
Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Fredrik Lundh

An Introduction to Tkinter
by Fredrik Lundh

Copyright © 1999 by Fredrik Lundh

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

i

Table of Contents
Preface ..i

I. Introducing Tkinter ..2

1. What's Tkinter?..1
2. Hello, Tkinter ... 2

Running the Example ... 2
Details .. 2

3. Hello, Again .. 4
Running the Example ... 4
Details .. 5
More on widget references ... 6
More on widget names.. 6

4. Tkinter Classes ... 8
Widget classes ...8
Mixins .. 9

Implementation mixins ... 9
Geometry mixins .. 9
Widget configuration management .. 9

5. Widget Configuration..11
Configuration Interface ...11
Backwards Compatibility...12

6. Widget Styling ...13
Colors ..13

Color Names ..13
RGB Specifications..13

Fonts .. 14
Font descriptors ... 14
Font names..15
System fonts ... 16
X Font Descriptors... 16

Text Formatting ...17
Borders ...17

Relief ..17
Focus Highlights .. 18

Cursors... 18
7. Events and Bindings... 19

Events .. 19
The Event Object...21
Instance and Class Bindings...21
Protocols... 23
Other Protocols .. 24

8. Application Windows...25
Base Windows ... 25
Menus .. 25

ii

Toolbars ...26
Status Bars... 27

9. Dialog Windows ... 29
Grid Layouts .. 34
Validating Data.. 36

II. Tkinter Reference.. 37

10. The BitmapImage Class ...38
When to use the BitmapImage Class ...38
Patterns..38
Methods ...38
Options ..38

11. The Button Widget..40
When to use the Button Widget ...40
Patterns..40
Methods ... 41
Helpers... 41
Options .. 41

12. The Canvas Widget ...44
When to use the Canvas Widget...44
Concepts ..44

Items ...44
Coordinate Systems ... 45
Item Specifiers ... 45
Printing...46

Patterns..46
Methods ...46

Printing...48
Searching for Items..49
Manipulating Tags ...50
Special Methods for Text Items..51
Scrolling...51

Options .. 52
13. The Canvas Arc Item ..54

Methods ... 54
Options .. 55

14. The Canvas Bitmap Item.. 57
Bitmaps.. 57
Methods ...58
Options .. 58

15. The Canvas Image Item.. 59
Methods ... 59

coords ... 59
itemconfigure ... 59

Options .. 59
16. The Canvas Line Item... 61

Methods ... 61
Options .. 61

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

iii

17. The Canvas Oval Item...63
Methods ...63
Options .. 63

18. The Canvas Polygon Item ..64
Methods ...64
Options ..64

19. The Canvas Rectangle Item..66
Methods ...66
Options ..66

20. The Canvas Text Item.. 67
Methods ... 67
Options .. 67

21. The Canvas Window Item ..69
Methods ...69
Options ..69

22. The Checkbutton Widget ... 70
When to use the Checkbutton Widget ... 70
Patterns.. 70
Methods ..71
Options ...71

23. The DoubleVar Class.. 75
When to use the DoubleVar Class .. 75
Patterns.. 75
Methods ... 75

24. The Entry Widget ... 76
When to use the Entry Widget ... 76
Concepts .. 76

Indexes.. 76
Patterns.. 76
Methods ... 77

Selection Methods.. 77
Scrolling Methods .. 78

Options .. 78
25. The Font Class ..80

Patterns..80
Methods ...80
Functions ...80
Options .. 81

26. The Frame Widget ...82
When to use the Frame Widget ..82
Patterns..82
Methods ...82
Options ..82

27. The Grid Geometry Manager...84
When to use the Grid Manager ..84
Patterns..84
Methods ...86

Widget Methods ...86

iv

Manager Methods .. 87
Options .. 87

28. The IntVar Class...89
When to use the IntVar Class ...89
Patterns..89
Methods ...89

29. The Label Widget ...90
When to use the Label Widget..90
Patterns..90
Methods ... 91
Options .. 91

30. The Listbox Widget..93
When to use the Listbox Widget .. 93
Patterns.. 93
Methods ...96

Selection Methods.. 97
Scrolling Methods .. 97

Options ..98
31. The Menu Widget ... 100

When to use the Menu Widget ... 100
Patterns.. 100
Methods ... 102

Displaying Menus .. 104
Options .. 104

32. The Menubutton Widget ... 107
When to use the Menubutton Widget.. 107
Patterns.. 107
Methods ... 107
Options .. 107

33. The Message Widget .. 108
When to use the Message Widget... 108
Patterns.. 108
Methods ... 108
Options ..108

34. The Pack Geometry Manager ...110
When to use the Pack Manager ...110
Patterns...110
Methods ..110

Widget Methods ..110
Manager Methods ...110

Options ... 111
35. The PhotoImage Class...112

When to use the PhotoImage Class...112
Patterns...112
Methods ..112
Options ...113

36. The Place Geometry Manager ..115
When to use the Place Manager .. 115

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

v

Patterns... 115
Methods ..116
Options ... 117

37. The Radiobutton Widget...118
When to use the Radiobutton Widget...118
Patterns...118
Methods ..119
Options .. 120

38. The Scale Widget.. 123
When to use the Scale Widget .. 123
Patterns.. 123
Methods ... 123
Options .. 123

39. The Scrollbar Widget ..125
When to use the Scrollbar Widget...125
Patterns...125
Methods ... 126
Options .. 126

40. The StringVar Class ... 129
When to use the StringVar Class .. 129
Patterns.. 129
Methods ... 129

41. The Text Widget ... 130
When to use the Text Widget ... 130
Concepts .. 130

Indexes.. 130
Lines and columns ...131
Line endings ...131
Named indexes...131
Coordinates ... 132
Embedded objects... 132
Expressions ... 132

Marks .. 132
Tags... 133

Patterns...135
Methods ..137

Methods for Marks... 138
Methods for Embedded Windows... 139
Methods for Embedded Images .. 140

image_create ... 140
index ...141
delete ..141
image_cget ...141
image_config..141
image_names ...141

Methods for Tags ..141
tag_add.. 142
tag_remove.. 142

vi

tag_delete .. 142
tag_config.. 142
tag_cget ... 142
tag_bind .. 142
tag_unbind .. 142
tag_names ... 142
tag_nextrange ... 143
tag_prevrange ... 143
tag_lower... 143
tag_raise .. 143
tag_ranges ... 143

Methods for Selections .. 143
Methods for Rendering.. 144

bbox ... 144
dlineinfo... 144

Methods for Printing.. 144
Methods for Searching... 144

search... 144
Methods for Scrolling .. 145

scan_mark, scan_dragto .. 145
xview, yview... 145
xview, yview... 145
xview, yview... 145
yview_pickplace .. 146

Options .. 146
42. The Toplevel Widget .. 149

When to use the Toplevel Widget... 149
Methods ... 149
Options .. 149

43. Basic Widget Methods .. 151
Configuration ... 151

config ... 151
config ... 151
cget...151
keys ..151

Event processing ..152
mainloop..152
quit ...152
update ..152
update_idletasks ...152
focus_set..152
focus_displayof ...152
focus_force ..152
focus_get ...152
focus_lastfor..152
tk_focusNext ...153
tk_focusPrev..153
grab_current ...153

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

vii

grab_release ..153
grab_set ...153
grab_set_global ..153
grab_status..153
wait_variable...153
wait_visibility..153
wait_window.. 154

Event callbacks .. 154
bind ... 154
unbind... 154
bind_all .. 154
unbind_all .. 154
bind_class... 154
unbind_class .. 154
bindtags ...155
bindtags ...155

Alarm handlers and other non-event callbacks..155
after..155
after_cancel ...155
after..155
after_idle ...155

Window management ... 156
lift .. 156
lower ... 156

Window Related Information... 156
winfo_cells ... 156
winfo_children... 156
winfo_class... 156
winfo_colormapfull ... 156
winfo_containing ... 156
winfo_depth ..157
winfo_exists ..157
winfo_pixels ..157
winfo_geometry ..157
winfo_width, winfo_height..157
winfo_id...157
winfo_ismapped ...157
winfo_manager ...157
winfo_name ... 158
winfo_parent.. 158
winfo_pathname.. 158
winfo_reqheight, winfo_reqwidth.. 158
winfo_rootx, winfo_rooty ... 158
winfo_screen.. 158
winfo_screencells... 158
winfo_screendepth .. 158
winfo_screenwidth, winfo_screenheight ... 159
winfo_screenmmwidth, winfo_screenmmheight .. 159

viii

winfo_screenvisual .. 159
winfo_toplevel.. 159
winfo_visual ... 159
winfo_x, winfo_y ... 159

Miscellaneous .. 159
bell... 159
clipboard_append.. 159
clipboard_clear .. 159
selection_clear ... 160
selection_get .. 160
selection_handle .. 160
selection_own .. 160
selection_own_get... 160
tk_focusFollowsMouse.. 160
tk_strictMotif ... 160
winfo_rgb ... 160

Tkinter Interface Methods.. 160
getboolean .. 160
getdouble .. 160
getint ..161
register ...161
winfo_atom ...161
winfo_atomname..161

Option Database...161
option_add ..161
option_clear ..161
option_get ...161
option_readfile..161

44. Toplevel Window Methods.. 162
Visibility Methods ... 162

deiconify ... 162
iconify ... 162
withdraw... 162
state... 162

Style Methods.. 162
title .. 162
group... 162
transient.. 163
overrideredirect.. 163

Window Geometry Methods... 163
geometry ... 163
geometry ... 163
aspect .. 163
maxsize ... 163
minsize.. 163
resizable .. 163

Icon Methods... 164
iconbitmap.. 164

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

ix

iconmask... 164
iconname .. 164
iconposition.. 164
iconwindow .. 164

Property Access Methods ... 164
client ... 164
colormapwindows .. 164
command.. 164
focusmodel ... 165
frame... 165
positionfrom... 165
protocol... 165
sizefrom .. 165

Index .. 166

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

i

Preface
This is yet another snapshot of my continously growing Tkinter documentation.

If you like this book, you might be interested in hearing that O'Reilly & Associates
(http://www.ora.com) will be publishing a Tkinter book (tentatively called Programming
Tkinter in Python) in a not too distant future. This book features lots of brand new material
written by yours truly, giving you a more thorough description of Tkinter (and many other
things) than you can find anywhere else.

</F>

(last update: Oct 05, 1999)

I. Introducing Tkinter
The first few chapters in this book provide a brief introduction to Tkinter. After reading this,
you should have a fair grasp of the Tkinter fundamentals.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

1

Chapter 1. What's Tkinter?
The Tkinter module (“Tk interface”) is the standard Python interface to the Tk GUI toolkit
from Scriptics (http://www.scriptics.com) (formerly developed by Sun Labs).

Both Tk and Tkinter are available on most Unix platforms, as well as on Windows and
Macintosh systems. Starting with the 8.0 release, Tk offers native look and feel on all
platforms.

Tkinter consists of a number of modules. The Tk interface is located in a binary module named
_tkinter (this was tkinter in earlier versions). This module contains the low-level interface to
Tk, and should never be used directly by application programmers. It is usually a shared library
(or DLL), but might in some cases be statically linked with the Python interpreter.

In addition to the Tk interface module, Tkinter includes a number of Python modules. The two
most important modules are the Tkinter module itself, and a module called Tkconstants. The
former automatically imports the latter, so to use Tkinter, all you need to do is to import one
module:

import Tkinter

Or, more often:

from Tkinter import *

2

Chapter 2. Hello, Tkinter
But enough talk. Time to look at some code instead.

As you know, every serious tutorial should start with a “hello world”-type example. In this
overview, we'll show you not only one such example, but two.

First, let's look at a pretty minimal version:

Example 2-1. Our First Tkinter Program

File: hello1.py

from Tkinter import *

root = Tk()

w = Label(root, text="Hello, world!")
w.pack()

root.mainloop()

Running the Example
To run the program, run the script as usual:

$ python hello1.py

The following window appears.

Figure 2-1. Running the program

To stop the program, just close the window.

Details
We start by importing the Tkinter module. It contains all classes, functions and other things
needed to work with the Tk toolkit. In most cases, you can simply import everything from
Tkinter into your module's namespace:

from Tkinter import *

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 2. Hello, Tkinter

3

To initialize Tkinter, we have to create a Tk root widget. This is an ordinary window, with a title
bar and other decoration provided by your window manager. You should only create one root
widget for each program, and it must be created before any other widgets.

root = Tk()

Next, we create a Label widget as a child to the root window:

w = Label(root, text="Hello, world!")
w.pack()

A Label widget can display either text or an icon or other image. In this case, we use the text
option to specify which text to display. Next, we call the pack method on this widget, which
tells it to size itself to fit the given text, and make itself visible. But before this happens, we
have to enter the Tkinter event loop:

root.mainloop()

The program will stay in the event loop until we close the window. The event loop doesn't only
handle events from the user (such as mouse clicks and key presses) or the windowing system
(such as redraw events and window configuration messages), it also handle operations queued
by Tkinter itself. Among these operations are geometry management (queued by the pack
method) and display updates. This also means that the application window will not appear
before you enter the main loop.

4

Chapter 3. Hello, Again
When you write larger programs, it is usually a good idea to wrap your code up in one or more
classes. The following example is adapted from the “hello world” program in Matt Conway's A
Tkinter Life Preserver (http://www.python.org/docs/tkinter).

Example 3-1. Our Second Tkinter Program

File: hello2.py

from Tkinter import *

class App:

def __init__(self, master):

frame = Frame(master)
frame.pack()

self.button = Button(frame, text="QUIT", fg="red", command=frame.quit)
self.button.pack(side=LEFT)

self.hi_there = Button(frame, text="Hello", command=self.say_hi)
self.hi_there.pack(side=LEFT)

def say_hi(self):
print "hi there, everyone!"

root = Tk()

app = App(root)

root.mainloop()

Running the Example
When you run this example, the following window appears.

Figure 3-1. Running the sample program (using Tk 8.0 on a Windows 95 box)

If you click the right button, the text “hi there, everyone!” is printed to the console. If you click
the left button, the program stops.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 3. Hello, Again

5

Details
This sample application is written as a class. The constructor (the __init__ method) is called
with a parent widget (the master), to which it adds a number of child widgets. The constructor
starts by creating a Frame widget. A frame is a simple container, and is in this case only used to
hold the other two widgets.

class App:
def __init__(self, master):

frame = Frame(master)
frame.pack()

The frame instance is stored in a local variable called frame. After creating the widget, we
immediately call the pack method to make the frame visible.

We then create two Button widgets, as children to the frame.

self.button = Button(frame, text="QUIT", fg="red", command=frame.quit)
self.button.pack(side=LEFT)

self.hi_there = Button(frame, text="Hello", command=self.say_hi)
self.hi_there.pack(side=LEFT)

This time, we pass a number of options to the constructor, as keyword arguments. The first
button is labelled “QUIT”, and is made red (fg is short for foreground). The second is labelled
“Hello”. Both buttons also take a command option. This option specifies a function, or (as in
this case) a bound method, which will be called when the button is clicked.

The button instances are stored in instance attributes. They are both packed, but this time with
the side=LEFT argument. This means that they will be placed as far left as possible in the
frame; the first button is placed at the frame's left edge, and the second is placed just to the
right of the first one (at the left edge of the remaining space in the frame, that is). By default,
widgets are packed relative to their parent (which is master for the frame widget, and the
frame itself for the buttons). If the side is not given, it defaults to TOP.

The “hello” button callback is given next. It simply prints a message to the console everytime
the button is pressed:

def say_hi(self):
print "hi there, everyone!"

Finally, we provide some script level code that creates a Tk root widget, and one instance of the
App class using the root widget as its parent:

root = Tk()

app = App(root)

root.mainloop()

Chapter 3. Hello, Again

6

The last call is to the mainloop method on the root widget. It enters the Tk event loop, in which
the application will stay until the quit method is called (just click the QUIT button), or the
window is closed.

More on widget references
In the second example, the frame widget is stored in a local variable named frame, while the
button widgets are stored in two instance attributes. Isn't there a serious problem hidden in
here: what happens when the __init__ function returns and the frame variable goes out of
scope?

Just relax; there's actually no need to keep a reference to the widget instance. Tkinter
automatically maintains a widget tree (via the master and children attributes of each widget
instance), so a widget won't disappear when the application's last reference goes away; it must
be explicitly destroyed before this happens (using the destroy method). But if you wish to do
something with the widget after it has been created, you better keep a reference to the widget
instance yourself.

Note that if you don't need to keep a reference to a widget, it might be tempting to create and
pack it on a single line:

Button(frame, text="Hello", command=self.hello).pack(side=LEFT)

Don't store the result from this operation; you'll only get disappointed when you try to use that
value (the pack method returns None). To be on the safe side, it might be better to always
separate construction from packing:

w = Button(frame, text="Hello", command=self.hello)
w.pack(side=LEFT)

More on widget names
Another source of confusion, especially for those who have some experience of programming
Tk using Tcl, is Tkinter's notion of the widget name. In Tcl, you must explicitly name each
widget. For example, the following Tcl command creates a Button named “ok”, as a child to a
widget named “dialog” (which in turn is a child of the root window, “.”).

button .dialog.ok

The corresponding Tkinter call would look like:

ok = Button(dialog)

However, in the Tkinter case, ok and dialog are references to widget instances, not the actual
names of the widgets. Since Tk itself needs the names, Tkinter automatically assigns a unique
name to each new widget. In the above case, the dialog name is probably something like
“.1428748,” and the button could be named “.1428748.1432920”. If you wish to get the full
name of a Tkinter widget, simply use the str function on the widget instance:

>>> print str(ok)
.1428748.1432920

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 3. Hello, Again

7

(if you print something, Python automatically uses the str function to find out what to print.
But obviously, an operation like “name = ok” won't do the that, so make sure always to
explicitly use str if you need the name).

If you really need to specify the name of a widget, you can use the name option when you
create the widget. One (and most likely the only) reason for this is if you need to interface with
code written in Tcl.

In the following example, the resulting widget is named “.dialog.ok” (or, if you forgot to name
the dialog, something like “.1428748.ok”):

ok = Button(dialog, name="ok")

To avoid conflicts with Tkinter's naming scheme, don't use names which only contain digits.
Also note that name is a “creation only” option; you cannot change the name once you've
created the widget.

8

Chapter 4. Tkinter Classes

Widget classes
Tkinter supports 15 core widgets:

Table 4-1. Tkinter Widget Classes

Widget Description

Button A simple button, used to execute a command or other operation.

Canvas Structured graphics. This widget can be used to draw graphs and plots,
create graphics editors, and to implement custom widgets.

Checkbutton Represents a variable that can have two distinct values. Clicking the
button toggles between the values.

Entry A text entry field.

Frame A container widget. The frame can have a border and a background, and
is used to group other widgets when creating an application or dialog
layout.

Label Displays a text or an image.

Listbox Displays a list of alternatives. The listbox can be configured to get
radiobutton or checklist behavior.

Menu A menu pane. Used to implement pulldown and popup menus.

Menubutton A menubutton. Used to implement pulldown menus.

Message Display a text. Similar to the label widget, but can automatically wrap text
to a given width or aspect ratio.

Radiobutton Represents one value of a variable that can have one of many values.
Clicking the button sets the variable to that value, and clears all other
radiobuttons associated with the same variable.

Scale Allows you to set a numerical value by dragging a “slider”.

Scrollbar Standard scrollbars for use with canvas, entry, listbox, and text widgets.

Text Formatted text display. Allows you to display and edit text with various
styles and attributes. Also supports embedded images and windows.

Toplevel A container widget displayed as a separate, top-level window.

Also note that there's no widget class hierarchy in Tkinter; all widget classes are siblings in the
inheritance tree.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 4. Tkinter Classes

9

All these widgets provide the Misc and geometry management methods, the configuration
management methods, and additional methods defined by the widget itself. In addition, the
Toplevel class also provides the window manager interface. This means that a typical widget
class provides some 150 methods.

Mixins
The Tkinter module provides classes corresponding to the various widget types in Tk, and a
number of mixin and other helper classes (a mixin is a class designed to be combined with
other classes using multiple inheritance). When you use Tkinter, you should never access the
mixin classes directly.

Implementation mixins
The Misc class is used as a mixin by the root window and widget classes. It provides a large
number of Tk and window related services, which are thus available for all Tkinter core
widgets. This is done by delegation; the widget simply forwards the request to the appropriate
internal object.

The Wm class is used as a mixin by the root window and Toplevel widget classes. It provides
window manager services, also by delegation.

Using delegation like this simplifies your application code: once you have a widget, you can
access all parts of Tkinter using methods on the widget instance.

Geometry mixins

The Grid, Pack, and Place classes are used as mixins by the widget classes. They provide access
to the various geometry managers, also via delegation.

Table 4-2. Geometry Mixins

Manager Description

Grid The grid geometry manager allows you to create table-like layouts, by
organizing the widgets in a 2-dimensional grid. To use this geometry
manager, use the grid method.

Pack The pack geometry manager lets you create a layout by “packing” the
widgets into a parent widget, by treating them as rectangular blocks
placed in a frame. To use this geometry manager for a widget, use the
pack method on that widget to set things up.

Place The place geometry manager lets you explicitly place a widget in a given
position. To use this geometry manager, use the place method.

Widget configuration management
The Widget class mixes the Misc class with the geometry mixins, and adds configuration
management through the cget and configure methods, as well as through a partial dictionary

Chapter 4. Tkinter Classes

10

interface. The latter can be used to set and query individual options, and is explained in further
detail in the next chapter.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

11

Chapter 5. Widget Configuration
To control the appearance of a widget, you usually use options rather than method calls.
Typical options include text and color, size, command callbacks, etc. To deal with options, all
core widgets implement the same configuration interface:

Configuration Interface
widgetclass(master, option=value, ...) ⇒ widget

Create an instance of this widget class, as a child to the given master, and using the given
options. All options have default values, so in the simplest case, you only have to specify
the master. You can even leave that out if you really want; Tkinter then uses the most
recently created root window as master. Note that the name option can only be set when
the widget is created.

cget(option) ⇒ string

Return the current value of an option. Both the option name, and the returned value, are
strings. To get the name option, use str(widget) instead.

configure(option=value, ...)
config(option=value, ...)

Set one or more options (given as keyword arguments).

Note that some options have names that are reserved words in Python (class, from, ...). To use
these as keyword arguments, simply append an underscore to the option name (class_, from_,
...). Note that you cannot set the name option using this method; it can only be set when the
widget is created.

For convenience, the widgets also implement a partial dictionary interface. The __setitem__
method maps to configure, while __getitem__ maps to cget. As a result, you can use the
following syntax to set and query options:

value = widget[option]
widget[option] = value

Note that each assignment results in one call to Tk. If you wish to change multiple options, it is
usually a better idea to change them with a single call to config or configure (personally, I
prefer to always change options in that fashion).

The following dictionary method also works for widgets:

keys() ⇒ list

Return a list of all options that can be set for this widget. The name option is not included
in this list (it cannot be queried or modified through the dictionary interface anyway, so
this doesn't really matter).

Chapter 5. Widget Configuration

12

Backwards Compatibility
Keyword arguments were introduced in Python 1.3. Before that, options were passed to the
widget constructors and configure methods using ordinary Python dictionaries. The source
code could then look something like this:

self.button = Button(frame, {"text": "QUIT", "fg": "red", "command": frame.quit})
self.button.pack({"side": LEFT})

The keyword argument syntax is of course much more elegant, and less error prone. However,
for compatibility with existing code, Tkinter still supports the older syntax. You shouldn't use
this syntax in new programs, even if it might be tempting in some cases. For example, if you
create a custom widget which needs to pass configuration options along to its parent class, you
may come up with something like:

def __init__(self, master, **kw):
Canvas.__init__(self, master, kw) # kw is a dictionary

This works just fine with the current version of Tkinter, but it may not work with future
versions. A more general approach is to use the apply function:

def __init__(self, master, **kw):
apply(Canvas.__init__, (self, master), kw)

The apply function takes a function (an unbound method, in this case), a tuple with arguments
(which must include self since we're calling an unbound method), and optionally, a dictionary
which provides the keyword arguments.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

13

Chapter 6. Widget Styling
All Tkinter standard widgets provide a basic set of “styling” options, which allow you to modify
things like colors, fonts, and other visual aspects of each widget.

Colors
Most widgets allow you to specify the widget and text colors, using the background and
foreground options. To specify a color, you can either use a color name, or explicitly specify the
red, green, and blue (RGB) color components.

Color Names
Tkinter includes a color database which maps color names to the corresponding RGB values.
This database includes common names like Red, Green, Blue, Yellow, and LightBlue, but also
more exotic things like Moccasin, PeachPuff, etc.

On an X window system, the color names are defined by the X server. You might be able to
locate a file named xrgb.txt which contains a list of color names and the corresponding RGB
values. On Windows and Macintosh systems, the color name table is built into Tk.

Under Windows, you can also use the Windows system colors (these can be changed by the
user via the control panel):

SystemActiveBorder, SystemActiveCaption, SystemAppWorkspace, SystemBackground,
SystemButtonFace, SystemButtonHighlight, SystemButtonShadow, SystemButtonText,
SystemCaptionText, SystemDisabledText, SystemHighlight, SystemHighlightText,
SystemInactiveBorder, SystemInactiveCaption, SystemInactiveCaptionText, SystemMenu,
SystemMenuText, SystemScrollbar, SystemWindow, SystemWindowFrame, SystemWindowText.

On the Macintosh, the following system colors are available:

SystemButtonFace, SystemButtonFrame, SystemButtonText, SystemHighlight,
SystemHighlightText, SystemMenu, SystemMenuActive, SystemMenuActiveText,
SystemMenuDisabled, SystemMenuText, SystemWindowBody.

Color names are case insensitive. Many (but not all) color names are also available with or
without spaces between the words. For example, “lightblue”, “light blue”, and “Light Blue” all
specify the same color.

RGB Specifications
If you need to explicitly specify a color, you can use a string with the following format:

#RRGGBB

RR, GG, BB are hexadecimal representations of the red, green and blue values, respectively.
The following sample shows how you can convert a color 3-tuple to a Tk color specification:

tk_rgb = "#%02x%02x%02x" % (128, 192, 200)

Chapter 6. Widget Styling

14

Tk also supports the forms “#RGB” and “#RRRRGGGGBBBB” to specify each value with 16 and
65536 levels, respectively.

