module also provides constants pi and e:

def Circumference(Radius):
return Radius*2*math.pi

def
ContinuousCompounding(Principal,InterestRate,Y
ears):

Find the balance in a bank account,
after some time

earning the specified interest rate (for
example, .05),

compounded continuously.
return Principal * math.pow(math.e,

InterestRate*Years)

Rounding and fractional parts
The function ceil(x) returns the smallest integer >=x.

floor(x) returns the largest integer <=x. To round to the

nearest integer, use the built-in function round. For instance:

>>> math.ceil(2.2),math.floor(2.2),round(2.5)
(3.0, 2.0, 3.0)
>>> math.ceil(-2.5),math.floor(-3)
(-2.0, -3.0)

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using math routines

Computing with
complex numbers

Generating random
numbers

Using arbitrary-
precision integers

✦ ✦ ✦ ✦

4807-7 ch31.F 5/24/01 9:01 AM Page 581

582 Part V ✦ Advanced Python Programming

The function modf(x) returns a tuple of the form (Frac,Int), where Int is the integral

part of x, and Frac is the fractional part:

>>> math.modf(3)
(0.0, 3.0)
>>> math.modf(-2.22)
(-0.2200000000000002, -2.0)

General math routines
The function sqrt(x) returns the square root of a non-negative number x.

The function hypot(x,y) returns the hypotenuse of a triangle with sides of length

x and y — that is, it returns math.sqrt(x*x + y*y).

The function fmod(x,y) returns the remainder when x is divided by y. It uses the

platform C library, which normally (but not always) returns the same answer as x%y.

Logarithms and exponentiation
The function exp(x) returns e to the power of x, while log(x) returns the natural

logarithm of x. The function log10(x) returns the base-10 logarithm of x. The func-

tion pow(x,y) returns x raised to the power of y.

Note that 5**-1 (an integer to a negative power) is illegal, but math.pow(5,-1) is

legal (and equals 0.2, as you would expect). math.pow(-5,0.5) is still illegal — for

that, you need to use the cmath module. (See “Computing with Complex Numbers”

later in this chapter.)

The function ldexp(x,y) (short for “load exponent”) returns x * (2**y). The func-

tion frexp(x) returns the mantissa and exponent of x — a tuple (a,b) such that x
== a * (2**b). The exponent, b, is an integer. The mantissa, a, is such that

0.5<=a<1, unless x is 0, in which case, frexp(x)==(0.0,0).

Trigonometric functions
The functions sin(x), cos(x), and tan(x) return the sine, cosine, and tangent

(respectively) of an angle x, measured in radians:

>>> math.cos(math.pi)
-1.0
>>> DEGREES_TO_RADIANS = math.pi/180
>>> math.tan(45*DEGREES_TO_RADIANS) #Convert degrees to radians
0.99999999999999989

The functions sinh(x), cosh(x), and tanh(x) compute hyperbolic sine, cosine,

and tangent, respectively.

4807-7 ch31.F 5/24/01 9:01 AM Page 582

583Chapter 31 ✦ Number Crunching

The inverse trigonometric functions asin(x), acos(x), and atan(x) return the arc

sine, arc cosine, and arc tangent of x, respectively. The values of asin(x) and

atan(x) are chosen between -pi/2 and pi/2. The value of acos(x) is chosen

between 0 and pi.

Computing with Complex Numbers
Recall that in Python, the imaginary part of a complex number is indicated by a j

(not an i). The function complex(real[,imag]) creates a complex number. The

attributes real and imag of a complex number return its real and imaginary part,

respectively; and the conjugate method returns its complex conjugate, as shown

in the following example:

>>> (1 - 1j) * (1 + 1j)
(2+0j)
>>> complex(-5) + 3J # j or J, case doesn’t matter
(-5+3j)
>>> x = (2+3j)
>>> x.real,x.imag,x.conjugate()
(2.0, 3.0, (2-3j))
>>> abs(x) # magnitude of x = hypot(x.real,x.imag)
3.6055512754639896

The math functions operate only on real numbers; for instance, math.sqrt(-4)
raises a ValueError exception, because -4 has no real roots. math’s sister-module,

cmath, provides functions for working with complex numbers. These cmath func-

tions accept complex input, but are otherwise the same as the corresponding math

functions: acos, asin, atan, cos, exp, log, log10, sin, sinh, tan, and tanh.

In addition, cmath provides the inverse hyperbolic trigonometric functions:

asinh(x), acosh(x), and atanh(x).

Generating Random Numbers
The random module provides a pseudo-random number generator.

Random numbers
Several functions are available to produce random numbers; you can also instanti-

ate your own random number generator.

Prior to Version 2.1, the random module used the whrandom module — which
provides much of the same functionality — however, the whrandom module is now
deprecated.

Note

4807-7 ch31.F 5/24/01 9:01 AM Page 583

584 Part V ✦ Advanced Python Programming

Random integers
The function randrange([start,]stop[,step]) provides a random number cho-

sen from the corresponding range. randrange is now the preferred way to get a

random integer, but you can also call randint(min,max).

Random floating-point numbers
The function random provides a floating-point number x such that 0<=x<1. The func-

tion uniform(a,b) provides a floating-point number x such that a<=x<b.

Random selections
The function choice(sequence) returns a randomly selected element of the speci-

fied sequence. The function shuffle(sequence) shuffles a sequence in place.

(Note that the sequence must be mutable — to shuffle a tuple or string, first convert

it to a list.)

Seeding the RNG
The random number generator is not actually random, merely hard to predict. It is

deterministic, and its output is determined by its seed values. By default, random
seeds the generator with numbers derived from the current system time. But you

can seed it yourself by calling seed(x), where x is a hashable object. This example

seeds and re-seeds the generator:

>>> random.seed(123)
>>> random.random()
0.54140954469092906
>>> random.seed(123) # do it again!
>>> random.random()
0.54140954469092906

The functions in random are actually methods of the class random.Random. The

module automatically creates one instance of the class for you. If you like, you can

instantiate one or more Random instances yourself, to produce independent

streams of pseudo-random numbers. This is highly recommended for multi-

threaded programs, as two threads using the same random number generator may

receive the same numbers.

Generator state
The random number generator keeps an internal state, which changes each time it

supplies a new random number. The function getstate returns a snapshot of its

current state, which you can restore using setstate(state). You can also call

jumpahead(n) to skip forward n steps in the stream of random numbers.

The methods getstate, setstate, and jumpahead are new in Version 2.1.New
Feature

4807-7 ch31.F 5/24/01 9:01 AM Page 584

585Chapter 31 ✦ Number Crunching

Example: shuffling a deck
The example shown in Listing 31-1 prints out a deck of playing cards in random

order.

Listing 31-1: Cards.py

import random

Represent a card as a tuple of the form (Value,Suit):
CARD_VALUES=[“A”,2,3,4,5,6,7,8,9,10,”J”,”Q”,”K”]
CARD_SUITS=[“Clubs”,”Hearts”,”Diamonds”,”Spades”]

Cards=[]
for Suit in CARD_SUITS:

for Value in CARD_VALUES:
NewCard=tuple((Value,Suit))
Cards.append(NewCard)

random.shuffle(Cards)

for Card in Cards:
print Card

Random distributions
Then random module provides functions to provide random numbers distributed

according to various formulae, such as the normal distribution. The following

statistics functions are available:

✦ betavariable(a,b) — The beta distribution. Probability density is xa-1(1 - x)b-1 /

B(α,b), where B(a, b) = Γ(a) Γ(b) / Γ(a+b). Both a and b must be greater

than -1.

✦ cunifvariate(mean,arc) — Circular uniform distribution. Both mean and arc

must be an angle (in radians) from 0 to pi.

✦ expovariate(lambda) — The exponential distribution. Probability density is

λe-λx .

✦ gammavariate(a,lambda) — The gamma distribution. Probability density is

λα x(α -1) e-x/b / Γ(α). must be larger than -1, and b must be larger than 0.

✦ gauss(mu,sigma) — The Gaussian (normal) distribution with mean mu and

standard deviation sigma. This is slightly faster than normalvariate.

✦ lognormvariate(mu,sigma) — The log normal distribution. The natural loga-

rithm of this distribution has mean mu and standard deviation sigma.

4807-7 ch31.F 5/24/01 9:01 AM Page 585

586 Part V ✦ Advanced Python Programming

✦ normalvariate(mu,sigma) — The normal distribution. Mean is mu, and the

standard deviation is sigma.

✦ paretovariate(a) — The Pareto distribution. Probability density is a / xa + 1 for

x >=1

✦ vonmisesvariate(mu,kappa) — The Von Mises distribution. Mean angle (in

radians) is mu, and kappa is the concentration parameter.

✦ weibullvariate(a,b) — The Weibull distribution. Probability density is

αβxβ-1esp(-αxβ-1) . a must be greater than 0; b must be at least 1. Same as the

exponential distribution if b=1.

Example: plotting distributions using Monte Carlo
sampling
Listing 31-2 plots different random distribution with a text graph. It uses a trick

called Monte Carlo sampling: It samples the distribution many times, and graphs the

sample results. These results approximate the actual random distribution.

Listing 31-2: Plotter.py

import random

def MonteCarloSampler(DistributionFunction,Min,Max,
Step,Times=1000):

“””
Call the Distribution function the specified number
of times. Divide the range [Min,Max] into intervals
(buckets), each with width Step. Keep track of how
many values fall into each bucket.
“””
Buckets=[]
BucketLeft=Min
while BucketLeft<Max:

Buckets.append(0)
BucketLeft+=Step

for Sample in range(Times):
Value=DistributionFunction()
BucketIndex = int((Value-Min)/Step)
if (BucketIndex>0 and BucketIndex<len(Buckets)):

Buckets[BucketIndex]+=1
return Buckets

def PlotValues(Buckets, Height):
“””
Plot a collection of values, scaling them to the specified
height (in rows).
“””

4807-7 ch31.F 5/24/01 9:01 AM Page 586

587Chapter 31 ✦ Number Crunching

MaxValue = max(Buckets)
ScaledBuckets=[]
for Value in Buckets:

ScaledBuckets.append(Value*Height/MaxValue)
for RowNumber in range(Height,0,-1):

for Value in ScaledBuckets:
if Value>=RowNumber:

print “*”,
else:

print “ “,
print

NormalCaller = lambda : random.normalvariate(100,5)
Values=MonteCarloSampler(NormalCaller,80,120,1)
PlotValues(Values,20)

GammaCaller = lambda : random.gammavariate(0.5,5)
Values=MonteCarloSampler(GammaCaller,0,5,0.15)
PlotValues(Values,20)

Using Arbitrary-Precision Numbers
The mpz module provides an interface to the integer functionality of the GNU

Multiple Precision Arithmetic Library (GMP). mpz is an optional module, and

requires GMP to work. Visit GMP’s homepage at http://www.swox.com/gmp to

learn about installing and building GMP.

The mpz module enables you to do arithmetic using high-precision integers, or

mpz-numbers. You can construct an mpz-number with the function mpz(Number),

where Number is an integer, a long, another mpz-number, or an mpz-string. An mpz-

string is a binary representation of an mpz-number; it consists of an array of radix-

256 digits, with the least significant digit first. The method binary returns an

mpz-string for an mpz-number:

>>> SmallNumber = mpz.mpz(5)
>>> SmallNumber # string representation has form mpz(#):
mpz(5)
>>> BigNumber = mpz.mpz(50000L)
>>> BigNumber.binary()
‘P\303’
>>> BigNumber % 256 # should equal ord(P), or 80:
80
>>> type(BigNumber)==mpz.MPZType # MPZType is for type-checking
1

4807-7 ch31.F 5/24/01 9:01 AM Page 587

588 Part V ✦ Advanced Python Programming

An mpz-number has no other methods. It supports all the usual arithmetic opera-

tors, as well as built-in functions such as abs, int, and so on.

The mpz module provides several extra functions for manipulating mpz-numbers.

Each function takes mpz-number for its argument(s), converting ints and longs if

necessary.

The function gcd(X,Y) returns the greatest common divisor of X and Y. The func-

tion gcdext(X,Y) provides a tuple of the form (GCD, S,T) such that X*S + Y*T ==
GCD, and GCD is the greatest common divisor of X and Y.

The function sqrt(X) returns the square root of X, rounding the result (if neces-

sary) toward zero. The function sqrtrem(X) returns a tuple (Root,Remainder) such

that Root*Root + Remainder == X; the tuple is chosen such that Remainder is as

small as possible.

The function powm(Base,Exponent,Modulus) raises Base to the power Exponent,
and then returns the result modulo Modulus. It is a shortcut for

(Base**Exponent)%Modulus.

The function divm(Numerator,Denominator,Modulus) computes the quotient of

Numerator and Denominator modulo Modulus — a number Q such that

(Q*Denominator)%Modulus == Numerator. Modulus and Denominator must be rela-

tively prime, as shown here:

>>> mpz.divm(10,20,99) # 10/20 is equal to 50, modulo 99.
mpz(50)

Summary
Python can do complex arithmetic, trigonometric functions, and even some statis-

tics. Moreover, it can do it all very precisely. In this chapter, you:

✦ Did complex arithmetic and some simple trigonometry.

✦ Shuffled a deck of cards, with the help of random.

✦ Did high-precision integer arithmetic.

In the next chapter, you’ll learn all about Numeric Python — NumPy: powerful

extension modules for fast computation matrix arithmetic and much more.

✦ ✦ ✦

4807-7 ch31.F 5/24/01 9:01 AM Page 588

Using NumPy

The NumPy extension modules introduce a new sequence

type: the array. Arrays are fast — much faster than lists

or tuples for “heavy lifting” such as image processing. Arrays

also have many powerful methods and functions associated

with them, so they are often handy, even when speed isn’t an

issue.

Introducing Numeric Python
Numeric Python (also known as NumPy) is a collection of

extension modules for number crunching. The core module,

Numeric, defines the array class and various helper functions.

This chapter focuses on the Numeric module. NumPy’s other

optional modules include the following:

✦ MA — Masked arrays. These are arrays that may have

some missing or invalid elements.

✦ FFT — Fast Fourier transforms

✦ LinearAlgebra — Linear algebra routines (calculation of

determinants, eigenvalues, and so on)

✦ RandomArray, RNG — Interface to random number gen-

erators. These may be useful if the random module

doesn’t have what you need.

Installing NumPy
Because NumPy is not part of the standard Python distribu-

tion, the first order of business is to install it. The NumPy pro-

ject is hosted at SourceForge (http://sourceforge.net/
projects/numpy). Here, you can download the NumPy source

code, or (for Windows) a binary distribution. I recommend

downloading the source tarball, in any case, as it includes a

nice tutorial (in Demo\NumTut) and some examples.

3232C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing Numeric
Python

Accessing and slicing
arrays

Calling universal
functions

Creating arrays

Using element types

Reshaping and
resizing arrays

Using other array
functions

Array example:
analyzing price
trends

✦ ✦ ✦ ✦

4807-7 ch32.F 5/24/01 9:01 AM Page 589

590 Part V ✦ Advanced Python Programming

Some quick definitions
An array is a sequence — a collection of elements all of a particular type (usually

numeric). A universal function, or ufunc, is a function that takes an array (or other

sequence), acts on each element individually, and returns an array of results. The size

of an array (the total number of elements) is fixed. However, its shape may vary

freely; for example, a linear array of 12 elements may be reshaped into a 3 × 4 grid, a

2 × 2 × 3 cube, and so on. These shapes can be represented in Python as tuples of the

form (12,), (3,4), or (2,2,3). An array can have several dimensions, or axes.

Meet the array
You can construct an array by calling array(sequence). Here, sequence is a collec-

tion of values for the array. For example:

>>> import Numeric
>>> Sample=Numeric.array([1,2,3,4,5])
>>> Sample # Print the array:
array([1, 2, 3, 4, 5])
>>> # Remember not to do this:
>>> BadSample=Numeric.array(1,2,3,4,5) # Too many arguments!
Traceback (innermost last):
File “<pyshell#236>”, line 1, in ?
BadSample=Numeric.array(1,2,3,4,5)

TypeError: function requires at most 4 arguments; 5 given

A nested sequence results in a multi-dimensional array. However, note that the

source sequence must form a valid shape:

>>> Numeric.array([[1,2],[3,4],[5,6]]) # 3x2 array
array([[1, 2],

[3, 4],
[5, 6]])

>>> Numeric.array([[1,2],[3,4,5]]) # Not rectangular!
Traceback (innermost last):
File “<pyshell#14>”, line 1, in ?
Numeric.array([[1,2],[3,4,5]]) # not rectangular!

TypeError: an integer is required

Accessing and Slicing Arrays
You can access an array’s elements by index or by slice:

>>> Fibonacci=Numeric.array((1,1,2,3,5,8,13))
>>> Fibonacci[4] # An element
5
>>> Fibonacci[:-1] # A slice (giving a sub-array)
array([1, 1, 2, 3, 5, 8])

4807-7 ch32.F 5/24/01 9:01 AM Page 590

591Chapter 32 ✦ Using NumPy

>>> Fibonacci[0]=44 # Arrays are mutable (but not resizable)
>>> Fibonacci # (We broke the Fibonacci series)
array([44, 1, 2, 3, 5, 8, 13])
>>> MagicSquare=Numeric.array([[6,1,8],[7,5,3],[2,9,4]])
>>> MagicSquare[0] # The first row
array([6, 1, 8])
>>> MagicSquare[0][2] # A single element
8

Arrays can be sliced along any axis, or along multiple axes at once. You provide the

slicing information for each axis, one by one. For example, following are some slices

on a 4 × 4 array:

>>> # Produce an array of the numbers 0 to 15:
>>> Sixteen=Numeric.arrayrange(16)
>>> # Re-shape the array into a 4x4 grid:
>>> FourByFour=Numeric.reshape(Sixteen,(4,4))
>>> FourByFour
[[0, 1, 2, 3,]
[4, 5, 6, 7,]
[8, 9,10,11,]
[12,13,14,15,]]
>>> FourByFour[1:3,1:3] # rows 1 and 2, columns 1 and 2
[[5, 6,]
[9,10,]]
>>> FourByFour[:,0] # Every row, but only the first column
[0, 4, 8,12,]

The array returned by a slice is not a copy of the old array, but a reference to the

old array’s data. Note that this is different from the behavior of the slice operator

on lists. Compare the results of the following two operations:

>>> FirstList=[1,2,3,4,5]
>>> SecondList=FirstList[1:4] # Normal slice copies data
>>> SecondList[0]=25 # FirstList is unchanged!
>>> FirstList
[1, 2, 3, 4, 5]
>>> FirstArray=Numeric.array(FirstList)
>>> SecondArray=FirstArray[1:4] # Array slice doesn’t copy data
>>> SecondArray[0]=25 # FirstArray is changed!
>>> FirstArray
[1,25, 3, 4, 5,]

Some array manipulations make a copy of array data, while others provide a new
reference to the same data. Make sure that you know which you are doing—
otherwise, you may end up with two array variables that “step on each others’ toes”!

Optionally, you can provide a third “step” parameter for an array slice. This enables

you to take every nth element within a slice, or to reverse the order of a slice:

>>> Sixteen[1:10:2] # Every other element from the slice
[1,3,5,7,9,]

Note

4807-7 ch32.F 5/24/01 9:01 AM Page 591

592 Part V ✦ Advanced Python Programming

>>> Sixteen[::-1] # Reverse the order of the slice
[15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,]

Contiguous arrays
An ordinary array is contiguous — its entries all live next to one another in memory.

Passing a slice-step is one way to get a noncontiguous array. The iscontiguous
method of an array returns true if the array is contiguous. Most functions don’t care

whether an array is contiguous or not, but some (such as the flat attribute) do:

>>> SomeNumbers=Numeric.arange(10)
>>> OddNumbers=SomeNumbers[::2]
>>> OddNumbers.iscontiguous()
0
>>> OddNumbers.flat
Traceback (innermost last):
File “<pyshell#84>”, line 1, in ?
Fred.flat

ValueError: flattened indexing only available for contiguous
array

The function ravel(array) returns a one-dimensional, contiguous copy of an array.

Converting arrays to lists and strings
You can extract array contents as a list (by calling the array’s tolist method) or as

a string (by calling tostring). For example, in the following 4 × 4 array, the letters

of each row and column form a word:

>>> MyArray=Numeric.array([“HORN”,”OBOE”,”ROSE”,”NEED”])
>>> MyArray
[[H,O,R,N,]
[O,B,O,E,]
[R,O,S,E,]
[N,E,E,D,]]]
>>> MyArray[3] # The letters of row 3 form a word:
[R,O,S,E,]
>>> MyArray[:,2] # The letters of column 3 form the same word:
[R,O,S,E,]

I cannot compare one slice to another directly, because comparison operators are

not defined for arrays. However, by converting slices to lists, I can verify that the

column words are the same as the row words:

>>> MyArray[2]==MyArray[:,2] # == is not available for arrays
Traceback (innermost last):
File “<pyshell#315>”, line 1, in ?
MyArray[2]==MyArray[:,2]

TypeError: Comparison of multiarray objects other than rank-0
arrays is not implemented.

4807-7 ch32.F 5/24/01 9:01 AM Page 592

593Chapter 32 ✦ Using NumPy

>>> MyArray[2].tolist()==MyArray[:,2].tolist()
1

Calling Universal Functions
Universal functions, or ufuncs, are performed elementwise — they affect each ele-

ment individually:

>>> A=Numeric.array([[1,2],[3,4]]) # 2x2 array
>>> Numeric.add(A,5) # Add 5 to each element
array([[6, 7],

[8, 9]])
>>> A+5 # Operators are overloaded to ufuncs
array([[6, 7],

[8, 9]])

Two arrays of compatible shape and size can be added, multiplied, and so on.

These operations are also done element by element; therefore, multiplying two

arrays does not perform the matrix multiplication of linear algebra. (For that, call

the matrixmultiply function, or use the Matrix module.) For instance:

>>> B=Numeric.array([[5,6],[7,8]])
>>> A*B # Elementwise multiplication
array([[5, 12],

[21, 32]])

A ufunc can operate on any sequence, not just an array. However, its output is

always an array. The Numeric module provides many ufuncs, whose names are

fairly self-explanatory (see Table 32-1):

Table 32-1
Universal Functions

Category Ufuncs

Arithmetic add, subtract, multiply, divide, remainder

Powers and Logs power, exp, log

Comparison equal, not_equal, greater, greater_equal, less, less_equal, minimum,
maximum

Logic logical_and, logical_or, logical_xor, logical_not

Trigonometry sin, cos, tan, sinh, cosh, tanh, arcsin, arccos, arctan, arcsinh, arccosh,
arctanh

Bitwise bitwise_and, bitwise_or, bitwise_xor, bitwise_not

4807-7 ch32.F 5/24/01 9:01 AM Page 593

594 Part V ✦ Advanced Python Programming

Ufunc destinations
By default, a ufunc creates a brand-new array to store its results. An optional last

argument to a ufunc is the destination array. The output of a ufunc can be stored in

any appropriately sized array with compatible typecode. If the destination is the

same as the source array, an operation can be performed in place, as it is here:

>>> Numbers=Numeric.array((4,9,16),Numeric.Float)
>>> Numeric.sqrt(Numbers) # Elementwise square-root
array([2., 3., 4.])
>>> Numbers # Original array is unchanged
array([4., 9., 16.])
>>> Numeric.sqrt(Numbers,Numbers) # Take roots in place
array([2., 3., 4.])
>>> Numbers # The original array WAS changed!
array([2., 3., 4.])

Performing operations in place is more efficient than creating new arrays left and

right. However, the destination must be compatible with the ufunc’s output, both in

size and in typecode. For instance, the preceding square root example used a float

array, because an in-place square root operation is not allowed on an int array:

>>> Numbers=Numeric.array((4,9,16)) # (NOT a float array)
>>> Numeric.sqrt(Numbers,Numbers)
Traceback (innermost last):
File “<pyshell#33>”, line 1, in ?
Numeric.sqrt(Numbers,Numbers)

TypeError: return array has incorrect type

Example: editing an audio stream
Listing 32-1 provides an example of the power of the array class. We read in a

stream of audio data as an array of numbers. The left and right channels of the

stereo sound are mixed together — every other number represents sound on the

left channel. We shrink the numbers corresponding to the left channel, and thereby

make the left channel quieter without affecting the right channel.

See Chapter 24 for more information on audio operations in Python, including an
explanation of the wave module.

Listing 32-1: Quiet.py

import Numeric
import wave

BUFFER_SIZE=5000
NB: This is an 8-bit stereo .wav file. If it had a different

Cross-
Reference

4807-7 ch32.F 5/24/01 9:01 AM Page 594

595Chapter 32 ✦ Using NumPy

sample size, such as 16-bits, we would need to convert the
sequence of bytes into an array of 16-bit integers by
calling Numeric.fromstring(Data,Numeric.Int16)
InFile=wave.open(“LoudLeft.wav”,”rb”)
OutFile=wave.open(“QuietLeft.wav”,”wb”)
OutFile.setparams(InFile.getparams())
while 1:

Read audio data as a string of bytes:
Data=InFile.readframes(BUFFER_SIZE)
if len(Data)==0:

break
Create an array based on the string:
Frames=Numeric.array(Data,

typecode=Numeric.UnsignedInt8,savespace=1)
Take every other frame to get just the left side. And,
divide each one by 2. (We would like to use
Numeric.divide(Frames[::2],2), but we can’t,
because the returned array would have float type).
Frames[::2] = Frames[::2]/2
OutFile.writeframes(Frames.tostring())

InFile.close()
OutFile.close()

Repeating ufuncs
Each binary ufunc provides a reduce method. The reduce method of a ufunc is

similar to the built-in function reduce. It iterates over a sequence of array ele-

ments. At each stage, it passes in (as arguments) the new value and the most recent

output. For example, multiply.reduce multiplies a sequence of numbers:

>>> Factors=Numeric.array((2,2,3,5))
>>> Numeric.multiply.reduce(Factors)
60

The reduce method takes a second, optional parameter — the axis to reduce over.

(By default, reduce combines values along the first axis.) For instance, suppose I

want to test whether a matrix is a magic square, wherein each row and column of

numbers has the same sum. I can call add.reduce to calculate all these sums:

>>> Square=Numeric.array([[1,15,14,4],[12,6,7,9],
[8,10,11,5],[13,3,2,16]])

>>> Numeric.add.reduce(Square) # Sum over each column
array([34, 34, 34, 34])
>>> Numeric.add.reduce(Square,1) # Sum over each row
array([34, 34, 34, 34])

I can verify that the sums are all the same by checking whether minimum.reduce
and maximum.reduce give the same value, as that can only happen if the sequence

elements are all identical. With a few more lines of code, I have a function to find

4807-7 ch32.F 5/24/01 9:01 AM Page 595

596 Part V ✦ Advanced Python Programming

magic squares, magic rectangles, magic cubes, or even magic hypercubes, as shown

in Listing 32-2:

Listing 32-2: MagicSquare.py

import Numeric

def IsMagic(Array):
TargetSum=None
for Axis in range(len(Array.shape)):

AxisSums=Numeric.add.reduce(Array,Axis)
MinEntry=Numeric.minimum.reduce(AxisSums)
MaxEntry=Numeric.maximum.reduce(AxisSums)
For 3 dimensions and up, MinEntry and MaxEntry
are still arrays, so keep taking minima and maxima
until they become ordinals:
while type(MinEntry)==Numeric.ArrayType:

MinEntry=Numeric.minimum.reduce(MinEntry)
MaxEntry=Numeric.maximum.reduce(MaxEntry)

if (MinEntry!=MaxEntry):
return 0

if (TargetSum==None):
TargetSum=MinEntry

elif TargetSum!=MinEntry:
return 0

return 1

if __name__==”__main__”:
Square=Numeric.array([[1,15,14,4],[12,6,7,9],

[8,10,11,5],[13,3,2,16]])
print IsMagic(Square)

Cube=Numeric.array([[[10,26,6],[24,1,17],[8,15,19]],
[[23,3,16],[7,14,21],[12,25,5]],
[[9,13,20],[11,27,4],[22,2,18]]])

print IsMagic(Cube)

In addition to reduce, each binary ufunc has an accumulate method. A call to

accumulate retains all the intermediate results of the function. For example, I

could determine where a running total became negative:

>>> Numbers=Numeric.array((5,10,20,-4,-2,-10,-5,-3,-10,-2))
>>> Numeric.add.accumulate(Numbers)
array([5, 15, 35, 31, 29, 19, 14, 11, 1, -1])

Finally, each binary ufunc has an outer method. This method calls the ufunc many

times — once for each pair of elements from the two arrays. If A is an n-dimensional

array and B is an m-dimensional array, then outer(A,B) is an (n+m)-dimensional

4807-7 ch32.F 5/24/01 9:01 AM Page 596

597Chapter 32 ✦ Using NumPy

array, where the element with coordinates (a1,a2,...,an,b1,b2,...,bm) is the output of

ufunc(A[a1][a2]...[an],B[b1][b2]...[bm]). For example, here is the effect of

outer multiplication:

>>> Numeric.multiply.outer([1,2,3],[4,5,6])
array([[4, 5, 6],

[8, 10, 12],
[12, 15, 18]])

>>> Numeric.multiply.outer([[1,2,3],[4,5,6]],(1,2))
array([[[1, 2],

[2, 4],
[3, 6]],
[[4, 8],
[5, 10],
[6, 12]]])

Creating Arrays
The array constructor has syntax array(sequence[,typecode[,copy=1[,
savespace=0]]]). Here, sequence is (as you have seen) a source of data for the

array. The element typecode is an element type (as described in the next section). If

savespace is true, the array element’s type will not increase in precision:

>>> Squares=Numeric.array((4,9,16))
>>> SpaceSaverSquares=Numeric.array((4,9,16),savespace=1)
>>> Squares/float(5) # elements are all upcast to float
[0.8, 1.8, 3.2,]
>>> SpaceSaverSquares/float(5) # elements are NOT upcast!
[0,1,3,]

If CopyFlag is false and sequence is an array, the new array will be a reference into

the old array. This saves space and processing time, but remember that altering

either array will affect the other! This code creates two arrays that point to the

same block of memory:

>>> Array1=Numeric.array((1,2,3,4,5))
>>> # Next line has same effect as Array2=Array1[:]
>>> Array2=Numeric.array(Array1,copy=0)
>>> Array2[2]=0
>>> Array1
[1,2,0,4,5,]

Array creation functions
The function arrayrange([start,]stop[,step]) returns an array consisting of a

range of numbers; it is a shortcut for calling array(range(...)). The function

zeros(shape[,typecode[,savespace=0]]) creates a zero-filled matrix with the

specified shape. The function ones is similar:

4807-7 ch32.F 5/24/01 9:01 AM Page 597

598 Part V ✦ Advanced Python Programming

>>> Numeric.zeros(5)
[0,0,0,0,0,]
>>> Numeric.ones((3,3))
[[1,1,1,]
[1,1,1,]
[1,1,1,]]

You may encounter the word zeros if you create an empty array. For example, if I

take an empty slice of an array, the result is a 0-dimensional array of zeroes:

>>> bob=Numeric.array((1,2,3))
>>> bob[2:2] # Empty slice
zeros((0,), ‘l’)

The function identity(n) returns the identity matrix with rank n as an array:

>>> identity(3)
[[1,0,0,]
[0,1,0,]
[0,0,1,]]

You can combine several arrays into one big array with a call to concatenate
((arrays)[,glueaxis=0]). The arrays provided are “glued together” along the

specified axis. The arrays can have any size along axis glueaxis, but their sizes

along all other axes must match.

The function indices(shape) provides a tuple of “index arrays” of the given shape.

The tuple has one element for each axis of shape, and the nth tuple corresponds to

the nth axis. Each tuple element is an array of the specified shape, such that each

entry’s value is equal to the index of its nth element. Confused? Here is an example:

>>> Coords=Numeric.indices(2,3) # a 2x3 box
>>> Coords[0] # First coordinates for each element
[[0,0,0,]
[1,1,1,]]
>>> Coords[1] # Second coordinates for each element
[[0,1,2,]
[0,1,2,]]
>>> Coords[0][1][2] # What’s the first coordinate of (1,2)?
1
>>> Coords[1][1][2] # What’s the second coordinate of (1,2)?
2

Seeding arrays with functions
You can create an array from the output of an arbitrary function. The function

fromfunction(Generator,Shape) creates an array of the specified shape. The

value stored in each array element is produced by a single call to Generator. The

arguments passed to Generator are the contents of indices(Shape), as shown in

the following example:

4807-7 ch32.F 5/24/01 9:01 AM Page 598

599Chapter 32 ✦ Using NumPy

>>> Numeric.fromfunction(lambda X,Y: X+Y, (3,3))
[[0,1,2,]
[1,2,3,]
[2,3,4,]]

When coding a call to fromfunction, one can often ignore the fact that Generator is

acting on arrays, and rely on elementwise array operations to do the work.

However, keep in mind that some operations (such as comparison) do not work

well with arrays. The example shown in Listing 32-3 calls the universal function

Numeric.minimum, because the built-in function min does not work on arrays. This

example prints, for each array entry, the remainder obtained by dividing the entry’s

two coordinates. Listing 32-4 shows the script’s output.

Listing 32-3: Remainder.py

import Numeric

def Remainder(X,Y):
Avoid division by 0 by adding 1 to the coordinates:
X=X+1
Y=Y+1
Small=Numeric.minimum(X,Y)
Large=Numeric.maximum(X,Y)
return (Large%Small)

print Numeric.fromfunction(Remainder,(25,25))

Listing 32-4: Remainder.py output

[[0 0]
[0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
[0 1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1]
[0 0 1 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1]
[0 1 2 1 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0]
[0 0 0 2 1 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1]
[0 1 1 3 2 1 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4]
[0 0 2 0 3 2 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1]
[0 1 0 1 4 3 2 1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7]
[0 0 1 2 0 4 3 2 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5]
[0 1 2 3 1 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3]
[0 0 0 0 2 0 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 0 1]
[0 1 1 1 3 1 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12]
[0 0 2 2 4 2 0 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11]
[0 1 0 3 0 3 1 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10]
[0 0 1 0 1 4 2 0 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9]
[0 1 2 1 2 5 3 1 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8]
[0 0 0 2 3 0 4 2 0 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7]

Contined

4807-7 ch32.F 5/24/01 9:01 AM Page 599

600 Part V ✦ Advanced Python Programming

Listing 32-4 (continued)

[0 1 1 3 4 1 5 3 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6]
[0 0 2 0 0 2 6 4 2 0 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5]
[0 1 0 1 1 3 0 5 3 1 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4]
[0 0 1 2 2 4 1 6 4 2 0 10 9 8 7 6 5 4 3 2 1 0 1 2 3]
[0 1 2 3 3 5 2 7 5 3 1 11 10 9 8 7 6 5 4 3 2 1 0 1 2]
[0 0 0 0 4 0 3 0 6 4 2 0 11 10 9 8 7 6 5 4 3 2 1 0 1]
[0 1 1 1 0 1 4 1 7 5 3 1 12 11 10 9 8 7 6 5 4 3 2 1 0]]

Using Element Types
Array elements can have one of several types. Each type has a type code, a single

character that uniquely identifies it. The Numeric module provides constants for

most type codes. These constants do not vary by platform, although the corre-

sponding character may.

