
17
Python Database

Application Programming
Interface (DB-API)

Objectives
• To understand the relational database model.
• To understand basic database queries using

Structured Query Language (SQL).
• To use the methods of the MySQLdbmodule to query

a database, insert data into a database and update data
in a database.

It is a capital mistake to theorize before one has data.
Arthur Conan Doyle

Now go, write it before them in a table, and note it in a book,
that it may be for the time to come for ever and ever.
The Holy Bible: The Old Testament

Let's look at the record.
Alfred Emanuel Smith

True art selects and paraphrases, but seldom gives a
verbatim translation.
Thomas Bailey Aldrich

Get your facts first, and then you can distort them as much as
you please.
Mark Twain

I like two kinds of men: domestic and foreign.
Mae West

Chapter 17 Python Database Application Programming Interface (DB-API) 840

17.1 Introduction
In Chapter 14, File Processing and Serialization, we discussed sequential-access and ran-
dom-access file processing. Sequential-file processing is appropriate for applications in
which most or all of the file’s information is to be processed. On the other hand, random-
access file processing is appropriate for applications in which only a small portion of a
file’s data is to be processed. For instance, in transaction processing it is crucial to locate
and, possibly, update an individual piece of data quickly. Python provides solid capabilities
for both types of file processing.

A database is an integrated collection of data. Many companies maintain databases to
organize employee information, such as names, addresses and phone numbers. There are
many different strategies for organizing data to facilitate easy access and manipulation of
the data. A database management system (DBMS) provides mechanisms for storing and
organizing data in a manner consistent with the database’s format. Database management
systems allow for the access and storage of data without worrying about the internal repre-
sentation of databases.

Today’s most popular database systems are relational databases, which consist of data
that correspond to one another. A language called Structured Query Language (SQL—pro-

Outline

17.1 Introduction
17.2 Relational Database Model
17.3 Relational Database Overview: The Books Database
17.4 Structured Query Language (SQL)

17.4.1 Basic SELECT Query
17.4.2 WHERE Clause
17.4.3 ORDER BY Clause
17.4.4 Merging Data from Multiple Tables: Joining
17.4.5 INSERT INTO Statement
17.4.6 UPDATE Statement
17.4.7 DELETE FROM Statement

17.5 Managed Providers
17.6 Python DB-API Specification
17.7 Database Query Example
17.8 Querying the Books Database
17.9 Reading, Inserting and Updating a MySQL Database
17.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Bibliography

841 Python Database Application Programming Interface (DB-API) Chapter 17

nounced as its individual letters or as “sequel”) is used almost universally with relational
database systems to perform queries (i.e., to request information that satisfies given cri-
teria) and to manipulate data. [Note: The writing in this chapter assumes that SQL is pro-
nounced as its individual letters. For this reason, we often precede SQL with the article “an”
as in “an SQL database” or “an SQL statement.”]

Some popular enterprise-level relational database systems include Microsoft SQL
Server, Oracle, Sybase, DB2, Informix and MySQL. In this chapter, we present examples
using MySQL. Section 17.5 describes MySQL and other innovative databases. All exam-
ples in this chapter use MySQL version 3.23.41. [Note: The Deitel & Associates, Inc. Web
site (www.deitel.com) provides step-by-step instructions for installing MySQL and
helpful MySQL commands for creating, populating and deleting tables.]

A programming language connects to, and interacts with, relational databases via an
interface—software that facilitates communications between a database management
system and a program. Python programmers communicate with databases using modules
that conform to the Python Database Application Programming Interface (DB-API).
Section 17.6 discusses the DB-API specification.

17.2 Relational Database Model
The relational database model is a logical representation of data that allows the relation-
ships between the data to be considered independent of the actual physical structure of the
data. A relational database is composed of tables. Figure 17.1 illustrates a sample table that
might be used in a personnel system. The table name is Employee, and its primary pur-
pose is to illustrate the attributes of an employee and how they are related to a specific em-
ployee. Any particular row of the table is called a record (or row). This table consists of six
records. The Number field (or column) of each record in the table is used as the primary
key for referencing data in the table. A primary key is a field (or fields) in a table that con-
tain(s) unique data, which cannot be duplicated in other records. A table’s primary key
uniquely identifies each record in the table. This guarantees each record can be identified
by a unique value. Good examples of primary fields are a social security number, an em-
ployee ID and a part number in an inventory system. The records of Fig. 17.1 are ordered
by primary key. In this case, the records are in increasing order, but they also could be sort-
ed in decreasing order.

Fig. 17.1 Relational database structure of an Employee table.

Number Name Department Salary Location

23603 Jones 413 1100 New Jersey

24568 Kerwin 413 2000 New Jersey

34589 Larson 642 1800 Los Angeles

35761 Myers 611 1400 Orlando

47132 Neumann 413 9000 New Jersey

78321 Stephens 611 8500 Orlando

Row/Record

Column/FieldPrimary key

Chapter 17 Python Database Application Programming Interface (DB-API) 842

Software Engineering Observation 17.1
Tables in a database normally have primary keys. 17.1

Each column of the table represents a different field (or column or attribute). Records
normally are unique (by primary key) within a table, but particular field values may be
duplicated between records. For example, three different records in the Employee table’s
Department field contain the number 413. The primary key can be composed of more
than one column (or field) in the database.

Different users of a database often are interested in different data and different rela-
tionships among those data. Some users require only subsets of the table columns. To
obtain table subsets, SQL statements specify the data to select from a table. SQL enables
programmers to define complex queries that select data from a table by providing a com-
plete set of commands, including SELECT. The results of a query are commonly called
result sets (or record sets). For example, an SQL statement might select data from the table
in Fig. 17.1 to create a new result set that shows where departments are located. This result
set is shown in Fig. 17.2. SQL queries are discussed in Section 17.4.

17.3 Relational Database Overview: The Books Database
This section gives an overview of SQL in the context of a sample Books database we cre-
ated for this chapter. Before we discuss SQL, we overview the tables of the Books data-
base. We use this to introduce various database concepts, including the use of SQL to
obtain useful information from the database and to manipulate the database. We provide
the database in the examples directory for this chapter on the CD that accompanies this
book. Note that when using MySQL on windows, it is case insensitive (i.e., the Books da-
tabase and the books database refer to the same database). However, when using MySQL
on Linux, it is case sensitive (i.e., the Books database and the books database refer to
different databases).

The database consists of four tables: Authors, Publishers, AuthorISBN and
Titles. The Authors table (described in Fig. 17.3) consists of three fields (or columns)
that maintain each author’s unique ID number, first name and last name. Figure 17.4 con-
tains the data from the Authors table of the Books database.

Fig. 17.2 Result set formed by selecting data from a table.

Department Location

413 New Jersey

642 Los Angeles

611 Orlando

843 Python Database Application Programming Interface (DB-API) Chapter 17

The Publishers table (described in Fig. 17.5) consists of two fields representing
each publisher’s unique ID and name. Figure 17.6 contains the data from the Pub-
lishers table of the Books database.

Field Description

AuthorID Author’s ID number in the database. In the Books database, this integer field is
defined as an autoincremented field. For each new record inserted in this table,
the database increments the AuthorID value, to ensure that each record has a
unique AuthorID. This field represents the table’s primary key.

FirstName Author’s first name (a string).

LastName Author’s last name (a string).

Fig. 17.3 Authors table from Books.

AuthorID FirstName LastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

5 Ted Lin

6 Praveen Sadhu

7 David McPhie

Fig. 17.4 Data from the Authors table of Books.

Field Description

PublisherID Publisher’s ID number in the database. This autoincremented integer is
the table’s primary-key field.

PublisherName Name of the publisher (a string).

Fig. 17.5 Publishers table from Books.

Chapter 17 Python Database Application Programming Interface (DB-API) 844

The AuthorISBN table (described in Fig. 17.7) consists of two fields that maintain
each ISBN number and its corresponding author’s ID number. This table helps associate
the names of the authors with the titles of their books. Figure 17.8 contains the data from
the AuthorISBN table of the Books database. ISBN is an abbreviation for “International
Standard Book Number”, a numbering scheme that publishers worldwide use to give every
book a unique identification number. [Note: To save space, we have split the contents of
this table into two columns, each containing the AuthorID and ISBN fields.]

PublisherID PublisherName

1 Prentice Hall

2 Prentice Hall PTG

Fig. 17.6 Data from the Publishers table of Books.

Field Description

AuthorID Author’s ID number, which allows the database to associate each
book with a specific author. The integer ID number in this field must
also appear in the Authors table.

ISBN ISBN number for a book (a string).

Fig. 17.7 AuthorISBN table from Books.

AuthorID ISBN AuthorID ISBN

1 0130895725 2 0130161438

1 0132261197 2 0130856118

1 0130895717 2 0130125075

1 0135289106 2 0138993947

1 0139163050 2 0130852473

1 013028419x 2 0130829277

1 0130161438 2 0134569555

1 0130856118 2 0130829293

1 0130125075 2 0130284173

1 0138993947 2 0130284181

Fig. 17.8 Data from the AuthorISBN table of Books (part 1 of 2).