You can use the winfo_rgb widget method to translate a color string (either a name or an RGB
specification) to a 3-tuple:

rgb = widget.winfo_rgb("red")
red, green, blue = rgb[0]/256, rgb[1]/256, rgb[2]/256

Note that winfo_rgb returns 16-bit RGB values, ranging from 0 to 65535. To map them into the
more common 0-255 range, you must divide each value by 256 (or shift them 8 bits to the
right).

Fonts
Widgets that allow you to display text in one way or another also allows you to specify which
font to use. All widgets provide reasonable default values, and you seldom have to specify the
font for simpler elements like labels and buttons.

Fonts are usually specifed using the font widget option. Tkinter supports a number of different
font descriptor types:

• Font descriptors

• User-defined font names

• System fonts

• X font descriptors

With Tk versions before 8.0, only X font descriptors are supported (see below).

Font descriptors
Starting with Tk 8.0, Tkinter supports platform independent font descriptors. You can specify a
font as tuple containing a family name, a height in points, and optionally a string with one or
more styles. Examples:

("Times", 10, "bold")
("Helvetica", 10, "bold italic")
("Symbol", 8)

To get the default size and style, you can give the font name as a single string. If the family
name doesn't include spaces, you can also add size and styles to the string itself:

"Times 10 bold"
"Helvetica 10 bold italic"
"Symbol 8"

Here are some families available on most Windows platforms:

Arial (corresponds to Helvetica), Courier New (Courier), Comic Sans MS, Fixedsys, MS Sans
Serif, MS Serif, Symbol, System, Times New Roman (Times), and Verdana:

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 6. Widget Styling

15

Note that if the family name contains spaces, you must use the tuple syntax described above.

The available styles are normal, bold, roman, italic, underline, and overstrike.

Tk 8.0 automatically maps Courier, Helvetica, and Times to their corresponding native family
names on all platforms. In addition, a font specification can never fail under Tk 8.0; if Tk
cannot come up with an exact match, it tries to find a similar font. If that fails, Tk falls back to a
platform-specific default font. Tk's idea of what is “similar enough” probably doesn't
correspond to your own view, so you shouldn't rely too much on this feature.

Tk 4.2 under Windows supports this kind of font descriptors as well. There are several
restrictions, including that the family name must exist on the platform, and not all the above
style names exist (or rather, some of them have different names).

Font names

In addition, Tk 8.0 allows you to create named fonts and use their names when specifying fonts
to the widgets.

The tkFont module provides a Font class which allows you to create font instances. You can use
such an instance everywhere Tkinter accepts a font specifier. You can also use a font instance
to get font metrics, including the size occupied by a given string written in that font.

tkFont.Font(family="Times", size=10, weight=tkFont.BOLD)
tkFont.Font(family="Helvetica", size=10, weight=tkFont.BOLD,

slant=tkFont.ITALIC)
tkFont.Font(family="Symbol", size=8)

If you modify a named font (using the config method), the changes are automatically
propagated to all widgets using the font.

The Font constructor supports the following style options (note that the constants are defined
in the tkFont module):

Table 6-1. Font Style Options

Option Type Description

Chapter 6. Widget Styling

16

Option Type Description

family string Font family.

size integer Font size in points. To give the size in pixels, use a
negative value.

weight constant Font thickness. Use one of NORMAL or BOLD. Default
is NORMAL.

slant constant Font slant. Use one of NORMAL or ITALIC. Default is
NORMAL.

underline flag Font underlining. If 1 (true), the font is underlined.
Default is 0 (false).

overstrike flag Font strikeout. If 1 (true), a line is drawn over text
written with this font. Default is 0 (false).

System fonts
Tk also supports system specific font names. Under X, these are usually font aliases like fixed,
6x10, etc.

Under Windows, these include ansi, ansifixed, device, oemfixed, system, and systemfixed:

On the Macintosh, the system font names are application and system.

Note that the system fonts are full font names, not family names, and they cannot be combined
with size or style attributes. For portability reasons, avoid using these names wherever
possible.

X Font Descriptors

X Font Descriptors are strings having the following format (the asterisks represent fields that
are usually not relevant. For details, see the Tk documentation, or an X manual):

-*-family-weight-slant-*--*-size-*-*-*-*-charset

The font family is typically something like Times, Helvetica, Courier or Symbol.

The weight is either Bold or Normal. Slant is either R for “roman” (normal), I for italic, or O for
oblique (in practice, this is just another word for italic).

Size is the height of the font in decipoints (that is, points multiplied by 10). There are usually
72 points per inch, but some low-resolution displays may use larger “logical” points to make

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 6. Widget Styling

17

sure that small fonts are still legible. The character set, finally, is usually ISO8859-1 (ISO Latin
1), but may have other values for some fonts.

The following descriptor requests a 12-point boldface Times font, using the ISO Latin 1
character set:

-*-Times-Bold-R-*--*-120-*-*-*-*-ISO8859-1

If you don't care about the character set, or use a font like Symbol which has a special character
set, you can use a single asterisk as the last component:

-*-Symbol-*-*-*--*-80-*

A typical X server supports at least Times, Helvetica, Courier, and a few more fonts, in sizes like
8, 10, 12, 14, 18, and 24 points, and in normal, bold, and italic (Times) or oblique (Helvetica,
Courier) variants. Most servers also support freely scaleable fonts. You can use programs like
xlsfonts and xfontsel to check which fonts you have access to on a given server.

This kind of font descriptors can also be used on Windows and Macintosh. Note that if you use
Tk 4.2, you should keep in mind that the font family must be one supported by Windows (see
above).

Text Formatting
While text labels and buttons usually contain a single line of text, Tkinter also supports
multiple lines. To split the text across lines, simply insert newline characters (\n) where
necessary.

By default, the lines are centered. You can change this by setting the justify option to LEFT or
RIGHT. The default value is CENTER.

You can also use the wraplength option to set a maximum width, and let the widget wrap the
text over multiple lines all by itself. Tkinter attempts to wrap on whitespace, but if the widget is
too narrow, it may break individual words across lines.

Borders
All Tkinter widgets have a border (though it's not visible by default for some widgets). The
border consists of an optional 3D relief, and a focus highlight region.

Relief
The relief settings control how to draw the widget border:

borderwidth (or bd) is the width of the border, in pixels. Most widgets have a default
borderwidth of one or two pixels. There's hardly any reason to make the border wider than
that.

relief controls how to draw the 3D border. It can be set to one of SUNKEN, RAISED, GROOVE,
RIDGE, and FLAT.

Chapter 6. Widget Styling

18

Focus Highlights
The highlight settings control how to indicate that the widget (or one of its children) has
keyboard focus. In most cases, the highlight region is a border outside the relief. The following
options control how this extra border is drawn:

The highlightcolor is used to draw the highlight region when the widget has keyboard focus. It's
usually black, or some other distinct contrast color.

The highlightbackground is used to draw the highlight region when the widget doesn't have
focus. It's usually same as the widget background.

The highlightthickness option is the width of the highlight region, in pixels. It is usually one or
two pixels for widgets that can take keyboard focus.

Cursors
The cursor option control which mouse cursor to use when the mouse is moved over the
widget. If this option isn't set, the widget uses the same mouse pointer as its parent.

Note that some widgets, including the Text and Entry widgets, set this option by default.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

19

Chapter 7. Events and Bindings
As was mentioned earlier, a Tkinter application spends most of its time inside an event loop
(entered via the mainloop method). Events can come from various sources, including key
presses and mouse operations by the user, and redraw events from the window manager
(indirectly caused by the user, in many cases).

Tkinter provides a powerful mechanism to let you deal with events yourself. For each widget,
you can bind Python functions and methods to events.

widget.bind(event, handler)

If an event matching the event description occurs in the widget, the given handler is called with
an object describing the event.

Here's a simple example:

Example 7-1. Capturing clicks in a window

File: bind1.py

from Tkinter import *

root = Tk()

def callback(event):
print "clicked at", event.x, event.y

frame = Frame(root, width=100, height=100)
frame.bind("<Button-1>", callback)
frame.pack()

root.mainloop()

In this example, we use the bind method of the frame widget to bind a callback function to an
event called <Button-1>. Run this program and click in the window that appears. Each time
you click, a message like “clicked at 44 63” is printed to the console window.

Events
Events are given as strings, using a special event syntax:

<modifier-type-detail>

The type field is the most important part of an event specifier. It specifies the kind of event that
we wish to bind, and can be user actions like Button, and Key, or window manager events like
Enter, Configure, and others. The modifier and detail fields are used to give additional
information, and can in many cases be left out. There are also various ways to simplify the

Chapter 7. Events and Bindings

20

event string; for example, to match a keyboard key, you can leave out the angle brackets and
just use the key as is. Unless it is a space or an angle bracket, of course.

Instead of spending a few pages on discussing all the syntactic shortcuts, let's take a look on the
most common event formats:

Table 7-1. Event Formats

Event Description

<Button-1> A mouse button is pressed over the widget. Button 1 is the leftmost
button, button 2 is the middle button (where available), and button 3 the
rightmost button. When you press down a mouse button over a widget,
Tkinter will automatically “grab” the mouse pointer, and mouse events
will then be sent to the current widget as long as the mouse button is held
down. The current position of the mouse pointer (relative to the widget)
is provided in the x and y members of the event object passed to the
callback.
You can use ButtonPress instead of Button, or even leave it out
completely: <Button-1>, <ButtonPress-1>, and <1> are all synonyms.
For clarity, I prefer the <Button-1> syntax.

<B1-Motion> The mouse is moved, with mouse button 1 being held down (use B2 for
the middle button, B3 for the right button). The current position of the
mouse pointer is provided in the x and y members of the event object
passed to the callback.

<Button-
Release-1>

Button 1 was released. The current position of the mouse pointer is
provided in the x and y members of the event object passed to the
callback.

<Double-
Button-1>

Button 1 was double clicked. You can use Double or Triple as prefixes.
Note that if you bind to both a single click (<Button-1>) and a double
click, both bindings will be called.

<Enter> The mouse pointer entered the widget (this event doesn't mean that the
user pressed the Enter key!).

<Leave> The mouse pointer left the widget.

<Return> The user pressed the Enter key. You can bind to virtually all keys on the
keyboard. For an ordinary 102-key PC-style keyboard, the special keys
are Cancel (the Break key), BackSpace, Tab, Return(the Enter key),
Shift_L (any Shift key), Control_L (any Control key), Alt_L (any Alt
key), Pause, Caps_Lock, Escape, Prior (Page Up), Next (Page
Down), End, Home, Left, Up, Right, Down, Print, Insert, Delete,
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Num_Lock, and
Scroll_Lock.

<Key> The user pressed any key. The key is provided in the char member of the
event object passed to the callback (this is an empty string for special
keys).

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 7. Events and Bindings

21

Event Description

a The user typed an “a”. Most printable characters can be used as is. The
exceptions are space (<space>) and less than (<less>). Note that 1 is a
keyboard binding, while <1> is a button binding.

<Shift-Up> The user pressed the Up arrow, while holding the Shift key pressed. You
can use prefixes like Alt, Shift, and Control.

<Configure> The widget changed size (or location, on some platforms). The new size is
provided in the width and height attributes of the event object passed to
the callback.

The Event Object
The event object is a standard Python object instance, with a number of attributes describing
the event.

Table 7-2. Event Attributes

Attribute Description

widget The widget which generated this event. This is a valid Tkinter widget
instance, not a name. This attribute is set for all events.

x, y The current mouse position, in pixels.

x_root, y_root The current mouse position relative to the upper left corner of the screen,
in pixels.

char The character code (keyboard events only), as a string.

keysym The key symbol (keyboard events only).

keycode The key code (keyboard events only)

num The button number (mouse button events only)

width, height The new size of the widget, in pixels (Configure events only).

type The event type.

For portability reasons, you should stick to char, height, width, x, y, x_root, y_root, and widget
unless you know exactly what you're doing...

Instance and Class Bindings
The bind method we used in the above example creates an instance binding. This means that
the binding applies to a single widget only; if you create new frames, they will not inherit the
bindings.

But Tkinter also allows you to create bindings on the class and application level; in fact, you
can create bindings on four different levels:

Chapter 7. Events and Bindings

22

• the widget instance, using bind.

• the widget's toplevel window (Toplevel or root), also using bind.

• the widget class, using bind_class (this is used by Tkinter to provide standard bindings).

• the whole application, using bind_all.

For example, you can use bind_all to create a binding for the F1 key, so you can provide help
everywhere in the application. But what happens if you create multiple bindings for the same
key, or provide overlapping bindings?

First, on each of these four levels, Tkinter chooses the “closest match” of the available bindings.
For example, if you create instance bindings for the <Key> and <Return> events, only the
second binding will be called if you press the Enter key.

However, if you add a <Return> binding to the toplevel widget, both bindings will be called.
Tkinter first calls the best binding on the instance level, then the best binding on the toplevel
window level, then the best binding on the class level (which is often a standard binding), and
finally the best available binding on the application level. So in an extreme case, a single event
may call four event handlers.

A common cause of confusion is when you try to use bindings to override the default behavior
of a standard widget. For example, assume you wish to disable the Enter key in the text widget,
so that the users cannot insert newlines into the text. Maybe the following will do the trick?

def ignore(event):
pass

text.bind("<Return>", ignore)

or, if you prefer one-liners:

text.bind("<Return>", lambda e: None)

(the lambda function used here takes one argument, and returns None)

Unfortunately, the newline is still inserted, since the above binding applies to the instance level
only, and the standard behavior is provided by a class level bindings.

You could use the bind_class method to modify the bindings on the class level, but that would
change the behavior of all text widgets in the application. An easier solution is to prevent
Tkinter from propagating the event to other handlers; just return the string “break” from your
event handler:

def ignore(event):
return "break"

text.bind("<Return>", ignore)

or

text.bind("<Return>", lambda e: "break")

By the way, if you really want to change the behavior of all text widgets in your application,
here's how to use the bind_class method:

top.bind_class("Text", "<Return>", lambda e: None)

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 7. Events and Bindings

23

But there are a lot of reasons why you shouldn't do this. For example, it messes things up
completely the day you wish to extend your application with some cool little UI component you
downloaded from the net. Better use your own Text widget specialization, and keep Tkinter's
default bindings intact:

class MyText(Text):
def __init__(self, master, **kw):

apply(Text.__init__, (self, master), kw)
self.bind("<Return>", lambda e: "break")

Protocols

In addition to event bindings, Tkinter also supports a mechanism called protocol handlers.
Here, the term protocol refers to the interaction between the application and the window
manager. The most commonly used protocol is called WM_DELETE_WINDOW, and is used to
define what happens when the user explicitly closes a window using the window manager.

You can use the protocol method to install a handler for this protocol (the widget must be a
root or Toplevel widget):

widget.protocol("WM_DELETE_WINDOW", handler)

Once you have installed your own handler, Tkinter will no longer automatically close the
window. Instead, you could for example display a message box asking the user if the current
data should be saved, or in some cases, simply ignore the request. To close the window from
this handler, simply call the destroy method of the window:

Example 7-2. Capturing destroy events

File: protocol1.py

from Tkinter import *
import tkMessageBox

def callback():
if tkMessageBox.askokcancel("Quit", "Do you really wish to quit?"):

root.destroy()

root = Tk()
root.protocol("WM_DELETE_WINDOW", callback)

root.mainloop()

Note that even you don't register an handler for WM_DELETE_WINDOW on a toplevel window,
the window itself will be destroyed as usual (in a controlled fashion, unlike X). However, as of
Python 1.5.2, Tkinter will not destroy the corresponding widget instance hierarchy, so it is a
good idea to always register a handler yourself:

top = Toplevel(...)

make sure widget instances are deleted

Chapter 7. Events and Bindings

24

top.protocol("WM_DELETE_WINDOW", top.destroy)

Future versions of Tkinter will most likely do this by default.

Other Protocols
Window manager protocols were originally part of the X window system (they are defined in a
document titled Inter-Client Communication Conventions Manual, or ICCCM). On that
platform, you can install handlers for other protocols as well, like WM_TAKE_FOCUS and
WM_SAVE_YOURSELF. See the ICCCM documentation for details.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

25

Chapter 8. Application Windows

Base Windows
In the simple examples we've used this far, there's only one window on the screen; the root
window. This is automatically created when you call the Tk constructor, and is of course very
convenient for simple applications:

from Tkinter import *

root = Tk()

create window contents as children to root...

root.mainloop()

If you need to create additional windows, you can use the Toplevel widget. It simply creates a
new window on the screen, a window that looks and behaves pretty much like the original root
window:

from Tkinter import *

root = Tk()

create root window contents...

top = Toplevel()

create top window contents...

root.mainloop()

There's no need to use pack to display the Toplevel, since it is automatically displayed by the
window manager (in fact, you'll get an error message if you try to use pack or any other
geometry manager with a Toplevel widget).

Menus
Tkinter provides a special widget type for menus. To create a menu, you create an instance of
the Menu class, and use add methods to add entries to it:

• add_command(label=string, command=callback) adds an ordinary menu entry.

• add_separator() adds an separator line. This is used to group menu entries.

• add_cascade(label=string, menu=menu instance) adds a submenu (another Menu
instance). This is either a pull-down menu or a fold-out menu, depending on the parent.

Here's an example:

Chapter 8. Application Windows

26

Example 8-1. Creating a small menu

File: menu1.py

from Tkinter import *

def callback():
print "called the callback!"

root = Tk()

create a menu
menu = Menu(root)
root.config(menu=menu)

filemenu = Menu(menu)
menu.add_cascade(label="File", menu=filemenu)
filemenu.add_command(label="New", command=callback)
filemenu.add_command(label="Open...", command=callback)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=callback)

helpmenu = Menu(menu)
menu.add_cascade(label="Help", menu=helpmenu)
helpmenu.add_command(label="About...", command=callback)

mainloop()

In this example, we start out by creating a Menu instance, and we then use the config method
to attach it to the root window. The contents of that menu will be used to create a menubar at
the top of the root window. You don't have to pack the menu, since it is automatically displayed
by Tkinter.

Next, we create a new Menu instance, using the menubar as the widget parent, and the
add_cascade method to make it a pulldown menu. We then call add_command to add
commands to the menu (note that all commands in this example use the same callback), and
add_separator to add a line between the file commands and the exit command.

Finally, we create a small help menu in the same fashion.

Toolbars
Many applications place a toolbar just under the menubar, which typically contains a number
of buttons for common functions like open file, print, undo, etc.

In the following example, we use a Frame widget as the toolbar, and pack a number of ordinary
buttons into it.

Example 8-2. Creating a simple toolbar

File: toolbar1.py

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 8. Application Windows

27

from Tkinter import *

root = Tk()

def callback():
print "called the callback!"

create a toolbar
toolbar = Frame(root)

b = Button(toolbar, text="new", width=6, command=callback)
b.pack(side=LEFT, padx=2, pady=2)

b = Button(toolbar, text="open", width=6, command=callback)
b.pack(side=LEFT, padx=2, pady=2)

toolbar.pack(side=TOP, fill=X)

mainloop()

The buttons are packed against the left side, and the toolbar itself is packed against the
topmost side, with the fill option set to X. As a result, the widget is resized if necssary, to cover
the full with of the parent widget.

Also note that I've used text labels rather than icons, to keep things simple. To display an icon,
you can use the PhotoImage constructor to load a small image from disk, and use the image
option to display it.

Status Bars
Finally, most applications sport a status bar at the bottom of each application window.
Implementing a status bar with Tkinter is trivial: you can simply use a suitably configured
Label widget, and reconfigure the text option now and then. Here's one way to do it:

status = Label(master, text="", bd=1, relief=SUNKEN, anchor=W)
status.pack(side=BOTTOM, fill=X)

If you wish to be fancy, you can use the following class instead. It wraps a label widget in a
convenience class, and provides set and clear methods to modify the contents.

Example 8-3. A Status Bar Class

File: tkSimpleStatusBar.py

class StatusBar(Frame):

def __init__(self, master):
Frame.__init__(self, master)
self.label = Label(self, bd=1, relief=SUNKEN, anchor=W)
self.label.pack(fill=X)

def set(self, format, *args):

Chapter 8. Application Windows

28

self.label.config(text=format % args)
self.label.update_idletasks()

def clear(self):
self.label.config(text="")
self.label.update_idletasks()

The set method works like C's printf function; it takes a format string, possibly followed by a
set of arguments (a drawback is that if you wish to print an arbitrary string, you must do that as
set("%s", string)). Also note that this method calls the update_idletasks method, to make sure
pending draw operations (like the status bar update) are carried out immediately.

But the real trick here is that we've inherited from the Frame widget. At the cost of a somewhat
awkward call to the frame widget's constructor, we've created a new kind of custom widget that
can be treated as any other widget. You can create and display the status bar using the usual
widget syntax:

status = StatusBar(root)
status.pack(side=BOTTOM, fill=X)

We could have inherited from the Label widget itself, and just extended it with set and clear
methods. This approach have a few drawbacks, though:

• It makes it harder to maintain the status bar's integrity. Some team members may cheat, and
use config instead of set. That's not a big deal, until the day you decide to do some extra
processing in the set method. Or the day you decide to use a Canvas widget to implement a
fancier status bar.

• It increases the risk that your additional methods conflict with attributes or methods used by
Tkinter. While the Frame and Toplevel widgets have relatively few methods, other widgets
can have several dozens of widget specific attributes and methods.

• Future versions of Tkinter may use factory functions rather than class constructors for most
widgets. However, it's more or less guaranteed that such versions will still provide Frame
and Toplevel classes. Better safe than sorry, in other words.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

29

Chapter 9. Dialog Windows
While the standard dialogs described in the previous section may be sufficient for many
simpler applications, most larger applications require more complicated dialogs. For example,
to set configuration parameters for an application, you will probably want to let the user enter
more than one value or string in each dialog.

Basically, creating a dialog window is no different from creating an application window. Just
use the Toplevel widget, stuff the necessary entry fields, buttons, and other widgets into it, and
let the user take care of the rest. (By the way, don't use the ApplicationWindow class for this
purpose; it will only confuse your users).

But if you implement dialogs in this way, you may end up getting both your users and yourself
into trouble. The standard dialogs all returned only when the user had finished her task and
closed the dialog; but if you just display another toplevel window, everything will run in
parallel. If you're not careful, the user may be able to display several copies of the same dialog,
and both she and your application will be hopelessly confused.

In many situations, it is more practical to handle dialogs in a synchronous fashion; create the
dialog, display it, wait for the user to close the dialog, and then resume execution of your
application. The wait_window method is exactly what we need; it enters a local event loop, and
doesn't return until the given window is destroyed (either via the destroy method, or explicitly
via the window manager):

widget.wait_window(window)

(Note that the method waits until the window given as an argument is destroyed; the only
reason this is a method is to avoid namespace pollution).

In the following example, the MyDialog class creates a Toplevel widget, and adds some widgets
to it. The caller then uses wait_window to wait until the dialog is closed. If the user clicks OK,
the entry field's value is printed, and the dialog is then explicitly destroyed.

Example 9-1. Creating a simple dialog

File: dialog1.py

from Tkinter import *

class MyDialog:

def __init__(self, parent):

top = self.top = Toplevel(parent)

Label(top, text="Value").pack()

self.e = Entry(top)
self.e.pack(padx=5)

b = Button(top, text="OK", command=self.ok)

Chapter 9. Dialog Windows

30

b.pack(pady=5)

def ok(self):

print "value is", self.e.get()

self.top.destroy()

root = Tk()
Button(root, text="Hello!").pack()
root.update()

d = MyDialog(root)

root.wait_window(d.top)

If you run this program, you can type something into the entry field, and then click OK, after
which the program terminates (note that we didn't call the mainloop method here; the local
event loop handled by wait_window was sufficient). But there are a few problems with this
example:

• The root window is still active. You can click on the button in the root window also when the
dialog is displayed. If the dialog depends on the current application state, letting the users
mess around with the application itself may be disastrous. And just being able to display
multiple dialogs (or even multiple copies of one dialog) is a sure way to confuse your users.

• You have to explicitly click in the entry field to move the cursor into it, and also click on the
OK button. Pressning Enter in the entry field is not sufficient.

• There should be some controlled way to cancel the dialog (and as we learned earlier, we
really should handle the WM_DELETE_WINDOW protocol too).

To address the first problem, Tkinter provides a method called grab_set, which makes sure
that no mouse or keyboard events are sent to the wrong window.

The second problem consists of several parts; first, we need to explicitly move the keyboard
focus to the dialog. This can be done with the focus_set method. Second, we need to bind the
Enter key so it calls the ok method. This is easy, just use the bind method on the Toplevel
widget (and make sure to modify the ok method to take an optional argument so it doesn't
choke on the event object).

The third problem, finally, can be handled by adding an additional Cancel button which calls
the destroy method, and also use bind and protocol to do the same when the user presses
Escape or explicitly closes the window.

The following Dialog class provides all this, and a few additional tricks. To implement your own
dialogs, simply inherit from this class and override the body and apply methods. The former
should create the dialog body, the latter is called when the user clicks OK.