Type codes can be used as arguments to the array constructor; they can also be

retrieved from an array by calling its typecode method, as shown in the following

example:

>>> Word=Numeric.array(“Blancmange”) # An array of characters
>>> Word
[B,l,a,n,c,m,a,n,g,e,]
>>> Word.typecode() # Characters have typecode “c”
‘c’
>>> Word=Numeric.array(“Blancmange”,Numeric.Int)
>>> Word # By overriding typecode, we made an array of ints:
[66,108, 97,110, 99,109, 97,110,103,101,]

The most common typecodes are the numeric ones: Int, Float, and Complex. In

addition, these numeric typecodes have sized variants. For example, Int16 is (usu-

ally) a 16-bit integer. If the operating system does not provide 16-bit integers, then

Int16 is the smallest integer type whose size is at least 16 bits. The typecodes

Int0, Int8, Int16, Int32, and (on some platforms) Int64 and Int128 are all avail-

able. Analogous typecodes exist for Float and Complex (for example, Float32).

The other available typecodes are UnsignedInt8 (for numbers between 0 and 255),

and PyObject (for arrays of Python objects).

Reshaping and Resizing Arrays
The array attribute shape holds an array’s current shape as a tuple. The function

reshape(OldArray,Shape) returns an array with the specified shape. No data is

4807-7 ch32.F 5/24/01 9:01 AM Page 600

601Chapter 32 ✦ Using NumPy

copied — the new array holds references to the values in OldArray. The new shape

must have the same size as the old:

>>> Shapely=Numeric.array((1,2,3,4,5,6))
>>> Shapely.shape
(6,)
>>> Numeric.reshape(Shapely,(2,3))
[[1,2,3,]
[4,5,6,]]

A one-dimensional version of any contiguous array is always available as the mem-

ber flat; an array’s total size is always equal to len(ArrayName.flat).

The function resize(OldArray,Shape) also returns an array with a new shape —

however, the new shape need not be the same size as the old. The old array will be

repeated or truncated as necessary to fill the new shape. The new array is a copy; it

does not hold references to the original data:

>>> Numeric.resize(Shapely,(3,3))
[[1,2,3,]
[4,5,6,]
[1,2,3,]]
>>> Numeric.resize(Shapely,(2,2))
[[1,2,]
[3,4,]]

Using Other Array Functions
In addition to the universal functions previously described, the Numeric module

provides several other array-manipulation functions. The following sections

describe some of the most useful ones.

sort(array,[axis=-1])
This function returns a copy of the given array, sorted along the given axis:

>>> People
array([[6, 7, 2],

[8, 3, 5],
[1, 9, 4]])

>>> Numeric.sort(People,0)
array([[1, 3, 2],

[6, 7, 4],
[8, 9, 5]])

>>> Numeric.sort(People,1)
array([[2, 6, 7],

[3, 5, 8],
[1, 4, 9]])

4807-7 ch32.F 5/24/01 9:01 AM Page 601

602 Part V ✦ Advanced Python Programming

where(condition,X,Y)
The where function treats the array condition as a mask for creating a new array. It

returns an array of the same shape and size as condition. Each element of the new

array is either X or Y. The new array element is X if the corresponding element of

condition is true; it is Y if the corresponding element of condition is false:

>>> Checkerboard=Numeric.resize((0,1),(5,5))
>>> Checkerboard
array([[0, 1, 0, 1, 0],

[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0],
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0]])

>>> Numeric.where(Checkerboard,”Y”,”N”)
array([[N, Y, N, Y, N],

[Y, N, Y, N, Y],
[N, Y, N, Y, N],
[Y, N, Y, N, Y],
[N, Y, N, Y, N]],’c’)

swapaxes(array,axis1,axis2)
This returns a new array that shares the data of the old, but with the specified axes

swapped. This is different from a call to reshape— it actually transposes an array:

>>> TwoByThree=Numeric.array([[1,2,3],[4,5,6]])
>>> ThreeByTwo=Numeric.swapaxes(TwoByThree,0,1)
>>> ThreeByTwo
array([[1, 4],

[2, 5],
[3, 6]])

>>> ThreeByTwo[2][1]==TwoByThree[1][2]
1
>>> Numeric.reshape(TwoByThree,(3,2)) # Different!
array([[1, 2],

[3, 4],
[5, 6]])

Matrix operations
The function matrixmultiply(A,B) performs matrix (not elementwise!) multipli-

cation on A and B and returns the result. The function dotm(A,B) returns the dot

product of two arrays.

The optional LinearAlgebra module provides several linear algebra functions that

operate on arrays. These include determinant(a), inverse(a), eigenvalues(a),

and solve_linear_equations(a,b). This example multiplies two matrices:

4807-7 ch32.F 5/24/01 9:01 AM Page 602

603Chapter 32 ✦ Using NumPy

>>> Matrix=Numeric.array([[1,2,3],[4,5,6],[7,8,10]])
>>> Inv=LinearAlgebra.inverse(Matrix)
>>> Numeric.matrixmultiply(Matrix,Inv)
array([[1.00000000e+000, 8.88178420e-016, -4.44089210e-016],

[0.00000000e+000, 1.00000000e+000, -1.77635684e-015],
[0.00000000e+000, 0.00000000e+000, 1.00000000e+000]])

Because LinearAlgebra does its work using floating-point numbers, multiplying the

matrix by its inverse does not yield the identity matrix exactly; however, the error

is extremely tiny. Note that LinearAlgebra.inverse will happily try (and fail!) to

provide an inverse for a non-invertible matrix.

Array Example: Analyzing Price Trends
The script in Listing 32-5 uses an array of imaginary stock prices to compute mov-
ing averages. A moving average is a computation, for each day, of the average stock

price for the last few days. The moving average can “smooth out” volatile changes

in a stock price to a greater or lesser extent. For example, a five-day moving average

is a relatively short-term measurement, whereas a 200-day moving average takes a

more long-term view.

Technical analysts use moving averages to help decide how to trade everything

from stocks to pork bellies. This script will probably never beat the market, but it

illustrates how easy it is to do number crunching with array functions. Listing 32-6

shows the script’s output.

Listing 32-5: MovingAverage.py

import Numeric

Prices=Numeric.array([10,12,15,18,20,22,22,19,20,
23,24,28,30,25,23,20,18,15,
13,8,7,7,8,])

NB: The MA (Masked Array) provides an average function.
Since it’s a one-liner, we define it ourselves here:
def Average(Array):

return Numeric.add.reduce(Array)/float(len(Array.flat))

def ProduceMovingAverage(StockPrices,Days):
Slices=[]
for LastDay in range(1,len(StockPrices)):

SliceStart=max(0,LastDay-Days)
Slices.append(StockPrices[SliceStart:LastDay])

return map(Average, Slices)

Continued

4807-7 ch32.F 5/24/01 9:01 AM Page 603

604 Part V ✦ Advanced Python Programming

Listing 32-5 (continued)

When the 5-day average crosses above the 11-day average,
it may be a good idea to buy the stock. When the 5-day
average drops below the 11-day average, it may be a good
time to sell. (The correct day-lengths to use,
and the effectiveness of the strategy, vary widely between
markets)
FiveDay=ProduceMovingAverage(Prices,5)
ElevenDay=ProduceMovingAverage(Prices,11)
print Numeric.greater(FiveDay,ElevenDay)

Listing 32-6: MovingAverage output

[0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0]

Summary
NumPy’s arrays are fast and flexible; and they mesh well with Python’s standard

structures, such as lists and tuples. If you need to handle many numbers at once,

arrays are probably a good choice — especially if efficiency is important. In this

chapter, you:

✦ Created, resized, and manipulated arrays of hundreds of numbers.

✦ Discovered magic squares and magic cubes.

✦ Analyzed the stock market with moving averages.

In the next chapter, you’ll examine Python’s parsing, tokenizing, and reflection

capabilities.

✦ ✦ ✦

4807-7 ch32.F 5/24/01 9:01 AM Page 604

Parsing and
Interpreting
Python Code

Python provides powerful introspection features — even

more powerful with the addition of function attributes

in Version 2.1. With programmatic access to the Python inter-

preter’s parser and disassembler, documentation, debugging,

and development become much easier.

Examining Tracebacks
If your program throws an uncaught exception, it exits, and

the Python interpreter prints a traceback, or stack trace.

However, your program need not crash to use traceback

objects — the traceback module provides a suite of functions

to work with them.

One usually grabs a traceback with a call to sys.exc_info(),

which returns a tuple of the form (Exception,Exception,

Traceback). In an interactive session, meeting an unhandled

exception populates the values sys.last_type,

sys.last_value, and sys.last_traceback; one often

makes use of these with a call to pdb.pm().

See Chapter 27, on debugging, for more information about
how to use tracebacks with pdb.

Printing a traceback — print_exc and
friends
The function print_exc([limit[,file]]) prints a trace-

back for the most recent exception (as stored in

sys.exc_info()). The optional parameter limit provides an

upper limit on how many stack frames to print. Normally, the

Cross-
Reference

3333C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Examining
tracebacks

Introspection

Checking indentation

Tokenizing Python
code

Example: syntax-
highlighting printer

Inspecting Python
parse trees

Low-level object
creation

Disassembling Python
code

✦ ✦ ✦ ✦

4807-7 ch33.F 5/24/01 9:01 AM Page 605

606 Part V ✦ Advanced Python Programming

exception is printed to sys.stderr. Passing a file parameter causes the exception

to be printed to a file.

You can also call print_last([,limit[,file]]) to print the traceback for the

last uncaught exception in an interpreter session. A more general function is

print_exception(type, value, traceback[,limit[,file]]), which prints the

specified traceback for the specified exception. A call to print_tb(traceback
[,limit[,file]]) prints just a traceback (without exception info).

Extracting and formatting exceptions
The function extract_stack grabs a stack trace from the current stack frame. The

function extract_tb(traceback[,limit]) grabs a stack trace from the specified

traceback. The return value of each function takes the form of a list of tuples. Each

element corresponds to a stack frame — the last element is the current stack frame.

Each element is a 4-tuple of the form (Filename, LineNumber, FunctionName,

LineText). For instance, this (excessively) recursive code (Listings 33-1 and 33-2)

prints a stack trace:

Listing 33-1: StackPrint.py

import traceback

def Factorial(n):
if (n<2):

print traceback.extract_stack()
return 1

return n*Factorial(n-1)

print Factorial(3)

Listing 33-2: Output of StackPrint.py

[(‘C:\\StackPrint.py’, 9, ‘?’, ‘print Factorial(3)’),
(‘C:\\StackPrint.py’,7, ‘Factorial’, ‘return n*Factorial(n-
1)’),
(‘C:\\StackPrint.py’, 7, ‘Factorial’, ‘return n*Factorial(n-
1)’),
(‘C:\\StackPrint.py’, 5, ‘Factorial’, ‘print
traceback.extract_stack()’)]
6

You can format traceback tuples however you want. To use the standard format-

ting, call format_exception(Type,Value,StackTrace[,limit]). A formatted

exception is a list of one or more newline-terminated strings. You can format just a

4807-7 ch33.F 5/24/01 9:01 AM Page 606

607Chapter 33 ✦ Parsing and Interpreting Python Code

stack trace with format_list(StackTrace), or just an exception with

format_exception_only(Type,Value). As a shortcut, call format_tb
(traceback[,limit]) to format a traceback directly, or call format_stack to

format the current call stack.

If optimization (the -O switch) is active, the line numbers reported by a traceback
may be slightly off. The function tb_lineno(Traceback) computes the actual
line number for a traceback.

Example: reporting exceptions in a GUI
Normally, printing tracebacks to a log file is sufficient. However, when debugging a

GUI, it can be nice to see the traceback onscreen. The code in Listing 33-3 shows a

simple way to report exceptions in a Tkinter window.

Listing 33-3: GUIErrors.py

import Tkinter
import traceback
import sys

def LogError():
TBStrings=traceback.format_exception(*sys.exc_info())
for Line in TBStrings:

TraceText.insert(Tkinter.END,Line)

def DoBadThings():
try:

smurflicious # bogus name
except:

LogError()

root=Tkinter.Tk()
TraceText=Tkinter.Text(root)
TraceText.pack()
BadButton=Tkinter.Button(root,text=”DoBadThings”,

command=DoBadThings)
BadButton.pack()
root.mainloop()

Eating arbitrary exceptions is bad for you
Code that catches an exception and does nothing (the except: pass pattern) is

sometimes said to “swallow” the exception. This is often sensible. For example, a

call to os.mkdirs raises an exception if the directory already exists. This OSError
is eminently edible. On the other hand, when one catches an arbitrary exception,

it’s best not to swallow it. Unforeseen problems may remain lurking in the program.

Caution

4807-7 ch33.F 5/24/01 9:01 AM Page 607

608 Part V ✦ Advanced Python Programming

For instance, the exception could be a NameError due to a typo in your code.

Perform some minimal error handling, even in a quick-and-dirty script such as the

following:

try:
DoLotsOfStuff() # This should never fail.

except:
Oh no! I don’t know what to do. But I’d better
not just pass, or debugging will hurt.
traceback.print_exc()

The time you spend typing that last line is your insurance against long, distracting

interludes spent debugging.

Introspection
Omphaloskepsis is a fancy word meaning “contemplating one’s navel.” The pro-

gramming equivalent, introspection (also called reflection), is a fancy word for code

that can examine itself. With Python, you can programmatically browse information

such as function and class definitions. It is a handy way to generate documentation,

perform type checking, and more.

Review: basic introspection
The built-in function hasattr(Object, MemberName) returns true if an object has

a member with the specified name. The function

getattr(Object,AttributeName[,Default]) returns the specified object mem-

ber, or Default if the object has no such member. And the function dir(Object)
returns a list of member names for an arbitrary object.

For example, suppose the Master object has various members. Some of the mem-

bers should be explicitly cleaned up (with a call to the cleanup method). The fol-

lowing code would clean up each member:

for Entry in dir(MainApp):
if hasattr(Entry,”cleanup”):

getattr(Entry,”cleanup”)()

The built-in function issubclass(Child,Parent) returns true if Child is a sub-

class of Parent. A class is considered a subclass of itself. The function

isinstance(Object,ClassOrType) returns true if the specified object is an

instance of the specified class, or has the specified type.

For example, a commonly used pattern is to check whether a variable X is a string

by testing type(X)==type(“”). The problem with this is that X may be a unicode

string! The following function is a better test for most purposes:

4807-7 ch33.F 5/24/01 9:01 AM Page 608

609Chapter 33 ✦ Parsing and Interpreting Python Code

def IsString(X):
return (isinstance(X,types.StringType) or

isinstance(X,types.UnicodeType))

Browsing classes
The module pyclbr provides a PYthon CLass BRowser (hence the name). It

browses Python source code directly — therefore, it can browse a module without

importing it, but it can’t browse a C extension module. The main function

readmodule(ModuleName[,Path]) parses the classes in the specified module file.

The optional parameter Path is a list of directories to add to the module search

path sys.path. The return value of readmodule is a dictionary, where each key is a

class name, and each value is a class descriptor.

A class descriptor has several data members. The members name, module, file,

and lineno provide the class name, module name, module file name, and definition

line number, respectively. The following examines the FTP class from ftplib:

>>> FTPDescriptor=pyclbr.readmodule(“ftplib”)[“FTP”]
>>> FTPDescriptor.name
‘FTP’
>>> FTPDescriptor.lineno
75

The member methods is a dictionary, mapping the name of each method to the line

number on which it is defined. The member super is a list of class descriptors for

the class’s base classes; super has length 1 for single inheritance. If readmodule
doesn’t have a class descriptor for a base class, the corresponding entry in super
is the base class name (as a string) instead.

Browsing function information
A function (or method) has attributes. Several built-in attributes are available for

every function, as shown in Table 33-1.

Table 33-1
Built-in Function Attributes

Name Description

func_name Function name (as a string)

func_doc Function’s docstring; same as the __doc__ member

func_dict Dictionary of user-defined attribute names and values

func_globals Global namespace of the function; same as m.__dict__, where m is the
module defining the function

Continued

4807-7 ch33.F 5/24/01 9:01 AM Page 609

610 Part V ✦ Advanced Python Programming

Table 33-1 (continued)

Name Description

func_defaults Default function parameters, as a tuple

func_code The function, as a code object; suitable for passing to exec or eval

func_defaults Default parameters

You can also set arbitrary attributes on any Python function (but not on a built-in

function).

Function attributes are a new feature in Python 2.1

For example, the function in Listing 33-4 checks a software version number (as a

string) to ensure that it is a valid dotted-decimal. It uses function attributes to track

the number of calls and the number of successes. Listing 33-5 shows the output.

Listing 33-4: FunctionAttributes.py

import re
DottedDecimalRegExp=re.compile(r”^[0-9]+(\.[0-9]+)*$”)

def CheckVersionNumber(Str):
One way to handle function attributes is to assume
they are uninitialized until proven otherwise:
OldCount = getattr(CheckVersionNumber,”CallCount”,0)
CheckVersionNumber.CallCount = OldCount+1
if (DottedDecimalRegExp.search(Str)):

CheckVersionNumber.SuccessCount+=1
return 1

return 0
One way to handle function attributes is to
initialize them up-front. (Unlike this example,
you will want to choose one pattern and stick with it)
CheckVersionNumber.SuccessCount=1

print CheckVersionNumber(“3.5”)
print CheckVersionNumber(“2”)
print CheckVersionNumber(“3.4.5.”)
print CheckVersionNumber(“35.”)

print “Total calls:”,CheckVersionNumber.CallCount
print “Valid version numbers:”,CheckVersionNumber.SuccessCount

New
Feature

4807-7 ch33.F 5/24/01 9:01 AM Page 610

611Chapter 33 ✦ Parsing and Interpreting Python Code

Listing 33-5: Output of FunctionAttributes.py

0
0
0
1
Total calls: 4
Valid version numbers: 2

Checking Indentation
The module tabnanny is a safeguard against ambiguous indentation in Python

code. To quote the docstring: “The Tab Nanny despises ambiguous indentation.

She knows no mercy.” Run the module from the command line to check a file. For

example, suppose you created a source file in which one line is indented with tabs,

and another is indented with spaces. (This sort of mismatched whitespace usually

happens when people with different text editors are sharing and editing the same

source files.) The Tab Nanny will not be pleased:

> tabnanny.py -v parsing.py
‘parsing.py’: *** Line 8: trouble in tab city! ***
offending line: ‘ print “testing!”\012’
indent not equal e.g. at tab sizes 1, 2, 3, 4, 5, 6, 7

Tokenizing Python Code
Parsing source code can be a bit of a chore. Fortunately, Python’s standard libraries

can parse code for you.

The function tokenize.tokenize(Readline[,Processor]) reads from an input

stream, tokenizes code, and passes each token along to a processor. The Readline
parameter is generally the readline method of a filelike object. It should return

one line of input per call, and return an empty string when no data remains. The

Processor parameter is called once for each token, and passed a tuple of the form

(TokenType, TokenString, (StartRow,StartColumn), (EndRow,EndColumn),

LineNumber). Here, TokenType is a numeric code, and TokenString is the token

itself. LineNumber is the logical line where the token began. The default processor

prints out the token information:

>>> Code=StringIO.StringIO(“str = ‘hi there’”)
>>> tokenize.tokenize(Code.readline)
1,0-1,3: NAME ‘str’
1,3-1,4: OP ‘=’
1,4-1,14: STRING “‘hi there’”
2,0-2,0: ENDMARKER ‘’

4807-7 ch33.F 5/24/01 9:01 AM Page 611

612 Part V ✦ Advanced Python Programming

The token module provides various token-type constants (such as STRING and

ENDMARKER, as shown in the preceding printout). It provides a dictionary,

tok_name, which maps from token types to token-name strings. It also provides the

function ISEOF(TokenType), which returns true if the token is an end-of-file

marker. The tokenize module exports all of the TokenType constants of token, as

well as one additional one: COMMENT (the TokenType of a Python comment).

A useful parsing-related module is keyword. It provides one function,

iskeyword(str), which returns true if str is a Python keyword.

Example: Syntax-Highlighting Printer
Listing 33-6 uses the tokenizer to provide a syntax-highlighted HTML version of

Python source code. It uses the keyword module to look up Python keywords.

Listing 33-6: SyntaxHighlighter.py

import tokenize
import cgi
import keyword

KEYWORD=”Keyword”

Use a dictionary to keep track of what HTML tags we
will put before and after each token.
TOKEN_START_HTML={tokenize.NAME:””,

tokenize.COMMENT:””,
tokenize.STRING:””,
KEYWORD:””,
}

TOKEN_END_HTML={tokenize.NAME:””,
tokenize.COMMENT:””,
tokenize.STRING:””,
KEYWORD:””,
}

class SyntaxHighlighter:
def __init__(self,Input,Output):

self.Input=Input
self.Output=Output
self.OldColumn=0
self.OldRow=0

def ProcessToken(self,TokenType,TokenString,StartTuple,
EndTuple,LineNumber):

If this token starts after the last one ended,
then maintain the whitespace:
if StartTuple[0]>self.OldRow:

self.OldColumn=0

4807-7 ch33.F 5/24/01 9:01 AM Page 612

613Chapter 33 ✦ Parsing and Interpreting Python Code

Whitespace = “ “*(StartTuple[1]-self.OldColumn)
self.Output.write(Whitespace)
Special case: Variable names and Python keywords
both have token type NAME, but we’d like the keywords
to show up in a different color. So, we switch the
token type to suit our needs:
if (TokenType==tokenize.NAME and

keyword.iskeyword(TokenString)):
TokenType=KEYWORD

Pre-token tags:
PreToken = TOKEN_START_HTML.get(TokenType,””)
self.Output.write(PreToken)
The token itself:
self.Output.write(cgi.escape(TokenString))
Post-token tags:
PostToken = TOKEN_END_HTML.get(TokenType,””)
self.Output.write(PostToken)
Track where this token ended:
self.OldRow=EndTuple[0]
self.OldColumn=EndTuple[1]

def PrintHighlightedCode(self):
self.Output.write(“<HTML><PRE>”)
tokenize.tokenize(self.Input.readline,

self.ProcessToken)
self.Output.write(“</PRE></HTML>”)

Input=open(“SyntaxHighlight.py”,”r”) # highlight ourself!
Output=open(“SyntaxHighlight.html”,”w”)
Highlighter=SyntaxHighlighter(Input, Output)
Highlighter.PrintHighlightedCode()

Inspecting Python Parse Trees
When Python code is parsed, it is stored internally in an Abstract Syntax Tree

(AST). The parser module provides you with access to AST objects. You can con-

vert back and forth between sequences and AST objects, in order to manipulate an

expression.

Manipulating ASTs is not for the faint of heart — they are low-level beasts that may
vary from one release of Python to the next.

Creating an AST
The function parser.expr(source) parses the provided expression, and returns

the resulting AST. It parses a single expression, in the same way that

compile(source, “file.py”, “eval”) would. The function

parser.suite(source) parses a suite of statements, in the same way that

Caution

4807-7 ch33.F 5/24/01 9:01 AM Page 613

614 Part V ✦ Advanced Python Programming

compile(source, “file.py”, “exec”) would. Both functions raise a

ParserError if they cannot parse the code.

ASTs and sequences
The AST method totuple([LineInfo]) returns a tuple representation of the AST.

The tuple contains many deeply nested subtuples. Each tuple is either a terminal

element (a token) or a nonterminal element (a symbol).

Each terminal element of the source is represented by a tuple of the form

(TokenType,TokenString[,LineNumber]). Here, LineNumber is provided only if the

LineInfo parameter (passed to totuple) was true. The constants in the token mod-

ule provide readable names for terminal element types.

Each nonterminal element of the source is represented by a tuple of the form

(SymbolType,SubElement[,SubElement...]). Here, SymbolType is one of the symbol

constants provided in the symbol module, and each SubElement is a child element

(either terminal or nonterminal).

Similarly, the AST method tolist([LineInfo]) returns a list representation of the

AST. You can produce an AST from a sequence by calling the function

sequence2ast(Sequence).

Using ASTs
An AST object has several methods. The method isexpr returns true if the AST

corresponds to a single expression; conversely, issuite returns true if the AST

corresponds to a block of code. The member compile([filename]) compiles the

AST into a code object, suitable for passing to exec (if issuite is true) or to eval
(if isexpr is true). The dummy file name defaults to <ast>.

Low-Level Object Creation
The new module provides functions to create a new instance, class, function, mod-

ule, or method.

The function instance(Class,Members) creates and returns an instance of Class
with the specified member dictionary (i.e., the new object’s __dict__ attribute will

be Members).

The function instancemethod(function,instance,class) returns a new

method object. If instance is none, the new method is an unbound (class) method.

The function function(code, globals[,name[,defaults]]) creates a function

with the specified code (as a code object) and the specified globals (as a dictionary).

If specified, defaults should be a tuple of default arguments for the function.

4807-7 ch33.F 5/24/01 9:01 AM Page 614

615Chapter 33 ✦ Parsing and Interpreting Python Code

The function module(name) creates a new module with the specified name.

The function classobj(name,BaseClasses,NameSpace) creates a new class with

the specified name. BaseClasses is a tuple (possibly empty) of base classes, and

NameSpace is the class’s namespace dictionary.

The normal way of creating things is usually the right way, but occasionally the low-

level power of new is useful. For example, suppose that Employee and Person are

classes with similar data members. You could create a Person from an Employee by

using new, as shown in Listing 33-7:

Listing 33-7: UsingNew.py

import new

class Employee:
pass

class Person:
pass

Bob=Employee()
Bob.Name=”Bob”
Bob.SSN=”123-45-6789”
Bob.ManagerName=”Earl”
Passing Bob.__dict__ gives rise to some unnatural behavior
later on; passing Bob.__dict__.copy() would be healthier!
BobThePerson=new.instance(Person,Bob.__dict__)
print BobThePerson.Name
BobThePerson.SSN=”987-65-4321”
print Bob.SSN # It has changed!!!

Disassembling Python Code
Python code is compiled into byte code before execution, for improved efficiency.

This byte-compiled code is stored on disk in .pyc files. The dis module enables you

to disassemble and examine this byte code. The main function, dis([Source]),

disassembles byte code and prints the results. The parameter Source may be a

function or method, a code object, or a class. The function distb([tb]) disassem-

bles the top function of a traceback object. By default, both dis and distb disas-

semble the last traceback.

Each line of output contains the instruction address, the opcode name, the opera-

tion parameters, and the interpretation of the operation parameters:

4807-7 ch33.F 5/24/01 9:01 AM Page 615

616 Part V ✦ Advanced Python Programming

>>> def Tip(Bill):
return Bill * 0.15

>>> dis.dis(Tip)
0 SET_LINENO 1

3 SET_LINENO 2
6 LOAD_FAST 0 (Bill)
9 LOAD_CONST 1 (0.14999999999999999)
12 BINARY_MULTIPLY
13 RETURN_VALUE
14 LOAD_CONST 0 (None)
17 RETURN_VALUE

The instructions at 6 and 9 push the two values onto the stack; the instructions at

12 and 13 multiply them and return the result. Notice that the instructions at 14 and

17 (which return None) will never actually execute. (Experiments have been done

with an optimizing Python compiler; such a compiler might well omit these extrane-

ous instructions!)

The attribute dis.opname is a sequence of operation code names; the index of each

opcode is its byte code. The dis module provides several sequences for keeping

track of the available opcodes. For example, haslocal is a sequence of byte codes

that accesses a local variable:

>>> dis.haslocal
[124, 125, 126]
>>> dis.opname[125] # Look up the opcode for this byte code
‘STORE_FAST’

Consult the Python documentation for a full list of the operation codes and their

behavior.

Summary
When it is feeling introspective, Python can parse itself, compile itself, tokenize

itself, and even disassemble itself. All this flexibility makes programming Python

easier. In this chapter, you:

✦ Reported errors in a graphical user interface.

✦ Used function attributes to track some simple statistics.

✦ Created an HTML page of Python code, complete with syntax highlighting.

✦ Parsed and disassembled source code.

The next chapter deals with internationalizing applications. This is where Unicode

starts to really come in handy!

✦ ✦ ✦

4807-7 ch33.F 5/24/01 9:01 AM Page 616

Deploying
Python
Applications

✦ ✦ ✦ ✦

Chapter 34
Creating Worldwide
Applications

Chapter 35
Customizing Import
Behavior

Chapter 36
Distributing Modules
and Applications

✦ ✦ ✦ ✦

P A R T

VIVI

4807-7 PO6.F 5/24/01 9:01 AM Page 617

4807-7 PO6.F 5/24/01 9:01 AM Page 618

Creating
Worldwide
Applications

The modules covered in this chapter help you create pro-

grams that are easily adaptable to different languages

and countries. These tools extract language- and region-

specific information so that, without additional programming,

your program will work well with users who speak different

languages or have different local customs than your own.

Internationalization and
Localization

Internationalization is the process by which a program is pre-

pared for using a different language than that of the program-

mer. Localization is the process by which an internationalized

program is adapted to the end-user’s choice of language and

customs. Together they make up what is known as native lan-
guage support, or NLS.

Due to the annoying length of the words internationaliza-
tion and localization, a popular abbreviated form is to write
the first and last letters and place between them the num-
ber of remaining letters. Thus internationalization becomes
i18n and localization becomes l10n.

Internationalization isn’t usually difficult. If you write your

program with the idea that you will be running it in different

languages, then adding internationalization support requires

little effort. If you are retrofitting an existing application, the

work isn’t hard but merely tedious. The internationalization

techniques in this chapter deal with marking strings in your

application as ones that need to be translated. Special tools

then extract these strings and lump them together in a

human-readable file that you pass to a translator.

Note

3434C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Internationalization
and localization

Preparing
applications for
multiple languages

Formatting locale-
specific output

✦ ✦ ✦ ✦

4807-7 ch34.F 5/24/01 9:01 AM Page 619

620 Part VI ✦ Deploying Python Applications

With a little effort, localization can happen almost automatically. Given the file con-

taining translations for the marked strings in your program, Python’s tools will look

up the translated version before displaying textual messages to the user.

Additionally, there are functions that help you format numbers, currencies, dates,

and so forth, without requiring you to know the different formats for every single

region in the world. Each set of region-specific settings is known as a locale, and

there are pre-built libraries of common locales throughout the world.

Python’s native language support routines are largely based on GNU’s native lan-
guage support project. Visit the gettext section on www.gnu.org for interesting
links and more information.

Preparing Applications for Multiple
Languages

This section walks you through the process of preparing a tiny program for using

different languages. For a real application, you’ll follow these steps in a different

order, but the order given here is better for a first-time look at the process. At first,

it may seem like a lot of work, but after you’ve been through it all once, you’ll see

that it’s actually quite simple.

An NLS example
Not all strings in an application need to be localizable (translatable). File names,

development error messages, and other strings that aren’t visible to the user can

remain in your native language. Mark the strings that do need to be translated by

sending them to a dummy function named _(s):

def _(s): return s
print _(‘What do you want to do today?’)
print ‘1 -’, _(‘Bake something’)
print ‘2 -’, _(‘Play with food’)
i = raw_input(_(‘Enter 1 or 2: ‘))
if i == ‘1’:
print _(‘Oh boy! Baking!’)

else:
print _(‘Food is fun!’)

The function name can be anything, but the single underscore character is the con-

ventional choice because it doesn’t pollute your source code too much, it doesn’t

take too much extra effort to include it, and it’s very unlikely that you’re already

using a function of the same name. Moreover, some processing tools may be expect-

ing that you follow the herd and use the same convention.

Note

4807-7 ch34.F 5/24/01 9:01 AM Page 620

621Chapter 34 ✦ Creating Worldwide Applications

In Python’s Tools/i18n directory lives pygettext.py, a tool that extracts strings

tagged for translation and places them into a human-readable file. Using the preced-

ing example program (saved as chef.py), you extract the tagged strings as follows:

d:\Python20\Tools\i18n\pygettext.py chef.py

Normally, you won’t see any output from running this (unless you use –h for help),

but it generates a messages.pot file such as the following:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR ORGANIZATION
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
msgid “”
msgstr “”
“Project-Id-Version: PACKAGE VERSION\n”
“PO-Revision-Date: Wed Feb 14 20:31:20 2001\n”
“Last-Translator: FULL NAME <EMAIL@ADDRESS>\n”
“Language-Team: LANGUAGE <LL@li.org>\n”
“MIME-Version: 1.0\n”
“Content-Type: text/plain; charset=CHARSET\n”
“Content-Transfer-Encoding: ENCODING\n”
“Generated-By: pygettext.py 1.1\n”

#: chef.py:5
msgid “What do you want to do today?”
msgstr “”

#: chef.py:6
msgid “Bake something”
msgstr “”

#: chef.py:7
msgid “Play with food”
msgstr “”

#: chef.py:10
msgid “Oh boy! Baking!”
msgstr “”

#: chef.py:12
msgid “Food is fun!”
msgstr “”

#: chef.py:8
msgid “Enter 1 or 2: “
msgstr “”

This template file can then be copied and edited to form a language-specific ver-

sion. For the following example, we downloaded an echeferizer, a program that

translates text into the language spoken by the Swedish chef from the Muppets.

4807-7 ch34.F 5/24/01 9:01 AM Page 621

622 Part VI ✦ Deploying Python Applications

I took messages.pot, added translations, and saved it as messages.po (the follow-

ing text shows only the lines that changed):

#: chef.py:5
msgid “What do you want to do today?”
msgstr “Vhet du yuoo vunt tu du tudey?”

#: chef.py:6
msgid “Bake something”
msgstr “Beke-a sumetheeng”

#: chef.py:7
msgid “Play with food”
msgstr “Pley veet fuud”

#: chef.py:10
msgid “Oh boy! Baking!”
msgstr “Ooh buy! Bekeeng!”

#: chef.py:12
msgid “Food is fun!”
msgstr “Fuud is foon!”

#: chef.py:8
msgid “Enter 1 or 2: “
msgstr “Inter 1 oor 2: “

The gettext module understands translation files in the .mo format, so use the

msgfmt.py tool (also in Python’s Tools/i18n directory) to convert from the .po
format:

d:\Python20\Tools\i18n\msgfmt.py messages.po

Once again, no output message means success, although you should now find a

messages.mo file in the current directory. Make a directory off your current direc-

tory called chef, and in it create another directory called LC_MESSAGES. Now move

messages.po into that LC_MESSAGES directory (I’ll explain why in a minute).

The final step is to replace the underscore function with a translator function from

Python’s gettext module. (Of course, you could have skipped using the dummy

function altogether and used gettext from the get-go, but I wanted to keep it sim-

ple.) Replace the old underscore function with the following:

import gettext
_ = gettext.translation(‘messages’,’.’).gettext

Instead of using the translation object’s gettext method, you can use ugettext
to have it return the string as a Unicode string.