845 Python Database Application Programming Interface (DB-API) Chapter 17

The Titles table (described in Fig. 17.9) consists of six fields that maintain general
information about each book in the database, including the ISBN number, title, edition
number, copyright year, publisher’s ID number, name of a file containing an image of the
book cover and finally, the price. Figure 17.10 contains the data from the Titles table.

1 0130852473 2 0130895601

1 0130829277 3 013028419x

1 0134569555 3 0130161438

1 0130829293 3 0130856118

1 0130284173 3 0134569555

1 0130284181 3 0130829293

1 0130895601 3 0130284173

2 0130895725 3 0130284181

2 0132261197 4 0130895601

2 0130895717 5 0130284173

2 0135289106 6 0130284173

2 0139163050 7 0130284181

2 013028419x

Field Description

ISBN ISBN number of the book (a string).

Title Title of the book (a string).

EditionNumber Edition number of the book (an integer).

Copyright Copyright year of the book (an integer).

PublisherID Publisher’s ID number (an integer). This value must correspond to an ID
number in the Publishers table.

ImageFile Name of the file containing the book’s cover image (a string).

Price Retail price of the book (a real number). [Note: The prices shown in this
book are for example purposes only.]

Fig. 17.9 Titles table from Books.

AuthorID ISBN AuthorID ISBN

Fig. 17.8 Data from the AuthorISBN table of Books (part 2 of 2).

Chapter 17 Python Database Application Programming Interface (DB-API) 846

ISBN Title
Edition
-Number

Copy-
right

Publi-
sherID ImageFile Price

0130895725 C How to Pro-
gram

3 2001 1 chtp3.jpg 69.95

0132261197 C How to Pro-
gram

2 1994 1 chtp2.jpg 49.95

0130895717 C++ How to
Program

3 2001 1 cpphtp3.jp
g

69.95

0135289106 C++ How to
Program

2 1998 1 cpphtp2.jp
g

49.95

0139163050 The Complete
C++ Training
Course

3 2001 2 cppctc3.jp
g

109.95

013028419x e-Business and
e-Commerce
How to Program

1 2001 1 ebechtp1.j
pg

69.95

0130161438 Internet and
World Wide
Web How to
Program

1 2000 1 iw3htp1.jp
g

69.95

0130856118 The Complete
Internet and
World Wide
Web Program-
ming Training
Course

1 2000 2 iw3ctc1.jp
g

109.95

0130125075 Java How to
Program (Java
2)

3 2000 1 jhtp3.jpg 69.95

0138993947 Java How to
Program (Java
1.1)

2 1998 1 jhtp2.jpg 49.95

0130852473 The Complete
Java 2 Training
Course

3 2000 2 javactc3.j
pg

109.95

0130829277 The Complete
Java Training
Course (Java
1.1)

2 1998 2 javactc2.j
pg

99.95

Fig. 17.10 Data from the Titles table of Books (part 1 of 2).

847 Python Database Application Programming Interface (DB-API) Chapter 17

Figure 17.11 illustrates the relationships between the tables in the Books database.
The first line in each table is the table’s name. The field name in green in each table is that
table’s primary key. Every record must have a unique value in the primary-key field. This
is known as the Rule of Entity Integrity.

The lines connecting the tables in Fig. 17.11 represent the relationships between the
tables. Consider the line between the Publishers and Titles tables. On the Pub-
lishers end of the line, there is a 1, and on the Titles end, there is an infinity (∞)
symbol. This line indicates a one-to-many relationship in which every publisher in the
Publishers table can have an arbitrarily large number of books in the Titles table.
Note that the relationship line links the PublisherID field in the Publishers table to
the PublisherID field in the Titles table. The PublisherID field in the Titles
table is a foreign key—a field for which every entry has a unique value in another table and
where the field in the other table is the primary key for that table (i.e., PublisherID in
the Publishers table). Foreign keys (sometimes called constraints) are specified when

0134569555 Visual Basic 6
How to Program

1 1999 1 vbhtp1.jpg 69.95

0130829293 The Complete
Visual Basic 6
Training Course

1 1999 2 vbctc1.jpg 109.95

0130284173 XML How to
Program

1 2001 1 xmlhtp1.jp
g

69.95

0130284181 Perl How to
Program

1 2001 1 perlhtp1.j
pg

69.95

0130895601 Advanced Java
2 Platform How
to Program

1 2002 1 advjhtp1.j
pg

69.95

Fig. 17.11 Table relationships in Books.

ISBN Title
Edition
-Number

Copy-
right

Publi-
sherID ImageFile Price

Fig. 17.10 Data from the Titles table of Books (part 2 of 2).

AuthorISBN

AuthorID

ISBN

Authors

AuthorID

FirstName

LastName

Publishers

PublisherID

PublisherName

Titles

ISBN

Title

EditionNumber

Copyright

PublisherID

ImageFile

Price

1 ∞ 1

∞

1
∞

Chapter 17 Python Database Application Programming Interface (DB-API) 848

creating a table. The foreign key helps maintain the Rule of Referential Integrity: Every for-
eign key-field value must appear in another table’s primary-key field. Foreign keys enable
information from multiple tables to be joined together for analysis purposes. There is a one-
to-many relationship between a primary key and its corresponding foreign key. This means
that a foreign key-field value can appear many times in its own table, but it can only appear
once as the primary key of another table. The line between the tables represents the link
between the foreign key in one table and the primary key in another table. Notice that table
AuthorISBN does not have a primary key because both AuthorID and ISBN are for-
eign keys.

Common Programming Error 17.1
Not providing a value for a primary-key field in every record breaks the Rule of Entity Integ-
rity and causes the DBMS to report an error. 17.1

Common Programming Error 17.2
Providing duplicate values for the primary-key field in multiple records causes the DBMS to
report an error. 17.2

Common Programming Error 17.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error. 17.3

The line between the AuthorISBN and Authors tables indicates that for each
author in the Authors table, there can be an arbitrary number of ISBNs for books written
by that author in the AuthorISBN table. The AuthorID field in the AuthorISBN table
is a foreign key of the AuthorID field (the primary key) of the Authors table. Note
again that the line between the tables links the foreign key of table AuthorISBN to the
corresponding primary key in table Authors. The AuthorISBN table links information
in the Titles and Authors tables.

Finally, the line between the Titles and AuthorISBN tables illustrates a one-to-
many relationship; a title can be written by any number of authors. In fact, the sole purpose
of the AuthorISBN table is to represent a many-to-many relationship between the
Authors and Titles tables; an author can write any number of books and a book can
have any number of authors.

17.4 Structured Query Language (SQL)
This section provides an overview of SQL in the context of a sample database called
Books. You will be able to use the SQL queries discussed here in the examples later in the
chapter.

The SQL keywords of Fig. 17.12 are discussed in the context of complete SQL queries
in the next several subsections—other SQL keywords are beyond the scope of this text.
[Note: For more information on SQL, please refer to the World Wide Web resources in
Section 17.10 and the bibliography at the end of this chapter.]

849 Python Database Application Programming Interface (DB-API) Chapter 17

17.4.1 Basic SELECT Query
Let us consider several SQL queries that extract information from database Books. A typ-
ical SQL query selects information from one or more tables in a database. Such selections
are performed by SELECT queries. The simplest format of a SELECT query is

SELECT * FROM tableName

In this query, the asterisk (*) indicates that all rows and columns from table tableName of
the database should be selected. For example, to select the entire contents of the Authors
table (i.e., all the data in Fig. 17.13), use the query

SELECT * FROM Authors

To select specific fields from a table, replace the asterisk (*) with a comma-separated
list of field names. For example, to select only the fields AuthorID and LastName for
all rows in the Authors table, use the query

SELECT AuthorID, LastName FROM Authors

This query returns the data in Fig. 17.13.

SQL keyword Description

SELECT Select (retrieve) fields from one or more tables.

FROM Tables from which to select fields. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved.

ORDER BY Criteria for ordering records.

INSERT INTO Insert data into a specified table.

UPDATE Update data in a specified table.

DELETE FROM Delete data from a specified table.

Fig. 17.12 Some SQL query keywords.

AuthorID LastName

1 Deitel

2 Deitel

3 Nieto

4 Santry

5 Lin

6 Sadhu

Fig. 17.13 AuthorID and LastName from the Authors table (part 1 of 2).

Chapter 17 Python Database Application Programming Interface (DB-API) 850

Good Programming Practice 17.1
If a field name contains spaces, the name must be enclosed in quotation marks ("") in the
query. For example, if the field name is First Name, the field name should appear in the
query as "First Name". 17.1

Good Programming Practice 17.2
For most SQL statements, the asterisk (*) should not be used to specify field names to select
from a table (or several tables). In general, programmers process result sets by knowing in
advance the order of the fields in the result set. For example, selecting AuthorID and
LastName from table Authors guarantees that the fields will appear in the result set with
AuthorID as the first field and LastName as the second field. 17.2

Software Engineering Observation 17.2
Specifying the field names to select from a table (or several tables) guarantees that the fields
are always returned in the specified order, even if the actual order of the fields in the data-
base table(s) changes or if new fields are added to the table(s). 17.2

Common Programming Error 17.4
If a program assumes that the fields in a result set are always returned in the same order
from an SQL statement that uses the asterisk (*) to select fields, the program may process
the result set incorrectly. If the field order in the database table(s) changes, the order of the
fields in the result set would change accordingly. 17.4

17.4.2 WHERE Clause
In most cases, it is necessary to locate records in a database that satisfy certain selection
criteria. Only records that match the selection criteria are selected. SQL uses the optional
WHERE clause in a SELECT query to specify the selection criteria for the query. The sim-
plest format of a SELECT query with selection criteria is

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

For example, to select the Title, EditionNumber and Copyright fields from table
Titles where the Copyright is greater than 2000, use the query

SELECT Title, EditionNumber, Copyright
FROM Titles
WHERE Copyright > 2000

Figure 17.14 shows the results of the preceding query.