Example 9-2. A dialog support class

File: tkSimpleDialog.py

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 9. Dialog Windows

31

from Tkinter import *
import os

class Dialog(Toplevel):

def __init__(self, parent, title = None):

Toplevel.__init__(self, parent)
self.transient(parent)

if title:
self.title(title)

self.parent = parent

self.result = None

body = Frame(self)
self.initial_focus = self.body(body)
body.pack(padx=5, pady=5)

self.buttonbox()

self.grab_set()

if not self.initial_focus:
self.initial_focus = self

self.protocol("WM_DELETE_WINDOW", self.cancel)

self.geometry("+%d+%d" % (parent.winfo_rootx()+50,
parent.winfo_rooty()+50))

self.initial_focus.focus_set()

self.wait_window(self)

#
construction hooks

def body(self, master):
create dialog body. return widget that should have
initial focus. this method should be overridden

pass

def buttonbox(self):
add standard button box. override if you don't want the
standard buttons

box = Frame(self)

Chapter 9. Dialog Windows

32

w = Button(box, text="OK", width=10, command=self.ok, default=ACTIVE)
w.pack(side=LEFT, padx=5, pady=5)
w = Button(box, text="Cancel", width=10, command=self.cancel)
w.pack(side=LEFT, padx=5, pady=5)

self.bind("<Return>", self.ok)
self.bind("<Escape>", self.cancel)

box.pack()

#
standard button semantics

def ok(self, event=None):

if not self.validate():
self.initial_focus.focus_set() # put focus back
return

self.withdraw()
self.update_idletasks()

self.apply()

self.cancel()

def cancel(self, event=None):

put focus back to the parent window
self.parent.focus_set()
self.destroy()

#
command hooks

def validate(self):

return 1 # override

def apply(self):

pass # override

The main trickery is done in the constructor; first, transient is used to associate this window
with a parent window (usually the application window from which the dialog was launched).
The dialog won't show up as an icon in the window manager (it won't appear in the task bar
under Windows, for example), and if you iconify the parent window, the dialog will be hidden
as well. Next, the constructor creates the dialog body, and then calls grab_set to make the
dialog modal, geometry to position the dialog relative to the parent window, focus_set to move
the keyboard focus to the appropriate widget (usually the widget returned by the body
method), and finally wait_window.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 9. Dialog Windows

33

Note that we use the protocol method to make sure an explicit close is treated as a cancel, and
in the buttonbox method, we bind the Enter key to OK, and Escape to Cancel. The
default=ACTIVE call marks the OK button as a default button in a platform specific way.

Using this class is much easier than figuring out how it's implemented; just create the
necessary widgets in the body method, and extract the result and carry out whatever you wish
to do in the apply method. Here's a simple example (we'll take a closer look at the grid method
in a moment).

Example 9-3. Creating a simple dialog, revisited

File: dialog2.py

import tkSimpleDialog

class MyDialog(tkSimpleDialog.Dialog):

def body(self, master):

Label(master, text="First:").grid(row=0)
Label(master, text="Second:").grid(row=1)

self.e1 = Entry(master)
self.e2 = Entry(master)

self.e1.grid(row=0, column=1)
self.e2.grid(row=1, column=1)
return self.e1 # initial focus

def apply(self):
first = string.atoi(self.e1.get())
second = string.atoi(self.e2.get())
print first, second # or something

And here's the resulting dialog:

Figure 9-1. running the dialog2.py script

Note that the body method may optionally return a widget that should receive focus when the
dialog is displayed. If this is not relevant for your dialog, simply return None (or omit the
return statement).

Chapter 9. Dialog Windows

34

The above example did the actual processing in the apply method (okay, a more realistic
example should probably to something with the result, rather than just printing it). But instead
of doing the processing in the apply method, you can store the entered data in an instance
attribute:

def apply(self):
first = int(self.e1.get())
second = int(self.e2.get())
self.result = first, second

d = MyDialog(root)
print d.result

Note that if the dialog is cancelled, the apply method is never called, and the result attribute is
never set. The Dialog constructor sets this attribute to None, so you can simply test the result
before doing any processing of it. If you wish to return data in other attributes, make sure to
initialize them in the body method (or simply set result to 1 in the apply method, and test it
before accessing the other attributes).

Grid Layouts
While the pack manager was convenient to use when we designed application windows, it may
not be that easy to use for dialogs. A typical dialog may include a number of entry fields and
check boxes, with corresponding labels that should be properly aligned. Consider the following
simple example:

Figure 9-2. Simple Dialog Layout

To implement this using the pack manager, we could create a frame to hold the label “first:”,
and the corresponding entry field, and use side=LEFT when packing them. Add a
corresponding frame for the next line, and pack the frames and the checkbutton into an outer
frame using side=TOP. Unfortunately, packing the labels in this fashion makes it impossible to
get the entry fields lined up, and if we use side=RIGHT to pack the entry field instead, things
break down if the entry fields have different width. By carefully using width options, padding,
side and anchor packer options, etc., we can get reasonable results with some effort. But there's
a much easier way: use the grid manager instead.

This manager splits the master widget (typically a frame) into a 2-dimensional grid, or table.
For each widget, you only have to specify where in this grid it should appear, and the grid
managers takes care of the rest. The following body method shows how to get the above layout:

Example 9-4. Using the grid geometry maanager

File: dialog3.py

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 9. Dialog Windows

35

def body(self, master):

Label(master, text="First:").grid(row=0, sticky=W)
Label(master, text="Second:").grid(row=1, sticky=W)

self.e1 = Entry(master)
self.e2 = Entry(master)

self.e1.grid(row=0, column=1)
self.e2.grid(row=1, column=1)

self.cb = Checkbutton(master, text="Hardcopy")
self.cb.grid(row=2, columnspan=2, sticky=W)

For each widget that should be handled by the grid manager, you call the grid method with the
row and column options, telling the manager where to put the widget. The topmost row, and
the leftmost column, is numbered 0 (this is also the default). Here, the checkbutton is placed
beneath the label and entry widgets, and the columnspan option is used to make it occupy
more than one cell. Here's the result:

Figure 9-3. Using the grid manager

If you look carefully, you'll notice a small difference between this dialog, and the dialog shown
by the dialog2.py script. Here, the labels are aligned to the left margin. If you compare the
code, you'll find that the only difference is an option called sticky.

When its time to display the frame widget, the grid geometry manager loops over all widgets,
calculating a suitable width for each row, and a suitable height for each column. For any widget
where the resulting cell turns out to be larger than the widget, the widget is centered by default.
The sticky option is used to modify this behavior. By setting it to one of E, W, S, N, NW, NE, SE,
or SW, you can align the widget to any side or corner of the cell. But you can also use this
option to stretch the widget if necessary; if you set the option to E+W, the widget will be
stretched to occupy the full width of the cell. And if you set it to E+W+N+S (or NW+SE, etc),
the widget will be stretched in both directions. In practice, the sticky option replaces the fill,
expand, and anchor options used by the pack manager.

The grid manager provides many other options allowing you to tune the look and behavior of
the resulting layout. These include padx and pady which are used to add extra padding to
widget cells, and many others. See the Grid Geometry Manager chapter for details.

Chapter 9. Dialog Windows

36

Validating Data
What if the user types bogus data into the dialog? In our current example, the apply method
will raise an exception if the contents of an entry field is not an integer. We could of course
handle this with a try/except and a standard message box:

def apply(self):
try:

first = int(self.e1.get())
second = int(self.e2.get())
dosomething((first, second))

except ValueError:
tkMessageBox.showwarning(

"Bad input",
"Illegal values, please try again"

)

There's a problem with this solution: the ok method has already removed the dialog from the
screen when the apply method is called, and it will destroy it as soon as we return. This design
is intentional; if we carry out some potentially lengthy processing in the apply method, it would
be very confusing if the dialog wasn't removed before we finished. The Dialog class already
contain hooks for another solution: a separate validate method which is called before the
dialog is removed.

In the following example, we simply moved the code from apply to validate, and changed it to
store the result in an instance attribute. This is then used in the apply method to carry out the
work.

def validate(self):
try:

first= int(self.e1.get())
second = int(self.e2.get())
self.result = first, second
return 1

except ValueError:
tkMessageBox.showwarning(

"Bad input",
"Illegal values, please try again"

)
return 0

def apply(self):
dosomething(self.result)

Note that if we left the processing to the calling program (as shown above), we don't even have
to implement the apply method.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

II. Tkinter Reference
The rest of the chapters describe all classes provided by Tkinter, in alphabetical order.

38

Chapter 10. The BitmapImage Class

When to use the BitmapImage Class
This class is used to display images (either grayscale or true color images) in labels, buttons,
canvases, and text widgets.

Patterns
FIXME: To be added.

Methods
configure(options)
config(options)

Change one or more configuration options.

cget(option) ⇒ value

Return the value of the given configuration option.

width() ⇒ integer
height() ⇒ integer

Returns the width (height) of the image, in pixels.

type() ⇒ string

Returns the string “bitmap”.

Options
The BitmapImage class supports the following options.

Table 10-1. BitmapImage Options

Option Type Description

file string Read image data from the given file.

data string Read image data from a string. If the file option is
given, this option is ignored.

width, height integer The width (height) of the image memory. Note that
this is the requested size, not the actual size. To get the
actual size, use the corresponding methods.

format string If several file handlers can handle the given file, this

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 10. The BitmapImage Class

39

Option Type Description

option can be used to specify which handler to use. If
you haven't installed extra file handlers, there's no
need to use this option.

40

Chapter 11. The Button Widget
The Button widget is a standard Tkinter widget used to implement various kinds of buttons.
Buttons can contain text or images, and you can associate a Python function or method with
each button. When the button is pressed, Tkinter automatically calls that function or method.

The button can only display text in a single font, but the text may span more than one line. In
addition, one of the characters can be underlined, for example to mark a keyboard shortcut. By
default, the Tab key can be used to move to a button widget.

When to use the Button Widget
Simply put, button widgets are used to let the user say “do this now!,” where this is either given
by the text on the button, or implied by the icon displayed in the button. Buttons are typically
used in toolbars, in application windows, and to accept or dismiss data entered into a dialog
box.

For buttons suitable for data entry, see the Checkbutton and Radiobutton widgets.

Patterns
Plain buttons are pretty straightforward to use. Simply specify the button contents (text,
bitmap, or image) and a callback to call when the button is pressed:

b = Button(master, text="OK", command=self.ok)

A button without a callback is pretty useless; it simply doesn't do anything when you press the
button. You might wish to use such buttons anyway when developing an application. In that
case, it is probably a good idea to disable the button to avoid confusing your beta testers:

b = Button(master, text="Help", state=DISABLED)

If you don't specify a size, the button is made just large enough to hold its contents. You can
use the padx and pady option to add some extra space between the contents and the button
border. You can also use the height and width options to explicitly set the size. If you display
text in the button, these options define the size of the button in text units. If you display
bitmaps or images instead, they define the size in pixels (or other screen units). You can
actually specify the size in pixels even for text buttons, but it takes some magic. Here's one way
to do it (there are others):

f = Frame(master, height=32, width=32)
f.pack_propagate(0) # don't shrink
b = Button(f, text="Sure!")
b.pack(fill=BOTH, expand=1)

Buttons can display multiple lines of text (but only in one font). You can use newlines or the
wraplength option to make the button wrap text by itself. When wrapping text, use the anchor,
justify, and possibly padx options to make things look exactly as you wish. An example:

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 11. The Button Widget

41

b = Button(master, text=longtext, anchor=W, justify=LEFT, padx=2)

To make an ordinary button look like it's held down, for example if you wish to implement a
toolbox of some kind, you can simply change the relief from RAISED to SUNKEN:

b.config(relief=SUNKEN)

You might wish to change the background as well. Note that a possibly better solution is to use
a Checkbutton or Radiobutton with the indicatoron option set to false:

b = Checkbutton(master, image=bold, variable=var, indicatoron=0)

Methods
The Button widget supports the standard Tkinter Widget interface, plus the following methods:

flash()

Redraw the button several times, alternating between active and normal appearance.

invoke()

Call the command associated with the button.

Helpers
The following methods are only relevant if you're implementing your own keyboard bindings.

tkButtonDown()
tkButtonEnter()
tkButtonInvoke()
tkButtonLeave()
tkButtonUp()

These can be used in customized event bindings. All these methods accept zero or more
dummy arguments.

Options
The Button widget supports the following options:

Table 11-1. Button Widget Options

Option Type Description

activeback-
ground, active-
foreground

color The color to use when the button is activated.

anchor constant Controls where in the button the text (or image)
should be located. Use one of N, NE, E, SE, S, SW, W,

Chapter 11. The Button Widget

42

Option Type Description

NW, or CENTER. Default is CENTER. If you change this,
it is probably a good idea to add some padding as well,
using the padx and/or pady options.

background
(bg), fore-
ground (fg)

color The button color. The default is platform specific.

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.
The following bitmaps are available on all platforms:
error, gray75, gray50, gray25, gray12, hourglass,
info, questhead, question, and warning.

The following additional bitmaps are available on the
Macintosh only: document, stationery, edition,
application, accessory, folder, pfolder, trash, floppy,
ramdisk, cdrom, preferences, querydoc, stop, note,
and caution.
You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example
“@sample.xbm”.

borderwidth
(bd)

int The width of the button border. The default is
platform specific, but is usually 1 or 2 pixels.

command callback A function or method that is called when the button is
pressed. The callback can be a function, bound
method, or any other callable Python object.

cursor cursor The cursor to show when the mouse is moved over the
button.

default constant If set, the button is a default button. Tk will indicate
this by drawing a platform specific indicator (usually
an extra border). NOTE: The syntax has changed in
8.0b2!!!

disabledfore-
ground

color The color to use when the button is disabled. The
background is shown in the background color.

font font The font to use in the button. The button can only
contain text in a single font.

highlightback-
ground, high-
lightcolor

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the
highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 11. The Button Widget

43

Option Type Description

specific.

highlightthick-
ness

distance Controls the width of the focus highlight border.
Default is typically one or two pixels.

image image The image to display in the widget. If specified, this
takes precedence over the text and bitmap options.

justify constant Defines how to align multiple lines of text. Use LEFT,
RIGHT, or CENTER.

padx, pady distance Button padding. These options specify the horizontal
and vertical padding between the text or image, and
the button border.

relief constant Border decoration. Usually, the button is SUNKEN
when pressed, and RAISED otherwise. Other possible
values are GROOVE, RIDGE, and FLAT.

state constant The button state: NORMAL, ACTIVE or DISABLED.
Default is NORMAL.

takefocus flag Indicates that the user can use the Tab key to move to
this button. Default is an empty string, which means
that the button accepts focus only if it has any
keyboard bindings (default is on, in other words).

text string The text to display in the button. The text can contain
newlines. If the bitmap or image options are used, this
option is ignored.

textvariable variable Associates a Tkinter variable (usually a StringVar) to
the button. If the variable is changed, the button text
is updated.

underline int Which character to underline, in a text label. Default is
-1, which means that no character is underlined.

width, height distance The size of the button. If the button displays text, the
size is given in text units. If the button displays an
image, the size is given in pixels (or screen units). If
the size is omitted, it is calculated based on the button
contents.

wraplength distance Determines when a button's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

44

Chapter 12. The Canvas Widget
The Canvas widget provides structured graphics facilities for Tkinter. This is a highly versatile
widget which are used to draw graphs and plots, create graphics editors, and implement
various kinds of custom widgets.

To display things on the canvas, you create one or more canvas items, which are placed in a
stack. By default, new items are drawn on top of items already on the canvas. Tkinter provides
lots of methods allowing you to manipulate the items in various ways. Among other things, you
can attach (bind) event callbacks to individual items.

When to use the Canvas Widget
The canvas is a general purpose widget, which is typically used to display and edit graphs and
other drawings.

Another common use for this widget is to implement various kinds of custom widgets. For
example, you can use a canvas as a completion bar, by drawing and updating a rectangle object.

Concepts
To be added.

Items
The Canvas widget supports the following standard items:

• arc (arc, chord, or pieslice)

• bitmap (built-in or read from XBM file)

• image (a BitmapImage or PhotoImage instance)

• line

• oval (a circle or an ellipse)

• polygon

• rectangle

• text

• window

Chords, pieslices, ovals, polygons, and rectangles are drawn as both an outline and an interior,
either of which can be made transparent (if you insist, you can make both transparent).

Window items are used to place other Tkinter widgets on top of the canvas; for these items, the
Canvas widget simply acts like a geometry manager.

You can also write your own item types in C or C++ and plug them into Tkinter via Python
extension modules.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 12. The Canvas Widget

45

Coordinate Systems
The Canvas widget uses two coordinate systems; the window coordinate system (with (0, 0) in
the upper left corner), and a canvas coordinate system in which the items are drawn. By
scrolling the canvas, you can specify which part of the canvas coordinate system to show in the
window.

The scrollregion option is used to limit scrolling operations for the canvas. To set this, you can
usually use something like:

canvas.config(scrollregion=canvas.bbox(ALL))

To convert from window coordinates to canvas coordinates, use the canvasx and canvasy
methods:

def callback(event):
canvas = event.widget
x = canvas.canvasx(event.x)
y = canvas.canvasx(event.y)
print canvas.find_closest(x, y)

Item Specifiers
The Canvas widget allows you to identify items in several ways. Everywhere a method expects
an item specifier, you can use one of the following:

• item handles

• tags

• ALL

• CURRENT

Item handles are integer values that are used to identify a specific item on the canvas. Tkinter
automatically assigns a new handle to each new item created on the canvas. Item handles can
be passed to the various canvas methods either as integers or as strings.

Tags are symbolic names attached to items. Tags are ordinary strings, and they can contain
anything except whitespace.

An item can have zero or more tags associated with it, and the same tag can be used for more
than one item. However, unlike the Text widget, the Canvas widget doesn't allow you to create
bindings or otherwise configure tags for which there are no existing items. All such operations
are ignored.

You can either specify the tags via an option to the item create method, set them via the
itemconfig method, or add them using the addtag_withtag method. The tags option take either
a single string, or a tuple of strings.

item = canvas.create_line(0, 0, 100, 100, tags="uno")
canvas.itemconfig(item, tags=("one", "two"))
canvas.addtag_withtag("three", "one")

Chapter 12. The Canvas Widget

46

To get all tags associated with a specific item, use gettags. To get all items having a given tag,
use find_withtag.

>>> print canvas.gettags(item)
('one', 'two', 'three')
>>> print canvas.find_withtag("one")
(1,)

The Canvas widget also provides two predefined tags:

ALL (or “all”) matches all items on the canvas.

CURRENT (or “current”) matches the item under the mouse pointer, if any. This can be used
inside mouse event bindings to refer to the item that trigged the callback.

Printing
To be added.

Patterns
To be added.

Methods
The first group of methods are used to create and configure items on a canvas.

create_arc(bbox, options) ⇒ id

Create an arc canvas item. Returns the item handle.

create_bitmap(position, options) ⇒ id

Create a bitmap canvas item. Returns the item handle.

create_image(position, options) ⇒ id

Create an image canvas item. Returns the item handle.

create_line(coords, options) ⇒ id

Create a line canvas item. Returns the item handle.

create_oval(bbox, options) ⇒ id

Create an oval canvas item. Returns the item handle.

create_polygon(coords, options) ⇒ id

Create a polygon canvas item. Returns the item handle.

create_rectangle(bbox, options) ⇒ id

Create a rectangle canvas item. Returns the item handle.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 12. The Canvas Widget

47

create_text(position, options) ⇒ id

Create a text canvas item. Returns the item handle.

create_window(position, options) ⇒ id

Place a Tkinter widget on the canvas. Returns the item handle.

Note that widgets are drawn on top of the canvas (that is, the canvas acts like a geometry
manager). You cannot draw other canvas items on top of a widget.

delete(items)

Delete all matching items. It is not an error to give an item specifier that doesn't match any
items.

itemcget(item, option) ⇒ string

Get the current value for an option. If item refers to more than one items, this method
returns the option value for the first item found.

itemconfig(item, options)
itemconfigure(item, options)

Change one or more options for all matching items.

coords(item) ⇒ list

Return the coordinates for the given item. If item refers to more than one items, this
method returns the coordinates for the first item found.

coords(item, x0, y0, x1, y1, ..., xn, yn)

Change the coordinates for the given item. This method updates all matching items.

bbox(items) ⇒ tuple
bbox() ⇒ tuple

Returns the bounding box for the given items. If the specifier is omitted, the bounding box
for all items are returned. Note that the bounding box is approximate and may differ a few
pixels from the real value.

canvasx(screenx) ⇒ float
canvasy(screeny) ⇒ float

Convert a window coordinate (for example, the x and y coordinates from the structure
passed to an event handler) to a canvas coordinate.

tag_bind(item, sequence, callback)
tag_bind(item, sequence, callback, "+")

Add an event binding to all matching items. Usually, the new binding replaces any existing
binding for the same event sequence. The second form can be used to add the new callback
to the existing binding.

Note that the new bindings are associated with the items, not the tag. For example, if you
attach bindings to all items having the movable tag, they will only be attached to any

Chapter 12. The Canvas Widget

48

existing items with that tag. If you create new items tagged as movable, they will not get
those bindings.

tag_unbind(item, sequence)

Remove the binding, if any, for the given event sequence. This applies to all matching
items.

type(item) ⇒ string

Return the type of the given item: “arc”, “bitmap”, “image”, “line”, “oval”, “polygon”,
“rectangle”, “text”, or “window”. If item refers to more than one items, this method returns
the type of the first item found.

lift(item)
tkraise(item)

Move the given item to the top of the canvas stack. If multiple items match, they are all
moved, with their relative order preserved.

This method doesn't work with window items. To change their order, use lift on the widget
instance instead.

lower(item)

Move the given item to the bottom of the canvas stack. If multiple items match, they are all
moved, with their relative order preserved.

This method doesn't work with window items. To change their order, use lower on the
widget instance instead.

move(item, dx, dy)

Move all items dx canvas units to the right, and dy canvas units downwards. Both
coordinates can be negative.

scale(item, xscale, yscale, xoffset, yoffset)

Scale matching items according to the given scale factors. The coordinates for each item
are first moved by -offset, then multiplied with the scale factory, and then moved back
again. Note that this method modifies the item coordinates; you may loose precision if you
use this method several times on the same items.

Printing

postscript(options)

Generate a Postscript rendering of the canvas contents. Images and embedded widgets are
not included.

Table 12-1. Postscript Options

Option Type Description

colormap

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 12. The Canvas Widget

49

Option Type Description

colormode

file

fontmap

height

pageanchor

pageheight

pagewidth

pagex

pagey

rotate

width

x

y

Searching for Items
The following methods are used to find certain groups of items, for later processing. Note that
for each find method, there is a corresponding addtag method. Instead of processing the
individual items returned by a find method, you can often get better performance by adding a
temporary tag to a group of items, process all items with that tag in one go, and then remove
the tag.

find_above(item) ⇒ item

Returns the item just above the given item.

find_all() ⇒ tuple

Return a tuple containing the identity of all items on the canvas, with the topmost item
last (that is, if you haven't change the order using lift or lower, the items are returned in
the order you created them). This is shortcut for find_withtag(ALL).

find_below(item) ⇒ item

Returns the item just below the given item.

find_closest(x, y) ⇒ item

Returns the item closest to the given position. Note that the position is given in canvas
coordinates, and that this method always succeeds if there's at least one item in the
canvas. To find items within a certain distance from a position, use find_overlapping with
a small rectangle centered on the position.

Chapter 12. The Canvas Widget

50

find_enclosed(x1, y1, x2, y2) ⇒ tuple

Returns a tuple of all items completely enclosed by the rectangle (x1, y1, x2, y2).

find_overlapping(x1, y1, x2, y2) ⇒ tuple

Returns a tuple of all items that overlap the given rectangle, or that are completely
enclosed by it.

find_withtag(item) ⇒ tuple

Returns a tuple of all items having the given specifier.

Manipulating Tags
The following methods are used to manipulate the tags, rather than the items themselves.

addtag_above(newtag, item)

Add newtag to the item just above the given item.

addtag_all(newtag)

Add newtag to all items on the canvas. This is shortcut for addtag_withtag(newtag, ALL).

addtag_below(newtag, item)

Add newtag to the item just below the given item.

addtag_closest(newtag, x, y)

Add newtag to the item closest to the given coordinate. See find_closest for more
information.

addtag_enclosed(newtag, x1, y1, x2, y2)

Add newtag to all items enclosed by the given rectangle. See find_enclosed for more
information.

addtag_overlapping(newtag, x1, y1, x2, y2)

Add newtag to all items overlapping the given rectangle. See find_overlapping for more
information.

addtag_withtag(newtag, tag)

Add newtag to all items having the given tag.

dtag(item, tag)

Remove the given tag from all matching items. If the tag is omitted, all tags are removed
from the matching items. It is not an error to give a specifier that doesn't match any items.

gettags(item) ⇒ tuple

Return all tags associated with the item.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 12. The Canvas Widget

51

Special Methods for Text Items
The following methods can be used with text items, as well as with any extension item type that
supports a keyboard focus and an insertion cursor.

dchars()

FIXME

focus()

FIXME

icursor()

FIXME

index() ⇒ integer

FIXME

insert()

FIXME

select_adjust(item, index)

FIXME

select_clear()

FIXME

select_from(item, index)

FIXME

select_item()

FIXME

select_to(item, index)

FIXME

Scrolling
The following methods are used to scroll the canvas in various ways. The scan methods can be
used to implement fast mouse pan/roam operations, while the xview and yview methods are
used with standard scrollbars.

scan_mark(x, y)

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

Chapter 12. The Canvas Widget

52

scan_dragto(x, y)

Scrolls the widget contents according to the given mouse coordinate. The contents are
moved 10 times the distance between the scanning anchor and the new position.

xview(MOVETO, offset)
yview(MOVETO, offset)

Adjust the canvas so that the given offset is at the left (top) edge of the canvas. Offset 0.0 is
the beginning of the scrollregion, 1.0 the end. These methods are used by the Scrollbar
bindings.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility, use the
string “moveto” instead.

xview(SCROLL, step, what)
yview(SCROLL, step, what)

Scroll the canvas horizontally (vertically) by the given amount. The what argument can be
either UNITS (lines) or PAGES. These methods are used by the Scrollbar bindings.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the
strings “scroll”, “units”, and “pages” instead.