Back on the command line, set the environment variable LANGUAGE to chef and run

the program:

Tip

4807-7 ch34.F 5/24/01 9:01 AM Page 622

623Chapter 34 ✦ Creating Worldwide Applications

C:\temp>set LANGUAGE=chef
C:\temp>chef.py
Vhet du yuoo vunt tu du tudey?
1 - Beke-a sumetheeng
2 - Pley veet fuud
Inter 1 oor 2: 1
Ooh buy! Bekeeng!

What it all means
Now that you’ve seen an example, you can better understand the process. The

underscore function acts as a lookup function that receives an original string and

returns a translated string. The work of extracting the strings, translating them, and

converting the file to the .po format is pretty straightforward. (Python uses the .po
format because that’s what GNU uses and there are third-party tools that use the

same format.)

The gettext.translation(domain[, localdir[, languages[, class]]])
function returns an instance of the Translation class that handles lookups for

you. domain is useful if you want to group strings by module or category, and

localdir is the base path from which to search for translation files (if omitted, it

looks in the default system locale directory). If the languages parameter is omit-

ted, the function searches through the environment variables LANGUAGE, LC_ALL,

LC_MESSAGES, and LANG to decide which language to use. class lets you supply

your own class to parse the translation file; if omitted, the GNUTranslations class

is used.

gettext.install(domain[, localdir[, unicode]])) installs the under-
score function in Python’s built-in namespace so that all modules will be able to
access it. Use this only when you want to force the entire application to use the
same language.

Based on the argument and environment information, gettext looks in

localdir/language/LC_MESSAGES/domain.mo for a translation file, and opens

and processes it, although it first passes the language to gettext._expand_lang
to get a list of directory names it will check for:

>>> import gettext
>>> gettext._expand_lang(‘french’)
[‘fr_FR.ISO8859-1’, ‘fr_FR’, ‘fr.ISO8859-1’, ‘fr’]
>>> gettext._expand_lang(‘american’)
[‘en_US.ISO8859-1’, ‘en_US’, ‘en.ISO8859-1’, ‘en’]
>>> gettext._expand_lang(‘chef’)
[‘chef’] # Unknown locale returned as-is

You could place a single English translation in an en directory so that all English-

speaking users would get that one translation; or you could provide translations

that differ for Australia and the United States, for example.

Tip

4807-7 ch34.F 5/24/01 9:01 AM Page 623

624 Part VI ✦ Deploying Python Applications

When you ship your program, you would include .mo files for each language you

wish to support. Based on the user’s environment variables, your program automat-

ically displays itself in the correct language.

The gettext module also has a set of APIs that closely mirror the GNU C APIs,
but using the class-based APIs discussed in this section is the method of choice;
it’s flexible and much more Pythonic. For example, you can create your own trans-
lation class, and you can localize each module separately, instead of the entire
application.

Formatting Locale-Specific Output
The locale module helps you localize program output by formatting numbers and

strings according to the rules of an end-user’s locale. The following sections show

you how to query and set various properties of the current locale.

Changing the locale
The default locale is called the C locale, but you can change the locale with

setlocale(category[, value]). Each locale is a set of rules for formatting cur-

rencies, dates, and so on, and you can use the category argument to specify what

part of the locale you want to switch. Table 34-1 lists the different categories you

can use. If value is omitted, the current locale for the given category is returned.

Table 34-1
Locale Categories

Category Affects rules dealing with . . .

LC_ALL All subcategories

LC_TIME Time formatting

LC_MESSAGES Operating system-generated messages

LC_NUMERIC Number formatting

LC_MONETARY Currency formatting

LC_COLLATE String sorting

LC_CTYPE Character functions

Note

4807-7 ch34.F 5/24/01 9:01 AM Page 624

625Chapter 34 ✦ Creating Worldwide Applications

In general, you switch all categories at the same time:

>>> import locale
>>> locale.setlocale(locale.LC_ALL,’german’)
‘German_Germany.1252’

Calling setlocale with an empty string for the value argument switches to the

user’s default locale (which is discovered by looking in environment variables such

as LANGUAGE, LC_ALL, LC_CTYPE, and LANG or by querying the operating system).

Many users set their locale in site.py, which is loaded when Python starts up, so
before setting the locale, you should first verify that it isn’t already something other
than the default C locale.

setlocale is not generally thread-safe, so if you do call it, be sure to do so near the

beginning of the program if possible. Programs running in embedded Python inter-

preters should not set the locale, but if the embedding application sets the locale

before the interpreter starts, Python will use the new locale setting.

Locale-specific formatting
str(f) formats a floating-point number using the user’s locale settings to decide

what decimal character to use:

>>> import locale
>>> locale.setlocale(locale.LC_ALL,’german’)
‘German_Germany.1252’
>>> locale.str(5.21)
‘5,21’

The format(format, val[, grouping]) function formats a number just as the

normal % operator would, except that it also takes into account the user’s numeri-

cal separator characters. If grouping is 1 instead of the default of 0, a grouping

character (such as a thousand’s separator) is used:

>>> locale.format(‘%5.2f’,12345.23)
‘12345,23’
>>> locale.format(‘%5.2f’,12345.23,1)
‘12.345,23’

atof(str) and atoi(str) convert a string to a floating-point number or integer,

taking into account the user’s grouping and decimal characters. The following uses

the preceding locale settings:

>>> locale.atof(‘1.000.002,5’)
1000002.5

strcoll(s1, s2) compares two strings using the lexicographic rules of the user’s

locale:

Note

4807-7 ch34.F 5/24/01 9:01 AM Page 625

626 Part VI ✦ Deploying Python Applications

>>> locale.setlocale(locale.LC_ALL,’us’)
‘English_United States.1252’
>>> locale.strcoll(‘chump’,’coward’) # ‘ch’ < ‘co’ in English
-1
>>> locale.setlocale(locale.LC_ALL,’sp’)
‘Spanish_Spain.1252’
>>> locale.strcoll(‘chump’,’coward’) # In Spanish, ‘ch’ > ‘c’
1

In order to compare strings using non-native lexicographic rules, strcoll first

transforms the strings in such a way that a normal string compare yields the cor-

rect result. If you will be performing many comparisons of the same string (sorting,

for example), you can instead call strxfrm(s) to get the transformed format. This

would calculate it only once, after which you can use Python’s normal compar-

isons, such as cmp and the equality operators.

Properties of locales
Each locale has a set of attributes describing its various rules. The localeconv()
function returns a dictionary containing the rules for the current locale. The keys of

this dictionary and their meanings are listed in Table 34-2.

Table 34-2
Keys for the localeconv Dictionary

Key Meaning U.S. English
Example

decimal_point Decimal-point character .

mon_decimal_point Monetary decimal point .

thousands_sep Number grouping character ,

mon_thousands_sep Monetary grouping character ,

currency_symbol Local currency symbol $

int_curr_symbol International currency symbol USD

positive_sign Sign for positive money values <blank>

negative_sign Sign for negative money values -

frac_digits Number of fractional digits used in local 2
monetary values

int_frac_digits Number of fractional digits used in 2
international values

p_cs_precedes 1 if currency symbol precedes value for 1
positive monetary values

4807-7 ch34.F 5/24/01 9:01 AM Page 626

627Chapter 34 ✦ Creating Worldwide Applications

Key Meaning U.S. English
Example

n_cs_precedes 1 if currency symbol precedes value for 1
negative values

p_sep_by_space 1 if space between positive value and 0
currency symbol

n_sep_by_space 1 if space between positive value and currency 0
symbol for negative values

p_sign_posn Sign position, positive money values 3

n_sign_posn Sign position, negative money values 0

grouping List of separator positions [3, 0]

mon_grouping List of separator positions, for monetary values [3, 0]

For p_sign_posn and n_sign_posn, a value of 0 means that the currency and the

value are enclosed in parentheses; 1 means that the sign comes before the value

and the currency symbol; and 2 means that the sign follows the value and the cur-

rency symbol. A value of 3 means that the sign immediately precedes the value, and

4 means that the sign immediately follows the value. A value of LC_MAX means noth-

ing is specified for this locale.

The grouping and mon_grouping attributes have lists of numbers specifying the

positions where “thousands” (numerical grouping) separators should be put. If the

last entry is CHAR_MAX, no further grouping is performed after the next-to-last posi-

tion has been used. If the last entry is 0, the last group is repeated, so [3, 0] means

place the separator character every three digits.

Summary
Adding native language support to your application makes it possible for your pro-

grams to adapt themselves to the locale of the end-user, without requiring you to

know the customs of every single region in the world. In this chapter, you:

✦ Flagged translatable strings in your program and extracted them with

Python’s tools.

✦ Created a translation table for your application and ran it in a different language.

✦ Formatted numeric output according to the rules of the end-user’s locale.

The next chapter shows you how to take control of and modify the standard mod-

ule import behavior.

✦ ✦ ✦

4807-7 ch34.F 5/24/01 9:01 AM Page 627

4807-7 ch34.F 5/24/01 9:01 AM Page 628

Customizing
Import Behavior

In most cases, the normal behavior for importing modules

is just what you need: You give Python a module name and

it finds and loads the module code and adds a new module

object to the current namespace. Occasionally, however, you

may need to change the way the import process works. This

chapter covers the several mechanisms Python provides for

easily creating custom module import behavior.

Understanding Module Importing
When the Python interpreter processes the import state-

ment, it calls the function __import__(name[, globals[,
locals[, fromlist]]]), which in turn locates the module

called name, retrieving its byte code so that a new module

object can be created. The globals and locals parameters

hold the global and local dictionaries so that __import__ can

determine the context in which the import is taking place.

fromlist is a list of items to import from the module when

the from x import y form of import is used.

Chapter 6 describes modules, packages, and the import
statement.

The primary reason __import__ exists in Python (as opposed

to being accessible only via the Python/C API) is so that you

can modify or track module imports. For example, the follow-

ing code replaces the normal importer with a function that

informs you of each module being loaded:

oldimp = __import__ # Save a reference to the
original

Cross-
Reference

3535C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
module importing

Finding and loading
modules with imp

Importing encrypted
modules

Retrieving modules
from a remote source

✦ ✦ ✦ ✦

4807-7 ch35.F 5/24/01 9:02 AM Page 629

630 Part VI ✦ Deploying Python Applications

def newimp(name, globals=None, locals=None, fromlist=None):
Display info about the import request
if not fromlist:

print ‘:: import’,name
else:

print ‘:: from’,name,’import’,’, ‘.join(fromlist)

Now call the original function
return oldimp(name,globals,locals,fromlist)

__builtins__.__import__ = newimp

After running the preceding code, you can see that import calls are indeed routed

to the new function, including imports that other modules request on their own:

>>> import os
:: import os
>>> os = reload(os)
:: import sys
:: from nt import *
:: from nt import _exit
:: import ntpath
:: import UserDict

The knee module in the standard Python distribution is an example of replacing
the built-in __import__ function. It doesn’t add new functionality, but it is useful
for seeing how things work.

Another use of __import__ is to modify the module before returning it to the caller.

For example, the following code adds a timestamp to each module, marking when it

was originally loaded:

import sys, time

oldimp = __import__

def newimp(name, globals=None, locals=None, fromlist=None):
try:

mod = sys.modules[name]
first_load = mod.first_load

except (AttributeError, KeyError):
first_load = time.time()

mod = oldimp(name,globals,locals,fromlist)
mod.first_load = first_load
return mod

__builtins__.__import__ = newimp

Tip

4807-7 ch35.F 5/24/01 9:02 AM Page 630

631Chapter 35 ✦ Customizing Import Behavior

The module maintains its original timestamp, even if reloaded:

>>> import md5
>>> md5.first_load
982444108.24399996
>>> md5 = reload(md5)
>>> md5.first_load
982444108.24399996

Some modules will have already been loaded by the time your import hook is
called, so they won’t have a timestamp unless they are loaded again later.

Instead of completely replacing Python’s import behavior, other modules let you

replace or extend only parts of it. The following sections cover the imp and

imputil modules.

The ihooks module is another way to modify module import behavior; it is cur-
rently used by rexec (restricted execution). New programs should avoid using
ihooks, and use imp and imputil instead.

Finding and Loading Modules with imp
The imp module gives you access to some of the behind-the-scenes functionality

associated with module importing. It’s useful if you’re creating your own module

importer or working with Python module files.

Each byte-compiled (.pyc) file has a special header identifying it as Python byte-

code; this header can vary from one version of Python to the next to signify a

change in bytecode format. get_magic() returns the header for the current

version:

>>> import imp
>>> imp.get_magic()
‘\207\306\015\012’

get_suffixes() returns a list of module suffixes that Python uses when searching

for modules. The list contains tuples of the form (suffix, mode, type):

>>> imp.get_suffixes()
[(‘.pyd’, ‘rb’, 3), (‘.dll’, ‘rb’, 3), (‘.py’, ‘r’, 1),
(‘.pyc’, ‘rb’, 2)]

The mode tells what mode should be passed to the open function to read the file

contents, and type tells the type of the module. imp defines a variable to name

each type, as listed in Table 35-1.

Note

Note

4807-7 ch35.F 5/24/01 9:02 AM Page 631

632 Part VI ✦ Deploying Python Applications

Table 35-1
Module Type Values

Value Type Name Module is . . .

1 PY_SOURCE Source code

2 PY_COMPILED Bytecode

3 C_EXTENSION Dynamically-loaded C extension

4 PY_RESOURCE Source code as a program resource (Mac)

5 PKG_DIRECTORY A package directory

6 C_BUILTIN Statically-linked C extension

7 PY_FROZEN Bytecode generated by the Freeze utility (see Chapter 36)

8 PY_CODERESOURCE Bytecode as a program resource (Mac)

find_module(name[, pathlist]) locates a module with the given name or raises

ImportError if it can’t find the module. pathlist is a list of directories in which

find_module will look, returning the first match it can find. If you don’t supply a

list of paths, find_module first checks to see if the module exists as a built-in or

frozen module. Next, it searches in special platform-specific locations (the system

registry on Windows and as a program resource on Macintosh). Finally, it will look

through the paths listed in sys.path. When searching for a module, find_module
finds files that have the same name as the name argument and that have any of the

extensions in the list returned by get_suffixes.

The value returned from find_module is a 3-tuple of the form (file, path,
description). file is an open file object for the module file (ready for reading the

file contents), path is the full path to the file on disk, and description is a tuple

like the ones get_suffixes uses:

>>> imp.find_module(‘asynchat’)
(<open file ‘D:\Py20\lib\asynchat.py’, mode ‘r’ at 0172E900>,
‘D:\\Python20\\lib\\asynchat.py’,
(‘.py’, ‘r’, 1)) # 1 is PY_SOURCE

If the module isn’t a file on disk, the file and path are empty:

>>> imp.find_module(‘md5’)
(None, ‘md5’, (‘’, ‘’, 6)) # 6 is C_BUILTIN

Note that find_module doesn’t handle hierarchical names; locating such modules

is a multi-step process:

4807-7 ch35.F 5/24/01 9:02 AM Page 632

633Chapter 35 ✦ Customizing Import Behavior

>>> imp.find_module(‘wxPython’)
(None, ‘D:\\Python20\\wxPython’, (‘’, ‘’, 5))
>>> imp.find_module(‘wx’,[‘d:\\python20\\wxPython’])
(<open file ‘d:\python20\wxPython\wx.py’, mode ‘r’ at
017D07C8>, ‘d:\\python20\\wxPython\\wx.py’, (‘.py’, ‘r’, 1))

load_module(name, file, filename, description) loads the module called

name (reloading it if it was already loaded). The file, filename, and description
arguments are the same as the values returned from find_module, but name is the

full module name (for example, wxPython.wx). load_module returns a module

object or raises ImportError.

load_module does not close the file object after it reads in the module. Be sure
to close it yourself, especially if the load fails and an exception is raised.

You can create a new, empty module object by calling new_module(name). The

module object returned is not inserted into sys.modules and has two members:

__name__ (set to the name value passed in to new_module) and __doct__ (set to

the empty string).

Importing Encrypted Modules
The imputil module makes it easy to modify importing behavior while reusing as

much of the current import functionality as possible (so you don’t have to rewrite

the whole thing yourself). This section uses imputil to read Python modules

stored in an encrypted format.

importers.py (in Python’s Demo/imputil directory) contains examples of
using imputil in different ways.

ImportManager is a class in imputil that takes care of locating and loading Python

modules. The install([namespace]) method installs the ImportManager
instance into the given namespace dictionary, defaulting to __builtin__ so that all

modules use it (namespace can be a module or a module dictionary):

>>> import imputil
>>> im = imputil.ImportManager()
>>> im.install()

As of Python 2.0, imputil and the PythonWin IDE have problems working
together. Try the examples of this section from a different IDE or from the com-
mand line.

The ImportManager constructor can optionally take an instance of the
imputil.Importer class; see the next section for details.

Note

Caution

Tip

Note

4807-7 ch35.F 5/24/01 9:02 AM Page 633

634 Part VI ✦ Deploying Python Applications

Once the ImportManager is installed, you can add to its list of recognized suffixes

for Python modules by calling its add_suffix(suffix, importFunc) method.

When the import statement is used, the ImportManager searches through known

module locations (for example, sys.path) for files that have the requested module

name and an extension that matches one in ImportManager’s internal suffix list.

When found, it calls the importFunc to import that module.

The code in Listing 35-1 puts the ImportManager to work by adding the new file

suffix.pye, which for now will contain only normal Python source code (in a later

example, it will contain encrypted bytecode). Basically, no functionality is added,

except that you can now store Python code in .pye files.

Listing 35-1: importpye.py – Adds.pye as valid Python
module files

import imputil

def handle_pye(fullpath, fileinfo, name):
Print a debugging message
print ‘Importing “%s” from “%s”’ % (name,fullpath)

data = open(fullpath).read()
return 0, compile(data,fullpath,’exec’),{}

im = imputil.ImportManager()
im.add_suffix(‘.pye’,handle_pye)
im.install()

Now create a .pye Python module. For example, save the following code to a file

called stuff.pye:

print ‘I am being imported!’
a = 10
b = ‘Hello’

After importing importpye, any other module can automatically import .pye
modules:

>>> import stuff # This fails – doesn’t check .pye files yet
Traceback (most recent call last):
File “<stdin>”, line 1, in ?

ImportError: No module named stuff
>>> import importpye
>>> import stuff # Now .pye files are checked and loaded
Importing “stuff” from “stuff.pye”
I am being imported!
>>> stuff.a, stuff.b
(10, ‘Hello’)

4807-7 ch35.F 5/24/01 9:02 AM Page 634

635Chapter 35 ✦ Customizing Import Behavior

The importFunc passed to add_suffix takes three arguments: the full path to the

module file, a file information tuple (from a call to os.stat), and the name of the

module being imported. If the function doesn’t return a value, ImportManager con-

tinues looking in other locations and with other suffixes until it loads a module,

finally raising ImportError if unsuccessful, so your importFunc could choose to

ignore some import requests because the ImportManager will continue looking if

needed.

Your importFunc should either not return anything or return a 3-tuple (isPkg,
code, initialDict). isPkg is 1 if the module is actually a package directory, code
is a code object for the module (which will be executed in the namespace of the

new module), and initialDict is a dictionary containing any initial values you

want present in the new module’s dictionary before the code object is executed.

With the import hook working, you can add in support to decrypt the module as it

is being imported. Listing 35-2 expands the previous version of importpye.py to

decrypt the file contents before returning it to the ImportManager. It also adds a

utility function, encrypt, to take a .py file and create a .pye file containing com-

piled and encrypted bytecode.

Listing 35-2: importpye.py – Imports-encrypted Python
modules

import imputil, rotor, os, marshal

SECRET_CODE = ‘bitakhon’
rot = rotor.newrotor(SECRET_CODE)

def encrypt(name):
Compiles and encrypts a Python file
data = compile(open(name).read(), name, ‘exec’)

base, ext = os.path.splitext(name)
data = rot.encrypt(marshal.dumps(data))
open(base+’.pye’, ‘wb’).write(data)

def handle_pye(fullpath, fileinfo, name):
Print a debugging message
print ‘Importing “%s” from “%s”’ % (name,fullpath)

data = marshal.load(fullpath)
return 0, rot.decrypt(data),{}

im = imputil.ImportManager()
im.add_suffix(‘.pye’,handle_pye)
im.install()

4807-7 ch35.F 5/24/01 9:02 AM Page 635

636 Part VI ✦ Deploying Python Applications

To test it, rename stuff.pye to just stuff.py (or use any other Python source

file) and use the encrypt function to create a .pye file:

>>> import importpye
>>> importpye.encrypt(‘stuff.py’)

Now you can distribute the stuff.pye file, and programs can load it without need-

ing to handle the details of decryption:

>>> import importpye
>>> import stuff
I am being imported!
>>> stuff.a, stuff.b
(10, ‘Hello’)

With a little extra work, you can use this method to distribute Python modules

whose contents are relatively secure. Using the Python/C API, you can create a

small C program that embeds the Python interpreter and takes care of setting up

the rotor (or whatever other decryption engine you use) so that it’s not overly triv-

ial for someone else to decrypt the files. Furthermore, by not advertising the fact

that your program is actually Python, and by grouping all the modules together into

a single archive file (perhaps as a pickled dictionary), you can prevent all but the

nosiest of people from obtaining your program source.

Chapters 29 and 30 cover extending and embedding Python with C, and Chapter
12 teaches you how to serialize Python objects using the pickle and marshal
modules.

Retrieving Modules from a Remote Source
The imputil.Importer class is a base class from which you derive custom import

subclasses. In this section, you’ll create a subclass that retrieves Python modules

from a remote module repository.

Subclassing Importer
Most subclasses of Importer override only one method, get_code(parent,
name, fqname). If not None, parent is a parent module in a module hierarchy. name
is the name of the module, and fqname is the fully qualified name (from the root of

the module namespace down to this module).

If get_code can’t find the module or doesn’t want to handle the request, it shouldn’t

return anything. If it does load the module, the return value should be a 3-tuple of

the form (isPkg, code, initialDict), as with the importFunc in the previous

section.

Cross-
Reference

4807-7 ch35.F 5/24/01 9:02 AM Page 636

637Chapter 35 ✦ Customizing Import Behavior

The easiest way to use an Importer is to add it to sys.path. Normally, sys.path
holds directory names, but with the ImportManager installed, it can contain direc-

tory names or Importers. Listing 35-3 creates a dummy Importer and installs it.

Listing 35-3: dumbimp.py – A dummy custom Importer

import imputil, sys

Create an install the ImportManager
ier = imputil.ImportManager()
ier.install()

class DummyImp(imputil.Importer):
def get_code(self, *args):

print ‘Importing’,args

Install at the front of the list
sys.path.insert(0,imputil.BuiltinImporter())
sys.path.insert(0,DummyImp())

Test it
import Tkinter

Running the program yields the following output:

C:\temp>dumbimp.py
Importing (None, ‘Tkinter’, ‘Tkinter’)
Importing (None, ‘FixTk’, ‘FixTk’) # Indirect imports
Importing (None, ‘_tkinter’, ‘_tkinter’)
Importing (None, ‘types’, ‘types’)
Importing (None, ‘Tkconstants’, ‘Tkconstants’)
Importing (None, ‘string’, ‘string’)
Importing (None, ‘MacOS’, ‘MacOS’)

Right behind the new importer is also an instance of BuiltinImporter to handle

normal imports. When downloading modules from a remote source, the custom

importer should probably come last in the list so that all other importing tech-

niques are exhausted before an attempt is made to download it over the relatively

slow network connection.

Creating the remote Importer
The server side of the network connection is as simple as possible: it accepts

incoming connections, reads a request for a single module, and returns the Python

source code or an empty string if the module doesn’t exist on the remote side. In

real-world applications, it’s a good idea to add security, message compression, the

ability to handle multiple requests on a single socket, and lots of error checking.

4807-7 ch35.F 5/24/01 9:02 AM Page 637

638 Part VI ✦ Deploying Python Applications

Listing 35-4 shows the remote importer implementation.

Listing 35-4: rimp.py – Remote module importer

import struct, SocketServer, imp, imputil
from socket import *

Simple message layer - adds length prefix to each
message so remote side knows how much data to read
MSG_HDR = ‘!I’
MSG_HDR_LEN = struct.calcsize(MSG_HDR)

def MsgSend(sock, msg):
‘Sends a message with a length prefix’

Add length prefix
msg = struct.pack(MSG_HDR, len(msg)) + msg

Send until all is sent
while msg:

count = sock.send(msg)
if count > 0:

msg = msg[count:]

def MsgRecv(sock):
‘Reads and returns a message’

Read the prefix
pre = sock.recv(MSG_HDR_LEN)
if not pre:

return
count = struct.unpack(MSG_HDR, pre)[0]

Read the message
msg = ‘’
while 1:

leftToRead = count - len(msg)
if not leftToRead:

break
msg += sock.recv(leftToRead)

return msg

Server side
PORT = 55555
ADDRESS = ‘127.0.0.1’

class ImportHandler(SocketServer.BaseRequestHandler):
def handle(self):

print ‘Received new connection’
msg = MsgRecv(self.request)
print ‘Remote side requests module’,msg

4807-7 ch35.F 5/24/01 9:02 AM Page 638

639Chapter 35 ✦ Customizing Import Behavior

file = None
try:

file, name, info = imp.find_module(msg)
source = file.read()

except ImportError:
source = ‘’

if file:
file.close()

print ‘Sending %d bytes’ % len(source)
MsgSend(self.request, source)
print ‘Done’

def StartServer():
print ‘[Starting server]’
serverClass = SocketServer.ThreadingTCPServer
listenAddress = (ADDRESS, PORT)
serverClass(listenAddress, ImportHandler).serve_forever()

Client side
class RemoteImporter(imputil.Importer):

def get_code(self, parent, name, fqname):
print ‘Checking remote host for module’,name
s = socket(AF_INET, SOCK_STREAM)
s.connect((ADDRESS, PORT))
MsgSend(s, name)
code = MsgRecv(s)
if not code:

return

Save the module for next time
open(name+’.py’,’wt’).write(code)
print ‘Saved %s.py to disk’ % name

Now return the code for this time
return 0, compile(code, name+’.py’, ‘exec’), {}

if __name__ == ‘__main__’:
StartServer()

else:
The module is being imported, so install the
custom importer
import imputil, sys

Install an ImportManager only if one has not
already been installed globally
if __import__.__name__ != ‘_import_hook’:

ier = imputil.ImportManager()
ier.install()
sys.path.append(imputil.BuiltinImporter())

Install it at the end of the list
sys.path.append(RemoteImporter())

4807-7 ch35.F 5/24/01 9:02 AM Page 639

640 Part VI ✦ Deploying Python Applications

Chapter 15 covers sockets and SocketServers.

The first part of the program creates a simple messaging layer that adds a message

length prefix to messages so that the receiving side knows how many bytes to read.

The server side of the importer subclasses SocketServer.BaseRequestHandler
to repeatedly receive a request, find it with imp.find_module, and send back the

Python source code (because bytecode might be incompatible if the client and

server sides have different versions of Python). The server listens on a local

address so that you can run both sides of the example on a single computer.

The client side connects to the server, sends a request, and reads a response. If the

server sends back an empty string, it couldn’t find the module either, but if found,

the client side writes the module to disk so that future imports won’t require the

network transfer.

Depending on how the module is loaded (as a standalone program or imported by

another module), the rimp module starts the listening server or installs the custom

importer.

Testing the remote Importer
To see the remote importer work, first run it as a standalone program in a directory

that contains at least one other module (I ran it in the directory that had the

stuff.py module from previous sections.):

C:\temp>rimp.py
[Starting server]

Now copy rimp.py to another directory (so that the “client” side doesn’t have

access to the same modules) and start up a Python interpreter. Import rimp and

then import the module that the server side has:

>>> import rimp
>>> import stuff
Checking remote host for module stuff
Saved stuff.py to disk
I am being imported!

The server side shows that it processed the request successfully:

Cross-
Reference

4807-7 ch35.F 5/24/01 9:02 AM Page 640

641Chapter 35 ✦ Customizing Import Behavior

Received new connection
Remote side requests module stuff
Sending 49 bytes
Done

Now try a module that doesn’t exist anywhere:

>>> import borkborkbork
Checking remote host for module borkborkbork
Traceback (most recent call last):
File “<stdin>”, line 1, in ?
File “D:\Python20\lib\imputil.py”, line 91, in _import_hook
raise ImportError, ‘No module named ‘ + fqname

ImportError: No module named borkborkbork

The normal (and correct!) ImportError is raised, even though the server tried to

locate the module on its side:

Received new connection
Remote side requests module borkborkbork
Sending 0 bytes
Done

Finally, look in the client-side directory and note that the module that was trans-

ferred successfully has been cached so that next time no network transfer will be

needed:

C:\temp\t>dir /b
rimp.py
rimp.pyc
stuff.py # Yay!

In addition to the enhancements mentioned earlier, a more useful solution might

include versioning information so that the client automatically gets newer versions

from the server as needed.

The nicest part about the import hooks discussed in this chapter is that nothing

needs to change in any other modules in order for them to work. Only the initial

startup module needs to install the hooks; all other modules are completely

unaware that a module is being decrypted or transferred halfway around the world

via the Internet.

4807-7 ch35.F 5/24/01 9:02 AM Page 641

642 Part VI ✦ Deploying Python Applications

Summary
In this chapter, you:

✦ Learned how to replace the normal Python import function with a custom

function.

✦ Created an import function to handle encrypted modules.

✦ Retrieved Python modules from a remote server via a network connection.

The next chapter covers Python’s module and application distribution tools and

describes how you can bundle your entire program into a standalone executable

that works even if users don’t already have Python installed.

✦ ✦ ✦

4807-7 ch35.F 5/24/01 9:02 AM Page 642

Distributing
Modules and
Applications

Once you’ve created your Python masterpiece, how do

you get it into users’ hands? This chapter answers that

question by introducing distutils— the tools you use to

distribute individual modules or entire applications.

Instead of providing an exhaustive and tedious review of the

distutils package, in writing this chapter I tried to focus on

what you need to know for 95 percent of the situations you

might encounter when distributing Python applications. Rest

assured, however, that the standard Python documentation

probably lists a special option or feature to cover each case in

the obscure 5 percent, and if anything is missing beyond that,

you can customize and extend the tools even further.

Understanding distutils
The distutils package was introduced in Python 1.6 to stan-

dardize the process of building and installing third-party

Python libraries.

The main work when using distutils is creating the setup

script, which, by convention, is called setup.py. This small

Python program describes to distutils the files that need to

be in the distribution and gives additional information like

version numbers, author name, and so on.

The setup script tells distutils to bundle the necessary files

(which might be Python code, C source files, or other data

files) and generate whatever kind of distribution package you

want. Your distribution type can range from an ordinary ZIP

file to a full-blown Linux RPM or Windows installer.

3636C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
distutils

Other distutils
features

Distributing extension
modules

Creating source and
binary distributions

Building standalone
executables

✦ ✦ ✦ ✦

4807-7 ch36.F 5/24/01 9:02 AM Page 643

644 Part VI ✦ Deploying Python Applications

Creating a simple distribution
The following is a simple example so you can see distutils in action. Listing 36-1

shows a small example library that I want to make available to other people.

Listing 36-1: timeutil.py – Time Utilities to
Be Packaged by distutils

import time as _time

def _getnow():
‘Returns current time tuple’
return _time.localtime(_time.time())

def time():
‘Returns current time as string’
return _time.strftime(‘%I:%M %p’,_getnow())

def date():
‘Returns current date as string’
return _time.strftime(‘%b %d, %Y’,_getnow())

With my application ready, it’s time to create the setup script, shown in Listing 36-2.

Listing 36-2: setup.py – Setup Script for timeutil Distribution

from distutils.core import setup

setup(name=’timeutil’,
version=’0.9’,
author = ‘pokey’,
author_email = ‘pokey@yellow5.com’,
url = ‘www.yellow5.com/pokey’,
py_modules = [‘timeutil’])

4807-7 ch36.F 5/24/01 9:02 AM Page 644

645Chapter 36 ✦ Distributing Modules and Applications

The setup script is very simple — it imports distutils and calls the setup func-

tion with a bunch of keyword arguments that give basic information about your

software (other standard arguments you can use include maintainer,

maintainer_email, license, description, and long_description).

The py_modules argument names a list of Python modules to include in the distri-

bution; this simple example has only one. You can specify modules that are part of

a package as ‘packagename.modulename’ (this assumes that

packagename/__init__.py really exists) or as files in other directories as

‘directory/modulename’.

The setup script is meant to be cross-platform compatible, so always use forward
(UNIX-style) slashes in directory names —distutils takes care of converting
them as needed on each different platform.

Keep in mind that the setup script is just a Python program, so any valid Python

code works in your setup script. When you run the setup script you supply a com-

mand argument telling distutils what you want it to do. In this case I want to cre-

ate a Windows installer, so I run the command like this:

C:\temp>setup.py bdist_wininst

This command and others are covered in “Creating Source and Binary

Distributions” later in this chapter. Assuming all went well, in the dist directory

you will find a file called timeutil-0.9.win32.exe (Version 0.9 was the version I

chose in the setup script). Because I chose a platform-specific distribution format,

the file name also includes the platform required to run it (Win32).

That’s it! My module is now ready for distribution.

Installing the simple distribution
Now imagine that you’re one of the lucky few to have gained possession of the pow-

erful timeutil library and that you want to install and begin using it. Running the

program displays a screen like the one shown in Figure 36-1.

Note

4807-7 ch36.F 5/24/01 9:02 AM Page 645

646 Part VI ✦ Deploying Python Applications

Figure 36-1: The main screen of the distutils-generated installer for Windows

To install the timeutil module, click Next a few times; now the module is in a loca-

tion on your system where all Python programs can find it. For example, after start-

ing up a Python interpreter from any directory:

>>> import timeutil
>>> timeutil.time(), timeutil.date()
(‘02:07 PM’, ‘Feb 19, 2001’)

The distutils package chooses the correct default location for third-party mod-
ules based on the current platform. On UNIX, for example, the default directory is
usually /usr/local/lib/pythonx.y/site-packages and on Windows, it’s
c:\pythonxy, where x and y are major and minor version numbers.

Another distribution method is to give the source files and the setup script to the

user as-is (or in a ZIP file or compressed tarball from which the user first extracts

the files). The setup script also acts as the installation script. To install the

timeutil module, you simply run:

setup.py install

Tip

4807-7 ch36.F 5/24/01 9:02 AM Page 646

647Chapter 36 ✦ Distributing Modules and Applications

Once again, distutils installs the module where all programs can find it.

You should also create a file called README or README.txt that gives a brief
description of your distribution and maybe a little help on how to install it.
distutils automatically includes these README files in the distribution, if present.

The –home=<dir> command-line argument tells the install command to
place the modules in a different directory than the default. This option can be use-
ful on systems where normal users don’t have write access to the default directory.