7 McPhie

AuthorID LastName

Fig. 17.13 AuthorID and LastName from the Authors table (part 2 of 2).

851 Python Database Application Programming Interface (DB-API) Chapter 17

Performance Tip 17.1
Using selection criteria improves performance typically selecting a smaller portion of the
database. Working with a portion of the data is more efficient than working with the entire
set of data stored in the database. 17.1

The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE.
Operator LIKE is used for pattern matching with wildcard characters percent (%) and
underscore (_). Pattern matching allows SQL to search for similar strings that “match a
pattern.”

A pattern that contains a percent character (%) searches for strings that have zero or
more characters at the percent character’s position in the pattern. For example, the fol-
lowing query locates the records of all the authors whose last names start with the letter D:

SELECT AuthorID, FirstName, LastName
FROM Authors
WHERE LastName LIKE 'D%'

The preceding query selects the two records shown in Fig. 17.15, because two of the four
authors in our database have last names starting with the letter D (followed by zero or more
characters). The % in the WHERE clause’s LIKE pattern indicates that any number of char-
acters can appear after the letter D in the LastName field. Notice that the pattern string
(like all strings in SQL) is surrounded by single-quote characters.

Title EditionNumber Copyright

C How to Program 3 2001

C++ How to Program 3 2001

The Complete C++ Training Course 3 2001

e-Business and e-Commerce How to Program 1 2001

XML How to Program 1 2001

Perl How to Program 1 2001

Advanced Java 2 Platform How to Program 1 2002

Fig. 17.14 Titles published after 2000 from table Titles.

AuthorID FirstName LastName

1 Harvey Deitel

2 Paul Deitel

Fig. 17.15 Authors whose last names start with D from the Authors table.

Chapter 17 Python Database Application Programming Interface (DB-API) 852

Portability Tip 17.1
See the documentation for your database system to determine if SQL is case sensitive on your
system and to determine the syntax for SQL keywords (i.e., should they be all uppercase let-
ters, all lowercase letters or some combination of the two?). 17.1

Portability Tip 17.2
Not all database systems support the LIKE operator, so be sure to read your system’s doc-
umentation carefully. 17.2

Portability Tip 17.3
Some databases use the * character in place of the % in a LIKE expression. 17.3

Portability Tip 17.4
Some databases allow regulation expression patterns. 17.4

Portability Tip 17.5
In some databases, string data is case sensitive. 17.5

Good Programming Practice 17.3
By convention, on systems that are not case sensitive, SQL keywords should be all uppercase
letters to emphasize them in an SQL statement. 17.3

An underscore (_) in the pattern string indicates a single character at that position in
the pattern. For example, the following query locates the records of all authors whose last
names start with any character (specified with _), followed by the letter i, followed by any
number of additional characters (specified with %):

SELECT AuthorID, FirstName, LastName
FROM Authors
WHERE LastName LIKE '_i%'

The preceding query produces the two records in Fig. 17.16, because two authors in our da-
tabase have last names in which i is the second letter.

Portability Tip 17.6
Some databases use the ? character in place of the _ in a LIKE expression. 17.6

AuthorID FirstName LastName

3 Tem Nieto

5 Ted Lin

Fig. 17.16 The authors from theAuthors table whose last names containi as the
second letter.

853 Python Database Application Programming Interface (DB-API) Chapter 17

17.4.3 ORDER BY Clause
The results of a query can be arranged in ascending or descending order using the optional
ORDER BY clause. The simplest form of an ORDER BY clause is

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and field specifies the field on which the sort is based. Without an OR-
DER BY clause, rows are returned in an unpredictable order.

For example, to obtain the list of authors in ascending order by last name, use the query

SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName ASC

The default sorting order is ascending, so ASC is optional. Figure 17.17 shows the results.

To obtain the same list of authors in descending order by last name (Fig. 17.18), use
the query

SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName DESC

AuthorID FirstName LastName

1 Harvey Deitel

2 Paul Deitel

5 Ted Lin

7 David McPhie

3 Tem Nieto

6 Praveen Sadhu

4 Sean Santry

Fig. 17.17 Authors from table Authors in ascending order by LastName.

AuthorID FirstName LastName

4 Sean Santry

6 Praveen Sadhu

Fig. 17.18 Authors from table Authors in descending order by LastName (part
1 of 2).

Chapter 17 Python Database Application Programming Interface (DB-API) 854

Multiple fields can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY field1 sortingOrder, field2 sortingOrder, …

where sortingOrder is either ASC or DESC. The sortingOrder does not have to be identical
for each field. The query

SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName, FirstName

sorts in ascending order all the authors by last name, then by first name. If any authors have
the same last name, their records are returned in sorted order by their first names
(Fig. 17.19).

The WHERE and ORDER BY clauses can be combined in one query. For example, the
query

SELECT ISBN, Title, EditionNumber, Copyright
FROM Titles
WHERE Title LIKE '%How to Program'

3 Tem Nieto

7 David McPhie

5 Ted Lin

1 Harvey Deitel

2 Paul Deitel

AuthorID FirstName LastName

Fig. 17.18 Authors from table Authors in descending order by LastName (part
2 of 2).

AuthorID FirstName LastName

1 Harvey Deitel

2 Paul Deitel

5 Ted Lin

7 David McPhie

3 Tem Nieto

6 Praveen Sadhu

4 Sean Santry

Fig. 17.19 Authors from tableAuthors in ascending order byLastName and by
FirstName.

855 Python Database Application Programming Interface (DB-API) Chapter 17

ORDER BY Title ASC

returns the ISBN, Title, EditionNumber and Copyright date of each book in the
Titles table that has a Title ending with “How to Program” and sorts them in as-
cending order by Title. The results of the query are shown in Fig. 17.20.

17.4.4 Merging Data from Multiple Tables: Joining
Often it is necessary to merge data from multiple tables into a single view for analysis pur-
poses. This is referred to as joining the tables and is accomplished using a comma-separated
list of tables in the FROM clause of a SELECT query. A join merges records from two or
more tables by testing for matching values in a field that is common to both tables. The sim-
plest format of a join is

SELECT fieldName1, fieldName2, …
FROM table1, table2
WHERE table1.fieldName = table2.fieldName

The query’s WHERE clause specifies the fields from each table that should be compared
to determine which records will be selected. These fields normally represent the primary
key in one table and the corresponding foreign key in the other table. Foreign keys enable
information from multiple tables to be joined together and presented to the user.

For example, the following query produces a list of authors and the ISBN numbers for
the books that each author wrote:

SELECT FirstName, LastName, ISBN
FROM Authors, AuthorISBN

ISBN Title
Edition
-Number Copyright

0130895601 Advanced Java 2 Platform How to Program 1 2002

0130895725 C How to Program 3 2001

0132261197 C How to Program 2 1994

0130895717 C++ How to Program 3 2001

0135289106 C++ How to Program 2 1997

013028419x e-Business and e-Commerce How to Pro-
gram

1 2001

0130161438 Internet and World Wide Web How to Pro-
gram

1 2000

0130284181 Perl How to Program 1 2001

0134569555 Visual Basic 6 How to Program 1 1999

0130284173 XML How to Program 1 2001

Fig. 17.20 Books from table Titles whose titles end with How to Program in
ascending order by Title.

Chapter 17 Python Database Application Programming Interface (DB-API) 856

WHERE Authors.AuthorID = AuthorISBN.AuthorID
ORDER BY LastName, FirstName

The query merges the FirstName and LastName fields from the Authors table and
the ISBN field from the AuthorISBN table and sorts the results in ascending order by
LastName and FirstName. Notice the use of the syntax tableName.fieldName in the
WHERE clause of the query. This syntax (called a fully qualified name) specifies the fields
from each table that should be compared to join the tables. The “tableName.” syntax is re-
quired if the fields have the same name in both tables. Fully qualified names that start with
the database name can be used to perform cross-database queries.

Software Engineering Observation 17.3
If an SQL statement uses fields with the same name from multiple tables, the field name must
be fully qualified with its table name and a dot operator (.), as in Authors.AuthorID. 17.3

Common Programming Error 17.5
In a query, not providing fully qualified names for fields with the same name from two or
more tables is an error. 17.3

As always, the FROM clause can be followed by an ORDER BY clause. Figure 17.21
shows the results of the preceding query. [Note: To save space, we split the results of the
query into two columns, each containing the FirstName, LastName and ISBN fields.]