Options
Table 12-2. Canvas Options

Option Type Description

background
(bg)

color

borderwidth
(bd)

distance

closeenough

confine

cursor cursor

height distance

highlightback-
ground, high-
lightcolor

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the
highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlightthick-
ness

distance Controls the width of the focus highlight border.
Default is one or two pixels.
Note that the focus highlight border is drawn on top of
the canvas coordinate systems; if you don't use

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 12. The Canvas Widget

53

Option Type Description

scrollbars, a one pixel border covers items drawn at
canvas coordinate (0, 0).

insertback-
ground

color Color used for the insertion cursor.

insertborder-
width

distance Borderwidth for the insertion cursor.

insertofftime,
insertontime

time Controls cursor blinking.

insertwidth distance Width of the insertion cursor.

relief constant Border decoration. The default is FLAT. Other possible
values are SUNKEN, RAISED, GROOVE, and RIDGE.
Note that to show the border, you need to change the
borderwidth from it's default value of 0. Also note that
the border is drawn on top of the canvas coordinate
system.

scrollregion 4-tuple The bounding box of the scrollable area. If this option
is not set, the scrolling is not bounded.

selectback-
ground

color

selectborder-
width

distance

selectfore-
ground

color

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the canvas accepts focus only if it has any
keyboard bindings (default is off, in other words).

width distance

xscroll-
command

callback

xscroll-
increment

distance

yscroll-
command

callback

yscroll-
increment

distance

54

Chapter 13. The Canvas Arc Item
An arc item is a section of oval, delimited by two angles (start and extent). An arc item can be
drawn in one of three ways:

• pieslice (lines are drawn from the perimeter to the oval's center)

• chord (the ends are connected with a straight line)

• arc (only the perimeter section is drawn)

xy = 20, 20, 300, 180
canvas.create_arc(xy, start=0, extent=270, fill="red")
canvas.create_arc(xy, start=270, extent=60, fill="blue")
canvas.create_arc(xy, start=330, extent=30, fill="green")

Pieslices and chords can be filled.

Figure 13-1. Pieslice Example

Methods
The following methods are used to create and configure arc items:

create_arc(x0, y0, x1, y1, options...) ⇒ id
create_arc(box, options...) ⇒ id

Create a arc item enclosed by the given rectangle. The start and extent options control
which section to draw. If they are set to 0.0 and 360.0, a full oval is drawn which touches
the rectangle's four edges.

delete(item)

Delete an arc item.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 13. The Canvas Arc Item

55

coords(item, x0, y0, x1, y1)

Change the enclosing rectangle for one or more arc items.

itemconfigure(item, options...)

Change the options for one or more arc items.

Options
The arc item supports the following options, via the create_arc method, and the itemconfig
and itemcget configuration methods.

Table 13-1. Canvas Arc Options

Option Type Description

style constant Specifies how to draw the arc item (see above). Use
one of PIESLICE, CHORD, or ARC. The default is
PIESLICE.
These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings “pieslice”,
“chord”, and “arc” instead.

start, extent angle The arc is drawn from the start angle (measured
counter-clockwise from three o'clock) to the start
angle plus the extent. Both angles are given in degrees,
and can be negative.
By default, the arc starts at 0.0 degrees (three o'clock),
and extends 90.0 degrees counter-clockwise (twelve
o'clock).

fill color The color to use for the arc's interior. If an empty
string is given, the interior is not drawn. Note that
arc's having the arc style cannot be filled. Default is
empty (transparent).

stipple bitmap The name of a bitmap which is used as a stipple brush
when filling the arc's interior. Typical values are
“gray12”, “gray25”, “gray50”, or “gray75”. Default is a
solid brush (no bitmap).
As of Tk 8.0p2, the stipple option is ignored on the
Windows platform. To draw stippled pieslices or
chords, you have to create corresponding polygons.

outline color The color to use for the arc's outline. If an empty
string is given, the outline is not drawn. Default is
“black”.

outlinestipple bitmap The name of a bitmap which is used as a stipple brush
when drawing the arc's outline. Typical values are
“gray12”, “gray25”, “gray50”, or “gray75”. Default is a

Chapter 13. The Canvas Arc Item

56

Option Type Description

solid brush (no bitmap).

width distance The width of the arc's outline. Default is 1 pixel.

tags tuple One or more tags to associate with this item. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

57

Chapter 14. The Canvas Bitmap Item
The bitmap item draws a bitmap on the canvas.

item = canvas.create_bitmap(100, 100, bitmap="info", foreground="gold")

You can use either a builtin bitmap, such as “hourglass”, “info”, “question”, or “warning”, or
load a bitmap from an XBM file.

Figure 14-1. Bitmap Example

For more flexible image support, use create_image instead (with a Tkinter BitmapImage
instance, or an instance of the corresponding Python Imaging Library class).

Bitmaps
The following bitmaps are available on all platforms: “error”, “gray75”, “gray50”, “gray25”,
“gray12”, “hourglass”, “info”, “questhead”, “question”, and “warning”.

The following additional bitmaps are available on the Macintosh only: “document”,
“stationery”, “edition”, “application”, “accessory”, “folder”, “pfolder”, “trash”, “floppy”,
“ramdisk”, “cdrom”, “preferences”, “querydoc”, “stop”, “note”, and “caution”.

You can also load the bitmap from an XBM file. Just prefix the filename with an at-sign, for
example “@sample.xbm”.

Chapter 14. The Canvas Bitmap Item

58

Methods
The following methods are used to create and configure bitmap items:

create_bitmap(x0, y0, options...) ⇒ id

Create a bitmap item placed relative to the given position.

delete(item)

Delete a bitmap item.

coords(item, x0, y0)

Move one or more bitmap items.

itemconfigure(item, options...)

Change the options for one or more bitmap items.

Options
The bitmap item supports the following options, via the create_bitmap method, and the
itemconfig and itemcget configuration methods.

Table 14-1. Canvas Bitmap Options

Option Type Description

bitmap bitmap The name of the bitmap.

anchor constant Specifies which part of the bitmap that should be
placed at the given position. Use one of N, NE, E, SE, S,
SW, W, NW, or CENTER. Default is CENTER.

foreground color The color to use for the bitmap's foreground pixels
(that is, non-zero pixels). If an empty string is given,
the foreground pixels are not drawn. Default is
“black”.

background color The color to use for the bitmap's background pixels
(that is, zero pixels). If an empty string is given, the
background pixels are not drawn. Default is empty
(transparent).

tags tuple One or more tags to associate with this item. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

59

Chapter 15. The Canvas Image Item
The image item draws an image on the canvas.

photo = PhotoImage(file="sample.gif")
item = canvas.create_image(10, 10, anchor=NW, image=photo)

Methods
The following methods are used to create and configure image items:

create_image(x0, y0, options...) ⇒ id

Create a image item placed relative to the given position. Note that the image itself is given
by the image option.

[FIXME: add note on image ownership]

delete(item)

Delete an image item.

coords
coords(item, x0, y0). Move one or more image items.

itemconfigure
itemconfigure(item, options...). Change the options for one or more image (or other) items.

Options
The image item supports the following options, via the create_image method, and the
itemconfig and itemcget configuration methods.

Table 15-1. Canvas Image Options

Option Type Description

image image The image object (a Tkinter PhotoImage or
BitmapImage instance, or instances of the
corresponding Python Imaging Library classes).

anchor constant Specifies which part of the image that should be
placed at the given position. Use one of N, NE, E, SE,
S, SW, W, NW, or CENTER. Default is CENTER.

tags tuple One or more tags to associate with this item. If only a
single tag is to be used, you can use a single string

Chapter 15. The Canvas Image Item

60

Option Type Description

instead of a tuple of strings.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

61

Chapter 16. The Canvas Line Item

Methods
create_line(x0, y0, x1, y1, ..., xn, yn, options...) ⇒ id

Create a line item.

delete(item)

Delete a line item.

coords(item, x0, y0, x1, y1, ..., xn, yn)

Change the coordinates for one or more line items.

itemconfigure(item, options...)

Change the options for one or more line items.

Options
The line item supports the following options, via the create_line method, and the itemconfig
and itemcget configuration methods.

Table 16-1. Canvas Line Options

Option Type Description

width distance The width of the line. Default is 1 pixel.

fill color The color to use for the line. Default is “black”.

stipple bitmap The name of a bitmap which is used as a stipple brush
when drawing the line. Typical values are “gray12”,
“gray25”, “gray50”, or “gray75”. Default is a solid
brush (no bitmap).

arrow constant If set to a value other than NONE, the line is drawn as
an arrow. The option value defines where to draw the
arrow head: FIRST, LAST, or BOTH. Default is NONE.
The FIRST and LAST constants are not defined in
Python 1.5.2 and earlier. For compatibility, use the
strings “first” and “last” instead.

arrowshape 3-tuple Controls the shape of the arrow. Default is (8, 10, 3).

capstyle constant For wide lines, this option controls how to draw the
line ends. Use one of BUTT, PROJECTING, ROUND.
Default is BUTT.
These constants are not defined in Python 1.5.2 and

Chapter 16. The Canvas Line Item

62

Option Type Description

earlier. For compatibility, use the strings “butt”,
“projecting”, and “round” instead.

joinstyle const For wide lines, this option controls how to draw the
joins between edges. Use one of BEVEL, MITER, or
ROUND. Default is ROUND.
These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings “bevel”,
“miter”, and “round” instead.

smooth flag If non-zero, the given coordinates are interpreted as b-
spline vertices.

splinesteps int The number of steps to use when smoothing this line.
Default is 12.

tags tags One or more tags to associate with this item. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

63

Chapter 17. The Canvas Oval Item

Methods
create_oval(x0, y0, options...) ⇒ id

Create a oval item at the given position, using the given options. Note that the oval string
itself is given by the oval option.

delete(item)

Delete an oval item.

coords(item, x0, y0)

Move one or more oval items.

itemconfigure(item, options...)

Change the options for one or more oval (or other) items.

Options
The oval item supports the following options, via the create_oval method, and the itemconfig
and itemcget configuration methods.

Table 17-1. Canvas Oval Options

Option Type Description

fill color The color to use for the interior. If an empty string is
given, the interior is not drawn. Default is empty
(transparent).

stipple bitmap The name of a bitmap which is used as a stipple brush
when filling the oval's interior. Typical values are
“gray12”, “gray25”, “gray50”, or “gray75”. Default is a
solid brush (no bitmap).
As of Tk 8.0, the stipple option is ignored on the
Windows platform. To draw stippled ovals, you have
to create corresponding polygons.

outline color The color to use for the outline. If an empty string is
given, the outline is not drawn. Default is “black”.

width distance The width of the outline. Default is 1 pixel.

tags tuple One or more tags to associate with this item. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

64

Chapter 18. The Canvas Polygon Item

Methods
The following methods are used to create and configure polygon items:

create_polygon(xy, options...) ⇒ id
create_polygon(x0, y0, x1, y1, x2, y2, ..., xn, yn, options...) ⇒ id

Create a polygon item. You must specify at least 3 vertices when you create a new polygon.

delete(item)

Delete a polygonitem.

coords(item, x0, y0, x1, y1, x2, y2, ..., xn, yn)

Change the coordinates for one or more polygon items. Note that the coordinates must be
given as separate arguments; you cannot use a sequence as with create_polygon.

itemconfigure(item, options...)

Change the options for one or more polygon items.

Options
The polygon item supports the following options, via the create_polygon method, and the
itemconfig and itemcget configuration methods.

Table 18-1. Canvas Polygon Options

Option Type Description

fill None The color to use for the polygon interior. If an empty
string is given, the interior is not drawn. Default is
empty (transparent).

stipple bitmap The name of a bitmap which is used as a stipple brush
when filling the polygon's interior. Typical values are
“gray12”, “gray25”, “gray50”, or “gray75”. Default is a
solid brush (no bitmap).

outline None The color to use for the polygon outline. If an empty
string is given, the outline is not drawn. Default is
“black”.

width distance The width of the polygon's outline. Default is 1 pixel.

smooth None If non-zero, the given coordinates are interpreted as b-
spline vertices.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 18. The Canvas Polygon Item

65

Option Type Description

splinesteps None The number of steps to use when smoothing the
polygon outline. Default is 12.

tags tuple One or more tags to associate with the polygon. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

66

Chapter 19. The Canvas Rectangle Item

Methods
The following methods are used to create and configure rectangle items:

create_rectangle(x0, y0, x1, y1, options...) ⇒ id

Create a rectangle item between the given coordinates. The rectangle item is created with
the given options.

delete(item)

Delete a rectangle item.

coords(item, x0, y0, x1, y1)

Change the coordinates for one or more rectangle items. The item argument can match
one or more rectangle items, rectangles, or any other item taking exactly four coordinates.

itemconfigure(item, options...)

Change the options for one or more rectangle items.

Options
The rectangle item supports the following options, via the create_rectangle method, and the
itemconfig and itemcget configuration methods.

Table 19-1. Canvas Rectangle Options

Option Type Description

fill None The color to use for the rectangle interior. If an empty
string is given, the interior is not drawn. Default is
empty (transparent).

outline None The color to use for the outline. If an empty string is
given, the outline is not drawn. Default is “black”.

stipple None The name of a bitmap which is used as a stipple brush
when filling the rectangle's interior. Typical values are
“gray12”, “gray25”, “gray50”, or “gray75”. Default is a
solid brush (no bitmap).

tags None One or more tags to associate with the rectangle. If
only a single tag is to be used, you can use a single
string instead of a tuple of strings.

width distance The width of the rectangle's outline. Default is 1 pixel.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

67

Chapter 20. The Canvas Text Item

Methods
The following methods are used to create and configure text items:

create_text(x0, y0, options...) ⇒ id

Create a text item at the given position, using the given options. Note that the text string
itself is given by the text option.

delete(item)

Delete a text item.

coords(item, x0, y0)

Move one or more text items.

itemconfigure(item, options...)

Change the options for one or more text (or other) items.

Options
The text item supports the following options, via the create_text method, and the itemconfig
and itemcget configuration methods.

Table 20-1. Canvas Text Options

Option Type Description

anchor constant Specifies which part of the text (the text's bounding
box, more exactly) that should be placed at the given
position. Use one of N, NE, E, SE, S, SW, W, NW, or
CENTER. Default is CENTER.

fill color The color to use for the text. If an empty string is
given, the text is not drawn. Default is empty
(transparent).

font font

justify constant

stipple bitmap

tags tuple One or more tags to associate with the text. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

Chapter 20. The Canvas Text Item

68

Option Type Description

text string The text string.

width distance

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

69

Chapter 21. The Canvas Window Item

Methods
The following methods are used to create and configure window items:

create_window(x0, y0, options...) ⇒ id

Embed a window at the given position, using the given options. Note that the widget to use
is given by the window option.

delete(item)

Delete a window item.

coords(item, x0, y0)

Move one or more window items.

itemconfigure(item, options...)

Change the options for one or more window (or other) items.

Options
The window item supports the following options, via the create_window method, and the
itemconfig and itemcget configuration methods.

Table 21-1. Canvas Window Options

Option Type Description

window window The widget to embed in the canvas.

anchor constant Specifies which part of the window that should be
placed at the given position. Use one of N, NE, E, SE, S,
SW, W, NW, or CENTER. Default is CENTER.

height, width distance The height and width of the window. If omitted, the
height and width defaults to the actual window size.

tags tuple One or more tags to associate with the window. If only
a single tag is to be used, you can use a single string
instead of a tuple of strings.

70

Chapter 22. The Checkbutton Widget
The Checkbutton widget is a standard Tkinter widgets used to implement on-off selections.
Checkbuttons can contain text or images, and you can associate a Python function or method
with each button. When the button is pressed, Tkinter automatically calls that function or
method.

The button can only display text in a single font, but the text may span more than one line. In
addition, one of the characters can be underlined, for example to mark a keyboard shortcut. By
default, the Tab key can be used to move to a button widget.

Each Checkbutton widget should be associated with a variable.

When to use the Checkbutton Widget
The checkbutton widget is choose between two distinct values (usually switching something on
or off). Groups of checkbuttons can be used to implement “many-of-many” selections.

To handle “one-of-many” choices, use Radiobutton and Listbox widgets.

Patterns
(Also see the Button patterns).

To use a Checkbutton, you must create a Tkinter variable:

var = IntVar()
c = Checkbutton(master, text="Expand", variable=var)

By default, the variable is set to 1 if the button is selected, and 0 otherwise. You can change
these values using the onvalue and offvalue options. The variable doesn't have to be an integer
variable:

var = StringVar()
c = Checkbutton(

master, text="Color image", variable=var,
onvalue="RGB", offvalue="L"
)

If you need to keep track of both the variable and the widget, you can simplify your code
somewhat by attaching the variable to the widget reference object.

v = IntVar()
c = Checkbutton(master, text="Don't show this again", variable=v)
c.var = v

If your Tkinter code is already placed in a class (as it should be), it is probably cleaner to store
the variable in an attribute, and use a bound method as callback:

def __init__(self, master):

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 22. The Checkbutton Widget

71

self.var = IntVar()
c = Checkbutton(master, text="Enable Tab",

variable=self.var, command=self.cb)
c.pack()

def cb(self, event):
print "variable is", self.var.get()

Methods
The Checkbutton widgets support the standard Tkinter Widget interface, plus the following
methods:

deselect()

Deselect the button.

flash()

Redraw the button several times, alternating between active and normal appearance.

invoke()

Call the command associated with the button.

select()

Select the button.

toggle()

Toggle the selection state.

Options
The Checkbutton widgets support the following options:

Table 22-1. Checkbutton Options

Option Type Description

activeback-
ground, active-
foreground

color The color to use when the button is activated.

anchor constant Controls where in the button the text (or image)
should be located. Use one of N, NE, E, SE, S, SW, W,
NW, or CENTER. Default is CENTER. If you change this,
it is probably a good idea to add some padding as well,
using the padx and/or pady options.

background,
foreground

color The button color. The default is platform specific.

Chapter 22. The Checkbutton Widget

72

Option Type Description

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.
The following bitmaps are available on all platforms:
“error”, “gray75”, “gray50”, “gray25”, “gray12”,
“hourglass”, “info”, “questhead”, “question”, and
“warning”.

The following additional bitmaps are available on the
Macintosh only: “document”, “stationery”, “edition”,
“application”, “accessory”, “folder”, “pfolder”, “trash”,
“floppy”, “ramdisk”, “cdrom”, “preferences”,
“querydoc”, “stop”, “note”, and “caution”.
You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example
“@sample.xbm”.

borderwidth
(bd)

int The width of the button border. The default is
platform specific.

command callback A function or method that is called when the button is
pressed. The callback can be a function, bound
method, or any other callable Python object.

cursor cursor The cursor to show when the mouse is moved over the
button.

default int If set, the button is a default button. Tk will indicate
this by drawing a platform specific indicator (usually
an extra border). NOTE: The syntax has changed in
8.0b2!!!

disabledforegro
und

color The color to use when the button is disabled. The
background is shown in the background color.

font font The font to use in the button. The button can only
contain text in a single font.

highlightbackgr
ound,
highlightcolor

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the
highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is typically one or two pixels.

image image The image to display in the widget. If specified, this

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 22. The Checkbutton Widget

73

Option Type Description

takes precedence over the text and bitmap options.

indicatoron bool Controls if the indicator should be drawn or not. This
is on by default.
Setting this option to false means that the relief will be
used as the indicator. If the button is selected, it is
drawn as SUNKEN instead of RAISED.

justify constant Defines how to align multiple lines of text. Use LEFT,
RIGHT, or CENTER.

offvalue,
onvalue

value The values corresponding to a non-checked or
checked button, respectively. Defaults are 0 and 1.

padx, paxy distance Button padding. These options specify the horizontal
and vertical padding between the text or image, and
the button border.

relief constant Border decoration. This is usually FLAT for
checkbuttons, unless they use the border as indicator
(via the indicatoron option).

selectcolor color Color to use for the selector.

selectimage image Graphic image to use for the selector.

state constant The button state: NORMAL, ACTIVE or DISABLED.
Default is NORMAL.

takefocus flag Indicates that the user can use the Tab key to move to
this button. Default is an empty string, which means
that the button accepts focus only if it has any
keyboard bindings (default is on, in other words).

text string The text to display in the button. The text can contain
newlines. If the bitmap or image options are used, this
option is ignored.

textvariable variable Associates a Tkinter variable (usually a StringVar) to
the button. If the variable is changed, the button text
is updated.
Also see the variable option.

underline int Default is -1 (don't underline).

variable variable Associates a Tkinter variable to the button. When the
button is pressed, the variable is toggled between
offvalue and onvalue. Explicit changes to the variable
are automatically reflected by the buttons.

width, height distance The size of the button. If the button displays text, the
size is given in text units. If the button displays an

Chapter 22. The Checkbutton Widget

74

Option Type Description

image, the size is given in pixels (or screen units). If
the size is omitted, it is calculated based on the button
contents.

wraplength distance Determines when a button's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

75

Chapter 23. The DoubleVar Class

When to use the DoubleVar Class
FIXME

Patterns
FIXME

Methods
get() ⇒ float
set(float)

FIXME

trace(mode, callback)
trace_variable(mode, callback)

FIXME

trace_vdelete(mode, callback name)

FIXME

trace_vinfo() ⇒ list

FIXME

76

Chapter 24. The Entry Widget
The Entry widget is a standard Tkinter widget used to enter or display a single line of text.

When to use the Entry Widget
The entry widget is used to enter text strings. This widget allows the user to enter one line of
text, in a single font.

To enter multiple lines of text, use the text widget.

Concepts

Indexes

The Entry widget allows you to specify character positions in a number of ways:

• Numerical indexes

• ANCHOR

• END

• INSERT

• Mouse coordinates

Numerical indexes work just like Python list indexes. The characters in the string are
numbered from 0 and upwards. You specify ranges just like you slice lists in Python; for
example, (0, 5) corresponds to the first five characters in the entry widget.

ANCHOR (or "anchor") corresponds to the start of the selection, if any. You can use the
select_from method to change this from the program.

END (or "end") corresponds to the position just after the last character in the entry widget. The
range (0, END) corresponds to all characters in the widget.

INSERT (or "insert") corresponds to the current position of the text cursor. You can use the
icursor method to change this from the program.

Finally, you can use the mouse position for the index, using the following syntax:

"@%d" % x

where x is given in pixels relative to the left edge of the entry widget.

Patterns
FIXME: To be added.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 24. The Entry Widget

77

Methods
The Entry widget support the standard Tkinter Widget interface, plus the following methods:

insert(index, text)

Insert text at the given index. Use insert(INSERT, text) to insert text at the cursor,
insert(END, text) to append text to the widget.

delete(index)
delete(from, to)

Delete the character at index, or within the given range. Use delete(0, END) to delete all
text in the widget.

icursor(index)

Move the insertion cursor to the given index. This also sets the INSERT index.

get() ⇒ string

Get the current contents of the entry field.

index(index) ⇒ index

Return the numerical position corresponding to the given index.

Selection Methods

selection_adjust(index)
select_adjust(index)

Adjust the selection to include also the given character. If index is already selected, do
nothing.

selection_clear()
select_clear()

Clear the selection.

selection_from(index)
select_from(index)

Starts a new selection. This also sets the ANCHOR index.

selection_present() ⇒ flag
select_present() ⇒ flag

Returns true (non-zero) if some part of the text is selected.

selection_range(start, end)
select_range(start, end)

Explicitly set the selection. Start must be smaller than end. Use selection_range(0, END)
to select all text in the widget.

Chapter 24. The Entry Widget

78

selection_to(index)
select_to(index)

Select all text between ANCHOR and the given index.

Scrolling Methods
These methods are used to scroll the entry widget in various ways. The scan methods can be
used to implement fast mouse panning operations (they are bound to the middle mouse
button, if available), while the xview method is used with a standard scrollbar widget.

scan_mark(x)

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

scan_dragto(x)

Scroll the widget contents sideways according to the given mouse coordinate. The text is
moved 10 times the distance between the scanning anchor and the new position.

xview(index)

Make sure the given index is visible. The widget is scrolled if necessary.

xview_moveto(fraction)
xview_scroll(number, what)

Options
The Entry widget support the following options:

Table 24-1. Entry Options

Option Type Description

background
(bg)

color Widget background.

borderwidth
(bd)

distance Border width.

cursor cursor Widget cursor. The default is a text insertion cursor
(typically an “I beam” cursor, e.g. xterm).

exportselection flag If true, selected text is automatically exported to the
clipboard. Default is true.

font font Widget font. The default is system specific.

foreground (fg) color Text color.

highlightback-
ground,

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 24. The Entry Widget

79

Option Type Description

highlightcolor highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is typically one or two pixels.

insertback-
ground

color Color used for the insertion cursor.

insertborder-
width

color

insertofftime,
insertontime

int Controls cursor blinking.

insertwidth int Width of the insertion cursor.

justify const

relief const Border decoration. The default is FLAT. Other possible
values are SUNKEN, RAISED, GROOVE, and RIDGE.

select-
background

color Selection background color. The default is system and
display specific.

selectborder-
width

int Selection border width. The default is system specific.

select-
foreground

color Selection text color. The default is system and display
specific.

show character Controls how to display the contents of the widget. If
non-empty, the widget displays a string of characters
instead of the actual contents. To get a password entry
widget, use "*".

state const One of NORMAL or DISABLED. Default is NORMAL.
Note that if you set this to DISABLED, calls to insert or
delete are ignored.

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the canvas accepts focus only if it has any
keyboard bindings (default is on, in other words).

textvariable variable

width int

xscroll-
command

callback

80

Chapter 25. The Font Class

Patterns

Methods
copy() ⇒ font object

Return a distinct copy of the current font.

actual() ⇒ dictionary
actual(option) ⇒ value

Return actual font attributes. If no option is given, returns all actual font attribtues as a
dictionary.

cget(option) ⇒ string

Get configured font attribute.

config() ⇒ dictionary
configure() ⇒ dictionary

Get full set of configured font attributes as a dictionary.

config(options)
configure(options...)

Modify one or more font attributes.

measure(text) ⇒ integer

Return text width.

metrics() ⇒ dictionary
metrics(options...) ⇒ value

Return one or more font metrics. If no arguments are given, all metrics are returned as a
dictionary.

For best performance, make sure that this font is in use before calling this method. If
necessary, you can create a dummy widget using the font.

Functions
families() ⇒ list

Get a list of available font families.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 25. The Font Class

81

names() ⇒ list

Get a list of the names of names of all user-defined fonts.

Options
The constructor and the config method supports the following options.

Table 25-1. Font Options

Option Type Description

font font Font specifier (name, system font, or (family, size,
style)-tuple). If you use this option, FIXME

family string Font family.

size integer Font size in points. To give the size in pixels, use a
negative value.

weight constant Font thickness. Use one of NORMAL or BOLD. Default
is NORMAL.
Note that these constants are defined in the tkFont
module.

slant constant Font slant. Use one of NORMAL or ITALIC. Default is
NORMAL.
Note that these constants are defined in the tkFont
module.

underline flag Font underlining. If 1 (true), the font is underlined.
Default is 0 (false).

overstrike flag Font strikeout. If 1 (true), a line is drawn over text
written with this font. Default is 0 (false).

