

Learning Website Development
with Django

A beginner's tutorial to building web applications,
quickly and cleanly, with the Django
application framework

Ayman Hourieh

 BIRMINGHAM - MUMBAI

Learning Website Development with Django

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2008.

Production Reference: 1040408

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-35-3

www.packtpub.com

Cover Image by Raghuram Ashok (raghuram@iiitb.ac.in)

Credits

Author

Ayman Hourieh

Reviewers

Susmita Basu

Michael Cassidy

Wendy Langer

Jan Smith

Senior Acquisition Editor

Douglas Paterson

Development Editor

Ved Prakash Jha

Technical Editor

Sarah Cullington

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Zenab Kapasi

Indexer

Monica Ajmera

Proofreaders

Martin Brooks

Chris Smith

Production Coordinator

Aparna Bhagat

Shantanu Zagade

Cover Designer

Aparna Bhagat

About the Author

Ayman Hourieh holds a bachelor degree in Computer Science. He joined the
engineering team at Google in January 2008. Prior to that, he worked with web
application development for more than two years. In addition, he has been
contributing to several Open Source projects such as Mozilla Firefox. Ayman also
worked as a teaching assistant in Computer Science courses for one year. Even
after working with a variety of technologies, Python remains Ayman's favorite
programming language. He found Django to be a powerful and flexible Python
framework that helps developers to produce high-quality web applications in a
short time.

I would like to thank my wife, Nadia, for all her help in writing this
book. Not only did she provide support and motivation, but she
also helped me greatly in proofreading and testing. I would also
like to thank my mother and father for their continuous support and
encouragement.

 About the Reviewers

Michael Cassidy holds a bachelor degree in Computer Science. He currently works
for Obsidian Consulting working on Python web applications. His primary focus is
on automated testing of web applications.

Michael has been on a team using Django to update the database system of
Computerbank, who recycle donated computers with quality, free software and
distribute them to disadvantaged individuals and community groups.

Wendy Langer first learned to program in Microbee Basic. This all happened a long
time ago, in a galaxy far, far, away. Later she learned Fortran and a little C++ while
studying for a physics degree at University. Eventually she discovered the Python
language, and thus began a love affair, which has not yet ended.

She has worked as a programmer in web development using technologies such as
Python, Zope, Django, mySQL, and postgreSQL.

I would like to thank Jan Smith and Kerry Langer for their help
during the review process.

Jan V. Smith has been working on open-source software since 2001. She is a
Co-founder of OzZope, the Australian Zope Users Group. She contributed to
'Content Management mit Zope' by Stephan Richter and was a reviewer for
'Web Component Development with Zope 3' by Philipp von Weitershausen. Jan has
written documentation for the open-source CMS Silva and a number of articles on
issues relating to open source software.

Jan is Vice President of 'Computerbank Victoria' where donated computers are
recycled with Linux and open source software and distributed to people on low
incomes. She has built Computerbank's Plone and Silva websites and is currently
building a Django database for Computerbank with Wendy Langer.

She lives in Melbourne Australia with her husband and son.

Table of Contents
Preface 1
Chapter 1: Introduction to Django 5

The MVC Pattern in Web Development 5
Why Python? 6
Why Django? 7

Tight Integration between Components 8
Object-Relational Mapper 8
Clean URL Design 8
Automatic Administration Interface 8
Advanced Development Environment 8
Multi-Lingual Support 8

History of Django 9
Summary 10

Chapter 2: Getting Started 11
Installing the Required Software 11

Installing Python 11
Installing Python on Windows 12
Installing Python on UNIX/Linux 12
Installing Python on Mac OS X 13

Installing Django 13
Installing Django on Windows 13
Installing Django on UNIX/Linux and Mac OS X 14

Installing a Database System 15
Creating Your First Project 16

Creating an Empty Project 16
Setting up the Database 18
Launching the Development Server 20

Summary 21

Table of Contents

[ii]

Chapter 3: Building a Social Bookmarking Application 23
A Word about Django Terminology 23
URLs and Views: Creating the Main Page 24

Creating the Main Page View 24
Creating the Main Page URL 25

Models: Designing an Initial Database Schema 28
The Link Data Model 29
The User Data Model 32
The Bookmark Data Model 33

Templates: Creating a Template for the Main Page 35
Putting It All Together: Generating User Pages 37

Creating the URL 37
Writing the View 38
Designing the Template 39
Populating the Model with Data 40

Summary 42
Chapter 4: User Registration and Management 43

Session Authentication 43
Creating the Login Page 44
Enabling Logout Functionality 49

Improving Template Structure 50
User Registration 55

Django Forms 55
Designing the User Registration Form 56

Account Management 64
Summary 65

Chapter 5: Introducing Tags 67
The Tag Data Model 68
Creating the Bookmark Submission Form 71

Restricting Access to Logged-in Users 77
Methods for Browsing Bookmarks 78
Improving the User Page 80
Creating a Tag Page 82
Building a Tag Cloud 85

A Word on Security 88
SQL Injection 88
Cross-Site Scripting (XSS) 88

Summary 90

Table of Contents.

[iii]

Chapter 6: Enhancing the User Interface with Ajax 93
Ajax and Its Advantages 94
Using an Ajax Framework in Django 95

Downloading and Installing jQuery 96
The jQuery JavaScript Framework 97

Element Selectors 98
jQuery Methods 98

Hiding and Showing Elements 99
Accessing CSS Properties and HTML Attributes 100
Manipulating HTML Documents 101
Traversing the Document Tree 101
Handling Events 102
Sending Ajax Requests 103
What Next? 103

Implementing Live Searching of Bookmarks 103
Implementing Searching 104
Implementing Live Searching 107

Editing Bookmarks in Place 110
Implementing Bookmark Editing 111
Implementing In-Place Editing of Bookmarks 115

Auto-Completion of Tags 122
Summary 126

Chapter 7: Voting and Commenting 127
Sharing Bookmarks on the Main Page 127

The SharedBookmark Data Model 128
Modifying the Bookmark Submission Form 129
Browsing and Voting for Shared Bookmarks 131
The Popular Bookmarks Page 137

Commenting on Bookmarks 139
Enabling the Comments Application 140
Creating a View for Comments 141
Displaying Comments and a Comment Form 142
Creating Comment Templates 145

Summary 148
Chapter 8: Creating an Administration Interface 149

Activating the Administration Interface 149
Customizing the Administration Interface 153

Customizing Listing Pages 154
Overriding Administration Templates 156

Table of Contents

[iv]

Users, Groups and Permissions 158
User Permissions 159
Group Permissions 160
Using Permissions in Views 161

Summary 162
Chapter 9: Advanced Browsing and Searching 163

Adding RSS Feeds 164
Creating the Recent Bookmarks Feed 164

Customizing Item Fields 168
Creating the User Bookmarks Feed 169
Linking Feeds to HTML Pages 171

Advanced Searching 173
Retrieving Objects with the Database API 173
Advanced Queries with Q Objects 176
Improving the Search Feature 177

Organizing Content into Pages (Pagination) 178
Summary 183

Chapter 10: Building User Networks 185
Building Friend Networks 185

Creating the Friendship Data Model 186
Writing Views to Manage Friends 189

The Friends List View 189
Creating the "Add Friend" View 192

Inviting Friends Via Email 195
The Invitation Data Model 196
The "Invite a Friend" Form and View 199
Handling Activation Links 202

Improving the Interface with Messages 205
Summary 208

Chapter 11: Extending and Deploying 211
Internationalization (i18n) 211

Marking Strings as Translatable 212
Creating Translation Files 215
Enabling and Configuring the i18n System 217

Improving Performance with Caching 219
Enabling Caching 220

Simple Caching 220
Database Caching 220
File System Caching 221
Memcached 221

Configuring Caching 222

Table of Contents.

[v]

Caching the Whole Site 222
Caching Specific Views 222

Unit Testing 223
The Test Client 224
Testing the Registration View 225
Testing the "Save Bookmark" View 228

Deploying Django 230
The Production Web Server 230
The Production Database 231
Turning Off Debug Mode 231
Changing Configuration Variables 231
Setting Error Pages 232

Summary 233
Chapter 12: What Next? 235

Custom Template Tags and Filters 236
Model Managers and Custom SQL 237
Generic Views 238
Contributed Sub-Frameworks 239

Flatpages 239
Sites 240
Markup Filters 240
Humanize 240
Sitemaps 241
Cross-site Request Forgery Protection 241

Message System 242
Subscription System 243
User Scores 243
Summary 243

Index 245

Preface
Django is a high-level Python web application framework designed to support the
development of dynamic websites, web applications, and web services. It is designed
to promote rapid development and clean, pragmatic design and lets you build
high-performing, elegant web applications quickly.

In this book, you will learn about employing this MVC web framework, which
is written in Python, a powerful and popular programming language. The book
emphasizes utilizing Django and Python to create a Web 2.0 bookmark-sharing
application with many common features found in today's Web 2.0 sites. The book
follows a tutorial style to introduce concepts and explain solutions to problems. It is
not meant to be a reference manual for Python or Django. Django will be explained
as we build features throughout the chapters, until we realize our goal of having a
working Web 2.0 application for storing and sharing bookmarks.

I sincerely hope that you will enjoy reading the book as much as I enjoyed writing
it. And I am sure that by its end, you will appreciate the benefits of using Python
and Django for your next project. They are powerful, simple, and provide a robust
environment for rapid development of your dynamic web applications.

What This Book Covers
Chapter 1 gives you an introduction to MVC web development frameworks, a history
of Django, and explains why Python and Django are the best tools to use to achieve
the aim of this book.

Chapter 2 provides a step-by-step guide to installing Python, Django and an
appropriate database system so that you can create an empty project and set-up the
development server.

Chapter 3 creates the main page so that we have the initial view and a URL. You will
learn how to create templates for both the main page and the user page.

Preface

[2]

Chapter 4 is where the application really starts to take shape as user management is
implemented. Learn how to log users in and out, create a registration form and allow
users to manage their own accounts by changing email or password details.

Chapter 5 explores how to manage your growing bank of content. Create tags, tag
clouds, and a bookmark submission form all of which interact with your database.
Security features also come into play as you learn how to restrict access to certain
pages and protect against malicious input.

Chapter 6 enables you to enhance your application with AJAX and jQuery as users
can now edit entries in place and do live searching. Data entry is also made easier
with the introduction of auto-completion.

Chapter 7 shows you how to enable users to vote and comment on their
bookmark entries.

Chapter 8 focuses on the administration interface. You will learn how to create and
customize the interface, which allows you to manage content and to set permissions
for users and groups.

Chapter 9 will give your application a much more professional feel through the
implementation of RSS feeds and pagination.

Chapter 10 tackles social networks providing the 'social' element of your application.
Users will be able to build a friend network, browse the bookmarks of their friends,
and invite their friends to join the website.

Chapter 11 covers extending and deploying your application. You will also learn
about advanced features including offering the site in multiple languages, managing
the site during high traffic, and configuring the site for a production environment.

Chapter 12 takes a brief look at extra Django features that have not been covered
elsewhere in the book. You will gain the knowledge required to further your
application and build on the basic skills that you have learned throughout the book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

Preface

[3]

A block of code will be set as follows:

urlpatterns = patterns('',
 # Account management
 (r'^save/$', bookmark_save_page),
 (r'^vote/$', bookmark_vote_page),
)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

urlpatterns = patterns('',
 # Account management
 (r'^save/$', bookmark_save_page),
 (r'^vote/$', bookmark_vote_page),
)

Any command-line input and output is written as follows:

$ python manage.py sql bookmarks

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Preface

[4]

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com. If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, see our author guide on
www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/3353_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to Django
Welcome! In this book, you will learn about Django, an Open Source web framework
that enables you to build clean and feature-rich web applications with minimal
time and effort. Django is written in Python, a general purpose language that is
well suited for developing web applications. Django loosely follows a model-view-
controller design pattern, which greatly helps in building clean and maintainable
web applications.

This chapter gives you an overview of the technologies used in this book. The
following chapters will take you through a tutorial for building a social bookmarking
application from the group using Django.

In this introduction, you will read about the following:

The MVC pattern in web development.
Why we should use Python.
Why we should use Django.
The history of Django.

The MVC Pattern in Web Development
Web development has made great progress during the last few years. It began as a
tedious task that involved using CGI for interfacing external programs with the web
server. CGI applications used standard I/O facilities available to the C programming
language in order to manually parse user input and produce page output. In
addition to being difficult to work with, CGI required a separate copy of the program
to be launched for each request, which used to quickly overwhelm servers.

•

•

•

•

Introduction to Django

[6]

Next, scripting languages were introduced to web development, and this inspired
developers to create more efficient technologies. Languages such as Perl and PHP
quickly made their way into the world of web development, and as a result,
common web tasks such as cookie handling, session management, and text
processing became much easier. Although scripting languages included libraries to
deal with day-to-day web-related tasks, they lacked unified frameworks, as libraries
were usually disparate in design, usage, and conventions. Therefore, the need for
cohesive frameworks arose.

A few years ago, the model-view-controller pattern came for web-based applications
was introduced. This software engineering pattern separates data (model), user
interface (view), and data handling logic (controller), so that one can be changed
without affecting the others. The benefits of this pattern are obvious. With it,
designers can work on the interface without worrying about data storage or
management. And developers are able to program the logic of data handling without
getting into the details of presentation. As a result, the MVC pattern quickly found
its way into web languages, and serious web developers started to embrace it in
preference to previous techniques.

The diagram below shows how each of the components of the MVC pattern interact
with each other to serve a user request:

View

Model

Controller

Request

Why Python?
Python is a general purpose programming language. Although it is used for a wide
variety of applications, Python is very suitable for developing web applications. It
has a clean and elegant syntax, and is supported by a large library of standard
and contributed modules, which covers everything from multi-threading to the
zipping of files. The language's object-oriented model is especially suited for MVC
style development.

Sooner or later, performance will become a major concern with web projects, and
Python's runtime environment shines here, as it is known to be fast and stable.
Python supports a wide range of web servers through modules, including the
infamous Apache. Furthermore, it is available for all the major platforms: UNIX/
Linux, Windows, and Mac. Python also supports a wide array of database servers,
but you won't have to deal directly with them; Django provides a unified layer of
access to all available database engines, as we will see later.

Chapter 1

[7]

Python is free software; you can download and use it freely from
http://python.org/. You are even allowed to distribute it without having
to pay any fees. Access to the source code is available to those who want to add
features or fix bugs. As a result, Python enjoys a large community of developers
who quickly fix bugs and introduce new features.

Python is very easy to learn, and it is being adopted in many universities as the
first programming language to be taught. Although this book assumes working
knowledge of Python, advanced features will be explained as they are used. If you
want to refresh your Python knowledge, you are recommended to read the official
Python tutorial available at http://python.org/doc/ before continuing with
this book.

To sum up, Python was chosen over many other scripting languages for this book for
the following reasons:

Clean and elegant syntax.
Large standard library of modules that covers a wide range of tasks.
Extensive documentation.
Mature runtime environment.
Support for standard and proven technologies such as Linux and Apache.

If you want to learn more about Python and its features, the official
Python website at http://python.org/ and the Python book "Dive
Into Python" (freely available at http://www.diveintopython.org/)
are both excellent sources.

Why Django?
Since the spread of the MVC pattern into web development, Python has provided
quite a few choices when it comes to web frameworks, such as Django, TurboGears
and Zope. Although choosing one out of many can be confusing at first, having
several competing frameworks can only be a good thing for the Python community,
as it drives the development of all frameworks further and provides a rich set of
options to choose from.

Django is one of the available frameworks for Python, so the question is: what sets
it apart to become the topic of this book, and what makes it popular in the Python
community? The next subsections will answer these questions by providing an
overview of the main advantages of Django.

•

•

•

•

•

Introduction to Django

[8]

Tight Integration between Components
First of all, Django provides a set of tightly integrated components; all of these
components have been developed by the Django team themselves. Django was
originally developed as an in-house framework for managing a series of news-oriented
websites. Later its code was released on the Internet and the Django team continued its
development using the Open Source model. Because of its roots, Django's components
were designed for integration, reusability and speed from the start.

Object-Relational Mapper
Django's database component, the Object-Relational Mapper (ORM), provides a
bridge between the data model and the database engine. It supports a large set of
database systems, and switching from one engine to another is a matter of changing
a configuration file. This gives the developer great flexibility if a decision is made to
change from one database engine to another.

Clean URL Design
The URL system in Django is very flexible and powerful; it lets you define patterns
for the URLs in your application, and define Python functions to handle each pattern.
This enables developers to create URLs that are both user and search engine friendly.

Automatic Administration Interface
Django comes with an administration interface that is ready to be used. This interface
makes the management of your application's data a breeze. It is also highly flexible
and customizable.

Advanced Development Environment
In addition, Django provides a very nice development environment. It comes with a
lightweight web server for development and testing. When the debugging mode is
enabled, Django provides very thorough and detailed error messages with a lot of
debugging information. All of this makes isolating and fixing bugs very easy.

Multi-Lingual Support
Django supports multi-lingual websites through its built-in internationalization
system. This can be very valuable for those working on websites with more than one
language. The system makes translating the interface a very simple task.

Chapter 1

[9]

The standard features expected of a web framework are all available in Django.
These include the following:

A template and text filtering engine with simple but extensible syntax.
A form generation and validation API.
An extensible authentication system.
A caching system for speeding up the performance of applications.
A feed framework for generating RSS feeds.

Even though Django does not provide a JavaScript library to simplify working with
Ajax, choosing one and integrating it with Django is a straightforward matter, as we
will see in later chapters.

So to conclude, Django provides a set of integrated and mature components, with
excellent documentation, at http://www.djangoproject.com/documentation/,
thanks to its large community of developers and users. With Django available, there
has never been a better time to start learning a web development framework!

History of Django
Django started as an internal project at the Lawrence Journal-World newspaper in
2003. The web development team there often had to implement new features or even
entire applications within hours. Therefore, Django was created to meet the fast
deadlines of journalism websites, whilst at the same time keeping the development
process clean and maintainable. By the summer of 2005, Django became mature
enough to handle several high traffic sites, and the developers decided to release it to
the public as an Open Source project. The project was named after the jazz guitarist
Django Reinhardt.

Now that Django is an Open Source project, it has gathered developers and users
from all over the world. Bug fixes and new features are introduced on a daily basis,
while the original development team keeps an eye on the whole process to make sure
that Django remains what it is meant to be—a web framework for building clean,
maintainable and reusable web applications.

•

•

•

•

•

Introduction to Django

[10]

Summary
Web development has achieved large leaps of progress over the last few years. The
advent of scripting languages, web frameworks, and Ajax made rapid development
of web applications possible and easier than ever. This book takes you through a
tutorial for building a Web 2.0 application using two hot technologies—Python and
Django. The application allows users to store and share bookmarks. Many of the
exciting Web 2.0 applications will be explained and developed throughout this book.

In the next chapter, we will set up our development environment by installing the
necessary software, and get a feel for Django by creating our first application.

Getting Started
Python and Django are available for multiple platforms. In this chapter, we will
see how to set up our development environment on UNIX/Linux, Windows and
Mac OS X. We will also see how to create our first project and how to connect it to
a database.

We will learn about the following topics in this chapter:

We will learn the following topics in this chapter:
Installing Python.
Installing Django.
Installing a database system.
Creating your first project.
Setting up the database.
Launching the development server.

Installing the Required Software
Our development environment consists of Python, Django, and a database system.
There are many different database systems available, but for the following examples,
we will be using Sqlite3 which is included in the Python download. In this section,
we will see how to install the necessary software packages.

Installing Python
Django is written in Python, so the the first step in setting up our development
environment is to install Python. Python is available for a variety of operating
systems, and installing Python is not very different from installing any other
software package. The procedure depends on your operating system.

•

•

•

•

•

•

•

Getting Started

[12]

You will need a recent version of Python. Django requires Python 2.3 or higher. The
latest version of Python at the time of writing is 2.5.

We will now describe the installation process for each operating system.

Installing Python on Windows
Python has a standard installer for Windows users. You will need to go to
http://www.python.org/download/ and download the latest version. Next,
double-click the .exe file and follow the installation instructions. The graphical
installer will guide you through the installation process and create shortcuts to
Python executables in the Start menu.

Once the installation has been done, we need to add the Python directory to the
system path so that we can access Python while using the command prompt. To do
this, open the Control Panel, double-click the System icon, go to the Advanced tab
and click the Environment Variables button. A new dialog box will open. Select the
Path system variable, and append the path where you installed Python. (The default
path is usually c:\PythonXX, where XX is your Python version, but the folder is
actually named Python25, so if your have Python version 2.5, you should name the
command c:\Python25.) Don't forget to separate the new path from the one before
it with a semicolon.

If you want to test your installation, open the Run dialog, type python and hit Enter.
The Python interactive shell should open.

Installing Python on UNIX/Linux
If you use Linux or UNIX, chances are that you already have Python installed. To
check, open a terminal, type python and hit Enter. If you see the Python interactive
shell, then you already have Python installed:

Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)

[GCC 4.1.2 (Ubuntu 4.1.2-0ubuntu4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

The first line of the output indicates the version installed on your system (2.5.1 here).

If you receive an error message instead of seeing the above output, or you have an
old version of Python, you should read on.

Chapter 2

[13]

UNIX users and Linux users are recommended to install and update Python through
the system package manager. Although the actual details vary from system to
system, it won't be any different from installing any other package.

For APT-based Linux distributions (such as Debian and Ubuntu), open a terminal
and type:
$ sudo apt-get update

$ sudo apt-get install python

Or if you have the Synaptic package manager, simply search for Python, mark its
package for installation, and click on Apply.

Users of other Linux distributions are recommended to check their system
documentation for information on how to use the package manager to
install packages.

Installing Python on Mac OS X
Mac OS X comes with Python pre-installed. However, due to Apple's release cycle,
it's often an old version. If you start the Python interactive shell and find a version
older than 2.3, you should visit this URL: http://www.python.org/download/mac/
and download the most recent installer for your version of Mac OS X.

Now that Python is up and running, we are almost ready. Next, we will install
Django and make sure that we have a database system.

Installing Django
Installing Django is very easy, but it depends on your operating system. Since
Python is a platform-independent language, Django has one package that works
everywhere regardless of your operating system.

To download Django, head to http://www.djangoproject.com/download/, and
grab the latest official version. The code in this book was developed on Django 0.96
(the latest version at the time of writing), but most of the code should run on later
official releases. Next, follow the instructions related to your platform.

Installing Django on Windows
After you download the Django archive, extract it to the C drive, and open a
command prompt (by clicking on Start then Accessories). Change the current
directory to where you extracted Django by issuing the following command, where
x.xx is your Django version:
c:\>cd c:\Django-x.xx

Getting Started

[14]

Next, install Django by running the following command (for which you will need
administrative privileges):

c:\Django-x.xx>python setup.py install

If the above instructions do not work, you can manually copy the django folder
in the archive to the Lib\site-packages folder located in the Python installation
directory. This will do the job of running the setup.py install command.

If you do not have a program to handle .tar.gz files on your system,
I recommend using 7-Zip, which is free and available at
http://www.7-zip.org/.

The last step is copying the django-admin.py file from Django-x.xx\django\bin
to somewhere in your system path, such as c:\windows or the folder where you
installed Python.

Once this has been done, you can safely remove the c:\Django-x.xx folder, because
it is no longer needed.

That's it. To test your installation, open a command prompt and type the
following command:

c:\>django-admin.py --version

If you see the current version of Django printed on screen, then everything is set.

Installing Django on UNIX/Linux and Mac OS X
Installation instructions for all UNIX and Linux systems are the same. You need
to run the following commands in the directory where the Django-x.xx.tar.gz
archive is located. These commands will extract the archive and install Django
for you:

$ tar xfz Django-x.xx.tar.gz

$ cd Django-x.xx

$ sudo python setup.py install

Chapter 2

[15]

The above instructions should work on any UNIX or Linux system as well as on
Mac OS X. However, it may be easier to install Django through your system's
package manager if it has a package for Django. Ubuntu has one, so to install Django
on Ubuntu, simply look for a package called python-django in Synaptic, or run the
following command:

$ sudo apt-get install python-django

You can test your installation by running this command:

$ django-admin.py --version

If you see the current version of Django printed on screen, then everything is set.

Installing a Database System
While Django does not require a database for it to function, the application that we
are going to develop does. So in the last step of software installation, we are going to
make sure that we have a database system for handling our data.

It is worth noting that Django supports several database engines: MySQL,
PostgreSQL, MS SQL Server, Oracle, and SQLite. Interestingly however, you only
need to learn one API in order to use any of these database systems. This is possibly
because of Django's database layer, which abstracts access to the database system.
We will learn about this later, but for now you only need to know that, regardless of
which database system you choose, you will be able to run the Django applications
developed in this book (or elsewhere) without modification.

If you have Python 2.5 or higher, you won't need to install anything, since Python
2.5 comes with the SQLite database management system contained in a module
named sqlite3. Unlike client-server database systems, SQLite does not require a
resident process in memory, and it stores the database in a single file, which makes it
ideal for our development environment. Therefore, throughout this book, we will be
using SQLite in our examples. Of course you are free to use your preferred database
management system. We can tell Django what database system to use by editing a
configuration file, as we will see in later sections. It is also worth noting that if you
want to use MySQL, you will need to install MySQLdb, the MySQL driver for Python.

 If you don't have Python 2.5, you can install the python module for SQLite manually
by downloading it from http://www.pysqlite.org/ (for Windows users) or
through your package manager (for UNIX and Linux users).

Getting Started

[16]

Do I need Apache (or some other web server)?
Django comes with its own web server, and we are going to use it
during the development phase, because it is lightweight and comes pre-
configured for Django. However, Django does support Apache and other
popular web servers such as Lighttpd. We will see how to configure
Django for Apache when we prepare our application for deployment later
in this book.book.
The same applies to the database manager. During the development
phase, we will use SQLite because it is easy to set up, but when we deploy
the application, we will switch to a database server such as MySQL.
As I said earlier, regardless of what components we use, our code will
stay the same; Django handles all the communication with the web and
database servers for us.

Creating Your First Project
Now that the software we need is in place, the time has come for the fun
part - creating our first Django project!

As you may recall from the Django installation section, we used a command called
django-admin.py to test our installation. This utility is at the heart of Django's
project management facilities, as it enables the user to do a range of project
management tasks, including the following:

Creating a new project.
Creating and managing the project's database.
Validating the current project and testing for errors.
Starting the development web server.

We will see how to use some of these tasks in the rest of this chapter, creating a basis
for our bookmark-sharing application in the process.

Creating an Empty Project
To create your first Django project, open a terminal (or command prompt for
Windows users), type the following command, and hit enter:

$ django-admin.py startproject django_bookmarks

•

•

•

•

Chapter 2

[17]

This command will make a folder named django_bookmarks in the current
directory, and create the initial directory structure inside it. Let's see what kinds of
files are created:

django_bookmarks/
 __init__.py
 manage.py
 settings.py
 urls.py

Here is a quick explanation of what these files are:

File Name File Description
__init__.py Django projects are Python packages, and this file is required to tell

Python that the folder is to be treated as a package.
A package in Python's terminology is a collection of modules, and they
are used to group similar files together and prevent naming conflicts.

manage.py This is another utility script used to manage your project. You can think
of it as your project's version of django-admin.py. Actually, both
django-admin.py and manage.py share the same back-end code.

settings.py This is the main configuration file for your Django project. In this
file you can specify a variety of options, including the database
settings, site languages, which Django features are to be enabled, and
so on. Various sections of this file will be explained as we build our
application during the next chapters, but in this chapter, we will only
see how to enter the database settings.

url.py This is another configuration file. You can think of it as a mapping
between URLs and Python functions that handle them. This file is one
of Django's powerful features, and we will see how to utilize it in the
next chapter.

When we start writing code for our application, we will create new files inside the
project's folder. So the folder also serves as a container for our code.

Now that you have a general idea of the structure of a Django project, let's configure
our database system.

Getting Started

[18]

Setting up the Database
In this section, we will work with code for the first time. Therefore, we will have
to choose a source code editor to enter and edit code. There are many options on
the market when it comes to source code editors. Some people prefer fully-fledged
IDEs, whereas others like simple text editors. The choice is totally up to you; pick
whichever you feel more comfortable with. If you already use a certain program to
work with Python source files, then I suggest that you stick to it, as it will work just
fine with Django. Otherwise, I can make a few recommendations:

Scite (also known as Scintilla): This editor is lightweight yet very powerful.
It is available for all major platforms, supports syntax highlighting and code
completion, and works well with Python. The editor is Open Source and you
can find it at http://www.scintilla.org/SciTE.html.
EditPlus: This is another powerful editor for the Windows platform, and
it supports syntax highlighting for Python through an extension. You can
find this editor and the Python extension at http://www.editplus.com/.
EditPlus note that EditPlus is shareware, and the free version can only be
used for thirty days.
TextMate: This popular text editor for Mac OS X also provides a rich set of
features for Django developers, while being user-friendly at the same time.
TextMate is not free but there is a thirty days trial version that you can
download from http://macromates.com/.
Eclipse + PyDev: This combination is an integrated development
environment for Python. It supports all the standard features of IDEs from
source version management to integrated debugging. It takes a while to learn
all of its features, but for those who prefer a complete IDE (and especially
those familiar with Eclipse), it is an excellent choice. More information on
installation is available at http://pydev.sourceforge.net/.

Now that you have a source code editor ready, let's open settings.py in the project
folder and see what it contains:

Django settings for django_bookmarks project.
DEBUG = True
TEMPLATE_DEBUG = DEBUG
ADMINS = (
 # ('Your Name', 'your_email@domain.com'),
)
MANAGERS = ADMINS
DATABASE_ENGINE = '' # 'postgresql_psycopg2', 'postgresql',
 # 'mysql', 'sqlite3' or 'ado_mssql'.
DATABASE_NAME = '' # Or path to database file

•

•

•

•

Chapter 2

[19]

 # if using sqlite3.
DATABASE_USER = '' # Not used with sqlite3.
DATABASE_PASSWORD = '' # Not used with sqlite3.
DATABASE_HOST = '' # Set to empty string for localhost.
 # Not used with sqlite3.
DATABASE_PORT = '' # Set to empty string for default.
 # Not used with sqlite3.

The rest of the file was trimmed.

As you may have already noticed, the file contains a number of variables that control
various aspects of the application. Entering a new value for a variable is as simple as
doing a Python assignment statement. In addition, the file is extensively commented.
These comments explain what each variable controls.

What concerns us now is configuring the database. As mentioned before, Django
supports several database systems, so first of all we have to specify the database
system that we are going to use. This is controlled by the DATABASE_ENGINE variable.
As we are using SQLite, set this variable to 'sqlite3'.

Next is the database name. We will choose a descriptive name for your database; edit
DATABASE_NAME and set it to 'bookmarksdb'. When using SQLite, this is all that you
need to do. (If you are using a database server, you will need to enter information
into the rest of the fields shown above and create the actual database inside the
database server.)

After those simple edits, the database section in settings.py now looks like this:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = 'bookmarksdb'
DATABASE_USER = ''
DATABASE_PASSWORD = ''
DATABASE_HOST = ''
DATABASE_PORT = ''

Finally, we will tell Django to populate the configured database with tables.
Although we haven't created any tables for our data yet (and we won't do so until
the next chapter), Django requires several tables in the database for some of its
features to function properly. Creating these tables is easy as it is only a matter of
issuing the following command:

$ python manage.py syncdb

Getting Started

[20]

If you have entered the above command and everything is correct, status messages
will scroll on the screen indicating that the tables are being created. When prompted
for the superuser account, enter your preferred username, email address and
password. It is important to create a superuser account otherwise you won't be
able to gain access to your initial webpage once you have created it. If, on the other
hand, the database is mis-configured, an error message will be printed to help you
troubleshoot the issue.

With this done we are ready to launch our application.

Using python manage.py
When running a command that starts with python manage.py, make
sure that you are currently in the project's directory where manage.py
is located.

Launching the Development Server
As discussed before, Django comes with a lightweight web server for developing and
testing applications. This server is pre-configured to work with Django, and more
importantly, it restarts whenever you modify the code.

To start the server, run the following command:

$ python manage.py runserver

Next, open your browser, and navigate to http://localhost:8000/. You should
see a welcome message as in the image below:

Chapter 2

[21]

As you may have noticed, the web server runs on port 8000 by default. If
you want to change the port, you can specify it in the command line:
$ python manage.py runserver <port number>

Congratulations! You have created and configured your first Django project. This
project will be the basis on which we will build our bookmarking application. During
the next chapter, we will start developing our application, and the page displayed by
the web server will be replaced by something that we will have
written ourselves!

Summary
In this chapter, we have prepared our development environment, created our first
project, and learned how to launch the Django development server. We are now
ready to start building our social bookmarking application!

Here is a quick summary of the Django features covered in this chapter:

Here is a quick summary of the Django features covered in this chapter:
Django can be downloaded from the official Django website at
http://www.djangoproject.com/. Given that it is written in Python, the
same package works on all major operating systems.
To start a new Django project, issue the following command:
$ django-admin.py startproject <project-name>

To create database tables, issue the following command:
$ python manage.py syncdb

To start the development server, issue the following command:
$ python manage.py runserver

Django project settings are stored in settings.py. This file is a regular
Python source file that can be edited using any source code editor. To change
a variable, simply assign the desired value to it.

The next chapter takes you through a tour of the main Django components and
develops a working prototype for our bookmark sharing application. It's going to be
a fun chapter with many new things to learn, so keep reading!

•

•

•

•

•

•

Building a Social
Bookmarking Application

In the previous chapter we learned how to create an empty project, enter the
database settings, and run the development server. Now we will start writing our
bookmark-sharing application, and learn about views, models and templates in
the process.

You can think of this chapter as a prolonged tour of the main Django components. You
will learn how to create dynamic pages using views, how to store and manage data
in the database using models, and how to simplify page generation using templates.
While learning about these features, you will form a solid idea of how Django
components work and interact with each other. Later chapters will explore these
components deeper, as we develop more features and add them to our application.

The following topics are covered in this chapter:
URLs and Views: Creating the main page.
Models: Designing an initial database schema.
Templates: Creating a template for the main page.
Putting it all together: Generating user pages.

A Word about Django Terminology
Django is an MVC framework. However, the controller is called the "view", and
the view is called the "template". The view in Django is the component which
retrieves and manipulates data, whereas the template is the component that presents
data to the user. For this reason, Django is sometimes called an MTV framework
(where MTV stands for model template view). This different terminology neither
changes the fact that Django is an MVC framework, nor affects how applications are
developed. But keep the terminology in mind to avoid possible confusion if you have
worked with other MVC frameworks in the past.

•
•
•
•

Building a Social Bookmarking Application

[24]

URLs and Views: Creating the Main Page
The first thing that comes to mind after seeing the welcome page of the development
server is how can we change it? To create our own welcome page, we need to
define an entry point to our application in the form of a URL, and tell Django to call
a particular Python function when a visitor accesses this URL. We will write this
Python function ourselves, and make it display our own welcome message.

Creating the Main Page View
A view in Django terminology is a regular Python function that responds to a page
request by generating the corresponding page. To write our first Django view for the
main page, we first need to create a Django application inside our project. You can
think of an application as a container for views and data models. To create it, issue
the following command within our django_bookmarks folder:

$ python manage.py startapp bookmarks

The syntax of application creation is very similar to that of project creation. We used
startapp as the first parameter to python manage.py, and provided bookmarks as
the name of our application.

After running this command, Django will create a folder named bookmarks inside
the project folder with these three files:

__init__.py: This file tells Python that bookmarks is a Python package.
views.py: This file will contain our views.
models.py: This file will contain our data models.

Now, let's create the main page view. Open the file bookmarks/views.py in your
code editor and enter the following:

from django.http import HttpResponse
def main_page(request):
 output = '''
 <html>
 <head><title>%s</title></head>
 <body>
 <h1>%s</h1><p>%s</p>
 </body>
 </html>
 ''' % (
 'Django Bookmarks',
 'Welcome to Django Bookmarks',
 'Where you can store and share bookmarks!'
)
 return HttpResponse(output)

•

•

•

Chapter 3

[25]

The code is short and pretty straightforward. Let's go through it line by line:

We import the class HttpResponse from django.http. We need this class in
order to generate our response page.
We define a Python function that takes one parameter named request; this
parameter contains user input and other information. For example, request.
GET, request.POST and request.COOKIES are dictionaries that contain get,
post and cookie data respectively.
We build the HTML code of the response page, wrap it within an
HttpResponse object and return it.

A Django view is just a regular Python function. It takes user input as a parameter,
and returns page output. But before we can see the output of this view, we need to
connect it to a URL.

Creating the Main Page URL
As you may recall from the previous chapter, a file named urls.py was created
when we started our project. This file contains valid URLs for our application, and
maps each URL to a view that is a Python function. Let's examine the contents of this
file and see how to edit it:

from django.conf.urls.defaults import *
urlpatterns = patterns('',
 # Example:
 # (r'^django_bookmarks/', include('django_bookmarks.foo.urls')),
 # Uncomment this for admin:
 #(r'^admin/', include('django.contrib.admin.urls')),
)

As you can probably tell, the file contains a table of URLs and their corresponding
Python functions (or views). The table is called urlpatterns, and it initially contains
example entries that are commented out. Each entry is a Python tuple that consists of
a URL and its view.

The URL syntax may look familiar to you, because it uses regular expressions.
Django gives you a lot of flexibility by letting you specify URL patterns using this
powerful string matching technique. We will gradually learn about this syntax and
how to utilize it. Let's start by removing the comments and adding an entry for the
main page:

from django.conf.urls.defaults import *
from bookmarks.views import *
urlpatterns = patterns('',
 (r'^$', main_page),
)

•

•

•

Building a Social Bookmarking Application

[26]

Again, let's see the breakdown of this code:

The file imports everything from the module django.conf.urls.defaults.
This module provides the necessary functions to define URLs.
We import everything from bookmarks.views. This is necessary to access
our views, and connect them to URLs.
The patterns function is used to define the URL table. It contains only one
mapping for now — from r'^$' to our view main_page.

One last thing needs explaining before we see the view in action. The regular
expression that we used will look a bit strange if you haven't used regular
expressions before. It is a raw string that contains two characters, ^ and $. r'', which
is the Python syntax for defining raw strings. If Python encounters such a raw string,
then backslashes and other escape sequences are retained in the string, rather than
interpreted in any way. In this syntax, backslashes are left in the string without
change, and escape sequences are not interpreted. This is useful when working with
regular expressions, because they often contain backslashes.

In regular expressions, ^ means the beginning of the string, and $ means the end of
the string. So ^$ basically means a string that doesn't contain anything; that is an
empty string. Given that we are writing the view of the main page, the URL of the
page is the root URL, and indeed it should be empty.

Python documentation of the re module covers regular expressions in detail. I
recommend reading it if you want a thorough treatment of regular expressions. You
can find the documentation online at:

http://docs.python.org/lib/module-re.html

Below is a table that summarizes regular expression syntax for those who want a
quick refresher:

Symbol / Expression Matched String
. (Dot) Any character.
^ (Caret) Start of string.
$ End of string.
* 0 or more repetitions.
+ 1 or more repetitions.
? 0 or 1 repetitions.
| A | B means A or B.
[a-z] Any lowercase character.
\w Any alphanumeric character or _.
\d Any digit.

•

•

•

Chapter 3

[27]

Now that everything is clear, we can test our first view. Launch the development
server and go to http://127.0.0.1:8000/ to see the page generated by the view.

Congratulations! Your first Django view is up and running.

Before we move to the next section, it is a good idea to understand what's going on
behind the scenes:

When a user requests the root URL at http://127.0.0.1:8000/, Django
searches the URL table in urls.py for a URL that matches the request.
Matching is done using regular expressions.
If Django finds a matching URL, it calls its corresponding view. The view,
which is a regular Python function, receives data generated by the user's
browser as a parameter called the request object and returns the generated
page wrapped in an HttpResponse object.
If Django doesn't find a URL that matches the request, it displays a 404 "Page
Not Found" error. You can test this by requesting http://127.0.0.1:8000/
does_not_exist/ as illustrated in the image below. Notice that Django
displays helpful debugging information to assist you in figuring out what's
wrong. Of course, these debugging messages can be turned off when the site
goes live.

•

•

•

Building a Social Bookmarking Application

[28]

This way of mapping URLs to views gives the developer a lot of flexibility. URLs are
not restricted to filenames as in PHP, and are not automatically mapped to function
names as in mod_python. You are given total control over the mapping between
URLs and functions. This is especially good for large projects, where URLs and
function names often change during phases of the development.

Our main page looks a little basic without CSS. Therefore, we will learn to use
templates, which will make it easy to style our pages using stylesheets. Before doing
this, we will learn about database models and how to store and manage our data.

Models: Designing an Initial Database
Schema
Almost every Web 2.0 application requires a database to store and manage its data.
The database engine is a fundamental component of web development nowadays.
Web applications offer the user a UI to enter and manage their data, and use a
database engine behind the scenes to manage this data.

In Django, you can think of the view as the component responsible
for collecting and displaying data, and the model as the component
responsible for storing and managing it.

We will chose the database engine that configured our database settings in the
previous chapter. In this section, we will make use of the database to store and
manage user accounts and bookmarks.

If you are used to dealing with the database directly through SQL queries, then you
may find Django's approach to database access a bit different. Loosely speaking,
Django abstracts access to database tables through Python classes. To store,
manipulate and retrieve objects from the database, the developer uses a Python-based
API. In order to do this, SQL knowledge is useful but not required.

This technique is best explained by example. For our bookmarking application, we
need to store three types of data in the database:

Users (ID, username, password, email)
Links (ID, URL)
Bookmarks (ID, title, user_id, link_id)

•

•

•

Chapter 3

[29]

Each user will have their own entry in the Users table. This entry stores the
username, password and email. Similarly, each link will have a corresponding entry
in the links table. We will only store the link's URL for now.