FirstName LastName ISBN FirstName LastName ISBN

Harvey Deitel 0130161438 Paul Deitel 0130125075

Harvey Deitel 0130852473 Paul Deitel 0132261197

Harvey Deitel 0135289106 Paul Deitel 0134569555

Harvey Deitel 0130284173 Paul Deitel 013028419x

Harvey Deitel 0130856118 Paul Deitel 0130895601

Harvey Deitel 0130895725 Paul Deitel 0138993947

Harvey Deitel 0130829277 Paul Deitel 0130895717

Harvey Deitel 0139163050 Paul Deitel 0130829293

Harvey Deitel 0130284181 Paul Deitel 0130161438

Harvey Deitel 0130125075 Paul Deitel 0130852473

Harvey Deitel 0132261197 Paul Deitel 0135289106

Harvey Deitel 0134569555 Ted Lin 0130284173

Harvey Deitel 013028419x David McPhie 01300284181

Harvey Deitel 0130895601 Tem Nieto 0130829293

Harvey Deitel 0138993947 Tem Nieto 0130161438

Harvey Deitel 0130895717 Tem Nieto 0130284173

Fig. 17.21 Authors and the ISBN numbers for the books they have written in
ascending order by LastName and FirstName (part 1 of 2).

857 Python Database Application Programming Interface (DB-API) Chapter 17

17.4.5 INSERT INTO Statement
The INSERT INTO statement inserts a new record into a table. The simplest form of this
statement is

INSERT INTO tableName (fieldName1, fieldName2, …, fieldNameN)
VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the record. The tableName is followed by
a comma-separated list of field names in parentheses. (This list is not required if the IN-
SERT INTO operation specifies a value for every column of the table in the correct order.)
The list of field names is followed by the SQL keyword VALUES and a comma-separated
list of values in parentheses. The values specified here should match the field names spec-
ified after the table name in order and type (i.e., if fieldName1 is supposed to be the
FirstName field, then value1 should be a string in single quotes representing the first
name). The INSERT INTO statement

INSERT INTO Authors (FirstName, LastName)
VALUES ('Sue', 'Smith')

inserts a record into the Authors table. The statement indicates that values will be insert-
ed for the FirstName and LastName fields. The corresponding values to insert are
'Sue' and 'Smith'. [Note: The SQL statement does not specify an AuthorID in this
example, because AuthorID is an autoincrement field in table Authors (Fig. 17.3). For
every new record added to this table, MySQL assigns a unique AuthorID value that is the
next value in the auto-increment sequence (i.e., 1, 2, 3, etc.). In this case, MySQL assigns
AuthorID number 8 to Sue Smith.] Figure 17.22 shows the Authors table after the IN-
SERT INTO operation.

Harvey Deitel 0130829293 Tem Nieto 0130856118

Paul Deitel 0130284173 Tem Nieto 0130284181

Paul Deitel 0130856118 Tem Nieto 0134569555

Paul Deitel 0130895725 Tem Nieto 013028419x

Paul Deitel 0130829277 Praveen Sadhu 0130284173

Paul Deitel 0139163050 Sean Santry 0130895601

Paul Deitel 0130284181

FirstName LastName ISBN FirstName LastName ISBN

Fig. 17.21 Authors and the ISBN numbers for the books they have written in
ascending order by LastName and FirstName (part 2 of 2).

Chapter 17 Python Database Application Programming Interface (DB-API) 858

Common Programming Error 17.6
In MySQL, SQL statements use the single-quote (') character as a delimiter for strings. To
specify a string containing a single quote (such as O’Malley) in an SQL statement, the string
must have two single quotes in the position where the single-quote character appears in the
string (e.g., 'O''Malley'). The first of the two single-quote characters acts as an escape
character for the second. Not escaping single-quote characters in a string that is part of an
SQL statement is a syntax error. 17.6

17.4.6 UPDATE Statement
An UPDATE statement modifies data in a table. The simplest form for an UPDATE state-
ment is

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is
followed by keyword SET and a comma-separated list of field name/value pairs in the for-
mat fieldName = value. The WHERE clause specifies the criteria used to determine which
record(s) to update. The UPDATE statement

UPDATE Authors
SET LastName = 'Jones'
WHERE LastName = 'Smith' AND FirstName = 'Sue'

updates a record in the Authors table. The statement indicates that the LastName is as-
signed the value Jones for the record in which LastName equals Smith and First-
Name equals Sue. The AND keyword indicates that all components of the selection criteria
must be satisfied. If we know the AuthorID in advance of the UPDATE operation (possi-
bly because we searched for the record previously), the WHERE clause could be simplified
as follows:

AuthorID FirstName LastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

5 Ted Lin

6 Praveen Sadhu

7 David McPhie

8 Sue Smith

Fig. 17.22 Table Authors after an INSERT INTO operation to add a record.

859 Python Database Application Programming Interface (DB-API) Chapter 17

WHERE AuthorID = 8

Figure 17.23 shows the Authors table after the UPDATE operation.

17.4.7 DELETE FROM Statement
An SQL DELETE statement removes data from a table. The simplest form for a DELETE
statement is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE clause
specifies the criteria used to determine which record(s) to delete. The DELETE statement

DELETE FROM Authors
WHERE LastName = 'Jones' AND FirstName = 'Sue'

deletes the record for Sue Jones in the Authors table. If we know the AuthorID in ad-
vance of the DELETE operation, the WHERE clause could be simplified as follows:

WHERE AuthorID = 8

Figure 17.24 shows the Authors table after the DELETE operation.

AuthorID FirstName LastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

5 Ted Lin

6 Praveen Sadhu

7 David McPhie

8 Sue Jones

Fig. 17.23 Table Authors after an UPDATE operation to change a record.

AuthorID FirstName LastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

Fig. 17.24 Table Authors after a DELETE operation to remove a record (part 1
of 2).

Chapter 17 Python Database Application Programming Interface (DB-API) 860

Common Programming Error 17.7
Missing out a WHERE clause may result in all records being deleted from the table. 17.7

17.5 Managed Providers
Although the previous sections may appear somewhat trivial in nature, they form the basis
of state-of-the-art database systems. The relational database model of Section 17.2 and the
Structured Query Language of Section 17.4 are what fuels exciting technologies like
MySQL, SQLServer 2000™, and Oracle9i™.

MySQL is an open-source DBMS. The term open-source refers to software that can be
freely obtained and customized for corporate, educational and personal requirements.
[Note: Under certain situations, a commercial license is required for MySQL.] MySQL was
written in C/C++ and provides an extremely fast low-tier user interface to the database. A
low-tier interface is one in which there are few levels of interfacing between users and the
shell (the command interface to an operating system). Thus, MySQL’s Application Pro-
gramming Interface (API) allows programmers to build efficient and robust database appli-
cations, especially with programming languages that easily interact with C and C++.

SQLServer 2000 is a Microsoft product that is designed for easy integration with Web
applications. In a large distributed computing system, like the Internet, many different users
share resources across different platforms. To that end, Microsoft has added XML and
HTTP support in addition to numerous other features.

Oracle9i is another commercial database system in wide-spread use. The focus, as with
SQLServer, is on eBusiness and Internet applications. The database supports all types of
content, allows users to modify the data through and interface and ensures security.
Oracle9i is a scalable product because performance does not decrease as the size of the
system and its number of users increase.

17.6 Python DB-API Specification
As mentioned earlier, the code examples in this chapter use the MySQL database system;
however, the databases supported by Python are not restricted to MySQL. Modules have
been written that can interface with most popular databases, thus hiding database details
from the programmer. These modules follow the Python Database Application Program-

4 Sean Santry

5 Ted Lin

6 Praveen Sadhu

7 David McPhie

AuthorID FirstName LastName

Fig. 17.24 Table Authors after a DELETE operation to remove a record (part 2
of 2).

861 Python Database Application Programming Interface (DB-API) Chapter 17

ming Interface (DB-API), a document that specifies common object and method names for
manipulating any database.

Specifically, the DB-API describes a Connection object that accesses the database
(connects to the database). A program then uses the Connection object to create the
Cursor object, which manipulates and retrieves data. We discuss the methods and
attributes of these objects in the context of a working example throughout the remainder of
the chapter.

A Cursor provides a way to operate or execute queries (such as inserting rows into
a table, deleting rows from a table), as well as manipulate data returned from query execu-
tion. Three functions are available to fetch row(s) of a query result set—fetchone,
fetchmany and fetchall. Function fetchone gets the next row in a result set stored
in Cursor. Function fetchmany takes one argument—the number of rows to be
fetched, and gets the next set of rows of a result set. Function fetchall gets all rows of
a result set. On a large database, a fetchall would be impractical.

A benefit of the DB-API is that a program does not need to know much about the data-
base to which the program connects. Therefore, a program can use different databases with
few modifications in the Python source code. For example, to switch from the MySQL
database to another database, a programmer needs to change three or four lines at the most.
However, the switch between databases may require modifications to the SQL code (to
compensate for case sensitivity, etc.).

17.7 Database Query Example
Figure 17.25 presents a CGI program that performs a simple query on the Books database.
The query retrieves all information about the authors in the Authors table and displays
the data in an XHTML table. The program demonstrates connecting to the database, que-
rying the database and displaying the results. The discussion that follows presents the key
DB-API aspects of the program.