82

Chapter 26. The Frame Widget
A frame is rectangular region on the screen. The frame widget is mainly used as a geometry
master for other widgets, or to provide padding between other widgets.

When to use the Frame Widget
Frame widgets are used to group other widgets into complex layouts. They are also used for
padding, and as a base class when implementing compound widgets.

Patterns
The frame widget can be used as a place holder for video overlays and other external processes.

To use a frame widget in this fashion, set the background color to an empty string (this
prevents updates, and leaves the color map alone), pack it as usual, and use the window_id
method to get the window handle corresponding to the frame.

frame = Frame(width=768, height=576, bg="", colormap="new")
frame.pack()
video.attach_window(frame.window_id())

Methods
Except for the standard widget interface (config, etc), the Frame widget has no methods.

Options
The Frame widget supports the following options:

Table 26-1. Frame Options

Option Type Description

height, width distance Frame size.

background
(bg)

color The background color to use in this frame. This
defaults to the application background color. To
prevent updates, set the color to an empty string.

colormap window Some displays support only 256 colors (some use even
less). Such displays usually provide a color map to
specify which 256 colors to use. This option allows you
to specify which color map to use for this frame, and
its child widgets.
By default, a new frame uses the same color map as its
parent. Using this option, you can reuse the color map

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 26. The Frame Widget

83

Option Type Description

of another window instead (this window must be on
the same screen and have the same visual
characteristics). You can also use the value “new” to
allocate a new color map for this frame.
You cannot change this option once you've created the
frame.

cursor cursor The cursor to show when the mouse pointer is placed
over the button widget. Default is a system specific
arrow cursor.

relief constant Border decoration. The default is FLAT. Other possible
values are SUNKEN, RAISED, GROOVE, and RIDGE.
Note that to show the border, you need to change the
borderwidth from it's default value of 0.

borderwidth
(bd)

distance Border width. Defaults to 0 (no border).

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the frame accepts focus only if it has any
keyboard bindings (default is off, in other words).

highlightback-
ground,
highlightcolor

color Controls how to draw the focus highlight border.
When any child to the frame has focus, the border is
drawn in the highlightcolor color. Otherwise, it is
drawn in the highlightbackground color. The defaults
are system specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is 0 (no border).

84

Chapter 27. The Grid Geometry Manager
The Grid geometry manager puts the widgets in a 2-dimensional table. The master widget is
split into a number of rows and columns, and each “cell” in the resulting table can hold a
widget.

When to use the Grid Manager
The grid manager is the most flexible of the geometry managers in Tkinter. If you don't want to
learn how and when to use all three managers, you should at least make sure to learn this one.

The grid manager is especially convenient to use when designing dialog boxes. If you're using
the packer for that purpose today, you'll be surprised how much easier it is to use the grid
manager instead. Instead of using lots of extra frames to get the packing to work, you can in
most cases simply pour all the widgets into a single container widget (I tend to use two; one for
the dialog body, and one for the button box at the bottom), and use the grid manager to get
them all where you want them.

Consider the following example:

Creating this layout using the pack manager is possible, but it takes a number of extra frame
widgets, and a lot of work to make things look good. If you use the grid manager instead, you
only need one call per widget to get everything laid out properly (see next section for the code
needed to create this layout).

Warning
Never mix grid and pack in the same master window. Tkinter will happily spend the rest of your
lifetime trying to negotiate a solution that both managers are happy with. Instead of waiting, kill
the application, and take another look at your code. A common mistake is to use the wrong
parent for some of the widgets.

Patterns
Using the grid manager is easy. Just create the widgets, and use the grid method to tell the
manager in which row and column to place them. You don't have to specify the size of the grid
beforehand; the manager automatically determines that from the widgets in it.

Label(master, text="First").grid(row=0)
Label(master, text="Second").grid(row=1)

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 27. The Grid Geometry Manager

85

e1 = Entry(master)
e2 = Entry(master)

e1.grid(row=0, column=1)
e2.grid(row=1, column=1)

Note that the column number defaults to 0 if not given.

Running the above example produces the following window:

Figure 27-1. Figure: simple grid example

Empty rows and columns are ignored. The result would have been the same if you had placed
the widgets in row 10 and 20 instead.

Note that the widgets are centered in their cells. You can use the sticky option to change this;
this option takes one or more values from the set N, S, E, W. To align the labels to the left
border, you could use W (west):

Label(master, text="First").grid(row=0, sticky=W)
Label(master, text="Second").grid(row=1, sticky=W)

e1 = Entry(master)
e2 = Entry(master)

e1.grid(row=0, column=1)
e2.grid(row=1, column=1)

Figure 27-2. Figure: using the sticky option

You can also have the widgets span more than one cell. The columnspan option is used to let a
widget span more than one column, and the rowspan option lets it span more than one row.
The following code creates the layout shown in the previous section:

label1.grid(sticky=E)
label2.grid(sticky=E)

entry1.grid(row=0, column=1)
entry2.grid(row=1, column=1)

checkbutton.grid(columnspan=2, sticky=W)

Chapter 27. The Grid Geometry Manager

86

image.grid(row=0, column=2, columnspan=2, rowspan=2,
sticky=W+E+N+S, padx=5, pady=5)

button1.grid(row=2, column=2)
button2.grid(row=2, column=3)

There are plenty of things to note in this example. First, no position is specified for the label
widgets. In this case, the column defaults to 0, and the row to the first unused row in the grid.
Next, the entry widgets are positioned as usual, but the checkbutton widget is placed on the
next empty row (row 2, in this case), and is configured to span two columns. The resulting cell
will be as wide as the label and entry columns combined. The image widget is configured to
span both columns and rows at the same time. The buttons, finally, is packed each in a single
cell:

Figure 27-3. Figure: using column and row spans

Methods

Widget Methods

The following methods are available on widgets managed by the grid manager:

grid(option=value, ...)
grid_configure(option=value, ...)

Place the widget in a grid as described by the options (see below).

grid_forget()

Remove the widget. The widget is not destroyed, and can be displayed again by grid or any
other manager.

grid_info() ⇒ dictionary

Return a dictionary containing the current options.

grid_remove()

Remove the widget. The widget is not destroyed, and can be displayed again by grid or any
other manager.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 27. The Grid Geometry Manager

87

Manager Methods
The following methods are available on widgets that are used as grid managers (that is, the
geometry masters for widgets managed by the grid manager).

columnconfigure(column, option=value, ...)
rowconfigure(row, option=value, ...)

Set options for the given column (or row).

To change this for a given widget, you have to call this method on the widget's parent.

Table 27-1. Grid Manager Options

Option Type Description

minsize integer Defines the minimum size for the column (row). Note
that if a column or row is completely empty, it will not
be displayed, even if this option is set.

pad integer Padding to add to the size of the largest widget in the
column (row) when setting the size of the whole
column.

weight integer A relative weight used to distribute additional space
between columns (rows). A column with the weight 2
will grow twice as fast as a column with weight 1. The
default is 0, which means that the column will not
grow at all.

grid_location(x, y) ⇒ tuple

Returns the grid cell under (or closest to) the given pixel coordinate. The result is a 2-
tuple: (column, row).

grid_propagate(flag)

Enables or disables geometry propagation. When enabled, the grid manager attempts to
change the size of the geometry master when a child widget changes size. Propagation is
always enabled by default.

grid_size() ⇒ tuple

Returns the current grid size. This is defined as indexes of the first empty column and row
in the grid, in that order. The result is a 2-tuple: (column, row).

grid_slaves() ⇒ list

Returns a list of the “slave” widgets managed by this widget. The widgets are returned as
Tkinter widget references.

Options
The following options can be used with the grid and grid_configure methods:

Chapter 27. The Grid Geometry Manager

88

Table 27-2. Grid Manager Options

Option Type Description

column integer Insert the widget at this column. Column numbers
start with 0. If omitted, defaults to 0.

columnspan integer If given, indicates that the widget cell should span
more than one column.

in (in_) widget Place widget inside to the given widget. You can only
place a widget inside its parent, or in any decendant of
its parent. If this option is not given, it defaults to the
parent.
Note that in is a reserved word in Python. To use it as
a keyword option, append an underscore (in_).

ipadx, ipady distance Optional internal padding. Works like padx and pady,
but the padding is added inside the widget borders.
Default is 0.

padx, pady distance Optional padding to place around the widget in a cell.
Default is 0.

row integer Insert the widget at this row. Row numbers start with
0. If omitted, defaults to the first empty row in the
grid.

rowspan integer If given, indicates that the widget cell should span
more than one row.

sticky constant Defines how to expand the widget if the resulting cell
is larger than the widget itself. This can be any
combination of the constants S, N, E, and W, or NW,
NE, SW, and SE. For example, W (west) means that the
widget should be aligned to the left cell border. W+E
means that the widget should be stretched
horizontally to fill the whole cell. W+E+N+S means
that the widget should be expanded in both directions.
Default is to center the widget in the cell.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

89

Chapter 28. The IntVar Class

When to use the IntVar Class
FIXME

Patterns
FIXME

Methods
get() ⇒ integer
set(integer)

FIXME

trace(mode, callback)
trace_variable(mode, callback)

FIXME

trace_vdelete(mode, callback name)

FIXME

trace_vinfo() ⇒ list

FIXME

90

Chapter 29. The Label Widget
The Label widget is a standard Tkinter widget used to display a text or image on the screen. The
button can only display text in a single font, but the text may span more than one line. In
addition, one of the characters can be underlined, for example to mark a keyboard shortcut.

When to use the Label Widget
Labels are used to display texts and images. The label widget uses double buffering, so you can
update the contents at any time, without annoying flicker.

To display data that the user can manipulate in place, it's probably easier to use the Canvas
widget.

Patterns
To use a label, you just have to specify what to display in it (this can be text, a bitmap, or an
image):

w = Label(master, text="Hello, world!")

If you don't specify a size, the label is made just large enough to hold its contents. You can also
use the height and width options to explicitly set the size. If you display text in the label, these
options define the size of the label in text units. If you display bitmaps or images instead, they
define the size in pixels (or other screen units). See the Button description for an example how
to specify the size in pixels also for text labels.

You can specify which color to use for the label with the foreground (or fg) and background (or
bg) options. You can also choose which font to use in the label (the following example uses Tk
8.0 font descriptors). Use colors and fonts sparingly; unless you have a good reason to do
otherwise, you should stick to the default values.

w = Label(master, text="Rouge", fg="red")
w = Label(master, text="Helvetica", font=("Helvetica", 16))

Labels can display multiple lines of text. You can use newlines or use the wraplength option to
make the label wrap text by itself. When wrapping text, you might wish to use the anchor and
justify options to make things look exactly as you wish. An example:

w = Label(master, text=longtext, anchor=W, justify=LEFT)

You can associate a variable with the label. When the contents of the variable changes, the label
is automatically updated:

v = StringVar()
Label(master, textvariable=v).pack()
v.set("New Text!")

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 29. The Label Widget

91

Methods
The Label widget supports the standard Tkinter Widget interface. There are no additional
methods.

Options
The following options can be used for the Label widget.

Table 29-1. Label Options

Option Type Description

text string The text to display in the label. The text can contain
newlines. If the bitmap or image options are used, this
option is ignored.

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.
The following bitmaps are available on all platforms:
“error”, “gray75”, “gray50”, “gray25”, “gray12”,
“hourglass”, “info”, “questhead”, “question”, and
“warning”.

The following additional bitmaps are available on the
Macintosh only: “document”, “stationery”, “edition”,
“application”, “accessory”, “folder”, “pfolder”, “trash”,
“floppy”, “ramdisk”, “cdrom”, “preferences”,
“querydoc”, “stop”, “note”, and “caution”.
You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example
“@sample.xbm”.

image image The image to display in the widget. If specified, this
takes precedence over the text and bitmap options.

width, height int The size of the label. If the label displays text, the size
is given in text units. If the label displays an image, the
size is given in pixels (or screen units). If the size is
omitted, it is calculated based on the label contents.

relief constant Border decoration. The default is FLAT. Other possible
values are SUNKEN, RAISED, GROOVE, and RIDGE.
Note that to show the border, you need to change the
borderwidth from it's default value of 0.

borderwidth dímension The width of the label border. The default is 0 (no

Chapter 29. The Label Widget

92

Option Type Description

(bd) border).

background
(bg), fore-
ground (fg)

color The label color (the foreground value is used for text
and bitmap labels only). The default is platform
specific.

font font The font to use in the label. The label can only contain
text in a single font.

justify constant Defines how to align multiple lines of text. Use LEFT,
RIGHT, or CENTER.

anchor constant Controls where in the label the text (or image) should
be located. Use one of N, NE, E, SE, S, SW, W, NW, or
CENTER. Default is CENTER.

wraplength distance Determines when a label's text should be wrapped into
multiple lines. This is given in screen units. Default is
no wrapping.

textvariable variable Associates a Tkinter variable (usually a StringVar) to
the label. If the variable is changed, the label text is
updated.

underline int Default is -1.

cursor cursor The cursor to show when the mouse is moved over the
label.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

93

Chapter 30. The Listbox Widget
The Listbox widget is a standard Tkinter widget used to display a list of alternatives. The listbox
can only contain text items, and all items must have the same font and color. Depending on the
widget configuration, the user can choose one or more alternatives from the list.

When to use the Listbox Widget
Listboxes are used to select from a group of textual items. Depending on how the listbox is
configured, the user can select one or many items from that list.

Patterns
When you first create the listbox, it is empty. The first thing to do is usually to insert one or
more lines of text. The insert method takes an index and a string to insert. The index is usually
an item number (0 for the first item in the list), but you can also use some special indexes,
including ACTIVE, which refers to the “active” item (set when you click on an item, or by the
arrow keys), and END, which is used to append items to the list.

listbox = Listbox(master)

listbox.insert(END, "a list entry")

for item in ["one", "two", "three", "four"]:
listbox.insert(END, item)

To remove items from the list, use the delete method. The most common operation is to delete
all items in the list (something you often need to do when updating the list).

listbox.delete(0, END)
listbox.insert(END, newitem)

You can also delete individual items. In the following example, a separate button is used to
delete the ACTIVE item from a list.

lb = Listbox(master)
b = Button(master, text="Delete",

command=lambda lb=lb: lb.delete(ANCHOR))

The listbox offers four different selection modes through the selectmode option. These are
SINGLE (just a single choice), BROWSE (same, but the selection can be moved using the
mouse), MULTIPLE (multiple item can be choosen, by clicking at them one at a time), or
EXTENDED (multiple ranges of items can be chosen, using the Shift and Control keyboard
modifiers). The default is BROWSE. Use MULTIPLE to get "checklist" behavior, and EXTENDED
when the user would usually pick only one item, but sometimes would like to select one or
more ranges of items.

Chapter 30. The Listbox Widget

94

lb = Listbox(selectmode=EXTENDED)

To query the selection, use curselection method. It returns a list of item indexes, but a bug in
Tkinter 1.101 (Python 1.5.1) and earlier versions causes this list to be returned as a list of
strings, instead of integers. This will most likely be fixed in later versions of Tkinter, so you
should make sure that your code is written to handle either case. Here's one way to do that:

items = list.curselection()
try:

items = map(int, items)
except ValueError: pass

In versions before Python 1.5, use string.atoi of int.

Use the get method to get the list item corresponding to a given index.

You can also use a listbox to represent arbitrary Python objects. In the next example, we
assume that the input data is represented as a list of tuples, where the first item in each tuple is
the string to display in the list. For example, you could display a dictionary by using the items
method to get such a list.

self.lb.delete(0, END) # clear
for key, value in data:

self.lb.insert(END, key)
self.data = data

When querying the list, simply fetch the items indexed by the selection list:

items = self.lb.curselection()
try:

items = map(string.atoi, items)
except ValueError: pass
items = map(lambda i,d=self.data: d[i], items)

Unfortunately, the listbox doesn't provide a command option allowing you to track changes to
the selection. The standard solution is to bind a double-click event to the same callback as the
OK (or Select, or whatever) button. This allows the user to either select an alternative as usual,
and click OK to carry out the operation, or to select and carry out the operation in one go by
double-clicking on an alternative. This solution works best in BROWSE and EXTENDED modes.

lb.bind("<Double-Button-1>", self.ok)

If you wish to track arbitrary changes to the selection, you can either rebind the whole bunch of
selection related events (see the Tk manual pages for a complete list of Listbox event bindings),
or, much easier, poll the list using a timer:

def __init__(self, master):
self.list = Listbox(selectmode=EXTENDED)
self.list.pack()
self.current = None
self.poll() # start polling the list

def poll(self):

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 30. The Listbox Widget

95

now = self.list.curselection()
if now != self.current:

self.list_has_changed(now)
self.current = now

self.after(250, self.poll)

By default, the selection is exported via the X selection mechanism (or the clipboard, on
Windows). If you have more than one listbox on the screen, this really messes things up for the
poor user. If she selects something in one listbox, and then selects something in another, the
original selection disappears. It is usually a good idea to disable this mechanism in such cases.
In the following example, three listboxes are used in the same dialog:

b1 = Listbox(exportselection=0)
for item in families:

b1.insert(END, item)

b2 = Listbox(exportselection=0)
for item in fonts:

b2.insert(END, item)

b3 = Listbox(exportselection=0)
for item in styles:

b3.insert(END, item)

The listbox itself doesn't include a scrollbar. Attaching a scrollbar is pretty straightforward.
Simply set the xscrollcommand and yscrollcommand options of the listbox to the set method of
the corresponding scrollbar, and the command options of the scrollbars to the corresponding
xview and yview methods in the listbox. Also remember to pack the scrollbars before the
listbox. In the following example, only a vertical scrollbar is used. For more examples, see
pattern section in the Scrollbar description.

frame = Frame(master)
scrollbar = Scrollbar(frame, orient=VERTICAL)
listbox = Listbox(frame, yscrollcommand=scrollbar.set)
scrollbar.config(command=listbox.yview)
scrollbar.pack(side=RIGHT, fill=Y)
listbox.pack(side=LEFT, fill=BOTH, expand=1)

With some more trickery, you can use a single vertical scrollbar to scroll several lists in parallel.
This assumes that all lists have the same number of items. Also note how the widgets are
packed in the following example.

def __init__(self, master):
scrollbar = Scrollbar(master, orient=VERTICAL)
self.b1 = Listbox(master, yscrollcommand=scrollbar.set)
self.b2 = Listbox(master, yscrollcommand=scrollbar.set)
scrollbar.config(command=self.yview)
scrollbar.pack(side=RIGHT, fill=Y)
self.b1.pack(side=LEFT, fill=BOTH, expand=1)
self.b2.pack(side=LEFT, fill=BOTH, expand=1)

def yview(self, *args):

Chapter 30. The Listbox Widget

96

apply(self.b1.yview, args)
apply(self.b2.yview, args)

Methods
The Listbox widget supports the standard Tkinter Widget interface, plus the following
methods:

activate(index)

Activate the given index (it will be marked with an underline). The active item can be
refered to using the ACTIVE index.

bbox(index) ⇒ tuple or None

Get the bounding box of the given item text. The bounding box is returned as a 4-tuple
giving (xoffset, yoffset, width, height). If the item is not visible, this method returns None.

curselection() ⇒ list

Get a list of the currently selected alternatives. The list contains the indexes of the selected
alternatives (beginning with 0 for the first alternative in the list). In Python 1.5.2 and
earlier, the list contains strings instead of integers. Since this may change in future
versions, you should make sure your code can handle either case. See the patterns section
for a suggested solution.

delete(index)
delete(first, last)

Delete one or more items. Use delete(0, END) to delete all items in the list.

get(index) ⇒ string
get(first, last) ⇒ list

Get one or more items from the list. This function returns the string corresponding to the
given index (or the strings in the given index range). Use get(0, END) to get a list of all
items in the list. Use ACTIVE to get the active (underlined) item.

index(index) ⇒ integer

Return the numerical index (0 to size()-1) corresponding to the given index. This is
typically ACTIVE, but can also be ANCHOR, or a string having the form "@x,y" where x and
y are widget-relative pixel coordinates.

insert(index, items)

Insert one or more items at given index (this works as for Python lists; index 0 is before
the first item). Use END to append items to the list. Use ACTIVE to insert items before the
the active (underlined) item.

nearest(y) ⇒ string

Return the index nearest to the given coordinate (a widget-relative pixel coordinate).

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 30. The Listbox Widget

97

see(index)

Make sure the given list index is visible. You can use an integer index, or END.

size() ⇒ integer

Return the number of items in the list. The valid index range goes from 0 to size()-1.

Selection Methods
The following methods are used to manipulate the listbox selection.

select_adjust(index)

Extend the selection to include the given index.

select_anchor(index)

Set the selection anchor to the given index. The anchor can be refered to using the
ANCHOR index.

select_clear()

Clear the selection.

select_includes(index) ⇒ flag

Returns true (non-zero) if the given item is selected.

select_set(index)
select_set(first, last)

Add one or more items to the selection.

Scrolling Methods
These methods are used to scroll the listbox widget in various ways. The scan methods can be
used to implement fast mouse scrolling operations (they are bound to the middle mouse
button, if available), while the yview method is used with a standard scrollbar widget.

scan_mark(x, y)

Set the scanning anchor for fast horizontal scrolling to the given mouse coordinate.

scan_dragto(x, y)

Scroll the widget contents according to the given mouse coordinate. The text is moved 10
times the distance between the scanning anchor and the new position.

xview() ⇒ tuple
yview() ⇒ tuple

Determine which part of the full list that is visible in the horizontal (vertical) direction.
This is given as the offset and size of the visible part, given in relation to the full size of the
list (1.0 is the full list). These methods are used by the Scrollbar bindings.

Chapter 30. The Listbox Widget

98

xview(column)
yview(index)

Adjust the list so that the given character column (list item) is at the left (top) edge of the
listbox. To make sure that a given item is visible, use the see method instead.

xview(MOVETO, offset)
yview(MOVETO, offset)

Adjust the list so that the given offset is at the left (top) edge of the listbox. Offset 0.0 is the
beginning of the list, 1.0 the end. These methods are used by the Scrollbar bindings when
the user drags the scrollbar slider.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility, use the
string “moveto” instead.

xview(SCROLL, step, what)
yview(SCROLL, step, what)

Scroll the list horizontally (vertically) by the given amount. The what argument can be
either UNITS (lines) or PAGES. These methods are used by the Scrollbar bindings when the
user clicks on a scrollbar arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the
strings “scroll”, “units”, and “pages” instead.

Options
The Listbox widget supports the following options:

Table 30-1. Listbox Options

Option Type Description

background
(bg), fore-
ground (fg)

color The listbox color. The default is platform specific.

cursor cursor The cursor to show when the mouse is placed over the
listbox.

exportselection bool If set, the list selection is automatically exported via
the X selection mechanism. The default is on. If you
have more than one list in the same dialog, it is
probably best to disable this mechanism.

font font The font to use in the listbox. The listbox can only
contain text in a single font.

relief constant Border decoration. The default is SUNKEN. Other
possible values are FLAT, RAISED, GROOVE, and
RIDGE.

borderwidth distance The width of the listbox border. The default is

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 30. The Listbox Widget

99

Option Type Description

(bd) platform specific, but is usually 1 or 2 pixels.

selectback-
ground, select-
foreground

color Selection color settings.

selectborder-
width

dimension Selection border width. The selection is always raised.

selectmode constant Selection mode. One of SINGLE, BROWSE, MULTIPLE,
or EXTENDED. Default is BROWSE. Use MULTIPLE to
get checklist behavior, EXTENDED if the user usually
selects one item, but sometimes would like to select
one or more ranges of items. See the patterns section
for more information.

setgrid bool

takefocus bool Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the listbox accepts focus only if it has any
keyboard bindings (default is on, in other words).

width, height distance The size of the listbox, in text units.

xscroll-
command,
yscroll-
command

command Used to connect a listbox to a scrollbar. These options
should be set to the set methods of the corresponding
scrollbars.

100

Chapter 31. The Menu Widget
The Menu widget is used to implement toplevel, pulldown, and popup menus.

When to use the Menu Widget
This widget is used to display all kinds of menus used by an application. Since this widget uses
native code where possible, you shouldn't try to fake menus using buttons and other Tkinter
widgets.

Patterns
Toplevel menus are displayed just under the title bar of the root or any other toplevel windows
(or on Macintosh, along the upper edge of the screen). To create a toplevel menu, create a new
Menu instance, and use add methods to add commands and other menu entries to it.

Example 31-1. Creating a toplevel menu

File: menu-example-2.py

from Tkinter import *

root = Tk()

def hello():
print "hello!"

create a toplevel menu
menubar = Menu(root)
menubar.add_command(label="Hello!", command=hello)
menubar.add_command(label="Quit!", command=root.quit)

display the menu
root.config(menu=menubar)

mainloop()

Pulldown menus (and other submenus) are created in a similar fashion. The main difference is
that they are attached to a parent menu (using add_cascade), instead of a toplevel window.

Example 31-2. Creating toplevel and pulldown menus

File: menu-example-3.py

from Tkinter import *

root = Tk()

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 31. The Menu Widget

101

def hello():
print "hello!"

menubar = Menu(root)

create a pulldown menu, and add it to the menu bar
filemenu = Menu(menubar, tearoff=0)
filemenu.add_command(label="Open", command=hello)
filemenu.add_command(label="Save", command=hello)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=root.quit)
menubar.add_cascade(label="File", menu=filemenu)

create more pulldown menus
editmenu = Menu(menubar, tearoff=0)
editmenu.add_command(label="Cut", command=hello)
editmenu.add_command(label="Copy", command=hello)
editmenu.add_command(label="Paste", command=hello)
menubar.add_cascade(label="Edit", menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)
helpmenu.add_command(label="About", command=hello)
menubar.add_cascade(label="Help", menu=helpmenu)

display the menu
root.config(menu=menubar)

mainloop()

Finally, a popup menu is created in the same way, but is explicitly displayed, using the post
method:

Example 31-3. Creating and displaying a popup menu

File: menu-example-4.py

from Tkinter import *

root = Tk()

def hello():
print "hello!"

create a popup menu
menu = Menu(root, tearoff=0)
menu.add_command(label="Undo", command=hello)
menu.add_command(label="Redo", command=hello)

create a canvas
frame = Frame(root, width=512, height=512)
frame.pack()

Chapter 31. The Menu Widget

102

def popup(event):
menu.post(event.x_root, event.y_root)

attach popup to canvas
frame.bind("<Button-3>", popup)

mainloop()

You can use the postcommand callback to update (or even create) the menu everytime it is
displayed.