As for the Bookmarks table, you can think of it as the joining table between Users
and Links. When a user adds a bookmark, an entry for the bookmark's URL is added
to the links table if it doesn't already exist, and then a joining entry is added to the
Bookmarks table. This entry connects the user with the link, and stores the title that
the user entered for their bookmark.

To convert this table design into Python code, we need to edit models.py in
bookmarks and enter the details of each object type. models.py is the file where
database models are stored, and it only contains an import line when it's created by
manage.py startapp.

The Link Data Model
Let's start by creating the data model for the Links table, because it's the simplest
one. Open bookmarks/models.py in your editor and type the following code:

from django.db import models

class Link(models.Model):
 url = models.URLField(unique=True)

Going through the code line by line, we learn the following:

The models package contains classes that are required to define models, so it
is imported first.
We define a class named Link. This class inherits from models.Model, which
is the base class for all models. The class contains one field named url, and
it's of the type models.URLField. This field must be unique.

models.URLField is one of many field types provided by Django. Below is a partial
table of these types:

Field Type Description
IntegerField An integer.
TextField A large text field.
DateTimeField A date and time field.
EmailField An email field with 75 chars max.
URLField A URL field with 200 chars max.
FileField A file-upload field.

•

•

Building a Social Bookmarking Application

[30]

To use this model, we first need to activate it in our Django project. This is done by
editing settings.py, looking for the INSTALLED_APPS variable, and adding our
application name (django_bookmarks.bookmarks) to it:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django_bookmarks.bookmarks',
)

Now, issue the following command to create a table for the Link data model in
the database:
$ python manage.py syncdb

You may remember that we used this command in the previous chapter to create
Django's own administrative tables. Whenever you add a data model, you need to
issue this command in order to create its table in the database.

If you are familiar with SQL, you can examine the SQL query generated by Django
by running the following command:
$ python manage.py sql bookmarks

The output from this command may differ slightly depending on your database
engine. For SQLite, it should look similar to the following:

BEGIN;
CREATE TABLE "bookmarks_link" (
 "id" integer NOT NULL PRIMARY KEY,
 "url" varchar(200) NOT NULL UNIQUE
);
COMMIT;

What has happened here? Django analyzed our Link model, which is a regular
Python class, and generated an SQL CREATE statement for a database table named
bookmarks_link; this table will store instances of the Link class. Notice that Django
automatically added an id field to the table. This field is the primary key of the table
and can be used to identify links and connect them to bookmarks.

The power of Django's Python database API does not stop at creating tables. We
can use it to create entries in the table, to modify entries, to search and browse the
table contents, among many other things. To explore the API, we will use the Python
interactive console. To launch the console use this command:
$ python manage.py shell

Chapter 3

[31]

This shell differs from the standard Python shell in two ways. Firstly, the project
path is added to sys.path, which simplifies importing modules from our project.
Secondly, a special environment variable is created to hold the path to our
settings.py. So whenever you need a Python shell to interact with your project,
use the above command.

Now import the contents of the models module:

>>> from bookmarks.models import *

To add a new link, create a new instance of the Link class and call the save method
on it:

>>> link1 = Link(url='http://www.packtpub.com/')

>>> link1.save()

>>> link2 = Link(url='http://www.example.com/')

>>> link2.save()

Calling the save method is required to store the object in the database. Before that,
the object exists in memory only, and it will be lost if you close the console. However,
when you call save, the object is stored in the database.

Table fields become attributes of objects. To examine and change a link's URL, type
the following:

>>> link2.url

 'http://www.example.com/'

>>> link2.url = 'http://www.google.com/'

>>> link2.save()

To get a list of all available Link objects, type the following:

>>> links = Link.objects.all()

>>> for link in links:

... print link.url

...

http://www.packtpub.com/

http://www.google.com/

To get an object by ID, type the following:

>>> Link.objects.get(id=1)

 <Link: Link object>

Building a Social Bookmarking Application

[32]

Finally, to delete a link, use the following:

>>> link2.delete()
>>> Link.objects.count()
 1

And output of 1 indicates that there is now only one remaining link. Notice that we
were able to do all of the above without needing a single SQL statement. Django's
model API can do a lot more; it covers all the tasks commonly done through SQL.
Actually, the above method calls are converted to SQL statements, and the results of
the statements are returned. The benefits of this approach are numerous:

You don't have to learn another language to access the database. You already
know Python and how use it to write views, so it's obviously a benefit if you
can also use it to access the database.
Django transparently handles the conversion between Python objects and
table rows. You only work with Python objects, and Django automatically
stores and retrieves them from the database for you.
You don't have to worry about any special SQL syntax for different database
engines, especially if you have to switch from one engine to another. The
Django model API is the same no matter what engine you use, and it takes
care of the differences for you.

The User Data Model
Now that you are comfortable with the concept of data models, let's move to the User
object. Fortunately for us, management of user accounts is so common that Django
comes with a user model ready for us to use. This model contains fields that are often
associated with user accounts, such as username, password and email and so on. The
model is called User and it's located in the django.contrib.auth.models package.

To explore the contents of this model, open the interactive console and type
the following:

>>> from django.contrib.auth.models import User
>>> User.objects.all()
 [<User: ayman>]

We can see that the table represented by this model already contains a user. Remember
when we configured the database in the previous chapter? We had to create the
superuser account, and Django stored this user in the table of the User model.

You can examine the fields of User objects by using the dir function:

>>> user = User.objects.get(id=1)
>>> dir(user)

•

•

•

Chapter 3

[33]

You will get a very long list of attributes. Among them you will find the username,
email address and password. Good news! This model fulfills our needs. Django
provides all the necessary attributes for our user objects, and we can use directly use
the User model directly without any extra code.

The Bookmark Data Model
Only one model remains, the Bookmark model. When we examined it earlier, we
realized that a bookmark connects a user to a link. A bookmark belongs to one user
and one link. However, one user may have many bookmarks, and one link may be
bookmarked by many users. In database language we say there is a many-to-many
relationship between users and links. However, there is no way to actually represent
a many-to-many relationship such as this one using a standard database system. In
our particular case, we will invent the concept of a bookmark to break up this
many-to-many relationship into its constituent one-to-many relationships.

The first of these is the one-to-many relationship between the user and their
bookmarks. One user can have many bookmarks, but each bookmark is associated
with only one user. That is to say, each user can bookmark a particular link once.

The second of these is the one-to-many relationship between a link and its
bookmarks. One link can have many bookmarks associated with it if multiple users
have bookmarked it, but each bookmark is associated with only one link.

Now that we have two separate one-to-many relationships, it is possible to represent
all of this in a database system. To do so, we create a third table, the bookmarks
table, which connects the user table and the links table. Each row in the bookmarks
table has a reference to a row in the users table (that is to a particular user) and a
reference to the links table (that is to a particular link). In SQL, these references to
rows in "foreign" tables are known as foreign keys, but instead of working with SQL
to define tables and foreign keys, we will use the Django model API to write a data
model for the bookmarks.

The following code listing contains the Bookmark data model. You should insert it
into bookmarks/models.py. For those who are new to relational databases and SQL,
this section may seem a little obscure at first. However, it will all make more sense
when you see it in action. Here is the code for the Bookmark data model:

from django.contrib.auth.models import User
class Bookmark(models.Model):
 title = models.CharField(maxlength=200)
 user = models.ForeignKey(User)
 link = models.ForeignKey(Link)

Building a Social Bookmarking Application

[34]

We first import the User class in order to refer to it in the Bookmark model. Next,
we define a class for the Bookmark model as we did with Link. The new model
contains a text field called title, and two foreign keys that refer back to the User
and Link models.

Code Snippets and import statements
Python conventions suggest putting import statements at the beginning
of the source file. When adding code to an existing file, there will be new
import statements at the beginning of the new code snippet, but you are
recommended to move these statements to the beginning of the file.

After you enter the model's code into models.py, you need to run manage.py
syncdb in order to create its corresponding table.

Let's examine the SQL query generated by Django to see how it automatically
handles foreign keys. Again, issue the following command:

$ python manage.py sql bookmarks

And you will see the CREATE statement for the Bookmark data model:

BEGIN;
CREATE TABLE "bookmarks_bookmark" (
 "id" integer NOT NULL PRIMARY KEY,
 "title" varchar(200) NOT NULL,
 "user_id" integer NOT NULL REFERENCES
 "auth_user" ("id"),
 "link_id" integer NOT NULL REFERENCES
 "bookmarks_link" ("id"),
);
CREATE TABLE "bookmarks_link" (
 "id" integer NOT NULL PRIMARY KEY,
 "url" varchar(200) NOT NULL UNIQUE
);
COMMIT;

Notice how Django appended _id to the table name to create foreign key fields and
generated the necessary SQL for expressing one-to-many relations.

Now that the data models are ready, we have the facilities to store and manage
our data. Django offers an elegant and straightforward Python API to store Python
objects in the database, thus sparing the developer the burden of working with SQL
and converting between SQL and Python types and idioms.

Chapter 3

[35]

Next, we will learn about another major Django component, the template system.
We will use it to simplify working with page creation, and then make use of all the
information we learned in this chapter to create bookmark listing pages for users.

Templates: Creating a Template for the
Main Page
In the first section of this chapter, we created a very simple view for our application's
main page. We had to embed the HTML code of the page into the view's code. This
approach has many disadvantages even for a basic view:

Good software engineering practices always emphasize the separation
between UI and business logic, because it enhances reusability. However,
embedding HTML within Python code clearly violates this rule.
Editing HTML embedded within Python requires Python knowledge, but
this is impractical for many development teams whose web designers do not
know Python.
Handling HTML code within Python code is a tedious and error-prone task.
For example, quotation marks in HTML may need to be escaped in Python
string literals, and the overall result may be unclean and unreadable code.

Therefore, we'd better separate Django views from HTML code generation before
continuing with our application. Fortunately for us, Django provides a component
that facilitates this task; it is called the template system.

The idea of this system is simple, instead of embedding HTML code in the view, you
store it in a separate file called a template. This template may contain placeholders
for dynamic sections that are generated in the view. When generating a page, the
view loads the template and passes dynamic values to it. In turn, the template
replaces the placeholders with these values and generates the page.

To help you better understand the concept, let's apply it to our main_page view.
First of all, to keep our directory structure clean, we will create a separate folder
called templates in our project folder. Next, we need to inform Django of our
newly-created templates folder. So, open settings.py, look for the TEMPLATE_DIRS
variable, and add the absolute path of your templates folder to it. If you don't want
to hard-code the path into settings.py, you can use the following little snippet that
will also work:

import os.path
TEMPLATE_DIRS = (
 os.path.join(os.path.dirname(__file__), 'templates'),
)

•

•

•

Building a Social Bookmarking Application

[36]

Next, create a file called main_page.html in the templates folder with the
following content:

<html>
 <head>
 <title>{{ head_title }}</title>
 </head>
 <body>
 <h1>{{ page_title }}</h1>
 <p>{{ page_body }}</p>
 </body>
</html>

The structure of the template is very similar to the HTML code that we embedded
in the main_page view. There is one small difference however; we used a special
syntax to indicate sections that we wanted to change in the view. For example,
{{ head_title }} indicates a variable called head_title that can be changed inside
the view. Template variables are always surrounded by double braces.

Now, let's see how to use this template in the view. Edit bookmarks/views.py and
replace its contents with the following code:

from django.http import HttpResponse
from django.template import Context
from django.template.loader import get_template

def main_page(request):
 template = get_template('main_page.html')
 variables = Context({
 'head_title': 'Django Bookmarks',
 'page_title': 'Welcome to Django Bookmarks',
 'page_body': 'Where you can store and share bookmarks!'
 })
 output = template.render(variables)
 return HttpResponse(output)

As usual, we will go through the code line by line:

To load a template, we used the get_template method, which is found in
the django.template.loader module. This method takes the filename of a
template and returns a template object.
To set variable values in the template, we created an object called variables
of type Context. The constructor for this type takes a Python dictionary
whose keys are variable names (without double braces), and whose values
are the values of these variables.

•

•

Chapter 3

[37]

To replace template variables and create HTML output from the template, we
used the render method. This method takes a Context object as a parameter,
so here we pass the variables object to it.
Finally, we returned the HTML output wrapped in an HttpResponse object.

As you can see, the benefits of this approach over the old one are clear. We no longer
have to deal with HTML within Python. Putting the HTML code into its own file is
a lot cleaner. In addition, the template system provided by Django makes template
management an easy and straightforward task.

The template system offers a lot in addition to variable substitution. It provides
conditional statements to test whether a variable is empty or not, and a 'for' loop to
iterate through a list and print its items, among many other features. We will see
how to employ some of these features in the next section, in which we will use all the
knowledge that we have learned previously to create user pages.

Putting It All Together: Generating User
Pages
This chapter has covered a lot of material. It has introduced the concepts of views,
models and templates. In the final section, we will write another view and make use
of all the information that we have learned so far. This view will display a list of all
the bookmarks that belong to a certain user.

Creating the URL
The URL of this view will have the form: user/username, where username is the
owner of the bookmarks that we want to see. This URL is different from the first URL
that we added because it contains a dynamic portion. So we will have to employ the
power of regular expressions in order to express this URL. Open urls.py and edit it
so that the URL table looks like this:

urlpatterns = patterns('',
 (r'^$', main_page),
 (r'^user/(\w+)/$', user_page),
)

The pattern here looks more complicated than the first one. \w means an
alphanumeric character or the underscore. The + sign after it causes the regular
expression to match one or more repetitions of what precedes the sign. So in effect,
\w+ means any string that consists of alphanumeric characters and possibly the
underscore. We have surrounded this portion of the regular expression with
parentheses; this will cause Django to capture the string that matches this portion,
and pass it to the view, as we will see later.

•

•

Building a Social Bookmarking Application

[38]

Writing the View
Now that we've added an entry for the new URL to the URL table, let's write the
actual view for it. Open bookmarks/views.py and enter the following code:

from django.http import HttpResponse, Http404
from django.contrib.auth.models import User

def user_page(request, username):
 try:
 user = User.objects.get(username=username)
 except:
 raise Http404('Requested user not found.')

 bookmarks = user.bookmark_set.all()

 template = get_template('user_page.html')
 variables = Context({
 'username': username,
 'bookmarks': bookmarks
 })
 output = template.render(variables)
 return HttpResponse(output)

Most of the view should already look familiar. Therefore, we will only examine
what's new:

Unlike our first view, user_page takes an extra parameter in addition to
the familiar request object. Remember that the pattern for this URL contains
capturing parentheses? Strings captured by URL patterns are passed as
parameters to views. The captured string in this URL is passed as the
username parameter.
We used User.objects.get to obtain the user object whose username is
requested. We can use a similar technique to query any table by a unique
column. This method throws an exception if there are no records that match
the query, or if the matched record is not unique.
If the requested username is not available in the database, we generate a 404
"Page Not Found" error by raising an exception of the type Http404.
To obtain the list of bookmarks for a particular user object, we can
conveniently use the bookmark_set attribute available in the user object.
Django detects relations between data models and automatically generates
such attributes. There is no need to worry about constructing SQL JOIN
queries ourselves to obtain user bookmarks for example.

•

•

•

•

Chapter 3

[39]

Designing the Template
The previous view loads a template called user_page.html and passes the
username and bookmarks to it. We will write this template now. Create a file called
user_page.html in the templates directory and enter the following code into it:

<html>
 <head>
 <title>Django Bookmarks - User: {{ username }}</title>
 </head>
 <body>
 <h1>Bookmarks for {{ username }}</h1>
 {% if bookmarks %}

 {% for bookmark in bookmarks %}

 {{ bookmark.title }}
 {% endfor %}

 {% else %}
 <p>No bookmarks found.</p>
 {% endif %}
 </body>
</html>

This template is more involved than our first one. In addition to variables, it uses an
'if' condition and a 'for' loop to display bookmarks. The bookmarks variable is a list
object, so we can't output it directly in the template; we have to make sure that it's
not empty and then iterate through its items.

Checking whether a variable is empty or not in a template is done using the
following syntax:

{% if variable %}
 <p>variable contains data.</p>
{% else %}
 <p>variable is empty</p>
{% endif %}

This 'if' condition works as expected. If the variable contains data, only the first line
is printed to the browser. On the other hand, if the variable is indeed empty, only the
second line is printed.

Building a Social Bookmarking Application

[40]

To iterate through a list and print its items, we use the following syntax:

{% for item in list %}
 {{ item }}
{% endfor %}

Finally, if a variable has attributes, you can access them in a way similar to Python:

{{ variable.attribute }}

We utilized the constructs above to create the user_page.html template. First, it
checks whether bookmarks is empty or not. If bookmarks does contain items, a 'for'
loop iterates through them and creates links from them. If bookmarks is empty, a
message is printed saying so.

Now, launch the development server and direct your browser to
http://127.0.0.1:8000/user/your_username (replacing your_username with your
actual username), you should see something similar to the following:

Our template worked, but the list of bookmarks is empty. This is a good opportunity
to experiment with the data model API and add some bookmarks through the
interactive console. As we saw earlier, you can start the console by running the
following command:

$ python manage.py shell

Populating the Model with Data
First, obtain references to your user object and the link that we created in the data
models section:

>>> from django.contrib.auth.models import User

>>> from bookmarks.models import *

>>> user = User.objects.get(id=1)

>>> link = Link.objects.get(id=1)

Chapter 3

[41]

Notice that user.bookmark_set is empty:

>>> user.bookmark_set.all()

 []

Now create an object that connects the two:

>>> bookmark = Bookmark(

... title='Packt Publishing',

... user=user,

... link=link

...)

>>> bookmark.save()

Examine the user.bookmark_set attribute again:

>>> user.bookmark_set.all()

 [<Bookmark: Bookmark object>]

Great, our user object now has a bookmark. Refresh the page in your browser to see
the change:

Experiment with adding more bookmarks if you like. You can access a bookmark's
owner by using bookmark.user. This is another attribute that is automatically
generated by Django. Because the relation between users and bookmarks is one-to-
many, each user has a set of bookmarks accessible through the user.bookmark_set
attribute, whereas each bookmark has exactly one owner who is accessible through
the bookmark.user attribute.

Building a Social Bookmarking Application

[42]

Summary
In this chapter, we learned about the three main components of Django: the view,
model and template. We wrote data models to store the data of our application,
and then created views and templates to display this data. We also learned how to
map URLs to views, and how to use the interactive console to experiment with our
Django project.

Below is a summary of the Django features covered in this chapter:

To create an application within a project, run the following command:
 $ python manage.py startapp <app-name>

After writing a data model, the following command should be run to create
the corresponding tables in the database:

 $ python manage.py syncdb

To view the SQL queries generated by Django, issue the following command:

 $ python manage.py sql <app-name>

Data models provide a variety of methods to interact with the database engine:
The save method saves an object into the database.
The objects.get method retrieves an object by a
unique field.
The objects.all method retrieves a list of all objects.
The delete method deletes an object from the database.

To generate a 404 "Page Not Found" error, raise an exception of type
type Http404.

In the next chapter, we will continue developing our application, but we will focus
mostly on user management features, such as registration and logging in. The next
chapter provides a lot of useful information, so read on!

•

•

•

•

°

°

°

°

•

User Registration
and Management

User registration and account management are universal features found in every
web application. Users need to identify themselves to the application before they can
post and share content with other users. User accounts are also required for online
discussions and friend networks, among many other uses. Therefore, this chapter
will focus on building features related to account registration and management, and
taking advantage of the user authentication system that comes with Django.

In this chapter, you will learn about the following:

Creating a login page.
Enabling logout functionality.
Creating a registration form.
Enabling users to update their account information.

Whilst developing the above items, we will learn about two important
Django features:

Template inheritance.
The forms library.

Session Authentication
In the previous chapter, we learned about the User data model and used it to store
user information in the database. In fact, this data model is part of a larger Django
application that provides a variety of features related to user authentication and
management. The Django authentication system is available in the django.contrib.
auth package. It is installed by default as part of Django, and projects created with
the django-admin.py utility have it enabled by default.

•

•

•

•

•

•

User Registration and Management

[44]

You can double-check to make sure that you have the authentication system enabled
by examining the INSTALLED_APPS variable in settings.py. This variable contains
the names of the applications available for your project. You may remember that
we had to edit this variable and add the bookmarks application that we created
ourselves. The variable should look similar to the following:

 INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django_bookmarks.bookmarks',
)

In future, whenever you need to activate an application for your project, you can
simply add its package name to the INSTALLED_APPS variable. Depending on the
application, you may also need to run python manage.py syncdb to create the
application's data models in the database. After that, the application will become
available in your project.

Before we start using the authentication system, let's have a quick look at the features
that it provides:

Users: A comprehensive User data model with fields commonly required by
web applications.
Permissions: Yes/No flags that indicate whether a user may access a certain
feature or not.
Groups: A data model for grouping more than one user together and
applying the same set of permissions to them.
Messages: Provides the functionality for displaying information and error
messages to the user.

We will only use features related to user management in this chapter. Later chapters
will explore other features in detail.

Creating the Login Page
When we examined the User data model in the previous chapter, we noticed thatprevious chapter, we noticed that chapter, we noticed that
it already contained a user account. This account was created during the process of
starting a new project. So the natural question to ask is "how do we log in to
this account?"

•

•

•

•

Chapter 4

[45]

Those who have worked on programming a session management system in a
low-level web framework (such as PHP and its library) will know that this task is
not straightforward. There are many things that could go wrong in such a task, and
a little mistake may open the system to security problems. Fortunately however,
Django developers have carefully implemented a session management system for us,
and activating it requires exposing only certain views to the user. We don't have to
worry about managing user sessions or checking passwords. All of these are already
implemented and ready to be used.

To introduce the session system into our project, let's start with the login page. First
of all, you need to add a new URL entry to urls.py. Open the file in your editor and
change it so that the URL table looks like the following snippet:

urlpatterns = patterns('',
 (r'^$', main_page),
 (r'^user/(\w+)/$', user_page),
 (r'^login/$', 'django.contrib.auth.views.login'),
)

The new URL entry is slightly different from the previous ones. Instead of providing
the view itself, we are passing its module path as a string. This is a convenient
shortcut from Django, and it is often used with views that come from a package
outside the current project. Django will automatically import the view for us. The
path starts with django.contrib which is a package that contains various add-ons
for Django. As you can tell, the authentication system lives in this package.

The module django.contrib.auth.views contains a number of views related to
session management. We have only exposed the login view for now. As its name
suggests, this view handles user login requests. But before we can see it in action, we
need to write a template for it.

The login view requires the availability of a template called registration/login.
html. It loads this template and passes an object that represents the login form to
it. We will learn about form objects in detail when we create a user registration
form, but for now, we only need to know that this object is called form and has the
following attributes: form.username, form.password and form.has_errors. When
printed, the first two attributes generate HTML code for the username and password
text fields, whereas form.has_errors is a Boolean attribute that is set to true if
logging-in fails after submitting the form.

The next step is creating a template for the view. Make a folder named
registration within the templates folder, and create a file called login.html in it.
Enter the following code into login.html:

<html>
 <head>
 <title>Django Bookmarks - User Login</title>

User Registration and Management

[46]

 </head>
 <body>
 <h1>User Login</h1>
 {% if form.has_errors %}
 <p>Your username and password didn't match.
 Please try again.</p>
 {% endif %}
 <form method="post" action=".">
 <p><label for="id_username">Username:</label>
 {{ form.username }}</p>
 <p><label for="id_password">Password:</label>
 {{ form.password }}</p>
 <input type="hidden" name="next" value="/" />
 <input type="submit" value="login" />
 </form>
 </body>
</html>

The code in this template should look familiar by now. We first check to see if there
is a login error from a previous login attempt. And then create an HTML form that
contains username and password fields, as well as a submit button and a hidden
field called next. This hidden variable contains a URL that tells the view where to
redirect the user after they have successfully logged in. We will redirect the user to
the main page for now.

We are ready to try the login view! Run the development server and navigate to
http://127.0.0.1:8000/login/. You will be greeted by the following login page:

Chapter 4

[47]

Remember when you created the database in the second chapter? You had to enter
a username and password for the superuser account after running python manage.
py syncdb. You can use this account to log in. So either go ahead and enter your
credentials, or try a wrong password to see the error message. After successfully
logging in, you will be redirected to the main page.

Now that we can log in, it is a good idea to make the main page indicate whether you
are logged in or not. So let's rewrite its view and template. First open templates/
main_page.html and replace its contents with the following:

<html>
 <head>
 <title>Django Bookmarks</title>
 </head>
 <body>
 <h1>Welcome to Django Bookmarks</h1>
 {% if user.username %}
 <p>Welcome {{ user.username }}!
 Here you can store and share bookmarks!</p>
 {% else %}
 <p>Welcome anonymous user!
 You need to login
 before you can store and share bookmarks.</p>
 {% endif %}
 </body>
</html>

The template now checks whether a variable called user.username is set or not. If it
is, the logged-in user is greeted. Otherwise, a link to the login page is displayed. The
template assumes that the user variable is passed to it (the user variable is a Django
object that we will learn about shortly), so let's modify the main page view to reflect
this. Open bookmarks/views.py and change the view as follows:

def main_page(request):
 template = get_template('main_page.html')
 variables = Context({ 'user': request.user })

 output = template.render(variables)
 return HttpResponse(output)

The code simply loads the main page template, passes request.user (which
contains the current user object) to it, and renders the page. request.user is where
you can access the current user object. (We will learn about this shortly.)

User Registration and Management

[48]

Reload the main page, and you will see a friendlier message that mentions the
logged in username as in the figure below:

You may have noticed by now that loading a template, passing variables to it,
and rendering the page is a very common task. Indeed, it is so common that
Django provides a shortcut for it. Once again, let's rewrite the main page view in
bookmarks/views.py to make use of this shortcut:

from django.shortcuts import render_to_response
def main_page(request):
 return render_to_response(
 'main_page.html',
 { 'user': request.user }
)

Using the render_to_response method from the django.shortcuts package, we
have reduced the view to one statement. This method takes the template name and a
dictionary of template variables as parameters, and returns an HttpResponse object.

The user object available at request.user is the same type of User object as we have
dealt with before. We are already familiar with its data fields, so let's learn about
some of its methods:

is_authenticated() returns a Boolean value indicating whether the user is
logged in or not.
get_full_name() returns the first name and the last name of the user, with a
space between them.
email_user(subject, message, from_email=None) sends an email to
the user.

•

•

•

Chapter 4

[49]

set_password(raw_password) sets the user password to the passed value.
check_password(raw_password) returns a Boolean value indicating
whether the passed password matches the user password.

The names of these methods are self-explanatory. But one may wonder; why is there
a set_password method when one can just as easily set the password attribute of
the user object? To answer this question, we need to examine the contents of the
password field. Open the interactive console and type the following statements:

>>> from django.contrib.auth.models import User

>>> user = User.objects.get(id=1)

>>> user.password

 'sha1$e1f02$bc3c0ef7d3e5e405cbaac0a44cb007c3d34c372c'

You will receive a different string depending on your password, but it will be a
long series of random-looking characters that is totally different from your actual
password. What happened here? For security reasons, Django does not store
your password in plain text in the database. Instead, it stores a hash value of your
password. This hash is very difficult to reverse back, but it can still be used to
verify the password when processing a login request. Remember when I said that
implementing a session management system carries many caveats? Password storage
is one of them, and Django handles it out of the box. You only need to remember to
call the set_password method instead of directly accessing the password attribute,
and the method will hash the password for you.

Enabling Logout Functionality
Now that we have a login page, the next step is providing a way for the user to log
out. When the user hits the URL logout/, we will log them out and redirect them
back to the main page.

To do this, first create a new view in bookmarks/views.py:

from django.http import HttpResponseRedirect
from django.contrib.auth import logout
def logout_page(request):
 logout(request)
 return HttpResponseRedirect('/')

The method almost reads as plain English. We use the logout method provided by
django.contrib.auth to invalidate the user's session. Next, we redirect the user to
the main page by returning an HttpResponseRedirect object. The constructor of
this object takes the destination URL as a parameter.

•

•

User Registration and Management

[50]

Now we need to add a URL entry for this view. Open urls.py and create an entry
as follows:

urlpatterns = patterns('',
 (r'^$', main_page),
 (r'^user/(\w+)/$', user_page),
 (r'^login/$', 'django.contrib.auth.views.login'),
 (r'^logout/$', logout_page),
)

That's it. To test the new view, make sure that you are logged in, and then hit
http://127.0.0.1:8000/logout/. You will be forwarded back to the main page as
an anonymous user.

To make the logout link accessible to the user, we need to edit all the templates
that we have created so far and add a link to them. Even for a few templates, this is
impractical for many reasons. To overcome this difficulty, we will restructure our
templates by utilizing a featured called template inheritance.

Improving Template Structure
We have created three templates so far. They all share the same general structure,
and only differ in the title and main content. Wouldn't it be great if we could factor
out the shared sections into a single file so that, if we want to modify all the pages in
future, we need only edit one file?

Fortunately, the Django template system already provides such a feature-template
inheritance. The idea is simple; we create a base template that contains the structure
shared by all templates in the system. We also declare certain blocks of the base
template to be modifiable by child templates. Next, we create a template that
extends the base template and modifies its blocks. The idea is very similar to class
inheritance in object-oriented programming.

Let's apply this feature to our project. Create a file called base.html in templates
with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
 <title>Django Bookmarks | {% block title %}{% endblock %}</title>
</head>
<body>
 <h1>{% block head %}{% endblock %}</h1>
 {% block content %}{% endblock %}
</body>
</html>

Chapter 4

[51]

The template utilizes a new template tag called block. This tag is used to define
sections that are modifiable by child templates. Our base template contains three
blocks, one for the title, one for the page heading and one for the body.

To see how to modify these blocks using a child template, edit templates/main_
page.html and replace its content with the following:

{% extends "base.html" %}
{% block title %}Welcome to Django Bookmarks{% endblock %}
{% block head %}Welcome to Django Bookmarks{% endblock %}
{% block content %}
 {% if user.username %}
 <p>Welcome {{ user.username }}!
 Here you can store and share bookmarks!</p>
 {% else %}
 <p>Welcome anonymous user!
 You need to login
 before you can store and share bookmarks.</p>
 {% endif %}
{% endblock %}

The new template of the main page starts by declaring that it extends base.html.
This means that main_page.html is a child of base.html. It inherits its code and
only changes blocks as necessary. Redefining a block in a child template isn't any
different from declaring it for the first time. main_page.html doesn't contain the
general HTML structure any longer; it only redefines what it wants to redefine from
the base template.

Next, let's restructure templates/user_page.html to make use of the new
base template:

{% extends "base.html" %}
{% block title %}{{ username }}{% endblock %}
{% block head %}Bookmarks for {{ username }}{% endblock %}
{% block content %}
 {% if bookmarks %}

 {% for bookmark in bookmarks %}

 {{ bookmark.title }}
 {% endfor %}

 {% else %}
 <p>No bookmarks found.</p>
 {% endif %}
{% endblock %}

User Registration and Management

[52]

Again, we simply redefine dynamic sections of the base template. The code that
generates bookmark listings is still exactly the same.

Finally, let's see how to convert templates/registration/login.html:

{% extends "base.html" %}
{% block title %}User Login{% endblock %}
{% block head %}User Login{% endblock %}
{% block content %}
 {% if form.has_errors %}
 <p>Your username and password didn't match.
 Please try again.</p>
 {% endif %}

 <form method="post" action=".">
 <p><label for="id_username">Username:</label>
 {{ form.username }}</p>
 <p><label for="id_password">Password:</label>
 {{ form.password }}</p>
 <input type="submit" value="login" />
 <input type="hidden" name="next" value="/" />
 </form>
{% endblock %}

Now that our templates have a common base, we can start improving our site
usability and its appearance. Let's begin by adding a CSS stylesheet to the project.
Stylesheets and images are static files; Django does not serve them. In a production
environment, this task is left to the web server. But because we are currently using
Django's development server, we are going to use a workaround in order to make it
serve static content.

Open urls.py, and update it so that it becomes as follows (new code is highlighted):

import os.path
from django.conf.urls.defaults import *
from bookmarks.views import *

site_media = os.path.join(
 os.path.dirname(__file__), 'site_media'
)

urlpatterns = patterns('',
 (r'^$', main_page),
 (r'^user/(\w+)/$', user_page),
 (r'^login/$', 'django.contrib.auth.views.login'),
 (r'^logout/$', logout_page),
 (r'^site_media/(?P<path>.*)$', 'django.views.static.serve',
 { 'document_root': site_media }),
)

Chapter 4

[53]

The new entry binds all URLs under the site_media directory to Django's static file
serving view. Unlike previous URL entries, this one contains a third element. Some
views have additional options that can be controlled by providing a dictionary as the
third element in the view's URL entry. Here we are using this technique to tell the
view where our static files are located.

Next, create a directory called site_media in your project directory. Inside it, create
a blank file called style.css. Now, we will edit templates/base.html to link the
stylesheet to the template and add a navigation menu:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
 <title>Django Bookmarks |
 {% block title %}{% endblock %}</title>
 <link rel="stylesheet" href="/site_media/style.css"
 type="text/css" />
</head>

<body>
 <div id="nav">
 home |
 {% if user.is_authenticated %}
 welcome {{ user.username }}
 (logout)
 {% else %}
 login
 {% endif %}
 </div>
 <h1>{% block head %}{% endblock %}</h1>
 {% block content %}{% endblock %}
</body>
</html>

To correctly position the navigation menu on the page, edit the newly created
stylesheet so as to add the following code:

#nav {
 float: right;
}

User Registration and Management

[54]

We are almost done. The navigation menu works well on the main page, but if you
try the user_page view now, you will notice that the menu displays a login link
no matter whether you are logged in or not. This happens because the 'if' condition
in the navigation menu uses the user object to check the current user status but
this object isn't passed to the user_page.html template via the Context object. To
overcome this problem, we have two options:

Edit our user_page view, and pass the user object to the template in it.
Use a RequestContext object. This object is slightly different from normal
Context objects. It automatically passes the user object to the template
(along with several other variables). In order to do this, the RequestContext
constructor takes the request object as its first parameter, and a dictionary of
template variables as the second parameter.

We will use the second approach because it is cleaner, as we will need to pass thecleaner, as we will need to pass the, as we will need to pass the
user object to every template that we write in the future. Also, it is always better to
factor out common code and reduce the amount of written code.

We will modify both main_page and user_page to use RequestContext objects.
Edit bookmarks/views.py, locate the main_page view and modify it as in the
following snippet:

from django.template import RequestContext

def main_page(request):
 return render_to_response(
 'main_page.html', RequestContext(request)
)

As you can see, we do not need to pass request.user through the Context object
any more; RequestContext handles this for us. Now rewrite the user_page view to
use render_to_response and RequestContext:

def user_page(request, username):
 try:
 user = User.objects.get(username=username)
 except:
 raise Http404('Requested user not found.')
 bookmarks = user.bookmark_set.all()
 variables = RequestContext(request, {
 'username': username,
 'bookmarks': bookmarks
 })
 return render_to_response('user_page.html', variables)

The code for the views looks much more compact now. Although the restructuring of
the templates took some time, the new structure will serve us better in the long term.

•

•

Chapter 4

[55]

Our application now supports logging in and out. In the next section we are going to
add user registration functionality.

User Registration
The first user account was added to the database during the creation of our Django
project. However, site visitors also need a method to create accounts on the site. User
registration is a basic feature found in all social networking sites nowadays. We will
create a user registration form in this section, and in the process we will also learn
about the Django library that handles form generation and processing.

Django Forms
Creating, validating and processing forms is an all too common task. Web
applications receive input and collect data from users by means of web forms. So
naturally Django comes with its own library to handle these tasks. In Django 0.96, the
library is called newforms but it will be renamed to forms in Django 1.0 (once it has
been released). To avoid having to go through a lot of code updates when the name
changes, it is recommended to import the package like this:

from django import newforms as forms

This way, when the library name changes in Django 1.0, all you have to do is change
the above import statement to:

from django import forms

This package renaming issue exists because newforms replaces a previous form
handling library that was called forms. To give developers time to update their code
for the new forms library, Django developers decided to let the two libraries coexist
under different names for a while. From now on, we will use this convention to
import the newforms package, and when I mention the forms package, I will mean
newforms imported as forms.

The Django forms library handles 3 common tasks:

HTML form generation.
Server-side validation of user input.
HTML form redisplay in case of input errors.

The way in which this library works is similar to the way in which Django's data
models work. You start by defining a class that represents your form. This class must
be derived from the forms.Form base class. Attributes in this class represent form
fields. The forms package provides many field types, in a way similar to how the
models package provides many database types.

•
•
•

User Registration and Management

[56]

When you create an object from a class that is derived from the forms.Form base
class, you can interact with it using a variety of methods. There are methods for
HTML code generation, methods to access the input data and methods to validate
the form.

We will learn about the forms library by creating a user registration form in the
next section.

Designing the User Registration Form
Let's start by creating our first Django form. Create a new file in the bookmarks
application folder and call it forms.py. Then open the file in your code editor and
enter the following code:

from django import newforms as forms
class RegistrationForm(forms.Form):
 username = forms.CharField(label='Username', max_length=30)
 email = forms.EmailField(label='Email')
 password1 = forms.CharField(
 label='Password',
 widget=forms.PasswordInput()
)
 password2 = forms.CharField(
 label='Password (Again)',
 widget=forms.PasswordInput()
)

After examining the code, you will notice that the way in which we defined this
class is similar to the way in which we defined the model classes. We derived the
RegistrationForm class from forms.Form. All form classes need to inherit from
this class. Next, we defined the fields that this form contains. There are many field
types in the forms package. There are several parameters, listed below, which can
be passed to the constructor of any field type. Some specialized field types can take
other parameters in addition to these ones:

label: The label of the field when HTML code is generated.
required: Whether the user must enter a value or not. It is set to true by
default. To change it, pass required=False to the constructor.
widget: This parameter lets you control how the field is rendered in
HTML. We used it above to make the CharField of the password become a
password input field.
help_text: A description of the field. Will be displayed when the form
is rendered.

•

•

•

•

Chapter 4

[57]

The following is a table of commonly used field types:

Field Type Description
CharField Returns a string.
IntegerField Returns an integer.
DateField Returns a Python datetime.date object.
DateTimeField Returns a Python datetime.datetime object.
EmailField Returns a valid email address as a string.
URLField Returns a valid URL as a string.

And here is a partial list of available form widgets:

Widget Type Description
PasswordInput A password text field.
HiddenInput A hidden input field.
Textarea A text area that enables text entry on multiple lines.
FileInput A file upload field.

We can learn more about the forms API by experimenting in the interactive console.
Run the console and issue the following commands:

$ python manage.py shell
>>> from bookmarks.forms import *
>>> form = RegistrationForm()

Now we have an instance of the RegistrationForm class. Let's see how it is
rendered in HTML:

>>> print form.as_table()

This command will give you a long output in which you will see the HTML
rendering of the form using table tags. You can also render the form using ul and
p tags by calling form.as_ul() and form.as_p() respectively.

In addition, you can render individual form fields with the following code:

>>> print form['username']
 <input id="id_username" type="text" name="username" maxlength="30" />

User Registration and Management

[58]

Now that we know how to render the form, let's move to input validation. We can
pass input to a form using its constructor:

>>> form = RegistrationForm({
... 'username': 'test',
... 'email': 'test@example.com',
... 'password1': 'test',
... 'password2': 'test'
... })
>>> form.is_valid()
 True

form.is_valid() returned True because all the fields were provided and the email
address is valid. Now try to pass an invalid form field:

>>> form = RegistrationForm({
... 'username': 'test',
... 'email': 'invalid email',
... 'password1': 'test',
... 'password2': 'test'
... })
>>> form.is_valid()
 False
>>> form.errors
 {'email': [u'Enter a valid e-mail address.']}

Django did the form-validation for us! You will get similar results if you do not pass
a value for a field, because fields are required by default.

You can check whether a form has data or not using the form.is_bound attribute.
If you try to validate an unbound form, you will get an exception. User input can be
accessed through a dictionary at form.data, and if the form is valid, validated user
input can be accessed at form.clean_data.

Now that you are comfortable with forms.Form instances, we need to improve
data validation for our form. The form in its current state detects missing fields and
invalid email addresses but we still need to do the following:

Prevent the user from entering an invalid username or a username that's
already in use.
Make sure that the two password fields match.

•

•

Chapter 4

[59]

Let's start with password validation because it's simpler. Open bookmarks/forms.py
and append the following method to the RegistrationForm class:

 def clean_password2(self):
 if 'password1' in self.clean_data:
 password1 = self.clean_data['password1']
 password2 = self.clean_data['password2']
 if password1 == password2:
 return password2
 raise forms.ValidationError('Passwords do not match.')

We will go through this code line by line:

The method name is clean_password2. Custom validation methods always
follow the format, clean_fieldname.
The method first checks whether password1 passed validation. If the
user enters a valid value for it, it will become accessible through the
self.clean_data dictionary.
Next, the method checks password1 and password2 for equality. If they
are equal, it returns the clean value for password2. Here, we don't modify
password2 before returning it, but in other situations we may want to clean
the value before returning it, by stripping or escaping certain characters
for example.
If validation fails, we raise an exception of the type forms.ValidationError.
The constructor for this exception takes the error message as a parameter.

With password validation done, we will move to username validation. Add the
following import statements at the beginning of bookmarks/forms.py:

import re
from django.contrib.auth.models import User

from django.core.exceptions import ObjectDoesNotExist

re is the regular expressions library. We will need it to make sure that the
username doesn't contain invalid characters. We also import the User data model
to check whether the entered username already exists or not. Lastly, we import
ObjectDoesNotExist which is the type of exception raised if the data object is
not found.

Next, append the following method to RegistrationForm:

def clean_username(self):
 username = self.clean_data['username']
 if not re.search(r'^\w+$', username):
 raise forms.ValidationError('Username can only contain

•

•

•

•

User Registration and Management

[60]

 alphanumeric characters and the underscore.')
 try:
 User.objects.get(username=username)
 except ObjectDoesNotExist:
 return username
 raise forms.ValidationError('Username is already taken.')