1 #!c:\Python\python.exe
2 # Fig. 17.25: fig17_25.py
3 # Displays contents of the Authors table,
4 # ordered by a specified field
5
6 import MySQLdb
7 import cgi
8
9 def printHeader(title):

10 print """Content-type: text/html
11
12 <?xml version = "1.0" encoding = "UTF-8"?>
13 <!DOCTYPE html PUBLIC
14 "-//W3C//DTD XHTML 1.0 Transitional//EN"
15 "DTD/xhtml1-transitional.dtd">
16 <html xmlns = "http://www.w3.org/1999/xhtml"

Fig. 17.25 Connecting to and querying a database and displaying the results (part 1
of 4).

Chapter 17 Python Database Application Programming Interface (DB-API) 862

17 xml:lang = "en" lang = "en">
18 <head><title>%s</title></head>
19
20 <body>""" % title
21
22 # connect to database and retrieve a cursor
23 connection = MySQLdb.connect(db = "Books")
24 cursor = connection.cursor()
25
26 # query field names from Authors table
27 cursor.execute("SELECT * FROM Authors")
28 allFields = cursor.description
29
30 # obtain user query specifications
31 form = cgi.FieldStorage()
32
33 if form.has_key("sortBy"):
34 sortBy = form["sortBy"].value
35 else:
36 sortBy = allFields[0][0] # first field name
37
38 if form.has_key("sortOrder"):
39 sortOrder = form["sortOrder"].value
40 else:
41 sortOrder = "ASC"
42
43 # query all records from Authors table
44 cursor.execute("SELECT * FROM Authors ORDER BY %s %s",
45 (sortBy, sortOrder))
46 allRecords = cursor.fetchall()
47
48 cursor.close()
49 connection.close()
50
51 # output results in table
52 printHeader("Authors table from Books")
53 print """\n<table border = "1" cellpadding = "3" >
54 <tr bgcolor = "silver" >"""
55
56 # create table header
57 for field in allFields:
58 print "<td>%s</td>" % field[0]
59
60 print "</tr>"
61
62 # display each record as a row
63 for author in allRecords:
64 print "<tr>"
65
66 for item in author:
67 print "<td>%s</td>" % item

Fig. 17.25 Connecting to and querying a database and displaying the results (part 2
of 4).

863 Python Database Application Programming Interface (DB-API) Chapter 17

68
69 print "</tr>"
70
71 print "</table>"
72
73 # obtain sorting method from user
74 print \
75 """\n<form method = "post" action = "/cgi-bin/fig17_25.py">
76 Sort By:
"""
77
78 # display sorting options
79 for field in allFields:
80 print """<input type = "radio" name = "sortBy"
81 value = "%s" />""" % field[0]
82 print field[0]
83 print "
"
84
85 print "
\nSort Order:

86 <input type = "radio" name = "sortOrder"
87 value = "ASC" checked = "checked" />
88 Ascending"
89 <input type = "radio" name = "sortOrder"
90 value = "DESC" />"""
91 Descending"
92

\n<input type = "submit" value = "Sort" />
93 </form>\n\n</body>\n</html>"""

Fig. 17.25 Connecting to and querying a database and displaying the results (part 3
of 4).

Chapter 17 Python Database Application Programming Interface (DB-API) 864

Line 6 imports module MySQLdb, which contains classes and functions for manipu-
lating MySQL databases in Python. Windows users can download MySQLdb from
www.cs.fhm.edu/~ifw00065/, and Linux users can download MySQLdb from
sourceforge.net/projects/mysql-python. For installation instructions,
please visit www.deitel.com.

Line 23 creates a Connection instance called connection. This instance man-
ages the connection between the Python program and the database. Function
MySQLdb.connect creates the connection. The function receives the name of the data-
base as the value of keyword argument db. If MySQLdb.connect fails, the function
raises a MySQLdb OperationalError exception.

Line 24 calls Connection method cursor to create a Cursor instance for the
database. The Cursor method execute takes as an argument a query string to execute
against the database (line 27). Our program queries the Author table to retrieve the field
names and values in the table.

A Cursor instance internally stores the results of a database query. The Cursor
attribute description contains a tuple of tuples that provides information about the
fields obtained by method execute. Each record in the return value is represented as a

Fig. 17.25 Connecting to and querying a database and displaying the results (part 4
of 4).

865 Python Database Application Programming Interface (DB-API) Chapter 17

tuple that contains the values of that record’s fields (Fig. 17.26). Line 28 assigns the tuple
of field name records to variable allFields.

Lines 74–93 create an XHTML form that enables the user to specify how to sort the
records of the Authors table. Lines 31–41 retrieve and process this form. The records are
sorted by the field assigned to variable sortBy. By default, the records are sorted by the
first field (LastName). The user can select a radio button to have the records sorted by
another field. Similarly, variable sortOrder has either the user-specified value or
"ASC".

Lines 44–46 query and retrieve all records from the Authors table sorted by vari-
ables sortBy and sortOrder. Cursor method close (line 48) closes the Cursor
object; line 49 closes the Connection object with Connectionmethod close. These
methods explicitly close the Cursor and the Connection instances. Although the
instances’ close methods execute when the instances are destroyed at program termina-
tion, programmers should explicitly close the instances once they are no longer needed.

Good Programming Practice 17.4
Explicitly close Cursor and Connection instances with their respective closemethods
as soon as the program no longer needs the objects. 17.4

The remainder of the program displays the results of the database query in an XHTML
table. Lines 57–60 display the Authors table’s fields using a for loop. For each field,
the program displays the first entry in that field’s tuple. Lines 63–69 display a table row for
each record in the Authors table using nested for loops. The outer for loop (line 63)
iterates through each record in the table to create a new row. The inner for loop (line 66)
iterates over each field in the current record and displays each field in a new cell.

17.8 Querying the Books Database
The example of Fig. 17.27 enhances the example of Fig. 17.25 by allowing the user to enter
any query into a GUI program. This example introduces database error handling and the

Python 2.2b1 (#25, Oct 19 2001, 11:44:52) [MSC 32 bit (Intel)] on
win32
Type "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>> connection = MySQLdb.connect(db = "Books")
>>> cursor = connection.cursor()
>>> cursor.execute("SELECT * FROM Authors")
7L
>>> allFields = cursor.description
>>> print allFields
(('AuthorID', 3, 1, 11, 11, 0, 0), ('FirstName', 253, 7, 20, 20,
0, 0), ('LastName', 253, 6, 30, 30, 0, 0))
>>> allFields[0][0]
'AuthorID'

Fig. 17.26 Cursor method fetchall returns a tuple of tuples. (Copyright ©
2001 Python Software Foundation.)

Chapter 17 Python Database Application Programming Interface (DB-API) 866

Pmw ScrolledFrame and PanedWidget component. Module Pmw is introduced in
Chapter 11, Graphical User Interface Components: Part 2. The GUI constructor (lines 13–
39) creates four GUI elements.

1 # Fig. 17.27: fig17_27.py
2 # Displays results returned by a
3 # query on Books database
4
5 import MySQLdb
6 from Tkinter import *
7 from tkMessageBox import *
8 import Pmw
9

10 class QueryWindow(Frame):
11 """GUI Database Query Frame"""
12
13 def __init__(self):
14 """QueryWindow Constructor"""
15
16 Frame.__init__(self)
17 Pmw.initialise()
18 self.pack(expand = YES, fill = BOTH)
19 self.master.title(\
20 "Enter Query, Click Submit to See Results.")
21 self.master.geometry("525x525")
22
23 # scrolled text pane for query string
24 self.query = Pmw.ScrolledText(self, text_height = 8)
25 self.query.pack(fill = X)
26
27 # button to submit query
28 self.submit = Button(self, text = "Submit query",
29 command = self.submitQuery)
30 self.submit.pack(fill = X)
31
32 # frame to display query results
33 self.frame = Pmw.ScrolledFrame(self,
34 hscrollmode = "static", vscrollmode = "static")
35 self.frame.pack(expand = YES, fill = BOTH)
36
37 self.panes = Pmw.PanedWidget(self.frame.interior(),
38 orient = "horizontal")
39 self.panes.pack(expand = YES, fill = BOTH)
40
41 def submitQuery(self):
42 """Execute user-entered query agains database"""
43
44 # open connection, retrieve cursor and execute query
45 try:
46 connection = MySQLdb.connect(db = "Books")

Fig. 17.27 GUI application for submitting queries to a database (part 1 of 3).
(Copyright © 2001 Python Software Foundation.)

867 Python Database Application Programming Interface (DB-API) Chapter 17

47 cursor = connection.cursor()
48 cursor.execute(self.query.get())
49 except MySQLdb.OperationalError, message:
50 errorMessage = "Error %d:\n%s" % \
51 (message[0], message[1])
52 showerror("Error", errorMessage)
53 return
54 else: # obtain user-requested information
55 data = cursor.fetchall()
56 fields = cursor.description # metadata from query
57 cursor.close()
58 connection.close()
59
60 # clear results of last query
61 self.panes.destroy()
62 self.panes = Pmw.PanedWidget(self.frame.interior(),
63 orient = "horizontal")
64 self.panes.pack(expand = YES, fill = BOTH)
65
66 # create pane and label for each field
67 for item in fields:
68 self.panes.add(item[0])
69 label = Label(self.panes.pane(item[0]),
70 text = item[0], relief = RAISED)
71 label.pack(fill = X)
72
73 # enter results into panes, using labels
74 for entry in data:
75
76 for i in range(len(entry)):
77 label = Label(self.panes.pane(fields[i][0]),
78 text = str(entry[i]), anchor = W,
79 relief = GROOVE, bg = "white")
80 label.pack(fill = X)
81
82 self.panes.setnaturalsize()
83
84 def main():
85 QueryWindow().mainloop()
86
87 if __name__ == "__main__":
88 main()

Fig. 17.27 GUI application for submitting queries to a database (part 2 of 3).
(Copyright © 2001 Python Software Foundation.)