Example 31-4. Updating a menu on the fly

File: menu-example-5.py

from Tkinter import *

counter = 0

def update():
global counter
counter = counter + 1
menu.entryconfig(0, label=str(counter))

root = Tk()

menubar = Menu(root)

menu = Menu(menubar, tearoff=0, postcommand=update)
menu.add_command(label=str(counter))
menu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="Test", menu=menu)

root.config(menu=menubar)

mainloop()

Methods
The Menu widget supports the standard Tkinter Widget interface (with the exception of the
geometry manager methods), plus the following methods:

add(type, options...)

Add (append) an entry of the given type to the menu. The type argument can be one of
“command”, “cascade” (submenu), “checkbutton”, “radiobutton”, or “separator”. The
options are as defined in the following table:

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 31. The Menu Widget

103

Table 31-1. Menu Item Options

Option Type Description

active-
background

color

active-
foreground

color

accelerator string

background color

bitmap bitmap

columnbreak flag

command callback

font font

foreground color

hidemargin flag

image image

indicatoron flag

label string

menu widget

offvalue value

onvalue value

selectcolor color

selectimage image

state constant

underline integer

value value

variable variable

add_cascade(options...)
add_checkbutton(options...)
add_command(options...)
add_radiobutton(options...)
add_separator(options...)

Convenience functions, used to add items of the given type.

Chapter 31. The Menu Widget

104

insert(index, type, options...)
insert_cascade(index, options...)
insert_checkbutton(index, options...)
insert_command(index, options...)
insert_radiobutton(index, options...)
insert_separator(index, options...)

Same as add and friends, but inserts the new item at the given index.

entryconfig(index, options...)
entryconfigure(index, options...)

Reconfigure the given menu entry. Only the given options are changed; the rest are left as
is.

index(index) ⇒ integer

Convert an index (of any kind) to an integer index.

delete(index)
delete(start, stop)

Delete one or more menu entries.

Displaying Menus

invoke(index)

Invoke the given entry (just like if the user had clicked on it).

post(x, y)

Display the menu at the given position. The position should be given in pixels, relative to
the root window.

unpost()

Remove a posted menu.

yposition(index) ⇒ integer

Return the vertical offset for the given entry. This can be used to position a popup menu so
that a given entry is under the the mouse when the menu appears.

Options
Table 31-2. Menu Options

Option Type Description

active-
background

color

activeborder- distance

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 31. The Menu Widget

105

Option Type Description

width

active-
foreground

color

background
(bg)

color

borderwidth
(bd)

distance

cursor cursor The cursor to show when the mouse pointer is placed
over the button widget. Default is a system specific
arrow cursor.

disabled-
foreground

color

font font

foreground (fg) color

postcommand callback If given, this callback is called whenever Tkinter is
about to display this menu. If you have dynamic
menus, use this callback to update their contents.

relief constant Border decoration. The default is RAISED. Other
possible values are FLAT, SUNKEN, GROOVE, and
RIDGE.

selectcolor color

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the menu accepts focus only if it has any keyboard
bindings (default is on, in other words).

tearoff flag If set, menu entry 0 will be a “tearoff entry”, which is
usually a dashed separator line. If the user selects this
entry, Tkinter creates a small Toplevel with a copy of
this menu.
This is on by default, so if you're writing code for
Windows and Macintosh, you may want to explicitly
set this option to false to make sure the menus looks
as people expect them to.

tearoff-
command

callback If given, this callback is called when this menu is
teared off (that is, if the tearoff option is set, and the
user clicks on the “tearoff entry”.)

title string

type constant

Chapter 31. The Menu Widget

106

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

107

Chapter 32. The Menubutton Widget
The Menubutton widget displays popup or pulldown menu when activated.

This widget is not documented in this version of this document. You will probably not miss it...

When to use the Menubutton Widget
This widget is used to implement various kinds of menus. In earlier versions of Tkinter, it was
used to implement toplevel menus, but this is now done with the Menu widget.

Patterns

Methods

Options

108

Chapter 33. The Message Widget

When to use the Message Widget
The message widget is used to display multiple lines of text. It's very similar to a plain Label,
but can adjust its width to maintain a given aspect ratio.

Patterns
FIXME: To be added

Methods
The Message widget supports the standard Tkinter Widget interface. There are no additional
methods.

Options
The Message widget support the following options:

Table 33-1. Message Options

Option Type Description

anchor constant

aspect value

background
(bg)

color

cursor cursor The cursor to show when the mouse pointer is placed
over the message widget. Default is a system specific
arrow cursor.

font font

foreground (fg) color

highlight-
background,
highlightcolor

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the
highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is 0 (no border).

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 33. The Message Widget

109

Option Type Description

justify constant

padx, pady distance

relief constant Border decoration. The default is FLAT. Other possible
values are SUNKEN, RAISED, GROOVE, and RIDGE.
Note that to show the border, you need to change the
borderwidth from it's default value of 0.

borderwidth
(bd)

distance Border width. The default is 0 (no border).

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the message accepts focus only if it has any
keyboard bindings (default is off, in other words).

text string

textvariable variable

width distance

110

Chapter 34. The Pack Geometry
Manager

The Pack geometry manager packs widgets in rows or columns. You can use options like fill,
expand, and side to control this geometry manager.

When to use the Pack Manager
To be added.

Warning
Don't mix grid and pack in the same master window. Tkinter will happily spend the rest of your
lifetime trying to negotiate a solution that both managers are happy with. Instead of waiting, kill
the application, and take another look at your code. A common mistake is to use the wrong
parent for some of the widgets.

Patterns
To be added.

Methods

Widget Methods

The following methods are available on widgets managed by the pack manager:

pack(option=value, ...)
pack_configure(option=value, ...)

Pack the widget as described by the options (see below).

pack_forget()

Remove the widget. The widget is not destroyed, and can be displayed again by pack or
any other manager.

pack_info() ⇒ dictionary

Return a dictionary containing the current options.

Manager Methods
The following methods are available on widgets that are used as pack managers (that is, the
geometry masters for widgets managed by the pack manager).

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 34. The Pack Geometry Manager

111

pack_propagate(value)

Enable or disable geometry propagation.

pack_slaves() ⇒ list

Returns a list of the “slave” widgets managed by this widget. The widgets are returned as
Tkinter widget references.

Options
The following options can be used with the pack and pack_configure methods:

Table 34-1. Pack Manager Options

Option Type Description

side constant Specifies which side to pack the widget against. To
pack widgets vertically, use TOP (default). To pack
widgets horizontally, use LEFT.
You can also pack widgets along the BOTTOM and
RIGHT edges. You can mix sides in a single geometry
manager, but the results may not be what you expect.
While you can create pretty complicated layouts by
nesting Frame widgets, you may prefer using the grid
geometry manager for all non-trivial layouts.

fill constant Specifies whether the widget should occupy all the
space given to it by the master. If NONE (default), keep
the widget's original size. If X (horizontally), Y
(vertically), or BOTH, fill the given space along that
direction.
To make a widget fill the entire master widget, set fill
to BOTH and expand to a non-zero value.

expand flag Specifies whether the widgets should be expanded to
fill any extra space in the geometry master. If zero
(default), the widget is not expanded.

in (in_) widget Pack widget inside the given widget. You can only
pack a widget inside its parent, or in any decendant of
its parent. This option should usually be left out, in
which case the widget is packed inside its parent.
Note that in is a reserved word in Python. To use it as
a keyword option, append an underscore (in_).

112

Chapter 35. The PhotoImage Class

When to use the PhotoImage Class
This class is used to display images (either grayscale or true color images) in labels, buttons,
canvases, and text widgets.

Patterns
FIXME: To be added.

Methods
configure(options)
config(options)

Change one or more configuration options.

cget(option) ⇒ string

Return the value of the given configuration option.

width() ⇒ integer
height() ⇒ integer

Returns the width (height) of the image, in pixels.

type() ⇒ string

Returns the string “photo”.

get(x, y) ⇒ string

Fetch the pixel at the given position (where (0, 0) is in the upper left corner).

As of Python 1.5.2, this method returns a string containing one or three pixel components.
Here's how to convert this string to either an integer or a 3-tuple of integers:

optionvalue = im.get(x, y)
if type(value) == type(""):

try:
value = int(value)

except ValueError:
value = tuple(map(int, string.split(value)))

put(data)
put(data, bbox)

Write pixel data to the image.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 35. The PhotoImage Class

113

read()

Not supported in 1.5.2 or earlier.

write(filename, options)

Save the contents of the PhotoImage to a file using the given format. The following options
can be used:

Table 35-1. PhotoImage Write Options

Option Type Description

format string Specifies the format handler to use when writing
this image. This is typically “gif” or “ppm”.

from_coords tuple Save only a part of the image. If a 2-tuple is given,
write saves the rectangle between that position, and
the lower right corner of the image. If a 4-tuple is
given, it specifies which rectangle to save.

blank()

Clears the image. The size is left as it is, but the contents are made completely transparent.

copy() ⇒ photoimage object

Duplicate the current PhotoImage instance.

zoom(xscale, yscale)
zoom(scale)

Resize the image to (xscale*width, yscale*height) pixels, using nearest neighbor
resampling. In other words, each pixel in the source image will be expanded to
xscale*yscale pixels. If only one scale is given, it is used for both directions.

subsample(xscale, yscale)
subsample(scale)

Resize the image to (xscale/width, yscale/height) pixels, using nearest neighbor
resampling. If only one scale is given, it is used for both directions.

Options
The PhotoImage class supports the following options.

Table 35-2. PhotoImage Options

Option Type Description

file string Read image data from the given file. The file can
contain GIF, PGM (grayscale), or PPM (truecolor)
data. Transparent regions in the GIF file are made
transparent.

Chapter 35. The PhotoImage Class

114

Option Type Description

To handle other file formats, use the corresponding
class in the Python Imaging Library.

data string Read image data from a string. In the current version
of Tk, this only works for base64-encoded GIF files. If
the file option is given, this option is ignored.

width, height integer The width (height) of the image memory. Note that
this is the requested size, not the actual size. To get the
actual size, use the corresponding methods.

format string If several file handlers can handle the given file, this
option can be used to specify which handler to use. If
you haven't installed extra file handlers, there's no
need to use this option.

gamma float The image gamma. To get fully accurate colors, this
should be set to a combination of the gamma values
for the image and display. Default is 1.0 (no gamma
correction).

palette integer or string Specifies the number of palette entries to use when
displaying this image. You can either use a single
integer to display the image as a grayscale image with
that number of grayscale levels, or a string with three
numbers separated by slashes, to display the image as
a color image with that number of red, green, and blue
values. The default is system specific.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

115

Chapter 36. The Place Geometry
Manager

The Place geometry manager is the simplest of the three general geometry managers provided
in Tkinter. It allows you explicitly set the position and size of a window, either in absolute
terms, or relative to another window.

You can access the place manager through the place method which is available for all standard
widgets.

When to use the Place Manager
It is usually not a good idea to use place for ordinary window and dialog layouts; its simply to
much work to get things working as they should. Use the pack or grid managers for such
purposes.

However, place has its uses in more specialized cases. Most importantly, it can be used by
compound widget containers to implement various custom geometry managers. Another use is
to position control buttons in dialogs.

Patterns
Let's look at some usage patterns. The following command centers a widget in its parent:

w.place(relx=0.5, rely=0.5, anchor=CENTER)

Here's another variant. It packs a Label widget in a frame widget, and then places a Button in
the upper right corner of the frame. The button will overlap the label.

pane = Frame(master)
Label(pane, text="Pane Title").pack()
b = Button(pane, width=12, height=12,

image=launch_icon, command=self.launch)
b.place(relx=1, x=-2, y=2, anchor=NE)

The following excerpt from a Notepad widget implementation displays a notepad page
(implemented as a Frame) in the notepad body frame. It first loops over the available pages,
calling place_forget for each one of them. Note that it's not an error to “unplace” a widget that
it's not placed in the first case:

for w in self.__pages:
w.place_forget()

self.__pages[index].place(in_=self.__body, x=bd, y=bd)

You can combine the absolute and relative options. In such cases, the relative option is applied
first, and the absolute value is then added to that position. In the following example, the widget
w is almost completely covers its parent, except for a 5 pixel border around the widget.

Chapter 36. The Place Geometry Manager

116

w.place(x=5, y=5, relwidth=1, relheight=1, width=-10, height=-10)

You can also place a widget outside another widget. For example, why not place two widgets on
top of each other:

w2.place(in_=w1, relx=0.5, y=-2, anchor=S, bordermode="outside")

Note the use of relx and anchor options to center the widgets vertically. You could also use
(relx=0, anchor=SW) to get left alignment, or (relx=1, anchor=SE) to get right alignment.

By the way, why not combine this way to use the packer with the launch button example shown
earlier. The following example places two buttons in the upper right corner of the pane:

b1 = DrawnButton(pane, (12, 12), launch_icon, command=self.launch)
b1.place(relx=1, x=-2, y=2, anchor=NE)
b2 = DrawnButton(pane, (12, 12), info_icon, command=self.info)
b2.place(in_=b1, x=-2, anchor=NE, bordermode="outside")

Finally, let's look at a piece of code from an imaginary SplitWindow container widget. The
following piece of code splits frame into two subframes called f1 and f2.

f1 = Frame(frame, bd=1, relief=SUNKEN)
f2 = Frame(frame, bd=1, relief=SUNKEN)
split = 0.5
f1.place(rely=0, relheight=split, relwidth=1)
f2.place(rely=split, relheight=1.0-split, relwidth=1)

To change the split point, set split to something suitable, and call the place method again. If
you haven't changed an option, you don't have to specify it again.

f1.place(relheight=split)
f2.place(rely=split, relheight=1.0-split)

You could add a small frame to use as a dragging handle, and add suitable bindings to it, e.g:

f3 = Frame(frame, bd=2, relief=RAISED, width=8, height=8)
f3.place(relx=0.9, rely=split, anchor=E)
f3.bind("<B1-Motion>", self.adjust)

Methods
place(option=value, ...)
place_configure(option=value, ...)

Place the widget as described by the options (see below).

place_forget()

Remove the widget. The widget is not destroyed, and can be displayed again by place or
any other manager.

place_info() ⇒ dictionary

Return a dictionary containing the current options.

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 36. The Place Geometry Manager

117

place_slaves() ⇒ list

Returns a list of the “slave” widgets managed by this widget. The widgets are returned as
Tkinter widget references.

Options
The following options can be used with the place and place_configure methods:

Table 36-1. Place Manager Options

Option Type Description

anchor constant Specifies which part of the widget that should be
placed at the given position. Valid values are N, NE, E,
SE, SW, W, NW, or CENTER. Default is NW (the upper
left corner, that is).

bordermode constant If INSIDE, the size and position are relative to the
reference widget's inner size, excluding any border. If
OUTSIDE, it's relative to the outer size, including the
border. Default is INSIDE.
These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings “inside” and
“outside” instead.

in (in_) widget Place widget relative to the given widget. You can only
place a widget relative to its parent, or to any
decendant of its parent. If this option is not given, it
defaults to the parent. Note that in is a reserved word
in Python. To use it as a keyword option, append an
underscore (in_).

relwidth, rel-
height

float Size, relative to the reference widget.

relx, rely float Position, relative to the reference widget (usually the
parent, unless otherwise specified by the in option).
0.0 is the left (upper) edge, 1.0 is the right (lower)
edge.

width, height integer Size, in pixels. If omitted, it defaults to the widget's
“natural” size.

x, y integer Absolute position, in pixels. If omitted, defaults to 0.

118

Chapter 37. The Radiobutton Widget
The Radiobutton is a standard Tkinter widget used to implement one-of-many selections.
Radiobuttons can contain text or images, and you can associate a Python function or method
with each button. When the button is pressed, Tkinter automatically calls that function or
method.

The button can only display text in a single font, but the text may span more than one line. In
addition, one of the characters can be underlined, for example to mark a keyboard shortcut. By
default, the Tab key can be used to move to a button widget.

Each group of Radiobutton widgets should be associated with single variable. Each button then
represents a single value for that variable.

When to use the Radiobutton Widget
The radiobutton widget is used to implement one-of-many selections. It's almost always used
in groups, where all group members use the same variable.

Patterns
The Radiobutton widget is very similar to the check button. To get a proper radio behavior,
make sure to have all buttons in a group point to the same variable, and use the value option to
specify what value each button represents:

v = IntVar()
Radiobutton(master, text="One", variable=v, value=1).pack(anchor=W)
Radiobutton(master, text="Two", variable=v, value=2).pack(anchor=W)

If you need to get notified when the value changes, attach a command callback to each button.

To create a large number of buttons, use a loop:

MODES = [
("Monochrome", "1"),
("Grayscale", "L"),
("True color", "RGB"),
("Color separation", "CMYK"),

]

v = StringVar()
v.set("L") # initialize

for text, mode in MODES:
b = Radiobutton(master, text=text,

variable=v, value=mode)
b.pack(anchor=W)

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 37. The Radiobutton Widget

119

Figure 37-1. Standard radiobuttons

To turn the above example into a “button box” rather than a set of radio buttons, set the
indicatoron option to 0. In this case, there's no separate radio button indicator, and the
selected button is drawn as SUNKEN instead of RAISED:

Figure 37-2. Using indicatoron=0

Methods
The Radiobutton widget supports the standard Tkinter Widget interface, plus the following
methods:

deselect()

Deselect the button.

flash()

Redraw the button several times, alternating between active and normal appearance.

invoke()

Call the command associated with the button.

select()

Select the button.

Chapter 37. The Radiobutton Widget

120

Options
The Radiobutton widget supports the following options:

Table 37-1. Radiobutton Options

Option Type Description

activeback-
ground, active-
foreground

color The color to use when the button is activated.

anchor constant Controls where in the button the text (or image)
should be located. Use one of N, NE, E, SE, S, SW, W,
NW, or CENTER. Default is CENTER. If you change this,
it is probably a good idea to add some padding as well,
using the padx and/or pady options.

background
(bg), fore-
ground (fg)

color The button color. The default is platform specific.

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.
The following bitmaps are available on all platforms:
"error", "gray75", "gray50", "gray25", "gray12",
"hourglass", "info", "questhead", "question", and
"warning".

The following additional bitmaps are available on the
Macintosh only: "document", "stationery", "edition",
"application", "accessory", "folder", "pfolder", "trash",
"floppy", "ramdisk", "cdrom", "preferences",
"querydoc", "stop", "note", and "caution".
You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example
"@sample.xbm".

borderwidth
(bd)

int The width of the button border. The default is
platform specific, but is usually 1 or 2 pixels.

command callback A function or method that is called when the button is
pressed. The callback can be a function, bound
method, or any other callable Python object.

cursor cursor The cursor to show when the mouse is moved over the
button.

default int If set, the button is a default button. Tk will indicate

Review Copy. Do not redistribute! 1999-12-01 22:15

Copyright (c) 1999 by Fredrik Lundh

Chapter 37. The Radiobutton Widget

121

Option Type Description

this by drawing a platform specific indicator (usually
an extra border). NOTE: The syntax has changed in
8.0b2!!!

disabledforegro
und

color The color to use when the button is disabled. The
background is shown in the background color.

font font The font to use in the button. The button can only
contain text in a single font.

highlight-
background,
highlightcolor

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the
highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is typically one or two pixels.

image image The image to display in the widget. If specified, this
takes precedence over the text and bitmap options.

indicatoron bool Controls if the indicator should be drawn or not. For
check and radio buttons, this is on by default. Setting
this option to false means that the relief will be used
as the indicator. If the button is selected, it is drawn as
SUNKEN instead of RAISED. For a menu button, this is
off by default. Setting it to true draws a small indicator
to the right. This is used by the OptionMenu widget.

justify constant Defines how to align multiple lines of text. Use LEFT,
RIGHT, or CENTER.

padx, paxy distance Button padding. These options specify the horizontal
and vertical padding between the text or image, and
the button border.

relief constant Border decoration. Usually, the button is SUNKEN
when pressed, and RAISED otherwise. Other possible
values are GROOVE, RIDGE, and FLAT.

selectcolor color Color to use for the selector.

selectimage image Graphic image to use for the selector.

state constant The button state: NORMAL, ACTIVE or DISABLED.
Default is NORMAL.

takefocus flag Indicates that the user can use the Tab key to move to
this button. Default is an empty string, which means
that the button accepts focus only if it has any
keyboard bindings (default is on, in other words).

Chapter 37. The Radiobutton Widget

122

Option Type Description

text string The text to display in the button. The text can contain
newlines. If the bitmap or image options are used, this
option is ignored.

textvariable variable Associates a Tkinter variable (usually a StringVar) to
the button. If the variable is changed, the button text
is updated.

underline int Default is -1.

value None The value to assign to the associated variable when the
button is pressed.

variable variable Associates a Tkinter variable to the button. When the
button is pressed, the variable is set to value. Explicit
changes to the variable are automatically reflected by
the buttons.

width, height distance The size of the button. If the button displays text, the
size is given in text units. If the button displays an
image, the size is given in pixels (or screen units). If
the size is omitted, it is calculated based on the button
contents.

wraplength distance Determines when a button's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

123

Chapter 38. The Scale Widget

When to use the Scale Widget
To be added.

Patterns

Methods
get() ⇒ integer or float

Get the current scale value. Tkinter returns an integer if possible, otherwise a floating
point value.

set(value)

Set the scale value.

Options
Table 38-1. Scale Options

Option Type Description

activeback-
ground

color

background
(bg)

color

bigincrement value

command callback

cursor cursor The cursor to show when the mouse pointer is placed
over the scale widget. Default is a system specific
arrow cursor.

digits value

font font

foreground (fg) color

from (from_) value

highlight-
background,

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the

Chapter 38. The Scale Widget

124

Option Type Description

highlightcolor highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is 0 (no border).

label string

length distance

orient constant

relief constant Border decoration. The default is FLAT. Other possible
values are SUNKEN, RAISED, GROOVE, and RIDGE.

borderwidth
(bd)

distance The width of the button border. The default is
platform specific, but is usually 1 or 2 pixels.

repeatdelay time

repeatinterval time

resolution value

showvalue flag

sliderlength distance

sliderrelief constant

state constant

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the scale accepts focus only if it has any keyboard
bindings (default is off, in other words).

tickinterval time

to value

troughcolor color

variable variable

width distance

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

125

Chapter 39. The Scrollbar Widget

When to use the Scrollbar Widget
This widget is used to implement scrolled listboxes, canvases, and text fields.

Patterns
The Scrollbar widget is almost always used in conjunction with a Listbox, Canvas, or Text
widget. Horizontal scrollbars can also be used with the Entry widget.

To connect a vertical scrollbar to such a widget, you have to do two things:

1. Set the widget's yscrollcommand callbacks to the set method of the scrollbar.

2. Set the scrollbar's command to the yview method of the widget.

Example 39-1. Connecting a scrollbar to a listbox

File: scrollbar-example-1.py

from Tkinter import *

root = Tk()

scrollbar = Scrollbar(root)
scrollbar.pack(side=RIGHT, fill=Y)

listbox = Listbox(root, yscrollcommand=scrollbar.set)
for i in range(1000):

listbox.insert(END, str(i))
listbox.pack(side=LEFT, fill=BOTH)

scrollbar.config(command=listbox.yview)

mainloop()

When the widget view is modified, the widget notifies the scrollbar by calling the set method.
And when the user manipulates the scrollbar, the widget's yview method is called with the
appropriate arguments.

Adding a horizontal scrollbar is as simple. Just use the xscrollcommand option, and the xview
method.

Chapter 39. The Scrollbar Widget

126

Methods
get() ⇒ lo, hi

Returns the relative offset for the upper (leftmost) and lower (rightmost) end of the
scrollbar slider. Offset 0.0 means that the slider is in its topmost (or leftmost) position,
and offset 1.0 means that it is in its bottommost (or rightmost) position.

set(lo, hi)

Moves the slider to a new position.

delta(deltax, deltay) ⇒ float

Returns a floating point number that should be added to the current slider offsets in order
to move the slider the given number of pixels. This is typically used by the mouse bindings
to figure out how to move the slider when the user is dragging it around.

fraction(x, y)

Returns a floating point value which gives the offset corresponding to the given mouse
position.

identify(x, y) ⇒ string

Returns a string describing what's under the mouse pointer. This is typically one of
“arrow1” (top/left arrow), “trough1”, “slider”, “trough2” or “arrow2” (bottom/right).

Options
The Scrollbar widget supports the following options.

Note that most options are ignored on Windows and Macintosh, where the scrollbar is drawn
via the native UI toolkit. For best results, use only the command and orient options in your
programs.