Other distutils Features
As I mentioned before, distutils has features to handle just about any sort of situ-

ation you might encounter. In this section I cover a few of the most useful features.

Distributing packages
If you install more than one or two modules in the default directory, that directory

starts to become pretty cluttered. Worse, if you want to uninstall a particular distri-

bution, you have a tough time determining which files go with which third-party

library (because, by default, they all end up in the same directory).

A better approach is to distribute your modules as a package (which in turn could

include other packages too). This method is much more organized and requires

very little extra work from you. It is also less prone to errors: distutils automati-

cally includes all the Python files that are part of a package so you don’t have to list

each file individually.

So, as an advocate of clean directory structures, suppose I decide to go back and

distribute my timeutil module as a package. In fact, envisioning it to be part of

some future suite of utilities, I rename it to be the datetime module in the

daveutil package. The conversion is easy: create a daveutil directory and copy

timeutil.py into it, renaming it to datetime.py. Inside the daveutil directory, I

create a __init__.py file (which can simply be empty or contain a comment) to

identify daveutil as a package.

Listing 36-3 shows the slightly modified setup script that uses the packages key-

word argument to list the packages it will include. (Once again, like py_modules,

this is a list, so it could include several package names.)

Tip

Tip

4807-7 ch36.F 5/24/01 9:02 AM Page 647

648 Part VI ✦ Deploying Python Applications

Listing 36-3: setup.py – A Setup Script That
Distributes an Entire Package

from distutils.core import setup

setup(name=’daveutil’,
version=’0.9’,
author = ‘pokey’,
author_email = ‘pokey@yellow5.com’,
url = ‘www.yellow5.com/pokey’,
packages = [‘daveutil’])

Now the resulting distribution from setup.py installs the daveutil package, leav-

ing the main default install directory clutter free. Users can still access the new

daveutil.datetime module from any program:

>>> from daveutil import datetime
>>> datetime.date()
‘Feb 19, 2001’

The package_dir keyword argument enables you to use a different directory

scheme if you don’t want to use the default one. Its value is a dictionary whose keys

are package names and whose values are directory names. To change the directory

for modules that aren’t part of any package, use a key of an empty string. For exam-

ple, if src is the base directory of all your source code, you could use the following

portion of a setup script:

package_dir = {‘’ : ‘src’}
py_modules = [‘mod1’, ‘mod2’]

This code causes distutils to look for the modules src/mod1.py and

src/mod2.py.

Including other files
If you need to include additional, non-Python files in your distribution, you can use

the data_files keyword argument to setup:

...
data_files = [‘dialog.res’, ‘splash.jpg’],
...

4807-7 ch36.F 5/24/01 9:02 AM Page 648

649Chapter 36 ✦ Distributing Modules and Applications

Each item in the list can also be a tuple containing a destination directory name

and a list of files. For example, to have the installer put dialog.res and

splash.jpg into the resource directory, use:

...
data_files = [(‘resource’, [‘dialog.res’, ‘splash.jpg’])],
...

If you want total control over which files end up in a source distribution, create a

file called MANIFEST in the same directory as your setup script. The file should con-

tain one file name per line. If specifying each file is too much of a pain, create a man-
ifest template file (call it MANIFEST.in) that distutils uses to generate the list of

files to include. Each line of the file contains a rule describing a group of files. For

example, to include any text files in the current directory and any Python files in

the current or child subdirectories that start with ‘d’, the MANIFEST.in file looks

like:

include *.txt
recursive-include d*.py

Table 36-1 lists the rules you can use in the manifest template file.

Table 36-1
Manifest Template File Rules

Rule Description

Include p1 p2 ... Include any files matching any of the patterns.

Recursive-include p1 p2 ... Same, but search only in child directories.

Global-include p1 p2 ... Same, but search current and child directories.

Graft dir Include all files in dir and its children.

Exclude p1 p2 ... Exclude any files matching any of the patterns.

Recursive-exclude p1 p2 ... Same, but search only in child directories.

Global-exclude p1 p2 ... Same, but search current and child directories.

Prune dir Exclude all files in dir and its children.

Python applies the rules in order, so you can arrange them to specify any list of

files. In addition to valid file name characters, patterns can include asterisks (*) to

match any sequence of characters, question marks (?) to match any single charac-

ter, and [range] to match a range of characters, like [a-f0-9] and [b-f].

4807-7 ch36.F 5/24/01 9:02 AM Page 649

650 Part VI ✦ Deploying Python Applications

As of Python 2.0, the data_files argument works only with binary distributions
and source distributions that have a manifest file.

Customizing setup
Python checks for a file called setup.cfg for additional configuration options.

These options override any corresponding settings from the setup script, but they

themselves are overridden by corresponding settings specified on the command

line. This configuration file is useful if you need to let users customize setup or if

there are some settings you always need to specify.

The format of the configuration file is

[command]
variable=value

where command is one of the standard commands like bdist (for a complete list,

run setup.py --help-commands). Each variable is a setting for that command

(you can get a list of settings for a command by running setup.py <command> --
help). To continue a value onto the next line, just indent the next line’s value.

If the command-line version of a setting has a dash in it, use an underscore char-
acter in the configuration file instead. Also, if a setting is normally an “on-off” type
flag (for example, --quiet), write it as setting=1 in the configuration file.

Some settings you may wish to always use, even across all projects. In this case you

can create a pydistutils.cfg file in the directory specified by sys.prefix, and

distutils will read settings from it before reading from a project’s setup.cfg,

if any.

On UNIX systems, each user can also create a .pydistutils.cfg file in his or
her home directory for user-specific custom settings.

Distributing Extension Modules
The distutils package doesn’t just work with Python files: it is quite happy to dis-

tribute C extension modules too. Pass the ext_modules keyword argument to the

setup function to specify which extensions to include, for example:

...
ext_modules = [ext1, ext2]
...

Tip

Note

Note

4807-7 ch36.F 5/24/01 9:02 AM Page 650

651Chapter 36 ✦ Distributing Modules and Applications

Each extension you list is actually an instance of the Extension class. Here’s a

more complete setup script that includes one extension module called trade that

is built from two source files, stock.c and option.c:

from distutils.core import setup, Extension # nota bene!

trade_ext = Extension(‘trade’, [‘stock.c’, ‘option.c’])

setup(name = ‘trader’, ext_modules = [trade_ext])

The first argument to the Extension constructor is the module name including the

package name, if any. If you plan on listing several extensions belonging to the same

package, you can use the ext_package keyword argument before ext_modules.

The Extension constructor also takes some optional keyword arguments of its

own. include_dirs is a list of directories in which the compiler should look for

include files, and library_dirs is a list of directories to include as link paths.

libraries is a list of files to include in the link.

The define_macros and undef_macros keyword arguments are lists of preproces-

sor definitions to use when compiling:

trade_ext = Extension(‘trade’, [‘stock.c’, ‘option.c’],
define_macros=[(‘DEBUG_LOGGING’,None),

(‘MAX_COUNT’,’100’)]
undef_macros=[‘TRACE’])

The preceding code is equivalent to having the following code at the top of every

source file:

#define DEBUG_LOGGING
#define MAX_COUNT 100
#undef TRACE

See the following section for information on how C extension modules are handled

with different distribution types.

Creating Source and Binary Distributions
You can create distributions containing just source code or binary distributions

too. In this section I show you how to generate each type of distribution using the

same setup script so you can easily compare the results. The setup script is as

follows:

from distutils.core import setup, Extension

4807-7 ch36.F 5/24/01 9:02 AM Page 651

652 Part VI ✦ Deploying Python Applications

ext = Extension(‘ext’,[‘extension.c’])

setup(name=’daveutil’,
version=’0.9’,
author = ‘pokey’,
author_email = ‘pokey@yellow5.com’,
url = ‘www.yellow5.com/pokey’,
py_modules = [‘pymod’],
ext_modules = [ext])

In the preceding example, extension.c is a simple C extension module and

pymod.py is a small Python file with a single function in it; both files are in the same

directory as the setup.py listed above.

Chapters 29 and 30 show you how to create C extension modules in Python.

Source distributions
A source distribution contains Python and C source files (no bytecode or compiled

C files). This type of distribution is the quickest to generate and you can use it on

any platform. The following command creates a source distribution:

python setup.py sdist

The output file ends up in the dist directory, and its default type depends on your

platform (for example, a ZIP file on Windows). On my machine, the finished file was

daveutil-0.9.zip and it contained these files:

extension.c pymod.py README.txt

You can choose the output file type with the –formats=f1, f2, ... argument. Use

the following command to see the output formats available:

C:\temp>setup.py sdist --help-formats
List of available source distribution formats:
--formats=bztar bzip2’ed tar-file
--formats=gztar gzip’ed tar-file
--formats=tar uncompressed tar file
--formats=zip ZIP file
--formats=ztar compressed tar file

The availability of different formats also depends on other libraries you have
installed (such as zlib for compression).

Users who download your distribution archive use a command similar to the fol-

lowing to install it:

setup.py install

Note

Cross-
Reference

4807-7 ch36.F 5/24/01 9:02 AM Page 652

653Chapter 36 ✦ Distributing Modules and Applications

The setup script installs the files in the correct place for the end user’s machine,

and it builds extension modules automatically. Of course, if the user doesn’t have a

compiler installed, he or she can’t build the C extension modules using this kind of

distribution.

Binary distributions
Binary distributions include the Python source code, byte-compiled versions of

each file, and the compiled versions of any C extension modules. The C source code

is not included, making binary distributions suitable for users who don’t have com-

pilers or in cases where you don’t want to distribute the C source. The drawback is

that C extension modules you provide in the distribution work only on compatible

platforms, so if you want to make it available on both Windows and Linux plat-

forms, for example, you need to create two different distribution packages.

Use the following command to create a binary distribution:

setup.py bdist

distutils kindly builds your extension modules for you and places the compiled

modules into the archive. On my machine, the finished file was

daveutil.0.9.win32.zip and it contained these files:

pymod.pyc ext.pyd pymod.py

Once again, you can use the --formats and --help-formats commands to

choose and list output formats. Users install your distribution the same way as

before, only this time they don’t need a compiler.

Installers
One other form of binary distribution is an installer, like the one I used in the first

section of this chapter. These work the same way as normal binary distributions

except that they have an installation program familiar to users of the target system.

Most Windows users are familiar with downloading an executable program that

they run to install the program for them. To create such an executable, run this

command:

setup.py bdist_wininst

On my computer, this command created the file daveutil-0.9.win32-py2.0.exe.

When you run it, you see a few dialogs letting you know what it’s going to install

and where.

4807-7 ch36.F 5/24/01 9:02 AM Page 653

654 Part VI ✦ Deploying Python Applications

Linux folk are used to downloading and installing RPM files, which perform essen-

tially the same function but without the glitzy user interface. To generate an RPM

file, use:

setup.py bdist_rpm

You can optionally add a --source-only parameter to build just a source RPM or

--binary-only to build only a binary RPM. RPMs also have a .spec file that

describes them; distutils generates this file automatically for you using the infor-

mation from the setup script, command-line, and configuration files. You can spec-

ify other .spec options that aren’t part of a normal Python distribution using the

parameters listed in Table 36-2.

Table 36-2
Linux RPM SPEC Options

Option Meaning

--distribution-name Name of the Linux distribution for this RPM

--release RPM release number

--serial RPM serial number

--vendor Vendor or author (defaults to author or maintainer in
setup.py)

--packager RPM packager (defaults to vendor)

--group Package classification (defaults to Development/Libraries)

--icon Icon file to use

--doc-files Comma-separated list of documentation files

--changelog Path to RPM change log

--provides Capabilities provided by this RPM

--requires Capabilities required by this RPM (dependencies)

--build-requires Capabilities required to build the RPM

--conflicts Capabilities that conflict with this RPM

--obsoletes Capabilities made obsolete by this RPM

The type of distribution you choose to create depends on who you think will use it.

When possible, it doesn’t hurt to create several different types so that users can

choose whichever they find most convenient.

4807-7 ch36.F 5/24/01 9:02 AM Page 654

655Chapter 36 ✦ Distributing Modules and Applications

Building Standalone Executables
Despite all the wonderful things about Python, most people do not have it installed

on their computers. Worse, those that do have it may have a version that conflicts

with the version you used to create your program. The tools in this section show

you how to create a self-contained executable that has the Python interpreter, your

Python modules, and everything else needed to run your program with no other

dependencies.

py2exe
My favorite tool for building standalone Windows applications is Thomas Heller’s

py2exe (available at http://py2exe.sourceforge.net). It extends the distutils
package so it fits in nicely with the topics covered so far in this chapter, and it is very

simple to use.

For an example, I’ll use this small program saved as hello.py:

import sys

print sys.version
print ‘Hello!’

Here’s the setup script, setup.py:

from distutils.core import setup
import py2exe

setup(name=’hello’, scripts = [‘hello.py’])

The differences are in italic bold: import py2exe before calling setup, list your

module name in the scripts list, and include the extension. The command to use

with the setup script is py2exe:

setup.py py2exe

The preceding command creates hello.exe in dist\hello. Also in that directory

is python20.dll and msvcrt.dll (a supporting library). The program runs like

any other executable:

C:\temp\dist\hello>hello
2.0 (#8, Oct 19 2000, 11:30:05) [MSC 32 bit (Intel)]
Hello!

4807-7 ch36.F 5/24/01 9:02 AM Page 655

656 Part VI ✦ Deploying Python Applications

The py2exe program figures out what other libraries and files it needs to include in

order to make your program truly self-contained; you can create executables even

for something complex like a GUI application using wxPython.

You may be alarmed at the size of the files for the simple hello program (about
1 MB). Don’t worry — most of that is fixed-sized overhead, so a program with 10
times as many lines of Python code is still very small.

Use setup.py py2exe --help to see a list of optional arguments you can use on

the command line or in the setup configuration file. For example, --debug gener-

ates an executable with debug information and --icon enables you to specify an

icon file that the application should use. --includes lets you add other modules to

those that py2exe detects that it should include, and --force-imports adds the

given modules to sys.modules before your script begins to run.

The current version of py2exe can’t detect imports made by calls to the
__import__ function (as opposed to the import statement), to
PyImport_ImportModule (instead of PyImport_Import), or to modules
whose names aren’t known until runtime. Force py2exe to include these modules
by using the --includes option. For PyImport_ImportModule calls, you
should use --force-imports so that the modules will already be in sys.
modules by the time the C code calls for them.

Freeze
The freeze utility is a nice alternative for creating standalone programs because it

comes as part of the standard Python distribution, and it is not limited to Windows

computers. You do, however, need to have a compiler installed. freeze determines

the modules your program needs, compiles them to bytecode, and stores

(“freezes”) the bytecode in huge C byte arrays. A small embedding application

starts up a Python interpreter and notifies the import mechanisms of the frozen

modules it has so that imports don’t require external Python files to be present.

The freeze utility predates Python’s distutils, so you don’t write a setup script

like you do for py2exe. Instead, just type:

python freeze.py hello.py

Of course, you may have to specify the location of freeze.py. On my FreeBSD sys-

tem, it lives in /usr/local/lib/python2.0/Tools/freeze. freeze creates a

bunch of C files and a Makefile; usually all you need to do now is type make to

build the executable.

In order to use freeze, you need to have built Python from the source
distribution.

Note

Tip

Note

4807-7 ch36.F 5/24/01 9:02 AM Page 656

657Chapter 36 ✦ Distributing Modules and Applications

Other tools
Gordon McMillan has developed a small suite of tools for creating standalone exe-

cutables for Windows and Linux; you can download them from http://mcmillan-
inc.com.

Archives
Archives work like the freeze utility except that archives store the bytecode in a

compressed archive to take up less space. One nice side effect that archives and

freeze executables enjoy is reduced disk I/O because all the modules are in a sin-

gle compressed file; these applications tend to load up quicker because the inter-

preter doesn’t have to hunt through sys.path to locate the modules to load.

Standalones
Standalones store the compressed bytecode in an embedding application, but also

link in as many of the binary dependencies as possible so that the result is a single

executable that users can easily run, copy, or delete.

Installer
Gordon’s tools also come with a simple installer that generates self-extracting (and

self-cleaning when finished) installation programs. Once nice feature is that they

can even detect if they are being run from a read-only media source such as a

CD-ROM and still run correctly (using an alternate location for temporary decom-

pression storage).

This set of tools is very flexible and has many options to customize its behavior. Its

different pieces are kept as separate as possible while still remaining interoperable

so that you can mix and match (or extend) different pieces to suit your specific

needs.

Summary
Once you’ve written your program, you still have the task of delivering it to your

users. Fortunately, Python’s distutils package makes this process relatively pain-

less. In this chapter you:

✦ Created distribution packages that automatically install files in the correct

place on end users’ computers.

✦ Built distributions that included just the source code.

✦ Built distributions that included precompiled C extension modules.

4807-7 ch36.F 5/24/01 9:02 AM Page 657

658 Part VI ✦ Deploying Python Applications

✦ Wrapped your application in an easy-to-use installer for Windows or Linux.

✦ Created self-contained Windows applications that don’t require a preexisting

Python installation, or don’t conflict with other versions of Python.

The next chapter shows you how to make the most of the Windows-specific mod-

ules that come with Python.

✦ ✦ ✦

4807-7 ch36.F 5/24/01 9:02 AM Page 658

Platform-
Specific Support

✦ ✦ ✦ ✦

Chapter 37
Windows

Chapter 38
UNIX-Compatible
Modules

✦ ✦ ✦ ✦

P A R T

VIIVII

4807-7 PO7.F 5/24/01 9:02 AM Page 659

4807-7 PO7.F 5/24/01 9:02 AM Page 660

Windows

Most of Python’s libraries are portable. However, some-

times the need arises to take advantage of OS-specific

services, such as the Windows registry. Accordingly, Python’s

standard libraries provide some Windows-specific support. In

addition, the Python Extensions for Windows (win32all) wrap

most of the Win32 API, so you can do plenty of Windows pro-

gramming without even having to write a C extension.

Using win32all
The Python Extensions for Windows, also known as win32all,

include wrappers for much of the Windows API. If you’ve done

Windows programming before, you should feel right at home

with win32all! Currently, win32all is hosted at ActiveState

(www.activestate.com), and is part of the ActivePython

distribution.

I keep a copy of Visual Studio running when I program with

win32all so that I can consult MSDN as needed. The win32all

package includes some documentation, but at some point

you’ll probably want to have a comprehensive reference on

the win32 API.

Data types
In places where the Windows API would use a struct, win32all

often uses a dictionary. The dictionary’s keys are the names of

the struct’s data members; its values are the corresponding

values. For example, the Windows API NetUserGetInfo can

return information about a user in the form of a struct:

typedef struct _USER_INFO_10 {
LPWSTR usri10_name;
LPWSTR usri10_comment;
LPWSTR usri10_usr_comment;
LPWSTR usri10_full_name;

} USER_INFO_10;

3737C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using win32all

Example: using some
Windows APIs

Accessing the
Windows registry

Using msvcrt goodies

✦ ✦ ✦ ✦

4807-7 ch37.F 5/24/01 9:02 AM Page 661

662 Part VII ✦ Platform-Specific Support

When you use win32all to manipulate user info, you use the corresponding

dictionary:

>>> win32net.NetUserGetInfo(None,”Administrator”,10)
{‘full_name’: u’’, ‘name’: u’Administrator’, ‘usr_comment’:
u’’, ‘comment’: u’Built-in account for administering the
computer/domain’}

Error handling
The win32api modules translate any API errors into the exception

win32api.error. This error has a member, args, which takes the form (ErrorCode,

FunctionName, Info). For example:

>>> win32net.NetUserGetInfo(None,”Doctor Frungy”,10)
Traceback (innermost last):
File “<pyshell#51>”, line 1, in ?
win32net.NetUserGetInfo(None,”Doctor Frungy”,10)

api_error: (2221, ‘NetUserGetInfo’, ‘The user name could not be
found.’)

Finding what you need
The Windows API is a large beast, and could easily fill a book larger than this one.

And so, finding a function that does what you want can take some sifting. I generally

search MSDN for online help. The book Programming Windows, by Charles Petzold

(Microsoft Press 1998), is also an excellent (and readable) reference on the

Windows API. And if you want to read up on win32all itself — particularly the COM

extensions — Python Programming on Win32, by Mark Hammond and Andy

Robinson (O’Reilly and Associates 2000), is a good reference.

You may discover that win32all does not yet expose the API you want. If so, your

best recourse is to create a C extension to wrap the API. If you do, the source code

for win32all is a good reference to borrow ideas from. See Chapter 29 for an intro-

duction to C extensions.

Example: Using Some Windows APIs
Listing 37-1 illustrates some of the APIs that win32all provides. The program is a

simple text editor. It uses some predefined constants from the win32con module

(which provides about 4000 different constants!). It uses Tkinter to put up a simple

GUI (see Chapter 19 for more information on Tkinter). And it uses the win32help
and win32clipboard modules, to access the Windows help system, and the

clipboard.

4807-7 ch37.F 5/24/01 9:02 AM Page 662

663Chapter 37 ✦ Windows

Listing 37-1: TextEditor.py

import Tkinter
import sys
import win32help # Launching .hlp files
import win32con # Constants used by the other win32 modules
import win32clipboard # Clipboard APIs

class TextEditor:
def __init__(self,root):

self.root=root
Create the menus:
MenuBar=Tkinter.Menu(root)
FileMenu=Tkinter.Menu(MenuBar,tearoff=0)
FileMenu.add_command(label=”Quit”,command=sys.exit)
MenuBar.add_cascade(label=”File”,menu=FileMenu)
EditMenu=Tkinter.Menu(MenuBar,tearoff=0)
EditMenu.add_command(label=”Copy”,command=self.DoCopy)
EditMenu.add_command(label=”Paste”,

command=self.DoPaste)
MenuBar.add_cascade(label=”Edit”,menu=EditMenu)
HelpMenu=Tkinter.Menu(MenuBar,tearoff=0)
HelpMenu.add_command(label=”Index”,command=self.DoHelp)
MenuBar.add_cascade(label=”Help”,menu=HelpMenu)
root.config(menu=MenuBar)
Create the main text window:
self.TextWindow=Tkinter.Text(root)
self.TextWindow.pack(expand=Tkinter.YES,

fill=Tkinter.BOTH)
def DoCopy(self):

Selection=self.TextWindow.tag_ranges(Tkinter.SEL)
if len(Selection)>0:

SelectedText =\
self.TextWindow.get(Selection[0],Selection[1])

One must open (and lock) the clipboard before
using it, then close (and lock) the clipboard
afterwards:
win32clipboard.OpenClipboard(0)
SetClipboardText is a shortcut for
SetClipboardData(test, CF_TEXT):
win32clipboard.SetClipboardText(SelectedText)
win32clipboard.CloseClipboard()

def DoPaste(self):
win32clipboard.OpenClipboard(0)
PasteText=win32clipboard.GetClipboardData(\

win32con.CF_TEXT)
win32clipboard.CloseClipboard()
self.TextWindow.insert(Tkinter.INSERT,PasteText)

def DoHelp(self):

Continued

4807-7 ch37.F 5/24/01 9:02 AM Page 663

664 Part VII ✦ Platform-Specific Support

Listing 37-1 (continued)

win32help includes a single function, WinHelp, that
wraps the WinHelp API. Here, we open the help file
“Editor.hlp” to its index.
win32help.WinHelp(0,”Editor.hlp”,win32con.HELP_INDEX)

Main code:
root=Tkinter.Tk()
TextEditor(root)
root.mainloop()

Accessing the Windows Registry
The Windows registry is a repository of system information. It keeps track of users,

program settings, port information, and more. The registry takes the form of a tree,

where each node of the tree is called a key. Each key can have one or more named

values. Each top-level key is called a hive. The usual way to access the registry by

hand is by running the program regedit; another good registry browser is

regedt32.exe.

For example, Windows stores your system’s Internet Explorer version number in

the value Version in the key Software\Microsoft\Internet Explorer in the

HKEY_LOCAL_MACHINE hive.

Breaking the registry can have very weird, very bad effects. Always back up the reg-
istry before running any code that tweaks it. Otherwise, a single typo might break
your system!

Accessing the registry with win32all
To examine an existing key, call win32api.RegOpenKeyEx(Hive,Subkey,0[,
Sam]). Here Hive is the key to open; it is generally one of the win32con constants

HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, or

HKEY_USERS. Subkey is the subkey to open, as a string. And Sam is a combination of

flags indicating the level of key access we want. I generally use

win32con.KEY_ALL_ACCESS, but KEY_READ (the default value) is safer if you don’t

want to risk breaking the registry. Table 37-1 lists the available access levels.

Caution

4807-7 ch37.F 5/24/01 9:02 AM Page 664

665Chapter 37 ✦ Windows

The first argument to RegOpenKeyEx need not be a hive; it can be any registry key
handle. In this case, the subkey name should be the path to the subkey from the
specified key, instead of from the hive.

Table 37-1
Registry Access Constants (from win32con)

Constant Ability Granted

KEY_ALL_ACCESS Full access

KEY_READ Read access

KEY_WRITE Write access

KEY_CREATE_LINK Create symbolic links

KEY_CREATE_SUB_KEY Create Subkeys (included in KEY_WRITE)

KEY_ENUMERATE_SUB_KEYS Iterate over subkeys (included in KEY_READ)

KEY_EXECUTE Read access

KEY_NOTIFY Change notification (included in KEY_READ)

KEY_QUERY_VALUE Subkey read access (included in KEY_READ)

KEY_SET_VALUE Modify subkey values (included in KEY_WRITE)

A call to RegOpenKeyEx returns a key handle. Once you have this handle, you can

call RegQueryValueEx(KeyHandle, Name) to retrieve a key value. Here Name is

the name of the value (or “”, to query the key’s default/unnamed value).

RegQueryValueEx returns a tuple of the form (Value,ValueType). You can also set

values by calling RegSetValueEx(KeyHandle,Name,0,ValueType,Value). Here

ValueType is a constant, indicating the data type of Value. Table 37-2 shows the

most common value types.

When you are finished with a registry key, you should close it, with a call to

RegCloseKey(KeyHandle).

You can access the registry on a remote Windows system, if that system’s security

settings permit this. To obtain a key handle for the remote registry, call

RegConnectRegistry(SystemName, Hive). Here Hive is one of the hive constants

from win32con, except for HKEY_CLASSES_ROOT or HKEY_CURRENT_USER. The

parameter SystemName is a string of the form \\computername.

Note

4807-7 ch37.F 5/24/01 9:02 AM Page 665

666 Part VII ✦ Platform-Specific Support

Table 37-2
Common Registry Value Types (from win32con)

Constant Meaning

REG_SZ String

REG_DWORD A 32-bit integer

REG_BINARY Binary data

REG_MULTI_SZ Array of strings

Example: setting the Internet Explorer home page
Internet Explorer has a home page, or “start page,” that appears when you start the

application. Windows stores the URL of the home page in the registry. Listing 37-2

examines, and then tweaks, the home page URL:

Listing 37-2: HomePage.py

import win32api
import win32con

SubKey=”SOFTWARE\\Microsoft\\Internet Explorer\\Main”
StartPageKey=win32api.RegOpenKeyEx(win32con.HKEY_CURRENT_USER,

SubKey,0,win32con.KEY_ALL_ACCESS)
(OldURL, ValueType)=win32api.RegQueryValueEx(StartPageKey,

“Start Page”)
print OldURL
NewURL=”http://www.google.com”
win32api.RegSetValueEx(StartPageKey,”Start Page”,0,

win32con.REG_SZ,NewURL)
win32api.RegCloseKey(StartPageKey)

Creating, deleting, and navigating keys
The win32api function RegCreateKey(Hive,Subkey) creates a subkey in the spec-

ified hive, and returns a handle to the new key. The function RegDeleteKey(Hive,
SubkeyName) deletes the specified key, and RegDeleteValue(KeyHandle,Name)
deletes the specified value from a key. Note that RegDeleteKey cannot delete a key

that has any subkeys.

4807-7 ch37.F 5/24/01 9:02 AM Page 666

667Chapter 37 ✦ Windows

The function RegEnumKey(KeyHandle, Index) retrieves the names of the subkeys

of the specified key. It raises an exception (win32api.error) if the key has no sub-

key with the specified Index. For example, this code prints the immediate subkeys

of the HKEY_LOCAL_MACHINE hive:

try:
SubKeyIndex=0
while 1:

print win32api.RegEnumKey(
win32con.HKEY_LOCAL_MACHINE, SubKeyIndex)

SubKeyIndex += 1
except win32api.error:

pass # (We ran out of subkeys.)

The function RegEnumValue(KeyHandle,Index) retrieves values for the specified

key. Its return value is a tuple of the form (ValueName, Value, ValueType).

Often programmers keep calling the enumerator functions until they raise an excep-

tion. However, one can also call RegQueryInfoKey (see “Other registry functions”

later in this chapter), and iterate over subkeys and values without ever triggering

exceptions.

Example: recursive deletion of a key
Listing 37-3 provides a function to delete a registry key. Unlike RegDeleteKey, it

can kill off a key with subkeys.

Listing 37-3: KillKey.py

import win32api
import win32con

def KillKey(ParentKeyHandle,KeyName):
KeyHandle = win32api.RegOpenKeyEx(ParentKeyHandle,KeyName,

win32con.KEY_ALL_ACCESS)
while 1:

try:
We always retrieve subkey number 0, because
when we delete a subkey, the old subkey #1
becomes #0:
SubKeyName = win32api.RegEnumKey(KeyHandle,0)

except:
break

KillKey(KeyHandle,SubKeyName)
print “Deleting”,KeyName
win32api.RegDeleteKey(ParentKeyHandle, KeyName)

Continued

4807-7 ch37.F 5/24/01 9:02 AM Page 667

668 Part VII ✦ Platform-Specific Support

Listing 37-3 (continued)

Create some keys:
RootKey=win32api.RegOpenKeyEx(win32con.HKEY_LOCAL_MACHINE,

“SYSTEM”,win32con.KEY_ALL_ACCESS)
win32api.RegCreateKey(RootKey,”Junk”)
win32api.RegCreateKey(RootKey,”Junk\\Stuff”)
win32api.RegCreateKey(RootKey,”Junk\\Stuff\\Wooble”)
win32api.RegCreateKey(RootKey,”Junk\\Stuff\\Weeble”)
win32api.RegCreateKey(RootKey,”Junk\\More stuff”)
Delete all the keys:
KillKey(RootKey,”Junk”)

Other registry functions
The function RegQueryInfoKey(KeyHandle) returns key metadata, in a tuple of

the form (SubKeyCount, ValueCount, ModifiedTime). Here SubKeyCount and

ValueCount are the key’s total subkeys and values, respectively. ModifiedTime, if

nonzero, is the key’s last modification date, in 100’s of nanoseconds since 1/1/1600.

Changes made to the registry do not take effect immediately — they take effect

sometime soon after you close the registry key handle. You can commit registry

changes immediately with a call to RegFlushKey(KeyHandle).

You can save a registry key (and all its subkeys) to a file by calling

RegSaveKey(KeyHandle,FileName). Later, you can restore registry settings from

disk with a call to RegLoadKey(Hive,Subkey,FileName). These operations

require special privileges that you must activate programmatically; see the

win32security API documentation for details.

Accessing the registry with _winreg
The standard library _winreg also exposes the Windows registry API. Since the

underlying API is the same, the functions in _winreg are very similar to the registry

API in win32api. Table 37-3 shows the correspondence:

Table 37-3
_winreg and win32api Functions

_winreg Function win32api Function

CloseKey RegCloseKey

ConnectRegistry RegConnectRegistry

4807-7 ch37.F 5/24/01 9:02 AM Page 668

669Chapter 37 ✦ Windows

_winreg Function win32api Function

CreateKey RegCreateKeyEx

DeleteKey RegDeleteKey

DeleteValue RegDeleteValue

EnumKey RegEnumKey

EnumValue RegEnumValue

FlushKey RegFlushKey

LoadKey RegLoadKey

OpenKey RegOpenKeyEx

QueryInfoKey RegQueryInfoKey

QueryValueEx RegQueryValueEx

SaveKey RegSaveKey

SetValueEx RegSetValueEx

Using msvcrt Goodies
The msvcrt module, part of the Python distribution on Windows, exposes some

useful Windows-specific services from the VC++ runtime library.

Console I/O
You can read a line of input from the user with a call to sys.stdin.readline, and

you can handle single-character input with Curses, available on most UNIX systems.

But what if you want to handle one character at a time on Windows? msvcrt pro-

vides the functions you need.

The function getch reads one keystroke from the user, and returns the resulting

character. The call to getch is synchronous: it does not return until the user hits a

key. For example, this code prints the characters you type until you press Control-

Break (which is not handled by getch):

import msvcrt
while 1:

print msvcrt.getch()

Hitting a special key (such as F1) puts two characters on the keystroke buffer. The

first is an escape character (either chr(0) or chr(224)). The two characters,

together, encode the special key.

4807-7 ch37.F 5/24/01 9:02 AM Page 669

670 Part VII ✦ Platform-Specific Support

The function ungetch(char) is the opposite of getch; it puts a character back

onto the keystroke buffer. You can only un-get one character at a time. The function

kbhit() returns true if any characters are waiting on the keystroke buffer. And the

function putch(char) writes the specified character to the console without buffer-

ing. For example, this code writes out some text s-l-o-w-l-y:

for Char in “Hello there!”:
time.sleep(0.1)
msvcrt.putch(Char)

Other functions
The function setmode(FileDescriptor, Flag) sets the line-end translation mode

for the specified file. Here FileDescriptor is the file’s descriptor (as returned by

os.open), and Flag should be os.O_TEXT or os.O_BINARY.

The function locking(FileDescriptor, Mode, Bytes) wraps the C runtime

function _locking, enabling you to lock specified bytes of a file.

You can translate between file handles and file descriptors. The function

open_osfhandle(File, Flags) produces a file descriptor for the specified file

handle. The available flags to set are os.O_TEXT, os.O_APPEND, and os.O_RDONLY.

The function get_osfhandle(FileDescriptor) provides a file handle for the

specified file descriptor.

The function heapmin tidies up the heap, freeing unused blocks for use. It is avail-

able on Windows NT/2000, but not 95 or 98.

Summary
If you’re like me (and I know I am), you use Windows systems often. So it’s a good

thing that Python supports Windows programming. In this chapter, you:

✦ Tried out the Python Extensions for Windows (win32all).

✦ Tweaked the Windows registry.

✦ Handled single-character input with msvcrt.

The next chapter moves from the Windows side of the fence to UNIX.

✦ ✦ ✦

4807-7 ch37.F 5/24/01 9:02 AM Page 670

UNIX-
Compatible
Modules

Most Python programs you write automatically work

on any platform that supports Python. Sometimes,

however, you need to write a platform-specific program but

still want to use Python because of its easier maintenance,

quicker development time, and so on.