Chapter 17 Python Database Application Programming Interface (DB-API) 868

The program display contains two sections. The top section provides a Scrolled-
Text component (lines 24–25) for entering a query string. The attribute text_height
sets the scrolled text area as eight lines high. A Button component (lines 28–30) calls the
method that executes the query string on the database.

The bottom section contains a ScrolledFrame component (lines 33–35) for dis-
playing the results of the query. A ScrolledFrame component is a scrollable area. The
horizontal and vertical scroll bars are displayed because attributes hscrollmode and
vscrollmode are assigned the value "static". The ScrolledFrame contains a
PanedWidget component (lines 37–39) for dividing the result records into fields.
Frame method interior specifies that the PanedWidget is created within the
ScrolledFrame. A PanedWidget is a subdivided frame that allows the user to
change the size of the subdivisions. The PanedWidget constructor’s orient argument
takes the value "horizontal" or "vertical". If the value is "horizontal", the
panes are placed left to right in the frame; if the value is "vertical", the panes are
placed top to bottom in the frame.

When the user presses the Submit query button, method submitQuery (lines 41–
82) performs the query and displays the results. Lines 45–58 contain a try/except/else
statement that connects to and queries the database. The try structure creates a Connec-
tion and a Cursor instance and uses method execute to perform the user-entered
query. Function MySQLdb.connect fails if the specified database does not exist. The
Cursor method execute fails if the query string contains an SQL syntax error. In either

Fig. 17.27 GUI application for submitting queries to a database (part 3 of 3).
(Copyright © 2001 Python Software Foundation.)

869 Python Database Application Programming Interface (DB-API) Chapter 17

case, MySQLdb raises an OperationalError exception. Lines 49–53 catch this excep-
tion and call tkMessageBox function showerror with an appropriate error message.

If the user-entered query string successfully executes, the program retrieves the result
of the query. The else structure (lines 54–58) assigns the queried records to variable
data and assigns metadata to variable fields. Metadata are data that describe data. For
example, the metadata for a result set may include the field name, field type and if the field
can contain null values. The metadata

fields = cursor.description

contains descriptive information about the result set of the user-entered query (line 56). The
Cursor attribute description contains a tuple of tuples that provides information
about the fields obtained by method execute.

Good Programming Practice 17.5
The else structure (lines 54–58) helps to minimize code in except structure. A except
structure should contain only code that could raise exception. 17.5

PanedWidget method destroy removes the existing panes to display the query
data in new panes (lines 61–64). Lines 67–71 iterate over the field information to display
the names of the columns. For each field, method add adds a pane to the PanedWidget.
This method takes a string that identifies the pane. The Label constructor adds a label to
the pane that contains the name of the field with the relief attribute set to RAISED.
PanedWidgetmethod pane (line 69) identifies the parent of this new label. This method
takes the name of a pane and returns a reference to that pane.

Lines 74–80 iterate over each record to create a label that contains the value of each
field in the record. Method pane specifies the appropriate parent frame for each label. The
expression

self.panes.pane(fields[i][0])

evaluates to the pane whose name is the field name for the ith value in the record. Once the
results have been added to the panes, the PanedWidget method setnaturalsize
sets the size of each pane to be large enough to view the largest label in the pane.

17.9 Reading, Inserting and Updating a MySQL Database
The next example (Fig. 17.28) manipulates a simple MySQL AddressBook database
that contains one table (addresses) with 11 columns—ID (a unique integer ID number
for each person in the address book), FirstName, LastName, Address, City,
StateOrProvince, PostalCode, Country, EmailAddress, HomePhone and
FaxNumber. All fields, except ID, are strings. The program provides capabilities for in-
serting new records, updating existing records and searching for records in the database.
[Note: The CD that accompanies this book contains an empty AddressBook database.]

1 # Fig. 17.28: fig17_28.py

Fig. 17.28 Inserting, finding and updating records (part 1 of 6). (Copyright © 2001
Python Software Foundation.)

Chapter 17 Python Database Application Programming Interface (DB-API) 870

2 # Inserts into, updates and searches a database
3
4 import MySQLdb
5 from Tkinter import *
6 from tkMessageBox import *
7 import Pmw
8
9 class AddressBook(Frame):

10 """GUI Database Address Book Frame"""
11
12 def __init__(self):
13 """Address Book constructor"""
14
15 Frame.__init__(self)
16 Pmw.initialise()
17 self.pack(expand = YES, fill = BOTH)
18 self.master.title("Address Book Database Application")
19
20 # buttons to execute commands
21 self.buttons = Pmw.ButtonBox(self, padx = 0)
22 self.buttons.grid(columnspan = 2)
23 self.buttons.add("Find", command = self.findAddress)
24 self.buttons.add("Add", command = self.addAddress)
25 self.buttons.add("Update", command = self.updateAddress)
26 self.buttons.add("Clear", command = self.clearContents)
27 self.buttons.add("Help", command = self.help, width = 14)
28 self.buttons.alignbuttons()
29
30
31 # list of fields in an address record
32 fields = ["ID", "First name", "Last name",
33 "Address", "City", "State Province", "Postal Code",
34 "Country", "Email Address", "Home phone", "Fax Number"]
35
36 # dictionary with Entry components for values, keyed by
37 # corresponding addresses table field names
38 self.entries = {}
39
40 self.IDEntry = StringVar() # current address id text
41 self.IDEntry.set("")
42
43 # create entries for each field
44 for i in range(len(fields)):
45 label = Label(self, text = fields[i] + ":")
46 label.grid(row = i + 1, column = 0)
47 entry = Entry(self, name = fields[i].lower(),
48 font = "Courier 12")
49 entry.grid(row = i + 1 , column = 1,
50 sticky = W+E+N+S, padx = 5)
51
52 # user cannot type in ID field

Fig. 17.28 Inserting, finding and updating records (part 2 of 6). (Copyright © 2001
Python Software Foundation.)

871 Python Database Application Programming Interface (DB-API) Chapter 17

53 if fields[i] == "ID":
54 entry.config(state = DISABLED,
55 textvariable = self.IDEntry, bg = "gray")
56
57 # add entry field to dictionary
58 key = fields[i].replace(" ", "_")
59 key = key.upper()
60 self.entries[key] = entry
61
62 def addAddress(self):
63 """Add address record to database"""
64
65 if self.entries["LAST_NAME"].get() != "" and \
66 self.entries["FIRST_NAME"].get() != "":
67
68 # create INSERT query command
69 query = """INSERT INTO addresses (
70 FIRST_NAME, LAST_NAME, ADDRESS, CITY,
71 STATE_PROVINCE, POSTAL_CODE, COUNTRY,
72 EMAIL_ADDRESS, HOME_PHONE, FAX_NUMBER
73) VALUES (""" + \
74 "'%s', " * 10 % \
75 (self.entries["FIRST_NAME"].get(),
76 self.entries["LAST_NAME"].get(),
77 self.entries["ADDRESS"].get(),
78 self.entries["CITY"].get(),
79 self.entries["STATE_PROVINCE"].get(),
80 self.entries["POSTAL_CODE"].get(),
81 self.entries["COUNTRY"].get(),
82 self.entries["EMAIL_ADDRESS"].get(),
83 self.entries["HOME_PHONE"].get(),
84 self.entries["FAX_NUMBER"].get())
85 query = query[:-2] + ")"
86
87 # open connection, retrieve cursor and execute query
88 try:
89 connection = MySQLdb.connect(db = "AddressBook")
90 cursor = connection.cursor()
91 cursor.execute(query)
92 except MySQLdb.OperationalError, message:
93 errorMessage = "Error %d:\n%s" % \
94 (message[0], message[1])
95 showerror("Error", errorMessage)
96 else:
97 cursor.close()
98 connection.close()
99 self.clearContents()
100
101 else: # user has not filled out first/last name fields
102 showwarning("Missing fields", "Please enter name")
103

Fig. 17.28 Inserting, finding and updating records (part 3 of 6). (Copyright © 2001
Python Software Foundation.)

Chapter 17 Python Database Application Programming Interface (DB-API) 872

104 def findAddress(self):
105 """Query database for address record and display results"""
106
107 if self.entries["LAST_NAME"].get() != "":
108
109 # create SELECT query
110 query = "SELECT * FROM addresses " + \
111 "WHERE LAST_NAME = ’" + \
112 self.entries["LAST_NAME"].get() + "'"
113
114 # open connection, retrieve cursor and execute query
115 try:
116 connection = MySQLdb.connect(db = "AddressBook")
117 cursor = connection.cursor()
118 cursor.execute(query)
119 except MySQLdb.OperationalError, message:
120 errorMessage = "Error %d:\n%s" % \
121 (message[0], message[1])
122 showerror("Error", errorMessage)
123 self.clearContents()
124 else: # process results
125 results = cursor.fetchall()
126 fields = cursor.description
127
128 if not results: # no results for this person
129 showinfo("Not found", "Nonexistent record")
130 else: # display information in GUI
131 self.clearContents()
132
133 # display results
134 for i in range(len(fields)):
135
136 if fields[i][0] == "ID":
137 self.IDEntry.set(str(results[0][i]))
138 else:
139 self.entries[fields[i][0]].insert(
140 INSERT, str(results[0][i]))
141
142 cursor.close()
143 connection.close()
144
145 else: # user did not enter last name
146 showwarning("Missing fields", "Please enter last name")
147
148 def updateAddress(self):
149 """Update address record in database"""
150
151 if self.entries["ID"].get():
152
153 # create UPDATE query command
154 entryItems= self.entries.items()

Fig. 17.28 Inserting, finding and updating records (part 4 of 6). (Copyright © 2001
Python Software Foundation.)