Again, let's go through the method line by line:

We first check the entered username against the regular expression ^\w+$.
As you recall from the third chapter, this is the same regular expression as
we used to capture the username from the user bookmarks URL. re.search
returns None if the regular expression does not match the string. In this case,
we raise a ValidationError exception.
If the username passes the first check, we search the User data model
for a user with the same username. User.objects.get raises an
ObjectDoesNotExist exception if it doesn't find a match. In this case, the
username is new and we return it. Otherwise we raise an exception, saying
that the username is already taken.

You can experiment with these validation methods using the interactive console.
Try to pass invalid data to the RegistrationForm constructor, and then check the
errors dictionary for validation error messages. If you like, you can also implement
a clean_ method for the email field to prevent a visitor from registering the same
email address more than once.

We now have the registration form ready, but we still need a view and a template.
Let's start with the view. Open bookmarks/views.py and insert the following code:

from bookmarks.forms import *
def register_page(request):
 if request.method == 'POST':
 form = RegistrationForm(request.POST)
 if form.is_valid():
 user = User.objects.create_user(
 username=form.clean_data['username'],
 password=form.clean_data['password1'],
 email=form.clean_data['email']
)
 return HttpResponseRedirect('/')
 else:
 form = RegistrationForm()

 variables = RequestContext(request, {
 'form': form
 })

•

•

Chapter 4

[61]

 return render_to_response(
 'registration/register.html',
 variables
)

This view does two things:

If it's requested via the POST method, the user has submitted registration
information. In this case, the view processes user input, and redirects to the
main page if everything goes well.
Otherwise, the page generates HTML code for the registration form, and
renders a template called registration/register.html.

We retrieved user input from request.POST. This is a dictionary that contains POST
input values. We pass this dictionary to the constructor of RegistrationForm using
the call RegistrationForm(request.POST). This binds a form instance to the user
input contained in the request.POST dictionary. Then, we can validate the input and
redirect to the main page if everything is fine.

You may have noticed that a new user is created via User.object.create_user
instead of instantiating the User class. We used this approach because create_user
takes care of password hashing for us (among several other things), so it's better to
use it when creating new users.

If input validation fails, the form object will still be passed to the template. However,
this form object will display helpful error messages to the user indicating what's
wrong with input.

Now we will move to the registration page template. Create a new file called
templates/registration/register.html, and add the following code to it:

{% extends "base.html" %}
{% block title %}User Registration{% endblock %}
{% block head %}User Registration{% endblock %}
{% block content %}
<form method="post" action=".">
 {{ form.as_p }}
 <input type="submit" value="register" />
</form>
{% endblock %}

Did you notice how compact and straightforward the view and template are? It's
all because of the powerful and elegant Django forms library. The template simply
renders the form using form.as_p, and adds a submit button below it.

•

•

User Registration and Management

[62]

Before we can test the registration view, we need to add a URL entry for it. Open
urls.py and add the following line to the URL table:

(r'^register/$', register_page),

And we're done! Make sure that the development server is running, and navigate
to http://127.0.0.1:8000/register/. The form should render and function
correctly, but it may look a bit messed up. To correct this, edit the stylesheet at
site_media so as to add the following:

input {
 display: block;
}

Much better now, here is an image of the registration form:

Play with it; try to enter invalid data and see how Django automatically generates
error messages out of validation exceptions.

Now that we have a registration page, you may want to add a link to it in the site's
navigation menu. Open templates/base.html and modify the navigation menu so
that it looks like this:

<div id="nav">
 home |
 {% if user.is_authenticated %}
 welcome {{ user.username }}
 (logout)
 {% else %}

Chapter 4

[63]

 login |
 register
 {% endif %}
</div>

One last thing – wouldn't it be better if we displayed a success message after the
user completes the registration process? Implementing this would be very simple.
A view for such a page only loads and displays a template; it does not need to
generate dynamic content or process input. Django already provides a view named
direct_to_template in the django.views.generic.simple package for such a
task, so let's use it.

Create a template for the successful registration page at templates/registration/
register_success.html with the following content:

{% extends "base.html" %}
{% block title %}Registration Successful{% endblock %}
{% block head %}
 Registration Completed Successfully
{% endblock %}
{% block content %}
 Thank you for registering. Your information has been
 saved in the database. Now you can either
 login or go back to the
 main page.
{% endblock %}

To directly link this template to a URL, first add this import statement at the
beginning of urls.py:

from django.views.generic.simple import direct_to_template

Next, add the following entry to the URL table:
(r'^register/success/$', direct_to_template,
 { 'template': 'registration/register_success.html' }),

Here the template name is passed to the view using a dictionary as a third item in the
URL entry.

Finally, modify the register_page view in bookmarks/views.py so that it redirects
to the new template upon successful registration. Search for the following statement:

return HttpResponseRedirect('/')

And replace it with this statement:
return HttpResponseRedirect('/register/success/')

And we've finished! To test the new template, you can either register a new username,
or directly open this URL: http://127.0.0.1:8000/register/success/.

User Registration and Management

[64]

Account Management
So far we have implemented session management and registration facilities. We
now need to let the user update account information, such as the password or email
address. To implement such features, we can do one of two things:

We can use the views that Django provides for common account
management tasks as we did when creating the login form.
We can design our own form and process its input data as we did with the
registration form.

We've seen how to use both approaches. Each approach has its advantages and
disadvantages. Obviously, designing your own form gives you greater control, but it
requires more code. On the other hand, using a Django view is faster, but in this case
you are limited to the form offered by Django. In the end, it's up to you to decide
which approach to use.

I will summarize the views provided by the django.contrib.auth application
below. Each view expects a certain template name to be available, and passes some
variables to this template. Input handling is done inside the view, so you don't need
to worry about it. All of the following views are available in the django.contrib.
auth.views package.

logout logs a user out, and displays a template when done.
logout_then_login logs a user out, and redirects to the login page.
password_change enables the user to change their password.
password_change_done is shown after changing the password.
password_reset enables the user to reset their password, and receive a new
password via email.
password_reset_done is shown after resetting the password.
redirect_to_login redirects to the login page.

These views are similar to the login view that we used at the beginning of the
chapter. You can refer back to the online documentation of the auth application
for usage details at: http://www.djangoproject.com/documentation/0.96/
authentication/.

With this information, we conclude this chapter. You now have a good
understanding of the Django authentication system, and you should be able to
implement session management and registration features in your own projects
in future.

•

•

•

•

•

•

•

•

•

Chapter 4

[65]

Summary
In this chapter, you have learnt a lot about the user authentication and management
system that comes with Django. This system provides features ranging from session
handling to account maintenance. You used this system to allow the users of our
social bookmarking application to register on the site and authenticate themselves
by logging in. In the process, you learned about the Django form library and utilized
it to build a registration form with input validation, and you also learned how to
derive templates from a base template, which is very important in organizing the
site's structure and reusing template code.

Here is a summary of the Django features covered in this chapter:

The User object of the current user is accessible from the request.user
attribute of the HttpRequest object passed to the view.
Because loading a template, rendering it and wrapping it in an
HttpResponse object is such a common task, Django provides a shortcut for
it called render_to_response. This function is available from the django.
shortcuts package.
To set a user's password, don't access the user.password attribute directly.
Instead, use the user.set_password method, as it takes care of password
hashing for you.
To render a form object, call the as_table, as_p, or as_ul. method on it.
To bind a form to user input, pass user input as a dictionary to the form's
constructor. To validate this input, check the is_valid() method and the
errors attribute of the form object. Input data and clean data are accessible
through form.data and form.clean_data attributes respectively.
Custom field validation is done by adding a clean method to the form class.
This method should be called clean_fieldname, and should return the
cleaned value or raise a forms.ValidationError exception if input
is invalid.
To redirect the user from one view to another, return an
HttpResponseRedirect object from the first view. This object's
constructor takes the path of the second view as a parameter.

The next chapter brings many exciting features to our bookmarking application. We
will build a form to enable users to post bookmarks to the site. The form will allow
users to organize their bookmarks by using tags. Furthermore, we will let users
browse popular tags in the database by using tag clouds. The next chapter contains a
lot of interesting information, so keep reading!

•

•

•

•

•

•

•

Introducing Tags
Tags are one of the most prominent features in Web 2.0 applications. A tag is a
keyword associated with a piece of information, such as an article, image or link.
Tagging is the process of assigning tags to content. It is usually done by the author
or users, which allows for user-defined categorization of content. Tags have become
so popular in web applications because they enable users to classify, view, and share
content easily. If you are not familiar with tags, you can see examples by visiting
the social bookmarking service del.icio.us (at http://del.icio.us/) where tags
are listed below bookmarks, or look at Wikipedia (at http://en.wikipedia.org/)
where tags appear at the bottom of articles.

Since we are building a social bookmarking application, tags are vital for browsing
and sharing bookmarks. To introduce tags into our system, we need a mechanism
that enables users to submit bookmarks to the database along with tags, and a
method for browsing bookmarks classified under a certain tag.

In this chapter, you will learn about the following:

Designing a tag data model.

Building a bookmark submission form.

Creating pages for listing bookmarks under a certain tag.

Building a tag cloud.

Restricting access to some pages.
Protecting against malicious data input by users.

•

•

•

•

•

•

Introducing Tags

[68]

The Tag Data Model
Tags need to be stored in the database and associated with bookmarks. So the first
step in introducing tags to our project is creating a data model for tags. A tag object
will only hold one piece of data, a string that represents the tag. In addition, we need
to maintain the list of tags associated with a particular bookmark. You may recall
from chapter 3 that we used foreign keys to associate bookmarks with users, and
we called this a one-to-many relationship. However, the relationship between tags
and bookmarks is not one-to-many, because one tag can be associated with many
bookmarks, and one bookmark can also have many tags associated with it. This is
called a many-to-many relationship, and it is represented in Django models using
models.ManyToManyField.

You should be well aware by now that data models go into bookmarks/models.py,
so open the file and add the following Tag class to it:

class Tag(models.Model):
 name = models.CharField(maxlength=64, unique=True)
 bookmarks = models.ManyToManyField(Bookmark)

Pretty straightforward, isn't it? We simply defined a data model for tags. This
model holds the tag name and its bookmarks. When you have finished entering
the code, don't forget to run the following command in order to create a table for
the model in the database:

$ python manage.py syncdb

Those who are already familiar with SQL know that many-to-many relationships are
usually implemented in SQL by creating a third table that connects the two related
tables. Let's see how Django implements this type of relationship. In the terminal,
issue the following command:

$ python manage.py sql bookmarks

Here is the output with the new statements are highlighted:

BEGIN;
CREATE TABLE "bookmarks_link" (
 "id" integer NOT NULL PRIMARY KEY,
 "url" varchar(200) NOT NULL UNIQUE
);
CREATE TABLE "bookmarks_bookmark" (
 "id" integer NOT NULL PRIMARY KEY,
 "title" varchar(200) NOT NULL,
 "user_id" integer NOT NULL REFERENCES

Chapter 5

[69]

 "auth_user" ("id"),
 "link_id" integer NOT NULL REFERENCES
 "bookmarks_link" ("id"),
);
CREATE TABLE "bookmarks_tag" (
 "id" integer NOT NULL PRIMARY KEY,
 "name" varchar(64) NOT NULL UNIQUE
);
CREATE TABLE "bookmarks_tag_bookmarks" (
 "id" integer NOT NULL PRIMARY KEY,
 "tag_id" integer NOT NULL
 REFERENCES "bookmarks_tag" ("id"),
 "bookmark_id" integer NOT NULL
 REFERENCES "bookmarks_bookmark" ("id"),
 UNIQUE ("tag_id", "bookmark_id")
);
COMMIT;

The output may slightly differ depending on your database engine.

Indeed, Django automatically creates an extra table called bookmarks_tag_
bookmarks to maintain the many-to-many relationship.

It is worth noting that, when we define a many-to-many relationship in Django's
model API, the models.ManyToManyField can be placed in either of the two related
models. We could have put this field in the Bookmark model instead of Tag, but since
we created the Tag model later, we put the models.ManyToManyField in it.

Let's launch the interactive console and see the facilities offered by Django to work
with many-to-many relationships:

$ python manage.py shell

>>> from bookmarks.models import *

>>> bookmark = Bookmark.objects.get(id=1)

>>> bookmark.link.url

 'http://www.packtpub.com/'

>>> tag1 = Tag(name='book')

>>> tag1.save()
>>> bookmark.tag_set.add(tag1)

Introducing Tags

[70]

>>> tag2 = Tag(name='publisher')

>>> tag2.save()

>>> bookmark.tag_set.add(tag2)

>>> bookmark.tag_set.all()

 [<Tag: Tag object>, <Tag: Tag object>]

So far we have created two tags and assigned them to a bookmark in our system.
Although we didn't change the Bookmark data model, Django automatically added
a new attribute to it called tag_set after creating the Tag model. This happened
because of the many-to-many relationship we defined between Bookmark and Tag.
Through this attribute, we can access and manipulate tags assigned to a particular
bookmark.

What about the list of bookmarks associated with a tag? It can be accessed through
the bookmarks attribute in the Tag object. This attribute is named after the models.
ManyToManyField that we defined in the Tag class:

>>> tag1.bookmarks.all()

 [<Bookmark: Bookmark object>]

Now we are able to assign tags to bookmarks and access the tags of a bookmark
(and vice versa). One little detail remains before we finish this section; when we print
a data model object in the interactive console, such as a tag or bookmark, we get a
generic string that doesn't help with identifying the object. It would be very helpful
if we could override this output and replace it with a descriptive representation.
Django provides a straightforward way to do this using a Python feature. If we
simply define a method that takes no parameters called __str__ in our model, Django
will use its output as the representation of the object.

Let's add such a method to the Tag class. Open bookmarks/models.py and edit the
class so that it looks as follows:

class Tag(models.Model):
 name = models.CharField(maxlength=64, unique=True)
 bookmarks = models.ManyToManyField(Bookmark)
 def __str__(self):

 return self.name

To test this, open the interactive console and do the following:

>>> from bookmarks.models import *
>>> Tag.objects.all()
 [<Tag: book>, <Tag: publisher>]

Chapter 5

[71]

This is much better now! These descriptive representations will greatly help us
with developing and debugging our project, so let's do the same for the Link and
Bookmark objects:

class Link(models.Model):
 url = models.URLField(unique=True)
 def __str__(self):
 return self.url
class Bookmark(models.Model):
 title = models.CharField(maxlength=200)
 user = models.ForeignKey(User)
 link = models.ForeignKey(Link)
 def __str__(self):
 return '%s, %s' % (self.user.username, self.link.url)

That's all there is to it. User objects already have custom __str__ methods because
the User data model is provided by Django.

Now that the data models are ready to store tagging information, we will move to
the next step, which is designing a form that our users will use to submit bookmarks
to the database.

How to use from X import *
Python style guidelines discourage the usage of this statement to import
everything in a module. The reason behind this is to avoid cluttering the
current namespace with unwanted classes and methods. In this book,
I will use this statement for importing items from the modules that we
write ourselves, since our modules are short and straightforward. But in
larger projects, you may want to import specific items from modules to
keep the namespace clean.

Creating the Bookmark Submission Form
Now that we can store tag data along with other bookmark information, we are
ready to create a form for submitting bookmarks to the database; this form will let
users specify the bookmark's URL, title and tags. The process of creating this form is
very similar to that of the registration form that we created in the previous chapter.
In fact, the method explained here can be used to create any HTML form that saves
information into the database.

Introducing Tags

[72]

The first step in building our form is defining a class for it. So open bookmarks/
forms.py and add the following class to it:

class BookmarkSaveForm(forms.Form):
 url = forms.URLField(
 label='URL',
 widget=forms.TextInput(attrs={'size': 64})
)
 title = forms.CharField(
 label='Title',
 widget=forms.TextInput(attrs={'size': 64})
)
 tags = forms.CharField(
 label='Tags',
 required=False,
 widget=forms.TextInput(attrs={'size': 64})
)

This code should look familiar to you. For each field, we specified a label and a
widget. We changed the default widget of models.CharField in order to control
the size of the text field (Remember that widgets are used to control how a field is
rendered.) Changing the HTML attributes of a field is done by passing a dictionary
of attribute names and values to the widget constructor. Here we specified a size
of 64 for text fields.

By specifying correct field types in our form, we don't have to implement any
additional input validation. For example, Django will automatically make sure
that the user enters a valid URL, because the corresponding field is defined as
models.URLField.

It's worth noting that we used a simple text field for tags. Users can enter the
bookmark's tags by typing them into this field separated by spaces. This method is
used by many Web 2.0 applications, and can be improved with Ajax, as we will see
in the next chapter.

Next, we will create a view for our form. Again, the view will be very similar to the
registration view we wrote previously. Create a new view called bookmark_save_
page in bookmarks/views.py with the following code:

from bookmarks.models import *

def bookmark_save_page(request):
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 # Create or get link.

Chapter 5

[73]

 link, dummy = Link.objects.get_or_create(
 url=form.clean_data['url']
)
 # Create or get bookmark.
 bookmark, created = Bookmark.objects.get_or_create(
 user=request.user,
 link=link
)
 # Update bookmark title.
 bookmark.title = form.clean_data['title']
 # If the bookmark is being updated, clear old tag list.
 If not created:
 bookmark.tag_set.clear()
 # Create new tag list.
 tag_names = form.clean_data['tags'].split()
 for tag_name in tag_names:
 tag, dummy = Tag.objects.get_or_create(name=tag_name)
 bookmark.tag_set.add(tag)
 # Save bookmark to database.
 bookmark.save()
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('bookmark_save.html', variables)

This view has the same structure as the registration view. However, it uses
a different form and template, and it contains a different method for storing
information into the database. Let's go through the code line by line:

This view may be requested using Get or Post. If it's a Get request, a
BookmarkSaveForm is created and passed to the template.
If the request method is Post, input data is passed to a BookmarkSaveForm
object for validation and processing.
If the input is valid, we build a corresponding Bookmark object and save it in
the database. Each bookmark consists of a user, a link, a title some and tags.
Let's see how we get each one of these:
The User object is already available at request.user.

•

•

•

•

Introducing Tags

[74]

To get the Link object, we use a method called Link.objects.get_or_
create. This is the first time we have used this method, but it will prove to
be very useful while working with Django forms. This method works as its
name suggests. It tries to get an object from the database according to the
parameters it receives. If it cannot find such an object, it creates a new one and
saves it to the database. It returns the retrieved or created object and a Boolean
flag indicating whether the object was created or not. Because we don't care
whether the Link object was created or already available, we store this flag in a
dummy variable that we are not going to use later.
Title and tags are provided by the user and are accessible through
form.clean_data.
Now that we have all the required elements, we proceed to building the
Bookmark object. This is also done using get_or_create; the reason is that
the user may submit the same URL more than once, and since we don't want
to store the same bookmark twice in the database, we use get_or_create.
If it's a new bookmark, a new object is created and saved. Otherwise, the
already existing bookmark is retrieved and updated.
Giving the title to the bookmark is done by assigning the title string to the
bookmark.title attribute.
If the bookmark was not created, this means that it already has a list of tags
associated with it, so we have to clear it before assigning the new tag list to
the bookmark.
Finally, we split the tags string and iterate though it, adding each tag to
the bookmark's tag set. Tag objects are also retrieved or created using
get_or_create.
The view terminates either by rendering the form through a template called
bookmark_save.html, or it terminates after saving a submitted bookmark, in
which case the user is redirected to their page.

As you can see, the view is a long, but it is easy to understand if you break it up
into sections.

Before we see the view in action, we need to write a template and add a new URL
entry for it. The template will be almost identical to the registration template, as all
that it does is to display the form that it receives from the view. Create a file called
bookmark_save.html in the templates folder and insert the following code into it:

•

•

•

•

•

•

•

Chapter 5

[75]

{% extends "base.html" %}
{% block title %}Save Bookmark{% endblock %}

{% block head %}Save Bookmark{% endblock %}
{% block content %}
<form method="post" action=".">
 {{ form.as_p }}
 <input type="submit" value="save" />
</form>

{% endblock %}

We are almost there. Open urls.py and insert the following entry in to it:

(r'^save/$', bookmark_save_page),

You may have noticed that our URL table is growing fast. It is a good idea to
reorganize it a bit with comments and white spaces. Here is one suggested method in
which to do this:

urlpatterns = patterns('',
 # Browsing
 (r'^$', main_page),
 (r'^user/(\w+)/$', user_page),

 # Session management
 (r'^login/$', 'django.contrib.auth.views.login'),
 (r'^logout/$', logout_page),
 (r'^register/$', register_page),
 (r'^register/success/$', direct_to_template,
 { 'template': 'registration/register_success.html' }),
 (r'^site_media/(?P<path>.*)$', 'django.views.static.serve',
 { 'document_root': site_media }),

 # Account management
 (r'^save/$', bookmark_save_page),
)

Introducing Tags

[76]

And we have finished. Launch the development server, make sure that you
are logged in (otherwise you won't be able to view the page), and navigate to
http://127.0.0.1:8000/save/. You will see the bookmark submission form:

Try to submit links and notice how they are added to your user page. You can also
try submitting an invalid URL and see how Django requests a valid one before
proceeding. Note that Django requires the URL to start with a protocol name, so
http://www.example.com/ is considered valid, whereas www.example.com is not.

Because we programmed the user page in a previous chapter, tags will not be visible
on the user page, even though they are stored in the database. We will correct this in
the next section when we add a page for browsing all bookmarks under a certain tag.
But before we continue, there are two issues that need addressing – creating a link
to the bookmark submission form in the navigation menu and restricting it to
logged-in users.

Chapter 5

[77]

Restricting Access to Logged-in Users
Let's add a link to the bookmark submission form in the navigation menu and
restructure the menu a little. Open templates/base.html and update it so that it
looks as follows (where changes are highlighted):

<div id="nav">
 home |
 {% if user.is_authenticated %}
 submit |

 {{ user.username }} |
 logout
 {% else %}
 login |
 register
 {% endif %}
 </div>

Did you notice that we made sure we are logged-in before submitting a bookmark?
This is because bookmarks are associated with User objects, and we don't want
anonymous users to save bookmarks without identifying themselves first. But how
do we make sure that anonymous users cannot submit links? Actually, there are
many methods, of which I will explain two.

As we have seen in the previous chapter, you can see if the current user is logged in
by using request.user.is_authenticated(). So, if we wrap the bookmark_save_
page view with an if condition such as the following, we can see whether the user is
logged in or not:

if request.user.is_authenticated():

 # Process form.

else:

 # Redirect to log-in page.

However, the task of limiting certain pages to logged-in users is so common that
Django provides a shortcut for it, and it turns out that this shortcut is even easier
to use. Therefore, it is recommended that you use this shortcut rather than the one
above. Add it to the bookmark_save_page section of views.py:

from django.contrib.auth.decorators import login_required
@login_required
def bookmark_save_page(request):

Introducing Tags

[78]

This is all that we need to do in order to limit a view to logged-in users. We first
import a method called login_required from django.contrib.auth.decorators
and then apply it to our view. The syntax that we used to do this may look new to
you; it is called decorator syntax. A Python decorator is a function that modifies
another function. Here we modify the bookmark_save_page using the login_
required decorator. The decorator checks whether the user is logged-in before
passing control to the view.

One little detail remains; how will login_required know our login URL? By
default, it assumes that the page is located at: /accounts/login/. If we want to
change this, we can store the login URL in a variable called LOGIN_URL. This variable
resides in the django.contrib.auth package. Add the following code to the end of
settings.py:

import django.contrib.auth
django.contrib.auth.LOGIN_URL = '/login/'

Now, log out and try to navigate directly to http://127.0.0.1:8000/save/. You
will be automatically redirected to the login form.

The natural step after letting users submit bookmarks is providing methods for
browsing these bookmarks. In a previous chapter we built a simple user page that
lists all of the user's bookmarks. In the next section, we will improve this page, and
add another page for browsing the bookmarks under a certain tag.

Methods for Browsing Bookmarks
Browsing bookmarks lies at the heart of our application. Therefore, it is vital to
provide a variety of ways for the user to explore available bookmarks and share
theirs with others.

Although we intend to provide several ways to browse bookmarks, the technique
used to generate bookmark listings will remain the same:

1. First, we build a list of bookmarks using the Django model API.
2. Next, we present the list of bookmarks using a template.

While the details of how to build the bookmark list differ from one page to another,
bookmark listing pages will often look similar. We can present each bookmark as
a link, with tag and user information below it. It would be a good idea if we could
write one template and reuse it across all pages. Template inheritance, which we
learned about in the previous chapter, is one method that can be used to achieve this.
However, the Django template system provides another powerful mechanism that
we will learn about in this section. It is called the include template tag.

Chapter 5

[79]

The concept of the include tag is simple; it lets you include the contents of one
template file in another. It's similar to copying the contents of one template and
pasting it into another. Let's see the tag in action by writing a generic template for
a bookmark list. Create a new file called bookmark_list.html in templates, and
enter the following code into it:

{% if bookmarks %}
 <ul class="bookmarks">
 {% for bookmark in bookmarks %}

 {{ bookmark.title }}

 {% if show_tags %}
 Tags:
 {% if bookmark.tag_set.all %}
 <ul class="tags">
 {% for tag in bookmark.tag_set.all %}
 {{ tag.name }}
 {% endfor %}

 {% else %}
 None.
 {% endif %}

 {% endif %}
 {% if show_user %}
 Posted by:
 <a href="/user/{{ bookmark.user.username }}/"
 class="username">
 {{ bookmark.user.username }}
 {% endif %}

 {% endfor %}

{% else %}
 <p>No bookmarks found.</p>
{% endif %}

Introducing Tags

[80]

If you recall how we created bookmark listings on user pages, you will notice that
this piece of code does something very similar. Let's see how it works:

The code first checks whether bookmarks is empty or not. If it contains items,
the code enters a loop and iterates through all the bookmarks. Otherwise, it
prints a message saying that no bookmarks were found and exits.
In the body of the main for loop, the code prints a link to the bookmark and
then enters another loop to print the bookmark's tags. To give us greater
control over list rendering, we check whether a variable named show_tags is
true before printing tags.
Finally, we check whether a variable named show_user is true. If it is, we
print a link to the user's page.

The Boolean variable show_* will prove very useful later on, because it enables us to
control how the list looks from within the view by passing flags to the list template.
For example, when displaying a user's bookmarks, there is no point in displaying a
link to the user page, because we are already viewing it. Furthermore, we added
CSS classes to the list elements which simplify styling the list later on.

Improving the User Page
Now, to make use of this template snippet on the user page, we need to include it
from within the user_page.html template. So open templates/user_page.html
and modify it to look like the following (with the modified section highlighted):

{% extends "base.html" %}
{% block title %}{{ username }}{% endblock %}
{% block head %}Bookmarks for {{ username }}{% endblock %}
{% block content %}
 {% include "bookmark_list.html" %}
{% endblock %}

Can you how simple the template has become? We had to modify the content block
and include the bookmark_list.html template in it. This would work as though we
had copied and pasted the code of bookmark_list.html into the block. The main
benefit of this feature is that we can reuse bookmark_list.html somewhere else in
the project by including it in another template (for example, when generating a
tag page).

•

•

•

Chapter 5

[81]

Before we can see the new template in action, we need to modify the user view and
our stylesheet a little. On the user page, we want to display a tag list but not the user
name. The current user_page view does not pass any show_* flags to the template,
and since an undeclared Boolean variable is considered False by Django templates;
we need to set show_tags to True in the user_page view. Open bookmarks/views.
py and change the view as follows:

from django.shortcuts import get_object_or_404
def user_page(request, username):
 user = get_object_or_404(User, username=username)
 bookmarks = user.bookmark_set.order_by('-id')

 variables = RequestContext(request, {
 'bookmarks': bookmarks,
 'username': username,
 'show_tags': True
 })
 return render_to_response('user_page.html', variables)

The highlighted lines here indicate the new additions to this section of code. The first
two highlighted lines will replace the existing code that was embedded in the def
user_page section.

We have added show_tags to the template variable list and changed the logic
that retrieves the user object. Here we used another Django shortcut called
get_object_or_404. This function does exactly what the old code did; it tries to get
an object from the provided model according to the passed arguments. If it succeeds,
it returns the corresponding object. Otherwise, it raises a 404 "page not found" error.
The task of rendering a page that represents an object in the database or returning a
404 error is very common, so this was the best time to learn about a shortcut for it.

We have also changed how the bookmark list is retrieved. Instead of calling the
all method, we used the order_by method which orders the entries according to
the column name provided as an argument to the method. If the column name is
preceded by a - sign, the sorting order becomes descending instead of ascending. We
do this because we want the more recent links to appear nearer the top of the page.

To improve the look of the tag list and avoid nested lists, open site_media/style.
css and insert the following:

ul.tags, ul.tags li {
 display: inline;
 margin: 0;

 padding: 0;
}

Introducing Tags

[82]

This CSS snippet declares tag lists and their items to be in line, which looks much
better and saves space on the page.

Try out the improved user page at http://127.0.0.1:8000/user/your_username/.
You will see bookmark tags below links:

Creating a Tag Page
Next, we will create a similar bookmark listing for tags. For this task, we won't write
any new code; we will basically sew together the components that we wrote when
we created the user page.

Let's start by adding a URL entry for the tag page. Open urls.py and insert
the following entry (preferably below the user page entry so as to keep the
table organized):

(r'^tag/([^\s]+)/$', tag_page),

The captured part of this regular expression differs from that of the user page. We
only allow alphanumeric characters in usernames, but for tags, any non-whitespace
character is allowed, because users may want to use characters such as + and & in
their tags. In regular expressions, \s matches any whitespace character by putting

Chapter 5

[83]

it in a character class (a set of characters between brackets) and preceding it with ^.
By doing this, we negate what the character class matches. In other words, [abc]
matches either a, b or c, whereas [^abc] matches any character except a, b and c.
Therefore, [^\s] matches any character except for white spaces, which is exactly
what we want.

Next, we will create the tag_page view. Open bookmarks/views.py and insert the
following code:

def tag_page(request, tag_name):
 tag = get_object_or_404(Tag, name=tag_name)
 bookmarks = tag.bookmarks.order_by('-id')
 variables = RequestContext(request, {
 'bookmarks': bookmarks,
 'tag_name': tag_name,
 'show_tags': True,
 'show_user': True
 })

 return render_to_response('tag_page.html', variables)

This time, the code is almost identical in structure to that of the user_page view. We
are dealing with tags instead of users, but otherwise the code is essentially the same.

Lastly, we need to create a template for the tag page. Create a file called
templates/tag_page.html with the following contents:

{% extends "base.html" %}

{% block title %}Tag: {{ tag_name }}{% endblock %}

{% block head %}Bookmarks for tag: {{ tag_name }}{% endblock%}

{% block content %}

 {% include "bookmark_list.html" %}

{% endblock %}

Again, the template is essentially the same as user_page.html. Here we include
bookmark_list.html to generate the actual list. See how we managed to add a new
feature to our application in a few minutes and with only a few lines of code? This
was possible because we took advantage of Django's features to modularize and
reuse our code.

Introducing Tags

[84]

Before we try out the new tag page, we will link tag names to their respective tag
pages. To do this, open bookmark_list.html and modify the section that generates
tag lists as follows:

<ul class="tags">
 {% for tag in bookmark.tag_set.all %}

 {{ tag.name }}

 {% endfor %}

Changes will be automatically applied to user and tag pages. This this is another
benefit of the include tag; we didn't have to modify each template separately.

Now, navigate to your user page, and click one of the tags to see the tag page
in action:

Nice, isn't it? With this, we have finished creating tag pages. The users of
our application now have many more ways, and better ways, to browse
available bookmarks.

Chapter 5

[85]

Building a Tag Cloud
The last feature that we are going to implement in this chapter is tag clouds. A tag
cloud is a visual representation of the tags available in a system, and how often these
tags are used. The size of a tag name in the cloud corresponds to the number of items
under this tag. The more items there are under a certain tag, the larger is the font size
used to represent the tag. The tag cloud is a quick and convenient way to form an
idea of what content is available on the site, and to browse this content.

The key to implementing a tag cloud is building a list of tags along with the number
of items associated with each tag; we will call this number the count of the tag. Next,
we find the minimum and maximum counts among all tags After that, we assign a
weight to every tag based on where the count is located between the minimum and
maximum; the closer to the maximum, the larger the weight.

Let's code this. Open bookmarks/views.py and create a new view for the tag
cloud page:

def tag_cloud_page(request):
 MAX_WEIGHT = 5
 tags = Tag.objects.order_by('name')
 # Calculate tag, min and max counts.
 min_count = max_count = tags[0].bookmarks.count()
 for tag in tags:
 tag.count = tag.bookmarks.count()
 if tag.count < min_count:
 min_count = tag.count
 if max_count < tag.count:
 max_count = tag.count
 # Calculate count range. Avoid dividing by zero.
 range = float(max_count - min_count)
 if range == 0.0:
 range = 1.0
 # Calculate tag weights.
 for tag in tags:
 tag.weight = int(
 MAX_WEIGHT * (tag.count - min_count) / range
)
 variables = RequestContext(request, {
 'tags': tags
 })
 return render_to_response('tag_cloud_page.html', variables)

Introducing Tags

[86]

Let's go through each section of this code:

We retrieve a list of all tags, sorted by name. MAX_WEIGHT holds the
maximum weight to generate. If it's set to 5, we will get weights
between 0 and 5.
We iterate through the list, find the number of bookmarks associated with
each tag, and cache this number in a temporary attribute called count. We
also calculate the minimum and maximum counts, and maintain them in
min_count and max_count respectively.
We calculate the difference between max_count and min_count. If it's zero,
we set it to 1.0 to avoid dividing by zero.
We iterate through tags once again and assign a weight to each tag. Weight
is calculated by finding how far the current tag's count is from the minimum
count and dividing this value by range. To get an integer, we multiply the
result (which will be between 0.0 and 1.0) by the number of weights, and
convert to an integer.
Finally, we pass the resulting tag list to a template called
tag_cloud_page.html.

Let's move to writing the template. Create a file called tag_cloud_page.html in
templates with the following content:

{% extends "base.html" %}
{% block title %}Tag Cloud{% endblock %}
{% block head %}Tag Cloud{% endblock %}
{% block content %}
 <div id="tag-cloud">
 {% for tag in tags %}
 <a href="/tag/{{ tag.name }}/"
 class="tag-cloud-{{ tag.weight }}">
 {{ tag.name }}
 {% endfor %}
 </div>

{% endblock %}

As you can see, the template simply loops through the tags, creates links out of them,
and assigns a CSS class to each tag based on its weight.

•

•

•

•

•

Chapter 5

[87]

Next, we will write CSS code to style the tag cloud. Open site_media/style.css
and insert the following:

#tag-cloud {
 text-align: center;
}
#tag-cloud a {
 margin: 0 0.2em;
}
.tag-cloud-0 { font-size: 100%; }
.tag-cloud-1 { font-size: 120%; }
.tag-cloud-2 { font-size: 140%; }
.tag-cloud-3 { font-size: 160%; }
.tag-cloud-4 { font-size: 180%; }
.tag-cloud-5 { font-size: 200%; }

Finally, add an entry to urls.py. We will map tag_cloud_page to the URL /tag/
(without a tag name after it):

(r'^tag/$', tag_cloud_page),

And we have finished. Navigate to http://127.0.0.1:8000/tag/ to see the results.
The page depends on how many bookmarks you have in the database. Here is a
screenshot of the page after entering a lot of bookmarks:

Introducing Tags

[88]

A Word on Security
At the beginning of this chapter, we designed a web form that accepts user
input, stores it in the database and presents it to the visitors of the site. Since our
application will be open to the public, anyone can register and submit whatever data
they want. Therefore, we need to take certain precautions to handle the situation in
which malicious data is supplied.

The golden rule in web development is "Do not trust user input, ever." You must
always validate and sanitize user input before saving it to the database, and before
presenting it in HTML pages. In this section, we will discuss how to achieve this, and
how to avoid two common vulnerabilities in web applications.

SQL Injection
One of the most common attacks on web applications is SQL injections, in which the
attacker uses certain techniques to manipulate SQL queries and obtain data or store
malicious data into the database. SQL injection vulnerabilities happen when the
developer uses input to construct SQL queries without escaping special characters
in it first. Because we are using the Django model API to store and retrieve data,
we are safe from these types of attacks. The model API automatically escapes input
before using it to build queries; we do not need to do anything special to protect our
application from SQL injection.

Cross-Site Scripting (XSS)
Another common web attack is cross-site scripting, in which a malicious user supplies
JavaScript code within input. When this input is rendered into an HTML page, the
JavaScript code is executed to take control of the page and steal information such
as cookies. To protect against such attacks, user input must always be escaped or
sanitized before being presented it in a page. Django does not automatically do this
for us, but it does provide an easy method to escape input before printing it to a page.

Let's learn how to use this feature by implementing it in our project. The bookmark
submission form allows any string to be entered and stored in the database as the
title of a bookmark. For example, a user may submit the following string as a
bookmark title:

<script>alert("Test.");</script>

This string is JavaScript code that displays a message box with the text Test. Our
application will accept it as a bookmark title and store it in the database. The model
API will automatically escape special characters before saving it to the database, and
everything will run as expected. However, when a user opens a page that contains

Chapter 5

[89]

this bookmark, the title will be printed on the page without escaping, causing the
code to be executed. Try it so that you can see what I mean. This code does not cause
any harm, but in the real world, an attacker may construct code to steal the user's
cookies and hijack their session.

Fortunately, the solution to this problem is pretty simple. Django provides a feature
called template filters to process variables before printing them in a template.
One of these filters is the escape filter which, as the name suggests, escapes HTML
characters before printing a template variable. Another useful filter is urlencode
which escapes a string for use in a URL.

Let's use this filter in the templates/bookmark_list.html and modify it as follows:

[...]

 {{ bookmark.title|escape }}

{% if show_tags %}
 Tags:
 {% if bookmark.tag_set.all %}
 <ul class="tags">
 {% for tag in bookmark.tag_set.all %}

 {{ tag.name|escape }}
 {% endfor %}

 {% else %}
 None.
 {% endif %}

{% endif %}
[...]

The syntax for applying a filter is similar to that for shell pipes in with UNIX or
Linux. A template filter is a Python function. When a filter is applied to a variable,
the variable is passed to the filter as an argument, and the return value of the filter
is used in the output of the template. Here, tag_name is passed to the escape filter
before printing, thus avoiding the possibility of cross-site scripting attacks.

The filter works by replacing special characters, such as < and >, with their HTML
entities (< and > respectively). Thus, for example, < tells the browser to
display a < instead of interpreting it as a tag opening.

Introducing Tags

[90]

You will need to do something similar to templates/tag_page.html:

{% extends "base.html" %}
{% block title %}Tag: {{ tag_name|escape }}{% endblock %}
{% block head %}
 Bookmarks for tag: {{ tag_name|escape }}
{% endblock %}
{% block content %}
 {% include "bookmark_list.html" %}
{% endblock %}

And to templates/tag_cloud_page.html:

{% extends "base.html" %}
{% block title %}Tag Cloud{% endblock %}
{% block head %}Tag Cloud{% endblock %}
{% block content %}
 <div id="tag-cloud">
 {% for tag in tags %}
 <a href="/tag/{{ tag.name|urlencode }}/"
 class="tag-cloud-{{ tag.weight }}">
 {{ tag.name|escape }}
 {% endfor %}
 </div>

{% endblock %}

We don't need to escape usernames because they are restricted to alphanumeric
characters by the clean_username method in bookmarks/forms.py. You can refer
back to the "Designing the User Registration Form" section in the previous chapter
for more details.

Summary
With this, we have finished the chapter. We implemented many important features
for our application and learned several new Django features. We started by creating
a data model for storing tags, and then created a form for bookmark submission.
After that, we built pages that allow users to browse and discover new bookmarks.

Here is a quick summary of the Django features mentioned in this chapter:

In the data model API, many-to-many relationships are represented with
models.ManyToManyField. Django automatically generates attributes to
access the items associated with a particular object through this relationship.

•

Chapter 5

[91]

To customize the string representation of a data model, provide a method
called __str__ in the model's class. This method takes no parameters and
should return your preferred representation.
To customize a form field, supply a custom widget. The widget constructor
takes a dictionary of HTML attributes and their values as its parameters.
The objects attribute of a data model provides a very useful method called
get_or_create. This method retrieves an object from the database according
to the passed arguments, or creates one if it doesn't exist.
To restrict a view to logged-in users, use the login_required decorator.
You may also need to override the default login path, which is stored in the
LOGIN_URL variable.
The include template tag is a valuable feature for reusing template snippets
on multiple pages.
To protect your application against cross-site scripting attacks, use the
escape and urlencode template filters. The escape filter escapes HTML
characters in input and is used when building HTML output, whereas the
urlencode filter escapes input for use in a URL.

In the next chapter, we will improve the bookmark submission form and other parts
of the application with JavaScript and Ajax. It is going to be a fun chapter with lots of
new information and technologies to learn, so keep reading!

•

•

•

•

•

•

Enhancing the User
Interface with Ajax

The coming of Ajax was an important landmark in the history of Web 2.0. Ajax is a
group of technologies that enable developers to build interactive, feature-rich web
applications. Most of these technologies were available many years before Ajax itself.
However, the advent of Ajax represents the transition of the web from static pages
that need to be refreshed whenever data was exchanged to dynamic, responsive and
interactive user interfaces.

Since our project is a Web 2.0 application, it should be heavily focused on the user
experience. The success of our application depends on getting users to post and share
content on it. Therefore, the user interface of our application is one of our major
concerns. This chapter will improve the interface of our application by introducing
Ajax features, making it more user-friendly and interactive.

In this chapter, you will learn about the following:

Ajax and the benefits of using it in web applications.
How to install an Ajax framework in Django.
How to use the Open Source jQuery framework.
Live searching of bookmarks.
Editing a bookmark in place without loading a separate page.
Auto-completion of tags when submitting a bookmark.