Table 39-1. Scrollbar Options

Option Type Description

orient constant Defines how to draw the scrollbar. Use one of
HORIZONTAL or VERTICAL. Default is VERTICAL.

command callback Used to update the associated widget. This is typically
the xview or yview method of the scrolled widget.
If the user drags the scrollbar slider, the command is
called as callback(MOVETO, offset), where offset 0.0
means that the slider is in its topmost (or leftmost)
position, and offset 1.0 means that it is in its
bottommost (or rightmost) position.
If the user clicks the arrow buttons, or clicks in the
trough, the command is called as callback(SCROLL,
step, what). The second argument is either “-1” or “1”

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 39. The Scrollbar Widget

127

Option Type Description

depending on the direction, and the third argument is
UNITS to scroll lines (or other units relevant for the
scrolled widget), or PAGES to scroll full pages.
These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings “moveto”,
“scroll”, “units”, and “pages”instead.

active-
background

color

activerelief constant

background
(bg)

color

cursor cursor The cursor to show when the mouse pointer is placed
over the scrollbar widget. Default is a system specific
arrow cursor.

elementborder-
width

distance

highlightback-
ground,
highlightcolor

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the
highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is 0 (no border).
Note that this option is ignored under Windows.

jump constant

relief constant Border decoration. The default is SUNKEN. Other
possible values are FLAT, RAISED, GROOVE, and
RIDGE.
Note that this option is ignored under Windows.

borderwidth
(bd)

distance Border width. The default is 0 (no border).
Note that this option is ignored under Windows.

repeatdelay time

repeatinterval time

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the scrollbar accepts focus only if it has any
keyboard bindings (default is off, in other words).

troughcolor color

Chapter 39. The Scrollbar Widget

128

Option Type Description

width distance

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

129

Chapter 40. The StringVar Class

When to use the StringVar Class
FIXME

Patterns
FIXME

Methods
get() ⇒ string
set(string)

FIXME

trace(mode, callback)
trace_variable(mode, callback)

FIXME

trace_vdelete(mode, callback name)

FIXME

trace_vinfo() ⇒ list

FIXME

130

Chapter 41. The Text Widget
The Text widget provides formatted text display. It allows you to display and edit text with
various styles and attributes. The widget also supports embedded images and windows.

When to use the Text Widget
The text widget is used to display text documents, containing either plain text or formatted text
(using different fonts, embedded images, and other embellishments). The text widget can also
be used as a text editor.

Concepts
The text widget stores and displays lines of text.

The text body can consist of characters, marks, and embedded windows or images. Different
regions can be displayed in different styles, and you can also attach event bindings to regions.

By default, you can edit the text widget's contents using the standard keyboard and mouse
bindings. To disable editing, set the state option to DISABLED (but if you do that, you'll also
disable the insert and delete methods).

Indexes

Indexes are used to point to positions within the text handled by the text widget. Like Python
sequence indexes, text widget indexes correspond to positions between the actual characters.

Tkinter provides a number of different index types:

• line/column ("line.column")

• line end ("line.end")

• INSERT

• CURRENT

• END

• user-defined marks

• user-defined tags (“tag.first”, “tag.last”)

• selection (SEL_FIRST, SEL_LAST)

• window coordinate (“@x,y”)

• embedded object name (window, images)

• expressions

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

131

Lines and columns

line/column indexes are the basic index type. They are given as strings consisting of a line
number and column number, separated by a period. Line numbers start at 1, while column
numbers start at 0, like Python sequence indexes. You can construct indexes using the
following syntax:

"%d.%d" % (line, column)

It is not an error to specify line numbers beyond the last line, or column numbers beyond the
last column on a line. Such numbers correspond to the line beyond the last, or the newline
character ending a line.

Note that line/column indexes may look like floating point values, but it's seldom possible to
treat them as such (consider position 1.25 vs. 1.3, for example). I sometimes use 1.0 instead of
“1.0” to save a few keystrokes when referring to the first character in the buffer, but that's about
it.

You can use the index method to convert all other kinds of indexes to the corresponding
line/column index string.

Line endings

A line end index is given as a string consisting of a line number directly followed by the text
“.end”. A line end index correspond to the newline character ending a line.

Named indexes

INSERT (or “insert”) corresponds to the insertion cursor.

CURRENT (or “current”) corresponds to the character closest to the mouse pointer. However, it
is only updated if you move the mouse without holding down any buttons (if you do, it will not
be updated until you release the button).

END (or “end”) corresponds to the position just after the last character in the buffer.

User-defined marks are named positions in the text. INSERT and CURRENT are predefined
marks, but you can also create your own marks. See below for more information.

User-defined tags represent special event bindings and styles that can be assigned to ranges of
text. For more information on tags, see below.

You can refer to the beginning of a tag range using the syntax “tag.first” (just before the first
character in the text using that tag), and “tag.last” (just after the last character using that tag).

"%s.first" % tagname
"%s.last" % tagname

If the tag isn't in use, Tkinter raises a TclError exception.

The selection is a special tag named SEL (or “sel”) that corresponds to the current selection.
You can use the constants SEL_FIRST and SEL_LAST to refer to the selection. If there's no
selection, Tkinter raises a TclError exception.

Chapter 41. The Text Widget

132

Coordinates

You can also use window coordinates as indexes. For example, in an event binding, you can
find the character closest to the mouse pointer using the following syntax:

"@%d,%d" % (event.x, event.y)

Embedded objects

Embedded object name can be used to refer to windows and images embedded in the text
widget. To refer to a window, simply use the corresponding Tkinter widget instance as an
index. To refer to an embedded image, use the corresponding Tkinter PhotoImage or
BitmapImage object.

Expressions

Expressions can be used to modify any kind of index. Expressions are formed by taking the
string representation of an index (use str if the index isn't already a string), and appending one
or more modifiers from the following list:

• “+ count chars” moves the index forward. The index will move over newlines, but not
beyond the END index.

• “- count chars” moves the index backwards. The index will move over newlines, but not
beyond index “1.0”.

• “+ count lines” and “- count lines” moves the index full lines forward (or backwards). If
possible, the index is kept in the same column, but if the new line is too short, the index is
moved to the end of that line.

• “linestart” moves the index to the first position on the line.

• “lineend” the index to the last position on the line (the newline, that is).

• “wordstart” and “wordend” moves the index to the beginning (end) of the current word.
Words are sequences of letters, digits, and underline, or single non-space characters.

The keywords can be abbreviated and spaces can be omitted as long as the result is not
ambigous. For example, “+ 5 chars” can be shortened to “+5c”.

For compatibility with implementations where the constants are not ordinary strings, you may
wish to use str or formatting operations to create the expression string. For example, here's
how to remove the character just before the insertion cursor:

def backspace(event):
event.widget.delete("%s-1c" % INSERT, INSERT)

Marks

Marks are (usually) invisible objects embedded in the text managed by the widget. Marks are
positioned between character cells, and moves along with the text.

• user-defined marks

• INSERT

• CURRENT

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

133

You can use any number of user-defined marks in a text widget. Mark names are ordinary
strings, and they can contain anything except whitespace (for convenience, you should avoid
names that can be confused with indexes, especially names containing periods). To create or
move a mark, use the mark_set method.

Two marks are predefined by Tkinter, and have special meaning:

INSERT (or “insert”) is a special mark that is used to represent the insertion cursor. Tkinter
draws the cursor at this mark's position, so it isn't entirely invisible.

CURRENT (or “current”) is a special mark that represents the character closest to the mouse
pointer. However, it is only updated if you move the mouse without holding down any buttons
(if you do, it will not be updated until you release the button).

Special marks can be manipulated as other user-defined marks, but they cannot be deleted.

If you insert or delete text before a mark, the mark is moved along with the other text. To
remove a mark, you must use the mark_unset method. Deleting text around a mark doesn't
remove the mark itself.

If you insert text at a mark, it may be moved to the end of that text or left where it was,
depending on the mark's gravity setting (LEFT or RIGHT; default is RIGHT). You can use the
mark_gravity method to change the gravity setting for a given mark.

In the following example, the “sentinel” mark is used to keep track of the original position for
the insertion cursor.

text.mark_set("sentinel", INSERT)
text.mark_gravity("sentinel", LEFT)

You can now let the user enter text at the insertion cursor, and use text.get("sentinel",
INSERT) to pick up the result.

Tags
Tags are used to associated a display style and/or event callbacks with ranges of text.

• user-defined tags

• SEL

You can define any number of user-defined tags. Any text range can have multiple tags, and
the same tag can be used for many different ranges. Unlike the Canvas widget, tags defined for
the text widget are not tightly bound to text ranges; the information associated with a tag is
kept also if there is no text in the widget using it.

Tag names are ordinary strings, and they can contain anything except whitespace.

SEL (or “sel”) is a special tag which corresponds to the current selection, if any. There should
be at most one range using the selection tag.

The following options are used with tag_config to specify the visual style for text using a
certain tag.

Table 41-1. Text Tag Options

Option Type Description

Chapter 41. The Text Widget

134

Option Type Description

background color The background color to use for text having this tag.
Note that the bg alias cannot be used with tags; it is
interpreted as bgstipple rather than background.

bgstipple (or
bg)

bitmap The name of a bitmap which is used as a stipple brush
when drawing the background. Typical values are
“gray12”, “gray25”, “gray50”, or “gray75”. Default is a
solid brush (no bitmap).

borderwidth distance The width of the text border. The default is 0 (no
border).
Note that the bd alias cannot be used with tags.

fgstipple (or fg) bitmap The name of a bitmap which is used as a stipple brush
when drawing the text. Typical values are “gray12”,
“gray25”, “gray50”, or “gray75”. Default is a solid
brush (no bitmap).

font font The font to use for text having this tag.

foreground color The color to use for text having this tag.
Note that the fg alias cannot be used with tags; it is
interpreted as fgstipple rather than foreground.

justify constant Controls text justification (the first character on a line
determines how to justify the whole line). Use one of
LEFT, RIGHT, or CENTER. Default is LEFT.

lmargin1 distance The left margin to use for the first line in a block of
text having this tag. Default is 0 (no left margin).

lmargin2 distance The left margin to use for every line but the first in a
block of text having this tag. Default is 0 (no left
margin).

offset distance Controls if the text should be offset from the baseline.
Use a positive value for superscripts, a negative value
for subscripts. Default is 0 (no offset).

overstrike flag If non-zero, the text widget draws a line over the text
that has this tag. For best results, you should use
overstrike fonts instead.

relief constant The border style to use for text having this tag. Use
one of SUNKEN, RAISED, GROOVE, RIDGE, or FLAT.
Default is FLAT (no border).

rmargin distance The right margin to use for blocks of text having this
tag. Default is 0 (no right margin).

spacing1 distance Spacing to use above the first line in a block of text

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

135

Option Type Description

having this tag. Default is 0 (no extra spacing).

spacing2 distance Spacing to use between the lines in a block of text
having this tag. Default is 0 (no extra spacing).

spacing3 distance Spacing to use after the last line of text in a block of
text having this tag. Default is 0 (no extra spacing).

tabs string

underline flag If non-zero, the text widget underlines the text that
has this tag. For example, you can get the standard
hyperlink look with (foreground="blue", underline=1).
For best results, you should use underlined fonts
instead.

wrap constant The word wrap mode to use for text having this tag.
Use one of NONE, CHAR, or WORD.

If you attach multiple tags to a range of text, style options from the most recently created tag
override options from earlier tags. In the following example, the resulting text is blue on a
yellow background.

text.tag_config("n", background="yellow", foreground="red")
text.tag_config("a", foreground="blue")
text.insert(contents, ("n", "a"))

Note that it doesn't matter in which order you attach tags to a range; it's the tag creation order
that counts.

You can change the tag priority using the tag_raise and tag_lower. If you add a
text.tag_lower("a") to the above example, the text becomes red.

The tag_bind method allows you to add event bindings to text having a particular tag. Tags can
generate mouse and keyboard events, plus <Enter> and <Leave> events. For example, the
following code snippet creates a tag to use for any hypertext links in the text:

text.tag_config("a", foreground="blue", underline=1)
text.tag_bind("<Enter>", show_hand_cursor)
text.tag_bind("<Leave>", show_arrow_cursor)
text.tag_bind("<Button-1>", click)
text.config(cursor="arrow")

text.insert(INSERT, "click here!", "a")

Patterns
When you create a new text widget, it has no contents. To insert text into the widget, use the
insert method and insert text at the INSERT or END indexes:

text.insert(END, "hello, ")

Chapter 41. The Text Widget

136

text.insert(END, "world")

You can use an optional third argument to the insert method to attach one or more tags to the
newly inserted text:

text.insert(END, "this is a ")
text.insert(END, "link", ("a", "href"+href))

To insert embedded objects, use the window_create or image_create methods:

button = Button(text, text="Click", command=click)
text.window_create(INSERT, window=button)

To delete text, use the delete method. Here's how to delete all text from the widget (this also
deletes embedded windows and images, but not marks):

text.delete(1.0, END)

To delete a single character (or an embedded window or image), you can use delete with only
one argument:

text.delete(INSERT)
text.delete(button)

To make the widget read-only, you can change the state option from NORMAL to DISABLED:

text.config(state=NORMAL)
text.delete(1.0, END)
text.insert(END, text)
text.config(state=DISABLED)

Note that you must change the state back to NORMAL before you can modify the widget
contents from within the program. Otherwise, calls to insert and delete will be silently ignored.

To fetch the text contents of the widget, use the get method:

contents = text.get(1.0, END)

FIXME: add material on the dump method, and how to use it on 1.5.2 and earlier

Here's a simple way to keep track of changes to the text widget:

import md5
def getsignature(contents):

return md5.md5(contents).digest()

text.insert(END, contents) # original contents
signature = getsignature(contents)

...

contents = text.get(1.0, END)
if signature != getsignature(contents):

print "contents have changed!"

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

137

FIXME: modify to handle ending linefeed added by text widget

The index method converts an index given in any of the supported formats to a line/column
index. Use this if you need to store an “absolute” index.

index = text.index(index)

However, if you need to keep track of positions in the text even after other text is inserted or
deleted, you should use marks instead.

text.mark_set("here", index)
text.mark_unset("here")

The following function converts any kind of index to a (line, column)-tuple. Note that you can
directly compare positions represented by such tuples.

def getindex(text, index):
return tuple(map(int, string.split(text.index(index), ".")))

if getindex(text, INSERT) < getindex(text, "sentinel"):
text.mark_set(INSERT, "sentinel")

The following example shows how to enumerate all regions in the text that has a given tag.

ranges = text.tag_ranges(tag)
for i in range(0, len(ranges), 2):

start = ranges[i]
stop = ranges[i+1]
print tag, repr(text.get(start, stop))

The search method allows you to search for text. You can search for an exact match (default),
or use a Tcl-style regular expression (call with the regexp option set to true).

text.insert(END, "hello, world")

start = 1.0
while 1:

pos = text.search("o", start, stopindex=END)
if not pos:

break
print pos
start = pos + "+1c"

Given an empty text widget, the above example prints 1.4 and 1.8 before it stops. If you omit
the stopindex option, the search wraps around if it reaches the end of the text.

To search backwards, set the backwards option to true (to find all occurences, start at END, set
stopindex to 1.0 to avoid wrapping, and use "-1c" to move the start position).

Methods
The Text widget supports the standard Tkinter Widget interface, plus the following methods:

Chapter 41. The Text Widget

138

insert(index, text)
insert(index, text, tags)

Insert text at the given position (typically INSERT or END). If you provide one or more
tags, they are attached to the new text.

If you insert text on a mark, the mark is moved according to its gravity setting.

delete(index)
delete(start, stop)

Delete the character (or embedded object) at the given position, or all text in the given
range. Any marks within the range are moved to the beginning of the range.

get(index)
get(start, stop)

Return the character at the given position, or all text in the given range.

dump(index, options...)
dump(start, stop, options...)

Return a list of widget contents at the given position, or for all text in the given range. This
includes tags, marks, and embedded objects. Not implemented in Python 1.5.2 and earlier.

see(index)
yview(index)

If necessary, scroll the text widget to make sure the text at the given position is visible. The
see method scrolls the widget only if the given position isn't visible at all, while yview
always scrolls the widget to move the given position to the top of the window.

index(index)

Return the “line.column” index corresponding to the given index.

compare(index1, op, index2)

Compare the two positions, and return true if the condition held. The op argument is one
of "<", "<=", "==", ">=", ">", or "!=" (Python's "<>" syntax is not supported).

Methods for Marks
The following methods are used to manipulate builtin as well as user-defined marks.

mark_set(mark, index)

Move the mark to the given position. If the mark doesn't exist, it is created (with gravity
set to RIGHT). You also use this method to move the predefined INSERT and CURRENT
marks.

mark_unset(mark)

Remove the given mark from the widget. You cannot remove the builtin INSERT and
CURRENT marks.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

139

index(mark)

Return the line/column position corresponding to the given mark (or any other index
specifier; see above).

mark_gravity(mark)

Return the current gravity setting for the given mark (LEFT or RIGHT).

mark_gravity(mark, gravity)

Sets the gravity for the given mark. The gravity setting controls how to move the mark if
text is inserted exactly on the mark. If LEFT, the mark is not moved if text is inserted at the
mark (that is, the text is inserted just after the mark). If RIGHT, the mark is moved to the
right end of the text (that is, the text is inserted just before the mark). The default gravity
setting is RIGHT.

mark_names()

Return a tuple containing the names of all marks used in the widget. This includes the
INSERT and CURRENT marks (but not END, which is a special index, not a mark).

Methods for Embedded Windows
The Text widget allows you to embed windows into the widget. Embedded windows occupy a
single character position, and moves with the text flow.

window_create(index, options...)

Insert a widget at the given position. You can either create the widget (which should be a
child of the text widget itself) first, and insert it using the window option, or provide a
callback which is called when the window is first displayed.

Table 41-2. Text Window Options

Option Type Description

align constant Defines how to align the window on the line. Use one
of TOP, CENTER, BOTTOM, or BASELINE. The last
alignment means that the bottom of the window is
aligned with the text baseline - that is, the same
alignment that is used for all text on the line).

create callback This callback is called when the window is first
displayed by the text widget. It should create the
window (as a child to the text widget), and return the
resulting widget instance.

padx, pady distance Adds horizontal (vertical) padding between the
window and the surrounding text. Default is 0 (no
padding).

stretch flag If zero (or OFF), the window will be left as is also if the
line is higher than the window. If non-zero (or ON),

Chapter 41. The Text Widget

140

the window is stretched to cover the full line (in this
case, the alignment is ignored).

window widget Gives the widget instance to insert into the text.

index(window)

Return the line/column position corresponding to the given window (or any other index
specifier; see above).

delete(window)

Remove the given window from the text widget, and destroy it.

window_cget(index, option)

Return the current value of the given option. If there's no window on the given position,
this method raises a TclError exception.

window_config(index, options...)
window_configure(index, options...)

Modifies one or more options. If there's no window on the given position, this method
raises a TclError exception.

window_names()

Return a tuple containing all windows embedded in the text widget. In 1.5.2 and earlier,
this method returns the names of the widgets, rather than the widget instances. This will
most likely be fixed in future versions.

Here's how to convert the names to a list of widget instances in a portable fashion:

windows = text.window_names()
try:

windows = map(text._nametowidget, windows)
except TclError: pass

Methods for Embedded Images

The Text widget allows you to embed images into the widget. Embedded images occupy a
single character position, and moves with the text flow.

Note that the image interface is not available in early version of Tkinter (it's not implemented
by Tk versions before 8.0). For such platforms, you can display images by embedding Label
widgets instead.

image_create

image_create(index, options...). Insert an image at the given position. The image is given by
the image option, and must be a Tkinter PhotoImage or BitmapImage instance (or an instance
of the corresponding PIL classes).

This method doesn't work with Tk versions before 8.0.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

141

Table 41-3. Text Image Options

Option Type Description

align constant Defines how to align the image on the line. Use one of
TOP, CENTER, BOTTOM, or BASELINE. The last
alignment means that the bottom of the image is
aligned with the text baseline -- that is, the same
alignment that is used for all text on the line).

image image Gives the image instance to insert into the text.

name string Gives the name to use when referring to this image in
the text widget. The default is the name of the image
object (which is usually generated by Tkinter).

padx, pady distance Adds horizontal (vertical) padding between the image
and the surrounding text. Default is 0 (no padding).

index

index(image). Return the line/column position corresponding to the given image (or any other
index specifier; see above).

delete

delete(image). Remove the given image from the text widget, and destroy it.

image_cget

image_cget(index, option). Return the current value of the given option. If there's no image on
the given position, this method raises a TclError exception. Not implemented in Python 1.5.2
and earlier.

image_config

image_config(index, options...), image_configure(index, options...). Modifies one or more
options. If there's no image on the given position, this method raises a TclError exception. Not
implemented in Python 1.5.2 and earlier.

image_names

image_names(). Return a tuple containing the names of all images embedded in the text
widget. Tkinter doesn't provide a way to get the corresponding PhotoImage or BitmapImage
objects, but you can keep track of those yourself using a dictionary (using str(image) as the
key).

This method is not implemented in Python 1.5.2 and earlier.

Methods for Tags
The following methods are used to manipulate tags and tag ranges.

Chapter 41. The Text Widget

142

tag_add

tag_add(tag, index), tag_add(tag, start, top). Add tag to the character at the given position,
or to the given range.

tag_remove

tag_remove(tag, index), tag_remove(tag, start, stop). Remove the tag from the character at
the given position, or from the given range. The information associated with the tag is not
removed (not even if you use tag_remove(1.0, END)).

tag_delete

tag_delete(tag), tag_delete(tags...). Remove the given tags from the widget. All style and
binding information associated with the tags are also removed.

tag_config

tag_config(tag, options...), tag_configure(tag, options...). Set style options for the given tag.
If the tag doesn't exist, it is created.

Note that the style options are associated with tags, not text ranges. Any text having a given tag
will be rendered according to its style options, even if it didn't exist when the binding was
created. If a text range has several tags associated with it, the Text widget combines the style
options for all tags. Tags towards the top of the tag stack (created later, or raised using
tag_raise) have precedence.

tag_cget

tag_cget(tag, option). Get the current value for the given option.

tag_bind

tag_bind(tag, sequence, func), tag_bind(tag, sequence, func, "+"). Add an event binding to
the given tag. Tag bindings can use mouse- and keyboard-related events, plus <Enter> and
<Leave>. If the tag doesn't exist, it is created. Usually, the new binding replaces any existing
binding for the same event sequence. The second form can be used to add the new callback to
the existing binding.

Note that the new bindings are associated with tags, not text ranges. Any text having the tag
will fire events, even if it didn't exist when the binding was created. To remove bindings, use
tag_remove or tag_unbind.

tag_unbind

tag_unbind(tag, sequence). Remove the binding, if any, for the given tag and event sequence
combination.

tag_names

tag_names(). Return a tuple containing all tags used in the widget. This includes the SEL
selection tag.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

143

tag_names(index). Return a tuple containing all tags used by the character at the given
position.

tag_nextrange

tag_nextrange(tag, index), tag_nextrange(tag, start, stop). Find the next occurence of the
given tag, starting at the given index. If two indexes are given, search only from start to stop.
Note that this method looks for the start of a range, so if you happen to start on a character that
has the given tag, this method will return that range only if that character is the first in the
range. Otherwise, the current range is skipped.

tag_prevrange

tag_prevrange(tag, index), tag_prevrange(tag, start, stop). Find the next occurence of the
given tag, starting at the given index and searching towards the beginning of the text. If two
indexes are given, search from start to stop. As for nextrange, this method looks for the start of
a range, beginning at the start index. So if you start on a character that has the given tag, this
method will return that range unless the search started on the first character in that tag range.

tag_lower

tag_lower(tag), tag_lower(tag, below). Move the given tag to the bottom of the tag stack (or
place it just under the below tag). If multiple tags are defined for a range of text, options
defined by tags towards the top of the stack have precedence.

tag_raise

tag_raise(tag), tag_raise(tag, above). Move the given tag to the top of the tag stack (or place it
just over the above tag).

tag_ranges

tag_ranges(tag). Return a tuple with start- and stop-indexes for each occurence of the given
tag. If the tag doesn't exist, this method returns an empty tuple. Note that the tuple contains
two items for each range.

Methods for Selections
To manipulate the selection, use tag methods like tag_add and tag_remove on the SEL tag.
There are no selection-specific methods provided by the Text widget.

But if you insist, here's how how to emulate the Entry widget selection methods:

def selection_clear(text):
text.tag_remove(SEL, 1.0, END)

def selection_from(text, index):
text._anchor = index

def selection_present(text):
return len(text.tag_ranges(SEL)) != 0

Chapter 41. The Text Widget

144

def selection_range(text, start, end):
text.tag_remove(SEL, 1.0, start)
text.tag_add(SEL, start, end)
text.tag_remove(SEL, end, END)

def selection_to(text, index):
if text.compare(index, "<", text._anchor):

selection_range(text, index, text._anchor)
else:

selection_range(text, text._anchor, index)

Methods for Rendering
The following methods only work if the text widget is updated. To make sure this is the case,
call the update_idletasks method before you use any of these.

bbox

bbox(index). Returns the bounding box for the given character, as a 4-tuple: (x, y, width,
height). If the character is not visible, this method returns None.

dlineinfo

dlineinfo(index). Returns the bounding box for the line containing the given character, as a 5-
tuple: (x, y, width, height, offset). The last tuple member is the offset from the top of the line
to the baseline. If the line is not visible, this method returns None.

Methods for Printing
The Text widget doesn't contain any builtin support for printing. To print the contents, use get
or dump and pass the resulting text to a suitable output device.

If you have a Postscript printer, you can use PIL's PSDraw module.

Methods for Searching

search

search(pattern, index, options...). Search for text in the widget. Returns the first matching
position if successful, or an empty string if there was no match.

Table 41-4. Text Search Options

Option Type Description

forwards,
backwards

flag Search from the given position towards the end of the
buffer (forwards), or the beginning (backwards).
Default is forwards.

exact, regexp flag Interpret the pattern as a literal string (exact), or a
Tcl-style regular expression (regexp). Default is exact.

nocase flag Enable case-insensitive search. Default is case

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

145

sensitive.

stopindex index Don't search beyond this position. Default is to search
the whole buffer, and wrap around if the search
reaches the end of the buffer. To prevent wrapping, set
stopindex to END when searching forwards, and 1.0
when searching backwards.

count variable Return the length of the match in the given variable. If
given, this variable should be a Tkinter IntVar.