873 Python Database Application Programming Interface (DB-API) Chapter 17

155 query = "UPDATE addresses SET"
156
157 for key, value in entryItems:
158
159 if key != "ID":
160 query += " %s='%s'," % (key, value.get())
161
162 query = query[:-1] + " WHERE ID=" + self.IDEntry.get()
163
164 # open connection, retrieve cursor and execute query
165 try:
166 connection = MySQLdb.connect(db = "AddressBook")
167 cursor = connection.cursor()
168 cursor.execute(query)
169 except MySQLdb.OperationalError, message:
170 errorMessage = "Error %d:\n%s" % \
171 (message[0], message[1])
172 showerror("Error", errorMessage)
173 self.clearContents()
174 else:
175 showinfo("database updated", "Database Updated.")
176 cursor.close()
177 connection.close()
178
179 else: # user has not specified ID
180 showwarning("No ID specified", """
181 You may only update an existing record.
182 Use Find to locate the record,
183 then modify the information and press Update.""")
184
185 def clearContents(self):
186 """Clear GUI panel"""
187
188 for entry in self.entries.values():
189 entry.delete(0, END)
190
191 self.IDEntry.set("")
192
193 def help(self):
194 "Display help message to user"
195
196 showinfo("Help", """Click Find to locate a record.
197 Click Add to insert a new record.
198 Click Update to update the information in a record.
199 Click Clear to empty the Entry fields.\n""")
200
201 def main():
202 AddressBook().mainloop()
203
204 if __name__ == "__main__":
205 main()

Fig. 17.28 Inserting, finding and updating records (part 5 of 6). (Copyright © 2001
Python Software Foundation.)

Chapter 17 Python Database Application Programming Interface (DB-API) 874

Class AddressBook uses Button and Entry components to retrieve and display
address information. The constructor creates a list of fields for one address book entry
(lines 32–34). Line 38 initializes dictionary data member entries to hold references to
Entry components. A for loop then iterates over the length of this list to create an
Entry component for each field (lines 47–48). The loop also adds a reference to the
Entry component to data member entries. Lines 58–60 create a key name for each entry,
based on that entry’s field name.

Method addRecord (lines 62–102) adds a new record to the AddressBook data-
base in response to the Add button in the GUI. The method first ensures that the user has
entered values for the first and last name fields (lines 65–66). If the user enters values for
these fields, the query string inserts a record into the database (lines 69–85). Otherwise,
tkMessageBox function showwarning reminds the user to enter the information
(lines 101–102). Line 74 includes ten string escape sequences whose values are replaced
by the values contained in lines 75–84. Line 85 closes the values parentheses in the SQL
statement.

Lines 88–99 contain a try/except/else structure that connects to and updates the
database (i.e., inserts the new record in the database). Method clearContents clears
the contents of the GUI (line 99). If an error occurs, tkMessageBox function show-
error displays the error.

Method findAddress (lines 104–146) queries the AddressBook database for a
specific record in response to the Find button in the GUI. Line 107 tests whether the last
name text field contains data. If the entry is empty, the program displays an error. If the user
has entered data in the last name text field, a SELECT SQL statement searches the database
for the user-specified last name. We used asterisk (*) in the SELECT statement because line
126 uses metadata to get field names. Lines 115–131 contain a try/except/else struc-
ture that connects to and queries the database. If these operations succeed, the program
retrieves the results from the database (lines 125–126). A message informs the user if the
query does not yield results. If the query does yield results, lines 134–140 display the

Fig. 17.28 Inserting, finding and updating records (part 6 of 6). (Copyright © 2001
Python Software Foundation.)

875 Python Database Application Programming Interface (DB-API) Chapter 17

results in the GUI. Each field value is inserted in the appropriate Entry component. The
record’s ID must be converted to a string before it can be displayed.

Method updateAddress (lines 148–183) updates an existing database record. The
program displays a message if the user attempts to perform an update operation on a non-
existent record. Line 151 tests whether the id for the current record is valid. Lines 155–
162 create the SQL UPDATE statement. Lines 165–177 connect to and query (i.e., update)
the database.

Method clearContents (lines 185–191) clears the text fields in response to the
Clear button in the GUI. Method help (lines 193–199) calls a tkMessageBox function
to display instructions about how to use the program.

17.10 Internet and World Wide Web Resources
This section presents several Internet and World Wide Web resources related to database
programming.

www.mysql.com
This site offers the free MySQL database for download, the most current documentation and infor-
mation about open-source licensing.

ww3.one.net/~jhoffman/sqltut.html
The Introduction to SQL has a tutorial, links to sites with more information about the language and
examples.

www.python.org/topics/databases
This python.org page has links to modules like MySQLdb, documentation, a list of useful books
about database programming and the DB-API specification.

www.chordate.com/gadfly.html
Gadfly is a free relational database written completely in Python. From this home page, visitors can
download the database and view its documentation.

SUMMARY
• A database is an integrated collection of data.

• A database management system (DBMS) provides mechanisms for storing and organizing data in
a manner consistent with the database’s format. Database management systems allow for the ac-
cess and storage of data without worrying about the internal representation of databases.

• Today’s most popular database systems are relational databases.

• A language called Structured Query Language (SQL—pronounced as its individual letters or as
“sequel”) is used almost universally with relational database systems to perform queries (i.e., to
request information that satisfies given criteria) and to manipulate data.

• A programming language connects to, and interacts with, relational databases via an interface—
software that facilitates communications between a database management system and a program.

• Python programmers communicate with databases using modules that conform to the Python Da-
tabase Application Programming Interface (DB-API).

• The relational database model is a logical representation of data that allows the relationships be-
tween the data to be considered independent of the actual physical structure of the data.

• A relational database is composed of tables. Any particular row of the table is called a record (or
row).

Chapter 17 Python Database Application Programming Interface (DB-API) 876

• A primary key is a field (or fields) in a table that contain(s) unique data, which cannot be dupli-
cated in other records. This guarantees each record can be identified by a unique value.

• A foreign key is a field in a table for which every entry has a unique value in another table and
where the field in the other table is the primary key for that table. The foreign key helps maintain
the Rule of Referential Integrity—every value in a foreign-key field must appear in another table’s
primary-key field. Foreign keys enable information from multiple tables to be joined together and
presented to the user.

• Each column of the table represents a different field (or column or attribute). Records normally
are unique (by primary key) within a table, but particular field values may be duplicated between
records.

• SQL enables programmers to define complex queries that select data from a table by providing a
complete set of commands.

• The results of a query commonly are called result sets (or record sets).

• A typical SQL query selects information from one or more tables in a database. Such selections
are performed by SELECT queries. The simplest format of a SELECT query is

SELECT * FROM tableName

• An asterisk (*) indicates that all rows and columns from table tableName of the database should
be selected.

• To select specific fields from a table, replace the asterisk (*) with a comma-separated list of field
names.

• In most cases, it is necessary to locate records in a database that satisfy certain selection criteria.
Only records that match the selection criteria are selected. SQL uses the optional WHERE clause
in a SELECT query to specify the selection criteria for the query. The simplest format of a SE-
LECT query with selection criteria is

SELECT fieldName1 FROM tableName WHERE criteria

• The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE.

• Operator LIKE is used for pattern matching with wildcard characters percent (%) and underscore
(_). Pattern matching allows SQL to search for similar strings that “match a pattern.”

• A pattern that contains a percent character (%) searches for strings that have zero or more charac-
ters at the percent character’s position in the pattern.

• An underscore (_) in the pattern string indicates a single character at that position in the pattern.

• The results of a query can be arranged in ascending or descending order using the optional ORDER
BY clause. The simplest form of an ORDER BY clause is

SELECT * FROM tableName ORDER BY field ASC
SELECT * FROM tableName ORDER BY field DESC

where ASC specifies ascending order (lowest to highest), DESC specifies descending order (high-
est to lowest) and field specifies the field on which the sort is based.

• Multiple fields can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY field1 sortingOrder, field2 sortingOrder, …

where sortingOrder is either ASC or DESC. Note that the sortingOrder does not have to
be identical for each field.

Chapter 17 Python Database Application Programming Interface (DB-API) 877

• The WHERE and ORDER BY clauses can be combined in one query.