•

•

•

•

•

•

Enhancing the User Interface with Ajax

[94]

Ajax and Its Advantages
Ajax, which stands for Asynchronous JavaScript and XML, consists of the
following technologies:

HTML and CSS for structuring and styling information.

JavaScript for accessing and manipulating information dynamically.
XMLHttpRequest, which is an object provided by modern browsers for
exchanging data with the server without reloading the current web page.
A format for transferring data between the client and server. XML is
sometimes used, but it could be HTML, plain text, or a JavaScript-based
format called JSON.

Ajax technologies let code on the client-side exchange data with the server behind
the scenes, without having to reload the entire page each time the user makes a
request. By using Ajax, web developers are able to increase the interactivity and
usability of web pages.

Ajax offers the following advantages when implemented in the right places:

Better user experience. With Ajax, the user can do a lot without refreshing the
page, which brings web applications closer to regular desktop applications.
Better performance. By exchanging only the required data with the server,
Ajax saves bandwidth and increases the application's speed.

There are numerous examples of web applications that use Ajax. Google Maps
and Gmail are perhaps two of the most prominent examples. In fact, these two
applications played an important role in spreading the adoption of Ajax, because
of the success that they enjoyed. What sets Gmail from other web mail services is
its user interface, which enables users to manage their emails interactively without
waiting for a page reload after every action. This creates a better user experience and
makes Gmail feel like a responsive and feature-rich application rather than a simple
web site.

This chapter explains how to use Ajax with Django so as to make our application
more responsive and user friendly. We are going to implement three of the most
common Ajax features found in web applications today. But before that, we will
learn about the benefits of using an Ajax framework as opposed to working with
raw JavaScript functions.

•

•

•

•

•

•

Chapter 6

[95]

Using an Ajax Framework in Django
In this section we will choose and install an Ajax framework in our application. This
step isn't entirely necessary when using Ajax in Django, but it can greatly simplify
working with Ajax. There are many advantages to using an Ajax framework:

JavaScript implementations vary from browser to browser. Some browsers
provide more complete and feature-rich implementations, whereas others
contain implementations that are incomplete or don't adhere to standards.
Without an Ajax framework, the developer must keep track of browser
support for the JavaScript features that they are using, and work around the
limitations that are present in some browser implementations of JavaScript.
On the other hand, when using an Ajax framework, the framework takes
care of this for us; it abstracts access to the JavaScript implementation and
deals with the differences and quirks of JavaScript across browsers. This way,
we concentrate on developing features instead of worrying about browser
differences and limitations.
The standard set of JavaScript functions and classes is a bit lacking for fully
fledged web application development. Various common tasks require many
lines of code even though they could have been wrapped in simple functions.
Therefore, even if you decide not to use an Ajax framework, you will find
yourself having to write a library of functions that encapsulates JavaScript
facilities and makes them more usable. But why reinvent the wheel when
there are many excellent Open Source libraries already available?

Ajax frameworks available on the market today range from comprehensive solutions
that provide server-side and client-side components to light-weight client-side
libraries that simplify working with JavaScript. Given that we are already using
Django on the server-side, we only want a client-side framework. In addition, the
framework should be easy to integrate with Django without requiring additional
dependencies. And finally, it is preferable to pick a light and fast framework. There
are many excellent frameworks that fulfil our requirements, such as Prototype, the
Yahoo! UI Library and jQuery. I have worked with them all and they are all great.
But for our application, I'm going to pick jQuery, because it's the lightest of the three.
It also enjoys a very active development community and a wide range of plugins.
If you already have experience with another framework, you can continue using it
during this chapter. It is true that you will have to adapt the JavaScript code in this
chapter to your framework, but Django code on the server-side will remain the same
no matter which framework you choose.

Now that you know the benefits of using an Ajax framework, we will move to
installing jQuery into our project.

•

•

Enhancing the User Interface with Ajax

[96]

Downloading and Installing jQuery
One of the advantages of jQuery is that it consists of a single light-weight file. To
download it, head to http://jquery.com/ and choose the latest version (1.2.3 at theand choose the latest version (1.2.3 at the
time of writing). You will find two choices:

Uncompressed version: This is the standard version that I recommend you to
use during development. You will get a .js file with the library's code in it.
Compressed version: You will also get a .js file if you download this version.
However, the code will look obfuscated. jQuery developers produce this
version by applying many operations on the uncompressed .js file to reduce
its size, such as removing white spaces and renaming variables, as well
as many other techniques. This version is useful when you deploy your
application, because it offers exactly the same features as the uncompressed
one, but with a smaller file size.

I recommend the uncompressed version during development because you may want
to look into jQuery's code and see how a particular method works. However, the two
versions offer exactly the same set of features, and switching from one to another is
just a matter of replacing one file.

Once you have the jquery-xxx.js file (where xxx is the version number), rename it
to jquery.js and copy it to the site_media directory of our project (Remember that
this directory holds static files which are not Python code). Next, you will have to
include this file in the base template of our site. This will make jQuery available to all
of our project pages. To do so, open templates/base.html and add the highlighted
code to the head section in it:

<head>
 <title>Django Bookmarks |
 {% block title %}{% endblock %}</title>
 <link rel="stylesheet" href="/site_media/style.css"
type="text/css" />
 <script type="text/javascript"
src="/site_media/jquery.js"></script>
</head>

To add your own JavaScript code to an HTML page, you can either put the code in
a separate .js file and link it to the HTML page by using the script tag as above, or
write the code directly in the body of a script tag:

<script type="text/javascript">
 // JavaScript code goes here.
</script>

•

•

Chapter 6

[97]

The first method, however, is recommended over the second one, because it helps
keep the source tree organized by putting HTML and JavaScript code in different
files. Since we are going to write our own .js files during this chapter, we need a way
to link .js files to templates without having to edit base.html every time. We will
do this by creating a template block in the head section of the base.html template.
When a particular page wants to include its own JavaScript code, this block may
be overridden to add the relevant script tag to the page. We will call this block
external, because it is used to link external files to pages. Open templates/base.
html and modify its head section as follows:

<head>
 <title>Django Bookmarks | {% block title %}{% endblock %}</title>
 <link rel="stylesheet" href="/site_media/style.css"
 type="text/css"/>
 <script type="text/javascript" src="/site_media/jquery.js">

 </script>
 {% block external %}{% endblock %}

</head>

And we have finished. From now on, when a view wants to use some JavaScript
code, it can link a JavaScript file to its template by overriding the external
template block.

Before we start to implement Ajax enhancements in our project, let's go through a
quick introduction to the jQuery framework.

The jQuery JavaScript Framework
jQuery is a library of JavaScript functions that facilitates interacting with HTML
documents and manipulating them. The library is designed to reduce the time and
effort spent on writing code and achieving cross-browser compatibility, while at the
same time taking full advantage of what JavaScript offers to build interactive and
responsive web applications.

The general workflow of using jQuery consists of two steps:

1. Select an HTML element or a group of elements to work on
2. Apply a jQuery method to the selected group

Enhancing the User Interface with Ajax

[98]

Element Selectors
jQuery provides a simple approach to select elements; it works by passing a CSS
selector string to a function called $. Here are some examples to illustrate the usage
of this function:

If you want to select all anchor (<a>) elements on a page, you can use the
following function call: $("a")
If you want to select anchor elements which have the .title CSS class, use
$("a.title")

To select an element whose ID is #nav, you can use $("#nav")
To select all list item () elements inside #nav, use $("#nav li")

And so on. The $() function constructs and returns a jQuery object. After that, you
can call methods on this object to interact with the selected HTML elements.

jQuery Methods
jQuery offers a variety of methods to manipulate HTML documents. You can hide or
show elements, attach event handlers to events, modify CSS properties, manipulate
the page structure and, most importantly, perform Ajax requests.

Before we go through some of the most important methods, I highly recommend
using the Firefox web browser and an extension called Firebug to experiment with
jQuery. This extension provides a JavaScript console that is very similar to the
interactive Python console. With it, you can enter JavaScript statements and see
their output directly without having to create and edit files. To obtain Firebug, go
to http://www.getfirebug.com/, and click on the install link. Depending on the
security settings of Firefox, you may need to approve the website as a safe source
of extensions.

If you do not want to use Firefox for any reason, Firebug's website offers a "lite"
version of the extension for other browsers in the form of a JavaScript file. Download
the file to the site_media directory, and then include it in the templates/base.
html template as we did with jquery.js:

<head>
 <title>Django Bookmarks | {% block title %}{% endblock %}</title>
 <link rel="stylesheet" href="/site_media/style.css"

 type="text/css"/>
 <script type="text/javascript" src="/site_media/firebug.js">
 </script>

 <script type="text/javascript" src="/site_media/jquery.js">

•

•

•

•

Chapter 6

[99]

 </script>

 {% block external %}{% endblock %}

</head>

To experiment with the methods outlined in this section, launch the development
server and navigate to the application's main page. Open the Firebug console by
pressing F12, and try selecting elements and manipulating them.

Hiding and Showing Elements
Let's start with something simple. To hide an element on the page, call the hide()
method on it. To show it again, call the show() method. For example, try this on the
navigation menu of your application:

>>> $("#nav").hide()

>>> $("#nav").show()

Enhancing the User Interface with Ajax

[100]

You can also animate the element while hiding and showing it. Try the fadeOut(),
fadeIn(), slideUp() or slideDown() methods to see two of these animated effects.

Of course, these methods (like all other jQuery methods) also work if you select more
than one element at once. For example, if you open your user page and enter the
following method call into the Firebug console, all of the tags will disappear:

>>> $('.tags').slideUp()

Accessing CSS Properties and HTML Attributes
Next, we will learn how to change CSS properties of elements. jQuery offers a
method called css() for performing CSS operations. If you call this method with a
CSS property name passed as a string, it returns the value of this property:

>>> $("#nav").css("display")
 Result: "block"

If you pass a second argument to this method, it sets the specified CSS property of
the selected element to the additional argument:

>>> $("#nav").css("font-size", "0.8em")
 Result: <div id="nav" style="font-size: 0.8em;">

In fact, you can manipulate any HTML attribute and not just CSS properties. To do
so, use the attr() method which works in a similar way to css(). Calling it with an
attribute name returns the attribute value, whereas calling it with an attribute name/
value pair sets the attribute to the passed value. To test this, go to the bookmark
submission form and enter the following into the console:

>>> $("input").attr("size", "48")
 Results:
 <input id="id_url" type="text" size="48" name="url">
 <input id="id_title" type="text" size="48" name="title">
 <input id="id_tags" type="text" size="48" name="tags">

(Output may slightly differ depending on the versions of Firefox and Firebug)
This will change the sizes of all input elements on the page at once to 48.

In addition, there are shortcut methods to get and set commonly used attributes,
such as val() which returns the value of an input field when called without
arguments, and sets this value to an argument if you pass one. There is also html()
which controls the HTML code inside an element. Finally, there are two methods
that can be used to attach or detach a CSS class to an element; they are called
addClass() and removeClass(). A third method is provided to toggle a CSS class,
and it is called toggleClass(). All of these class methods take the name of the class
to be changed as a parameter.

Chapter 6

[101]

Manipulating HTML Documents
Now that you are comfortable with manipulating HTML elements, let's see how
to add new elements or remove existing elements. To insert HTML code before
an element, use the before() method, and to insert code after an element, use the
after() method. Notice how jQuery methods are well-named and very easy
to remember!

Let's test these methods by inserting parentheses around tag lists on the user page.
Open your user page and enter the following in the Firebug console:

>>> $(".tags").before("(")

>>> $(".tags").after(")")

You can pass any string you want to - before() or after() - the string may contain
plain text, one HTML element or more. These methods offer a very flexible way to
dynamically add HTML elements to an HTML document.

If you want to remove an element, use the remove() method. For example:

$("#nav").remove()

Not only does this method hide the element, it also removes it completely from
the document tree. If you try to select the element again after using the remove()
method, you will get an empty set:

>>> $("#nav")
 Result: []

Of course, this only removes the elements from the current instance of the page. If
you reload the page, the elements will appear again.

Traversing the Document Tree
Although CSS selectors offer a very powerful way to select elements, there are times
when you want to traverse the document tree starting from a particular element.
For this, jQuery provides several methods. The parent() method returns the
parent of the currently selected element. The children() method returns all the
immediate children of the selected element. Finally, the find() method returns
all the descendants of the currently selected element. All of these methods take an
optional CSS selector string to limit the result to elements that match the selector. For
example, $("#nav").find("li") returns all the descendants of #nav.

If you want to access an individual element of a group, use the get() method which
takes the index of the element as a parameter. $("li").get(0) for example returns
the first element out of the selected group.

Enhancing the User Interface with Ajax

[102]

Handling Events
Next, we will learn about event handlers. An event handler is a JavaScript function
that is invoked when a particular event happens, for example, when a button is
clicked or a form is submitted. jQuery provides a large set of methods to attach
handlers to events; events of particular interest in our application are mouse clicks
and form submissions. To handle the event of clicking on an element, we select this
element and call the click() method on it. This method takes an event handler
function as a parameter. Let's try this using the Firebug console. Open the main page
of the application, and insert a button after the welcome message:

>>> $("p").after("<button id=\"test-button\">Click me!</button>")

(Notice that we had to escape the quotations in the strings passed to the
after() method.)method.)

If you try to click this button, nothing will happen, so let's attach an event handler
to it:

>>> $("#test-button").click(function () { alert("You clicked me!"); })

Now, when you click the button, a message box will appear. How did this work?
The argument that we passed to click() may look a bit complicated, so let's
examine it again:

function () { alert("You clicked me!"); }

This appears to be a function declaration but without a function name. Indeed, this
construct creates what is called an anonymous function in JavaScript terminology,
and it is used when you need to create a function on the fly and pass it as an
argument to another function. We could have avoided using anonymous functions
and declared the event handler as a regular function:

>>> function handler() { alert("You clicked me!"); }

>>> $("#test-button").click(handler)

The above code achieves the same effect, but the first one is more concise and
compact. I highly recommend you to get used to anonymous functions in JavaScript
(if you are not already), as I'm sure you will appreciate this construct and find it
more readable after using it for a while.

Handling form submissions is very similar to handling mouse clicks. First, you select
the form, and then you call the submit() method on it and pass the handler as an
argument. We will use this method many times while adding Ajax features to our
project in later sections.

Chapter 6

[103]

Sending Ajax Requests
Before we finish this section, let's talk about Ajax requests. jQuery provides many
ways to send Ajax requests to the server. There is, for example, the load() method
which takes a URL and loads the page at this URL into the selected element. There
are also methods for sending GET or POST requests, and receiving the results. We
will examine these methods in more depth while implementing Ajax features in
our project.

What Next?
This wraps up our quick introduction to jQuery. The information provided in this
section will be enough to continue with this chapter, and once you finish the chapter,
you will be able to implement many interesting Ajax features on your own. But
please keep in mind that this jQuery introduction is only the tip of the iceberg. If you
want a comprehensive treatment of the jQuery framework, I highly recommend the
book "Learning jQuery" from Packt Publishing, as it covers jQuery in much more
detail. You can find out more about the book at:

http://www.packtpub.com/jQuery

Implementing Live Searching of
Bookmarks
We will start introducing Ajax into our application by implementing live searching.
The idea behind this feature is simple: when the user types a few keywords into a
text field and clicks search, a script works behind the scenes to fetch search results
and present them on the same page. The search page does not reload, thus saving
bandwidth, and providing a better and more responsive user experience.

Before we start implementing this, we need to keep in mind an important rule while
working with Ajax: write your application so that it works without Ajax, and then
introduce Ajax to it. If you do so, you ensure that everyone will be able to use your
application, including users who don't have JavaScript enabled and those who use
browsers without Ajax support.

Enhancing the User Interface with Ajax

[104]

Implementing Searching
So before we work with Ajax, let's write a simple view that searches bookmarks by
title. First of all, we need to create a search form, so open bookmarks/forms.py and
add the following class to it:

class SearchForm(forms.Form):
 query = forms.CharField(
 label='Enter a keyword to search for',
 widget=forms.TextInput(attrs={'size': 32})

)

As you can see, it's a pretty straightforward form class with only one text field. This
field will be used by the user to enter search keywords.

Next, let's create a view for searching. Open bookmarks/views.py and enter the
following code into it:

def search_page(request):
 form = SearchForm()
 bookmarks = []
 show_results = False
 if request.GET.has_key('query'):
 show_results = True
 query = request.GET['query'].strip()
 if query:
 form = SearchForm({'query' : query})
 bookmarks = \
 Bookmark.objects.filter (title__icontains=query)[:10]
 variables = RequestContext(request, { 'form': form,
 'bookmarks': bookmarks,
 'show_results': show_results,
 'show_tags': True,
 'show_user': True
 })
return render_to_response('search.html', variables)

Apart from a couple of method calls, the view should be very easy to understand.
We first initialize three variables, form which holds the search form, bookmarks
which holds the bookmarks that we will display in the search results, and show_
results which is a Boolean flag. We use this flag to distinguish between two cases:

The search page was requested without a search query. In this case, we
shouldn't display any search results, not even a "No bookmarks
found" message.

•

Chapter 6

[105]

The search page was requested with a search query. In this case, we display
the search results, or a "No bookmarks found" message if the query does not
match any bookmarks.

We need the show_results flag because the bookmarks variable alone is not enough
to distinguish between the above two cases. bookmarks will empty when the search
page is requested without a query, and it will also be empty when the query does not
match any bookmarks.

Next, we check whether a query was sent by calling the has_key method on the
request.GET dictionary:

if request.GET.has_key('query'):
 show_results = True
 query = request.GET['query'].strip()
 if query:
 form = SearchForm({'query' : query})
 bookmarks = Bookmark.objects.filter(title__icontains=query)[:10]

We use GET instead of POST here because the search form does not create or change
data; it merely queries the database, and the general rule is to use GET with forms
that query the database, and POST with forms that create, change or delete records
from the database.

If a query was submitted by the user, we set show_results to True and call strip()
on the query string to ensure that it contains non-whitespace characters before we
proceed with searching. If this is indeed the case, we bind the form to the query and
retrieve a list of bookmarks that contain the query in their title. Searching is done by
using a method called filter in Bookmark.objects. This is the first time that we
have used this method; you can think of it as the equivalent of a SELECT statements
in Django models. It receives the search criteria in its arguments and returns
search results. The name of each argument must adhere to the following naming
convention:

field__operator

Note that field and operator are separated by two underscores: field is the name
of the field that we want to search by and operator is the lookup method that we
want to use. Here is a list of the commonly-used operators:

exact: The value of the argument is an exact match of the field.
contains: The field contains the value of the argument.
startswith: The field starts with the value of the argument.
lt: The field is less than the value of the argument.
gt: The field is greater than the value of the argument.

•

•

•

•

•

•

Enhancing the User Interface with Ajax

[106]

Also, there are case-insensitive versions of the first three operators: iexact,
icontains and istartswith.

After this explanation of the filter method, let's get back to our search view. We use
the icontains operator to get a list of bookmarks that match the query and retrieve
the first ten items using Python's list slicing syntax. Finally we pass all the variables
to a template called search.html to render the search page.

Now create the search.html template in the templates directory with the
following content:

{% extends "base.html" %}
{% block title %}Search Bookmarks{% endblock %}
{% block head %}Search Bookmarks{% endblock %}
{% block content %}
<form id="search-form" method="get" action=".">
 {{ form.as_p }}
 <input type="submit" value="search" />
</form>
<div id="search-results">
 {% if show_results %}
 {% include 'bookmark_list.html' %}
 {% endif %}
</div>

{% endblock %}

The template consists of familiar aspects that we have used before. We build the
results list by including the bookmark_list.html like we did when building the
user and tag pages. We gave the search form an ID, and rendered the search results
in a div identified by another ID so that we can interact with them using JavaScript
later. Notice how many times the include template tag saved us from writing
additional code? It also lets us modify the look of the bookmarks list by editing a
single file. This Django template feature is indeed very helpful in organizing and
managing templates.

Before you test the new view, add an entry for it in urls.py:

urlpatterns = patterns('',
 # Browsing
 (r'^$', main_page),
 (r'^user/(\w+)/$', user_page),
 (r'^tag/([^\s]+)/$', tag_page),

 (r'^tag/$', tag_cloud_page),
 (r'^search/$', search_page),
)

Chapter 6

[107]

Now test the search view by navigating to http://127.0.0.1:8000/search/ and
experiment with it. You can also add a link to it in the navigation menu if you want;
edit templates/base.html and add the highlighted code:

<div id="nav">
 home |
 {% if user.is_authenticated %}

 submit |
 search |

 {{ user.username }} |
 logout
 {% else %}
 login |
 register
 {% endif %}
</div>

We now have a functional (albeit very basic) search page. The search functionality
itself will be improved during later chapters, but what matters to us now is
introducing Ajax to the search form so that results are fetched behind the scenes and
presented to the user without reloading the page. Thanks to our modular code, the
task will turn out to be much simpler than it may seem.

Implementing Live Searching
To implement live searching, we need to do two things:

Intercept and handle the event of submitting the search form. This can be
done using the submit() method of jQuery.
Use Ajax to load the search results in the back scenes, and insert them into
the page. This can be done using the load() method of jQuery as we will
see next.

jQuery offers a method called load() that retrieves a page from the server and
inserts its contents into the selected element. In its simplest form, the function takes
the URL of the remote page to be loaded as a parameter.

•

•

Enhancing the User Interface with Ajax

[108]

First of all, let's modify our search view a little so that it only returns search results
without the rest of the search page when it receives an additional GET variable
called ajax. We do so to enable JavaScript code on the client-side to easily retrieve
search results without the rest of the search page HTML. This can be done by simply
using the bookmark_list.html template instead of search.html when request.
GET contains the key ajax. Open bookmarks/views.py and modify search_page
(towards the end) so that it becomes as follows:

def search_page(request):
 [...]
 variables = RequestContext(request, {
 'form': form,
 'bookmarks': bookmarks,
 'show_results': show_results,
 'show_tags': True,
 'show_user': True
 })
 if request.GET.has_key('ajax'):
 return render_to_response('bookmark_list.html', variables)
 else:
 return render_to_response('search.html', variables)

Next, create a file called search.js in the site_media directory and link it to
templates/search.html like this:

{% extends "base.html" %}

{% block external %}
 <script type="text/javascript" src="/site_media/search.js">
 </script>

{% endblock %}
{% block title %}Search Bookmarks{% endblock %}
{% block head %}Search Bookmarks{% endblock %}

[...]

Now for the fun part! Let's create a function that loads search results and
inserts them into the corresponding div. Write the following code into
site_media/search.js:

function search_submit() {
 var query = $("#id_query").val();
 $("#search-results").load(
 "/search/?ajax&query=" + encodeURIComponent(query)
);
 return false;
}

Chapter 6

[109]

Let's go through this function line by line:

The function first gets the query string from the text field using the
val() method.
We use the load() method to get search results from the search_page view,
and insert the search results into the #search-results div. The request
URL is constructed by first calling encodeURIComponent on query, which
works exactly like the urlencode filter we used in Django templates. Calling
this function is important to ensure that the constructed URL remains valid
even if the user enters special characters into the text field such as &. After
escaping query, we concatenate it with /search/?ajax&query=. This URL
invokes the search_page view and passes the GET variables ajax and query
to it. The view returns search results, and the load() method in turn loads
the results into the #search-results div.
We return false from the function to tell the browser not to submit the
form after calling our handler. If we don't return false in the function, the
browser will continue to submit the form as usual, and we don't want that.

One little detail remains; where and when to attach search_submit to the submit
event of the search form? A rule of a thumb when writing JavaScript is that we
cannot manipulate elements in the document tree before the document finishes
loading. Therefore, our function must be invoked as soon as the search page is
loaded. Fortunately for us, jQuery provides a method to execute a function when
the HTML document is loaded. Let's utilize it by appending the following code to
site_media/search.js:

$(document).ready(function () {

 $("#search-form").submit(search_submit);

});

$(document) selects the document element of the current page. Notice that there are
no quotations around document; it's a variable provided by the browser, not a string.
ready() is a method that takes a function and executes it as soon as the selected
element finishes loading. So in effect, we are telling jQuery to execute the passed
function as soon as the HTML document is loaded. We pass an anonymous function
to the ready() method; this function simply binds search_submit to the submit
event of the form #search-form.

•

•

•

Enhancing the User Interface with Ajax

[110]

That's it. We've implemented live searching with less than fifteen lines of code. To
test the new functionality, navigate to http://127.0.0.1:8000/search/, submit
queries, and notice how the results are displayed without reloading the page:

The information covered in this section can be applied to any form that needs to
be processed in the back scenes without reloading the page. You can, for example,
create a comment form with a preview button that loads the preview in the same
page without reloading. In the next section, we will enhance the user page to let
users edit their bookmarks in place, without navigating away from the user page.

Editing Bookmarks in Place
Editing of posted content is a very common task in web sites. It's usually
implemented by offering an edit link next to content. When clicked, this link takes
the user to a form located on another page where content can be edited. When the
user submits the form, they are redirected back to the content page.

Chapter 6

[111]

Imagine, on the other hand, that you could edit content without navigating away
from the content page. When you click edit, the content is replaced with a form.
When you submit the form, it disappears and the updated content appears in its
place. Everything happens on the same page; edit form rendering and submission
are done using JavaScript and Ajax. Wouldn't such a workflow be more intuitive
and responsive?

The technique described above is called in-place editing. It is now finding its way
into web applications and becoming more common. We will implement this feature
in our application by letting the user edit their bookmarks in place on the user page.

Since our application doesn't support the editing of bookmarks yet, we will
implement this first, and then modify the editing procedure to work in place.

Implementing Bookmark Editing
We already have most of the parts that are needed to implement bookmark editing.
If you recall from the previous chapter, in bookmarks/views.py, we implemented
the bookmark_save_page view in such a way that if the user tries to save the same
URL more than once, the same bookmark is updated rather than duplicated. This
was easy to do thanks to the get_or_create method provided by data models. This
little detail greatly simplifies the implementation of bookmark editing. Here is what
we need to do:

1. We pass the URL of the bookmark that we want to edit as a GET variable
named url to the bookmark_save_page view.

2. We modify bookmark_save_page so that it populates the fields of the
bookmark form if it receives the GET variable. The form is populated with the
data of the bookmark that corresponds to the passed URL.

When the populated form is submitted, the bookmark will be updated as we
explained earlier, because it will look like the user submitted the same URL
another time.

Before we implement the technique described above, let's reduce the size of
bookmark_save_page by moving the part that saves a bookmark to a separate
function. We will call this function _bookmark_save. The underscore at the
beginning of the name tells Python not to import this function when the views
module is imported. The function expects a request and a valid form object as
parameters; it saves a bookmark out of the form data, and returns this bookmark.
Open bookmarks/views.py and create the following function; you can cut and paste
the code from bookmark_save_page if you like, as we are not making any changes to
it except for the return statement at the end.

Enhancing the User Interface with Ajax

[112]

 def _bookmark_save(request, form):
 # Create or get link.
 link, dummy = \
 Link.objects.get_or_create(url=form.clean_data['url'])
 # Create or get bookmark.
 bookmark, created = Bookmark.objects.get_or_create(
 user=request.user,
 link=link
)
 # Update bookmark title.
 bookmark.title = form.clean_data['title']
 # If the bookmark is being updated, clear old tag list.
 if not created:
 bookmark.tag_set.clear()
 # Create new tag list.
 tag_names = form.clean_data['tags'].split()
 for tag_name in tag_names:
 tag, dummy = Tag.objects.get_or_create(name=tag_name)
 bookmark.tag_set.add(tag)
 # Save bookmark to database and return it.
 bookmark.save()
 return bookmark

Now in the same file, replace the code that you removed from bookmark_save_page
with a call to _bookmark_save:

@login_required
def bookmark_save_page(request):
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(request, form)
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('bookmark_save.html', variables)

The current logic in bookmark_save_page works like this:

if there is POST data:
 Validate and save bookmark.
 Redirect to user page.
else:
 Create an empty form.
Render page.

Chapter 6

[113]

To implement bookmark editing, we need to slightly modify the logic as follows:
if there is POST data:
 Validate and save bookmark.
 Redirect to user page.
else if there is a URL in GET data:
 Create a form an populate it with the URL's bookmark.
else:
 Create an empty form.
Render page.

Let's translate the above pseudo code into Python. Modify bookmark_save_page in
bookmarks/views.py so that it looks like the following (new code is highlighted):

from django.core.exceptions import ObjectDoesNotExist
@login_required
def bookmark_save_page(request):
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(request, form)
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 elif request.GET.has_key('url'):
 url = request.GET['url']
 title = ''
 tags = ''
 try:
 link = Link.objects.get(url=url)
 bookmark = Bookmark.objects.get(
 link=link,
 user=request.user
)
 title = bookmark.title
 tags = ' '.join(
 tag.name for tag in bookmark.tag_set.all()
)
 except ObjectDoesNotExist:
 pass
 form = BookmarkSaveForm({
 'url': url,
 'title': title,
 'tags': tags
 })
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('bookmark_save.html', variables)

Enhancing the User Interface with Ajax

[114]

This new section of the code first checks whether a GET variable called url exists. If
this is the case, it loads the corresponding Link and Bookmark objects of this URL,
and binds all the data to a bookmark saving form. You may wonder why we load the
Link and Bookmark objects in a try-except construct that silently ignores exceptions.
Indeed, it's perfectly valid to raise an Http404 exception if no bookmark was found
for the requested URL. But our code chooses to only populate the URL field in this
situation, leaving the title and tags fields empty.

Now, let's add edit links next to each bookmark in the user page. Open templates/
bookmark_list.html and insert the highlighted code:

{% if bookmarks %}
 <ul class="bookmarks">
 {% for bookmark in bookmarks %}

 {{ bookmark.title|escape }}
 {% if show_edit %}
 <a href="/save/?url={{ bookmark.link.url|urlencode }}"
 class="edit">[edit]
 {% endif %}

 {% if show_tags %}
 Tags:
 {% if bookmark.tag_set.all %}
 <ul class="tags">
 {% for tag in bookmark.tag_set.all %}

 {{ tag.name|escape }}
 {% endfor %}

 {% else %}
 None.
 {% endif %}

[...]

Notice how we constructed edit links by appending the bookmark's URL to /save/
?url=. Also, since we only want to show edit links on the user's page, the template Also, since we only want to show edit links on the user's page, the template
renders these links only when the show_edit flag is set to True. Otherwise, it
wouldn't make sense to let the user edit other people's links. Now open bookmarks/
views.py and add the show_edit flag to template variables in user_page:

def user_page(request, username):
 user = get_object_or_404(User, username=username)
 bookmarks = user.bookmark_set.order_by('-id')
 variables = RequestContext(request, {
 'bookmarks': bookmarks,

Chapter 6

[115]

 'username': username,
 'show_tags': True,

 'show_edit': username == request.user.username,

 })
 return render_to_response('user_page.html', variables)

The expression username == request.user.username evaluates to True only when
the user is viewing their own page, and this is precisely what we want.

Finally, I suggest reducing the font size of edit links a little. Open
site_media/style.css and append the following to its end:

ul.bookmarks .edit {

 font-size: 70%;

}

And we are done! Feel free to navigate to your user page and experiment with
editing your bookmarks before we continue.

Implementing In-Place Editing of Bookmarks
Now that we have bookmark editing implemented, let's move to the exciting part:
adding in-place editing with Ajax!

Our approach to this task will be as follows:

We intercept the event of clicking on an edit link, and use Ajax to load a
bookmark editing form from the server. Then we replace the bookmark on
the page with the editing form.
When the user submits the edit form, we intercept the submission event, and
use Ajax to send the updated bookmark to the server. The server saves the
bookmark and returns the HTML representation of the new bookmark. We
replace the edit form on the page with the markup returned by the server.

We will implement the above using an approach very similar to live searching. First
we modify bookmark_save_page so that it responds to Ajax requests when a GET
variable called ajax exists. Next, we write JavaScript code to retrieve an edit form
from the view, which posts bookmark data back to the server when the user submits
this form.

•

•

Enhancing the User Interface with Ajax

[116]

Since we want to return the markup of an edit form to the Ajax script from the
bookmark_save_page view, let's restructure our templates a little. Create a file called
bookmark_save_form.html in templates, and move the bookmark saving form from
bookmark_save.html to this new file:

<form id="save-form" method="post" action="/save/">
 {{ form.as_p }}
 <input type="submit" value="save" />
</form>

Notice that we also changed the action attribute of the form to /save/ and gave
it an ID. This is necessary for the form to work on the user page as well as on the
bookmark submission page.
Next, include this new template in bookmark_save.html:

{% extends "base.html" %}
{% block title %}Save Bookmark{% endblock %}
{% block head %}Save Bookmark{% endblock %}
{% block content %}
{% include 'bookmark_save_form.html' %}
{% endblock %}

OK, now we have the form in a separate template. Let's update the
bookmark_save_page view to handle both normal and Ajax requests. Open
bookmarks/views.py and update the view to look like the following (modified
with the new lines are highlighted):

def bookmark_save_page(request):
 ajax = request.GET.has_key('ajax')
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(form)
 if ajax:
 variables = RequestContext(request, {
 'bookmarks': [bookmark],
 'show_edit': True,
 'show_tags': True
 })
 return render_to_response('bookmark_list.html', variables)
 else:
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 else:
 if ajax:
 return HttpResponse('failure')
 elif request.GET.has_key('url'):
 url = request.GET['url']
 title = ''
 tags = ''

Chapter 6

[117]

 try:
 link = Link.objects.get(url=url)
 bookmark = Bookmark.objects.get(link=link, user=request.user)
 title = bookmark.title
 tags = ' '.join(tag.name for tag in bookmark.tag_set.all())
 except:
 pass
 form = BookmarkSaveForm({
 'url': url,
 'title': title,
 'tags': tags
 })
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 if ajax:
 return render_to_response(
 'bookmark_save_form.html',
 variables
)
 else:
 return render_to_response(
 'bookmark_save.html',
 variables
)

Let's examine each highlighted section separately:
ajax = request.GET.has_key('ajax')

At the beginning of the method, we check whether a GET variable named ajax exists.
We store the result of the check in a variable called ajax. Later in the method, we can
check whether we are handling an Ajax request or not by using this variable in an
if condition:

if form.is_valid():
 bookmark = _bookmark_save(form)
 if ajax:
 variables = RequestContext(request, {
 'bookmarks': [bookmark],
 'show_edit': True,
 'show_tags': True
 })
 return render_to_response('bookmark_list.html', variables)
 else:
 return HttpResponseRedirect('/user/%s/' % request.user.username)
else:
 if ajax:
 return HttpResponse('failure')

Enhancing the User Interface with Ajax

[118]

If we receive a POST request, we check whether the submitted form is valid or not.
If it is valid, we save the bookmark. Next we check if this is an Ajax request. If it is,
we render the saved bookmark using the bookmark_list.html template and return
it to the requesting script. Otherwise, it is a normal form submission, so we redirect
the user to their user page. On the other hand, if the form is not valid, we only act
if it's an Ajax request by returning the string "failure", which we will respond to by
displaying an error dialog in JavaScript. We don't need to do anything if it's a normal
request because the page will be reloaded and the form will display any errors in
the input.

if ajax:
 return render_to_response('bookmark_save_form.html', variables)
else:
 return render_to_response('bookmark_save.html', variables)

This check is done at the end of the method. Execution reaches this point if there is
no POST data, which means that we should render a form and return it. We use the
bookmark_save_form.html template if it's an Ajax request, and bookmark_save.
html otherwise.

Our view is now ready to serve Ajax requests as well as normal page requests. Let's
write the JavaScript code that will take advantage of the updated view. Create a new
file called bookmark_edit.js in site_media. But before we add any code to it, let's
link bookmark_edit.js to the user_page.html template. Open user_page.html
and modify it as follows:

{% extends "base.html" %}
 {% block external %}
 <script type="text/javascript" src="/site_media/bookmark_edit.js">
 </script>
 {% endblock %}

{% block title %}{{ username }}{% endblock %}
{% block head %}Bookmarks for {{ username }}{% endblock %}
{% block content %}
{% include 'bookmark_list.html' %}
{% endblock %}

We have to write two functions in bookmark_edit.js:

bookmark_edit: The function handles clicks on edit links; it loads an edit
form from the server, and replaces the bookmark with this form.
bookmark_save: The function handles the submissions of edit forms; sends
form data to the server, and replaces the form with the bookmark HTML
returned by the server.

•

•

Chapter 6

[119]

Let's start with the first function. Open site_media/bookmark_edit.js and write
the following code in it:

function bookmark_edit() {
 var item = $(this).parent();
 var url = item.find(".title").attr("href");
 item.load("/save/?ajax&url=" + escape(url), null, function () {
 $("#save-form").submit(bookmark_save);
 });
 return false;
}

Because this function handles click events on an edit link, the variable this refers
to the edit link itself. Wrapping it in the jQuery $() function and calling parent()
returns the parent of the edit link, which is the element of the bookmark (try it
in the Firebug console to see for yourself).

After retrieving a reference to the bookmark's element, we obtain a reference
to the bookmark's title, and extract the bookmark's URL from it using the
attr() method.

Next, we use the load() method to put an editing form in place of the bookmark's
HTML. This time we are calling load() with two extra arguments in addition to the
URL; load() takes two optional parameters:

An object of key/value pairs if we are sending a POST request. Since we get
the edit form from the server-side view using a GET request, we pass null for
this parameter.
A function that is called when jQuery finishes loading the URL into the
selected element. The function we are passing attaches bookmark_save
(which we are going to write next) to the form that we've just retrieved.

Finally, the function returns false to tell the browser not to follow the edit link.

Now we need to attach the bookmark_edit function to the event of clicking an edit
link using $(document).ready():

$(document).ready(function () {
 $("ul.bookmarks .edit").click(bookmark_edit);
});

•

•

Enhancing the User Interface with Ajax

[120]

If you try to edit a bookmark in the user page after writing this function, an edit form
should appear, but you should also get a JavaScript error message in the Firebug
console because the function bookmark_save is not defined, so let's write it:

function bookmark_save() {
 var item = $(this).parent();
 var data = {
 url: item.find("#id_url").val(),
 title: item.find("#id_title").val(),
 tags: item.find("#id_tags").val()
 };
 $.post("/save/?ajax", data, function (result) {
 if (result != "failure") {
 item.before($("li", result).get(0));
 item.remove();
 $("ul.bookmarks .edit").click(bookmark_edit);
 }
 else {
 alert("Failed to validate bookmark before saving.");
 }
 });
 return false;
}

Here, the variable this refers to the edit form because we are handling the event
of submitting a form. The function starts by retrieving a reference to the form's
parent, which is again the bookmark's element. Next, the function retrieves the
updated data from the form, using the ID of each form field and the val() method.
Then it uses a method called $.post() to send data back to the server. Finally, it
returns false to prevent the browser from submitting the form.

As you may have guessed, $.post() is a jQuery method that sends POST requests to
the server; it takes three parameters:

The URL of the target of the POST request.

An object of key/value pairs that represent POST data.
A function that is invoked when the request is done. Server response is
passed to this function as a string parameter.

•

•

•

Chapter 6

[121]

It's worth mentioning that jQuery provides a method called $.get() for sending a
GET request to the server. It takes the same types of parameters as $.post().

We use $.post() to send the updated bookmark data to the bookmark_save_page
view. As discussed a few paragraphs ago, the view returns the update bookmark
HTML if it succeeds in saving it. Otherwise, it returns the string "failure".
Therefore, we check whether the result returned from the server is "failure" or not.
If the request succeeded, we insert the new bookmark before the old one using the
before() method, and remove the old bookmark from the HTML document using
the remove(). If, on the other hand, the request fails, we display an alert box
saying so.

Several little things remain before we finish this section: Why do we insert $("li",
result).get(0) instead of result itself? If you check the bookmark_save_page
view, you will see that it uses the bookmark_list.html template to construct the
bookmark's HTML. However, bookmark_list.html returns the bookmark
element wrapped in a tag. Basically, $("li", result).get(0) tells jQuery to
extract the first element in result, and this is the element that we want. As you
see from this snippet, you can use the jQuery $() function to select elements from an
HTML string by passing this string as a second argument to the function.

bookmark_submit is attached to its event from within bookmark_edit, so we don't
need to do anything about it in $(document).ready().

Lastly, after loading the updated bookmark into the page, we call $("ul.bookmarks
.edit").click(bookmark_edit) again to attach bookmark_edit to the newly-
loaded edit link. If you don't do so, and try to edit a bookmark twice, the second click
on the edit link will take you to a separate form page.

Enhancing the User Interface with Ajax

[122]

When you have finished writing the JavaScript code, open your browser and go to
your user page to experiment with the new feature. Edit the bookmarks, save them
and notice how the changes are immediately reflected on the page without
any reloading:

Now that you have completed this section, you should have a good understanding
of how in-place editing is implemented. There are many other scenarios where this
feature can be useful; for example, it can be used to edit an article or a comment on
the same page without navigating away to a form located on a different URL.

In the next section, we will implement a third common Ajax feature that helps the
user enter tags when submitting a bookmark.

Auto-Completion of Tags
The last Ajax enhancement that we are going to implement in this chapter is
auto-completion of tags. The concept of auto-completion found its way into web
applications when Google released their Suggest searching interface. Suggest works
by displaying the most popular search queries below the search input field based

Chapter 6

[123]

on what the user has typed so far. It's also similar to how code editors in integrated
development environments offer code completion suggestions based on what you
type. This feature saves time by letting the user type a few characters of the word
they want and then select it from a list, without having to type it in completely.

We will implement this feature by offering suggestions when the user enters tags
while submitting a bookmark, but instead of writing this feature from scratch, we are
going to use a jQuery plugin to implement it. jQuery enjoys a large and continually
growing list of plugins that provides a variety of features. Installing a plugin is no
different from installing jQuery itself. You download one (or more) files and link
them to your template, and then you write a few lines of JavaScript code to activate
the plugin.