This chapter shows you the modules that come with Python

that are specific to UNIX-compatible platforms. Many of the

functions are nearly identical to similarly named functions in

C; although I try to give an introductory explanation to all of

them, some are complex or system-dependent enough that

you need to spend time reading through their UNIX man

pages.

Checking UNIX Passwords
and Groups

The pwd module has functions for retrieving entries from the

UNIX account and password database (usually stored in

/etc/passwd). getpwnam(name) returns the entry for the

person with the given login name, and getpwuid(uid) returns

the same information but instead you provide the user’s

unique ID:

>>> import pwd
>>> pwd.getpwnam(‘dave’)
(‘dave’, ‘*’, 1000, 1000, ‘Dave Brueck’,
‘/home/dave’,
‘/usr/local/bin/tcsh’)
>>> pwd.getpwuid(1000)
(‘dave’, ‘*’, 1000, 1000, ‘Dave Brueck’,
‘/home/dave’,
‘/usr/local/bin/tcsh’)

3838C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Checking UNIX
passwords and
groups

Accessing the system
logger

Calling shared
library functions

Providing identifier
and keyword
completion

Retrieving file system
and resource
information

Controlling file
descriptors

Handling terminals
and pseudo-terminals

Interfacing with Sun’s
NIS “Yellow Pages”

✦ ✦ ✦ ✦

4807-7 ch38.F 5/24/01 9:02 AM Page 671

672 Part VII ✦ Platform-Specific Support

Both functions return a seven-tuple of the form

(name, password, user ID, group ID, fullname, home path, shell)

The password field is encrypted and contains just an asterisk or ‘x’ if the actual
encrypted password is in the shadow password file (/etc/shadow).

The getpwall() function returns a list (in random order) of all entries in the user

database.

You can use the crypt module to see if a password value is correct for a given user

(if your program requires that a user “sign in,” for example):

import crypt, pwd
def checkPass(username, password):

‘returns 1 if the password is correct’
try:

epass = pwd.getpwnam(username)[1]
except KeyError:

epass = ‘BLAH’
return epass == crypt.crypt(password, epass)

For non-GUI programs, the getpass() function in the getpass module is a safe
way to request that the user input his or her password because it returns the string
the user enters without echoing the characters to the screen. Most GUI toolkits
such as wxPython have similar functions for safely requesting passwords.

The grp module is similar to pwd except that it returns entries from the groups

database. getgrnam(name) returns the entry for the group of the given name and

getgrgid(gid) returns the same information except that you supply the group ID:

>>> import grp
>>> grp.getgrnam(‘operator’)
(‘operator’, ‘*’, 5, [‘root’])
>>> grp.getgrgid(5)
(‘operator’, ‘*’, 5, [‘root’])

The information returned is a four-tuple of the form

(group name, group password, group ID, list of group members)

The group password is often blank (or an asterisk), and the member list usually
doesn’t include the group entries from the password database (so you need to
look in both databases for a complete list of group members).

The getgrall() function returns an unordered list containing all entries in the

groups database.

Note

Tip

Note

4807-7 ch38.F 5/24/01 9:02 AM Page 672

673Chapter 38 ✦ UNIX-Compatible Modules

Accessing the System Logger
UNIX systems have a systemwide logging facility for programs to use. Various set-

tings in syslog module let you send messages and alter their priorities and

destinations.

In the simplest case, you can send a message to the system logging daemon by call-

ing syslog([priority], message). The optional priority can be any of the val-

ues listed in Table 38-1 (listed from highest to lowest).

>>> import syslog
>>> syslog.syslog(syslog.LOG_EMERG,

‘UPS loses power in 2 minutes!’)

After the above call, all users on my FreeBSD machine see:

Message from syslogd@ at Wed Dec 6 02:50:43 2000 ...
python: UPS loses power in 2 minutes!

Table 38-1
syslog Priority Values

Value Meaning

LOG_EMERG Panic condition (normally sent to all users)

LOG_ALERT Condition that needs immediate correction

LOG_CRIT Critical conditions like hard device errors

LOG_ERR Errors

LOG_WARNING Warnings

LOG_NOTICE Nonerrors that might still warrant special handling

LOG_INFO Informational messages (this is the default priority)

LOG_DEBUG Debugging messages

The system logger maintains an internal mask of message priorities that it should

log; it ignores messages with priorities that are not in its mask. setlogmask(mask)
sets the internal mask to mask and returns the previous value. LOG_MASK(pri) cal-

culates the mask value for the given priority, and LOG_UPTO(pri) calculates a log

mask that includes priorities from LOG_EMERG down to (and including) the

priority pri:

>>> from syslog import *
>>> setlogmask(LOG_ALERT) # Only LOG_ALERT messages get logged.
>>> setlogmask(LOG_UPTO(LOG_ALERT)) # Allows EMERG and ALERT.

4807-7 ch38.F 5/24/01 9:02 AM Page 673

674 Part VII ✦ Platform-Specific Support

For greater control over message logging, call openlog(ident[, logopt[,
facility]]). ident is an identifier prefix to include in every message, and logopt
is a bit field that chooses one or more options from Table 38-2.

Table 38-2
openlog Logging Option Flags

Flag Meaning

LOG_CONS Messages go to the console if sending to logging daemon fails.

LOG_NDELAY Connect to the logging daemon immediately (instead of waiting until
you log the first message).

LOG_PERROR Write the message to stderr as well as the system log.

LOG_PID Include the process ID with the log message.

The facility parameter to openlog is to assign a default facility or classification

to messages that don’t have a facility due to their priority. Table 38-3 lists the pos-

sible values.

Table 38-3
openlog Facility Values

Value Meaning

LOG_AUTH Authorization system (from login, su, and so forth)

LOG_AUTHPRIV Same, but logged to a nonworld readable file

LOG_CRON From the cron daemon

LOG_DAEMON System daemons

LOG_FTP The ftp daemons

LOG_KERN Kernel-generated messages

LOG_LPR The line printer spooling system

LOG_MAIL Mail system

LOG_NEWS Network news system

LOG_SYSLOG Internal syslog messages

LOG_USER Messages from any user process (this facility is the default)

LOG_UUCP The UUCP system

LOG_LOCAL0 Reserved for local use (also LOG_LOCAL1 through 7)

4807-7 ch38.F 5/24/01 9:02 AM Page 674

675Chapter 38 ✦ UNIX-Compatible Modules

The closelog() function closes the log file.

Calling Shared Library Functions
The dl module lets you dynamically load and call functions that exist in C shared

libraries.

As much as possible, avoid using this module. It is inherently platform-specific,
and makes it much easier to crash your programs.

Before you can call a shared library function, you have to open the library by call-

ing open(name[, mode]). The mode can be RTLD_LAZY (the default) or RTLD_NOW
to denote late or immediate binding, although some platforms do not provide

RTLD_NOW (in which case the module won’t even have RTLD_NOW).

Upon success, open returns a dl object. To see if the object has a specific function,

call its sym(name) method:

>>> import dl
>>> dlo = dl.open(‘/usr/lib/libc.so’)
>>> dlo.sym(‘getpid’)
673070304
>>> dlo.sym(‘destroyworld’)
>>>

A dl object’s call(name[, arg1, args...]) calls a function in the library. You

can pass in up to 10 arguments; they can be integers, strings, or None for NULL. The

function you call should return no value or an integer:

>>> import dl, os
>>> dlo = dl.open(‘/usr/lib/libc.so’)
>>> dlo.call(‘getpid’)
3539 # The “bad” way
>>> os.getpid()
3539 # The “good” way
>>> dlo.call(‘daemon’,1,0) # Make the process a daemon process.

When you’re finished with a dl object, call its close() method to free its

resources. On most systems, however, the memory taken up by the library won’t be

freed until the main program shuts down.

Providing Identifier and Keyword Completion
The readline and rlcompleter modules work together to add useful editing func-

tionality to Python’s user input routines (including how the interpreter works in

interactive mode).

Caution

4807-7 ch38.F 5/24/01 9:02 AM Page 675

676 Part VII ✦ Platform-Specific Support

The Python readline module calls the rather large GNU readline library. This sec-
tion covers only some of its features; for a complete list of the features available
through the readline module, you should visit the readline section of the GNU
Web site (www.gnu.org).

Use the following code to try out tab-completion support:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind(‘tab: complete’)
>>> rea # Now hit the tab key!

Pressing the tab key completes the impartial identifier. If there exists more than one

completion possibility, you’ll hear a beep. Pressing tab a second time lists the pos-

sible completions:

>>> r # Press tab twice!
raise raw_input reduce repr rlcompleter
range readline reload return round

With readline installed, you can use the keys listed in Table 38-4 for cursor naviga-

tion and editing.

C-x means press and hold Ctrl while you press x. M-x means the same but with
the Meta key. On systems that do not have a Meta key, the Esc key works by
default instead, although you should not press and hold Esc. In this case, M-x
means press and release Esc, then press and release x.

Table 38-4
readline Key Bindings

Key Sequence Action

C-b Move back one character

M-b Move back one word

C-f Move forward one character

M-f Move forward one word

C-a Move to the start of the line

C-e Move to the end of the line

DEL Delete the character to the left of the cursor

C-d Delete the character under the cursor

C-_ Undo

C-l Clear the screen, reprinting current line at top

Note

Note

4807-7 ch38.F 5/24/01 9:02 AM Page 676

677Chapter 38 ✦ UNIX-Compatible Modules

In readline terms, cutting and pasting text are killing and yanking, respectively.

Cutting, or killing, text saves it to a kill-ring from which it can later be “yanked

back.” Consecutive kills get saved to the same buffer (so that a single yank brings it

all back at once). Table 38-5 lists the kill and yank keystrokes.

Table 38-5
readline Kill and Yank Key Bindings

Key Sequence Action

C-k Kill to end of line

M-d Kill to end of word

M-DEL Kill to start of word

C-w Kill to previous whitespace

C-y Yank most recently killed text

M-y Rotate the kill ring buffer and yank the new top

You can use M-y only right after you yank text (with C-y). It cycles through the kill

ring buffer, showing you the available text.

The readline module also lets you save keystrokes as a macro that you can later

play back as if you had retyped them. C-x ((left parentheses) starts recording

keystrokes and C-x) (right parentheses) stops. From then on you can use C-x e to

replay the saved keystrokes.

The command history stores each command you type. C-p and C-n cycle through

the previous and next entries in the history (these functions are often bound to the

up and down arrow keys too). Call readline’s get_history_length() function to

see how many commands the list can hold (a negative value means an unlimited

number) and set_history_length(newlen) to set the maximum history length.

write_history_file([file]) writes the history to a file and

read_history_file([file]) reads a previously saved file (both use ~/.history
if you don’t supply a file).

Retrieving File System and
Resource Information

The os module contains two functions for retrieving file system information:

statvfs(path) returns information for the file system that contains the given

path, and fstatvfs(fd) does the same thing except that you provide a file

descriptor.

4807-7 ch38.F 5/24/01 9:02 AM Page 677

678 Part VII ✦ Platform-Specific Support

File system information
The statvfs module contains constants for interpreting the tuples returned by the

statvfs and fstatvfs functions. Table 38-6 describes the different values

available.

Table 38-6
statvfs Identifiers

Identifier Meaning

F_FILES Total number of file nodes

F_FFREE Total number of free file nodes

F_FAVAIL Number of free nodes available to nonsuper users

F_NAME_MAX Maximum file name length

F_BLOCKS Total number of blocks

F_BFREE Total number of free blocks

F_BAVAIL Number of free blocks available to nonsuper users

F_BSIZE Preferred file system block size

F_FRSIZE Fundamental file system block size

F_FLAG System dependent flags

For example, the following code calculates what percentage of file blocks are not

in use:

>>> import os, statvfs
>>> info = os.statvfs(‘/tmp’)
>>> print ‘%.2f %% of blocks are free’ % \

(info[statvfs.F_BFREE] * 1.0/ info[statvfs.F_BLOCKS])
0.94 % of blocks are free

Resource usage
The resource module is useful for tracking resource usage. getrusage(who)
returns a tuple of values described in Table 38-7. The who parameter can be

RUSAGE_SELF (to request information about the current process only),

RUSAGE_CHILDREN (for information about child processes), or RUSAGE_BOTH (for

information about the current process and its children).

4807-7 ch38.F 5/24/01 9:02 AM Page 678

679Chapter 38 ✦ UNIX-Compatible Modules

Table 38-7
getrusage Tuple Values

Index Value

0 Time spent executing in user mode

1 Time spent in the system executing on behalf of the process(es)

2 Maximum resident set size used

3 Shared memory used in the text segment

4 Unshared memory used in the data segment

5 Unshared memory in the stack segment

6 Page faults serviced without any I/O activity

7 Page faults serviced that required I/O activity

8 Times the process was swapped out of main memory

9 Times the file system had to perform input

10 Times the file system had to perform output

11 Number of IPC messages sent

12 Number of IPC messages received

13 Number of signals delivered

14 Number of voluntary (early) context switches

15 Number of forced context switches

>>> import resource
>>> resource.getrusage(resource.RUSAGE_SELF)
(0.077617, 0.181107, 1588, 3300, 2292, 1280, 140, 0, 0, 0,
0, 0, 0, 0, 50, 3)

The resource.getpagesize() function returns the system page size (the
number of bytes in a memory page). Multiply this value by the number of pages in
use to get how many bytes of memory a process is using. Note that the system
page size is not necessarily the same as the underlying hardware’s page size.

Resource limits
You can also use the resource module to get and set resource limits. Each control-

lable resource has a soft limit and a hard limit. When a process’s resource usage

crosses a soft limit, it receives a signal indicating that it has crossed that boundary.

A process can never exceed a hard limit, however. Attempting to do so usually

results in the termination of the process.

Tip

4807-7 ch38.F 5/24/01 9:02 AM Page 679

680 Part VII ✦ Platform-Specific Support

Only superusers can alter the hard limits.

The getrlimit(resource) function returns a tuple (soft, hard) containing the

limit values for that resource. setrlimit(resource, (soft, hard)) sets new lim-

its for resource (you can use limit values of -1 to specify the maximum allowable

value). Table 38-8 lists the resource names and their meanings (sizes are in bytes);

if a particular platform does not support a resource then it will not be in the

resource module.

Table 38-8
Resource Names and Meanings

Name Maximum Value of

RLIMIT_AS Address space area

RLIMIT_CORE Size that a core file can have

RLIMIT_CPU Number of seconds to be used by each process

RLIMIT_DATA Size of a process’s data segment

RLIMIT_FSIZE File size

RLIMIT_MEMLOCK Address space you can lock into memory

RLIMIT_NOFILE Number of open files per process

RLIMIT_NPROC Number of simultaneous processes for this user

RLIMIT_RSS Resident set size

RLIMIT_STACK Stack segment size

RLIMIT_VMEM Mapped memory occupied by the process

To see the soft and hard limits on the maximum number of open files per process,

for example, you can use the following code:

>>> import resource
>>> resource.getrlimit(resource.RLIMIT_NOFILE)
(1064L, 1064L)

Controlling File Descriptors
The functions in the fcntl module operate on file descriptors, which you can

access by calling a file or socket object’s fileno() method. The options for these

functions vary by platform; see your system’s man pages for details.

Note

4807-7 ch38.F 5/24/01 9:02 AM Page 680

681Chapter 38 ✦ UNIX-Compatible Modules

The fcntl(fd, op[, arg]) and ioctl(fd, op[, arg]) functions perform the

operation op on the file descriptor fd. If arg is an integer, the functions return inte-

gers. If the particular operation requires a C structure, you can pass in a string

object created using struct.pack; in this case the functions return a string repre-

senting the modified buffer you passed in.

The FCNTL module defines names for many of the operations you’d pass to
fcntl. For example, fcntl.fcntl(file.fileno(), FCNTL.F_GETFD)
returns the close-on-exec flag for the given file descriptor.

The flock(fd, op) function performs a locking operation on a file descriptor. This

operation lets multiple processes cooperatively have simultaneous access to an

open file (although some other rogue process might still access the file without

using locks — see the flock man pages for details). Valid operations are LOCK_SH
(shared lock), LOCK_EX (exclusive lock), LOCK_NB (don’t block when locking), and

LOCK_UN (release a lock).

Handling Terminals and Pseudo-Terminals
The termios and TERMIOS modules implement POSIX-style terminal (tty) control.

termios defines a few functions to use, and TERMIOS defines “constants” (equiva-

lent to their C counterparts) that you pass to those functions.

The tcgetattr(fd) function gets the terminal state referenced by the file descrip-

tor fd and returns it in a list defined as:

[input flags, output flags, control flags, localflags,
input speed, output speed, control characters]

The control characters entry is a list of one-character strings. You can set a tty’s

attributes using tcsetattr(fd, when, attributes). attributes is in the same

form as returned by tcgetattr, and when tells you when the attribute changes

should take place. It can be any of the following constants (defined in TERMIOS):

TCSANOW (make the changes immediately), TCSADRAIN (wait for the system to trans-

mit to the terminal all data you’ve written to fd and then make the changes), or

TCSAFLUSH (same, but also discard any unread input).

The tcdrain(fd) function waits for the system to transmit to the terminal the out-

put you’ve written to fd. tcflush(fd, queue) discards queued data on fd. If

queue is TCIFLUSH, it discards the input queue data; if TCOFLUSH, it flushes the out-

put queue; and if TCIOFLUSH, it flushes both queues.

The tcflow(fd, action) function suspends or resumes I/O on fd. Actions TCIOFF
and TCION suspend and resume input, and TCOOFF and TCOON suspend and resume

output.

Tip

4807-7 ch38.F 5/24/01 9:02 AM Page 681

682 Part VII ✦ Platform-Specific Support

The tcsendbreak(fd, duration) function sends a stream of 0 (break) bytes on

fd. If duration is 0, it sends the bytes for about half a second; the behavior of

nonzero values varies by platform (many systems ignore the value anyway).

The tty module has two convenience functions for controlling terminals; internally

they call tcsetattr. Its setraw(fd[, when]) function changes fd into raw mode

(the system performs no I/O processing so I/O data is “raw”). when can be any of

the same values you pass to tcsetattr (for example, TCSANOW). setcbreak(fd[,
when]) switches the terminal to a cbreak mode.

The pty module enables you to create and control pseudo-terminals: you create a

separate process but can read and write to the process’s controlling terminal pro-

grammatically. This module works on at least Linux; but it hasn’t had as much test-

ing on other platforms.

The pty’s spawn(argv) function spawns a child process and connects its control-

ling terminal to the parent process’s standard I/O. openpty() creates and returns a

pseudo-terminal pair of file descriptors in a two-tuple of the form (master,
slave). fork() forks the current process and connects the child’s controlling ter-

minal to a pseudo-terminal. The return value from fork is a two-tuple of the form

(pid, fd). On the parent side, pid is the child’s process ID and fd is a file descrip-

tor for the pseudo-terminal. In the child process, pid is 0.

The os module has forkpty and openpty functions that do the same thing, but
the pty version is the preferred one because it uses a more platform-independent
implementation.

Interfacing with Sun’s NIS “Yellow Pages”
NIS is an RPC-based client/server service that allows a group of computers to share

a set of configuration files. It helps system administrators by enabling them to

update information in a central location (the NIS master server) and have that infor-

mation get propagated automatically to all NIS clients that are part of the same

group or domain.

Sun Microsystems originally designed NIS, but implementations are now available

on just about every UNIX derivative. Python’s nis module wraps a few of the more

useful NIS functions, but this module is really useful only if you already know some-

thing about NIS and have it up and running on your system.

The NIS master server maintains databases of information called maps; they basi-

cally map keys to values much like a Python dictionary. The maps() function

returns a list of all map names in the domain, and match(key, mapname) returns

the value associated with the given key in the map called mapname. cat(mapname)
returns a dictionary of key-value mappings for the given map.

Note

4807-7 ch38.F 5/24/01 9:02 AM Page 682

683Chapter 38 ✦ UNIX-Compatible Modules

NIS keys and values are arbitrary strings of bytes and not limited to just normal
ASCII characters.

Summary
This chapter covered the standard Python modules that work only on UNIX-specific

platforms. In this chapter you learned to:

✦ Access the UNIX password and group databases.

✦ Write messages to the system-wide logger.

✦ Control file descriptors and pseudo-terminals.

✦ Call shared library functions and retrieve system information.

This chapter concludes the “Platform-Specific Support” part of the book. The

appendixes that follow cover some of the online resources available and show you

how to use popular Python development environments.

✦ ✦ ✦

Note

4807-7 ch38.F 5/24/01 9:02 AM Page 683

4807-7 ch38.F 5/24/01 9:02 AM Page 684

Online
Resources

The Internet holds a wealth of information about Python,

as well as Python programs to do all sorts of things. This

appendix covers some of the key Internet resources for

Python.

Visiting This Book’s Web Site
We, the authors, maintain the Python Bible’s Web site at

www.pythonapocrypha.com. The site includes source code

printed in this book, extras that were too big to fit in, and

errata for any problems that (heaven forbid) made their way

into print. It also includes updated links to other Python stuff.

We hope that you find it a useful companion to the book itself.

Installing Software
You can download the standard Python distribution from the

Python Language Web site (www.python.org), or directly

from SourceForge (http://sourceforge.net/projects/
python/). SourceForge is also the place to report bugs in

Python itself. (SourceForge is a good place to search for open-

source software in general, whether Python-related or not.)

You may prefer to download ActivePython, the Python distri-

bution by ActiveState. It is available for Linux, Solaris, and

Windows. ActivePython includes extras such as the Python

extensions for windows. Visit www.activestate.com/
Products/ActivePython/ to check it out.

AAA P P E N D I X

✦ ✦ ✦ ✦

4807-7 AppA.F 5/24/01 9:02 AM Page 685

686 Appendixes

PythonWare publishes another Python distribution. It extends the standard distri-

bution with the PythonWare Image Library (PIL), PythonWare Sound Toolkit, and

support for the commercial IDE PythonWorks.

If you often glue Python to Java, you may prefer JPython, an implementation of

Python written entirely in Java. Visit www.jpython.org for more information.

The Vaults of Parnassus (http://www.vex.net/parnassus/) are a general reposi-

tory of Python programs, organized by topic.

The Python Extensions for Windows, also known as win32all, are great resources

if you want to call the Windows API from Python. win32all also includes

PythonWin, a free Windows IDE for Python. Mark Hammond maintains win32all at

starship.python.net/crew/mhammond/.

If you plan to use Python for Web development, consider downloading Zope

(www.zope.org). Zope has a steep learning curve, but is a powerful program, com-

parable in abilities to most commercial application servers.

Finding Answers to Questions
The Python FAQ is a good place for general questions — it lives at www.python.
org/doc/FAQ.html.

The FAQTs knowledge base includes a large, searchable collection of Python ques-

tions and answers. It covers a much broader range of topics than the main Python

FAQ. Visit python.faqts.com to check it out.

The main Python Web site includes topic guides — good starting places for tackling

specialized areas like databases, plotting, and so on (http://www.python.org/
topics/). Also available are HOWTOs — detailed guides to very specific topics, like

configuring your favorite editor for Python (http://www.python.org/doc/
howto/).

Also, the archives of the Special Interest Group (SIG) mailing lists or the Python

newsgroups (see below) may be a good place to search for specific topics.

4807-7 AppA.F 5/24/01 9:02 AM Page 686

687Appendix A ✦ Online Resources

Subscribing to Newsgroups and Mailing Lists
Two USENET newsgroups are of interest to Python users: comp.lang.python is an

open newsgroup for Python-related discussions. It is a fairly high-volume group,

carrying dozens of new posts each day. The summary group comp.lang.python.
announce is a moderated, low-volume newsgroup (about a dozen posts a week)

providing announcements of general interest. It is available as a mailing list — visit

http://mail.python.org/mailman/listinfo/python-announce-list to

sign up.

Archives of old USENET posts are often a good place to search for information,

although you’ll have to sift through some noise. One searchable archive of old

newsgroup postings lives at http://groups.google.com/.

Python users have formed several Special Interest Groups to discuss various

Python topics. For example, you can find an XML processing SIG, an international-

ization SIG, and a threading SIG. Visit http://www.python.org/sigs/ to sub-

scribe to the SIG mailing lists or view the archives.

Understanding PEPs: Python
Enhancement Proposals

New features for Python are first proposed in PEPs (Python Enhancement

Proposals). To get an idea of what new features are coming to Python, you can

browse the list of PEPs online at http://python.sourceforge.net/peps/. In par-

ticular, PEP number 1 is a description of PEPs, and how to go about creating and

submitting them.

✦ ✦ ✦

4807-7 AppA.F 5/24/01 9:02 AM Page 687

4807-7 AppA.F 5/24/01 9:02 AM Page 688

Python
Development
Environments

Several good editors are available for writing Python pro-

grams. In addition, you can find some integrated devel-

opment environments (IDEs) for Python that combine an

editor with a debugger, a class browser, and more. This

appendix provides an overview of some of the available soft-

ware, plus a detailed look at IDLE.

Overview of Python IDEs
Interactive DeveLopment Environment (IDLE) is a free develop-

ment environment for Python, written in Python. It includes a

syntax-highlighting editor, a debugger, and a class browser. It

is part of the standard Python distribution, and uses Tkinter

for its user-interface.

Home page: http://www.python.org/idle/

Pros: Comes with Python; runs on many

operating systems

Cons: No layout designer for GUI programs

PythonWin is a free Python IDE for Windows. It offers the same

features of IDLE, with somewhat spiffier packaging.

PythonWin is part of the Python extensions for Windows

(win32all), which are included in the ActivePython distribu-

tion. It can integrate with Microsoft Visual Source Safe (VSS).

BBA P P E N D I X

✦ ✦ ✦ ✦

4807-7 AppB.F 5/24/01 9:02 AM Page 689

690 Appendixes

Home page: http://www.activestate.com/
Products/ActivePython/
win32all.html

Pros: Excellent for COM applications; very easy to learn if you

know Microsoft Visual Studio

Cons: Platform-specific

PythonWorks is a commercial Python IDE for Windows, Linux, and Solaris. It

includes a layout editor for graphical development of Tkinter GUIs. It includes a

deployment tool, which packages projects for distribution. In addition, it integrates

with the Perforce version control system.

Home page: http://www.pythonware.com/products/works/

Pros: Easy to create Tkinter layouts; version control integration;

slick-looking

Cons: The price tag — currently around $400 for an individual

license

Wing IDE is a commercial Python IDE for Linux. It provides a customizable graphical

interface for development.

Home page: http://archaeopteryx.com/wingide

Pros: Ease of customization — Wing IDE can behave like Emacs or

more like a standard Windows application

Cons: Currently platform-specific

Boa Constructor is a free IDE for building GUI programs using the wxPython toolkit.

Home page: http://boa-constructor.sourceforge.net/

Pros: Fast and precise GUI layout

Cons: Debugger not fully implemented

BlackAdder is a commercial Python IDE for Linux and Windows. It includes support

for the Qt windowing toolkit, a library similar to wxWindows.

Home page: http://www.thekompany.com/products/blackadder/

Pros: Nice Qt support

Cons: Still in beta; requires a Qt installation

4807-7 AppB.F 5/24/01 9:02 AM Page 690

691Appendix B ✦ Python Development Environments

Configuring Editors for Python Source
Note: In the following section, C-X means “Hold down the Control key and press X”

and M-X means “Hold down the Meta (or Alt) key and press X.” The notation may

string keystrokes together — for example, C-X C-B means “Type Control-X and then

Control-B.” (This is the usual notation for Emacs commands.)

A Python mode for Emacs is available — it makes editing Python code in Emacs

much easier. Your copy of Emacs may already have Python mode available. If not,

first visit http://www.python.org/emacs/python-mode/ to download it. Install

python-mode.el into the correct directory (probably lisp/progmodes, below the

main emacs directory).

Next, for improved speed, byte-compile the file. Within Emacs, type M-X, and then

byte-compile-file. Then give the full path to python-mode.el. Emacs will create

python-mode.elc, and spit up some warnings that you can ignore.

Next, add some lines to the bottom of your .emacs file, to ensure that files with a

.py extension are opened in Python mode. If you don’t have an .emacs file, create a

new file named “.emacs” in your home directory, and paste the following lines into

it (Emacs executes the Lisp code from the .emacs file when it starts up. You can put

all sorts of stuff into the .emacs file, to customize Emacs behavior.):

(setq auto-mode-alist
(cons ‘(“\\.py$” . python-mode) auto-mode-alist))

(setq interpreter-mode-alist
(cons ‘(“python” . python-mode)

interpreter-mode-alist))

Now, open up some Python source code in Emacs. (Type C-X C-F, and then type the

path to the source file.) The file should show up in color — one color for identifiers,

another for comments, and so on. If not, you need to turn on syntax highlighting (or

font-lock, as Emacs calls it). Put the following lines at the bottom of your .emacs file

to activate global font-lock:

(cond ((fboundp ‘global-font-lock-mode)
(global-font-lock-mode t)
(setq font-lock-maximum-decoration t)))

Start Emacs again, load the file, and enjoy the pretty colors.

Using Python mode
You (probably) have two new menus available when you open a Python source file.

The Python menu enables access to all the Python-mode commands. The IM-Python

menu lets you jump to any class, function, or method definition (very useful!). If

you don’t have these menus, you can get them by installing the easymenu.el pack-

age. Or just install a newer version of Emacs that includes easymenu.

4807-7 AppB.F 5/24/01 9:02 AM Page 691

692 Appendixes

From a buffer in Python mode, type C-X m. The online help for Python mode

appears. Plenty of commands are available; following are some of the most useful

ones to get you started.

Type C-c ! to open a Python shell. Type C-c C-c to execute the current buffer.

You can indent and un-indent a region with C-C > and C-C <. (You can mark a region

with the mouse, or press C-<space> to start marking a region and move the cursor

around.) Type C-c # to comment out a region. Python mode doesn’t have a key-

board command to uncomment a region (although it is available in the menu).

Therefore, you may want to use the “delete rectangle” command. Consider the start

and end of the current selection as two corners of a rectangle; typing C-X R D will

delete that rectangle.

Pythonizing other editors
Python syntax-highlighting is available for Vim (VI iMproved). See

http://www.vim.org/syntax/python.vim for one specification file. In addition, if

you compile Vim with the +python feature, you can execute Python statements

from within Vim. See http://www.vim.org/html/if_python.html for an

explanation.

If you have another favorite source-code editor, you may be able to make it

“Python-aware” with proper indentation rules, syntax highlighting, and so forth.

The editor HOWTO (http://www.python.org/doc/howto/editor/
editor.html) offers some useful pointers.

Editing with IDLE
I use IDLE for much of my Python development, and I’ve been quite happy with it.

This tutorial will get you up and running with most of IDLE’s features. If you like, fol-

low along in IDLE as you read to get a feel for the available editor commands. (I

know that I always need to try out new commands, to teach them to my fingers.)

Exploring the IDLE Python shell
The first window IDLE opens is a Python shell. Here, you can explore Python com-

mands interactively, just as if you had run Python from the command line. IDLE also

provides some shortcuts to make your work easier.

4807-7 AppB.F 5/24/01 9:02 AM Page 692

693Appendix B ✦ Python Development Environments

For example, suppose I am writing code to retrieve Web pages, and I decide to try

out some functions from urllib. First I press Alt-F2, to make the IDLE window

expand (vertically) to fill the screen. Next, from within the shell, I import the

urllib module. To remind myself what the function urllib.urlopen does, I print

its docstring — but make a typo. Oops! IDLE won’t force me to retype the command,

though. To repeat the last command, I press Alt-P. Pressing Alt-P repeatedly cycles

through older commands; pressing Alt-N cycles through newer commands (useful if

you press Alt-P too many times!). Next, to scroll back to the typo quickly, I can

press Ctrl-Left-Arrow to move the cursor back, one word at a time.

Next, I start to call the function. Once I type the open-paren, IDLE pops up balloon

help to show the function signature and docstring. Figure B-1 shows my current

situation.

Figure B-1: IDLE with function signature displayed

At this point, I remember there was another function in urllib, one that grabbed a

Web page to disk in one line. What was it called? Something starting with url . . . I’m

feeling too lazy to look it up in the documentation. I could always type print dir

(urllib) (or urllib.__dict__.keys ()) to jog my memory, but instead I type urllib.url

and press Alt-/. The Alt-/ command completes typing half-finished names — when I

press it more than once, it cycles through each possibility. In this case, it takes me

to urllib.urllib, urllib.urlopen, urllib.urlretrieve— ah, yes, that’s the

function I want!

By the way, if IDLE ever finds itself without a Python shell open, you can summon a

new one by choosing Python Shell from the File menu.

4807-7 AppB.F 5/24/01 9:02 AM Page 693

694 Appendixes

Navigating source code
You can cruise around in the source code with the arrow keys (or the mouse), Page

Up, and Page Down. You can move to the start of the line with Home (or Ctrl-A), or

the end of the line with End (or Ctrl-E). Ctrl-Home and Ctrl-End take you to the top

and bottom of the file, respectively. To jump to a line, press Alt-G and type the line

number.

Ctrl-Left and Ctrl-Right move around the file one word at a time. Ctrl-Up and Ctrl-

Down move up and down one paragraph at a time. In addition, you can hold down

the Shift key while moving around to select a block of source.

Block commands
Once you select a block of text, you can copy (Ctrl-C), cut (Ctrl-X), and later paste it

(Ctrl-V).

Select a block of code and press Alt-3 to comment it out; press Alt-4 to uncomment

it again. Note that comment lines do not count as un-indented lines for purposes of

control block structure.

You can indent and un-indent (outdent) a block of code with Ctrl-] and Ctrl-[,

respectively. You can also tabify and untabify a block with Alt-5 and Alt-6, respec-

tively. I prefer to untabify (convert tabs to spaces) code mercilessly, and turn Tab

mode off with Alt-T, because different editors treat tabs differently.

Searching and replacing
Press Ctrl-F to search for text in a file, and F3 to repeat a search. Press Ctrl-H to

search and replace. Alt-F3 lets you search for text in files (such as running the UNIX

utility grep). The output goes to its own window. In that window, right-click a line,

and choose “Go to file/line” to jump to the file from which the line came.

More IDLE shortcuts
IDLE’s class browser lets you jump to a class or function definition with minimal

legwork. Press Alt-C to bring it up, poke around in the tree-browser of the current

module’s members, and double-click on an entry to jump to that line of code.

(You’ll probably want to keep the class browser’s window handy, as pressing Alt-C

repeatedly can leave numerous orphaned class browsers lying around.)

4807-7 AppB.F 5/24/01 9:02 AM Page 694

695Appendix B ✦ Python Development Environments

The Help menu includes a very useful link to the local Python documentation.

The path browser enables you to easily browse all the directories in your Python

path. I don’t use it often, but if (for example) you ever find yourself importing the

wrong copy of a module or .pyd file, the path browser can show you where the

bogus one is coming from.