• A join merges records from two or more tables by testing for matching values in a field that is com-
mon to both tables. The simplest format of a join is

SELECT fieldName1, fieldName2, …
FROM table1, table2
WHERE table1.fieldName = table2.fieldName

• A fully qualified name specifies the fields from each table that should be compared to join the ta-
bles. The “tableName.” syntax is required if the fields have the same name in both tables. The
same syntax can be used in a query to distinguish fields in different tables that happen to have the
same name. Fully qualified names that start with the database name can be used to perform cross-
database queries.

• The INSERT INTO statement inserts a new record in a table. The simplest form of this statement
is

INSERT INTO tableName (fieldName1, …, fieldNameN)
VALUES (value1,…, valueN)

where tableName is the table in which to insert the record. The tableName is followed by a com-
ma-separated list of field names in parentheses. (This list is not required if the INSERT INTO op-
eration specifies a value for every column of the table in the correct order.) The list of field names
is followed by the SQL keyword VALUES and a comma-separated list of values in parentheses.
The values specified here should match the field names specified after the table name in order and
type (i.e., if fieldName1 is supposed to be the FirstName field, then value1 should be a string
in single quotes representing the first name).

• An UPDATE statement modifies data in a table. The simplest form for an UPDATE statement is

UPDATE tableName
SET fieldName1 = value1, …, fieldNameN = valueN

WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is followed
by keyword SET and a comma-separated list of field name/value pairs in the format
fieldName = value. The WHERE clause specifies the criteria used to determine which record(s) to
update.

• An SQL DELETE statement removes data from a table. The simplest form for a DELETE state-
ment is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE clause spec-
ifies the criteria used to determine which record(s) to delete.

• MySQL is an open-source DBMS. This means that anyone can download and modify the software
if necessary. MySQL was written in C/C++ and provides an extremely fast low-tier user interface
to the database.

• A low-tier interface is one in which there are fewer levels of interfacing between users and the shell
(the command interface to an operating system).

• MySQL’s Application Programming Interface (API) allows for fast, powerful database applica-
tions to be built, especially with programming languages that easily interact with C and C++.

878 Python Database Application Programming Interface (DB-API) Chapter 17

• Modules have been written that can interface with most popular databases, hiding database details
from the programmer. These modules follow the Python Database Application Programming In-
terface (DB-API), a document that specifies common object and method names for manipulating
any database.

• The DB-API describes a Connection object that programs create to connect to a database.

• A program can use a Connection object to create a Cursor object, which the program uses to
execute queries against the database.

• The major benefit of the DB-API is that a program does not need to know much about the database
to which the program connects. Therefore, the programmer can change the database a program
uses without changing vast amounts of Python code. However, changing the DB often requires
changes in the SQL code.

• Module MySQLdb contains classes and functions for manipulating MySQL databases in Python.

• Function MySQLdb.connect creates the connection. The function receives the name of the da-
tabase as the value of keyword argument db. If MySQLdb.connect fails, the function raises an
OperationalError exception.

• The Cursor method execute takes as an argument a query string to execute against the data-
base.

• A Cursor instance internally stores the results of a database query.

• The Cursor method fetchall returns a tuple of records that matched the query. Each record
is represented as a tuple that contains the values of that records field.

• The Cursor method close closes the Cursor instance.

• The Connection method close closes the Connection instance.

• A PanedWidget is a subdivided frame that allows the user to change the size of the subdivi-
sions. The PanedWidget constructor’s orient argument takes the value "horizontal" or
"vertical". If the value is "horizontal", the panes are placed left to right in the frame; if
the value is "vertical", the panes are placed top to bottom in the frame.

• Metadata are data that describe other data. The Cursor attribute description contains a tuple
of tuples that provides information about the fields of the data obtained by function execute.
The cursor and connection are closed.

• The PanedWidget method pane takes the name of a pane and returns a reference to that pane.

• The PanedWidget method setnaturalsize sets the size of each pane to be large enough
to view the largest label in the pane.

TERMINOLOGY
AND
ASC
asterisk (*)
close method
column
Connection object
Cursor object
data attribute
database
database management system (DBMS)
database table
DELETE

Chapter 17 Python Database Application Programming Interface (DB-API) 879

DESC
escape character
execute method
fetchall method
field
foreign key
FROM
fully qualified name
INSERT INTO
interior method
joining tables
LIKE
MySQL
MySQLdb module
open source
ORDER BY
PanedWidget
pattern matching
percent (%) SQL wildcard character
primary key
Python Database Application Programming Interface (DB-API)
query
record
record set
relational database
result set
row
Rule of Referential Integrity
scalability
ScrolledFrame component
SELECT
selection criteria
SET
shell
Structured Query Language (SQL)
table
underscore (_) wildcard character
UPDATE
VALUES
WHERE
percent

SELF-REVIEW EXERCISES
17.1 Fill in the blanks in each of the following statements:

a) The most popular database query language is .
b) A relational database is composed of .
c) A table in a database consists of and .
d) The uniquely identifies each record in a table.
e) SQL provides a complete set of commands (including SELECT) that enable program-

mers to define complex .

880 Python Database Application Programming Interface (DB-API) Chapter 17

f) SQL keyword is followed by the selection criteria that specify the records to
select in a query.

g) SQL keyword specifies the order in which records are sorted in a query.
h) A specifies the fields from multiple tables table that should be compared to

join the tables.
i) A is an integrated collection of data which is centrally controlled.
j) A is a field in a table for which every entry has a unique value in another

table and where the field in the other table is the primary key for that table.

17.2 State whether the following are true or false. If false, explain why.
a) DELETE is not a valid SQL keyword.
b) Tables in a database must have a primary key.
c) Python programmers communicate with databases using modules that conform to the

DB-API.
d) UPDATE is a valid SQL keyword.
e) The WHERE clause condition can not contain operator <>.
f) Not all database systems support the LIKE operator.
g) The INSERT INTO statement inserts a new record in a table.
h) MySQLdb.connect is used to create a connection to database.
i) A Cursor object can execute queries in a database.
j) Once created, a connection with database can not be closed.

ANSWERS TO SELF-REVIEW EXERCISES
17.1 a) SQL. b) tables. c) rows, columns. d) primary key. e) queries. f) WHERE. g) ORDER BY. h)
fully qualified name. i) database. j) foreign key.

17.2 a) False. DELETE is a valid SQL keyword—it is the function used to delete records. b) False.
Tables in a database normally have primary keys. c) True. d) True. e) False. The WHERE clause can
contain operator <> (not equals). f) True. g) True. h) True. i) True. j) False. Connection.close
can close the connection.

EXERCISES
17.3 Write SQL queries for the Books database (discussed in Section 17.3) that perform each of
the following tasks:

a) Select all authors from the Authors table.
b) Select all publishers from the Publishers table.
c) Select a specific author and list all books for that author. Include the title, copyright year

and ISBN number. Order the information alphabetically by title.
d) Select a specific publisher and list all books published by that publisher. Include the title,

copyright year and ISBN number. Order the information alphabetically by title.

17.4 Write SQL queries for the Books database (discussed in Section 17.3) that perform each of
the following tasks:

a) Add a new author to the Authors table.
b) Add a new title for an author (remember that the book must have an entry in the

AuthorISBN table). Be sure to specify the publisher of the title.
c) Add a new publisher.

17.5 Modify Fig. 17.25 so that the user can read different tables in the books database.

Chapter 17 Python Database Application Programming Interface (DB-API) 881

17.6 Create a MySQL database that contains information about students in a university. Possible
fields might include date of birth, major, current grade point average, credits earned, etc. Write a Py-
thon program to manage the database. Include the following functionality: sort all students according
to GPA (descending), create a display of all students in one particular major and remove all records
from the database where the student has the required amount of credits to graduate.

17.7 Modify the FIND capability in Fig. 17.28 to allow the user to scroll through the results of the
query in case there is more than one person with the specified last name in the Address Book. Provide
an appropriate GUI.

17.8 Modify the solution from Exercise 17.7 so that the program checks whether a record already
exists in the database before adding it.

BIBLIOGRAPHY
(Bl88) Blaha, M. R.; W. J. Premerlani, and J. E. Rumbaugh, “Relational Database Design

Using an Object-Oriented Methodology,” Communications of the ACM, Vol. 31, No. 4,
April 1988, pp. 414–427.

(Co70) Codd, E. F., “A Relational Model of Data for Large Shared Data Banks,” Communica-
tions of the ACM, June 1970.

(Co72) Codd, E. F., “Further Normalization of the Data Base Relational Model,” in Courant
Computer Science Symposia, Vol. 6, Data Base Systems. Upper Saddle River, N.J.:
Prentice Hall, 1972.

(Co88) Codd, E. F., “Fatal Flaws in SQL,” Datamation, Vol. 34, No. 16, August 15, 1988, pp.
45–48.

(De90) Deitel, H. M., Operating Systems, Second Edition. Reading, MA: Addison Wesley
Pubishing, 1990.

(Da81) Date, C. J., An Introduction to Database Systems. Reading, MA: Addison Wesley
Pubishing, 1981.

(Re88) Relational Technology, INGRES Overview. Alameda, CA: Relational Technology, 1988.

(St81) Stonebraker, M., “Operating System Support for Database Management,” Communica-
tions of the ACM, Vol. 24, No. 7, July 1981, pp. 412–418.

(Wi88) Winston, A., “A Distributed Database Primer,” UNIX World, April 1988, pp. 54–63.

882 Python Database Application Programming Interface (DB-API) Chapter 17