You can browse the list of available jQuery plugins by pointing your browser to
http://docs.jquery.com/Plugins. Search for the auto-complete plugin in the list,
and download it. Or you can directly grab it from the following URL:

http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/

You will get a zip archive with many files in it. Extract the following files
(which can be found in the directory jquery/autocomplete/scroll) to the
site_media directory:

jquery.autocomplete.css

dimensions.js

jquery.bgiframe.min.js

jquery.autocomplete.js

Since we want to offer the autocomplete feature on the bookmark submission
page, create an empty file called tag_autocomplete.js in site_media. Then open
templates/bookmark_save.html and link all of the above files to it:

{% extends "base.html" %}
{% block external %}
 <link rel="stylesheet"
href="/site_media/jquery.autocomplete.css" type="text/css" />
 <script type="text/javascript"
src="/site_media/dimensions.js"> </script>
 <script type="text/javascript"
src="/site_media/jquery.bgiframe.min.js"> </script>
 <script type="text/javascript"
src="/site_media/jquery.autocomplete.js"> </script>
 <script type="text/javascript"
src="/site_media/tag_autocomplete.js"> </script>

•

•

•

•

Enhancing the User Interface with Ajax

[124]

{% endblock %}
{% block title %}Save Bookmark{% endblock %}
{% block head %}Save Bookmark{% endblock %}
[...]

We have now finished installing the plugin. If you read its documentation, you will
find that this plugin is activated by calling a method named autocomplete() on a
selected input element. autocomplete() takes the following parameters.

A server-side URL. The plugin sends a GET request to this URL with what has
been typed so far, and expects the server to return a set of suggestions.
An object that can be used to specify various options. Ones that are of interest
to us are multiple, which is a Boolean variable that tells the plugin that the
input field is used to enter multiple values (remembering that we use the
same text field to enter all tags), and multipleSeparator, which is used to
tell the plugin which string separates multiple entries. In our case, it's a single
space character.

So before activating the plugin, we need to write a view that receives user input and
returns a set of suggestions. Open bookmarks/views.py and append the following
to its end:

def ajax_tag_autocomplete(request):
 if request.GET.has_key('q'):
 tags = \
 Tag.objects.filter(name__istartswith=request.GET['q'])[:10]
 return HttpResponse('\n'.join(tag.name for tag in tags))
 return HttpResponse()

The autocomplete plugin sends user input in a GET variable named q. Therefore, we
check that this variable exists, and build a list of tags whose names begin with the
value of this variable. This is done using the filter method and the istartswith
operator we learned about earlier this chapter. We only take the first ten results
to avoid overwhelming the user with suggestions, and to reduce bandwidth and
performance costs. Finally, we join the suggestions into a single string separated by
newlines, wrap the string into an HttpResponse object, and return it.

With the suggestion view ready, create a URL entry to it in urls.py:

urlpatterns = patterns('',
 # Ajax

 (r'^ajax/tag/autocomplete/$', ajax_tag_autocomplete),

)

•

•

Chapter 6

[125]

Now, activate the plugin on the tags input field by entering the following code into
site_media/tag_autocomplete.js:

$(document).ready(function () {
 $("#id_tags").autocomplete(
 '/ajax/tag/autocomplete/',
 {multiple: true, multipleSeparator: ' '}
);
});

The code passed an anonymous function to $(document).ready(). This function
invokes autocomplete() on the tags input field, passing the arguments that we
talked about earlier.

These few lines of code are all that we need in order to implement auto-completion
of tags. To test the new feature, navigate to the bookmark submission form at
http://127.0.0.1:8000/save/ and try to enter a character or two into the tags
field. Suggestions should appear based on the tags available in your database:

Enhancing the User Interface with Ajax

[126]

With this feature, we finish the chapter. We have covered a lot of material and have
learned about many exciting technologies and techniques. After reading the chapter,
you should be able to think of and implement many other enhancements to the user
interface, such as the ability to delete bookmarks from the user page or to do live
browsing of bookmarks by tags among many other things.

The next chapter will shift to a different topic; we will let users vote and comment
on their favorite bookmarks, and the front page of our application won't remain as
empty as it is now!

Summary
Phew, this was a long chapter, but hopefully, you have learned a lot from it! We
started the chapter with learning about the jQuery framework and how to integrate it
into our Django project. After that, we implemented three exciting features into our
bookmarking application: live searching, in place editing and auto-completion.

The next chapter is going to be another exciting one. We will let users submit
bookmarks to the front page and vote for their favorite bookmarks. We will also
enable users to comment on bookmarks. So read on!

Voting and Commenting
The main idea behind our application is to provide easy ways for users to discover
and share bookmarks. One way to achieve this is to allow users to recommend
bookmarks to each other. Since the main page of our application is empty apart from
a welcome message, we will enable users to share bookmarks with other users by
submitting their favorite bookmarks to the main page of the application. After that,
we will let other users vote for the bookmarks that they like, and then create a page
for the most popular bookmarks by votes. This set of features will provide a fresh list
of interesting bookmarks selected by our community of users. In the second part of
this chapter, we will enable commenting on bookmarks, which will let users share
opinions and discuss the bookmarks that are posted on our site. This chapter brings
many exciting features to our application, and you will learn several new Django
features while working through it.

In this chapter, you will learn about the following:

Letting users share their bookmarks on the main page.
Enabling users to vote for their favorite bookmarks.
Displaying the recently-shared and the most popular bookmarks.
Enabling users to comment on bookmarks.

Sharing Bookmarks on the Main Page
So far, our users are able to discover new bookmarks by browsing tag and user
pages. Let's provide a new method for users to share and discover new bookmarks.
When saving a bookmark, we will give users the option of sharing this bookmark
on the main page of our application. When a bookmark is shared, other users will
be able to vote for the bookmark if they like it. We will also create a page where
users can see the popular bookmarks by votes. This feature is important for our
application, because it will change the main page from a basic welcome page to
a frequently-updated list of bookmarks where users will be able to find new and
interesting content.

•
•
•
•

Voting and Commenting

[128]

Our strategy for implementing this feature consists of the following steps:

1. We will start by creating a data model for storing bookmarks that are shared
on the main page. This model will keep track of various pieces of information
related to the shared bookmark.

2. We will modify the bookmark submission form so that it enables users to
share their bookmarks on the main page.

3. We will change the main page so that it displays the recently-shared
bookmarks. Each bookmark will have a vote button next to its title.

4. We will create a view that receives voting requests from users and updates
vote counts.

This feature carries a considerable amount of work, but the results will be worth it,
and we will learn a lot of useful information during the process. Let's get started!

The SharedBookmark Data Model
When a bookmark is shared on the main page, we need to store the following
information in the database:

The date on which the bookmark was shared. We need this in order to
display popular bookmarks over a certain period of time.
The number of votes for this bookmark.
The users who voted for this bookmark. This is needed to prevent users from
voting for the same bookmark twice.

For this purpose, we will create a new data model called SharedBookmark. Open
bookmarks/models.py and add the following class to it:

class SharedBookmark(models.Model):
 bookmark = models.ForeignKey(Bookmark, unique=True)
 date = models.DateTimeField(auto_now_add=True)
 votes = models.IntegerField(default=1)
 users_voted = models.ManyToManyField(User)

 def __str__(self):
 return '%s, %s' % self.bookmark, self.votes

This data model utilizes features that we haven't used before, so we will go through
its fields one by one:

The bookmark field is a foreign key that refers back to the bookmark that is
being shared. We want it to be unique so that the same bookmark cannot be
shared more than once.

•

•

•

•

Chapter 7

[129]

The date field is of the type models.DateTimeField. As its name suggests,
you can use this field to store a date/time value. The argument auto_now_
add tells Django to automatically set this field to the current date/time when
an object of this data model is first created.
The votes field is of the type models.IntegerField. This field holds an
integer value. By using default=1 with this field, we tell Django to set the
field's value to 1 when an object of this data model is first created.
The users_voted many-to-many field contains the list of users who voted
for this shared bookmark.

After entering the data model code into bookmarks/models.py, run the following
command to create its corresponding tables in the database:

$ python manage.py syncdb

With this, we can store all the information that we need to maintain shared
bookmarks. Next, we are going to enable users to share bookmarks on the main page.

Modifying the Bookmark Submission Form
We will let users share bookmarks on the main page by providing a check box on
the bookmark submission form. If the user checks this check box, the bookmark
is shared. To implement this, we first need to modify the class that represents
the bookmark submission form. So open bookmarks/forms.py and modify the
BookmarkSaveForm class as follows:

class BookmarkSaveForm(forms.Form):
 url = forms.URLField(
 label='URL',
 widget=forms.TextInput(attrs={'size': 64})
)
 title = forms.CharField(
 label='Title',
 widget=forms.TextInput(attrs={'size': 64})
)
 tags = forms.CharField(
 label='Tags',
 required=False,
 widget=forms.TextInput(attrs={'size': 64})
)
 share = forms.BooleanField(

 label='Share on the main page',
 required=False
)

•

•

•

Voting and Commenting

[130]

We have added a new field of the type forms.BooleanField to BookmarkSaveForm.
This field can either be True or False, and it is rendered as a check box when the
form is displayed.

Next, we will modify the method that saves bookmarks so that it takes the new check
box into account. Open bookmarks/views.py and add the highlighted lines to the
method _save_bookmark:

def _bookmark_save(request, form):
 # Create or get link.
 link, dummy = Link.objects.get_or_create(
 url=form.clean_data['url']
)
 # Create or get bookmark.
 bookmark, created = Bookmark.objects.get_or_create(
 user=request.user,
 link=link
)
 # Update bookmark title.
 bookmark.title = form.clean_data['title']
 # If the bookmark is being updated, clear old tag list.
 if not created:
 bookmark.tag_set.clear()
 # Create new tag list.
 tag_names = form.clean_data['tags'].split()
 for tag_name in tag_names:
 tag, dummy = Tag.objects.get_or_create(name=tag_name)
 bookmark.tag_set.add(tag)
 # Share on the main page if requested.
 if form.clean_data['share']:
 shared_bookmark, created = SharedBookmark.objects.get_or_create(
 bookmark=bookmark
)
 if created:
 shared_bookmark.users_voted.add(request.user)
 shared_bookmark.save()
 # Save bookmark to database and return it.
 bookmark.save()
 return bookmark

The new code works like this. If the "Share" check box was enabled in the bookmark
submission form, we use get_or_create to check whether a SharedBookmark object
exists for the bookmark, or create one if nothing exists. If the SharedBookmark objectobject
is created by get_or_create, we add the current user to the list of users who voted
for the bookmark, and save the SharedBookmark object. Notice that we don't need
to do anything if the "Share" check box is not enabled, or if a SharedBookmark object
already exists for the current bookmark.

Chapter 7

[131]

This is all that we need to do in order to let users share bookmarks on the main
page. At this stage, if a user enables the "Share" check box when saving a bookmark,
a SharedBookmark object with the corresponding data is created. So in the next
subsection, we will display a list of the recently-shared bookmarks on the main page,
and let users vote for their favorite bookmarks.

Browsing and Voting for Shared Bookmarks
Now we have a data model that stores all bookmarks that were shared by users. It
should be pretty easy to get a list of the most recent bookmarks from this data model
and display it on the main page. First, modify the main_page view in bookmarks/
views.py to retrieve this list and pass it to the template:

def main_page(request):
 shared_bookmarks = SharedBookmark.objects.order_by(

 '-date'

)[:10]

 variables = RequestContext(request, {

 'shared_bookmarks': shared_bookmarks

 })

 return render_to_response('main_page.html', variables)

The new code for the view is straightforward. We call the order_by method on
SharedBookmark.objects to retrieve a list of shared bookmarks ordered by date in
descending order (notice the minus sign in '-date'), and then use the slice syntax to
limit the list of shared bookmarks to the first ten results. After that, we put the list in
a RequestContext and pass it to the main_page.html template.

Next, we need to modify the main page so that it displays the list of shared
bookmarks. We usually use the bookmark_list.html template to display bookmark
lists. However, here we have a list of SharedBookmark objects and not ordinary
Bookmark objects. Therefore, we will write a separate template that will render lists
of shared bookmarks. The output of this template will be slightly different from
bookmark_list.html. For example, it will display the vote count for each bookmark.
Create a new file called shared_bookmark_list.html in the templates directory and
put the following code in it:

{% if shared_bookmarks %}
 <ul class="bookmarks">
 {% for shared_bookmark in shared_bookmarks %}

 <a href="{{ shared_bookmark.bookmark.link.url }}"
 class="title">
 {{ shared_bookmark.bookmark.title|escape }}

Voting and Commenting

[132]

 Posted By:
 <a href="/user/{{ shared_bookmark.bookmark.user.username }}/"
 class="username">
 {{ shared_bookmark.bookmark.user.username }} |
 Votes:
 {{ shared_bookmark.votes }}

 {% endfor %}

{% else %}
 <p>No bookmarks found.</p>
{% endif %}

The outline of this template is similar to bookmark_list.html so it should be easy
to understand. First, the template checks the list of shared bookmarks to see if it's
empty or not, and then iterates through the shared bookmarks and prints a link for
each bookmark, along with some information about it, such as the user who posted
the bookmark, and the number of votes for the bookmark.

After creating the shared_bookmark_list.html template, we need to include it in
the template of the main page. Open main_page.html and insert the highlighted line
into it:

{% extends "base.html" %}

{% block title %}Welcome to Django Bookmarks{% endblock %}
{% block head %}Welcome to Django Bookmarks{% endblock %}

{% block content %}
 {% if user.username %}
 <p>Welcome {{ user.username }}!
 Here you can store and share bookmarks!</p>
 {% else %}
 <p>Welcome anonymous user!
 You need to login
 before you can store and share bookmarks.</p>
 {% endif %}

 <h2>Bookmarks Shared by Users</h2>

 {% include 'shared_bookmark_list.html' %}

{% endblock %}

Chapter 7

[133]

You can try out the new main page by running the development server (if you
haven't done so already), sharing a couple of bookmarks using the bookmark
submission form, and then opening the main page at http://127.0.0.1:8000/. The
output should be similar to the following:

We are almost there! The shared bookmark now appear on the main page, but their
vote counts are set to one, and you have no way to vote, so we will fix this next.

Let's create a view that receives voting requests for a shared bookmark, and
increments the vote count for the bookmark. If you remember from a previous
chapter, when you write a data model, Django automatically adds an attribute called
id to this data model. This attribute is a unique integer that can be used to identify
the object. We will use this attribute to identify votes for shared bookmarks.

First, we will add a URL entry for the vote view. Open urls.py and add the
highlighted line to urlpatterns:

urlpatterns = patterns('',
 # Account management
 (r'^save/$', bookmark_save_page),
 (r'^vote/$', bookmark_vote_page),
)

Voting and Commenting

[134]

The new URL entry should be easy to understand by now. We are mapping the URL
^vote/$ to a method called bookmark_vote_page. Next, we will write the view
itself. Open bookmarks/views.py and add the following view to it:

@login_required
def bookmark_vote_page(request):
 if request.GET.has_key('id'):
 try:
 id = request.GET['id']
 shared_bookmark = SharedBookmark.objects.get(id=id)
 user_voted = shared_bookmark.users_voted.filter(
 username=request.user.username
)
 if not user_voted:
 shared_bookmark.votes += 1
 shared_bookmark.users_voted.add(request.user)
 shared_bookmark.save()
 except ObjectDoesNotExist:
 raise Http404('Bookmark not found.')

 if request.META.has_key('HTTP_REFERER'):
 return HttpResponseRedirect(request.META['HTTP_REFERER'])

 return HttpResponseRedirect('/')

Let's see how this view works by going through each section of the code:

@login_required
def bookmark_vote_page(request):

We apply the login_required decorator to the view, because only logged-in users
should be able to vote.

 if request.GET.has_key('id'):
 try:
 id = request.GET['id']
 shared_bookmark = SharedBookmark.objects.get(id=id)

The view starts by looking for a GET variable called id. If it finds one, it retrieves the
SharedBookmark object that is associated with this id.

 user_voted = shared_bookmark.users_voted.filter(
 username=request.user.username
)

Chapter 7

[135]

Next, the view checks to see whether the user has voted for this bookmark before.
This is done by calling the filter method on the shared_bookmark.users_voted
attribute and passing the username to it. If the user has not voted before, the filter
will return an empty result:

 if not user_voted:
 shared_bookmark.votes += 1
 shared_bookmark.users_voted.add(request.user)
 shared_bookmark.save()

If this is the first time that the user has voted for this bookmark, we increment the
shared_bookmark.votes attribute by one, add the current user to the shared_
bookmark.users_voted attribute and save the shared_bookmark object.

 except ObjectDoesNotExist:
 raise Http404('Bookmark not found.')

If id does not map to a shared bookmark object, we raise an Http404 exception,
which generates a 404 page not found error.

 if request.META.has_key('HTTP_REFERER'):
 return HttpResponseRedirect(request.META['HTTP_REFERER'])

 return HttpResponseRedirect('/')

Finally, if everything goes well, we redirect the user to the page they came from. This
is done by using an HTTP header called HTTP_REFERER. When you click a link,
your browser sends the URL of the page that contains the link to the web server that
hosts the target of the link. Here, we take advantage of this feature to redirect back
from the vote view to the page that the user came from. This is necessary if we
want to display vote links on pages other than the main page, as we will do later in
this chapter.

HTTP headers are available to Django views at request.META. Some browsers do
not send the HTTP_REFERER header. We first check to make sure that this header
exists. If it does not exist, we redirect to the main page.

The vote view is ready. We only need to create links for it in the main page now. So
open shared_bookmark_list.html and add the highlighted line to it:

{% if shared_bookmarks %}
 <ul class="bookmarks">
 {% for shared_bookmark in shared_bookmarks %}

 <a href="/vote/?id={{ shared_bookmark.id }}"
 class="vote">[+]

 <a href="{{ shared_bookmark.bookmark.link.url }}"

Voting and Commenting

[136]

 class="title">
 {{ shared_bookmark.bookmark.title|escape }}

 Posted By:
 <a href="/user/{{ shared_bookmark.bookmark.user.username }}/"
 class="username">
 {{ shared_bookmark.bookmark.user.username }} |
 Votes:
 {{ shared_bookmark.votes }}

 {% endfor %}

{% else %}
 <p>No bookmarks found.</p>
{% endif %}

The highlighted line adds a link to the vote view with the text [+]. The URL of the
link is generated by appending shared_bookmark.id to /vote/?id=.

With this, we finish implementing the voting feature. If you refresh the main page
now, you should see a page similar to the figure below:

If you try to click one of the vote buttons, the vote may increase or not, depending
on whether you are the creator of the bookmark. Remember that, if you share a
bookmark, you are automatically considered to have voted for it. Therefore, it is a
good idea to register multiple accounts and try to vote using these accounts.

Chapter 7

[137]

The main page now displays the ten most recent bookmarks that were shared by
users. But what if we want to see the most popular bookmarks according to vote
counts? The next subsection creates a page that provides this feature.

The Popular Bookmarks Page
We can easily implement a popular bookmarks page in a way similar to the main
page. We simply need to sort by votes instead of date. However, in order to keep the
popular page fresh every day, we will make it display the most popular bookmarks
that were submitted during the last day only.

The first step when implementing the popular bookmarks page is to create a view. So
open bookmarks/views.py and add the following method to it:

from datetime import datetime, timedelta

def popular_page(request):
 today = datetime.today()
 yesterday = today - timedelta(1)

 shared_bookmarks = SharedBookmark.objects.filter(
 date__gt=yesterday
)
 shared_bookmarks = shared_bookmarks.order_by(
 '-votes'
)[:10]

 variables = RequestContext(request, {
 'shared_bookmarks': shared_bookmarks
 })
 return render_to_response('popular_page.html', variables)

This view is a little more involved than the main_page view. The tricky part is
obtaining the date/time of yesterday and retrieving the list of shared bookmarks
according to it. Let's go through each section of the code:

from datetime import datetime, timedelta

def popular_page(request):
 today = datetime.today()
 yesterday = today - timedelta(1)

We import the datetime and timedelta classes from the datetime module.
The datetime module is a standard Python module, and it is very useful for
manipulating dates and times. A datetime object represents a particular date and
time, whereas a timedelta object represents duration or the difference between
two times.

Voting and Commenting

[138]

In the popular_page view, we use the datetime.today method to get a datetime
object that represents today. Next, we create a timedelta object that represents a
single day and then subtract this object from today to get the date/time of yesterday:

 shared_bookmarks = SharedBookmark.objects.filter(
 date__gt=yesterday
)
 shared_bookmarks = shared_bookmarks.order_by(
 '-votes'
)[:10]

Here, we first apply filter on SharedBookmark.objects to obtain all the shared
bookmarks that were submitted after the value of yesterday. This is done by
passing the argument date__gt=yesterday to filter (__gt here stands for greater
than). Passing date__gt=yesterday to filter retrieves all the bookmarks whose
date is greater than yesterday.

Next, we call order_by on the result from the previous call to sort it by the number
of votes in descending order. We used the slice syntax to limit the number of
bookmarks to ten:

 variables = RequestContext(request, {
 'shared_bookmarks': shared_bookmarks
 })
 return render_to_response('popular_page.html', variables)

Finally, we pass the shared_bookmarks list to a template called popular_page.html
to render the page.

Now let's write the template for the popular page. Create a new file called
popular_page.html in the templates directory and put the following code into it:

{% extends "base.html" %}
{% block title %}Popular Bookmarks{% endblock %}
{% block head %}Popular Bookmarks{% endblock %}
{% block content %}
 {% include 'shared_bookmark_list.html' %}
{% endblock %}

The template is pretty straight-forward. It simply defines blocks from base.html
and includes the shared_bookmark_list.html file.

Lastly, we need a URL entry for the new view, so open urls.py and add the
highlighted line to urlpatterns:

urlpatterns = patterns('',
 # Browsing
 (r'^$', main_page),

Chapter 7

[139]

 (r'^popular/$', popular_page),

 (r'^user/(\w+)/$', user_page),
 (r'^tag/([^\s]+)/$', tag_page),
 (r'^tag/$', tag_cloud_page),
 (r'^search/$', search_page),
)

And that's it. Navigate to http://127.0.0.1:8000/popular/ to see the popular
bookmarks page. Notice how bookmarks are ordered by vote count on this page. If
you try to vote for a bookmark, you will be redirected back to the same page. Feel
free to add a link to this page in the navigation menu by editing templates/base.
html and adding the highlighted line below:

[...]
 <div id="nav">
 home |
 popular |

 {% if user.is_authenticated %}
 submit |
 search |

 {{ user.username }} |
 logout
 {% else %}
 login |
 register
 {% endif %}
 </div>
[...]

This section wasn't difficult was it? The features needed some effort to be
implemented, but there weren't any major hurdles. Now, the users of our application
are able to share and vote for their favorite bookmarks, and browse a daily list favorite bookmarks, and browse a daily list bookmarks, and browse a daily list
of popular bookmarks. The next section brings another exciting feature to our
application; we will let users post comments on shared bookmarks, so keep reading!

Commenting on Bookmarks
Voting on bookmarks is one way for our users to express their opinions. How
about we give users more flexibility in expressing opinions by letting them also
comment on bookmarks? Comments will be an excellent method for users to discuss
their interests amongst each other and make new friends. In this section, we will
implement the commenting feature in our application.

Voting and Commenting

[140]

The process of adding comments to a Django application consists of the
following steps:

Enable the comments application and create its models in the database.
Use a set of template tags provided by the comments application to display a
comment form and a list of comments on a page.
Create templates for the comment submission form and the page that
appears after successfully posting a comment.

Django makes implementing a complex feature such as commenting extremely easy
as you will see. After going through this section, you will be able to add comments to
any Django application with ease.

Enabling the Comments Application
The comments application that comes with Django lives in django.contrib.
comments. Like any other Django application, enabling it requires a few simple
steps. First, edit settings.py and add 'django.contrib.comments' to the
INSTALLED_APPS variables:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.comments',
 'django_bookmarks.bookmarks'
)

Second, run the following command to create tables for the data models of the
comments application in the database:

$ python manage.py syncdb

After that, we need to add URL entries for the views that are provided by the
comments application. Since the comments application contains many views, it
would be a tedious and repetitive task to add a URL entry for each one manually.
Django provides a shortcut for this; the comments application defines all of its URL
entries in a module located at django.contrib.comments.urls.comments, and we
can include these entries in our project under a particular path by using a function
called include. Open urls.py and add the following highlighted lines to it:

urlpatterns = patterns('',
 # Comments
 (r'^comments/', include('django.contrib.comments.urls.comments')),
)

•
•

•

Chapter 7

[141]

This looks different from how we usually define URL entries. We are basically
telling Django to retrieve all the URL entries in the django.contrib.comments.
urls.comments module and include them in our application under the path
^comment/. This will make the views of the comments application accessible from
within our project.

With this, we have finished. The comments application is now ready to be used.

Creating a View for Comments
Since we want users to be able to comment on shared bookmarks, we need a separate
page for each shared bookmark where comments are displayed. We will create a new
view for this purpose. This view will receive the ID of the shared bookmark in the
URL, and display the shared bookmark, its comments and a form for posting
new comments.

Let's start by defining a URL entry for this view. Open urls.py and add the
highlighted line to the urlpatterns object:

urlpatterns = patterns('',
 # Browsing
 (r'^$', main_page),
 (r'^popular/$', popular_page),
 (r'^user/(\w+)/$', user_page),
 (r'^tag/([^\s]+)/$', tag_page),
 (r'^tag/$', tag_cloud_page),
 (r'^search/$', search_page),
 (r'^bookmark/(\d+)/$', bookmark_page),

)

The new URL entry for the bookmark page looks similar to the URL entry of the
user page. However, the regular expression for the bookmark_page view uses the
sequence \d instead of \w. If you recall from a previous chapter, \w means any
alphanumeric character. You may have guessed that \d here means any decimal
digit. This is because the bookmark_page view takes a bookmark ID in the URL, and
bookmark IDs consist of decimal digits only. Also, you may remember that putting
parentheses around a part of the regular expression captures the string matched by
this part and passes it to the view as an additional parameter.

Now, let's write the bookmark_page view. Open bookmarks/views.py and add the
following method to it:

def bookmark_page(request, bookmark_id):
 shared_bookmark = get_object_or_404(
 SharedBookmark,

Voting and Commenting

[142]

 id=bookmark_id
)
 variables = RequestContext(request, {
 'shared_bookmark': shared_bookmark
 })
 return render_to_response('bookmark_page.html', variables)

This view is pretty straightforward. It uses get_object_or_404 to retrieve the
SharedBookmark object associated with the bookmark ID in the URL. After that, it
passes the object to a template called bookmark_page.html.

Lastly, we need to create the template of the bookmark_page view. Create a new file
called bookmark_page.html in the templates directory, and insert the following
code into it:

{% extends "base.html" %}
{% block title %}Bookmark:
 {{ shared_bookmark.bookmark.title|escape }}{% endblock %}
{% block head %}
 <a href="/vote/?id={{ shared_bookmark.id }}"
 class="vote">[+]
 <a href="{{ shared_bookmark.bookmark.link.url }}"
 class="title">
 {{ shared_bookmark.bookmark.title|escape }}
{% endblock %}
{% block content %}
 Posted By:
 <a href="/user/{{ shared_bookmark.bookmark.user.username }}/"
 class="username">
 {{ shared_bookmark.bookmark.user.username }} |
 Votes: {{ shared_bookmark.votes }}
{% endblock %}

Again, there is nothing special in this template. We display the bookmark and a vote
link next to it in the head section, and some information about the bookmark in the
content section.

Creating the bookmark_page view was a simple task, but next comes the exciting
part. We will add a list of comments and a comment form to this view.

Displaying Comments and a Comment Form
The comments application that comes with Django makes it astonishingly easy to
add comments to your application. Basically, the comments application provides
three template tags for you to use in your template:

Chapter 7

[143]

get_comment_count returns the number of comments for the current page.
get_comment_list returns the list of comments for the current page.
comment_form displays a comment form that can be used to post comments.

These tags are not available in templates by default. To activate them, you need to
put the following line near the beginning of your template:

{% load comments %}

The load tag is usually used to enable additional template tags that are not available
by default.

Each one of these tags takes the following parameters:

The content type of the object that is receiving comments. The following
format should be used for the parameter: application.model (all in
lower case).
The ID of the object that is receiving comments.

So if you want to get the number of comments for a shared bookmark, use the
following in the bookmark_page.html file:

{% get_comment_count for bookmarks.sharedbookmark
 shared_bookmark.id as comment_count %}

Now the template variable comment_count contains the number of comments for the
current shared bookmark.

Similarly, to get the list of comments for a shared bookmark, use the following in
bookmark_page.html:

{% get_comment_list for bookmarks.sharedbookmark
 shared_bookmark.id as comment_list %}

Now the template variable comment_list contains the list of comments for the
current shared bookmark. Each comment in the list provides the following attributes:

user: The User object of the user who posted the comment.
submit_date: The date/time on which the comment was submitted.
comment: The actual comment text.
ip_address: The IP address from which the comment was posted.

Finally, if you want to display a comment form for a shared bookmark, use the
following in bookmark_page.html:

{% comment_form for bookmarks.sharedbookmark shared_bookmark.id %}

•

•

•

•

•

•

•

•

•

Voting and Commenting

[144]

Let's put all of the above information to use. Open templates/bookmark_page.html
and add the highlighted lines of code to it:

{% extends "base.html" %}
{% load comments %}

{% block title %}Bookmark:
 {{ shared_bookmark.bookmark.title|escape }}{% endblock %}

{% block head %}
 <a href="/vote/?id={{ shared_bookmark.id }}"
 class="vote">[+]

 {{ shared_bookmark.bookmark.title|escape }}
{% endblock %}

{% block content %}
 Posted By:
 <a href="/user/{{ shared_bookmark.bookmark.user.username }}/"
 class="username">
 {{ shared_bookmark.bookmark.user.username }} |
 Votes: {{ shared_bookmark.votes }}

 <h2>Comments</h2>

 {% get_comment_count for bookmarks.sharedbookmark

 shared_bookmark.id as comment_count %}

 {% get_comment_list for bookmarks.sharedbookmark

 shared_bookmark.id as comment_list %}

 {% for comment in comment_list %}

 <div class="comment">

 <p>{{ comment.user.username }} said:</p>

 {{ comment.comment|escape|urlizetrunc:40|linebreaks }}

 </div>

 {% endfor %}

 <p>Number of comments: {{ comment_count }}</p>

 {% comment_form for bookmarks.sharedbookmark
 shared_bookmark.id %}
{% endblock %}

The new code simply makes use of the template tags above in order to add a list
of comments and a comment form to bookmark pages. The code should be easy
to understand after reading the information provided in this subsection. The only
exception to this is the following line:

 {{ comment.comment|escape|urlizetrunc:40|linebreaks }}

Chapter 7

[145]

You may remember that this is the syntax for using template filters. We are applying
three template filters to the body of each comment:

escape: We used this template filter before to convert HTML tags into HTML
entities, which effectively disables the HTML tags. This is done to prevent
users from using HTML tags for malicious reasons.
urlizetrunc:40: This filter converts URLs in the comment into clickable
links. If the length of the URL exceeds 40, the anchor text of the link is
truncated to 40.
linebreaks: This filter converts line breaks into <p> and
 tags.

We are almost done with implementing the comments feature. What remains now
is adding a couple of templates for the comment form and the page that appears
after posting a comment. We will also make some minor changes to improve the
appearance of comments.

Creating Comment Templates
The comments application expects us to provide two templates, one for the comment
submission form, and one for the page that appears after successfully posting a
comment. These templates should be in a directory called comments inside the
templates directory, so create this directory now.

Let's start with the template for the comment submission form. Create a file called
form.html inside templates/comments/ and put the following code into it:

{% if user.is_authenticated %}
 <form action="/comments/post/" method="post">
 <p><label>Post a comment:</label>

 <textarea name="comment" rows="10"
 cols="60"></textarea></p>
 <input type="hidden" name="options"
 value="{{ options }}" />
 <input type="hidden" name="target" value="{{ target }}" />
 <input type="hidden" name="gonzo" value="{{ hash }}" />
 <input type="submit" name="post" value="submit comment" />
 </form>
{% else %}
 <p>Please log in to post comments.</p>
{% endif %}

The template displays an HTML form for posting comments if the user is logged
in, and a link to the log in page otherwise. The values of the form's action and fields
were taken from the documentation of the comments application. Don't concern
yourself with them.

•

•

•

Voting and Commenting

[146]

Next, we will create a template for the page that appears after successfully posting
a comment. This template has a variable called object that refers to the object that
received the comment (in our case, a SharedBookmark object). It would be a good
idea to provide a link on this page back to the shared bookmark page. So create a
new file called posted.html in templates/comments/ and put the following code
into it:

{% extends "base.html" %}

{% block title %}Comment Posted Successfully{% endblock %}

{% block head %}Comment Posted Successfully{% endblock %}

{% block content %}
 <p>Thank you for contributing.</p>
 {% if object %}
 <p>
 View your comment</p>
 {% endif %}
{% endblock %}

We have now finished implementing the comments feature, but before we try it, we
need to create links to comment pages. Open templates/shared_bookmark_list.
html and change it as highlighted below:

{% if shared_bookmarks %}
 <ul class="bookmarks">
 {% for shared_bookmark in shared_bookmarks %}

 <a href="/vote/?id={{ shared_bookmark.id }}"
 class="vote">[+]
 <a href="{{ shared_bookmark.bookmark.link.url }}"
 class="title">
 {{ shared_bookmark.bookmark.title|escape }}

 Posted By:
 <a href="/user/{{ shared_bookmark.bookmark.user.username }}/"
 class="username">
 {{ shared_bookmark.bookmark.user.username }} |
 Votes:
 {{ shared_bookmark.votes }} |
 Comments

 {% endfor %}

{% else %}
 <p>No bookmarks found.</p>
{% endif %}

Chapter 7

[147]

Let's add some style to our comments. Open site_media/style.css and append
the following lines to it:

.comment {
 margin: 1em;
 padding: 5px;
 border: 1px solid #000;
}

We have finished! We can finally test this exciting feature. Go to
http://127.0.0.1:8000/, click the comments link on one of the shared
bookmarks, and you will see a comment form below the title of the bookmark
as in the figure below:

If you try to post a comment, you will get a page that confirms the success of the
operation as in the following figure:

Voting and Commenting

[148]

Click on "View your comment" to be redirected to the bookmark page. Your
submitted comment now appears before the comment form:

It is amazing how much functionality we have gained with only a small amount of
code. The comments feature took us a minimal amount of work to complete. And
most importantly, you are now able to employ the comments applications in your
future Django projects.

Summary
We implemented two important features for our application in this chapter. The first
feature was enabling users to vote for their favorite bookmarks and browse popular
bookmarks. The second feature was allowing users to comment on bookmarks.
These two features mean that users can discover new interesting bookmarks and
communicate with each other, which has emphasized the social aspect of our
application. During the course of this chapter, we learned about several new Django
features, including the Django comments application.

The next chapter switches to a new topic. Sooner or later, you will need an
administration interface for your application to manage your data models.
Fortunately, Django comes with a fully-fledged administration interface ready to be
used. We will learn how to enable and customize this interface in the next section, so
keep reading!

Creating an
Administration Interface

Sooner or later, we will need an administration interface to manage the content
that users post to our website. In fact, the administration interface is a universal
feature needed in any web application that stores and manages data. For this reason,
Django comes with a fully-fledged administration interface ready to be used. This
administration interface is considered one of the coolest features in Django because
it's easy to use, yet powerful and flexible.

In this chapter, you will learn about:

Activating the administration interface.
Using the administration interface to manage content.
Customizing the administration interface.
Assigning permissions to users and groups.

Activating the Administration Interface
The administration interface comes as a Django application. To activate it, we
will follow a simple procedure that is similar to how we enabled the user
authentication system.

The admininistration application is located in the django.contrib.admin package.
So the first step is adding the path of this package to the INSTALLED_APPS variable.
Open settings.py, locate INSTALLED_APPS and edit it as follows:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',

•

•

•

•

Creating an Administration Interface

[150]

 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.admin',
 'django.contrib.comments',
 'django_bookmarks.bookmarks',
)

Next, run the following command to create the necessary tables for the
administration application:

$ python manage.py syncdb

Now we need to make the administration interface accessible from within our site
by adding URL entries for it. The administration application defines many views,
(as we will see later) so manually adding a separate entry for each view can become
a tedious task. Therefore, Django provides a shortcut for this. The administration
interface defines all of its URL entries in a module located at django.contrib.
admin.urls, and we can include these entries in our project under a particular path
by using a function called include(). Open urls.py and add the following URL
entry to it:

urlpatterns = (
 # Admin interface
 (r'^admin/', include('django.contrib.admin.urls')),
)

This looks different from how we usually define URL entries. We are basically
telling Django to retrieve all of the URL entries in the django.contrib.admin.urls
module, and to include them in our application under the path ^admin/. This will
make the views of the administration interface accessible from within our project.

One last thing remains before we see the administration page in action. We need to
tell Django what models can be managed in the administration interface. This is done
by defining a class called Admin inside each model. Open bookmarks/models.py and
add the highlighted section to the Link model:

class Link(models.Model):
 url = models.URLField(unique=True)
 def __str__(self):
 return self.url
 class Admin:
 pass

The Admin class defined inside the model effectively tells Django to enable the Link
model in the administration interface. The keyword pass means that the class is
empty. Later, we will use this class to customize the administration page, so it won't
remain empty.

Chapter 8

[151]

Do the same to the Bookmark , Tag and SharedBookmark models; append an empty
class called Admin to each of them. 'The User model is provided by Django and
therefore we don't have control over it. Fortunately however, it already contains an
Admin class so it's available in the administration interface by default.

Next, launch the development server and direct your browser to
http://127.0.0.1:8000/admin/. You will be greeted by a login page. Remember
when we created a superuser account after writing the database model earlier in this
book? This is the account that you have to use in order to log in:

Next, you will see a list of the models that are available to the administration
interface. As discussed earlier, only models with a class named Admin inside them
will appear on this page:

Creating an Administration Interface

[152]

If you click on a model name, you will get a list of the objects that are stored in the
database under this model. You can use this page to view or edit a particular object,
or to add a new one. The figure below shows the listing page for the Link model.

The edit form is generated according to the fields that exist in the model. The Link
form, for example, contains a single text field called Url. You can use this form to
view and change the URL of a Link object. In addition, the form performs proper
validation of fields before saving the object. So if you try to save a Link object with
an invalid URL, you will receive an error message asking you to correct the field. The
figure below shows a validation error when trying to save an invalid link:

Fields are mapped to form widgets according to their type. Date fields are edited
using a calendar widget for example, whereas foreign key fields are edited using a
list widget, and so on. The figure below shows a calendar widget from the user edit
page. Django uses it for date and time fields:

Chapter 8

[153]

As you may have noticed, the administration interface represents models by using
the string returned by the __str__ method. It was indeed a good idea to replace
the generic strings returned by the default __str__ method with more helpful
ones. This greatly helps when working with the administration page, as well as
with debugging.

Experiment with the administration pages; try to create, edit and delete objects.administration pages; try to create, edit and delete objects. pages; try to create, edit and delete objects.
Notice how changes made in the administration interface are immediately reflectedadministration interface are immediately reflected interface are immediately reflected
on the live site. Also, the administration interface keeps track of the actions that youadministration interface keeps track of the actions that you interface keeps track of the actions that you
make, and lets you review the history of changes for each object.

This section has covered most of what you need to know in order to use the
administration interface provided by Django. This feature is actually one of the main
advantages of using Django; you get a fully featured administration interface from
writing only a few lines of code!

Next, we will see how to tweak and customize the administration pages. And as a
bonus, we will learn more about the permissions system offered by Django.

Customizing the Administration Interface
The administration interface provided by Django is very powerful and flexible.
Activating it only takes a couple of minutes, and this will give you a fully featured
administration kit for your site. Although the administration application should
be sufficient for most needs, Django offers several ways to customize and enhance
it. In addition to specifying which models are available in the administration
interface, you can also specify how listing pages are presented, and even override the
templates used to render the administration pages. So let's learn about these features.

Creating an Administration Interface

[154]

Customizing Listing Pages
As we saw in the previous section, we defined an empty class called Admin in
models.py to mark them as available to the administration interface. This class is
also useful in customizing several aspects of the administration pages.

Let's learn about this by example. The listing page of bookmarks displays the string
representation of each bookmark, as we can see in the figure below:

Wouldn't this page be more useful if it displayed the URL, title and owner of the
bookmark in separate columns? It turns out that implementing this only requires a
single line of code. Edit the Bookmark model in bookmarks/models.py and replace
pass in the body of the Admin class with the highlighted line of code below:

class Bookmark(models.Model):
 title = models.CharField(maxlength=200)
 user = models.ForeignKey(User)
 link = models.ForeignKey(Link)
 def __str__(self):
 return '%s, %s' % (self.user.username, self.link.url)
 class Admin:
 list_display = ('title', 'link','user')

Now refresh the same page and notice the changes:

Chapter 8

[155]

The table is organized much better now! We simply defined a tuple attribute called
list_display in the Admin class of the Bookmark model. This tuple contains the
names of fields to be used in the listing page.

There are other attributes that we can define in the Admin class; each one should be
defined as a tuple of one or more field names:

list_filter: If defined, it creates a sidebar with links that can be used to
filter objects according to one or more fields in the model.
ordering: The fields that are used to order objects in the listing page. If the
field name is preceded by a minus sign, descending order is used instead of
ascending order.
search_fields: If defined, it creates a search field that can be used to search
available objects in the data model according to one or more fields.

Let's utilize each of the above attributes in the bookmark listing page. Again,
edit the Bookmark model in bookmark/models.py and append the following
highlighted lines:

class Bookmark(models.Model):
 title = models.CharField(maxlength=200)
 user = models.ForeignKey(User)
 link = models.ForeignKey(Link)
 def __str__(self):
 return '%s, %s' % (self.user.username, self.link.url)
 class Admin:
 list_display = ('title', 'link', 'user')
 list_filter = ('user',)

 ordering = ('title',)

 search_fields = ('title',)

These new attributes provide the following features:

list_filter enables us to filter bookmarks by user.
ordering orders bookmarks by title.
search_fields allows us to search bookmarks by title.