Debugging with IDLE
Suppose you want to test some code. First do a quick save (Ctrl-S), and then press

F5 to run the program within IDLE. Listing B-1 illustrates some buggy code, for

practice:

Listing B-1: Buggy.py

import os

def FindSourceFiles(Directory,Results=[]): # Bug 2
for FileName in os.listdir(Directory):

Extension=os.path.splitextension(FileName) # Bug 1
if Extension==”.py”:

Results.append(FileName)
return Results

print FindSourceFiles(os.curdir)
Path=os.path.join(os.curdir,”Lib”)
print FindSourceFiles(Path)

When I run the program, Python quickly complains (and rightly so!) that there is no

such thing as os.splitextension. I bring up IDLE’s stack viewer by choosing

Stack Viewer from the Debug window. (Actually, I cheated — I checked the Auto-

Open Stack Viewer button in the Debug window, to save myself some time.) Note

that the Debug window is available on the Python shell window, and not on source

listing windows. From the stack viewer, I can jump to a source-code line by double-

clicking it. I can right-click a stack-trace line in the shell, and choose Go to File/line.

Figure B-2 shows IDLE’s stack viewer.

4807-7 AppB.F 5/24/01 9:02 AM Page 695

696 Appendixes

Figure B-2: Examining a call stack in IDLE

I replace os.splitextension with os.splitext. One bug squashed [cue victory

chord]. But there’s another bug in this code — it runs (as long as the current direc-

tory has a subdirectory named lib), but it doesn’t give me what I want. I have three

files in the current directory, and another file in the Lib subdirectory. My program’s

second list of source files seems to include all the entries from the first list, as seen

in Listing B-2:

Listing B-2: Sample Buggy Output

[‘Buggy.py’, ‘LessBuggy.py’, ‘NotBuggy.py’]
[‘Buggy.py’, ‘LessBuggy.py’, ‘NotBuggy.py’,
‘FancyPrimeFinder.py’]

How did those extra file names get in there? This looks like a job for the IDLE

debugger. From the Debug menu, I choose Debugger, to open the debugger window.

This time, when I press F5 to run my script, execution pauses, and I can step

through it more carefully. (See Figure B-3.) The Step button executes the current

4807-7 AppB.F 5/24/01 9:02 AM Page 696

697Appendix B ✦ Python Development Environments

source line, stepping into any Python function calls. The Over button executes the

source line without stepping into subfunctions. The Out button keeps executing

until the current stack frame finishes. The Go button keeps executing until the pro-

gram finishes (or crashes), and the Quit button stops the program.

Figure B-3: Interactive debugging with IDLE

In this case, I notice that in my second function call, Results, is full of data right

from the start. How did this happen? Ah, yes — the local variable Results is still a

reference to the same old list, and the list still has data in it! I print out

id(Results) within the function. The same object ID each time — the villainous

bug is exposed, as seen in Listings B-3 and B-4:

Listing B-3: LessBuggy.py

import os

def FindSourceFiles(Directory,Results=[]): # Bug 2
print id(Results)
for FileName in os.listdir(Directory):

(Name,Extension)=os.path.splitext(FileName)
if Extension==”.py”:

Results.append(FileName)
return Results

print FindSourceFiles(os.curdir)
Path=os.path.join(os.curdir,”Lib”)
print FindSourceFiles(Path)

4807-7 AppB.F 5/24/01 9:02 AM Page 697

698 Appendixes

Listing B-4: Less buggy output

9747060
[‘Buggy.py’, ‘NotBuggy.py’, ‘LessBuggy.py’]
9747060
[‘Buggy.py’, ‘NotBuggy.py’, ‘LessBuggy.py’,
‘FancyPrimeFinder.py’]

I’ve learned my lesson — be careful when passing a list (or any other mutable

object) as a default parameter value! A safer alternative is to make None the default

value, and set Results to an empty list within the function:

def FindSourceFiles(Directory,Results=None):
if (Results==None):

Results=[]

You can break the currently executing program with Ctrl-C . . . usually. Sometimes,
there is no way to stop a program running under IDLE without stopping IDLE. Be
sure to save your work in every window before using IDLE to debug!

Editing with PythonWin
The Python shell in PythonWin behaves much like it does in IDLE. Use Ctrl-Up and

Ctrl-Down to cycle through old commands. Use Ctrl-Space to prompt PythonWin to

suggest completions for names. In addition, PythonWin provides a list of available

members when you type an object’s name; use the arrow keys (or the mouse) to

scroll through the possibilities, and then press Tab (or double-click a member

name) to insert the name.

To toggle between source code and the Python shell, press Alt-I. You can also cycle

through windows with Ctrl-F6 and Shift-Ctrl-F6.

Editing source in PythonWin
PythonWin can collapse blocks of code into a single line. This is a nice way to focus

on the code you’re interested in. Use the + and - from the numeric keypad to

expand and collapse a block; use the * from the numeric keypad to expand and col-

lapse the whole file at once. A block’s status is indicated to the left of the source

line with a + or -; you can also click these to open and close the block. I recommend

turning Num-Lock off, and using the keypad arrows to scroll — this keeps your hand

right next to the “tree-keys.”

Caution

4807-7 AppB.F 5/24/01 9:02 AM Page 698

699Appendix B ✦ Python Development Environments

To go to a specific line number, press Ctrl-G and then type the line number.

To comment block in PythonWin, press Alt-3; to uncomment, press either Shift-Alt-3

or Alt-4. Block indent and un-indent are simply Tab and Shift-Tab.

Debugging with PythonWin
To get some practice using PythonWin’s debugger, let’s fix some buggy code. Listing

B-5 is an example of some code with bugs:

Listing B-5: Buggy.py

import os
import string
import random

LegalChars=string.letters+string.digits

Create a temp file
LetterIndex=0
while LetterIndex<20:

FileName=FileName+random.choice(LegalChars)

File=open(FileName)
File.write(“Test”)
File.close
os.remove(FileName)

To run this code in PythonWin, I press F5. PythonWin complains about the missing

variable name FileName. If the source window is maximized, the Python shell

(where the stack trace is displayed) won’t be visible; press Alt-I to jump to it.

I double-click on the error, in the shell window, to jump to the corresponding

source code. (This is very useful when debugging a project with many files.) Then I

add code to initialize FileName to “” above the while loop, and press F5 to run

again.

I notice that my program is taking its own sweet time to execute. It looks like I may

have an infinite loop. To stop executing the program, I look to my system tray (in

my taskbar), right-click the PythonWin icon, and choose Break into Running Code.

A quick glance at my code shows that the while statement will never finish,

because LetterIndex will never be incremented.

4807-7 AppB.F 5/24/01 9:02 AM Page 699

700 Appendixes

Now the code runs, but the line os.remove(FileName) raises an IOError with the

message “Permission denied.” It seems there is another bug in the code. (You’ve

probably spotted it by now, but bear with me.)

To prepare for my debugging session, I set a breakpoint on the line that tries to

remove the file. To set a breakpoint, press F9, or click the breakpoint hand icon on

the toolbar. Next, I press F5 to run. When execution stops, I go to the Watch window

(if it’s not showing, I click the glasses icon on the debugging toolbar to bring it up).

I watch the expression FileName, and I watch the expression File. (See Figure B-4.)

Figure B-4: Debugging within PythonWin

The line highlighted in Figure B-4 ought to delete the file. Aha! My file is still open —

no wonder I can’t delete it! The statement File.close is simply a reference to the

close method of my file. I need to call File.close().

Following are some other keys to keep in mind when debugging in PythonWin:

F5 Continue running

F11 Execute the next statement, stepping into any subfunctions

F10 Execute the next statement, without stepping into subfunctions

Shift-F11 Finish executing the current stack frame

✦ ✦ ✦

4807-7 AppB.F 5/24/01 9:02 AM Page 700

Symbols & Numbers
– character, 23

in string formatting, 41

! character, 141

!= characters, 30

characters, 5

$ character, 141

% character, 7, 23

in division operations, 7

in string formatting, 40–41

() characters

in calculations, 4

in complex expressions, 32–33

in regular expressions, 141

* character, 23

with fnmatch() function, 164

in regular expressions, 140

repeating strings using, 37–38

in string width fields, 42

** characters, 23

character

in regular expressions, 140

in string formatting, 42

/ character, 23

? character, 141

[] characters, 30

in regular expressions, 140

\ character

in regular expressions, 141–143

in string literals, 35

^ character, 23

in regular expressions, 141

_ character, 20

{} characters, 141

| character, 23, 32

~ character, 23

+ character

as arithmetic operator, 23

concatenating strings using, 37

overloading, 108

in regular expressions, 141

in string formatting, 41

< character, 30

<< characters, 24

<= characters, 30

== characters, 30

> character, 30

>= characters, 30

A
abort() function, 184

abs() function, 24

abs() method, 112

absolute paths, 155

absolute value, calculating, 24

abspath() function, 162

abstract object layer (Python/C API), 556

Abstract Syntax Trees (ASTs), 613–614

AbstractFormatter, 306

accelerators (wxPython), 411–412

accept() method, 252

access() function, 156

acquire() method, locking using, 485–486

ActiveX controls, embedding in xwPython, 414

add() method, 112

addheader() method, 313

adding attributes, 101–102

addition operator (+), 23

addresses, e-mail, 310–311

AddressList class, 310

addstr() method (curses module), 416–417

adler32() function, 211

after() function, 368

after() method, with Tkinter, 386

aifc module, 456

AIFF sound files

handling chunked data, 460–461

reading/writing, 456-461

reversing (reverseSound.py), 459-460

alarm() function, 192

alias command (pdb module), 500

alignment modifiers (struct module), 206

allocate_lock() method, 485–486

alpha channels, in graphics files, 467

Index

4807-7 Index.F 5/24/01 9:02 AM Page 701

702 Index ✦ A–B

Alpha.py (module-tester), 93

and() method, 114

AND operator (&), 23, 31–32

anonymous (lambda) functions, defining, 90–91

anydbm dictionary, 229–230

Apache server CGI scripts, 299

appearance options (Tkinter widgets), 354

append() method, 58

with arrays, 71

with IMAP mailboxes, 288

with wxPython, 411–412

apply() function, 90

arbitrary precision numbers, 587–588

archives utility, 657

arguments

in exceptions, 81–82

in functions/tuples, 89–90

arithmetic operators, 4

date arithmetic, 220

joins using, 52–53

arrays (array objects), 68–71

array elements, 600

attribute options, 600–601

audio-editing program (quiet.py), 594–595

converting to lists/strings, 592–593

managing using Numeric Python, 597–600

matrix arithmetic using (MovingAverage.py),

603–604

article() method, 294

articles, in newsgroups, 293–295

ASCII values

encoding binary data as, 317–319

encoding in URLs, 276–277

asctime() function, 222

assert() function, 83

assertions, 83–84

assignment statements, 26–28

using with lists, 57–58

AST objects, 613–614

asterisk character (*)

with fnmatch() function, 164

in regular expressions, 140

in string width fields, 42

asynchronous HTML page retriever

(asyncget.py), 272–273

asynchronous signals, handling, functions

for, 191–193

asyncore module, 271–273

atexit module, 184

atof()/atoi()/atol() functions, 139

attributes. See also values

in classes, managing, 101–102

of functions, built in, 609–611

of markup language tags, 326

attron()/attroff() methods (curses), 417

attrset() method (curses), 417

AU sound files

reading/writing, 458

reversing (ReverseSound.py), 459–460

audio files. See sound files

audio streams, editing (Quiet.py), 594–595

audioop module, handling audio fragments,

461–464

auditing tables, 238–240

augmented assignment statements, 38

authentication, 278

avg() function (audioop module), 461–462

B
b amnt statement (Lepto), 435

backgrounds, terminal displays, creating, 418–419

backslash character (\)

in regular expressions, 141–143

in string literals, 35

bad.py_ (security test code), 519

base classes

extending, 104–106

overloading, 109

Base64 encoding (e-mail), 318–319

BaseHTTPRequestHandler, 264–265

BaseHTTPServer module, 264

Bastion module/object, 520–521

BeginDrawing() method, 409

behavior options (Tkinter widgets), 354

bkgd()/bkgdset() methods (curses module), 418

bidirectional() function, 153

binary data

encoding as ASCII, 317–319

reading/writing (struct module), 207

storing, 195

binary distributions/installers, 653–654

4807-7 Index.F 5/24/01 9:02 AM Page 702

703Index ✦ B–C

binary mode data storage, 195

binary operations, 23

bind() method, 251

with widgets, 372

bisect module, with sorted lists, 60

BitmapImage class (Tkinter module), using with

Python Imaging Library, 475–476

bitwise operators, 114–115

BlackAdder development program, 690

blocking, by sockets, 253–254

BloodType.py, 342

BloodTypeSax.py (Sax module), 335–336

Boa Constructor development program, 690

body() method, overriding in Tkinter dialogs, 381

BoldOnly.py, 329–330

Boolean operators, 31–32

border() method (curses module), 418

bottlenecks, locating, 505–509

box sizers (wxPython), 403–405

boxes/borders (curses module), 418

brackets ([]), 30

in regular expressions, 140

break statements, 8

with looping statements, 77–79

breakfast buttons (FoodChoice.py), 352–354

breakpoints, setting (pdb module), 499

browsing, newsgroups, 293. See also Web browsers

BSD data objects, 233–234

bsddb module, 233–234

buffer interface, 566–567

buffer_info() method, 71

Buggy.py (error-filled code), 695

built-in data types/sequences, 49

built-in functions

attributes (table), 609–611

globals, 96

locals, 96

open(), 122

in Python/C API, 571

buttonbox() method, 381

byte orders, 196

converting, 71

byteswap() method, 71

C
C/C++ code. See also Python/C API

converting from Python code, 538–541

converting Python data to, 532–538

dictionary functions, 570–571

embedding Python in, 541–543

file objects, 571–572

general object functions, 559

handling empty values, 571

handling Unicode strings, 567–569

list functions, 564–565

mapping functions, 569–570

module objects, 572–574

number functions, 559

Python extension modules, 527–531

reference counting, 513

running Python code, 543–546

sequence functions, 562

tuple functions, 565–566

type object function, 571

C locale. See localization

C socket library, 248

C structures, converting to/from, 204–207

calculations. See operators

calendar() function, 225

calendar module, 224

call() method, 109–110

call name statement (Lepto), 435

callability, testing for, 110

call-by-values, 88

can_change_color() function (curses module), 428

canvas widgets (Tkinter module), 366–367.

See also widgets

capitalization, methods for, 134–135

capwords() function, 139

cards.py (random number generator), 585

caret symbol (^), 23

in regular expressions, 141

case-sensitivity, 5

of identifiers, 19

category() function, 153

center() method, 134

cgi module, 298–302

CGI scripts

Python support for, 267–269

writing/managing, 298–302

CGIDebug.py, 301–302

CGIHTTPRequestHandler class, 267

CGIHTTPServer module, 264

channels (sound files), 453

character categories (string module), 138–139

character data type, 40

4807-7 Index.F 5/24/01 9:02 AM Page 703

704 Index ✦ C

character groups, in regular expressions, 143

character sets, 150

characters

accessing in strings, 38–40

reading individual characters, 121

special, in terminal displays, 422–423

chdir() function, 165

check() method (IMAP4), 287

checksum, computing, 211

child classes, 14, 102–104

child processes, running, 181–183

chmod() function, 157

choosecolor.py (color system conversions),

471–472

chr() function, 45

chunked data, reading/handling in sound files,

460–461

circular references, 65

class data type, 107

classes, class objects. See also specific classes and

objects

accessing members of, 15–16

base, extending, 104–106

base, overloading methods, 109

browsing, 609

child classes, 102–103

class data type, 107

class statements, 100

class variables, 100

creating, 100–101

customizing/extending, 104–106

defining, 15, 100, 107

as exceptions, 82

hiding data in, 106–107

instance objects, 101

managing attributes in, 101–102

parent/child classes, 14

protecting, 520–521

retrieving string name, 108

special members, 101

variables, 100

ClassType data type, 68

clearcache() function, 174–175

clipboard, with wxPython, 413

clock() function, 220–221

clockgif.py (PIL Draw object), 478–479

close(), 123

with child processes, 181

with file descriptors, 173

with GzipFile, 215

with mmap objects, 176

with shelve object, 203

ClosestPoint.py, 77–78

closing. See also exiting

file objects, 123

processes, 183–185

sockets, 251

Cmd class, 440

cmd module, 433, 440–445

cmdloop() method (cmd module)

cmp() function, 109

with file comparisons, 171–172

with string comparisons, 43

cmp() method, 109–111

CObjects, 574

code, debugging, 497–501

code testing tools, 502–505

error tracebacks, 605–608

exceptions, 81–83

Interactive DeveLopment Environment for,

695–698

locating bottlenecks, 505–509

pdb for, 497–501

code, executing

assertions, 83–84

exec statement, 97

flow control (if-statements), 73–74

for-statements, 74–75

Game of Life example, 84–86

looping statements, 74–79

performance statistics for, 507–508

reference counting, 512–513

running from C, 543–546

self-examining code (introspection), 608–611

while-statements, 79

code, imported, setting aside, 14

code, Python

browsing classes/functions, 609

browsing functions, 609–611

checking indentation, 611

converting to C, 531–532

disassembling, 615–616

4807-7 Index.F 5/24/01 9:02 AM Page 704

705Index ✦ C

editing tools, 692–699

tokenizing, 611–613

codec module, 151–152

coerce function(), 25

coerce method, 115

coercing numbers, 24–26, 115

color name statement (Lepto), 435

color options

curses module, 427–428

Tkinket widgets, 354, 365

color pairs (curses module), 427–428

color palettes, 467

color_pair() function (curses module), 428

color scheme customizer (ColorChooser.py),

377–381

color system conversions, 469–472

ColorChooser.py, 377–381

colorsys module, 470–471

column types, in databases, 240–241

combining() function, with Unicode strings, 153

command-line interpreter, creating, 440–442

command-line parameters, viewing, 166

command prompt, 4

running programs, 6

Common Gateway Interface. See CGI scripts

commonprefix() function, 164

communications, multicasting (multitest.py),

257–261. See also e-mail; Internet

communications

comparing

comparison functions, 30–31

comparison operators, 29–30

files, 171–172

identity references, 63–64

rich comparison methods, 110–111

sequence data types, 53

strings, 42–43

compile() function, 97

compiling

modules, 95

regular expressions, 144–146

Complaint.py, 382

complex expressions, 32–33

complex() function, 45

complex() method, 115

complex numbers

combining, 24

in math module functions, 583

components. See widgets

compound expressions, 31–32

compress() function, 211

compressing data, 196

graphics files, 467

gzip module, 213–214

PyZipFile class, 216

zipfile module, 214–215

ZipInfo class, 215–216

zlip module, 211–213

concatenating

data types, 52–53

strings, 37

Conceal.py (file-hiding program), 318–319

concurrency control (thread module/threading

module), 485–488

Condition class (concurrency control), 488

conditional statements, 7–8

ConfigParser module/object, 188–190

configuration files, managing, 188–190

connect() method, 234, 251

connection() method, 289

connection objects, in databases, 234

constraints, layout (wxPyton), 406–407

constructors, 15

containers, pickling, 198

contains() method, 113

ContentHandler object, 334–335

contiguous arrays, identifying, 592

continue statements, with loooping statements,

77–79

control blocks, 6

control flow using if statements, 73–74

controls (wxPython module), 399–401.

See also widgets

convert() method, with graphics, 474–475

cooked mode (curses module), 421

cookie dictionary, creating (httpreq.py), 149–150

cookies (cookie module)

importer for (CookieMonster.py), 323–324

managing/storing, 322-324

coordinates, in wxPython, 402–403

copy(), 63

copying objects, 65–67

with IMAP4 objects, 287

path management, 168

in Python Imaging Library, 474

copy module, 66–67

4807-7 Index.F 5/24/01 9:02 AM Page 705

706 Index ✦ C–D

copyfile() function, 168

copyfileobj() functions, 168

copying, graphics/images, 474

copymode() function, 168

copytree() function, 168

count() method, 136

with arrays, 71

with lists, 58–59

counting references, object, 64–65

cPickle module, 198

crc32() function, 211

create() method, for mailboxes, 287

crop() method, resizing images using, 476

CSV.py (testing example), 502–503

curly brackets ({}), in regular expressions, 141

curselection() method, 375

curses module, 121

color options, 427–428

cursor options, 420–421

handling terminal displays, 415–416

managing text, 416–417

maze game (maze.py), 429–432

starting up/shutting down, 416

text editing options, 426–427

user input options, 421–425

window/screen displays, 417–420

windows management, 425–426

CurseWorld.py, 416

cursors

on curse-based terminal displays, 420–421

in databases, 235

Tkinter module options, 385–387

with wxPython, 413

customized exceptions (Pyton/C API), 578

CXX, SCXX (Simplified CXX), 549–550

D
data

audio. 460–464

graphics, 472

hiding, 106–107

data storage

byte order (endianness), 196

compressing data, 196, 210-216

destination issues, 196

end user issues, 196

object state, 196

saving objects to disk (pickling), 197–200

text versus binary mode, 196

in XML, 195

data types

adding pickling support, 199

built-in, 67–68

class, 107

dictionaries for (win32all), 661–662

instance, 107

packing/unpacking, 208–210

printing listing of, 67–68

sequence, 49

in win32all, 661–662

data types, numeric

combining, 24

comparison functions, 30–31

comparison operators, 29–30

converting from string data type, 44–45

converting to string data type, 45–47

floating point numbers, 22

functions for, 24–26

imaginary numbers, 22

integers, 21

long integers, 21–22

using operators with, 23–24

data types, string

accessing characters/substrings, 38–40

character data type, 40

converting from numeric data type, 45–47

converting to numeric data types, 44–45

formatting, 40–42

length, 35

string comparisons, 42–43

string literals, 35

databases, relational

accessing, concurrency issues, 485

auditing tables, 238–240

column types, 240–241

connection objects, 234

cursor objects, 235

database libraries, viewing information

about, 242

dbm objects, 229–231

error hierarchies/exceptions, 243–244

input/output sizes, 241

metadata, 237–240

4807-7 Index.F 5/24/01 9:02 AM Page 706

707Index ✦ D

saving objects into, 203–204

SQL statement parsers, 242

transactions, 234–235

viewing information about, 242

DatagramRequestHandler, 264

date arithmetic, 219–220

dates

formatting, 222–223

handling in wxPython, 413

searching for, 225

daylight savings time, handling, 226

DB API. See Python Database API

dbhash module, 229, 233

dbm module/dbm objects, 229–232

deadlock, preventing, 488–489

deathray.py (curses module), 424–425

debugging. See also error handling

destructors, 500–501

Interactive DeveLopment Environment for,

695–698

Python code, 497–501

decimal() function, 153

decode() function, 312

uuencode algorithm, 317–318

DecoderRing.py, 75–76

decomposition() function, 153

decompress() function, 211

deepcopy() function, 66–67

deep copying, 66

def FunctionName statements, 6

def statements, 87–88

defaults() method, 189

defining

exceptions, 82

functions, 5–6, 87–91

new classes, 15

del() method/function

with dictionaries, 61

limitations of, 512

with list items/slices, 58

with object references, 65

del() method, 109–110

with widget listboxes, 375

deleting. See also removing

file contents, 124–125

list items or slices, 58

delitem()/_delslice_() methods, 113

derived classes. See child classes

destructors, finding errors in, 500–501

development tools

BlackAdder, 690

Boa Constructor, 690

Emacs editing tools, 691–692

Interactive DeveLopment Environment (IDLE),

689–690, 692–695

PythonWorks, 690

WingIDE, 690

device context classes (wxPython), 408–411

dialog/message boxes (Tkinter module), 361

customizing, 381–382

text editor example, 362–365

dialogs, built-in (xwPython), 407–408

dictionaries, 10–11

accessing, 61

adding to/replacing, 61

disk-based, 229–231

environ, 165

formatting strings using, 41

namespaces, 95, 97

pickling, 198

updating, 62

dictionary objects (Python/C API), 570–571

dictionary operators, overloading, 112–113

digests, message fingerprints, 521–523

digit() function, 153

dir() function, viewing module contents, 92

dircmp class, 171–172

directories (os/os.path modules)

changing, 165–166

creating, 169–170

functions for, 163–164

viewing working directory, 165

dis() function, 616

dis module, 615–616

disassembling Python code, 615–616

disk-based dictionaries, 229–231

dispatcher class, 271–273

displays, terminal, handling (curses module),

415–432

distributing applications

binary distributions, 653

controlling files in, 648–649

customizing setups, 650

non-Python files in, 648–650

Continued

4807-7 Index.F 5/24/01 9:02 AM Page 707

708 Index ✦ D–E

distributing applications (continued)

package distributions, 647–648

simple distributions, 643–647

source distributions, 648–653

standalone executables, 655–657

disutils module

distributing extension modules, 650–651

package distributions, 647–648

simple distributions (timeutil.py/setup.py),

643–647

source/binary distributions, 651–653

div() methods, 112

division calculations

modulo operator (%) in, 7

function for, 23, 25

division operator (/), 23

divmod() function, 25

divmod() method, 112

dl module, with C shared libraries, 675

DNS (Domain Name System), 248

docstrings, 87, 501

doctest module, 502

Document Object Model API. See DOM API

Document Type Descriptors (XML format), 326

documentation, creating and maintaining, 501

eo_EOF() method (cmd module), 441

do_help() method (cmd module), 441

do_shell() method (cmd mdoule), 441

dollar sign ($), in expressions, 141

DOM (Document Object Model) API, 338

data exchange using (XMLDB.py), 340–341

DOM nodes, 338–339

elements, attributes, text, 338–339

parsing XML files, 327, 338

Domain Name Servers (DNS), 248

domain names, 248

host name, address functions, 248–250

dotted notation, accessing packaged modules, 96

downloading files using FTP, 290–291

drag-and-drop operations

Tkinter support, 382–385

with wxPython, 413

drawing. See also graphics/image files

boxes, in curses module, 418

Draw objects, 477–479

Tkinter module widgets, 366–367

xwPython device contexts, 409–411

drawing canvas, creating (Events.py), 373–374

DTDHandler class (XMLReader), 337

DTDs (Document Type Descriptors), 326.

See also XML format

dumbdbm module, 229–230

dumpimp.py (dummy Importer), 637

dumps() function, 197

dup() function, 173

dup2() function, 173

dynamic extension module linking, 531–532

E
e constant, in math module, 581

e-mail

encoding/decoding, 317–319

IMAP protocol for, 285–288

parsing messages, 309–310

POP3 protocol for, 281–283

SMTP protocol for, 283–285

viewing/storing addresses, 310–311

echo/no echo functions (curses module), 422

editing text

curses module options, 426–427

wxPython controls, 401

elements, in XML, 326

else-blocks (elif-blocks)

with except clauses, 81

with if statements, 73–74

else-clauses, else-statements, 8

with for-loops, 77-78

with while-loops, 79

embedded Python, 528

embedding in C/C++ programs, 541–543

empty values, in Python/C API, 571

encode() function, 317–318

EncodedFile() function, with non-ASCII strings, 152

encoding

e-mail messages, 317–318

sound files, 453

text files, 150

encrypted modules, importing, 633–636

encryption tools, 523–524

end() method, 148

end statement (Lepto), 435

EndDrawing() method, 409

endianness. See byte orders

endswith() method, 136

4807-7 Index.F 5/24/01 9:02 AM Page 708

709Index ✦ E–F

EntityResolver class (XMLReader), 337

environ dictionary, 165

environmental variables

PythonPath, 94

viewing, 165

epochs, 219

EpochSeconds, converting from/to, 221

eq() method, 109

equality operator (==), 30

erase() method (curses module), 418

errno module/error messages, 190–191

error handling

assertions for, 83–86

code debugging tools, 695–698, 699–700

ConfigParser object, 189

debugging CGI scripts, 301

debugging code using pdb, 497–501

exceptions, 81–83

locating bottlenecks, 505–509

ZipFile objects, 215

error messages (exceptions), 5, 80–82

in C/C++ conversions, 537

with ConfigParser object, 189

databases, 243–244

formatting, viewing, 606–607

FTP object, 291

handling in Python/C API, 576–579

IMAP object, 288

I/OErrors, 81–82

NNTP object, 295

os module errors, 190

PicklingErrors, 200

raising, 82

SAX exceptions, 337

shlex module, 437

SMTP objects, 284

socket connections, 251–252, 254

swallowing, 607–608

with syntax errors, 97

tracebacks, 605–608

in win32all, 662

ErrorHandler class (XMLReader), 337

escape() function, 147

escape sequences, in strings

formatting strings using, 36–37

valid, listing of, 36

eval() function, 97

Event class (concurrency control), 487–488

event handlers/objects, 371–373

for curse-based terminal displays, 423–424

except clauses, 81

exceptions. See error messages

exclamation point (!) character, in regular

expressions, 141

exec() functions, 180–181

exec statement, 97

executemany() method, 242

executing code. See code, executing

exiting

from functions, 88

from processes, 183–185

from Python, 4

expandtab() method, 134

expanduser()/expandvars() functions, 163

exponentiation, functions for, 582

expressions, 29–33

expunge() method, 287

extend() method

with arrays, 71

with lists, 58

Extensible Markup Language. See XML format

extension classes, 550, 650–651

extension modules, 527–528

add/count functions, 529–530

distributing, 650–651

linking into Python, 531–532

Numeric Python (NumPy), 589

extension tools, Python-C interfaces

CXX, SCXX (Simplified CXX), 549–550

SWIG, 546–549

extensions, for regular expressions, 143–144

F
f amnt statement (Lepto), 435

FancyURLopener, 277–278

FAQs, answers to, 686

fcntl module for UNIX file descriptors, 680–681

fdopen() function, 173

feedback.py (CGI feedback form), 300–303

fetch() method, for IMAP4, 286

FieldStorage objects (CGI), 299–299

file descriptors, 173–174

4807-7 Index.F 5/24/01 9:02 AM Page 709

710 Index ✦ F

file formats, 467

converting between, 208–210

of databases, incompatibility, 232

graphics file, 467–469

mapping to MIME types, 316

.pyc files, 631

sound files, 456–463

file systems (UNIX), viewing information about,

677–678

file viewer, creating (wxPython), 396–398

filecmp module, 171–172

FileInput class, 176–177

filelike objects, 126–127

fileno() method, 123

with sunaudiodev module, 455

files (file objects)

closing, 123

comparing, 171–172

compiling, 95

configuration files, 188–190

creating/opening, 11

filelike objects, 127–129

hiding, 318–319

navigating, 123–124

non-Python, including in distributions, 648–650

opening, 122

printing to file, 120

in Python/C API, 571–572

reading contents of, 125–126

softspace attribute, 124

transferring using FTP, 290–291

viewing filenames, 163

viewing current positions in, 123

writing to, 124–125

files, managing

file descriptor functions, 173–174

file input class, 176–177

filecmp module functions, 171–172

fnmatch module functions for, 164

glob module functions, 165

mmap objects, 175–176

os/os.path modules functions, 163–164, 168–169

tempfile module functions, 170–171

viewing information about, 159–161

finally clauses, raising exceptions using, 82–83

find() methods, 136

with mmap objects, 176

findall() method/function, 145, 147

findfactor() method (audioop module), 462

fingerprints, for messages, 521–523

finish() method, 263

fire() method, 103–104

fix() function, 153

flags, for file descriptors, 173

float class, 7

float() function, 7, 44

float() method, 115

floating point (decimal) numbers, 7, 22, 24

managing, 154

flush() function, 176

flush() method, 125

in curses module, 422

with sunaudiodev module, 455

fnmatch module, file/directory management

functions, 164

fnmatchcase() function, 164

Folder objects, 320–321

fonts

Internet text options, 305–306

Tkinket options, 366

wxPython options, 413–414

FoodChoice.py, 352–354

for-statements, 8, 74–77. See also looping

with list comprehension, 51

with lists or tuples, 55

form fields, accessing, 299–300

form() function, 182–183

formatter module, 304–306, 327

formatting

Internet text, 305–306

locale-specific formatting, 625–626

time, syntax for, 222

using user input, 357–359

formatting strings

escape sequences for, 36–37

formatting characters (tables), 40

methods for, 134–135

preserving formatting in, 35

struct module format characters, 204

fpformat module (floating point numbers), 154

fragments, audio (audioop module)

converting between formats, 463

managing, 463–464

frames, 349. 393

audio, managing, 457

freeze utility, 656

4807-7 Index.F 5/24/01 9:02 AM Page 710

711Index ✦ F–G

from function, 250–251

from() methods 70

fromlist() method, 70

fromstring() method, 70

fstat() function, with file descriptors, 173

FTP object, creating/using, 289–291

ftplib module, 289–291

ftruncate() function, with file descriptors, 173

fully qualified domain names, retrieving, 250

func() function, 164

FunctionAttributes.py (checking version numbers),

610–611

functions. See also specific classes and objects

arguments in, 89–90

array objects, 68

browsing attributes, 609–611

defining in code, 5–6

overloading, 108–111

pickling, 198

seeding arrays with, 598–599

testing, 502–503

writing in C/C++, 527–531

G
Game of Life example (LifeGame.py), 84–86

gdbm module, 229, 232

geometry managers, widget layout, 349–350

get() methods

accessing dictionary mappings, 61

with ConfigParser object, 189–190

with e-mail messages, 309

opening Web browsers using, 308

with Telnet object, 297

with widget listboxes, 375

with wxPython controls, 400

get_() methods, 297

with curse module cursors, 420–421

getatime() function, 158

getattr() function, 102

getattr() method, 109–110

getch()/ungetch() functions, 121, 669–670

getch() method (curses module), 422

getcwd() function, 165

getfqdn() function, 248–250

gethostbyaddr(), 248–259

gethostbyname() function, 248

gethostname() function, 248–250

getitem() method, 113

getkey() method, 422

getline() function, 174–175

getmtime() function, 158

getname() method, 460

getpass module/getpass() function, 516–517

getpeername() method, 253

getsample() method 9audioop module), 462

GetSelection() method, 400

getservbyname () function, 248–250

getsignal() function, 192

getsize() method, 460

getSocket() function, 117

getsockname() method, 253

getsockopt() methods, 254–255

getstr() method, 422

getuser() function, 516

getweakrefs() function, 116

getweakrefscount() function, 116

getwelcome() method, 289

glob() function, 165

glob module, 165

global interpreter lock, 496

global namespaces, 95

GlobalDict, 97

globals built-in function, 96

gmtime() function, 221

Gopher protocol, 291–292

gopherlib module, 291–292

graphical user interfaces. See GUIs

graphics/image files. See also drawing

animating (CanvasBounce.py), 368–369

converting to bitmaps, 475–476

creating GIF images (clockgif.py), 477–479

file formats for, 467, 474-475

with GUIs, 366–367

handling using Python Imaging Library, 472–475

handling in wxPython, 413

identifying file types, 468–469

modifying pixel data in, 476–477

resizing, 476

grayul.py (HTML file viewer), 396–398

greater than operator (>), 30

greater than, equal to operator (>=), 30

grid method options, 351–352

grid sizers (wxPython), 405–406

group(), 148

accessing newsgroups using, 293

groups, checking in UNIX systems, 671–672

4807-7 Index.F 5/24/01 9:02 AM Page 711

712 Index ✦ G–I

groups() method, 148

grp module, in UNIX systems, 672

gt() method, 109–110

guessing game program (NumberGuess.py), 73–74

guess_type() function, 316

GUI-based applications, file-like objecs in, 128–129

GUIs (graphical user interfaces). See also Tkinter;