Methods for Scrolling
These methods are used to scroll the text widget in various ways. The scan methods can be
used to implement fast mouse pan/roam operations (they are bound to the middle mouse
button, if available), while the xview and yview methods are used with standard scrollbars.

scan_mark, scan_dragto

scan_mark(x, y), scan_dragto(x, y). scan_mark sets the scanning anchor for fast horizontal
scrolling to the given mouse coordinate. scan_dragto scrolls the widget contents sideways
according to the given mouse coordinate. The text is moved 10 times the distance between the
scanning anchor and the new position.

xview, yview

xview(), yview(). Returns a tuple containing two values; the first value corresponds to the
relative offset of the first visible line (column), and the second corresponds to the relative offset
of the line (column) just after the last one visible on the screen. Offset 0.0 is the beginning of
the text, 1.0 the end.

xview, yview

xview(MOVETO, offset), yview(MOVETO, offset). Adjust the text widget so that the given offset
is at the left (top) edge of the text. Offset 0.0 is the beginning of the text, 1.0 the end. These
methods are used by the Scrollbar bindings when the user drags the scrollbar slider.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility, use the
string "moveto" instead.

xview, yview

xview(SCROLL, step, what), yview(SCROLL, step, what). Scroll the text widget horizontally
(vertically) by the given amount. The what argument can be either UNITS (lines, characters) or
PAGES. These methods are used by the Scrollbar bindings when the user clicks at a scrollbar
arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the strings
"scroll", "units", and "pages" instead.

Chapter 41. The Text Widget

146

yview_pickplace

yview_pickplace(index). Same as see, but only handles the vertical position correctly. New
code should use see instead.

Options
The Text widget supports the following options.

FIXME: sort in relevance order

Table 41-5. Text Options

Option Type Description

background
(bg)

color The background color for this widget. Default is
system specific (usually "white"). If you change the
background color, you should make sure to change the
foreground color as well.

borderwidth
(bd)

distance Border width. Default is platform dependent, but is
usually one or two pixels.

cursor cursor The cursor to show when the mouse pointer is placed
over the text widget. The default is a text insertion
cursor (typically an “I beam” cursor, such as xterm).

exportselection flag If true, selected text is automatically exported to the
clipboard. Default is true.

font font Widget font. The default is system specific (usually
"black").

foreground (fg) color Text color.

height distance Widget height, in text units.

highlightback-
ground,
highlightcolor

color Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in the
highlightcolor color. Otherwise, it is drawn in the
highlightbackground color. The defaults are system
specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is 0 (no border).

insertbackgroun
d

color

insertborderwid
th

distance

insertofftime,
insertontime

time

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 41. The Text Widget

147

Option Type Description

insertwidth distance Controls cursor blinking and style. It's usually best to
leave these as they are.

padx, pady distance Extra padding between the widget's inner border and
the text body. Default is 0 (no padding).

relief constant Border decoration. The default is SUNKEN. Other
possible values are FLAT, RAISED, GROOVE, and
RIDGE.

select-
background

color Selection background color. The default is system and
display specific.

selectborder-
width

distance Selection border width. The default is system specific.

select-
foreground

color Selection text color. The default is system and display
specific.

setgrid flag If true, Tkinter attempts to resize the window
containing the text widget in full character steps
(based on the font option).

spacing1 distance Spacing to use above the first line in a block of text.
Default is 0 (no extra spacing).

spacing2 distance Spacing to use between the lines in a block of text
wrapped by the widget. Default is 0 (no extra spacing).

spacing3 distance Spacing to use after the last line of text in a block of
text having this tag. Default is 0 (no extra spacing).

state constant One of NORMAL or DISABLED. Default is NORMAL.
Note that if you set this to DISABLED, calls to insert or
delete are ignored.

tabs string

takefocus flag If true, you can use Tab to move focus to this widget
(but not from it; the default bindings for the Text
widget insert the tab character). Default is an empty
string, which means that the text widget accepts focus
only if it has any keyboard bindings (default is on, in
other words).

width distance Widget width, in text units.

wrap constant Word wrap mode. Use one of NONE, CHAR, or WORD.
Default is NONE.

xscroll-
command,
yscroll-

callback Scrollbar callbacks. These options should be set to the
set method for the corresponding scrollbar.

Chapter 41. The Text Widget

148

Option Type Description

command

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

149

Chapter 42. The Toplevel Widget
The Toplevel widget work pretty much like Frame, but it is displayed in a separate, top-level
window. Such windows usually have title bars, borders, and other "window decorations".

When to use the Toplevel Widget
To be added.

Methods
Except for the standard widget interface (config, etc), the Toplevel widget has no methods.

Options
Table 42-1.

Option Type Description

height, width distance Toplevel window size.

background
(bg)

color The background color to use in this toplevel. This
defaults to the application background color. To
prevent updates, set the color to an empty string.

colormap widget Some displays support only 256 colors (some use even
less). Such displays usually provide a color map to
specify which 256 colors to use. This option allows you
to specify which color map to use for this toplevel
window, and its child widgets.
By default, a new toplevel window uses the same color
map as the root window. Using this option, you can
reuse the color map of another window instead (this
window must be on the same screen and have the
same visual characteristics). You can also use the
value "new" to allocate a new color map for this
window.
You cannot change this option once you've created the
window.

menu widget A menu to associate with this toplevel window. On
Unix and Windows, the menu is placed at the top of
the toplevel window itself. On Macs, the menu is
displayed at the top of the screen when the toplevel
window is selected.

Chapter 42. The Toplevel Widget

150

Option Type Description

cursor cursor The cursor to show when the mouse pointer is placed
over the toplevel widget. Default is a system specific
arrow cursor.

relief constant Border decoration: either FLAT, SUNKEN, RAISED,
GROOVE, or RIDGE. The default is FLAT.

borderwidth
(bd)

distance Width of the 3D border. Defaults to 0 (no border).

takefocus flag Indicates that the user can use the Tab key to move to
this widget. Default is an empty string, which means
that the toplevel accepts focus only if it has any
keyboard bindings (default is off, in other words).

highlightback-
ground,
highlightcolor

color Controls how to draw the focus highlight border.
When any child to the toplevel window has focus, the
border is drawn in the highlightcolor color.
Otherwise, it is drawn in the highlightbackground
color. The defaults are system specific.

highlight-
thickness

distance Controls the width of the focus highlight border.
Default is 0 (no border).

class (class_) class

visual visual Controls the "visual" type to use for this window. This
option should usually be omitted. In that case, the
visual type is inherited from the root window.
Some more advanced displays support "mixed
visuals". This typically means that the root window is
a 256-color display (the "pseudocolor" visual type),
but that individual windows can be displayed as true
24-bit color (the "truecolor" visual type). On such
displays, you may wish to explicitly set the visual
option to "truecolor" for any windows used to display
full-color images.
Other possible values include "directcolor",
"staticcolor", "grayscale", or "staticgray". See your X
window documentation for details.
You cannot change this option once you've created the
window.

screen screen

container container

use widget

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

151

Chapter 43. Basic Widget Methods
The following methods are provided by all widgets (including the root window). In the method
descriptions, self refer to the widget via which you reached the method.

The root window and other Toplevel windows provide additional methods. See the Window
Methods section for more information.

Configuration

config
config(options...), configure(options...). Change one or more options for self.

config

config(), configure(). Return a dictionary containing the current settings for all widget options.
For each option key in the dictionary, the value is either a five-tuple (option, option database
key, option database class, default value, current value), or a two-tuple (option alias, option).
The latter case is used for aliases like bg (background) and bd (borderwidth).

Note that the value fields aren't correctly formatted for some option types. See the description
of the keys method for more information, and a workaround.

cget
cget(option). Return the current value for the given option.

Note that option values are always returned as strings (also if you gave a nonstring value when
you configured the widget). Use int and float where appropriate.

keys

keys(). Return a tuple containing the options available for this widget. You can use cget to get
the corresponding value for each option.

Note that the tuple currently include option aliases (like bd, bg, and fg). To avoid this, you can
use config instead. On the other hand, config doesn't return valid option values for some
option types (such as font names), so the best way is to use a combination of config and cget:

for item in w.config():
if len(item) == 5:

option = item[0]
value = w.cget(option)
print option, value

Chapter 43. Basic Widget Methods

152

Event processing

mainloop
mainloop(). Enter Tkinter's main event loop. To leave the event loop, use the quit method.
Event loops can be nested; it's ok to call mainloop from within an event handler.

quit

quit(). Leaves Tkinter's main event loop. Note that you can have nested event loops; each call
to quit terminates the outermost event loop.

update
update(). Process all pending events, call event callbacks, complete any pending geometry
management, redraw widgets as necessary, and call all pending idle tasks. This method should
be used with care, since it may lead to really nasty race conditions if called from the wrong
place (from within an event callback, for example, or from a function that can in any way be
called from an event callback, etc.)

update_idletasks

update_idletasks(). Call all pending idle tasks, without processing any other events. This can
be used to carry out geometry management and redraw widgets if necessary, without calling
any callbacks.

focus_set

focus_set(), focus(). Move keyboard focus to self. This means that all keyboard events sent to
the application will be routed to self.

focus_displayof
focus_displayof().

focus_force
focus_force(). Force keyboard focus to self.

FIXME: what's the difference between "moving" and "forcing"?

focus_get
focus_get().

focus_lastfor
focus_lastfor().

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 43. Basic Widget Methods

153

tk_focusNext
tk_focusNext(). Return the next widget (following self) that should have focus. This is used by
the default bindings for the Tab key.

tk_focusPrev

tk_focusPrev(). Return the previous widget (preceding self) that should have focus. This is
used by the default bindings for the Shift-Tab key.

grab_current
grab_current().

grab_release
grab_release(). Release the event grab.

grab_set
grab_set(). Route all events for this application to self.

grab_set_global

grab_set_global(). Route all events for the entire screen to self.

This should only be used in very special circumstances, since it blocks all other applications
running on the same screen. And that probably includes your development environment, so
you better make sure your application won't crash or lock up until it has properly released the
grab.

grab_status
grab_status().

wait_variable
wait_variable(variable). Wait for the given Tkinter variable to change. This method enters a
local event loop, so other parts of the application will still be responsive. The local event loop is
terminated when the variable is updated (setting it to it's current value also counts).

wait_visibility

wait_visibility(widget). Wait for the given widget to become visible. This is typically used to
wait until a new toplevel window appears on the screen. Like wait_variable, this method
enters a local event loop, so other parts of the application will still work as usual.

Chapter 43. Basic Widget Methods

154

wait_window
wait_window(widget). Wait for the given widget to be destroyed. This is typically used to wait
until a destroyed window disappears from the screen. Like wait_variable and wait_visibility,
this method enters a local event loop, so other parts of the application will still work as usual.

Event callbacks
All event callbacks take one argument; an event descriptor. See the introduction for more
information on this descriptor.

bind
bind(sequence, callback), bind(sequence, callback, "+"). Add an event binding to self.
Usually, the new binding replaces any existing binding for the same event sequence. The
second form can be used to add the new callback to the existing binding.

unbind

unbind(sequence). Remove any bindings for the given event sequence, for self.

bind_all

bind_all(sequence, callback), bind_all(sequence, callback, "+"). Add an event binding to the
application level. Usually, the new binding replaces any existing binding for the same event
sequence. The second form can be used to add the new callback to the existing binding.

unbind_all
unbind_all(sequence). Remove any bindings for the given event sequence, on the application
level.

bind_class
bind_class(class, sequence, func), bind_class(class, sequence, func, "+"). Add an event
binding to the given widget class. Usually, the new binding replaces any existing binding for
the same event sequence. The second form can be used to add the new callback to the existing
binding.

unbind_class
unbind_class(class, sequence). Remove any bindings for the given event sequence, for the
given binding class.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 43. Basic Widget Methods

155

bindtags
bindtags(). Return a tuple containing the binding search order used for self. By default, this
tuple contains the self's widget name (str(self)), the widget class (e.g. Button), the root
window's name, and finally the special name all which refers to the application level.

bindtags
bindtags(bindings). Modify the binding search order for self.

Alarm handlers and other non-event callbacks

after
after(delay_ms, callback, args...). Register an alarm callback that is called after the given
number of milliseconds (Tkinter only guarantees that the callback will not be called earlier
than that; if the system is busy, the actual delay may be much longer). The callback is only
called once for each call to after. To keep calling the callback, you need to reregister the
callback inside itself:

class App:
def __init__(self, master):

self.master = master
self.poll() # start polling

def poll(self):
...
self.master.after(100, self.poll)

You can provide one or more arguments which are passed to the callback. This method returns
an alarm id which can be used with after_cancel to cancel the callback.

after_cancel
after_cancel(id). Cancels the given alarm callback.

after
after(delay_ms). Wait for the given number of milliseconds. Note that in the current version,
this also blocks the event loop. In practice, this means that you might as well do:

time.sleep(delay_ms*0.001)

after_idle
after_idle(callback, args...). Register an idle callback which is called when the system is idle
(that is, when there are no more events to process in the mainloop). The callback is only called
once for each call to after_idle.

Chapter 43. Basic Widget Methods

156

Window management

lift
lift(), tkraise(), lift(above), tkraise(above). Move self to the top of the window stack. If self is a
child window, it is moved to the top of it's toplevel window. If self is a toplevel window (the
root or a Toplevel window), it is moved in front of all other windows on the display. If an
argument is given, the widget (or window) is moved so it's just above the given widget
(window).

lower

lower(), lower(below). Same as lift, but moves the widget to the bottom of the stack (or places
it just under the below widget).

Window Related Information
This group of methods provide information related to the widget (self) to which the method
belongs.

winfo_cells
winfo_cells(). Return the number of "cells" in the color map for self. This is typically a value
between 2 and 256 (also for true color displays, by some odd reason).

winfo_children
winfo_children(). Return a list containing widget instances for all children of self. The windows
are returned in stacking order from bottom to top. If the order doesn't matter, you can get the
same information from the children widget attribute (it's a dictionary mapping Tk widget
names to widget instances, so widget.children.values() gives you a list of instances).

winfo_class

winfo_class(). Returns the Tkinter widget class name for self. If self is a Tkinter base widget,
widget.winfo_class() is the same as widget.__class__.__name__.

winfo_colormapfull
winfo_colormapfull(). Return true if the color map for self is full.

winfo_containing
winfo_containing(x, y). Return the widget at the given position, or None if there is no such
window, or it isn't owned by this application. The coordinates are given relative to the screen's
upper left corner.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 43. Basic Widget Methods

157

winfo_depth
winfo_depth(). Return the bit depth used to display self. This is typically 8 for a 256-color
display device, 15 or 16 for a "hicolor" display, and 24 or 32 for a true color display.

winfo_exists

winfo_exists(). Return true if there is Tk window corresponding to self. Unless you've done
something really strange, this method should always return true.

winfo_pixels
winfo_pixels(distance), winfo_fpixels(distance). Convert the given distance (in any form
accepted by Tkinter) to the corresponding number of pixels. winfo_pixels returns an integer
value, winfo_fpixels a floating point value.

winfo_geometry
winfo_geometry(). Returns a string describing self's "geometry". The string has the following
format:

"%dx%d%+d%+d" % (width, height, xoffset, yoffset)

where all coordinates are given in pixels.

winfo_width, winfo_height
winfo_width(), winfo_height(). Return the width (height) of self, in pixels. Note that if the
window isn't managed by a geometry manager, these methods returns 1. To you get the real
value, you may have to call update_idletasks first. You can also use winfo_reqheight to get the
widget's requested height (that is, the "natural" size as defined by the widget itself based on it's
contents).

winfo_id
winfo_id(). Return a string containing a system-specific window identifier corresponding to
self. For Unix, this is the X window identifier. For Windows, this is the HWND cast to a long
integer.

winfo_ismapped
winfo_ismapped(). Return true if there is window corresponding to self in the underlying
window system (an X window, a Windows HWND, etc).

winfo_manager

winfo_manager(). Return the name of the geometry manager used to keep manage self
(typically one of grid, pack, place, canvas, or text).

FIXME: this is not implemented by Tkinter (or is it, in 1.5.2?)

Chapter 43. Basic Widget Methods

158

winfo_name
winfo_name(). Return the Tk widget name. This is the same as the last part of the full widget
name (which you can get via str(widget)).

winfo_parent

winfo_parent(). Return the full widget name of self's parent, or an empty string if self doesn't
have a parent (if self is the root window, that is).

To get the widget instance instead, you can simply use the master attribute instead of calling
this method (the master attribute is None for the root window). Or if you insist, use
_nametowidget to map the full widget name to an instance.

winfo_pathname
winfo_pathname(id). Return the full window name for the window having the given identity
(see winfo_id for details). If the window doesn't exist, or it isn't owned by this application,
Tkinter raises a TclError exception.

To convert the full name to a widget instance, use _nametowidget.

winfo_reqheight, winfo_reqwidth

winfo_reqheight(), winfo_reqwidth(). Return the "natural" height (width) for self. The natural
size is the minimal size needed to display the widget's contents, including padding, borders,
etc. This size is calculated by the widget itself, based on the given options. The actual widget
size is then determined by the widget's geometry manager, based on this value, the size of the
widget's master, and the options given to the geometry manager.

winfo_rootx, winfo_rooty
winfo_rootx(), winfo_rooty(). Return the pixel coordinates for self's upper left corner, relative
to the screen's upper left corner.

winfo_screen

winfo_screen(). Return the X window screen name for the current window. The string has the
following format:

":%d.%d" % (display, screen)

On Windows and Macintosh, this is always ":0.0".

winfo_screencells
winfo_screencells(). Returns the number of "cells" in the default color map for self's screen.

winfo_screendepth
winfo_screendepth(). Return the default bit depth for self's screen.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 43. Basic Widget Methods

159

winfo_screenwidth, winfo_screenheight
winfo_screenwidth(), winfo_screenheight(). Return the width (height) of self's screen, in
pixels.

winfo_screenmmwidth, winfo_screenmmheight

winfo_screenmmwidth(), winfo_screenmmheight(). Return the width (height) of self's screen,
in millimetres. This may not be accurate on all platforms.

FIXME: does this take the logical resolution into account on Windows?

winfo_screenvisual
winfo_screenvisual(). Return the "visual" type used for self. This is typically "pseudocolor" (for
256-color displays) or "truecolor" (for 16- or 24-bit displays).

Other possible values (on X window systems only) include "directcolor", "staticcolor",
"grayscale", or "staticgray".

winfo_toplevel
winfo_toplevel(). Return the toplevel window (or root) window for self, as a widget instance.

winfo_visual
winfo_visual(). Return a string describing the display type (the X window "visual") for self's
screen. This is one of staticgray, grayscale, staticcolor, psuedocolor, directcolor, or truecolor.
For most display devices, this is either psuedocolor (an 8-bit colormapped display), or
truecolor (a 15- or 24-bit truecolor display).

winfo_x, winfo_y
winfo_x(), winfo_y(). Return the pixel coordinates for self's upper left corner, relative to its
parent's upper left corner.

Miscellaneous

bell
bell(). Generate a system-dependent sound (typically a short beep).

clipboard_append
clipboard_append(string). Add text to the clipboard.

clipboard_clear
clipboard_clear(). Clear the clipboard.

Chapter 43. Basic Widget Methods

160

selection_clear
selection_clear().

selection_get
selection_get().

selection_handle
selection_handle(command).

selection_own
selection_own().

selection_own_get
selection_own_get().

tk_focusFollowsMouse
tk_focusFollowsMouse().

tk_strictMotif
tk_strictMotif(flag). Under Unix, this method can be called to enforce strict Motif look and feel.
To use this, create a root window by calling the Tk constructor, and then call this method with
flag set to 1 before you create any other widgets. This method has no effect on other platforms.

winfo_rgb
winfo_rgb(color). Convert a color string (in any form accepted by Tkinter) to a 3-tuple
containing the corresponding red, green, and blue component. Note that the tuple contains 16-
bit values (0..65535).

Tkinter Interface Methods
The following methods are used by Tkinter's inner workings. Don't use these unless you know
exactly what you are doing, and why you should do that.

getboolean
getboolean(s). Convert a string to a boolean (flag) value, using Tcl's conventions.

getdouble
getdouble(s). Convert a string to a floating point value, using Tcl's conventions. In practice,
this is equivalent to float and string.atof.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 43. Basic Widget Methods

161

getint
getint(s). Convert a string to an integer point value, using Tcl's conventions. In practice, this is
equivalent to int and string.atoi.

register

register(callback). Register a Tcl to Python callback. Returns the name of a Tcl wrapper
procedure. When that procedure is called from a Tcl program, it will call the corresponding
Python function with the arguments given to the Tcl procedure. Values returned from the
Python callback are converted to strings, and returned to the Tcl program.

winfo_atom
winfo_atom(string). Map the given to a unique integer. Everytime you call this method with
the same string, the same integer will be returned.

winfo_atomname
winfo_atomname(id). Return the string corresponding to the given integer (obtained by a call
to winfo_atom). If the integer isn't in use, Tkinter raises a TclError exception. Note that
Tkinter predefines a bunch of integers (typically 1-80 or so). If you're curious, you can use
winfo_atomname to find out what they are used for.

Option Database
Not yet documented.

option_add
option_add(pattern, value).

option_clear
option_clear().

option_get
option_get(name, className).

option_readfile
option_readfile(fileName).

162

Chapter 44. Toplevel Window Methods
This group of methods are used to communicated with the window manager. They are
available on the root window (Tk), as well as on all Toplevel instances.

Note that different window managers behave in different ways. For example, some window
managers don't support icon windows, some don't support window groups, etc.

Visibility Methods

deiconify
deiconify(). Display the window. New windows are displayed by default, so you only have to
use this method if you have used iconify or withdraw to remove the window from the screen.

iconify
iconify(). Turn the window into an icon (without destroying it). To redraw the window, use
deiconify. Under Windows, the window will show up in the taskbar.

When the window has been iconified, the state method returns "iconic".

withdraw
withdraw(). Remove the window from the screen (without destroying it). To redraw the
window, use deiconify.

When the window has been withdrawn, the state method returns "withdrawn".

state
state(). Returns the current state of self. This is one of the values "normal", "iconic" (see
iconify), "withdrawn" (see withdraw) or "icon" (see iconwindow).

Style Methods

title

title(string), title(). Set (get) the window title.

group

group(window). Adds self to the window group controlled by the given window. A group
member is usually hidden when the group owner is iconified or withdrawn (the exact behavior
depends on the window manager in use).

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 44. Toplevel Window Methods

163

transient
transient(master). Make self a transient window for the given master (if omitted, master
defaults to self's parent). A transient window is always drawn on top of its master, and is
automatically hidden when the master is iconified or withdrawn. Under Windows, transient
windows don't show show up in the task bar.

overrideredirect
overrideredirect(flag), overrideredirect(). Set (get) the override redirect flag. If non-zero, this
prevents the window manager from decorating the window. In other words, the window will
not have a title or a border, and it cannot be moved or closed via ordinary means.

Window Geometry Methods

geometry
geometry(). Returns a string describing self's "geometry". The string has the following format:

"%dx%d%+d%+d" % (width, height, xoffset, yoffset)

where all coordinates are given in pixels.

geometry
geometry(geometry). Change the geometry for self. The string format is as described above.

aspect
aspect(minNumer, minDenom, maxNumer, maxDenom), aspect(). Control the aspect ratio
(the relation between width and height) of this window. The aspect ratio is constrained to lie
between minNumer/minDenom and maxNumer/maxDenom.

If no arguments are given, this method returns the current constraints as a 4-tuple, if any.

maxsize

maxsize(width, height), maxsize(). Set (get) the maximum size for this window.

minsize
minsize(width, height), minsize(). Set (get) the minimum size for this window.

resizable
resizable(width, height), resizable(). Set (get) the resize flags. The width flag controls whether
the window can be resized horizontally by the user. The height flag controls whether the
window can be resized vertically.

Chapter 44. Toplevel Window Methods

164

Icon Methods

iconbitmap
iconbitmap(bitmap), iconbitmap(). Set (get) the icon bitmap to use when this window is
iconified. This method are ignored by some window managers (including Windows).

Note that this method can only be used to display monochrome icons. To display a color icon,
put it in a Label widget and display it using the iconwindow method instead (see below).

iconmask
iconmask(bitmap), iconmask(). Set (get) the icon bitmap mask to use when this window is
iconified. This method are ignored by some window managers (including Windows).

iconname
iconname(newName=None), iconname(). Set (get) the icon name to use when this window is
iconified. This method are ignored by some window managers (including Windows).

iconposition
iconposition(x, y), iconposition(). Set (get) the icon position hint to use when this window is
iconified. This method are ignored by some window managers (including Windows).

iconwindow

iconwindow(window), iconwindow(). Set (get) the icon window to use as an icon when this
window is iconified. This method are ignored by some window managers (including Windows).

Property Access Methods

client
client(name), client(). Set (get) the WM_CLIENT_MACHINE property. This property is used
by window managers under the X window system. It is ignored on other platforms.

To remove the property, set it to an empty string.

colormapwindows

colormapwindows(wlist...), colormapwindows(). Set (get) the WM_COLORMAP_WINDOWS
property. This property is used by window managers under the X window system. It is ignored
on other platforms.

command
command(value), command(). Set (get) the WM_COMMAND property. This property is used
by window managers under the X window system. It is ignored on other platforms.

Review Copy. Do not redistribute! 1999-12-01 22:16

Copyright (c) 1999 by Fredrik Lundh

Chapter 44. Toplevel Window Methods

165

To remove the property, set it to an empty string.

focusmodel
focusmodel(model), focusmodel(). Set (get) the focus model.

frame

frame(). Return a string containing a system-specific window identifier corresponding to self's
outermost parent. For Unix, this is the X window identifier. For Windows, this is the HWND
cast to a long integer.

Note that if the window hasn't been reparented by the window manager, this method returns
the window identifier corresponding to self.

positionfrom

positionfrom(who), positionfrom(). Set (get) the position controller.

protocol
protocol(name, function). Register function as a callback which will be called for the given
protocol. The name argument is typically one of BWM_DELETE_WINDOW (the window is
about to be deleted), WM_SAVE_YOURSELF (called by X window managers when the
application should save a snapshot of its working set) or WM_TAKE_FOCUS (called by X
window managers when the application receives focus).

sizefrom
sizefrom(who), sizefrom(). Set (get) the size controller.

166

Index

b
bind1.py

d
dialog1.py
dialog2.py
dialog3.py

h
hello1.py
hello2.py

m
menu-example-2.py
menu-example-3.py
menu-example-4.py
menu-example-5.py
menu1.py

p
protocol1.py

s
scrollbar-example-1.py

t
tkSimpleDialog.py
tkSimpleStatusBar.py
toolbar1.py