•

•

•

•

•

•

Creating an Administration Interface

[156]

Now, refresh the bookmark listing page again to see the changes:

As you can see, we were able to customize and enhance the bookmark listing page
with only a few lines of code. Next, we will learn about customizing the templates
used to render administration pages, which will give us even greater control over the
administration interface.

Overriding Administration Templates
There are times when you want to change the look and feel of the administrationadministration
interface, or to move the elements on the various administration pages and rearrangeadministration pages and rearrange pages and rearrange
them. Fortunately, the administration interface is flexible enough to do all of theadministration interface is flexible enough to do all of the interface is flexible enough to do all of the
above and more by allowing us to override its templates.

The process of customizing an administration template is simple. First, you copy
the template from the administration application folder to your project's templates
folder, and then you edit this template and customize it to your liking. The location
of the administration templates depends on where Django is installed. Here is a list
of the default installation paths of Django under the major operating systems (where
X.X is the version of Python on your system):

Windows: C:\PythonXX\Lib\site-packages\django
UNIX and Linux: /usr/lib/pythonX.X/site-packages/django
Mac OS X: /Library/Python/X.X/site-packages/django

(where X.X is the version of Python on your system.)

•

•

•

Chapter 8

[157]

If you cannot find Django in the default installation path for your operating system,
perform a file system search for django-admin.py. You will get multiple hits, but
the one that you want will be under the Django installation path, inside a folder
called bin.

After locating the Django installation path, open django/contrib/admin/
templates/, and you will find the templates used by the administration application.
There are many files in this directory, but the most important ones are:

admin/base_site.html: This is the base template for the administration
interface. All pages inherit from this template.
admin/change_list.html: This template generates a list of available objects
in a particular model.
admin/change_form.html: This template generates a form for adding or
editing an object.
admin/delete_confirmation.html: This template generates the
confirmation page when deleting an object.

Let's try to customize one of these templates. Suppose that we want to change the
string "Django administration" located at the top of all admin pages. To do so,
create a folder called admin inside the templates folder of our project, and copy
admin/base_site.html to it. After that, edit the file to change all instances of
"Django" to "Django Bookmarks":

{% extends "admin/base.html" %}
{% load i18n %}
{% block title %}{{ title|escape }} |
 {% trans 'Django Bookmarks site admin' %}{% endblock %}

{% block branding %}
<h1 id="site-name">{% trans 'Django Bookmarks administration' %}</h1>

{% endblock %}
{% block nav-global %}{% endblock %}

•

•

•

•

Creating an Administration Interface

[158]

Refresh the administration interface in your browser to see the changes:

The process was pretty simple, wasn't it? Feel free to experiment with other
templates. For example, you may want to add a help message to listing or edit pages.
The administration templates make use of many advanced features of the Django
template system, so if you see a template tag that you are not familiar with, you can
refer to the Django documentation.

Users, Groups and Permissions
So far, we have been logged in to the administration interface using the superuser
account that we created with manage.py syncdb. In reality however, you may have
other trusted users who need access to the administration page. In this section, we
will see how to allow other users to use the administration interface, and we will
learn more about the Django permissions system in the process.

Chapter 8

[159]

But before we continue, I want to emphasize this: only trusted users should be given
access to the administration pages. The administration interface is a very powerfuladministration pages. The administration interface is a very powerful pages. The administration interface is a very powerfuladministration interface is a very powerful interface is a very powerful
tool, so only those whom you know well should be granted access to it.

User Permissions
If you don't have users in the database other than the superuser, create a new user
account using the registration form that we built in chapter four. Alternatively, you
could use the administration interface itself by clicking on Users and then Add User.
Next, return to the users list and click on the name of the newly created user. You
will get a form which can be used to edit various aspects of the user account such as
name and email information. Under the Permissions section of the edit form, you
will find a checkbox labelled Staff status. Enabling this checkbox will let the new
user enter the administration interface; however, they won't be able to do much after
they login because this checkbox only grants access to the administration area, and it
does not give the ability to see or change data models.

To give the new user enough permissions to change data models, you can enable the
Superuser status checkbox, which will grant the new user full permission to perform
any function that they want. This option makes the account as powerful as the
superuser account created by manage.py syncdb.

On the whole however, it's not desirable to grant a user full access to everything.
Therefore, Django gives you the ability to have fine control over what users can do
through the permissions system. Below the Superuser status checkbox, you will find
a list of permissions that you can grant to the user. If you examine this list, you will
find that each data model has three types of permissions:

Adding an object to the data model.
Changing an object in the data model.
Deleting an object from the data model.

•

•

•

Creating an Administration Interface

[160]

These permissions are automatically generated by Django for data models that
contain an Admin class. Use the arrow button to grant some permissions to the
account that we are editing. For example, give the account the ability to add, edit and
delete links, tags and bookmarks. Next, log out and then log in to the administration
interface again using the new account. You will notice that you will only be able to
manage the Link, Tag and Bookmark data models.

The permissions section of the user edit page also contains a checkbox called
Active. This checkbox can be used as a global switch to enable and disable the
account. When unchecked, the user won't be to log in to the main site or the
administration area.

Group Permissions
If you have a considerable number of users who share the same permissions, it
would be a tedious and error prone task to edit each user's account and assign the
same permissions to them. Therefore, Django provides another user management
facility; groups. To put it simply, groups are a way of categorizing users who share
the same permissions. You can create a group and assign permissions to it. And
when you add a user to the group, this user is granted all of the group's permissions.

Creating a group is not any different from other data models. Click Groups on the
main page of the administration interface, and then click on Add Group. Next, enter
a group name and assign some permissions to the group, and finally, click save.

To add a user to a group, edit the user account, scroll to the Groups section in the
edit form, and select whichever group you want to add the user to.

Chapter 8

[161]

Using Permissions in Views
Although we have only used permissions in the administration interface so far,administration interface so far, interface so far,
Django also lets us utilize the permission system while writing views. It is possible
to use permissions when programming a view to grant a group of users access to a
particular feature or page, such as private content. We will learn about methods
that can be used to do so in this section. We won't actually make changes to the
code of our application, but feel free to do so if you want to experiment with the
methods explained.

If you wanted to check whether a user has a particular permission, you could use the
has_perm method on the User object. This method takes a string that represents the
permission in the following format:
app.operation_model

app is the name of the application where the model is located; operation is either
add, change or delete; and model is the name of the model. For example, to check
whether the user can add tags, use:

user.has_perm('bookmarks.add_tag')

And to check if the user can change bookmarks:
user.has_perm('bookmarks.change_bookmark')

Furthermore, Django provides a decorator that can be used to restrict a view to users
who have a particular permission. The decorator is called permission_required
and it is located in the django.contrib.auth.decorators package.

Using this decorator is similar to how we used the login_required decorator to
restrict pages to logged in users. Let's say we want to restrict the bookmark_save_
page view (in bookmarks/views.py) to users who have the bookmarks.add_
bookmark permission. To do so, we can use the following code:

from django.contrib.auth.decorators import permission_required

@permission_required('bookmarks.add_bookmark', login_url="/login/")
def bookmark_save_page(request):
[...]

This decorator takes two parameters: the permission to check for, and where to
redirect the user if they don't have the required permission.

The question of whether to use the has_perm method or the permission_required
decorator depends on the level of control that you want. If you need to control access
to a view as a whole, use the permission_required decorator. However, if you
need finer control over permissions inside a view, use the has_perm method. These
two approaches should be sufficient for any permission-related needs.

Creating an Administration Interface

[162]

Summary
Although this chapter is relatively short, we learned how to implement a lot of
things. This emphasizes the fact that Django lets you do a lot with only a few lines
of code. You learned how to utilize Django's powerful administration interface, how
to customize it, and how to take advantage of the comprehensive permission system
offered by Django.

Here is a quick summary of the features covered in this chapter:

Activating the administration interface consists of the following steps:
Adding the django.contrib.admin application to
INSTALLED_APPS in settings.py.
Running manage.py syncdb to create the administration
application tables.
Adding URL entries for the administration pages to urls.py.
For each model that you want to manage though the
administration interface, appending an empty class called
Admin to the model class.

You can customize listing pages in the administration interface by adding
one or more of the following fields to the Admin class: list_display,
list_filter, ordering, search_fields.
You can check whether a user has a particular permission by using the
has_perm method on the User object.
You can restrict a view to users who have a particular permission by using
the permission_required decorator from the django.contrib.auth.
decorators package.

In the next chapter, you will learn about several exciting features found in almost
every Web 2.0 application nowadays; namely, RSS feeds, browsing popular content
and searching. So keep on reading!

•

°

°

°

°

•

•

•

Advanced Browsing
and Searching

Providing users with more ways to browse content is always a good idea, as it makes
your application appeal to a broader audience. Different users will have different
ways of getting content. Some users prefer to browse available content looking for
interesting items, whereas others would rather search for particular topics. Some
users may even prefer to receive new content when it becomes available instead of
searching for it.

Given how feed readers have become popular tools among web users to monitor
updates, we will begin this chapter by learning about web feed technology and how
to utilize the Django feed framework to construct feeds for our application. This will
enable users to subscribe to our feeds and receive content updates whenever they
are available. Next, we will improve our search feature to provide more accurate
results, learning more about the Django database API in the process. Finally, we will
enhance the usability of bookmark-listing views by splitting long lists into multiple
pages. As you will see, this chapter covers many interesting topics and carries
numerous improvements to our application, so please read on!

In this chapter, you will learn about the following:

Adding RSS feeds.
Advanced searching.
Organizing content into pages (pagination).

•

•

•

Advanced Browsing and Searching

[164]

Adding RSS Feeds
With the widespread use of frequently updated websites such as blogs, wikis and
social bookmarking sites, users had to keep up with updates on many websites using
their web browsers on a daily basis. But as the task of keeping up with numerous
websites became tedious, the need arose for more efficient methods to track updates.
Fortunately, a technology called web feeds already existed for providing users with
frequently updated content. The concept behind this technology is simple:

An XML document containing the latest updates is published on the website.
This document is called a web feed.
Users can take advantage of this document by subscribing to it using a
specialized program called a feed reader or aggregator.
This program polls the feed on a regular basis and notifies the user when
updates are available.

Web feeds became an efficient and easy solution for tracking updates, and the
technology of feeds and aggregators quickly spread among websites and users.
Nowadays, offering feeds is a standard feature in Web 2.0 applications. There are
feeds for the latest content, feeds for popular content, feeds for content under a
specific category etc. In addition, aggregator programs have been incorporated into
major web browsers and email clients.

With the above in mind, it's natural for us to think of adding feed support to our
application, as there are many ways to benefit from this technology in our project.
For example, we can offer feeds for the latest bookmarks, bookmarks posted by a
particular user, or bookmarks that are posted under a specific tag. The possibilities
are numerous, and creating a feed in Django is easy; it works in the same way
regardless of the number and types of feeds that we want to add.

Django provides a very powerful framework for creating web feeds. To create a
feed, you simply define a Python class and leave the rest to Django. In this section,
you will learn about this framework by creating two types of feeds; one for the
latest bookmarks posted to the site, and one for the bookmarks posted by a specific
user. After you have finished this section, you will be able to utilize the Django feed
framework to create any feed that you can think of, so let's get started!

Creating the Recent Bookmarks Feed
Our first feed will list the latest ten bookmarks posted to the site. You should already
know by now that you can retrieve the latest ten bookmarks from the database using
the following method call (as we saw in Chapter 6):

Bookmark.objects.order_by('-id')[:10]

•

•

•

Chapter 9

[165]

This method sorts bookmarks by id in descending order, and obtains the first ten
results. As we can see, turning this method call into a web feed only takes a few lines
of code.

The first step in defining a feed is creating a class that is derived from the Feed class.
This class is part of the feed framework located at django.contrib.syndication.
To keep our source code organized, we will add a new file for feed classes. Create a
file called feeds.py in the bookmarks folder, and insert the following class into it:

from django.contrib.syndication.feeds import Feed
from bookmarks.models import Bookmark

class RecentBookmarks(Feed):
 title = 'Django Bookmarks | Recent Bookmarks'
 link = '/feeds/recent/'
 description = 'Recent bookmarks posted to Django Bookmarks'

 def items(self):
 return Bookmark.objects.order_by('-id')[:10]

Let's go through this code line by line:

We first import the Feed class, which should be the base class for all feeds.
We also import the Bookmark model because we will need it to generate the
most recent bookmarks list.
Next, we define a class called RecentBookmarks derived from Feed.
We define three attributes in this class: the title of the feed, the link (URL) of
the feed, and a short description of the purpose of the feed.
Finally, we define a method named items that returns the items of the
feed. Since we want this field to list the most recent ten bookmarks, we
use the method call that we wrote earlier in this section to retrieve this list
of bookmarks.

There are several feed formats available, but the most common one is RSS, and
Django uses this by default. An RSS feed consists of two sections:

A section that describes the feed itself by providing its title, link, description,
and several other possible properties. These properties can be set by defining
attributes in the feed class.
A section that lists the items of the feed. Each item consists of a title, link,
description, and several other possible fields. We will see how to define
these next.

•

•

•

•

•

•

Advanced Browsing and Searching

[166]

The items method in our feed class returns a list of Bookmark objects, so how will
Django map a Bookmark object to the item fields mentioned above? For the title and
description, Django uses the object's string representation. For the link, it calls a
method named get_absolute_url on the object to get the link of the item. Needless
to say, Django is flexible enough to let us customize these default assumptions.

Let's start with the link to the item. Open bookmarks/models.py and add the
highlighted method to the Bookmark data model:

class Bookmark(models.Model):
 title = models.CharField(maxlength=200)
 user = models.ForeignKey(User)
 link = models.ForeignKey(Link)
 def __str__(self):
 return '%s, %s' % (self.user.username, self.link.url)
 def get_absolute_url(self):
 return self.link.url
 class Admin:
 list_display = ('title', 'link', 'user')
 list_filter = ('user',)
 ordering = ('title',)
 search_fields = ('title',)

This method is pretty simple; it returns the URL of the bookmark. We will let Django
use the string representation of the bookmark as the title for now, and get back to
customizing this later.

The last step in adding a feed is creating a URL entry for it. Because we are using
the Django feed framework to generate our feeds, adding this URL entry is done
in a special way. We map a URL to a view provided by the django.contrib.
syndication package, and pass our feeds to this view using a dictionary. This is
better explained by doing it, so open urls.py and add the highlighted lines to it:

import os.path
from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template
from bookmarks.views import *
from bookmarks.feeds import *

site_media = os.path.join(os.path.dirname(__file__), 'site_media')
Make sure you add the feeds dict before the urlpatterns object.
feeds = {
 'recent': RecentBookmarks
}
urlpatterns = patterns('',
 # Feeds
 (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',
 {'feed_dict': feeds}),
)

Chapter 9

[167]

We imported the newly created feeds module, and we defined a dictionary called
feeds. This dictionary maps each feed class to its URL. After that, we added a
new URL entry that maps all URLs that start with feeds/ to the feed view (from
django.contrib.syndication.views). The third element of the URL entry passes
extra arguments to the view, and in this case, it passes the feeds dictionary that we
defined earlier.

This may seem a bit complicated, but actually it's simple once we see how it works:

We map all URLs under ^feeds/ to a view provided by the feed framework.
We also pass a dictionary that contains our feeds to this view.
When a URL such as ^feeds/recent/$ is requested, the feed view is
invoked. This view looks up the part of the URL after ^feeds/ in the feeds
dictionary to retrieve the corresponding feed class.
Next, the view generates the XML code of the feed and returns it to the user.

Let's try our new feed! Launch the development server, and point your browser to
http://127.0.0.1:8000/feeds/recent/. The result depends on your browser. If
you are using Firefox, you should see something similar to the figure below:

It worked! Django used the string representation of bookmarks for item title and
description, but it's working nonetheless and the links are correct. As you may have
thought already, the string representation of bookmarks is helpful while debugging
but not very user friendly. So we will customize this next.

•

•

•

Advanced Browsing and Searching

[168]

Customizing Item Fields
Item fields can be customized using templates. You can customize them by changing
the title of an item, adding a description to it, specifying an author, etc. The feed
view looks for feed templates in a directory called feeds. Templates in this folder
should use the following naming format:

feedname_fieldname.html

feedname is the name of the feed as it appears in the feeds dictionary. In the case of
the RecentBookmarks feed, the name is recent. fieldname is the name of the item
field that you want to customize. To change the titles of items in our feed, create a
folder named feeds in the templates folder, create a template called recent_title.
html in this folder, and insert the following code into the template:

{{ obj.title }}

The feed view passes the Bookmark object to the template under the name obj. So
we used obj to output the title of the bookmark. Notice that we didn't escape the title
here as we did with regular templates; the reason is that the feed framework escapes
input automatically.

As for the description, we don't want any. Create an empty file named
recent_description.html and put it in templates/feeds/.

After creating both files, refresh the feed in your browser to see the changes:

Chapter 9

[169]

That's much better! The user now has an idea about the contents of the link. Feel free
to customize the feed further by offering more information. For example, you can put
the owner of the bookmark and its tags in the description template.

With this, we finish implementing our first feed. Next, we will implement a feed that
lists bookmarks for a specific user. This is going to be a more advanced feed, because
it takes the username as a parameter in the URL.

Creating the User Bookmarks Feed
In addition to tracking new bookmarks posted to the site, our users may want to
track bookmarks posted by specific users. For instance, one user may want to keep
an eye on the bookmarks posted by their friends. Therefore, it would be a good idea
to provide a feed for each user; this feed lists the bookmarks posted by this user only.

Implementing this type of feed is slightly more involved than the previous one,
because the username will be passed as part of the feed URL, and the items of the
feed will change according to the requested username.

It 'is neither reasonable, nor feasible to write a separate feed class for each user. It
would be great if we could somehow examine the requested URL and generate the
list of items according to it. Guess what? Django provides an elegant mechanism to
do exactly that!

This mechanism works in the following way: if the requested URL contains extra
bits of information in addition to what is specified in the feeds dictionary, Django
understands that the requested feed is associated with a particular object (in our case,
a User object). Django retrieves this object by passing the extra bits of information
(in our case, the username) to a method named get_object in the feed object. Next,
Django passes this object to the feed when rendering it. The feed can use this object
to generate its items.

So let's go through this by creating a class for the user feed and then examining it.
Open bookmarks/feeds.py and append the following class to it:

from django.core.exceptions import ObjectDoesNotExist
from django.contrib.auth.models import User

class UserBookmarks(Feed):
 def get_object(self, bits):
 if len(bits) != 1:
 raise ObjectDoesNotExist
 return User.objects.get(username=bits[0])

 def title(self, user):
 return 'Django Bookmarks | Bookmarks for %s' % user.username

Advanced Browsing and Searching

[170]

 def link(self, user):
 return '/feeds/user/%s/' % user.username

 def description(self, user):
 return 'Recent bookmarks posted by %s' % user.username

 def items(self, user):
 return user.bookmark_set.order_by('-id')[:10]

We will go through each method in this class:

get_object: Django calls this method if the requested URL contains extra
bits of information. This information is passed in the bits parameter, which
is an array of strings that result from splitting the additional part of the URL
by the character /. For example, if we map this feed class to the URL ^feeds/
user/$ and the URL ^feeds/user/param1/param2/$ is requested, the bits
parameter will be ['param1', 'param2'].
get_object: This method returns the object that is associated with the feed.
This feed expects only one element in the bits variable (the username)
and returns the User object for this username. If the bits variable does
not contain one element, or if a User object does not exist for the specified
username, we raise an exception which causes Django to generate a 404 page
not found error.
title, link, description: In the first feed, these were simple class
attributes. Now they are methods. We did so because we also want the
title, link and description of the feed to change depending on the requested
username. Django is smart enough to understand whether we defined these
feed properties as attributes or methods. If we use a method, it passes the
associated object of the feed to the method.
items: This method also receives the User object associated with the feed,
and uses it to generate the list of bookmarks.

After writing the feed class, we should add it to the feeds dictionary, so open urls.
py and add the highlighted line to it:

import os.path
from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template
from bookmarks.views import *
from bookmarks.feeds import *

site_media = os.path.join(
 os.path.dirname(__file__),
 'site_media'
)

•

•

•

•

Chapter 9

[171]

feeds = {
 'recent': RecentBookmarks,
 'user': UserBookmarks
}

Next, we will create templates for this feed. Add a file called user_title.html with
the following contents to templates/feeds/:

{{ obj.title }}

Finally, we will create an empty file called user_description.html in the
same folder.

Now that our feed is ready, navigate to http://127.0.0.1:8000/feeds/user/
your_username/ (replacing your_username with your actual username) to
see the feed:

Linking Feeds to HTML Pages
We now have functional web feeds that are ready to be used, but how do we make
our users aware of the existence of these feeds? One way is to simply create an
HTML link to the feed URL, preferably using the standard feed icons which are
commonly used on the web (you can obtain them from http://www.feedicons.
com/). However, automated bots and feed readers may not be able to discover
your feed if you merely place a regular link to it in your page. Therefore, there is a

Advanced Browsing and Searching

[172]

special HTML mark-up that you can put in the head section of the HTML page to tell
programs that this page has a corresponding web feed. Let's learn about this mark-
up by using it to link our main page to the recent bookmarks feed. Open templates/
main_page.html and change it by adding the highlighted lines as follows:

{% extends "base.html" %}

{% block title %}Welcome to Django Bookmarks{% endblock %}
{% block head %}Welcome to Django Bookmarks{% endblock %}
{% block external %}
 <link rel="alternate" type="application/rss+xml"
 title="Django Bookmarks | Recent Bookmarks"
 href="/feeds/recent/" />
{% endblock %}
[...]

The link tag in the head section tells feed-aware programs that your HTML page
has an associated feed. If you navigate your browser to the main page of your
application using the Firefox web browser, you will notice that Firefox displays a
feed icon to the right of the URL of the site. If you click this icon, you will be taken to
the feed page where you can subscribe to it:

Let's add a similar link tag to the user page. Open templates/user_page.html and
insert the highlighted line into it as below:

{% extends "base.html" %}

{% block external %}
 <script type="text/javascript"
 src="/site_media/bookmark_edit.js"><script>
 <link rel="alternate" type="application/rss+xml"
 title="Django Bookmarks |
 Bookmarks for {{ username }}"
 href="/feeds/user/{{ username }}" />

{% endblock %}

That was fun, wasn't it? I find it particularly interesting that we added a completely
new feature to our project by writing minimal lines of code and without any major
changes to our existing code. Django boosts the developer productivity to its
maximum by offering powerful and easy to use tools such as the feed framework.
Feel free to continue exploring this framework. For example, you can try to create a
feed that lists recent tags or recent bookmarks under a specific tag.

Chapter 9

[173]

In the next section, we will enhance the search feature that was added in Chapter 6.
This feature is particularly important because it is needed in almost any web
application and because users often think of using it to locate content that they saw
before or to discover new content that interests them.

Advanced Searching
In Chapter 6, we built a simple search feature into our project. We did so to learn
more about Ajax and live form processing. The search page returns bookmarks that
contain the query string in the title, and it is implemented using the filter method
of the model API. This line of code does the actual searching in our search view:

bookmarks = Bookmark.objects.filter(title__icontains=query)

This was sufficient to get a basic search page working. However, things are not that
simple in reality. To see why, let's say that a user entered "Ajax advantages" into the
search box. If the database contains a bookmark with the string "Ajax advantages"
in its title, it will be returned in the search results. However, if there is a bookmark
titled "Advantages of Ajax," it won't be returned, although it's obviously relevant to
the search query.

As illustrated by this example, searching for titles that contain the exact query string
does not produce satisfactory results. We should split the query string into keywords
and search for titles that contain all of these keywords.

In this section, we will improve upon the search feature in our application, we will
and overcome the problem described above. But before we can do so, we need to
learn more about the Django database API

Retrieving Objects with the Database API
So far in our application, we have used several techniques to retrieve objects from
data models. All of these techniques work by calling methods on the objects
attribute of a data model. This attribute is called the manager of the data model, and
it is the interface through which database queries are made.

Some of the methods that we used on the manager include get which retrieves an
object by a unique field, all which retrieves all of the objects in the model, count
which returns the number of objects, filter which can be used to construct queries
that are similar to SQL SELECT statements, and finally order_by which lets you
provide the sorting order of returned objects.

Advanced Browsing and Searching

[174]

In this section, we will learn more about the Django database API, but before we
proceed, it is a good idea to add some bookmarks with the following properties so
that you can get the most out of the following examples:

A bookmark with a URL that begins with "https".
A bookmark with a URL that begins with "https" and ends with "html".
A bookmark with the tag "JavaScript".
A bookmark with the tags "JavaScript" and "Web".
A bookmark with the word "JavaScript" in its title.
A bookmark with the word "JavaScript" in its title and the tag "Web".

The filter method is very powerful. It provides a variety of ways to query your
data model. Queries are constructed by passing keyword arguments to the method.
For example, if you want to search for all links that start with 'https' you can use
the following command. (Note that this and all the following commands include
two underscores):

>>> Link.objects.filter(url__istartswith='https')

You can launch the interactive console to test these method calls
by running:
$ python manage.py shell
Don't forget to import the project's models:
from bookmarks.models import *

You can pass multiple keyword arguments to the filter method, and it will join
them together using the ""and" logical operator, meaning that only objects which
satisfy all arguments are returned. For example, the following method call will
return all links that start with 'https' and end with 'html':

>>> Link.objects.filter(url__istartswith='https', url__iendswith='html')

You can also use the filter method to do queries that span multiple data models.
Let's say we want to retrieve all Bookmark objects whose link starts with 'https'.
The following method call does not work; it raises an exception:

>>> Bookmark.objects.filter(link__istartswith='https')

This happens because the link field in the Bookmark data model is a Link object and
not a regular string. To construct this query, we need to access the url field of the
link field. This can be done like this:

>>> Bookmark.objects.filter(link__url__istartswith='https')

•

•

•

•

•

•

Chapter 9

[175]

To access the url attribute of the link field, we used two underscore characters. You
can do so as many times as you want to go deeper into the object structure.

While working with queries that span multiple data models, you may come across a
problem that is illustrated by the following example: the Bookmark and Tag models
are related. The relationship field resides in the Tag model. How do we construct a
query that retrieves bookmarks according to their associated Tag objects? Let's say
we want to get all bookmarks with the JavaScript tag. This can be done as follows:
>>> Bookmark.objects.filter(
 tag__name__iexact='JavaScript')

We used the model name as the first part of the keyword argument. This allows us to
perform relationship queries even if the relationship field resides in the other model.

all, filter and order_by return an object that looks and acts like a list; however,
its type is actually a special Django class called QuerySet. This class represents a
collection of objects and contain methods that can be used to further refine your
search criteria.

The following constructs a query set that contains all bookmarks with "JavaScript"
in the title, and then refines the search to only include bookmarks owned by the
user 'ayman':
>>> query_set = Bookmark.objects.filter(
 tag__name__iexact='JavaScript')
>>> bookmarks = query_set.filter(user__username__iexact='ayman')

This can also be done in one line using method chaining:

>>> bookmarks = Bookmark.objects.filter(
 tag__name__iexact='JavaScript').filter(
 user__username__iexact='ayman')

The real power of method chaining becomes clear when we combine filter with
another method called exclude; this method, as the name suggests, removes objects
that match the passed keyword arguments. Let's say you want all bookmarks that
contain "Python" in the title except for those which are tagged with "Web." You can
do so by using the following method chain:
>>> Bookmark.objects.filter(
 title__icontains='JavaScript').exclude(
 tag__name__iexact='Web')

Method chaining is also useful if you want to retrieve a list of objects with filter
and then sort the list. The following method chain obtains all bookmarks that are
owned by user 'ayman' and sorts them according to title:
>>> Bookmark.objects.filter(user__username__iexact='ayman')
 .order_by('title')

Advanced Browsing and Searching

[176]

When you are querying a data model that is expected to contain a large number of
elements, it is recommended to only retrieve a limited number of objects instead of
getting the whole result set. If you do so, you avoid overloading the database system.
Specifying how many items you want is done using the standard Python index
syntax. For example, to retrieve the first ten bookmarks, you can do the following:

>>> Bookmark.objects.all()[:10]

This is possible because a QuerySet object doesn't actually retrieve objects from the
database when you create it. They only do so when you try to access its items.

Advanced Queries with Q Objects
We can filter objects according to multiple conditions by passing more than one
keyword argument to the filter method or using method chaining. In either case,
the conditions are joined together using the "and" logical operator. But what if we
want to use the "or" logical operator, or construct complex queries that use both
operators? Django provides a special class called Q that let us do this.

To put it simply, a Q object encapsulates one or more keyword arguments. You can
use it to construct complex conditions and then pass it to filter or exclude. The
constructor of Q objects takes keyword arguments exactly like filter and exclude.
The power of Q objects come from the fact that they support | and & operators. Let's
see this in action by using an example. The following call returns bookmarks with
"Python" or "JavaScript" in their titles:

>>> from django.db.models import Q
>>> q1 = Q(title__icontains='Python')
>>> q2 = Q(title__icontains='JavaScript')
>>> q3 = q1 | q2
>>> Bookmark.objects.filter(q3)

We combined q1 and q2 using the | operator, which effectively creates a new Q
object that matches the conditions of q1 or q2. After that, we pass the resulting Q
object to filter. Of course, we could have done the above in one line:

>>> Bookmark.objects.filter(
 Q(title__icontains='Python')
 Q(title__icontains='JavaScript'))

You can use the & and | operators (in addition to parentheses) to combine as many
Q objects as you want, and this enables you to create complex queries that are not
possible using regular filter calls.

Chapter 9

[177]

Now that you have a solid understanding of the Django database API, we can get
back to our original task of improving the search functionality. Since querying the
database is one of the most common tasks in web applications, the information
in this section will be extremely valuable whilst working with Django, so make
sure you fully understand the methods and techniques explained here before you
continue, and try to experiment with them using the interactive console. Once you
are done, get ready to build a better search feature!

Improving the Search Feature
We've learned a lot in the previous section, so let's put our new knowledge to good
use! We will improve the search feature by doing the following:

Split the search query into keywords.
Construct a Q object which matches all bookmarks whose titles contain
all keywords.
Retrieve the list of search results by passing the Q object to filter.

To implement the above, open bookmarks/views.py and modify the search_page
view as shown below:

from django.db.models import Q

def search_page(request):
 form = SearchForm()
 bookmarks = []
 show_results = False

 if request.GET.has_key('query'):
 show_results = True
 query = request.GET['query'].strip()
 if query:
 keywords = query.split()
 q = Q()
 for keyword in keywords:
 q = q & Q(title__icontains=keyword)

 form = SearchForm({'query' : query})
 bookmarks = Bookmark.objects.filter(q)[:10]

 variables = RequestContext(request, {
 'form': form,
 'bookmarks': bookmarks,
 'show_results': show_results,
 'show_tags': True,
 'show_user': True

•

•

•

Advanced Browsing and Searching

[178]

 })

 if request.GET.has_key('ajax'):
 return render_to_response('bookmark_list.html', variables)
 else:
 return render_to_response('search.html', variables)

We will examine the highlighted section line by line:

We first split the query into keywords using the split method.
We construct an empty Q object. This object matches anything.
We iterate through keywords creating a Q object for each keyword and
combine it with the Q object from the previous iteration using the &
("and") operator.
We pass the final Q object to Bookmark.objects.filter to retrieve the
search results. The index syntax is used to get only the first ten results.

Try out the new search code. If you have a bookmark titled "Python Tutorial",
searching for "tutorial python" should yield this bookmark in the results.

There are many other ways to introduce additional improvements. You can, for
example, add "or" based search by using the | operator. The possibilities are
numerous, and you have enough information to use the Django database API and
construct whatever queries you like.

The next section touches on another subject related to browsing. As time goes by,
users will bookmark their favorite web pages using our application. Their bookmark
lists will grow and become too large to be displayed on one page. So how can we
avoid this? Pagination comes to the rescue!

Organizing Content into Pages
(Pagination)
As discussed in the previous section, it is advisable to avoid rendering large query
sets into one page; the page would increase in size, and finding an item within the
page would become difficult. Fortunately, there is a simple and intuitive solution to
this: pagination. And as always, Django already has a component that implements
this functionality, ready for us to use!

Pagination is the process of breaking content into pages. If we have a large query
set of bookmarks, we split the query set into pages with ten (or so) items on each,
present the first page to the user, and provide links to browse other pages.

•

•

•

•

Chapter 9

[179]

The Django pagination functionality is encapsulated in a class called
ObjectPaginator, which is located in the django.core.paginator package. Let's
learn the interface of this class using the interactive console:

>>> from bookmarks.models import *
>>> from django.core.paginator import ObjectPaginator
>>> query_set = Bookmark.objects.all()
>>> paginator = ObjectPaginator(query_set, 10)

Here we import some classes, build a query set containing all bookmarks, and
instantiate an ObjectPaginator. The constructor of this class takes the query set to
be paginated, and the number of items on each page is set.

Let's see how to retrieve information from the paginator object (of course, the results
will vary depending on the amount of bookmarks that you have):

>>> paginator.pages # Number of pages
 5

>>> paginator.hits # Total number of items
 46
Items in first page (index is zero-based)

>>> paginator.get_page(0)
[<Bookmark: ayman, http://docs.python.org/tut/>,
 <Bookmark: douglas, http://www.djangoproject.com/>,
 <Bookmark: nadia, http://jquery.com/>, ...]

Does the first page have a previous page?
>>> paginator.has_previous_page(0)

False

Does the first page have a next page?
>>> paginator.has_next_page(0)

True

As you can see, ObjectPaginator does the heavy lifting for us. It takes a query set,
breaks it into pages, and enables us to render the query set into multiple pages.

Let's implement pagination into one of our views, the user page for example. Open
bookmarks/views.py and modify the user_page view as highlighted below:

from django.core.paginator import ObjectPaginator

ITEMS_PER_PAGE = 10

def user_page(request, username):
 user = get_object_or_404(User, username=username)
 query_set = user.bookmark_set.order_by('-id')
 paginator = ObjectPaginator(query_set, ITEMS_PER_PAGE)

 try:

Advanced Browsing and Searching

[180]

 page = int(request.GET['page'])
 except:
 page = 1

 try:
 bookmarks = paginator.get_page(page - 1)
 except:
 raise Http404

 variables = RequestContext(request, {
 'bookmarks': bookmarks,
 'username': username,
 'show_tags': True,
 'show_edit': username == request.user.username,
 'show_paginator': paginator.pages > 1,
 'has_prev': paginator.has_previous_page(page - 1),
 'has_next': paginator.has_next_page(page - 1),
 'page': page,
 'pages': paginator.pages,
 'next_page': page + 1,
 'prev_page': page - 1
 })
 return render_to_response('user_page.html', variables)

The new changes can be broken into four sections:

from django.core.paginator import ObjectPaginator

ITEMS_PER_PAGE = 10

We first import ObjectPaginator from django.core.paginator and define the
number of items per page in a module-wide variable so that we can use it in
any view:

 query_set = user.bookmark_set.order_by('-id')
 paginator = ObjectPaginator(query_set, ITEMS_PER_PAGE)

The user_page view starts by building a query set that contains all the bookmarks of
the specified username, and wraps the query set into a paginator:

 try:
 page = int(request.GET['page'])
 except:
 page = 1

 try:
 bookmarks = paginator.get_page(page - 1)
 except:
 raise Http404

Chapter 9

[181]

We try to retrieve the GET variable 'page' and convert it into an integer. This may
raise an exception if the variable does not exist or if it's not an integer. In this case,
we assume that the first page will be served.

After that, we get the bookmarks of the current page using the paginator.get_
page. We subtract one from the page variable when passing it because paginator
indices are zero-based as mentioned before. This method raises an exception if the
specified index is invalid. In this case, we generate a 404 page not found error.

 'show_paginator': paginator.pages > 1,
 'has_prev': paginator.has_previous_page(page - 1),
 'has_next': paginator.has_next_page(page - 1),
 'page': page,
 'pages': paginator.pages,
 'next_page': page + 1,
 'prev_page': page - 1

We pass several new variables to the template; all of which are related to pagination:

show_paginator: If the number of pages is more than one, we show a pager.
has_prev: If there is a page before the current page, we show a link that
takes the user to the previous page.
has_next: Same as has_prev but for the next page.
page: The index of the current page.
pages: Total number of pages.
next_page: The index of the next page.
prev_page: The index of the previous page.

Now we will update the bookmark list template in order to make use of the new
pagination functionality. Open templates/bookmark_list.html and insert the
highlighted section into it:

{% if bookmarks %}
 <ul class="bookmarks">
 {% for bookmark in bookmarks %}
 [...]
 {% endfor %}

 {% if show_paginator %}
 <div class="paginator">
 {% if has_prev %}
 « Previous
 {% endif %}

•

•

•

•

•

•

•

Advanced Browsing and Searching

[182]

 {% if has_next %}
 Next »
 {% endif %}
 (Page {{ page }} of {{ pages }})
 </div>
 {% endif %}
{% else %}
 <p>No bookmarks found.</p>
{% endif %}

The code should be easy to understand. We render the paginator if show_paginator
is set to True. If there is a previous page we render a link to it, and if there is a next
page, we also render a link to it. « and » are HTML entities that
produce arrows that are suitable for the previous and next links respectively. Lastly,
we display a short message telling the user on which page they are.

To see the paginator in action, make sure that you have enough bookmarks to trigger
the rendering of a paginator (and if not, add some!), and point your browser to your
user page. The page should look similar to the figure below:

If you click on the the "Next" and "Previous" buttons, you will see how bookmarks
are correctly organized into pages. You are also able to improve the paginator by
displaying links to individual pages between the previous and next links.

Chapter 9

[183]

As ever, Django allowed us to improve our application and introduce a new
feature quickly and easily. Pagination is very important in terms of usability and
performance. Now you can add this functionality to the rest of the application views.
The tag page is a good candidate, and so is the search page.

Summary
You have learned many interesting features in this chapter. You are now able to
create any type of web feed with ease. You also gained a lot of information on how
to use the Django database API to query data models in various ways. Finally, you
learned about pagination in Django and applied it to a view in the project.

Here is a quick summary of the features covered in this chapter:

To create a feed in Django, derive a class that represents the feed from the
Feed base class, and define the properties of the feed (title, link, description)
and a method called items that returns the items of the feed in this class.
To customize the rendering of item fields in the feed (such as title and
description), create a folder called feeds in the templates folder.
Inside it, create templates with filenames that use the following format:
feedname_fieldname.html. The contents of these templates will be used to
render item fields.
Q objects are very useful to construct complex queries. They encapsulate
a filtering condition, and can be combined using & ("and"), | ("or"),
and parentheses.
Django supports pagination by providing a class named ObjectPaginator.
This class offers various attributes and methods to paginate a query set into
multiple pages. Using pagination is highly recommended with large query
sets, because it improves performance and usability.

In the next chapter, we will build an exciting feature that makes our application more
social: user networks. We will let users invite their friends to join their network and
share bookmarks together.

•

•

•

•

Building User Networks
Our application is about "social" bookmarking. Running a social web application
means having a community of users who have common interests, and who use the
application to share their interests and findings with each other. We will want to
enhance the social experience of our users. In this chapter, we will introduce two
features that will enable us to do this. We will let our users maintain lists of
friends, see what their friends are bookmarking, and invite new friends to try out
our application. We will also utilize a Django API to make our application more
user-friendly and responsive by displaying feedback messages to the user. So let's
get started!

In this chapter, you will learn about the following:

Building a friend network feature.
Letting users browse bookmarks of friends.
Enabling users to invite friends to your website.
Improving the interface with status messages.

Building Friend Networks
One important aspect of socializing in our application is letting users maintain their
friend lists and browse the bookmarks of their friends. So in this section we will
build a data model to maintain user relationships, and then program two views to
enable users to manage their friends and browse friend bookmarks.

•

•

•

•

Building User Networks

[186]

Creating the Friendship Data Model
Let's start with the data model for the friends feature. When a user adds another user
as a friend, we need to maintain both users in one object. Therefore, the Friendship
data model will consist of two references to the User objects involved in the
friendship relationship. Create this model by opening bookmarks/models.py and
inserting the following code in it:

class Friendship(models.Model):
 from_friend = models.ForeignKey(
 User, related_name='friend_set'
)
 to_friend = models.ForeignKey(
 User, related_name='to_friend_set'
)
 def __str__(self):
 return '%s, %s' % (
 self.from_friend.username,
 self.to_friend.username
)
 class Admin:
 pass
 class Meta:
 unique_together = (('to_friend', 'from_friend'),)

The Friendship data model starts with defining two fields: from_friend and
to_friend. Both are User objects; from_friend is the user who added to_friend
as a friend. As you can see, we passed a keyword argument called related_name
to both fields. The reason for this is that both fields are foreign keys that refer back
to the User data model. This will cause Django to try to create two attributes called
friendship_set in each User object, which would result in a name conflict. To
avoid this problem, we provide a specific name for each attribute. Consequently,
each User object will contain two new attributes, user.friend_set which contains
the friends of this user, and user.to_friend_set which contains the users who
added this user as a friend. Throughout this chapter, we will only use the friend_
set attribute, but the other one is there in case you need it.

Next, we defined a __str__ method in our data model. As you already know, this
method is useful for debugging. We also enabled the management of friendship
relationships in the administration interface by defining an empty class called Admin
in the Friendship data model.