wxPython

appearance/behavior options, 354

color options, 354, 365

color scheme customizer (ColorChooser.py),

377–381

dialog/message boxes in, 361–365

event handlers, 371–372

font options, 366

graphics/images in, 366–369

incorporating user input, 356–359

Lepto-based interfaces, 433–450

menu widgets, 360–361

printing exception tracebacks (GUIErrors.py),

607

size options, 354

text widgets, 359–360

GUIErrors.py, 606–607

gunzip module, 213

gzip module, 213–214

H
handle() method, 263

HandleForm.py (CGI script), 267

handlers, for asynchronous signals, customizing,

191

hasattr() function, introspection using, 608–609

has_colors function (curses module), 427

hash() function, 62

hash() method, 109–110

hash() method, 110

hashablity, 62

has_key() method, 61

header values, e-mail message, retrieving, 309–310

HelloWorld.py (CGI script), 298–302

help systems

in cmd module, 441–442

newsgroups, 687

technical assistance Web sites, 686

tutorials, 17

hex() method, 115

hexadecimal values, converting strings to, 75–76

hives, in Windows registry, 664

HLS (hue-lightness-saturation) color system, 470

converting to RGB color system

(ChooseColor.py), 471-472

HomePage.py, 666

host names, 248

HSV (hue-saturation-value) color system, 470

HTML files

converting Python code to, 612–613

filtering text in, 329–330

handling in wxPython, 414

parsing, 327–329

viewing in wxPython (grayul.py), 396–398

HTML markup language, 325

html module (wxPython), 414

htmllib module, 327

HTMLParser class

filtering HTML text (BoldOnly.py), 329–330

handling bogus/unknown elements, 329

parsing methods, 327–329

Web Robot (Robot.py), 331–334

HTTP() method, 279

HTTP request file (httpreq.py), 149–150

HTTP requests, sending/receiving, 279–280

httplib module, 278

Hypertext Markup Language. See HTML files

hypotenuse, calculating, 582

I
iadd() method, 112

id() function, 64

identifiers

reserved words, 20

valid versus invalid identifiers, 19–20

identity references, comparing, 63–64

idiv() method, 112

IDLE. See Interactive DeveLopment Environment

if blocks, setting aside code using, 14

if-statements, 8

else-blocks (elif-blocks) with, 73

with list comprehension, 51

ignore() function, 172

ihave() method, 295

ilshift() method, 114

4807-7 Index.F 5/24/01 9:02 AM Page 712

713Index ✦ I

ImageDraw module (Python Imaging Library),

477–479

images, adding to GUIs, 366–367. See also

graphics/images

ImageTk module (Tkinter module), using with

Python Image Library, 475–476

imaginary numbers, 22

IMAP4 objects, 285–288

imaplib module, 285–288

imghdr module, identifying image types, 468–469

immutable data types, 10

strings as, 38, 133

imod() method, 112

imp module, 629–631

importing Python modules, 631–633

import() function

overrriding, 94

using, 629–631

import statements, 14, 93, 629

Importer class, dummy custom Importer

(dumbimp.py), 637

importing

encrypted modules, 633–636

Python modules, 14, 92–93, 629–631

importpye.py (importing modules), 634–636

imputil module

with encrypted modules, 633–636

Importer class, 636–637

imul() method, 112

in operator (string comparisons), 43

inch() method (curses), 417

include file statement (Lepto), 435

indenting

code, conventions for, 6

function definitions, 611

index() method

with arrays, 71

with lists, 58

with strings, 136

index names, stat module, 160

indexes

accessing sublists using, 9–10

with lists, 9

support for by sequence types, 9–10

indexing, array elements, 590–592

inequality operator (!=), 30

inheritance

child classes, 102–103

multiple inheritance, 14, 103–104

initialization methods, 100, 109

initscr() function, 416

inodes, 158

input() function, 120

with FileInput objects, 176

input. See also GUIs; user input

audio files, reading, 457

functions for, reading, 120–121

redirected, detecting, 128

wxPython module options, 411–412

input/output sizes, in databases, 242

insert() method, 59

with arrays, 71

with widget listboxes, 375

installers, 653–654

for standalone applications, 657

instance data type, 107

instance variables, 101

instances of classes, 14

InstanceType data type, 68

instr() method (curses module)

int() function, 44

int() method, 115

integers, 21

interact() method, 296

Interactive DeveLopment Environment (IDLE), 4,

689–690

debugging using pdb, 695–698

editing code using, 692–695

interfaces. See also GUIs

to GNU Multiple Precision Arithmetic Library,

587–588

with NIS “Yellow Pages,” 682–683

Python - C/C++, 546–550

internationalization, 619-624

Internet Explorer, as home page, 666

Internet communications

formatting text, 304–307

managing URLs, 303–304

protocols for, 275, 303-307

interweaving threads, 495

introspection, 608–611

invalid identifiers, examples of, 19

4807-7 Index.F 5/24/01 9:02 AM Page 713

714 Index ✦ I–L

inversion operator (~), 23

invert() method, 112

I/O (input/output) calls, optimizing, 510–511

I/O sizes, in databases, 242

IOError exceptions, 81–82

IP addresses, 247

is operator, in reference comparisons, 64

isabs() function, 157–158

isalnum() method, 135

isalpha() method, 135

isatty() function, with file descriptors, 173

isatty() method, 123, 128

isdigit() method, 135

isdir() function, 158

isfile() function, 158

isinstance() function, 68, 107

isleap() function, 225–226

islink() function, 158

islower() method, 135

isspace() method, 135

issub() method, 112

issubclass() function, 68, 107–108

istitle() method, 135

isupper() method, 135

J
join() function, building paths, 161–162

join() method, 138

joinfields() function, 140

joining sequences, 52–53

K
Key Bindings (readline module), 676

key names, in string formatting, 41

key-value pairs, 10–11

keyboard event bindings, 371–372

keyboard input

accessing, 120–121

with curse-based terminal displays, 421–422

in wxPython, 412

keyboard shortcuts, in xwPython, 411–412

keypad() method (curses module), 421

keys, 10–11

in Windows registry, 664

keyword arguments, unpacking in C/C++

conversions, 537–538

Kill and Yank Key Bindings, 677

killing (readline module), 677

KillKey.py, 667–668

L
l amnt statement (Lepto), 435

lambda (anonymous) functions, 90–91

languages, Lepto, 435. See also C/C++

last item on list, accessing, 9

layout (wxPython)

algorithms, 407

constraints on, 406–407

options for, 401–406

le() method, 109

leap years, 226

left bit-shift operator (<<), 24

len() function, 35

with arrays, 71

with dictionaries, 62

len()method, 110, 113

Lepto-based interfaces

graphical interface for, 445–450

interactive console for (leptocon.py), 442–445

Lepto language basics, 435

Lepto Lexical Analyzer, 436–440

parser for (leptoparser.py), 437–440

simple example of (leptogui.py), 445–450

LeptoCon class (cmd module), 442–445

leptogui.py, 445-50

Leptoparser.py, 437–440

less than operator (<), 30

less than or equal to operator (<=), 30

LessBuggy.py, 697–698

lexical analyses, shlex module for, 436–440

libraries, C shared, using in UNIX systems, 675. See

also specific classes and objects

limits, UNIX system resources, 679–680

linear encoding (sound files), 453

linecache module, 174–175

lineno() function, 177

link() function, 168–169

links

for extension modules, 531–532

managing, functions for, 158

symbolic/hard system links, 168

Linux RPM SPEC options, 654

list command (pdb module), 498

list comprehensions, 51

4807-7 Index.F 5/24/01 9:02 AM Page 714

715Index ✦ L–M

list() function, 50

list() method, 10

with e-mail, 281

listbox widget, 375–376

listdir() function, 163–164

listen() method, 251–252

listenThread() function, 203

lists (list objects)

accessing last item on, 9

C functions for, 563–564

converting arrays to, 69–70, 592–593

creating, functions for, 50–52

in dbhash module, 233

deleting items or slices from, 58

for. . .in-statements with, 55

index numbers for, 9

methods for, 58–60

performance issues, 68

pickling, 198

processing functions, 55–57

replacing values in, 57

sorted, managing items in, 60

switching to tuples from, 10

ljust() method, 134

loads() function, 197

local namespaces, 95

LocalDict, 97

locale module

formatting options, 625–626

locale categories, 624–625

locale properties, 626–627

locale-specific formatting. See localization

localhost addresses, 247

localization, 619, 624-625

time formats, 221, 223–224

locals built-in function, 96

Locator class (XMLReader), 337

Lock class (concurrency control), 486

locking, global interpreter lock, 496

locking threads, 485–488

preventing deadlock, 488–489

logarithms, calculating, 582

login()/logout() methods (IMAP), 285–288

long() function, 44

long() method, 115

long integers, 21–22, 24

looping statements, 7

break-statements with, 77–78

breaking out from, 8

changing reference sequences in, 78–79

continue-statements with, 77–78

else-clauses with, 77–78

optimizing, 510

while-statements with, 8, 79

loose typing, 4–5

lossless compression, 467

lossy compression, 467

lower() method, 134

lseek() function, with file descriptors, 173

lshift() method, 114

lstat() function, 161

lstrig() method, 134

lt() method, 109–110

M
MagicSquare.py (using ufuncs), 596

MainLoop() method, 393

mailbox module, 320–321

mailboxes

administering, 287–288

managing/searching, 285–286

MH, managing, 320–321

UNIX, parsers for, 320

mailcap files, parsing, 317

mailcap module, 317

maillists about Python, joining, 687

makedirs() function, 169–170

maketrans() function, 139

managed windows (wxPython), 394–395

mapping() function, 117

mapping objects (Python/C API), 569–570

mappings, dictionary

accessing, 61

adding to/replacing, 61

updating, 62

mappings, of MIME type file extensions, 316

marked parameters (SQL statements), 242

markup languages, 325. See also HTML files;

XML format

marshal module, 200

Mask class (curses module), 419–420

masked arrays, 589

mask.py (terminal display screen mask), 419–420

4807-7 Index.F 5/24/01 9:02 AM Page 715

716 Index ✦ M

match() function, with regular expressions, 147

match() method, 145

match objects, methods for, 148

matching

nongreedy, 143

regular expressions, 145

math module

exponent calculations, 582

logarithm calculations, 582

rounding, 581–582

trigonometric functions, 582–583

matrix operations, with arrays, 603–604

max() function, 31, 55

with string comparisons, 43

maze game (maze.py, curses module), 429–432

MD5 message digits algorithm, 522

membership testing, sequence data types, 53

memory, managing, 512, 579

memory-mapped files, 175–176

menu widgets, 360–361

menus, adding to xwPython, 411–412

message fingerprints, 521–523

Message objects, 309, 320–321

messages, adding to mailboxes, 288. See also

e-mail; networking

metadata

auditing table example (mirrormaker.py),

238–240

sequence pieces (table), 238

metatext, 326

methods. See also functions and specific classes

and objects

for array objects, summary of, 71

base methods, 109

initialization methods, 100

overloading (table), 111–112

self referencing, 15

MH mailboxes (MH objects), 320–321

MIME messages

encoding/decoding, 312

mailcap files, parsing, 317

mapping to file extensions, 316

multipart messages, 313–314

parsing, 311–313

testing, example file (MimeTest.py), 314–315

mimetools module, 312

mime.types file, 316

mimetypes module, 316–317

MimeWriter module, 313

mimify() function, 312

mimify module, 312

min() function, 31, 43, 55

minimum field width number (string

formatting), 41

minus operator (–), 23

in string formatting, 41

mirrored() function, 153

mirrormaker.py (audit tool), 238–240

mix-ins, multiple inheritance with, 104

mkdir() function, 169

mktemp() function, 170

mktime() function, 221

mmap module/objects, 175–176

mod() method, 112

mode method, values, 122–123

mode values, open() function, 122

modes, for paths, setting, 157

modifying attributes, 101–102

module objects (Python/C API), 572–574

module type values, 632

modules. See also specific modules

compiling/storing, 95

copying, 66

customizing using mix-ins, 104

distributing/installing, 644–647

encrypted, importing, 633–636

extension, distributing, 650–651

grouping into packages, 96–97

importing, 14, 92–93, 629–631

layout, 91–92

locating, 94

reading lines from, 175

reimporting, 93–94

retrieving from remote locations, 636–641

modulo operator (%), 7, 23

in string formatting, 40–41

Monkeys.py, 96

Monte Carlo sampling (Plotter.py), 586–587

month() function, 224–225

monthcalendar() function, 224

monthrange() function, 225

Morsel object, 322–323

morsels, storing cookies as, 322–323

mouse buttons, binding, 372

4807-7 Index.F 5/24/01 9:02 AM Page 716

717Index ✦ M–N

mouse cursors, customizing (wxPython), 413

mouse input, mouse events

detecting in curses module, 423–425

terminal displays, 423–424

in wxPython, 412

mousemask() function (curses module), 423–424

using (Deathray.py), 424—425

MovingAverage.py (matrix arithmetic), 603–604

mpz module, 586–587

msvcrt module, 121

Windows-specific services, 669–670

mul() method, 112

multi-process socket server classes, 104

multi-threaded socket server classes, 104

multicast communications, example code for,

256–261

MultiFile class, 313

multiple assignment statements, 27

multiple inheritance, 14, 103–104

multiplication operator (*), 23

repeating strings using, 37–38

multiplying array matrices, 602–604

Multipurpose Internet Mail Extensions. See MIME

messages

multitest.py (multicasting), 257–260

multithreading. See threading

MutableString class, 105

mxODBC module, database searching using,

235–237

N
name() method/function, 123, 187

namelist() method, 215

names, of variables, 19–20

namespaces, 95, 97

lambda (anonymous) functions, 91

objects, 63

in XML, 327

native language support (NLS), 619–620

adding to applications, 620–624

ncurses API. See curses module

ndiff utility, 172

ne(), 109

neg() method, 112

nearest() method, 375

netrc files, handling, methods for, 291

Network News Transport Protocol (NNTP) object,

292–295

network orders, 256

networking, 247–248, 267

byte ordering settings, 256

CGI script handlers, 267–269

connection objects, 251–252

HTTP servers, 264–267

multicast communications, 256–261

non-threaded communications, 269–273

sending/receiving data, 251–252

socket module functions, 248–250

socket servers, 261–263

networks, moving objects between, 200–203

new module, 614–615

newnews() method, 293–294

NewObject statement, 15

newpad() function (curses module), 426

new_panel() function (curses module), 426

newsgroups

accessing, 292

browsing, 293

managing, methods for, 292–295

NewsSlurp.py, 294–295

nextfile() function, 177

NIS (Sun System) “Yellow Pages,” UNIX interface

with, 682–683

NLS. See native language support

NNTP object, 292–295

nntplib module, 292–295

non-ASCII strings, 150

non-managed windows (wxPython), 395–396

None value, 11

nonprintable characters, 34

nonzero() function, 109

noraw() function (curses module), 421

normcase() function, 162

normpath() function, 162

not in operator, 43

not operator, 32

NullWriter, 306–307

NumberGuess.py (exception handling script),

73–74

NumberGuess2.py, 80–81

numbers, pickling, 198

4807-7 Index.F 5/24/01 9:02 AM Page 717

718 Index ✦ N–O

numeric data types

combining, 24

comparison functions, 23–24

comparison operators, 29–31

converting to/from string data type, 43–47

floating point numbers, 22

functions for, 24–26

imaginary numbers, 22

integers, 21

long integers, 21–22

numeric() function, 153

numeric operators, 111–112

Numeric Python (NumPy), 589

array elements, 600

array-handling functions, 590–593, 597–601

array matrices, 602–604

universal functions, 593–596

O
Object Graphics Library (OGL), accessing in

wxPython, 413

object-oriented programming (OOP), 15

classes, creating, 100–101

Python support for, 99

object references

passing, 88

variables as, 88

object state, 196

objects, 14. See also specific classes and objects

class definitions, 100

class variables, 100

classes, 100–101

copying, 65–67

creating from C/C++ code, 539–540

creating new objects, 15

identify references, 63–65

instance objects, 101

instance variables, 101

keys, 10–11

low-level, creating, 614–615

managing attributes in, 101–102

moving across networks, 200–203

pickling, 198–200

proxy objects, 117–118

sys module, 126–127

values, 10–11

weak references with, 115–116

objects, in Python/C API

buffer interface, 566–567

built-in types, 571

dictionary functions, 570–571

file objects, 571–572

generic objects, 556–558

list functions, 564–565

mapping objects, 569–570

module objects, 572–574

number objects, 558–561

tuple functions, 565–566

obufcount() method (sunaudiodev module), 455

oct() function, 46

oct() method, 115

OGL (Object Graphics Library), accessing in

wxPython, 413

onButton() method, 393–394

onecomd() method (cmd module), 441

OOP. See object oriented programming

open() function, 11

with arrays, 203–204

with audio files, 457

creating file descriptors, 173

gzip module, 215

with non-ASCII strings, 152

opening files, 121–122

with sunaudiodev module, 455

with URLs, 278

openlog()/closelog() functions, 674–675

openpty() function, 173

operator module, overloadable functions, 108–111

operators

arithmetic operators, 4

augmented assignments, 28

Boolean operators, 31–32

comparison operators, 29–30

listing of, 20

modulo operator (%), 7

with numeric data types, 23–24

overloading, 111–114

precedence rules for, 4, 33–34

reference comparisons, 64

string comparisons, 43

optimizing. See performance, optimizing

or() method, 114

OR operator (|), 23, 32

ord() function, 45

4807-7 Index.F 5/24/01 9:02 AM Page 718

719Index ✦ O–P

order modifiers, in struct module, 206

orientation, of controls, in wxPython, 403–404

os module, 156

error exceptions, 190–191

executing shell commands, 179–181

exiting from processes, 183–184

file descriptor functions, 173–174

file management functions, 163–164, 168–169

file-opening functions, 122

path management functions, 156–160

process information functions, 185–186

running child processes, 181–183

viewing environmental variables, 165

viewing system information, 187

OSError class, 190–191

os.path module

building/vreaking up pths, 161–162

comparison with os.module, 156

file/directory management, 164

path management functions, 157–162

output. See also I/O; printing

audio files, 457–458

print statement, 119–120

WordCount.py, 13

overloading

bitwise operators, 114–115

dictionary operators, 112–113

functions, 108–111

numeric operators, 111–112

sequence operators, 112–113

type conversion operators, 115

P
pack() methods, 208–209

widget layout, 350–351

packages

distributing/installing, 647–648

grouping modules into, 96–97

Packer objects, creating, 208–209

packing data types, 208–209

pads (curses module), 425–426

palettes, 467

parameters, in functions, 88–89

parent classes, 14

child classes from, 102–103

multiple inheritance, 103–104

parentheses (())

in calculations, 4

in complex expressions, 32–33

in regular expressions, 141

parsing

HTML files, 327–329

Lepto programs, 436–440

Python data, 531–537

Python code, parse trees for, 613–614

XML documents, 327

passwords

managing, 516–517

in UNIX systems, 671–672

path type test function, 160

paths, 155

accessing, 156–157

locating, for modules, 94

managing , 156–161, 168–169

paths. managing

os module functions for, 156–157, 168–169

os.path module functions for, 157–159, 161–163

stat module functions for, 160–161

statcache module functions for, 161

pause() function, 192

pdb module (debugger), 497–498

performance, optimizing

I/O calls, 510–511

locating bottlenecks, 505–509

looping, 510

managing memory, 512

organizing if-statements, 74

performance statistics, 507–508

“simultaneous” code, 495–496

sorting, 509

sound files, 454

string-handling, 511

thread-handling, 511

periods (.)

in regular expressions, 140

in string formatting, 42

permissions, 157

phone list (database), 231–232

PhotoImage class (Tkinter module), 366–367

with Python Imaging Library, 475–476

pi constant, in math module, 581

4807-7 Index.F 5/24/01 9:02 AM Page 719

720 Index ✦ P

pickling, 197–198

classes, 199–200

swap module example, 200–203

pipe() function, 173

pipes, 173

pixel data, modifying, 476–477

playing/recording sound files

SunOS, 455–456

Windows systems, 454–455

PlaySound() function (winsound), 454–455

plotter program, creating using shlex module, 433

plus operator (+), 23

concatenating strings using, 37

overloading, 108

in regular expressions, 141

in string formatting, 41

pocket calculator, Python as, 4

point class (Point.py), 15–16

PoliteGet.py, 307

poll() function, 270

polling objects, 270

pos() method, 112

pow() method, 112

pop() method, 59–60

with arrays, 71

pop arg statement (Lepto), 435

POP3 accounts, accessing, 281–283

popen() functions, 181–182

popitem() method, 63

poplib module, 281–283

popmail.py, 281–282

Popup.py (menu widget), 361

porting threaded code, 494

pos() method, 112

post() method, 295

POST requests, 280

pow() function, 25–26

pow() method, 112

power operator (**), 23

precedence rules, operators, 4, 33–34

primary orientations, in wxPython, 403–404

PrimeFinder.py (looping statements), 7–8

print statement/command

in pdb module, 498

printing to file, 120

printing, 119–120

calendars, functions for, 224–225

tracebacks, 605–607

with wxPython, 414

prmonth() function, 225

processes

handling, functions for, 181–185

viewing information about, 185–186

profile module/Profile class, 506–507

programs, running, 6, 179–181. See also code,

executing

progress bar, creating, 387–388

properties, of locales, 626–627

protocols, communications, 248, 275

proxy objects, 117–118

proxy servers, 276

pseudoterminals (UNIX systems), 681–682

pstats module/Stats class, 507–508

public access, versus private, 15–16

push() method, 313

push arg statement (Lepto), 435

pwd() method (FTP server), 289–290

pwd module, using with UNIX systems, 671–672

py2exe utility, 655–657

PyArg_ParseTuple object types, 533

Py_BuildValue object types, 539–540

.pyc files, 631

pyclbr module, browsing classes, 609

pydoc module, 501

PyInterpreterState objects, 576

.pyo files, 95

PyObject pointer, 553

PyShellWindow module (wxPython), 398

Python/C API

built-in types, 571

C list functions, 564–565

CObjects, 574

dictionary functions, 570–571

empty values, 571

error messages/exceptions, 576–579

extension tools, 546–550

file objects, 571–572

generic objects, 556–558

managing memory, 579

mapping functions, 569–570

module objects, 572–574

number objects, 558–561

object layers, 556

reference conventions, 554–555

4807-7 Index.F 5/24/01 9:02 AM Page 720

721Index ✦ P–R

reference ownership, 553–555

sequence objects, 561

sub-interpreters, 576

threads, 574–576

tuple functions, 564–565

Unicode strings, 567–569

Python Database API, 234–244

Python distribution downloads, 685–686

Python Enhancement Proposals (PEPs), 687

Python Extensions for Window. See win32all

Python Imaging Library (PIL)

features, 472–475

image formatting, 480

Python interpreter, starting and exiting from, 3–4

Python MegaWidgets (Pmw), 389

Python mode for Emacs, 692–669

Python Threading SIG, 496

PythonPath variable, 94

PythonWin, 698–699

PythonWorks, 690

PyZipFile class, 216

Q
querying relational databases (soundex.py),

235–237

question mark (?), in expressions, 141

Queue module/Queue class, interweaving threads

using, 495

Quiet.py (audio editor), 594–595

quote() function, 276

quoted-printable encoding, 319

quotes, in string literals, 35

R
r amnt statement (Lepto), 435

radd() method, 112

raising exceptions, 82

random numbers, generating, 583–587

deck shuffling example, 585

distributions for, 585

Monte Carlo sampler (Plotter.py), 586–587

range() function, 8, 50–51

with looping statements, 76–77

ranges, in lists, managing, 50–51

raw() function, 421

raw mode (curses module), 421

raw_input() function, 120–121

rdiv() method, 112

rduvmod() method, 112

re module. See regular expressions

read() methods, 125

with audio files, 461

with ConfigParser object, 188

with file descriptors, 173

with mmap objects, 176

with sunaudiodev module, 455

with Telnet objects, 297

with ZipFile objects, 215

read_byte() method, 176

readframes() method, with audio files, 457.

See also chunked data

reading file contents

chunked audio files, 460-461

nonchunked audio files, 457

text files, 125–126

readline() method, 125–126

with mmap objects, 176

readline module, 121

in UNIX systems, 675–678

readlines() methods, 126

Real Media File Format (RMFF) files, reading,

460–461

recursive grep utility (rgrep.py), 166–167

recv()/recvfrom() methods. See networking

redirected input, detecting, 128

ref() function, weak referencing, 116

references, object

comparing, 63–64

counting, 64–65

and memory management, 512–513

tracking ownership of, 553-555

weak references, 115–116

refresh() method (curses module)

with pads, 426

with windows, 418

register() function, 184

with Web browsers, 308

regular expressions

character groups, 142–143

creating, 144–145

extensions, 143–144

nongreedy matching, 143

syntax, 140–141

using, 145–147

reimporting modules, 93–94

4807-7 Index.F 5/24/01 9:02 AM Page 721

722 Index ✦ R–S

relational databases

accessing, 234–235

auditing tables, 238–240

column types, 240–241

database libraries, 242

error hierarchies/exceptions, 243–244

input/output sizes, 241

metadata, 237–240

SQL statement parsers, 242

relative paths, 155

reload() function, 93–94

Remainder.py, 599–600

remainders, calculating, 7

remote importer, 637–640

remote server access, 296–298

remove() function, 168–169

remove() method, 59

with arrays, 71

removedirs() function, 170

removing. See also deleting; exiting

attributes, 101–102

files, 169

rename()/renames() function, 168–169

renaming paths, 168–169

repeat statement (Lepto), 450

repeat count sub statement (Lepto), 435

repeating sequences, 52–53

repeating strings, 37

replace() method, 137

replacing, substrings, 137

report() method, 172

repr() function, 46–47

repr() method, 109

request handlers, 262–264

Request objects, managing HTTP files/URLs using,

278–279

reserved words, 19

reset arg statement (Lepto), 435

reshaping, array objects, 600–601

resizing objects, 476, 600-601

resource module

resource limit settings, 679–680

UNIX system usage information, 678–679

resource usage (UNIX systems), 677–678

retr() method, 281

retrieve() method, 278

return-statements, 88

reverse() method, 60

with arrays, 71

ReverseSound.py, 459–460

rexec module/RExec object, 517–520

rfc822 module (e-mail handling)

e-mail address lists, 310–311

handling MIME messages, 311–312

parsing e-mail headers, 309–310

RFCs (requests for comments), 275

rfind() method, 136

RGB (red-green-blue) color system, 469–470

converting HLS system to (choosecolor.py),

471–472

rgrep.py, 166–167

rich comparison methods, 110

right bit-shift operator (>), 24

rindex() method, 136

rjust() method, 134

rlcompleter module, 675–678

RLock class, concurrency control, 486–487

rlshift() method, 114

RMFF (Real Media Format) sound files, handling,

460

rmod() method, 112

rmtree() function, 169

rmul() method, 112

robot programs, 307–308

Web robot example (Robot.py), 331–334

RobotFileParser object, 307–308

robotparser module, 3–7-308

rotor module/rotor objects, 523–524

round() function, 26, 45

rounding, 7, 581–582

rpow() method, 112

rshift()/_rrshift_() methods, 114

rstrip() method, 134

rsub() method, 112

ruimp.py (remote Importer), 638–640

run() method, 483–484

running programs, 6, 500. See also code, executing

S
sample rates/widths (sound files), 453

sandboxes, 517–520

saving objects into databases, 203–203

SAX (Simple API for XML), using, 327, 334–337

scale amnt statement (Lepto), 435

4807-7 Index.F 5/24/01 9:02 AM Page 722

723Index ✦ S

scale widget, 376

sci() function, 153

scope rules, 95–96

screen-scraping (curses module), 417–418

scripting languages (Lepto), 433–450

scrollbars

with widgets, 376–377

with xwPython windows, 396

search() method, 145, 147, 286

searching

databases, 235–237

dates, calendars, 225–226

files, grep utility for, 166–167

match objects, 147–148

newsgroup articles, 293–294

regular expressions, 145

robot programs for, 331–334

sound fragments, 462

strings, methods for, 135–136

Web searches, 280

secondary orientations, in wxPython, 404

Secure Hash Algorithm (SHA), 522–523

security issues, CGI scripts, 302

security tools

encryption, 523–524

message fingerprints, 521–523

passwords, 516–517

restricted environments, 516–521

seek() method

changing current position within file, 123–124

with mmap objects, 176

select() method (IMAP4), 286

select module, non-threaded communications,

270–273

selection_set() method, 376

self-examining code (introspection), 608–611

self references, 15, 100

Semaphore class (concurrency control), 487

send() method/function, 203, 252

sending/receiving e-mail, 291–285

sendmail() method, 283

sendto() method, 252

sequence data types, 9–10, 49

accessing portions of using slices, 54

accessing portions of using subscription, 53

comparing, 53

joining/repeating, 52–53

membership testing, 53

processing functions, 55–57

unpacking, 54

sequence operators, overloading, methods for,

112–113

set_() methods

with Telnet object, 297

with wxPython controls. 402, 411

SetAcceleratorTable() method, 411

setattr() function, 102

setattr() method, 109–110

setblocking() method, 253–254

SetCursor() method, 413

setdefault() method, 61

setfirstweekday() function, 225–226

setinputsizes()/setoutputsizes() methods, 241

setitem()/_setslice_() methods, 113

setparams() method, using with audio files, 457

SetPosition() method, 402

SetScrollBars() method, 395

SetSize() method, 402

setsockopt() method, 254–255

SetStatusBar() method, 395

SetToolbar() method, 395

setup functions, embedding, 542–543

setup() method, 263

setup.py

customizing, 650

for package distributions, 648

for simple distributions, 644

SGML (Standard General Markup Language), 325

shallow copies, 65–67

shared libraries (UNIX systems), 675

shell commands, executing, 179–181

shelve module storage functions, 203–204

shlex module/shlex class, 433, 436–437, 522–523

Lepto parser program (leptoparser.py), 437–440

shutdown() method, 251

shutil module

file management functions, 169

path management functions, 168

signal handlers, customizing, 191–193

signal module, asynchronous signal handling,

191–193

sig.py (signal handler), 192–193

Simple API for XML. See SAX

simple.c extension program, 529–530

SimpleCookie class, 322

SimpleHTTPRequestHandler class, 266

4807-7 Index.F 5/24/01 9:02 AM Page 723

724 Index ✦ S

SimpleHTTPServer module, 264

Simplified Wrapper and Interface Generator. See

SWIG

single underscore (_) character, 20

size() function, 176

size() method, with widget listboxes, 375

size modifiers, struct module, 206

size options (Tkinter widgets), 354

sizers (wxPython), 403

box sizers, 403–405

grid sizers, 405-406

sleep() function, 221

slice operators (slicing)

with array elements, 590–592

copying objects using, 65–66

with sequence data types, 54

with strings, 39–40

SMTP accounts, 283–285

smtplib module, 283–285

sndhdr module, 456

socket module/socket objects, 248–250

asynchronous dispatcher class, 271–273

binding/connecting, 251–252

calling, 117

communications options, 254–255

copying, 66

creating, 250–251

message handling, 251–253

managing, 250–251

open sockets, viewing, 247

ports/IP addresses for, 253–254

socket function(), 250–252

socket servers, 261–263

SocketServer module

modifying using mix-ins, 104

TCP/UDP subclasses, 261–263

softspace attribute, in file objects, 124

sorting

array objects, 601

lists, managing items in, 60

optimizing, 509–510

sound files

AIFF files, 456–458

AU files, 458

components/features of, 453–454

converting formats, 462–463

managing sound in, 463–464

playing/recording, 454–456

reading/writing, 456–461

reversing sound on, 459–460

storing, 456

WAV files, 458

soundex.py (database query), 235–237

source code editors, 691-695

Emacs editing tools, 691–692

Interactive DeveLopment Environment (IDLE),

692–695

making Python-aware, 692

source distributions

controlling files in, 648–649

creating, 651–653

span() method, 148

spawn() functions, 182–183

special characters, unpacking in C/C++

conversions, 536

spiral.py, 421

splitfields() function, 140

splitlines() method, 137–138

splitting

paths, 162

regular expressions, 146–147

substrings, 137–138, 140

windows in wxPython, 395–396

SplitVertically() method, 395

SQL statement parsers, 242

square roots, calculating, 582

stack traces, printing, 606–607

stacking windows (curses module), 426

StackPrint.py, 606–607

standalone applications, building tools

archives and standalones, 657

freeze, 656

py2exe, 655–656

standard I/O, accessing, 126–127

start() method, 148

with Thread object, 483–484

startbody()method, 313

startfile() function, 180

starting Python interpreter, 3

startwith() method, 136

stat() function, 159–160

stat module, index names (table), 160

4807-7 Index.F 5/24/01 9:02 AM Page 724

725Index ✦ S

statcache module, 161

statements. See also specific types of statements

class definitions, 15

function definitions, 5–6

grouping by indentation level, 6–7

Lepto-supported, 435

types of, 6–8

statements, assignment

augmented, 27–28

multiple, 27

simple, 26–27

static extension module linking, 531

statistics, code performance, 507–508

status bars, adding to windows (wxPyton), 395–396

status() method (IMAP), 288

statvfs module (UNIX system information), 678–679

stderr/stdin/stdout objects, 126–128

store() method (IMAP4), 286–287

storing

modules, 95

objects, 203–204

sound files, 456

ufuncs output, 594

str() function, 46

_str() method, 109

StreamRequestHandler, 264

strerror() function, 190

strftime() function, 222

string class, customizing, 105

string data type, 34

accessing characters/substrings, 38–40

converting from numeric data type, 45–47

converting to numeric data types, 44–45

escape sequences with, 36–37

formatting, 40–42

length, 35

string comparisons, 42–43

string literals, 35

escape sequences in, 36–37

raw strings, 37

Unicode strings, 43

string module, 133

atof() function, 139

atoi() function, 139

atol() function, 139

capwords() function, 139

character categories, 138–139

join() function, 138

joinfields() function, 140

maketrans() function, 139

splitfields() function, 140

StringIO class, 149–150

strings (string objects)