Chapter 10

[187]

Finally, we defined a class called Meta. This class may be used to specify various
options related to the data model. Some of the commonly-used options are:

db_table: The name of the table to use for the model. This is useful when
the table name generated by Django is a reserved keyword in SQL, or when
you want to avoid conflicts if a table with the same name already exists in
the database.
ordering: A list of field names. It declares how objects are ordered when
retrieving a list of objects. A column name may be preceded with a minus
sign to change the sorting order from ascending to descending.
permissions: Lets you declare custom permissions for the data model in
addition to add, change and delete permissions that we learned about in
Chapter 7. Permissions should be a list of two-tuples, and each two-tuple
should consist of the permission codename and a human readable name for
the permission. For example, you can define a new permission for listing
friend bookmarks by using the following Meta class:

 class Meta:
 permissions = (
 ('can_list_friend_bookmarks', 'Can list friend bookmarks'),
)

unique_together: A list of field names that must be unique together.

We used the unique_together option here to ensure that a Friendship object is
added only once for a particular relationship. There cannot be two Friendship
objects with equal to_friend and from_friend fields. This is equivalent to the
following SQL declaration:

UNIQUE ("from_friend", "to_friend")

If you check the SQL generated by Django for this model, you will find something
similar to this in the code.

After entering the data model code into bookmarks/models.py, run the following
command to create its corresponding table in the database:

$ python manage.py syncdb

Now let's experiment with the new model and see how to store and retrieve
friendship relationships. Run the interactive console using the following command:

$ python manage.py shell

•

•

•

•

Building User Networks

[188]

Next, retrieve some User objects and build relationships between them:

>>> from bookmarks.models import *

>>> from django.contrib.auth.models import User

>>> user1 = User.objects.get(id=1)

>>> user2 = User.objects.get(id=2)

>>> user3 = User.objects.get(id=3)

>>> friendship1 = Friendship(from_friend=user1, to_friend=user2)

>>> friendship1.save()

>>> friendship2 = Friendship(from_friend=user1, to_friend=user3)

>>> friendship2.save()

Now user2 and user3 are both friends of user1. To retrieve the list of Friendship
objects associated with user1, use:

>>> user1.friend_set.all()

[<Friendship: user1, user2>, <Friendship: user1, user3>]

(Actual usernames in output were replaced with user1, user2 and user3 for clarity.)

As you may have already noticed, the attribute is named friend_set because we
called it so using the related_name option when we created the Friendship model.

Next, let's see one way to retrieve the User objects of user1's friends:

>>> [friendship.to_friend for friendship in user1.friend_set.all()]

[<User: user2>, <User: user3>]

The last line of code uses a Python feature called list comprehension to build the list
of User objects. This feature allows us to build a list by iterating through another
list. Here we built the User list by iterating over a list of Friendship objects. If this
syntax looks unfamiliar, please refer to the "List Comprehension" section in the
Python tutorial.

Notice that user1 has user2 as a friend, but the opposite is not true:

>>> user2.friend_set.all()

 []

In other words, the Friendship model only works in one direction. To add user1 as
a friend of user2, we need to construct another Friendship object:

>>> friendship3 = Friendship(from_friend=user2, to_friend=user1)

>>> friendship3.save()

>>> user2.friend_set.all()

[<Friendship: user2, user1>]

Chapter 10

[189]

By reversing the arguments passed to the Friendship constructor, we built a
relationship in the other way. Now user1 is a friend of user2 and vice versa.

Experiment more with the model to make sure that you understand how it works.
Once you feel comfortable with it, move to the next section, where we will write
views to utilize the data model. Things will only get more exciting from now on!

Writing Views to Manage Friends
Now that we are able to store and retrieve user relationships, it's time to create views
for these features. In this section, we will build a view for adding a friend, and a
view for listing friends and their bookmarks.

We will use the following URL scheme for friend-related views:

If the view is for managing friends (adding a friend, removing a friend, etc),
its URL should start with /friend/. For example, the URL of the view that
adds a friend will be /friend/add/.
If the view is for viewing friends and their bookmarks, its URL should start
with /friends/. For example, /friends/username/ will be used to display
the friends of username.

The above convention is necessary to avoid conflicts. If we use the prefix /friend/
for all views, what happens if a user registers the username "add"? The Friends
page for this user will be /friend/add/, just like the view to add a friend. The first
URL mapping in the URL table will always be used, and the second will become
inaccessible, which is obviously a bug.

Now that we have a URL scheme in mind, let's start with writing the friends
list view.

The Friends List View
This view will receive a username in the URL, and display this user's friends and
their bookmarks. To create the view, open bookmarks/views.py and add the
following code to it:

def friends_page(request, username):
 user = get_object_or_404(User, username=username)
 friends = \
 [friendship.to_friend for friendship in user.friend_set.all()]
 friend_bookmarks = \
 Bookmark.objects.filter(user__in=friends).order_by('-id')
 variables = RequestContext(request, {

•

•

Building User Networks

[190]

 'username': username,
 'friends': friends,
 'bookmarks': friend_bookmarks[:10],
 'show_tags': True,
 'show_user': True
 })
 return render_to_response('friends_page.html', variables)

This view is pretty simple. It receives a username and operates on it as follows:

The User object that corresponds to the username is retrieved using the get_
object_or_404 shortcut method.
The friends of this user are retrieved using the list comprehension syntax
mentioned in the previous section.
After that, the bookmarks of the user's friends are retrieved using the filter
method. The user__in keyword argument is passed to filter in order
to retrieve all bookmarks whose user exists in the friends list. order_by is
chained to filter to sort bookmarks by id in descending order.
Finally, the variables are put into a RequestContext object, and sent to
a template named friends_page.html. We used the index syntax with
friend_bookmarks to get only the latest ten bookmarks.

Let's write the view's template next. Create a file called friends_page.html in the
templates folder with the following code in it:

{% extends "base.html" %}

{% block title %}Friends for {{ username }}{% endblock %}
{% block head %}Friends for {{ username }}{% endblock %}

{% block content %}
 <h2>Friend List</h2>
 {% if friends %}
 <ul class="friends">
 {% for friend in friends %}

 {{ friend.username }}
 {% endfor %}

 {% else %}
 <p>No friends found.</p>
 {% endif %}

 <h2>Latest Friend Bookmarks</h2>
 {% include 'bookmark_list.html' %}
{% endblock %}

•

•

•

•

Chapter 10

[191]

The template should be self-explanatory; there is nothing new in it. We iterate over
the friends list and create a link for each friend. And then we create a list of friend
bookmarks by including the bookmark_list.html template.

Finally, we will add a URL entry for the view. Open urls.py and insert the
following mapping into the urlpatterns list:

urlpatterns = patterns('',
 # Friends
 (r'^friends/(\w+)/$', friends_page),
)

This URL entry captures the username portion in the URL using a regular
expression, exactly like we did this in the user_page view.

Although we haven't created a view for adding friends yet, you can still see this view
by manually adding some friends to your account (if you haven't done so already).
Use the interactive console to make sure that your account has friends, and then
start the development server and point your browser to http://127.0.0.1:8000/
friends/your_username/ (replacing your_username with your actual username).
The resulting page should look something similar to the figure below:

Building User Networks

[192]

So now we have a functional Friends page. It displays a list of friends along with
their latest bookmarks. In the next section, we are going to create a view that allows
users to add friends to this page.

Creating the "Add Friend" View
So far, we have been adding friends using the interactive console. The next step in
building the friends feature is offering a way to add friends from within our
web application.

The "add friend" view works like this: It receives the username of the friend in GET,
and creates a Friendship object accordingly. Open bookmarks/views.py and add
the view below:

@login_required
def friend_add(request):
 if request.GET.has_key('username'):
 friend = \
 get_object_or_404(User, username=request.GET['username'])
 friendship = Friendship(
 from_friend=request.user,
 to_friend=friend
)
 friendship.save()
 return HttpResponseRedirect(
 '/friends/%s/' % request.user.username
)
 else:
 raise Http404

Let's go through the view line by line:

We apply the login_required decorator to the view; anonymous users must
login before they can add friends.
We check whether a GET variable called username exists. If it does, we
continue with creating a relationship. Otherwise we raise a 404 page not
found error.
We retrieve the user to be added as a friend using get_object_or_404.
We create a Friendship object with the currently logged-in user as
the from_friend argument, and the requested username as the
to_friend argument.
Finally, we redirect the user to their Friends page.

•

•

•

•

•

Chapter 10

[193]

After creating the view, we will add a URL entry for it. Open urls.py and add the
highlighted line to it:

urlpatterns = patterns('',
 # Friends
 (r'^friends/(\w+)/$', friends_page),
 (r'^friend/add/$', friend_add),

)

The "add friend" view is now functional. However, there are no links to use it
anywhere in our application, so let's add these links. We will modify the user_page
view to display a link for adding the current user as a friend, and a link for viewing
the user's friends. Of course, we will need to handle special cases; you don't want an
"add friend" link when you are viewing your own page, or when you are viewing the
page of one of your friends.

Adding these links will be done in the user_page.html template, but before
doing so, we need to pass a Boolean flag from the user_page view to the template
indicating whether the owner of the user page is a friend of the currently logged in
user or not. So open bookmarks/views.py and add the highlighted lines into the
user_page view:

def user_page(request, username):
 user = get_object_or_404(User, username=username)
 query_set = user.bookmark_set.order_by('-id')
 paginator = ObjectPaginator(query_set, ITEM_PER_PAGE)

 is_friend = Friendship.objects.filter(

 from_friend=request.user,

 to_friend=user

)

 try:
 page = int(request.GET['page'])
 except:
 page = 1

 try:
 bookmarks = paginator.get_page(page - 1)
 except:
 raise Http404

 variables = RequestContext(request, {
 'bookmarks': bookmarks,
 'username': username,
 'show_tags': True,

Building User Networks

[194]

 'show_edit': username == request.user.username,
 'show_paginator': paginator.pages > 1,
 'has_prev': paginator.has_previous_page(page - 1),
 'has_next': paginator.has_next_page(page - 1),
 'page': page,
 'pages': paginator.pages,
 'next_page': page + 1,
 'prev_page': page - 1,
 'is_friend': is_friend

 })
 return render_to_response('user_page.html', variables)

Next, open templates/user_page.html and add the following highlighted
lines to it:

[...]
{% block content %}
{% ifequal user.username username %}
 view your friends
{% else %}
 {% if is_friend %}

 {{ username }} is a friend of yours
 {% else %}

 add {{ username }} to your friends
 {% endif %}
 -
 view {{username }}'s friends
{% endifequal %}
{% include 'bookmark_list.html' %}
{% endblock %}

Let's go through each conditional branch in the highlighted code:

First, we check whether the user is viewing their own page. This is done
using a template tag called ifequal which takes two variables to compare
for equality. If the user is indeed viewing their page, we simply display a link
to it.
Next, we check whether the user is viewing the page of one of their friends.
If this is the case, we display a link to the current user's Friends page instead
of an "add friend" link. Otherwise, we construct an "add friend" link, passing
the username as a GET variable.
Finally, we display a link to the Friends page of the owner of the user page
being viewed.

•

•

•

Chapter 10

[195]

And that's it. Browse some user pages to see how the links at its top change
depending on your relationship with the owner of the user page. Try to add new
friends to see your Friends page grow!

Implementing the friends feature wasn't that hard, was it? You wrote one data model
and two views, and the feature became functional. Interestingly, the more Django
experience you gain, the easier and faster implementing features becomes.

Our users are now able to add each other as friends and monitor friend bookmarks,
but what about friends who are not members of our site? In the next section we will
implement an "invite a friend" feature that will allow users to invite their friends to
join our site via email.

Inviting Friends Via Email
Enabling our users to invite their friends carries many benefits. People are more
likely to join our site if their friends are already using it. And after they join, they
will also invite their friends and so on, which means more and more users for our
application. Therefore, it is a good idea to offer an "invite a friend" feature. This is
actually a common functionality found in many Web 2.0 applications.

Building this feature requires the following components:

An Invitation data model to store invitations in the database.
A form in which users can type the emails of their friends and
send invitations.
An invitation email with an activation link.
A mechanism for processing activation links sent in email.

Throughout this section, we will implement each component. But because this
section involves sending emails, we first need to configure Django to send emails by
adding some options to settings.py. So open settings.py and add the
following lines:

SITE_HOST = '127.0.0.1:8000'
DEFAULT_FROM_EMAIL = \
 'Django Bookmarks <django.bookmarks@example.com>'

EMAIL_HOST = 'mail.yourisp.com'
EMAIL_PORT = ''
EMAIL_HOST_USER = 'username+mail.yourisp.com'
EMAIL_HOST_PASSWORD = ''

•

•

•

•

Building User Networks

[196]

Let's see what each variable does:

SITE_HOST: This is the host name of your server. Leave it as
'127.0.0.1:8000' for now. When we deploy our server in the next chapter,
we will change this.
DEFAULT_FROM_EMAIL: The email address that appears in the "From" field of
emails sent by Django.
EMAIL_HOST: The host name of your email server. If you are using a
development machine that doesn't run a mail server (most likely this is the
case), then you need to put your ISP's outgoing email server here. Contact
your ISP for more information.
EMAIL_PORT: The port number of the outgoing email server. If you leave it
empty, the default value (25) will be used. You also need to obtain this from
your ISP.
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD: Username and password for
the outgoing email server. For the host user name, input your username plus
your email server (as shown above). Leave the fields empty if your ISP does
not require them.

To verify that your settings are correct, launch the interactive shell and enter
the following:

>>> from django.core.mail import send_mail
>>> send_mail('Subject', 'Body of the message.', 'from@example.com',
 ['your_email@example.com'])

Replace your_email@example.com with your actual email address. If the above call
to send_mail does not raise an exception and you receive the email, then all is set.
Otherwise, you need to verify your settings with your ISP and try again.

Once the settings are correct, sending an email in Django is a piece of cake! We will
use send_mail to send the invitation email, but first, let's create a data model for
storing invitations.

The Invitation Data Model
An invitation consists of the following information:

Recipient name.
Recipient email.
The User object of the sender.

•

•

•

•

•

•

•

•

Chapter 10

[197]

We also need to store an activation code for the invitation. This code will be sent in
the invitation email. The code will serve two purposes:

Before accepting the invitation, we can use the code to verify that the
invitation actually exists in the database.
After accepting the invitation, we can use the code to retrieve the invitation
information from the database and create friendship relationships between
the sender and recipient.

With the above in mind, let's create the Invitation data model. Open bookmarks/
models.py and append the following code to it:

class Invitation(models.Model):
 name = models.CharField(maxlength=50)
 email = models.EmailField()
 code = models.CharField(maxlength=20)
 sender = models.ForeignKey(User)

 def __str__(self):
 return '%s, %s' % (self.sender.username, self.email)

 class Admin:
 pass

There shouldn't be anything new or difficult to understand in this model. We simply
defined fields for the recipient name, recipient email, activation code and the sender
of the invitation. We also created a __str__ method for debugging and enabled the
model in the administration interface. Do not forget to run manage.py syncdb to
create the new model's table in the database.

Next, we will add a method for sending the invitation email. The method will use
classes and methods from several packages, so put the following import statements
at the beginning of bookmarks/models.py, and append the send method to the
Invitation data model in the same file:

from django.core.mail import send_mail
from django.template.loader import get_template
from django.template import Context
from django.conf import settings
class Invitation(models.Model):
 [...]
 def send(self):
 subject = 'Invitation to join Django Bookmarks'
 link = 'http://%s/friend/accept/%s/' % (
 settings.SITE_HOST,
 self.code
)

•

•

Building User Networks

[198]

 template = get_template('invitation_email.txt')
 context = Context({
 'name': self.name,
 'link': link,
 'sender': self.sender.username,
 })
 message = template.render(context)
 send_mail(
 subject, message,
 settings.DEFAULT_FROM_EMAIL, [self.email]
)

The method works by loading a template called invitation_email.txt and
passing the following variables to it: the name of the recipient, the activation link and
the sender username. The template is then used to render the body of the invitation
email. After that, we used send_mail to send the email as we did during the
interactive session in the previous section.

There are several observations to make here:

The format of the activation link is: http://SITE_HOST/friend/accept/
CODE/. We will write a view to handle such URLs later in this section.
This is the first time we use a template to render something other than a web
page. As you can see, the template system is quite flexible and allows us to
build emails as well as web pages, or any other text for that matter.
We used the get_template and render methods to build the message body
as opposed to the usual render_to_response call. If you remember, this is
how we rendered templates early in the book. We are doing this here because
we are not rendering a web page.
The last parameter of send_mail is a list of recipient emails. Here we are
passing only one email address, but if you want to send the same email
to multiple users, you can pass all of the email addresses in one list to
send_mail.

Since the send method loads a template called invitation_email.txt, create a file
with this name in the templates folder, and insert the following content into it:

Hi {{ name }},

{{ sender }} invited you to join Django Bookmarks,
 a website where you can post and share your bookmarks with friends!

To accept the invitation, please click the link below:
{{ link }}

-- Django Bookmarks Team

•

•

•

•

Chapter 10

[199]

By writing the send method, our Invitation data model has become ready. We will
create a form that allows users to send invitations next.

The "Invite a Friend" Form and View
The next step in implementing the "invite a friend" feature is providing users with a
form to enter their friends' details and invite them. We will create this form now.
The task will be quite similar to compiling the forms that we have built throughout
this book.

First, let's create a Form class that represents our form. Open bookmarks/forms.py
and add this class to it:

class FriendInviteForm(forms.Form):
 name = forms.CharField(label='Friend\'s Name')
 email = forms.EmailField(label='Friend\'s Email')

This form is simple. We only ask the user to enter the friend's name and email. Let's
create a view to display and handle this form. Open bookmarks/views.py and
append the following code to it:

@login_required
def friend_invite(request):
 if request.method == 'POST':
 form = FriendInviteForm(request.POST)
 if form.is_valid():
 invitation = Invitation(
 name = form.clean_data['name'],
 email = form.clean_data['email'],
 code = User.objects.make_random_password(20),
 sender = request.user
)
 invitation.save()
 invitation.send()
 return HttpResponseRedirect('/friend/invite/')
 else:
 form = FriendInviteForm()

 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('friend_invite.html', variables)

Building User Networks

[200]

Again, the view is similar to other form processing views in our application. If a
valid form is submitted, it creates an Invitation object and sends it. We used a
method called make_random_password in User.objects to generate an activation
code for the invitation. This method can be used to create random passwords.
It takes the length of the password as a parameter, and returns a random
alphanumeric password.

After this, we will add a template for the view. Create a file called friend_invite.
html in the templates folder with the following code:

{% extends "base.html" %}

{% block title %}Invite A Friend{% endblock %}
{% block head %}Invite A Friend{% endblock %}

{% block content %}
Enter your friend name and email below,
 and click "send invite" to invite your friend to join the site:
<form method="post" action=".">
 {{ form.as_p }}
 <input type="submit" value="send invite" />
</form>
{% endblock %}

As you can see, the template displays a help message and the form below it.

Finally, we will add a URL entry for this view, so open urls.py and add the
highlighted line to it:

urlpatterns = patterns('',
 # Friends
 (r'^friends/(\w+)/$', friends_page),
 (r'^friend/add/$', friend_add),
 (r'^friend/invite/$', friend_invite),
)

Chapter 10

[201]

The "invite a friend" view is now ready. Open http://127.0.0.1:8000/friend/
invite/ in your browser, and you will see a form similar to the figure below:

Try to send an invitation to your email address. If everything is working correctly,
you should receive an invitation with an activation link similar to the figure below:

Building User Networks

[202]

We are half way through implementing the "invite a friend" feature. At the moment,
clicking the activation link produces a 404 page not found error, so we will write a
view to handle it next.

Handling Activation Links
We have achieved good progress; users are now able to send invitations to their
friends via email. The next step is building a mechanism for handling activation links
in invitations. Here is an outline of what we are going to do:

We will build a view that handles activation links. This view verifies that the
invitation code actually exists in the database, stores the invitation ID in the
user's session, and redirects to the registration page.
When the user registers an account, we check to see if they have an invitation
ID in their session. If this is the case, we retrieve the Invitation object for this
ID, and build friendship relationships between the user and the sender of
the invitation.

Let's start by writing a URL entry for the view. Open urls.py and add the
highlighted line to it:

urlpatterns = patterns('',
 # Friends
 (r'^friends/(\w+)/$', friends_page),
 (r'^friend/add/$', friend_add),
 (r'^friend/invite/$', friend_invite),
 (r'^friend/accept/(\w+)/$', friend_accept),
)

As you can see, the view follows the URL format sent in invitation emails. The
activation code is captured from the URL using a regular expression, and then it
will be passed to the view as a parameter. Next, we will write the view itself. Open
bookmarks/views.py and create the following view in it:

def friend_accept(request, code):
 invitation = get_object_or_404(Invitation, code__exact=code)
 request.session['invitation'] = invitation.id
 return HttpResponseRedirect('/register/')

The view is short and self-explanatory. It tries to retrieve the Invitation object that
corresponds to the requested code (generating a 404 error if the code does not exist).
After that, it stores the ID of the object in the user's session. Lastly, it redirects to the
registration page.

•

•

Chapter 10

[203]

This is the first time that we use sessions in our application. Django provides an
easy-to-use session framework to store and retrieve data for each visitor. Data is
stored on the server and can be accessed in views by using a dictionary-like object
available at request.session.

The session framework is enabled by default in settings.py. You can verify this by
looking for 'django.contrib.sessions' in the INSTALLED_APPS variable.

You can use request.session to do the following:

Store a key/value pair: request.session[key] = value
Retrieve a value by providing its key: value = request.session[key] This
raises KeyError if the key does not exist.
Check whether the session contains a particular key:
if key in request.session.

Each user has their own session dictionary. Sessions are useful for maintaining data
across requests, especially for anonymous users. Unlike cookies, sessions are stored
on the server-side so they cannot be tampered with.

All of these properties make sessions ideal for passing the invitation ID to the
register_page view. After this quick overview of the session framework, let's get
back to our current task. Now that the friend_accept view is ready, we will modify
the register_page view a little to make use of the invitation ID in the user's session.
If the ID exists, we will create friendship relations between the user and the sender,
and delete the invitation to prevent reusing it. Open bookmarks/views.py and add
the highlighted lines as below:

def register_page(request):
 if request.method == 'POST':
 form = RegistrationForm(request.POST)
 if form.is_valid():
 user = User.objects.create_user(
 username=form.clean_data['username'],
 password=form.clean_data['password1'],
 email=form.clean_data['email']
)
 if 'invitation' in request.session:
 # Retrieve the invitation object.
 invitation = \
 Invitation.objects.get(id=request.session['invitation'])
 # Create friendship from user to sender.
 friendship = Friendship(
 from_friend=user,

•

•

•

Building User Networks

[204]

 to_friend=invitation.sender
)
 friendship.save()
 # Create friendship from sender to user.
 friendship = Friendship (
 from_friend=invitation.sender,
 to_friend=user
)
 friendship.save()
 # Delete the invitation from the database and session.
 invitation.delete()
 del request.session['invitation']
 return HttpResponseRedirect('/register/success/')
 else:
 form = RegistrationForm()

 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('registration/register.html', variables)

The highlighted code should be easy to understand. It starts by checking for an
invitation ID in the user's session. If there is one, it creates friendship relationships in
both directions between the sender of the invitation and the current user. After that,
it deletes the invitation and removes its ID from the session.

Feel free to create a link to the "invite a friend" page. The Friends list page is a good
place to do so. Open templates/friends_page.html and add the highlighted
line below:

{% extends "base.html" %}

{% block title %}Friends for {{ username }}{% endblock %}
{% block head %}Friends for {{ username }}{% endblock %}

{% block content %}
 <h2>Friend List</h2>
 {% if friends %}
 <ul class="friends">
 {% for friend in friends %}

 {{ friend.username }}
 {% endfor %}

 {% else %}
 <p>No friends found.</p>
 {% endif %}
 Invite a friend!
 <h2>Latest Friend Bookmarks</h2>
 {% include 'bookmark_list.html' %}
{% endblock %}

Chapter 10

[205]

This should be all that we need to do to implement the "invite a friend" feature. It
was a bit long, but we were able to put various areas of our Django knowledge to
good use while implementing it. You can now click on the invitation link that you
received via email to see what happens. You will be redirected to the registration
page; create a new account there, log in and notice how the new account and your
original one have become friends with each other.

Improving the Interface with Messages
Although our implementation of user networks is working correctly, there is
something missing. The interface does not tell the user whether an operation
succeeded or failed. After sending an invitation, for example, the user is redirected
back to the invitation form, with no feedback on whether the operation was
successful or not. In this section, we are going to improve our interface by providing
status messages to the user after performing certain actions.

Displaying messages to users is done using the message API, which is part of the
authentication system. The API is simple; to create a message, you can use the
following call:

request.user.message_set.create(
 message='Message text goes here.'
)

This call will create a message and store it in the database. Available messages are
accessible from within templates through the variable messages. The following code
iterates over messages and displays them in a list:

{% if messages %}

 {% for message in messages %}
 {{ message }}
 {% endfor %}

{% endif %}

This information covers all that we need to utilize the message framework in our
project. Let's start by placing the template code above in the base template of our
application. Open templates/base.html and add the highlighted section below:

<body>
 <div id="nav">
 [...]
 </div>
 <h1>{% block head %}{% endblock %}</h1>

Building User Networks

[206]

 {% if messages %}
 <ul class="messages">
 {% for message in messages %}
 {{ message }}
 {% endfor %}

 {% endif %}
 {% block content %}{% endblock %}
</body>
</html>

We placed the code below the heading of the page. To give messages a distinctive
look, add the following CSS code to site_media/style.css:x

ul.messages {
 border: 1px dashed #000;
 margin: 1em 4em;
 padding: 1em;
}

And that's about it. We can now create messages and they will be displayed
automatically. Let's start with sending invitations. Open bookmarks/views.py and
modify the friend_invite view as follows:

@login_required
def friend_invite(request):
 if request.method == 'POST':
 form = FriendInviteForm(request.POST)
 if form.is_valid():
 invitation = Invitation(
 name = form.clean_data['name'],
 email = form.clean_data['email'],
 code = User.objects.make_random_password(20),
 sender = request.user
)
 invitation.save()
 try:
 invitation.send()
 request.user.message_set.create(
 message='An invitation was sent to %s.' % invitation.email
)
 except:
 request.user.message_set.create(
 message='There was an error while sending the invitation.'
)
 return HttpResponseRedirect('/friend/invite/')
 else:
 form = FriendInviteForm()

Chapter 10

[207]

 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('friend_invite.html', variables)

The highlighted code works as follows: send_mail raises an exception if it fails, so
we wrapped the call to invitation.send in a try/except block. The reader is then
notified accordingly:

You can try the new message system now. First, send an invitation and notice
how a message appears confirming the success of the operation. Next, change the
EMAIL_HOST option in settings.py to an invalid value and try sending an invitation
again. You should see a message indicating failure this time. Our interface is more
responsive now. Users know exactly what's going on.

You can do the same for the friend_add view. Open bookmarks/views.py and
modify the view like this:

@login_required
def friend_add(request):
 if request.GET.has_key('username'):
 friend = \
 get_object_or_404(User, username=request.GET['username'])

Building User Networks

[208]

 friendship = Friendship(
 from_friend=request.user,
 to_friend=friend
)
 try:
 friendship.save()
 request.user.message_set.create(
 message='%s was added to your friend list.' % friend.username
)
 except:
 request.user.message_set.create(
 message='%s is already a friend of yours.' % friend.username
)
 return HttpResponseRedirect(
'/friends/%s/' % request.user.username)
 else:
 raise Http404

The highlighted code displays a success message if the call to friendship.save was
successful. If an exception is thrown by the call, it means that the unique_together
condition was violated and that the requested username is already a friend of the
current user, so we display an error message saying so.

The message API is simple, yet effective. You can use it for all sorts of things, like
displaying status messages, errors, notifications, etc. Try to utilize it in other parts of
the application if you want, like after adding or editing a bookmark.

Summary
We developed an important set of features for our project in this chapter. Friend
networks are very important in helping users to socialize and share interests
together. These features are common in web 2.0 applications, and now you are able
to incorporate them into any Django web site.

Here is a quick summary of the Django features covered in this chapter:

To manually specify a name for the related attribute in a data model, pass
a keyword argument called related_name to the field that creates the
relationship between models.
You can specify several options for data models by defining a class called
Meta inside the data model. Some of the possible attributes in this class are:
db_table, ordering, permissions and unique_together.

•

•

Chapter 10

[209]

To send an email in Django, use the send_mail function. It's available from
the django.core.mail package.
The Django session framework provides a convenient way to store and
retrieve user data across requests. The request.session object provides a
dictionary-like interface to interact with session data.
To create a message, use the following method call:
request.user.message_set.create.
To display messages in a template, use the template variable messages.

In the next chapter, we will learn about improving various aspects of our application,
mainly performance and localization. We will also learn how to deploy our project
on a production server. The next chapter comes with a lot of useful information, so
read on!

•

•

•

•

Extending and Deploying
In this chapter, we are going to prepare the social bookmarking application for
deployment into production by utilizing various Django frameworks. We will add
support for multiple languages, improve performance by caching, automate testing,
and configure the project for a production environment. There is a lot of interesting
and useful information in this chapter, so make sure you go through it before
publishing your application online!

In this chapter, you will learn about the following:

Internationalization: Offering the site in multiple languages.
Caching: Improving the performance of your site during high traffic.
Unit testing: Automating the process of testing your application.
Deployment: How to configure your web site for a production environment.

Internationalization (i18n)
People won't use our application if they cannot read its pages. So far, we have been
concerned with English-speaking users only. However, there are people all over the
world who do not know English, or prefer to use their native language. To appeal
to those people, it would be a good idea to offer the interface of our application
in multiple languages. This would overcome the language barrier and open new
frontiers for our application, especially in regions where English knowledge is
not common.

As you may have guessed, Django provides all of the components needed to
translate a project into multiple languages. The system that is responsible for
providing this feature is called the internationalization system (i18n for short). The
process of translating a Django project is quite simple. You basically follow these
three steps:

•

•

•

•

Extending and Deploying

[212]

Specify what strings should be translated in your application. For example,
status and error messages are translatable, whereas usernames are not.
Create a translation file for each language you want to support.
Enable and configure the i18n system.

We will go through each step in detail during the next subsections. By the end of this
section of the chapter, our application will support multiple languages, and you will
be able to translate any other Django project with ease.

Marking Strings as Translatable
The first step in translating an application is telling Django what strings should be
translated. Generally speaking, strings that are part of views and templates need to
be translated, while strings that are entered by the user do not need to be. Marking a
string as translatable is done with a function call. The name of the function and how
it is called depends on where the string is located: in a view, template, model,
or form.

This step is much easier than it initially looks. Let's learn about it by example. We
will translate the "invite friend" functionality in our application. The process of
translating the rest of the application will be exactly the same. Open bookmarks/
views.py and make the highlighted changes to the friend_invite view:

from django.utils.translation import gettext as _
@login_required
def friend_invite(request):
 if request.method == 'POST':
 form = FriendInviteForm(request.POST)
 if form.is_valid():
 invitation = Invitation(
 name = form.clean_data['name'],
 email = form.clean_data['email'],
 code = User.objects.make_random_password(20),
 sender = request.user
)
 invitation.save()
 try:
 invitation.send()
 request.user.message_set.create(
 message= \
 _('An invitation was sent to %s.') % invitation.email
)

•

•

•

Chapter 11

[213]

 except:
 request.user.message_set.create(
 message= \
 _('There was an error while sending the invitation.')
)
 return HttpResponseRedirect('/friend/invite/')
 else:
 form = FriendInviteForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('friend_invite.html', variables)

As you can see, the changes are minimal:

We imported a function called gettext from django.utils.translation.
We used the as keyword to assign a shorter name to the function (_ the
underscore character). We did so because this function will be used to mark
strings as translatable in views, and since this is a very common task, it's a
good idea to give the function a shorter name.
We marked a string as translatable simply by passing it to the _ function.

That was pretty simple, wasn't it? There is one little observation to make here. The
first message uses string formatting, and we applied the % operator after calling
the _ function. This is necessary to avoid translating the email address. It's also
preferable to use named formats, which gives greater control while doing the actual
translation later. So you may want to do something like this:

message= \
 _('An invitation was sent to %(email)s.') % {
'email': invitation.email}

Now that we know how to mark strings as translatable in views, let's move to
templates. Open friend_invite.html in the templates folder and modify it
as follows:

{% extends "base.html" %}
{% load i18n %}

{% block title %}{% trans 'Invite A Friend' %}{% endblock %}
{% block head %}{% trans 'Invite A Friend' %}{% endblock %}

{% block content %}
{% trans 'Enter your friend name and email below, and click
 "send invite" to invite your friend to join the site:' %}
<form method="post" action=".">

•

•

•

Extending and Deploying

[214]

 {{ form.as_p }}
 <input type="submit" value="{% trans 'send invite' %}" />
</form>
{% endblock %}

Here we placed {% load i18n %} at the beginning of the template to give it access
to translation tags. The load tag is usually used to enable additional template tags
that are not available by default. You need to place it near the top of every template
that uses translation tags. i18n is shorthand for internationalization, which is the
name of the Django framework that provides translation features.

Next, we used a template tag called trans to mark strings as translatable. This
template tag works exactly the same as the gettext function in views. It's worth
noting that the trans tag does not work if the string contains a template variable. In
this case, you would need to use the blocktrans tag like this:

{% blocktrans %}This tag may have a {{ variable }}
 inside.{% endblocktrans %}

Now you know how to deal with translatable strings in templates too. So let's move
to forms and models. Marking a string as translatable in a form or model is slightly
different from views. To learn how it is done, open bookmarks/forms.py and
modify the FriendInvite form like this:

from django.utils.translation import gettext_lazy as _

class FriendInviteForm(forms.Form):
 name = forms.CharField(label=_("Friend's Name"))
 email = forms.EmailField(label=_("Friend's Email"))

The only difference here is that we imported gettext_lazy instead of gettext.
gettext_lazy delays translating the string until its return value is accessed. This
is needed here because the attributes of the form are created only once when the
application is started. If we use the normal gettext function, the translated labels
will be stored in the form attributes using the default language (usually English)
and will never be translated again. However, if we use gettext_lazy, the function
will return a special object that will translate the string every time it is accessed, and
hence the translation will be done correctly. This feature makes the gettext_lazy
function ideal for form and model attributes.

With this, we finish marking the strings of the "invite friend" view for translation. To
help you remember what's covered in this subsection, here is a quick summary of the
techniques used to mark translatable strings:

In views, mark translatable strings using the gettext function (usually
imported as _).

•

Chapter 11

[215]

In templates, mark translatable strings using the trans template tag for
strings that do not contain variables, and blocktrans for strings that do.
In forms and models, mark translatable strings using the gettext_lazy
function (usually imported as _).

Of course, there are special cases that may need to be handled separately. For
example, you may want to translate default parameter values in views using
gettext_lazy instead of gettext. As long as you understand the difference
between these two functions, you should be able to decide when you need to do so.

Creating Translation Files
Now that we have finished marking strings for translation, the next step is creating
a translation file for each language that we want to support. This file contains all
translatable strings along with their translations, and is created using a utility
provided by Django.

Let's create a translation file. First you need to locate a file named make-messages.
py in the bin directory inside your Django installation folder. The easiest way to find
it is using the search functionality in your operating system. Once you find it, copy it
to your system path (/usr/bin/ in Linux and Mac OS X. c:\windows\ in Windows).
Also, make sure it is executable by running the following command in Linux and
Mac OS X (this step is not needed for Windows users):

$ sudo chmod +x /usr/bin/make-messages.py

The make-messages.py utility uses a software package called GNU gettext to extract
translatable strings from source code. So you need to install this package. For Linux,
search for the package in your package manager and install it. Windows users will
find an installer for the package at:

http://gnuwin32.sourceforge.net/packages/gettext.htm

And finally, Mac OS X users will find a version of the package for their operating
system along with installation instructions at:

http://gettext.darwinports.com/

Once you have the GNU gettext package installed, open a terminal, go to your
project folder, create a folder called locale there, and then run the following
command:

$ make-messages.py -l de

•

•

Extending and Deploying

[216]

This command creates a translation file for the German language. de is the language
code for German. If you want to target another language, put its language code
instead of de, and continue to do so during the rest of the chapter. In addition, if
you want to support more than one language, run the previous command for each
language, and apply the instructions in the rest of this section to all languages.

Once you run the above command, it will create a file called django.po at locale/
de/LC_MESSAGES/. This is the translation file for the German language. Open it in
a text editor to see what it looks like. The file starts with some meta data, such as
creation date and character set. After that, you will find an entry for each translatable
string. Each entry consists of the filename and line number of the string, the string
itself, and an empty string below it where the translation should go. Here is a sample
entry from the file:

#: bookmarks/forms.py:62
msgid "Friend's Name"
msgstr ""

To translate the string, simply use your text editor to type the translation in the
empty string on the third line. You can also use a specialized translation editor such
as poEdit (available for all major operating systems at http://www.poedit.net/),
but for our simple file, a regular text editor should suffice. Make sure you put a valid
character set in the meta data section of the file. I recommend using UTF-8:

"Content-Type: text/plain; charset=UTF-8\n"

You may notice that the translation file contains some strings from the admin
interface. This is because the admin template admin/base_site.html uses the trans
template tag to mark its strings as translatable. There is no need to translate these
strings; Django already comes with translation files for them.

Once done translating, you need to compile the translation file into a format that
Django can use. This is done by using another utility provided by Django called
compile-messages.py. Locate, move this file to your system path, and make sure it
is executable by following the same procedure as we did with make-messages.py.
Next, run the following command from within your project folder:

$ compile-messages.py

If the utility complains about an error in the file (such as a missing quotation mark),
correct the error and try again. Once successful, the utility will create a compiled
translation file called django.mo in the same folder, and everything will be set for the
next step in this section.

Chapter 11

[217]

Enabling and Configuring the i18n System
Django comes with the i18n system enabled by default. You can verify this by
searching for the following line in settings.py:

USE_I18N = True

There are two ways to configure the i18n system. You can either set the language
globally for all users, or let users specify their preferred languages individually. We
will see how to do both of the two methods in this subsection.

To set the active language globally, find the variable called LANGUAGE_CODE in
settings.py and assign your preferred language code to it. For example, if you
want to set German as the default language for our project, change the language change the language
code as follows::

LANGUAGE_CODE = 'de'

Now start the development server if it's not already running, and navigate to the
"invite friend" page. There, you will find that the strings have changed according to
what you entered in the German translation file. Now change the value of LANGUAGE_
CODE to 'en' and notice how the page reverts back to English.

The second configuration method is letting users choose the language. To do so, we
should enable a class called LocaleMiddleware. To put it simply, a middleware is a
class that processes a request or response object. Many components of Django make
use of middleware classes to implement features. To see this, open settings.py and
search for MIDDLEWARE_CLASSES. You will find a list of strings there and one of them
will be 'django.contrib.sessions.middleware.SessionMiddleware', which
attaches session data to the request object. We don't need to learn how middleware
classes are implemented before using them. To enable the LocaleMiddleware,
simply add its class path to the MIDDLEWARE_CLASSES list. Make sure you put
LocaleMiddleware after SessionMiddleware, because the locale middleware
utilizes the session API as we will see next. Open settings.py and modify as
highlighted below:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.middleware.doc.XViewMiddleware',
 'django.middleware.locale.LocaleMiddleware',

)

Extending and Deploying

[218]

The locale middleware determines the active language for the user by following
these steps:

It looks for a key named django_language in session data.
If the key does not exist, it looks for a cookie called django_language.
If the cookie does not exist, it looks at the language codes in the Accept-
Language HTTP header. This header is sent by the browser to the web server
indicating which languages you would prefer to receive content in.
If all else fails, the LANGUAGE_CODE variable in settings.py is used.

In all of the above steps, Django looks for a language code that matches one of
the available translation files. To effectively utilize the locale middleware, we
need a view that enables the user to choose a language, and updates session data
accordingly. Fortunately, Django already comes with such a view for us to use. The
view is called setlanguage and it expects a language code in a GET variable called
language. It updates session data using this variable, and redirects to the originating
page. To enable this view, edit urls.py and add the highlighted lines below:

urlpatterns = patterns('',
 # i18n

 (r'^i18n/', include('django.conf.urls.i18n')),

)

Adding the above line is similar to how we added URL entries for the admin
interface. If you recall from a previous chapter, the include function can be used to
include URL entries from another application under a specific path. Now, we can let
the user change the language to German by providing a link like: /i18n/setlang/
language=de. We will modify the base template to add such links in all pages. Open
templates/base.html and add the highlighted lines to it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
 [...]
</head>

<body>
 [...]
 <div id="footer">
 Django Bookmarks

 Languages:
 en
 de

•

•

•

•

Chapter 11

[219]

 </div>

</body>
</html>

Additionally, we will style the new footer by appending the following CSS code to
site_media/style.css:

#footer {
 margin-top: 2em;
 text-align: center;
}

Now the i18n functionality of our application is ready. Point your browser to the
"invite friend" page and try the new language links at the bottom of the page. The
language should change according to which link is clicked.

Before we conclude this section, there are a few observations to make:

You can access the currently active language in views using the request.
LANGUAGE_CODE attribute.
Django itself is translated into a large number of languages. You can see
this by triggering a form error while a language other than English is active.
Error messages will appear in the selected language even though you didn't
translate them yourself.
In templates, when RequestContext is used, the currently-active language is
accessible using the template variable LANGUAGE_CODE.

This section was a bit long, but we learned a very important feature from it. By
offering our application in multiple languages, we make it accessible to a broader
audience, which gives it greater potential to attract more and more users. This
actually applies to any web application, and now you are able to translate any
Django project into multiple languages with ease.

The next section shifts to a different topic. When the user base of your application
grows, the load on your server will increase, and you will start to look for ways to
improve the performance of your application. This is where caching comes to rescue.
So please read on to learn about this very useful technique!

Improving Performance with Caching
Pages of web applications are dynamically generated. Code is executed to process
user input, and generate output every time a page is requested. There are a lot of
overheads involved in generating dynamic pages, especially when compared to
serving static HTML files. The code may connect to a database, perform expensive

•

•

•

Extending and Deploying

[220]

calculations, process files and so on. At the same time, being able to generate pages
with code is exactly what makes a website dynamic and interactive. Wouldn't it be
great if we could get the best of both worlds? This is what caching does, and it's a
feature that is implemented in most sites with medium to high traffic.