C functions for, 563–564

characters/substrings in, 38–40

comparing, 42–43

concatenating, 37

converting arrays to, 592–593

converting to hexadecimal values, 75–76

formatting, 40–42, 134–135

handling as files, 149–150

immutability of, 133

non-ASCII, 151–152

optimizing, 511

pickling, 198

regular expressions, 140–147

repeating, 37–38

searching, 135–136

Unicode strings, 150

strip() method, 134

strptime() function, 222–223

struct module

converting to/from C structures, 204–207

format characters, 204

order, alignment and size modifiers, 206

styles, with Internet text, 305–306

sub-interpreters, 576

sub() method/function, 146–147

sub() method, 112

sub name statement (Lepto), 435

sublists, accessing, 9–10

subn() method, 146

subscribe() method, 287

subscription operators, 38

with sequence dta types, 53–54

substituting in expressions, 146

substrings, 9–10

accessing, 38–40

managing/editing, 137–138

searching for, 136

subtraction operator (-), 23

sunau module, 456–458

sunaudiodev module, 455–456

SunOS, using sound files in, 455–456

4807-7 Index.F 5/24/01 9:02 AM Page 725

726 Index ✦ S–T

swapaxes() function, with arrays, 603

swapcase() method, 135

swap.py (swap module), 200–203

SWIG (Simplified Wrapper and Interface

Generator), 546–549

symlink() function, 168–169

syntax. See also specific classes, functions, objects,

and statements

case-sensitivity, 5

class definitions, 15

creating new objects, 15

regular expressions, 140–141

simple assignments, 26–27

variables and expressions, 4–6

SyntaxHighlighter.py, 612–613

sys module

stderr (standard error) object, 126

stdin (standard input) object, 126

stdout (standard output) object, 126

sys.argv variable, 166

sys.getrefcount() function, 64–65

syslog module

openlog()/closelog() functions, 674–675

priority values, 673

system() function, 179–181

system information

functions for, embedding, 542

viewing, 187

system logger (UNIX systems), 673–675

SystemExit exception, 184

T
tags, in markup language, 325–326. See also

XML format

HTML methods, 328–329

rules for, 326–327

TCPServer class, 104, 261–263

technical assistance Web sites, 686

tell() method, 123, 176

with mmap objects, 176

Telnet protocol/Telnet class, 296–298

telnetlib module, 296–298

tempfile module, 170–171

template file rules, adding, 648–649

tempnam() function, 171

temporary files, creating, 169–170

TemporaryFile class, 170

terminal displays

curses module functions, 415–432

screen masks for (mask.py), 419–420

in UNIX systems, 681–682

termios/TERMIOS modules, 681–682

TestCase class, 504–505

testing code, tools for

automating, tools for, 502

doctest modules, 502–503

rexec security access (bad.py_), 519

unittest module, 503–505

testing, remote Importer, 640–641

TestSuite class, 504

testzip() method, 215

text

displaying on terminals, 415–432

editing, 426–427

encoding, 150

formatting, user input for (UserInput.py),

357–359

Internet, formatting, 304–307

string data type for, 34

text editors

Tkinter module example, 362–365

Windows API example, 663–664

in wxPython, 401

text files, accessing lines in, 174–175

text mode

data storage, 195

opening files in, 123–124

text widgets, 359–360

TextBox class (curses module), commends for

(table), 426–427

TextEditor.py, 362–365

win32all example, 663–664

textpad module (curses module), 426–427

thread module

creating new threads, 482–483

locking using, 485–486

URLGrabber script example, 492–494

threading module/Thread object, 482–491

checking thread status, 484

locating threads, 484–485

locking using, 486–488

starting/stopping threats, 483–484

URLGrabber script example, 489–491

4807-7 Index.F 5/24/01 9:02 AM Page 726

727Index ✦ T

threading process, 481–482

concurrency issues, 484

interweaving threads, 495

optimizing, 511

porting threaded code, 494

preventing deadlock, 488–489

threading example, 489–494

ticks

in calendar module, 224

converting from/to, 221

telling time using, 219

tilde (~) character (inversion operator), 23

time

formats for, 221

formatting, functions for, 222–223

handling in wxPython, 413

localizing, 223–224

parsing, 222–223

time module/time() function, 159, 219

date/time formatting, 222–224

handling time zones, 226

stopwatch functions, 220–221

Timer.py, 367–369

timestamps, creating, 222

TimeTuples, converting, 221, 223

timeutil module, setting up, 644–647

title() method, 135

titlecase, converting strings to, 135

Tkdnd module, 382–385

Tkinter module, 347–348, 354

adding widgets, 387–388

breakfast buttons example (FoodChoice.py),

352–354

color options, 354, 365

color scheme customizer, 377–381

cursor options, 385–387

dialog/message boxes, 361–365, 381–382

drag-and-drop support, 382–385

drawing canvas, 373–374

font options, 366

geometry manager, 349–350

graphics images in, 366–367

interface-building widgets, 348–349

in Lepto-based GUI, 445–450

listbox widget, 375–376

menu widgets, 360–361

moving images, 368–369

with Python Imaging Library, 475–476

scale widget, 376

scrollbar widget, 376–377

size options, 354

text editor example, 362–365

text widgets, 359–360

timers with, 367–369

user input with, 356–359

tkMessageBox, 361–362

TkSimpleDialog module, 381–382

tmpfile() function, 171

tmpnam() function, 171

tofile() method, 70

tokenize module/function, 611–613

tolist() method, 69

viewing contents of range objects, 77

toolbars, adding to windows (wxPyton), 395–396

tostring() method, 70

traceback module, 603–604

printing GUI exceptions, 607

printing stack traces, 606–607

printing tracebacks, 605–606

transactions, in databases, 234–235

translating substrings, 137

maketrans() function, 139

string module functions, 139–140

tree controls (wxPython), 400–401

treedemo.py (wxPython module), 400–401

trigonometric functions, 582–583

truncate() method, 124–125

ttyname() function, 173

tuples, 9

ASTs, 614

C functions for, 565–566

creating, 52

for. . .in-statements with, 55

passing arguments from, 90

pickling, 198

processing functions, 55–57

switching to lists from, 10

TimeTuple, 220

unpacking, 40

two-digit years, enabling, 227

type codes (array objects), 69

type conversion operators, 115

types module/type() function, 67–68

types, sequence vs. immutable, 9–10

4807-7 Index.F 5/24/01 9:02 AM Page 727

728 Index ✦ U–W

U
UDPServer, 261–263

ufuncs (universal functions), in NumPy, 593–597

audio editing program, 594–595

repeating/iterating, 595–597

uid() method, 287

uidl() method, 281

unary operations, 23

Unicode strings, 43, 150

managing, 153

in Python/C API, 567–569

Uniform Resource Locators. See URLs

unittest module, 503–505

UNIX mailboxes, 320–321

UNIX systems

accessing Python, 3–4

accessing system logger, 673–675

CGI scripts for, 299

child processes, 183

controlling resource use, 679–680

epochs, 219

exiting from processes, 184–185

file descriptors, 680–681

inodes, 158

passwords, groups, 671–672

proxy servers in, 276

PythonPath variable, 94

reading individual characters, 121

running Python programs, 6

signal handlers, 192

system information, viewing, 187, 677–679

temporary files, managing, 171

terminals, pseudoterminals in, 173, 681–682

wildcards in, 167

UnixDatagramServer, 261

UnixStreamServer, 261

unpacking data types, 54, 210

unquote() function, 276

unsubscribe() method, 287

uploading files (FTP), 290–291

upper() method, 134

urlcleanup() function, 276

URLGrabber scripts (threading), 489–494

urljoin() function, 303–304

urllib library, 276

urllib2 library, 278

URLopener, 277–278

urlparse module/function, 277, 303–304

urlretrieve() function, 276

URLs (Uniform Resource Locators)

handling as files, 277

managing, 276–277, 303–304

opening/accessing, 277–278, 308

retrieving, 276

user input

in curse terminal displays, 421–425

in GUIs, 356–359

reading, 120–121

user interfaces. See also GUIs

Internet formatter interface, 304–305

Lepto-based, 433–450

UserDict module/UserDict class, 106

UserInput.py, 357–359

UserList module/class, 104–105

UserString module

MutableString class, 105

UserString class, 105

UsingNew.py, 615

utime() function, 159

uu module/uuencoding algorithm, 317–318

V
valid identifiers, examples of, 19

values, 10–11, 14

built-in, 11

hash values, retrieving, 62

referencing in variables, 5

in Windows registry, 664

variables, 88

assignment statements, 26–28

class variables, 100

creating, 26

defining, scope rules, 95–96

environmental, 94

instance variables, 101

naming, 19–20

value references in, 5

vectors, adding, 108

verify() method, 284

version numbers, of software, checking, 610–611

vertical slash [|], 141

W
wait status interpretation functions, 184–185

WaitCursor.py (Tkinter module), 386–387

4807-7 Index.F 5/24/01 9:02 AM Page 728

729Index ✦ W

walk() function, 164

warnings, in Python/C API, 578–579

WAV files

reading/writing, 458

reversing (ReverseSound.py), 459–460

weak references, handling, 65, 115–117

weakref module

creating weak references, 116

getweakrefcount() function, 116

getweakrefs() function, 116

mapping() function, 117

proxy() function, 117

Web browsers

creating/managing, 264–269

viewing files in, 308

Web requests, sending/receiving, 279–280

Web Robot, 331–334

Web servers

cookies, 321–323

creating/managing, 264–269

documentation Web server, 501

Web sites

extension classes, 550

Python MegaWidgets, 389

Python downloads, 685–686

Python Enhancement Proposals (PEPs), 687

Python Imaging Library, 472, 480

tutorials, 17

wxPython for, 391

WebSearch.py, 280

weekday() function, 225

where command (pdb module), 498

where() function, with arrays, 602

while-statements, 79

in looping statements, 8

widgets (Tkinter module), 349

appearance options, 355

behavior options, 355

building GUI with, 348–349

color options, 354, 365

color scheme customizer , 377–381

creating drawing canvas, 373–374

cursor options, 385–387

designing/customizing, 387–388

dialog/message boxes, 361–365

event handlers/objects, 371–373

font options, 366

geometry managers, 349–350

grid method options, 351–352

graphics handling, 366–367

layout constraints, 406–407

listbox widget, 375–376

MegaWidgets Web site, 389

menu widgets, 360–361

packer methods, 350–351

scale widgets, 376

scrollbar widgets, 376–377

size options, 355

text widgets, 359–360

timers with, 367–369

user input, incorporating, 356–359

width fields, 42

_winreg functions, 668–669

win32all (Python Extensions for Windows)

accessing Windows registry, 664–669

data type dictionaries, 661–662

error messages (exceptions), 662

setting Internet Explorer home page, 666

text editor, 663–664

win32api functions, 668–669

WindowObject class, 415

Windows API wrappers, 661–664

Windows Internet Information Server (IIS), CGI

scripts for, 298–299

windows (curses module)

managing, 425–426

refreshing, 418

Windows registry, 661

access constants (table), 665

accessing, 664–669

killing keys in (KillKey.py), 667–668

Windows systems

accessing Python from, 3–4

epochs, 219

opening text mode files, 123–124

playing sound files, 454–455

proxy servers in, 276

PythonPath variable, 94

reading individual characters, 121

running Python programs, 6, 180

WingIDE, 690

winsound module, 454–455

WordCount.py, 12–13

working directory, viewing, 165

4807-7 Index.F 5/24/01 9:02 AM Page 729

730 Index ✦ W–X

wrapper() function (curses module), 416

write() method/function, 124

with ConfigParser object, 190

with file descriptors, 173

with mmap objects, 176

with sunaudiodev module, 455

ZipInfo object, 215

write_byte() method, 176

writeframes() method, with audio files, 457

writelines() method, 124

writepy() method, 216

writing to files, methods for, 124

wxAcceleratorTalbe class

wxApp object, 393

wxBitmap class, 413

wxBoxSizer classes, 403

wxButton classes, 399

wxcanvas.py, 409–411

wxCalendar class, 413

wxChoice class, 400

wxClipboard class, 413

wxDataFormat/DataObject classes, 413

wxDate/wxDateTime classes, 413

wxDialog class, 394, 399

wxDragImage class, 413

wxDropSource/DropTarget classes, 413

wxEditor class, 401

wxEvent class, 394

wxFloatBar clas, 398

wxFont/wxFontData classes, 413–414

wxFrame class, 394

wxGrid class, 395

wxGridSizer class, 405–406

wxHTMLWindow class, 395

wxIcon class, 413

wxImage/wxImageHandler classes, 413

wxMask class, 413

wxMDIChildFrame/ParentFrame classes, 396

wxMDIClientWindow class, 396

wxMenu class, 411

wxMVCTree class, 401

wxNewId() function, 394

wxNotebook clas, 398

wxPalette class, 413

wxPanel class, 399

wxPrintDialog/wxPageSetUpDialog classes, 414

wxPrintPreview class, 414

wxPyEditor class, 401

wxPython module, 391–392

built-in dialogs, 407–408

common controls, 399–400

cursors, drag-and-drop, 413

device context classes, 408–411

drawing in, 409–411

editor controls, 401

example program, 392–394

formatting options, 413–414

HTML handling options, 414

keyboard input options, 412

layout options, 401–407

menus, keyboard features, 411–412

mouse options, 412

printing options, 414

tree controls, 400–401

window options, 394–398

wxResourceParseFile object, 403

wxScrolledWindow object, 395

wxSplitterWindow class, 395

wxStatusBar class, 395

wxTimeSpan class, 413

wxToolbar class, 395

wxWindow class options, 394–398

X
XDR (eXternal Data Representation) format,

converting to/from, 208

xdrlib module, 208

xgtitle() method, 294

xhdr() method, , 294

XML format, 325

DTDs, 326

namespaces, 327

parsing, 334–343

processing functions, 327

saving XML files, 210

XML handlers, 343

xmllib module, 327

features, 341–342

parsing XML, example (BloodType.py), 342

XMLParser class, 341–343

XMLReader class, 336–337

xml.sax module, 334

4807-7 Index.F 5/24/01 9:02 AM Page 730

731Index ✦ X–Z

XOR (exclusive-or) operator (^), 23

xor() method, 114

xover() method, 294

xrange() function, 51

xrange objects, 77

xreadlines() function, 126

Y
yanking, 677

years, two-digit, enabling, 227

YIQ color system, 470

Z
zero arguments, unpacking in C/C++

conversions, 538

zeros, leading, in strings, 41

zfill() function, 140

zipfile module, 214–215

ZipInfo class, 215–216

zlip module

zones, time, handling, 226

4807-7 Index.F 5/24/01 9:02 AM Page 731

4807-7 Index.F 5/24/01 9:02 AM Page 732

		Python 2.1 Bible

		Front Matter

		Credits

		About the Authors

		Preface

		About This Book

		What You Need

		How the Book Is Organized

		Part I: The Python Language

		Part II: Files, Data Storage, and Operating System Services

		Part III: Networking and the Internet

		Part IV: User Interfaces and Multimedia

		Part V: Advanced Python Programming

		Part VI: Deploying Python Applications

		Part VII: Platform-Specific Support

		Appendixes

		Conventions Used in This Book

		What the Icons Mean

		Visit Us!

		Acknowledgments

		Contents at a Glance

		Contents

		The Python Language

		Python in an Hour

		Jumping In: Starting the Python Interpreter

		Experimenting with Variables and Expressions

		Pocket calculator

		Variables

		Defining a Function

		Running a Python Program

		Looping and Control

		Integer division

		Looping

		Branching with if-statements

		Breaking and continuing

		Lists and Tuples

		Tuples

		Slicing and dicing

		Dictionaries

		Reading and Writing Files

		Sample Program: Word Frequencies

		Loading and Using Modules

		Creating a Class

		Some quick object jargon

		Object orientation, Python style

		Keep off the grass ÛAccessing class members

		Example: the point class

		Recommended Reading

		Summary

		Identifiers, Variables, and Numeric Types

		Identifiers and Operators

		Reserved words

		Operators

		Numeric Types

		Integers

		Long integers

		Floating point numbers

		Imaginary numbers

		Manipulating numeric types

		Assigning Values to Variables

		Simple assignment statements

		Multiple assignment

		Augmented assignment

		Summary

		Expressions and Strings

		Expressions

		Comparing numeric types

		Compound expressions

		Complex expressions

		Operator precedence

		Strings

		String literals

		Manipulating strings

		Comparing strings

		Unicode string literals

		Converting Between Simple Types

		Converting to numerical types

		Converting to strings

		Summary

		Advanced Data Types

		Grouping Data with Sequences

		Creating lists

		Creating tuples

		Working with Sequences

		Joining and repeating with arithmetic operators

		Comparing and membership testing

		Accessing parts of sequences

		Iterating with for...in

		Using sequence utility functions

		Using Additional List Object Features

		Additional operations

		List object methods

		Mapping Information with Dictionaries

		Creating and adding to dictionaries

		Accessing and updating dictionary mappings

		Additional dictionary operations

		Understanding References

		Object identity

		Counting references

		Copying Complex Objects

		Shallow copies

		Deep copies

		Identifying Data Types

		Working with Array Objects

		Creating arrays

		Converting between types

		Array methods and operations

		Summary

		Control Flow

		Making Decisions with If- Statements

		Using For-Loops

		Anatomy of a for-loop

		Looping example: encoding strings

		Ranges and xranges

		Breaking, continuing, and else-clauses

		Changing horses in midstream

		Using While-Loops

		Throwing and Catching Exceptions

		Passing the buck: propagating exceptions

		Handling an exception

		More on exceptions

		Defining and raising exceptions

		Cleaning up with finally

		Debugging with Assertions

		Assertions in Python

		Toggling assertions

		Example: Game of Life

		Summary

		Program Organization

		Defining Functions

		Pass by object reference

		All about parameters

		Arbitrary arguments

		Apply: passing arguments from a tuple

		A bit of functional programming

		Grouping Code with Modules

		Laying out a module

		Taking inventory of a module

		Importing Modules

		What else happens upon import?

		Reimporting modules

		Exotic imports

		Locating Modules

		Python path

		Compiled files

		Understanding Scope Rules

		Is it local or global?

		Listing namespace contents

		Grouping Modules into Packages

		Compiling and Running Programmatically

		Summary

		Object- Oriented Python

		Overview of Object-Oriented Python

		Creating Classes and Instance Objects

		Creating instance objects

		More on accessing attributes

		Deriving New Classes from Other Classes

		Multiple inheritance

		Creating a custom list class

		Creating a custom string class

		Creating a custom dictionary class

		Hiding Private Data

		Identifying Class Membership

		Overloading Standard Behaviors

		Overloading basic functionality

		Overloading numeric operators

		Overloading sequence and dictionary operators

		Overloading bitwise operators

		Overloading type conversions

		Using Weak References

		Creating weak references

		Creating proxy objects

		Summary

		Input and Output

		Printing to the Screen

		Accessing Keyboard Input

		raw_input

		input

		Opening, Closing, and Positioning Files

		open

		File object information

		close

		File position

		Writing Files

		Reading Files

		Accessing Standard I/O

		Using Filelike Objects

		Summary

		Files, Data Storage, and Operating System Services

		Processing Strings and Regular Expressions

		Using String Objects

		String formatting methods

		String case-changing methods

		String format tests (the is-methods)

		String searching methods

		String manipulation methods

		Using the String Module

		Character categories

		Miscellaneous functions

		Defining Regular Expressions

		Regular expression syntax

		Backslashes and raw strings

		Character groups and other backslash magic

		Nongreedy matching

		Extensions

		Creating and Using Regular Expression Objects

		Using regular expression objects

		Applying regular expressions without compiling

		Using Match Objects

		group([groupid,...])

		groups([nomatch])

		groupdict([nomatch])

		start([groupid]), end([groupid]), span([groupid])

		re,string,pos,endpos,

		Treating Strings as Files

		Encoding Text

		Using Unicode strings

		Reading and writing non-ASCII strings

		Using the Unicode database

		Formatting Floating Point Numbers

		fix(number,precision)

		sci(number,precision)

		Summary

		Working with Files and Directories

		Retrieving File and Directory Information

		The piecemeal approach

		The I-want-it-all approach

		Building and Dissecting Paths

		Joining path parts

		Breaking paths into pieces

		Other path modifiers

		Listing Directories and Matching File Names

		Obtaining Environment and Argument Information

		Environment variables

		Current working directory

		Command-line parameters

		Example: Recursive Grep Utility

		Copying, Renaming, and Removing Paths

		Copying and linking

		Renaming

		Removing

		Creating Directories and Temporary Files

		Comparing Files and Directories

		Working with File Descriptors

		General file descriptor functions

		Pipes

		Other File Processing Techniques

		Randomly accessing lines in text files

		Using memory-mapped files

		Iterating over several files

		Summary

		Using Other Operating System Services

		Executing Shell Commands and Other Programs

		Spawning Child Processes

		popen functions

		spawn functions

		fork

		Process management and termination

		Handling Process Information

		Retrieving System Information

		Managing Configuration Files

		Understanding Error Names

		Handling Asynchronous Signals

		Summary

		Storing Data and Objects

		Data Storage Overview

		Text versus binary

		Compression

		Byte order (ÏEndiannessÓ)

		Object state

		Destination

		On the receiving end

		Loading and Saving Objects

		Pickling with pickle

		The marshal module

		Example: Moving Objects Across a Network

		Using Database-Like Storage

		Converting to and from C Structures

		Converting Data to Standard Formats

		SunÌs XDR format

		Other formats

		Compressing Data

		zlib

		gzip

		zipfile

		Summary

		Accessing Date and Time

		Telling Time in Python

		Ticks

		TimeTuple

		Stopwatch time

		Converting Between Time Formats

		Parsing and Printing Dates and Times

		Fancy formatting

		Parsing time

		Localization

		Accessing the Calendar

		Printing monthly and yearly calendars

		Calendar information

		Leap years

		Using Time Zones

		Allowing Two-Digit Years

		Summary

		Using Databases

		Using Disk-Based Dictionaries

		DBM Example: Tracking Telephone Numbers

		Advanced Disk-Based Dictionaries

		dbm

		gdbm

		dbhash

		Using BSD database objects

		Accessing Relational Databases

		Connection objects

		Transactions

		Cursor objects

		Example: ÏSounds-LikeÓ Queries

		Examining Relational Metadata

		Example: Creating Auditing Tables

		Advanced Features of the DB API

		Input and output sizes

		Reusable SQL statements

		Database library information

		Error hierarchy

		Summary

		Networking and the Internet

		Networking

		Networking Background

		Working with Addresses and Host Names

		Communicating with Low-Level Sockets

		Creating and destroying sockets

		Connecting sockets

		Sending and receiving data

		Using socket options

		Converting numbers

		Example: A Multicast Chat Application

		Using SocketServers

		The SocketServer family

		Request handlers

		Processing Web Browser Requests

		BaseHTTPRequestHandler

		SimpleHTTPRequestHandler

		CGIHTTPRequestHandler

		Example: form handler CGI script

		Handling Multiple Requests Without Threads

		asyncore

		Summary

		Speaking Internet Protocols

		PythonÌs Internet Protocol Support

		Retrieving Internet Resources

		Manipulating URLs

		Treating a URL as a file

		URLopeners

		Extended URL opening

		Sending HTTP Requests

		Building and using request objects

		Sending and Receiving E-Mail

		Accessing POP3 accounts

		Accessing SMTP accounts

		Accessing IMAP accounts

		Transferring Files via FTP

		Retrieving Resources Using Gopher

		Working with Newsgroups

		Using the Telnet Protocol

		Connecting

		Reading and writing

		Watching and waiting

		Other methods

		Writing CGI Scripts

		Setting up CGI scripts

		Accessing form fields

		Advanced CGI functions

		A note on debugging

		A note on security

		Summary

		Handling Internet Data

		Manipulating URLs

		Formatting Text

		Formatter interface

		Writer interface

		Other module resources

		Reading Web Spider Robot Files

		Viewing Files in a Web Browser

		Dissecting E-Mail Messages

		Parsing a message

		Retrieving header values

		Other members

		Address lists

		rfc822 utility functions

		MIME messages

		Working with MIME Encoding

		Encoding and decoding MIME messages

		Parsing multipart MIME messages

		Writing out multipart MIME messages

		Handling document types

		Encoding and Decoding Message Data

		Uuencode

		Base64

		Quoted-printable

		Working with UNIX Mailboxes

		Working with MH mailboxes

		Using Web Cookies

		Cookies

		Morsels

		Example: a cookie importer

		Summary

		Parsing XML and Other Markup Languages

		Markup Language Basics

		Tags are for metatext

		Tag rules

		Namespaces

		Processing XML

		Parsing HTML Files

		HTMLParser methods

		Handling tags

		Other parsing methods

		Handling unknown or bogus elements

		Example: Bold Only

		Example: Web Robot

		Parsing XML with SAX

		Using a ContentHandler

		Example: blood-type extractor

		Using parser (XMLReader) objects

		SAX exceptions

		Parsing XML with DOM

		DOM nodes

		Elements, attributes, and text

		The document node (DOM)

		Example: data import and export with DOM

		Parsing XML with xmllib

		Elements and attributes

		XML handlers

		Other XMLParser members

		Summary

		User Interfaces and Multimedia

		Tinkering with Tkinter

		Getting Your Feet Wet

		Creating a GUI

		Building an interface with widgets

		Widget options

		Laying Out Widgets

		Packer options

		Grid options

		Example: Breakfast Buttons

		Using Common Options

		Color options

		Size options

		Appearance options

		Behavior options

		Gathering User Input

		Example: Printing Fancy Text

		Using Text Widgets

		Building Menus

		Using Tkinter Dialogs

		File dialogs

		Example: Text Editor

		Handling Colors and Fonts

		Colors

		Fonts

		Drawing Graphics

		The canvas widget

		Manipulating canvas items

		Using Timers

		Example: A Bouncing Picture

		Summary

		Using Advanced Tkinter Widgets

		Handling Events

		Creating event handlers

		Binding mouse events

		Binding keyboard events

		Event objects

		Example: A Drawing Canvas

		Advanced Widgets

		Listbox

		Scale

		Scrollbar

		Example: Color Scheme Customizer

		Creating Dialogs

		Supporting Drag-and-Drop Operations

		Using Cursors

		Designing New Widgets

		Further Tkinter Adventures

		Additional widgets

		Learning more

		Summary

		Building User Interfaces with wxPython

		Introducing wxPython

		Creating Simple wxPython Programs

		Choosing Different Window Types

		Managed windows

		Nonmanaged windows

		Using wxPython Controls

		Common controls

		Tree controls

		Editor controls

		Controlling Layout

		Specifying coordinates

		Sizers

		Layout constraints

		Layout algorithms

		Using Built-in Dialogs

		Drawing with Device Contexts

		Adding Menus and Keyboard Shortcuts

		Accessing Mouse and Keyboard Input

		Other wxPython Features

		Clipboard, drag and drop, and cursors

		Graphics

		Date and time

		Fonts

		HTML

		Printing

		Other

		Summary

		Using Curses

		A Curses Overview

		Starting Up and Shutting Down

		Displaying and Erasing Text

		Reading from the window (screen-scraping)

		Erasing

		Refreshing

		Boxes and lines

		The window background

		Example: masking a box

		Moving the Cursor

		Getting User Input

		Reading keys

		Other keyboard-related functions

		Fancy characters

		Reading mouse input

		Example: yes, no, or maybe

		Managing Windows

		Pads

		Stacking windows

		Editing Text

		Using Color

		Numbering

		Setting colors

		Tweaking the colors

		Example: A Simple Maze Game

		Summary

		Building Simple Command Interpreters

		Beginning with the End in Mind

		Understanding the Lepto Language

		Creating a Lepto Lexical Analyzer

		The shlex module

		Putting shlex to work

		Adding Interactive-Mode Features

		Using the cmd module

		Subclassing cmd.Cmd

		Executing Lepto Commands

		Summary

		Playing Sound

		Sound File Basics

		Playing Sounds

		Playing sound on Windows

		Playing and recording sound on SunOS

		Examining Audio Files

		Reading and Writing Audio Files

		Reading and writing AIFF files with aifc

		Reading and writing AU files with sunau

		Reading and writing WAV files with wave

		Example: Reversing an audio file

		Reading IFF chunked data

		Handling Raw Audio Data

		Examining a fragment

		Searching and matching

		Translating between storage formats

		Manipulating fragments

		Summary

		Advanced Python Programming

		Processing Images

		Image Basics

		Identifying Image File Types

		Converting Between Color Systems

		Color systems

		Converting from one system to another

		Handling Raw Image Data

		Using the Python Imaging Library

		Retrieving image information

		Copying and converting images

		Using PIL with Tkinter

		Cropping and resizing images

		Modifying pixel data

		Other PIL features

		Summary

		Multithreading

		Understanding Threads

		Spawning, Tracking, and Killing Threads

		Creating threads with the thread module

		Starting and stopping threads with the threading module

		Thread status and information under threading

		Finding threads under threading

		Waiting for a thread to finish

		Avoiding Concurrency Issues

		Locking with thread

		Locking with threading

		Preventing Deadlock

		Example: Downloading from Multiple URLs

		Porting Threaded Code

		Weaving Threads Together with Queues

		Technical Note: How Simultaneous Is Simultaneous?

		For More Information

		Summary

		Debugging, Profiling, and Optimization

		Debugging Python Code

		Starting and stopping the debugger

		Examining the state of things

		Setting breakpoints

		Running

		Aliases

		Debugging tips

		Working with docstrings

		Automating Tests

		Synching docstrings with code

		Unit testing

		Finding Bottlenecks

		Profiling code

		Using Profile objects

		Calibrating the profiler

		Customizing statistics

		Common Optimization Tricks

		Sorting

		Looping

		I/O

		Strings

		Threads

		Taking out the Trash Ûthe Garbage Collector

		Reference counts and Python code

		Reference counts and C/C++ code

		Summary

		Security and Encryption

		Checking Passwords

		Running in a Restricted Environment

		The rexec sandbox

		Using a class fortress

		Creating Message Fingerprints

		MD5

		SHA

		Other uses

		Using 1940s-Era Encryption

		Summary

		Writing Extension Modules

		Extending and Embedding Overview

		Writing a Simple Extension Module

		Building and Linking

		Converting Python Data to C

		Unpacking normal arguments

		Using special format characters

		Unpacking keyword arguments

		Unpacking zero arguments

		Converting C Data to Python

		Creating simple Python objects

		Creating complex Python objects

		Embedding the Interpreter

		A simple example

		Shutting down

		Other setup functions

		System information functions

		Running Python Code from C

		Using Extension Tools

		SWIG

		CXX

		Extension classes

		Summary

		Embedding the Python Interpreter

		Tracking Reference Counts

		Types of reference ownership

		Reference conventions

		Common pitfalls

		Using the Abstract and Concrete Object Layers

		Object layers

		Working with generic objects

		Working with Number Objects

		Any numerical type

		Integers

		Longs

		Floating-point numbers

		Complex numbers

		Working with Sequence Objects

		Any sequence type

		Strings

		Lists

		Tuples

		Buffers

		Unicode strings

		Working with Mapping Objects

		Functions for any mapping type

		Dictionaries

		Using Other Object Types

		Type

		None

		File

		Module

		CObjects

		Creating Threads and Sub-Interpreters

		Threads

		Sub-interpreters

		Handling Errors and Exceptions

		Checking for errors

		Signaling error conditions

		Creating custom exceptions

		Raising warnings

		Managing Memory

		Summary

		Number Crunching

		Using Math Routines

		Rounding and fractional parts

		General math routines

		Logarithms and exponentiation

		Trigonometric functions

		Computing with Complex Numbers

		Generating Random Numbers

		Random numbers

		Example: shuffling a deck

		Random distributions

		Example: plotting distributions using Monte Carlo sampling

		Using Arbitrary-Precision Numbers

		Summary

		Using NumPy

		Introducing Numeric Python

		Installing NumPy

		Some quick definitions

		Meet the array

		Accessing and Slicing Arrays

		Contiguous arrays

		Converting arrays to lists and strings

		Calling Universal Functions

		Ufunc destinations

		Example: editing an audio stream

		Repeating ufuncs

		Creating Arrays

		Array creation functions

		Seeding arrays with functions

		Using Element Types

		Reshaping and Resizing Arrays

		Using Other Array Functions

		sort(array,[axis=-1])

		where(condition,X,Y)

		swapaxes(array,axis1,axis2)

		Matrix operations

		Array Example: Analyzing Price Trends

		Summary

		Parsing and Interpreting Python Code

		Examining Tracebacks

		Printing a traceback Ûprint_exc and friends

		Extracting and formatting exceptions

		Example: reporting exceptions in a GUI

		Eating arbitrary exceptions is bad for you

		Introspection

		Review: basic introspection

		Browsing classes

		Browsing function information

		Checking Indentation

		Tokenizing Python Code

		Example: Syntax-Highlighting Printer

		Inspecting Python Parse Trees

		Creating an AST

		ASTs and sequences

		Using ASTs

		Low-Level Object Creation

		Disassembling Python Code

		Summary

		Deploying Python Applications

		Creating Worldwide Applications

		Internationalization and Localization

		Preparing Applications for Multiple Languages

		An NLS example

		What it all means

		Formatting Locale-Specific Output

		Changing the locale

		Locale-specific formatting

		Properties of locales

		Summary

		Customizing Import Behavior

		Understanding Module Importing

		Finding and Loading Modules with imp

		Importing Encrypted Modules

		Retrieving Modules from a Remote Source

		Subclassing Importer

		Creating the remote Importer

		Testing the remote Importer

		Summary

		Distributing Modules and Applications

		Understanding distutils

		Creating a simple distribution

		Installing the simple distribution

		Other distutils Features

		Distributing packages

		Including other files

		Customizing setup

		Distributing Extension Modules

		Creating Source and Binary Distributions

		Source distributions

		Binary distributions

		Installers

		Building Standalone Executables

		py2exe

		Freeze

		Other tools

		Summary

		Platform-Specific Support

		Windows

		Using win32all

		Data types

		Error handling

		Finding what you need

		Example: Using Some Windows APIs

		Accessing the Windows Registry

		Accessing the registry with win32all

		Example: setting the Internet Explorer home page

		Creating, deleting, and navigating keys

		Example: recursive deletion of a key

		Other registry functions

		Accessing the registry with _winreg

		Using msvcrt Goodies

		Console I/O

		Other functions

		Summary

		UNIX-Compatible Modules

		Checking UNIX Passwords and Groups

		Accessing the System Logger

		Calling Shared Library Functions

		Providing Identifier and Keyword Completion

		Retrieving File System and Resource Information

		File system information

		Resource usage

		Resource limits

		Controlling File Descriptors

		Handling Terminals and Pseudo- Terminals

		Interfacing with SunÌs NIS ÏYellow PagesÓ

		Summary

		Appendixes

		Online Resources

		Visiting This BookÌs Web Site

		Installing Software

		Finding Answers to Questions

		Subscribing to Newsgroups and Mailing Lists

		Understanding PEPs: Python Enhancement Proposals

		Python Development Environments

		Overview of Python IDEs

		Configuring Editors for Python Source

		Using Python mode

		Pythonizing other editors

		Editing with IDLE

		Exploring the IDLE Python shell

		Navigating source code

		Block commands

		Searching and replacing

		More IDLE shortcuts

		Debugging with IDLE

		Editing with PythonWin

		Editing source in PythonWin

		Debugging with PythonWin

		Index