When a page is requested, caching works by storing the generated HTML of the
page, and reusing it later when the same page is requested again. This cuts a lot of
overheads by avoiding having to generate the same page over and over. Of course,
cached pages are not stored forever. When a page is cached, an expiration period
is set for the cache. When the cached page expires, it is deleted and the page is
generated and cached again. The expiration period is usually between a few seconds
and a few minutes, depending on the traffic of the site. The expiration period ensures
that the cache is updated periodically, and that users receive content updates, while
at the same time reducing the overhead of generating pages.

Although caching is most useful for medium to high traffic sites, sites with low traffic
can also benefit from it. If the site happens to receive a surge of high traffic suddenly,
perhaps because it was featured on a major news site, you can enable caching to
reduce the server load and help your website survive the surge of high traffic. Later
when the traffic calms down, you can turn off caching. So caching is also useful for
small websites. You never know when you may need it, so you'd better have this
information ready.

Enabling Caching
We will start this section by enabling the caching system. To use caching, you first
need to choose a caching backend, and specify your choice in a variable called
CACHE_BACKEND in settings.py. The contents of this variable depend on what
caching backend you choose. Some of the available options are:

Simple Caching
Cache data is stored in process memory. This is only useful to test the caching system
during development, but must not be used in production. To enable it, add the
following to settings.py:

CACHE_BACKEND = 'simple:///'

Database Caching
Cache data is stored in a database table. To create the cache table, run the
following command:

$ python manage.py createcachetable cache_table

Chapter 11

[221]

And then add the following to settings.py:

CACHE_BACKEND = 'db://cache_table'

Here the cache table was called cache_table. You can call it whatever you want, as
long as it doesn't conflict with an existing table.

File System Caching
Cache data is stored in the local file system. To use it, add the following to
settings.py:

CACHE_BACKEND = 'file:///tmp/django_cache'

Here, /tmp/django_cache is used to store cache files. You can specify another path
if you like.

Memcached
Memcached is an advanced, highly efficient and fast caching framework. Installing
and configuring it is beyond the scope of this book, but if you already have a
Memcached server available, you can specify its IP and port in settings.py
like this:

CACHE_BACKEND = 'memcached://ip:port/'

If you are not sure what backend to choose for this section, go with simple
caching. In reality however, if you are caught in a sudden surge of traffic and
want to improve server performance, go with Memcached or database caching,
depending on what's available to you on the server. On the other hand, if you have
a website with medium to high traffic, I highly recommend using Memcached, as
it is definitely the fastest caching solution available for Django. The information
presented in this section works the same regardless of what caching backend
you choose.

So decide on a caching backend and insert the corresponding CACHE_BACKEND
variable in settings.py. Next, you should specify the expiration duration of cached
pages in seconds. Add the following to settings.py to cache pages for five minutes:

CACHE_MIDDLEWARE_SECONDS = 60 * 5

And we are done with enabling the caching system. Continue reading to learn how
to utilize caching to improve the performance of your application.

Extending and Deploying

[222]

Configuring Caching
You can configure Django to cache your whole site or specific views. We will learn
how to do both in this subsection.

Caching the Whole Site
To cache your whole site, add the CacheMiddleware class to your MIDDLEWARE_
CLASSES in settings.py:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.middleware.cache.CacheMiddleware',

 'django.middleware.doc.XViewMiddleware',
 'django.middleware.locale.LocaleMiddleware',
)

Order matters here as it did when we added the locale middleware. The caching
middleware class should be added after the session and authentication middleware
classes, and before the locale middleware class.

This is all that you need to cache your Django site. From now on, whenever a page
is requested, Django will store the generated HTML and reuse it later. It's important
to realize that the caching system only caches pages that do not have GET and POST
variables. So our users will still be able to post bookmarks and add friends, because
the views of these pages expect GET or POST variables. On the other hand, pages such
as bookmark and tag listings will be cached.

Caching Specific Views
Sometimes you will want to cache only specific pages of your website. Perhaps a
high traffic site linked to a page on yours, so most of the traffic will be directed to this
particular page. In this case, it would make sense to cache this page only. Another
good candidate for caching is a page that is expensive to generate, so you would
only want it to be generated once every five minutes or so. The tag cloud page in
our application fits the latter case. Every time the page is requested, Django iterates
through all tags in the database and counts the number of bookmarks for each
tag. This is an expensive operation because it requires a large number of database
queries. Therefore, caching this view is a good idea.

Chapter 11

[223]

To cache the tag_cloud_page view, you simply apply a decorator called
cache_page on it. Try this by editing bookmarks/views.py as highlighted below:

from django.views.decorators.cache import cache_page

@cache_page

def tag_cloud_page(request):
[...]

Using the cache_page decorator is straightforward. It lets you specify which views
to cache. The rules mentioned in site caching also apply to view caching. If the view
receives GET or POST parameters, Django won't cache it.

With this information, we finish the section. Caching won't be necessary when you
first release your website to the public. But when your website grows, or if you
suddenly receive a surge of high traffic, the caching system will certainly become
handy. So keep it in mind while monitoring the performance of your application.

Next, we are going to learn about the Django testing framework. Testing can
sometimes be a tedious task. Wouldn't be it be great if you could run a single
command and it took care of testing your site? Django lets you do this, and we will
learn about it in the next section.

Unit Testing
During the course of this book, we sometimes had to modify a view that we wrote
previously. This actually happens quite often while developing software. One may
modify or even rewrite a function to change implementation details, or because
the requirements have changed, or simply to re-factor the code and make it
more readable.

When you modify a function, you have to test it again to make sure that your
changes didn't introduce bugs. However, testing will become a boring task if you
have to repeat the same tests over and over every time you modify a function. You
may also forget to test all aspects of the function if they are not well documented.
Clearly, this is not an ideal situation; we definitely need a better mechanism to
handle testing.

Fortunately, a solution already exists for this. It is called unit testing. The idea is that
you write code to test your code. The testing code calls your functions and verifies
that they behave as expected, and then prints a report of the results. You only have
to write the testing code once. Later, whenever you want to test, you simply run the
testing code and examine the resulting report.

Extending and Deploying

[224]

Python comes with a framework for unit testing. It is located in the unittest
module. Django extends this framework to add support for view testing. We will
learn how to use the Django unit testing framework in this section.

The Test Client
In order to interact with views, Django provides a class that emulates browser
functionality. You can use it to send requests to your application and receive the
responses. Let's learn about it by using the interactive console. Launch the console
using this command:

$ python manage.py shell

Import the Client class, create a Client object, and retrieve the homepage of the
application using a GET request:

>>> from django.test.client import Client
>>> client = Client()
>>> response = client.get('/')
>>> print response

Vary: Accept-Language, Cookie
Content-Type: text/html; charset=utf-8
Content-Language: en-us
[... more headers ...]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
 <title>Django Bookmarks | Welcome to Django Bookmarks</title>
[... more HTML ...]

Try to send a POST request to the login view. The output will vary depending on
whether you provide correct credentials or not:

>>> print client.post('/login/',
 {'username': 'your_username', 'password': 'your_password'})

Finally, if there is a view that is restricted to logged in users only, you can send a
request to it like this:

>>> print client.login
 ('/friend/invite/', 'your_username', 'your_password')

Chapter 11

[225]

As you can see from the interactive session, the Client class provides three methods:

get sends a GET request to a view. Takes the URL of the view as a parameter.
You can pass an optional dictionary of GET variables to this method.
post sends a POST request to a view. Takes the URL of the view and a
dictionary of POST variables as parameters.
login sends a GET request to a view that is restricted to logged in
users only. It takes the URL of the view, a username, and a password
as parameters.

The Client class is stateful, which means that it retains its state across requests.
Once you login, later requests will be handled while you are logged in too.

The response object returned by the Client class's methods has contains the
following attributes:

status_code: The HTTP status of the response.
content: The body of response page.
template: The Template instance used to render the page. If multiple
templates were used, this attribute would be a list of Template objects.
context: The Context object used to render the template.

These fields are useful in checking whether the test succeeded or failed as we will
see next.

Feel free to experiment more with the Client class. It's important to understand how
it works before you continue to the next subsection, in which we will create the first
unit test.

Testing the Registration View
Now that you are comfortable with the Client class, let's write our first test. Unit
tests should reside in a module named tests.py inside the application folder. Each
test should be a method in a class derived from django.test.TestCase. The name
of the method must start with the word test. With this in mind, we will write a test
method that tries to register a new user account. So create a file named tests.py
inside the bookmarks folder, and type the following content into it:

from django.test import TestCase
from django.test.client import Client

class ViewTest(TestCase):
 def setUp(self):

•

•

•

•

•

•

•

Extending and Deploying

[226]

 self.client = Client()

 def test_register_page(self):
 data = {
 'username': 'test_user',
 'email': 'test_user@example.com',
 'password1': 'pass123',
 'password2': 'pass123'
 }
 response = self.client.post('/register/', data)
 self.assertEqual(response.status_code, 302)

Let's go through the code line by line:

First, we imported the TestCase and Client classes.
Next, we defined a class called ViewTest, derived from the TestCase class.
As I said earlier, all test classes must be derived from this base class.
After that, we defined a method called setUp. This method is called when the
testing process starts. Here we created a Client object.
Finally, we defined a method called test_register_page. The name of
the method starts with the word test, indicating that it is a test method. The
method sends a POST request to the registration view, and checks the status
code for equality with the number 302. This number is the HTTP status for a
redirect. If you recall from a previous chapter, the registration view redirects
the user if the request succeeds.

We checked the response object using a method called assertEqual. This method is
inherited from the TestCase class. It raises an exception if the two passed arguments
are not equal. If an exception is raised, the testing framework knows that the test
failed; otherwise, if no exception is raised, it assumes that the test succeeded.

The TestCase class provides a set of methods to be used in testing. Here is a list of
the important ones:

assertEqual expects two values to be equal.
assertNotEquals expects two values to be unequal.
assertTrue expects a value to be True.
assertFalse expects a value to be False.

Now that you understand the test class, let's run the actual test by issuing
the command:

$ python manage.py test

•

•

•

•

•

•

•

•

Chapter 11

[227]

The output will be similar to the following:

Creating test database...
Creating table auth_message
Creating table auth_group
Creating table auth_user
Creating table auth_permission
[...]
Loading 'initial_data' fixtures...
No fixtures found.
.

Ran 1 test in 0.170s

OK
Destroying test database...

So what has happened here? The testing framework starts by creating a test database
with tables similar to those in the real database. Next, it runs the tests found in the
tests module. Finally, it prints a report of the results and destroys the test database.

Here, our single test succeeded. To see what the output would be like if the test
fails, modify the test_register_page view in tests.py by removing a required
form field:

 def test_register_page(self):
 data = {
 'username': 'test_user',
 'email': 'test_user@example.com',
 'password1': '1',
 # 'password2': '1'
 }
 response = self.client.post('/register/', data)
 self.assertEqual(response.status_code, 302)

Now run python manage.py test again to see the results:

===
FAIL: test_register_page (django_bookmarks.bookmarks.tests.ViewTest)

Traceback (most recent call last):
 File "django_bookmarks/bookmarks/tests.py", line 19, in test_
register_page
 self.assertEqual(response.status_code, 302)
AssertionError: 200 != 302

Ran 1 test in 0.170s

FAILED (failures=1)

Extending and Deploying

[228]

Our test is working! Django detected an error and gave us the exact details of what
happened. Don't forget to return the test to its original form once done.

Now let's write another test, a slightly more advanced one, to understand the testing
framework better.

Testing the "Save Bookmark" View
Now we will add another testing method to ViewTest class. This time we will try to
log in to a user account, post a bookmark, and verify that the bookmark appears on
the user's page. Open bookmarks/tests.py and append the following method to
the ViewTest class (replacing your_username and your_password with your
actual credentials):

class ViewTest(TestCase):
 [...]
 def test_bookmark_save(self):
 response = self.client.login(
 '/save/', 'your_username', 'your_password'
)
 self.assertTrue(response)

 data = {
 'url': 'http://www.example.com/',
 'title': 'Test URL',
 'tags': 'test-tag'
 }
 response = self.client.post('/save/', data)
 self.assertEqual(response.status_code, 302)

 response = self.client.get('/user/your_username/')
 self.assertTrue('http://www.example.com/' in response.content)
 self.assertTrue('Test URL' in response.content)
 self.assertTrue('test-tag' in response.content)

This method does three related tests:

Since the bookmark_save view requires logging in, the method starts
by calling login on the Client object, and verifies that logging in
was successful.
Next, the method tries to save a bookmark by sending a POST request to
bookmark_save. It verifies that the request succeeded by checking for a
redirect response status.
Lastly, the method retrieves the user page using a GET request, and verifies
that the new bookmark appears on it.

•

•

•

Chapter 11

[229]

If you try the test, it will fail with the following message:

The method failed to log in, but why? As we saw in the output of the previous test,
Django creates a separate database for testing. The contents of the real database
are not transferred to the test database. And because of this, the tests are run on an
empty database. Therefore, the new test method fails to log in, as the database does
not contain any users.

To solve this, we will make use of a Django feature called fixtures. This feature
allows us to automatically insert content into a database when it is created.

To use fixtures, we will first dump the contents of the real database into a text file.
Run the following command to do so:

$ python manage.py dumpdata > test_data.json

Next, add the highlighted line to the ViewTest class in bookmarks/tests.py:

class ViewTest(TestCase):
 fixtures = ['test_data.json']

And this should be it. Now when you run python manage.py test, Django will
create a test database, load the data of test_data.json into it, and then run the test
methods. The test should have succeeded this time, which means that everything is
working as expected.

Extending and Deploying

[230]

There are many other scenarios for which you can write unit tests:

Checking whether registration fails if the two password fields do not match.
Testing the "add friend" and "invite friend" views.
Testing the "edit bookmark" functionality.
Testing that search returns correct results.

The above are just examples. Writing unit tests to cover as many use cases as
possible is important for maintaining a healthy application and minimizing bugs and
regressions. The more unit tests you write, the more confident you can be when your
application passes all of the tests. Django makes it extremely easy to unit-test your
application, so make use of this fact.

At some point in the application's life, it will move from the development mode
to production. The next section explains how to prepare your Django project for a
production environment.

Deploying Django
So you have done a lot of work on your web application, and now it is the time
to go live. To make sure that the transition from development to production goes
smoothly, there are a number of changes that must be made to the application before
it goes live. This section covers these changes to help make the launch of your web
application successful.

The Production Web Server
We have been using the development web server that comes with Django
throughout this book. While this server is perfect for the development process, it's
definitely not intended to be a production web server, as it wasn't developed with
security or performance in mind. Therefore, it is certainly not suitable for production.

There are several options to choose from when it comes to the web server, but
Apache is by far the most popular choice, and the Django development team actually
recommends it. The details of how to set up Django with Apache depend on your
hosting solution. Some hosting plans offer preconfigured Django hosting where you
only have to copy your project files to the server, whereas other hosting plans give
you the freedom to configure everything yourself.

The details of setting up Apache vary depending on a number of factors, and are
beyond the scope of this book. If you end up having to configure Apache yourself,
consult Django documentation online at http://www.djangoproject.com/
documentation/apache_auth/ for detailed instructions.

•

•

•

•

Chapter 11

[231]

The Production Database
So far, we have been using SQLite as our database engine. It is simple and does
not require a resident server in memory. SQLite will perform fine in production
mode for small websites. However, it is highly recommended that you switch to a
database engine that uses the client/server model in production. As we saw in an
earlier chapter, Django supports several database engines, including all the popular
ones. The Django team recommends PostgreSQL, but MySQL should be fine as
well. Regardless of your choice, you only have to change the database options in
settings.py to switch to a different database engine. If you want to use MySQL;
create a database, username and password for Django, then change the DATABASE_*
variables accordingly. Everything else remains the same. This is the whole point of
the Django database layer.

Turning Off Debug Mode
Whenever an error occurs during development, Django presents a detailed error
page with a lot of useful information. However, when you go into production, you
don't want your users to see such information. Apart from confusing your users,
you risk exposing your website to security problems if you let strangers see
such information.

Turning off debug mode is pretty easy. Open settings.py, and change the variable
DEBUG to False:

DEBUG = False

Disabling debug information carries an additional benefit; you improve performance
because Django doesn't have to keep track of debug data in order to display it.

Changing Configuration Variables
There are many configuration variables that need to be created or updated for
production. One of them is Admins, which holds the names and email addresses
of site administrators. You will find it in settings.py commented out like this:

ADMINS = (
 # ('Your Name', 'your_email@domain.com'),
)

Insert your name and email here and remove the # symbol to uncomment it, to
receive email notifications of code errors when they occur.

Extending and Deploying

[232]

Since the email server of your production server most likely differs from your
development machine, you may want to update email configuration variables.
Look for the following variables in settings.py and update them:

EMAIL_HOST.
EMAIL_PORT.
EMAIL_HOST_USER.
EMAIL_HOST_PASSWORD.

Also, your web application now has its own domain name, so you need to update
the following settings to reflect this: SITE_HOST and DEFAULT_FROM_EMAIL.

Finally, if you are using caching, make sure you have the correct setting in CACHE_
BACKEND (ideally, memcached); you don't want the development backend to be here
while you are in production.

Setting Error Pages
With debug mode disabled, you should create templates for error pages, particularly
these two files:

404.html: This template will be displayed when the requested URL does not
exist; in other words, when a page was not found.
500.html: This template will be displayed when an internal server error
happens, such as an uncaught exception.

Create the two files with whatever content you like. You can, for example, put
a "Page not found" message in the 404.html template, or a search form. It is
recommended that you give these templates a consistent look by deriving them from
the base template of your site. Put the templates in the top level of your templates
folder, and Django will automatically use them.

This should cover the configuration changes that are essential for production. Of
course, the section is not conclusive and there are other settings that you may be
interested in. You can, for example, configure Django to notify you via email when
a requested page is not found, or provide a list of IP addresses that can see debug
information. For these and more, refer to Django documentation on settings.py.
Hopefully, this section will make your transition from development to production
much smoother.

•

•

•

•

•

•

Chapter 11

[233]

Summary
This chapter covered a variety of interesting topics. We learned about several Django
frameworks that are useful when deploying Django. We also learned how to move
a Django project from development to a production environment. Notably, the
frameworks that we learned about are all very easy to use, so you will be able to
effectively utilize them in your future projects.

Here is a quick summary of the Django features explained in this chapter:

To mark a string for translation, use the gettext or gettext_lazy functions
in views, models and forms, and the trans and blocktrans template tags
in templates.
To create and compile a language file, use the make-messages.py and
compile-messages.py utilities.
You can change the language of the site globally by creating a configuration
variable named LANGUAGE_CODE in settings.py, or per user by enabling the
LocaleMiddleware class and the setlanguage view.
The caching system allows you to speed up your website during heavy load.
To enable it, choose a caching backend and put it in the CACHE_BACKEND
variable in settings.py. Also, set the expiration period in seconds using the
CACHE_MIDDLEWARE_SECONDS variable in settings.py.
To cache your whole site, enable the CacheMiddleware class.
To cache a specific view, use the cache_page decorator.
Unit testing is a framework that allows you to automate tests for your site.
Tests should be written in a module named tests inside the application
package. Test classes should be derived from django.test.TestCase.
Names of testing methods should start with the word test.
The Client class is quite useful for writing tests. It provides three methods—
get to send a GET request, post to send a POST request, and login to send a
get request to a page that requires login.
To run tests, issue the command: $ python manage.py test

•

•

•

•

•

•

•

•

•

What Next?
In this book, we went through the process of building a social bookmarking
application from the ground up using Django as our framework. We covered a
lot of topics related to Web 2.0 and social applications, as well as many Django
components. Although the tutorial is finished, there are some Django elements that
weren't discussed in the book. This chapter serves as an overview of those elements.
It only gives brief introductions and does not go into details, but you can always
refer to the online documentation of Django if you want to learn more about a
particular feature or component. The idea behind this chapter is to tell you about
what is available, so that you know what aspect to research if you need to implement
a feature that wasn't covered in the book.

In this chapter, you will learn about the following:

The following Django features:
Custom template tags and filters.
Model managers and custom SQL.
Generic views.
Some components from the Django standard library.

The following Web 2.0 features that you can implement into our project:
Subscription system.
Message system.
User scores.

•

°

°

°

°

•

°

°

°

What Next?

[236]

Custom Template Tags and Filters
The Django template system comes with many template tags and filters that make
writing templates an easy and flexible job. Sometimes however, you may wish to
extend the template system with your own tags and filters. This usually happens
when you find yourself repeating the same tag structure many times, and you wish
to wrap the structure into a single tag. Or maybe there is a filter that you want to add
to the template system. The pagination system that we wrote in Chapter 9 is a good
example of this. Each time we wanted to include the paginator in a page, we had to
use the same structure of template tags. It would be cleaner and easier if we could
wrap the paginator into a single template tag.

Guess what? Django already allows you to do so, and it is quite easy too! You
basically add a new package to your application called templatetags, and put
modules that contain tags and filters in it. Let's learn about this by adding a filter
that capitalizes a string. Add a folder called templatetags to the bookmarks folder,
and put an empty file called __init__.py in it so that Python treats the folder as
a package. Now create a module called bookmarks_filters in it. We are going to
write our filter in this module. Here is an illustration of the directory structure:

django_bookmarks/
 bookmarks/
 templatetags/
 __init__.py
 bookmarks_filters.py

Now add the following code to bookmarks_filters.py:

from django import template

register = template.Library()

@register.filter
def capitalize(value):
 return value.capitalize()

register is an object that can be used to introduce new tags and filters to the
template system. Here we used the register.filter decorator to add the function
capitalize as a filter.

To use the new filter from within a template, put the following line near the
beginning of your template file:

{% load bookmarks_filters %}

And then, you can use the new filter just like any other filter offered by Django:

Hi {{ name|capitalize }}!

Chapter 12

[237]

Adding custom template tags works in a similar way to filters. Basically, you
define methods to process the tag, and then register the tag to make it available to
templates. The process is slightly more involved however, because tags can be more
complicated than filters. Further information about custom template tags is available
in the Django online documentation.

Model Managers and Custom SQL
The Django model and database APIs are very powerful. We used them to construct
a variety of query sets throughout the book. Most of the time, these APIs will be
sufficient for your needs. There are times, however, when the task at hand requires
raw SQL power. For example, you may want to use SQL aggregate functions
such as sum or avg to obtain certain types of information from the database. The
database layer of Django does not provide methods that offer similar functionality to
aggregate functions at the time being. To overcome this, Django enables you to send
raw SQL to your database for such special situations.

To send SQL queries to the database in Django, use the following code:

from django.db import connection

query = '-- SQL code goes here. --'
cursor = connection.cursor()
cursor.execute(query)

If you use a SELECT query, you can retrieve the returned rows using:

rows = cursor.fetchall()

rows is a list of rows. Each row is a list of values that map to columns in the SELECT
query. You can use a normal for loop to iterate through the returned rows.

You need to take extra caution while working with raw SQL, as it may introduce
security or performance problems. In general, avoid using SQL unless you absolutely
have to. If the query is built from variables, the execute method provides a way to
escape those variables to avoid SQL injection. Use the format sequence %s to indicate
the positions of the variables in the query, and then pass the variables in a tuple as
the second argument to execute. Here is an example:

cursor.execute(
'SELECT * FROM auth_user WHERE username = \
 %s AND password = %s', (username, email))

Never use the string formatting operator % or string concatenation to build queries,
as they do not escape variables and will open your application to attacks. Also, there
is no need to surround the formatting sequence %s with quotation marks; execute
does it for you.

What Next?

[238]

To keep your code organized, it's a good idea to wrap your custom SQL queries into
a manager for your data model. If you remember from a Chapter 3, the objects
attribute available in data models is called the manager of the data model. Django
lets you customize this manager by adding more methods to it. This is done by
deriving a class from the models.Manager base class. Therefore, if you want to use
raw SQL in a project, read about custom managers in the online documentation, and
then write one to wrap your SQL queries in it.

Generic Views
While working with Django, you will notice that there are certain types of views that
are always needed regardless of the project that you are working on. For this reason,
Django comes with a set of views that can be used in any project. These views
are called generic views and we actually used one of them in a previous chapter.
Remember the direct_to_template view that renders a template into a page? This
view is one example of generic views.

Django offers generic views for the following purposes:

Creating simple views for tasks such as redirecting to another URL or
rendering a template.
Listing and detail views for displaying objects from a data model. These
views are similar to how the admin page displays listing and detail pages for
data models.
Views to generate date-based archive pages. These can be particularly useful
for blogs.
Views for creating, editing and deleting objects in data models.

To use one of these views, you import it from django.views.generic and then map
the view to a URL. You usually need to pass additional arguments to the view as a
dictionary in the URL entry. The arguments depend on the view. For example, the
direct_to_template view takes the template name as an argument.

Whether to use generic views or not is up to you. Some of the views developed in
this book could be rewritten using generic views. If you believe that these views can
help you in your projects, you will find further information about them in the
online documentation.

•

•

•

•

Chapter 12

[239]

Contributed Sub-Frameworks
The django.contrib package contains Django's standard library. We have used the
following sub-frameworks from this package during earlier chapters in this book:

admin: The Django admin interface.
auth: The user authentication system.
sessions: The Django session framework.
syndication: The feed generation framework.

These sub-frameworks greatly simplified our work, whether we were creating
registration and authentication facilities, building an administration page, or
providing feeds for our content. The django.contrib package is a very important
part of Django. Knowing its sub-packages and how to use them will save you a lot of
time and effort.

This section will provide you with a brief introduction to other frameworks from
this package. You won't get into the details of how to use each framework, but you
will learn enough to know when to use the framework. Once you want to use a
framework in a project, you can read the online documentation to learn more
about it.

Flatpages
Web applications may contain pages that are static in their nature. For example,
your website may include a set of help pages that rarely change. Django provides an
application called flatpages to serve static pages. The application is pretty simple; it
provides you with a data model to store various bits of information about each
page, including the following:

URL.
Title.
Content.
Template name.
Whether registration is required to view the page.

To use the application, you simply enable it in the INSTALLED_APPS variable in
settings.py, and add its middleware to MIDDLEWARE_CLASSES. After that, you
can store and manage your static pages by using a data model provided by the
flatpages application.

•

•

•

•

•

•

•

•

•

What Next?

[240]

Sites
Django provides a framework called sites for managing and running multiple
web applications inside a single Django instance. This can be quite useful in many
scenarios, such as these:

Your website includes multiple domains or sub-domains, and you want to
share data models across sites.
You want to offer a sub-domain for each one of your users, and you want to
use the same project for all sites.

The sites framework includes a data model that lets you store all the domains that
are managed by the current Django instance. Furthermore, it lets you define a
settings file for each domain. This enables you to easily decide what is shared across
sites, and what is unique to each site.

Markup Filters
Many websites (such as Wikipedia) enable users to enter content in a special markup.
This feature offers two benefits:

The markup is easier to use than HTML, so users can learn it faster.
The markup is more restricted than HTML, so users cannot abuse the
feature by embedding JavaScript code into content or perform any other
malicious actions.

Designing and developing an easy and efficient markup system is not a simple
task. Fortunately, there are several markup systems that are commonly used in
web applications and at the same time supported by Django through the markup
application. This application adds template filters to process special markup into
HTML. Markup languages currently supported by the markup application are:

Textile.
Markdown.
reStructuredText.

Humanize
The humanize application offers a set of filters to add a human touch to your pages.
Here is a list of the available filters:

apnumber: For numbers 1-9 it returns the number spelled out. Otherwise it
returns the number. In other words, 1 becomes 'one', whereas 10 remains 10.

•

•

•

•

•

•

•

•

Chapter 12

[241]

intcomma: Takes an integer and converts it into a string with a comma
between every three digits.
intword: Converts an integer into an easy-to-read form. For example,
1000000, becomes '1.0 million'.
ordinal: Converts an integer to its ordinal form. 1 becomes '1st' and so on.

Sitemaps
Sitemaps is a framework for generating sitemaps, which are XML files that help
search engine indexers find dynamic pages on your site. It tells the indexer how
important a page is and how often it changes. This information makes the indexing
process more accurate and efficient.

The sitemaps framework lets you express the above information in Python code, and
then generates an XML document that represents the sitemap of your site.

This covers the most commonly used sub-frameworks from the django.contrib
package. The package contains additional applications that are not as important as
the ones above, and it is updated from time to time with new applications. To learn
about any application from the django.contrib package, you can always read its
documentation which is available online.

Cross-site Request Forgery Protection
We discussed how to prevent two types of web attacks in Chapter 5, namely SQL
injection and cross site scripting. Django provides protection against another type
of attack called cross site request forgery. In this attack, a malicious site tries to
manipulate your application by tricking a user who is logged in to your website,
into opening a specially-crafted page. This page usually contains JavaScript code
that tries to submit a form to your website. CSRF protection works by embedding
a token (that is secret code) into all forms, and verifying the token when the form is
submitted. This effectively makes CSRF attacks infeasible.

To activate CSRF protection, you just need to add 'django.contrib.csrf.
middleware.CsrfMiddleware' to MIDDLEWARE_CLASSES, and this will work
transparently to prevent CSRF attacks.

•

•

•

What Next?

[242]

Message System
Our application allows users to add each other as friends and monitor friend
bookmarks. Although these two forms of communication are related to the nature of
our bookmarking application, sometimes users want the flexibility of sending private
messages to each other. This feature is especially useful for enhancing the social
aspect of our website.

The message system can be implemented in a variety of ways. It can be as simple as
providing each user with a contact form, which works by sending its content to the
user's email when it is submitted. You already have all of the information needed to
build the components of this functionality:

A message form with a text field for the subject, and a text area for the body
of the message.
A view that displays the message form of a user, and sends the contents of
the form to the user via the send_mail function.

When allowing users to send emails via your site, you need to be careful in order to
prevent abuse of the feature. Here you can restrict contact forms to logged-in users
or friends only.

Another approach to implement the message system is storing and managing
messages in the database. This way, users can send and view messages using our
application itself instead of using email. While this approach is more bound to our
application and therefore keeps users on our website, it involves more work to be
implemented. However, and as in the previous approach, you already have all of the
information needed to implement this approach too. The components needed here
are as follows:

A data model for storing messages. It should contain fields for the sender,
recipient, subject and body. You can also add fields for the date, read status
and so on.
A form for creating messages. Fields for the subject and body are needed.
A view for listing available messages.
A view for displaying a message.

The above is just one way to implement the message system. You can, for example,
join the listing and message views into a single view, or provide a view to display
sent messages in addition to received ones. The possibilities are numerous, and
depend on how advanced you want the feature to be.

•

•

•

•

•

•

Chapter 12

[243]

Subscription System
We offer several web feeds that enable users to monitor updates on our website.
However, some users may still prefer the old way of monitoring updates via email.
For those users, you may want to implement an email subscription system into the
application. For example, you can let users receive notifications when a bookmark is
posted by a friend, or when a bookmark is posted under a certain tag. Furthermore,
you can group such notifications and send them in batches to avoid sending large
numbers of emails.

The implementation details of this feature greatly depend on how you want it
to work. It can be as simple as a data model that stores the tags that each user is
subscribed to. It would have a loop that goes through all users who are subscribed
to a particular tag and sends notifications to them when a bookmark is posted
under this tag. This approach, however, is too basic and generates a lot of emails. A
more sophisticated approach may involve storing notifications in a data model and
sending them in one email on a daily basis.

User Scores
Some websites (such as Slashdot.org and reddit.com) track the activity of users
by assigning a score to each user. This score is incremented whenever the user
contributes to the website in some way. Users' scores can be utilized in a variety
of ways. For example, you can release new features to your most active users first,
or provide other advantages to active users, which will motivate other users to
contribute more to your website.

Implementing the user scores is pretty simple. You need a data model to maintain
scores in the database. After that, you can use the Django model API to access and
manipulate scores from within views.

Summary
The purpose of this chapter is to prepare you for tasks that were not covered in the
book. It provided introductions to numerous topics. When a need arises for a certain
feature, you now know where to look in order to find a framework that helps you
implement the feature quickly and cleanly.

The chapter also gave some ideas that you may want to implement into our
bookmarking application. Working on these features will give you more
opportunities to experiment with Django and extend your knowledge of its
frameworks and inner workings.

Index
A
account management 64
admin interface

about 8, 149
activating 149-153
admin template, customizing 156
admin templates, customizing 157, 158
bookmarks listing page,

customizing 154-156
customizing 153
group permissions 160
permissions using, in views 161
user permissions 159, 160
user permissions, checking 161
view, restricting 161

administration interface.
See admin interface

Ajax
about 93
advantages 94
framework 95
technologies 94
user-interface, enhancing 94

Asynchronous JavaScript and XML. See
Ajax

authentication system
features 44

B
bookmark application

auto-completion, implementing 122
auto-completion implementing, jQuery

plugin used 123
bookmark data model, creating 33
bookmark editing, implementing 111-114

bookmarks, adding 41
bookmarks, commenting on 139
bookmarks, sharing on main page 127, 128
bookmark submission form, modifying

129-131
comment form, displaying 144, 145
comments, displaying 142
comments application, enabling 140, 141
comment templates, creating 145-148
data, storing 28
database schema, designing 28
Django application, creating 24
file, creating 108
function, creating 108, 109
Http404 exception error, displaying 38
in-place, editing 110
in-place editing, implementing 115, 118-122
jQuery plugin, installing 124
link data model, creating 29-32
live searching, implementing 107
main page template, creating 35
main page URL, creating 25, 26
main page view, creating 24, 25
model with data, connecting 40
popular bookmarks page, implementing

137-139
regular expression syntax 26
searching, implementing 104, 106
searching, view creating 105
search view, creating 104
search view, modifying 108
search view, testing 107
shared bookmark, browsing 131-133
shared bookmark, voting for 134-137
shared bookmark data model 128, 129
SQL query, viewing 30
template, viewing 36, 37

[246]

template, writing 39, 40
URL, creating 37
URLs to views, mapping 28
user data model, creating 32, 33
user pages, creating 37
view, creating for comments 141, 142
view, writing 38, 124

bookmark submission form, tag
bookmarks, browsing 78
class, adding 72
creating 71
include template tag 78, 80
link, adding 77
logged-in users, access restricting 77
tag cloud, building 85
tag list, modifying 81
tag page, creating 82
template, creating 74
URL entry, adding 75
user page, modifying 80
view, creating 72, 74

C
caching

about 219
configuring 222
database caching 220
file system caching 221
memcached 221
simple caching 220
specific views, caching 222
whole site, caching 222

CGI 5
comments

adding 140
application, enabling 140, 141
comment form, displaying 144, 145
comment templates, creating 145-148
displaying 142
view, creating 141, 142

cross-site scripting
about 88
escape filter, template filters 89
template filters 89
urlencode filter, template filters 89

D
database system

configuring 19
installing 15
setting up 18

development environment
about 8
setting up 11

development server
accessing 21
starting 20

Django
account management 64
admin interface 149
advantages 7
Ajax, using 95
Ajax framework, advantages 95
authentication system 43
caching 219
comments, adding 140
comments application, enabling 140
components 23, 30
cross site request forgery protection,

sub-frameworks 241
CSRF protection, sub-frameworks 241
database API 173
database engines 15
delete method 32
deploying 230
development server 20
downloading 13
features 235
filters 236
flatpages, sub-frameworks 239
forms library 55
generic views 238
history 9
humanize, sub-frameworks 240
installation, testing 14
installing 13
installing on Mac OS X 15
installing on Ubuntu 15
installing on UNIX/Linux 14
installing on windows 13, 14
internationalization 211
invite friend feature, building 195

[247]

many-to-many relationships, working
with 69

markup filters, sub-frameworks 240
model managers 237
models.URLField, field types 30
MS SQL Server 15
MTV framework 23
MVC framework 23
MySQL 15
objects.all method 32
objects.get method 38
Oracle 15
pagination 178-183
project, creating 16
Python, installing 11
reasons for using 7
RSS feeds, adding 164
save method 31
score, assigning to user 243
search 173
session authentication 43
sitemaps, sub-frameworks 241
sites, sub-frameworks 240
SQLite 15
SQL queries, sending to database 237
sub-frameworks 239
subscription system 243
template, structure improving 50
template inheritance 50
template tags 236
unit testing 223
user networks, building 185
user registration 55
users, voting 134
web feeds, creating 164

Django, advantages
admin interface 8
components, integration 8
development environment 8
multi-lingual websites support 8
object-relational mapper 8
URL design 8
web framework 9

Django, components
model 28
template 35
view 24

Django, deploying
configuration variables, updating 231, 232
debug mode, disabling 231
error pages, template creating 232
production, database 231
production, web server 230, 231

F
feeds

aggregator 164
bookmarks feed, creating 164-167
feed reader 164
item fields, customizing 168, 169
linking, to HTML pages 171, 172
RSS feeds, adding 164
user bookmarks feed, creating 169, 170
web feed 164

filters 236

G
generic views 238

I
i18n. See internationalization
installing

database system 15
Django 13
jQuery 96, 97
Python 11

internationalization
about 211
configuring 217, 218, 219
enabling 217
language file, compiling 216
language file, creating 215
local middleware class 218
project, translating 211, 212
strings, translating 213
template, modifying 213, 214
translatable strings, guidelines 214, 215
translatable strings, marking 212
translatable strings, marking in forms 214
translation file, compiling 216
translation file, creating 215, 216

[248]

J
jQuery

Ajax requests, sending to server 103
CSS properties, changing 100
CSS selector 98
document tree, traversing 101
downloading 96
elements, hiding 99
elements, removing 101
elements, selecting 98
elements, showing 100
events, handling 102
HTML attributes, manipulating 100
HTML documents, manipulating 101
installing 96
JavaScript framework 97
methods 98
plugin 123
using, workflow 97
versions 96

M
message system 242
model 28
model manager 237
Model-View-Controller. See MVC pattern
MVC pattern

about 6
components 6
diagrammatic representation 6
in web development 5

O
Object-Relational Mapper 8
ORM. See Object Relational Mapper

P
project

__init__.py file 17
creating 16
database system, configuring 19
database, setting up 18
DATABASE_ENGINE, settings.py file 18
DATABASE_HOST, settings.py file 19

DATABASE_NAME, settings.py file 18
DATABASE_PASSWORD, settings.py file

19
DATABASE_PORT, settings.py file 19
DATABASE_USER, settings.py file 19
development web server, starting 20
Eclipse + PyDev editor 18
EditPlus editor 18
files, creating 16
manage.py file 17
Scite editor 18
settings.py file 17
TextMate editor 18
translating 211
url.py file 17

Python
decorator 78
Eclipse + PyDev editor 18
EditPlus editor 18
features 7
installation, testing 12
installing 11
installing on Mac OS X 13
installing on UNIX/Linux 12, 13
installing on windows 12
reasons for using 6, 7
Scite editor 18
source code editor 18
TextMate editor 18

R
RSS feeds

adding 164
sections 165

S
search

content, organising into pages 178-183
objects, retrieving with database API

173-176
pagination 178-183
Q objects 176
search feature, improving 177, 178

session authentication
about 43
log-in page, creating 44-47

[249]

log-out page, enabling 49
source code editor

Eclipse + PyDev editor 18
EditPlus editor 18
Scite editor 18
TextMate editor 18

SQL injection 88
SQLite

about 15
sqlite3 module 15

sub-frameworks 239
subscription system 243

T
tag

__str__ method, data model 70
about 67
bookmark submission form, creating 71
class, method adding 70
data model 68
objects attribute, data model 70

tag cloud
about 85
building 85
CSS code, writing 87
template, creating 86
view, creating 85

tag data model 68
tag page

tag names, linking 84
template, creating 83
URL entry, adding 82
view, creating 83

template tag 236
template inheritance, Django 50

U
unit testing

about 223, 224
client class 224, 225
registration view, testing 225-228
save bookmark view, testing 228-230

user networks
activation links, handling 202-205
add friend view, creating 192-195
building 185

data model creating, friend network feature
186-189

email, sending 196
friend network feature, building 185
friends, inviting via email 195, 196
friendship data model, creating 186-189
friends list view, creating 189, 190
interface, improving with messages 205
invitation data model 196
invitation data model, creating 197, 199
invite friend, form 199
invite friend, view 200
invite friend feature, building 195
message, creating 205
messages, displaying 205-208
template, adding 200, 201
views, creating to manage friends 189

user registration
data, validating 58
Django forms 55
Django forms library, tasks 55
email, validating 58
field types 57
form, designing 56, 60-63
form widgets 57
input, validating 58
parameters 56
password, validating 59
username, validating 59, 60
user score 243

V
view 24

W
web 2.0

Ajax 93
features 242
tag 67

web development
MVC pattern 5

web feeds
creating 164

X
XSS. See cross-site scripting

	Learning Website Development with Django
	Table of Contents
	Preface
	Chapter 1: Introduction to Django
	The MVC Pattern in Web Development
	Why Python?
	Why Django?
	Tight Integration between Components
	Object-Relational Mapper
	Clean URL Design
	Automatic Administration Interface
	Advanced Development Environment
	Multi-Lingual Support

	History of Django
	Summary

	Chapter 2: Getting Started
	Installing the Required Software
	Installing Python
	Installing Python on Windows
	Installing Python on UNIX/Linux
	Installing Python on Mac OS X

	Installing Django
	Installing Django on Windows
	Installing Django on UNIX/Linux and Mac OS X

	Installing a Database System

	Creating Your First Project
	Creating an Empty Project
	Setting up the Database
	Launching the Development Server

	Summary

	Chapter 3: Building a Social Bookmarking Application
	A Word about Django Terminology
	URLs and Views: Creating the Main Page
	Creating the Main Page View
	Creating the Main Page URL

	Models: Designing an Initial Database Schema
	The Link Data Model
	The User Data Model
	The Bookmark Data Model

	Templates: Creating a Template for the Main Page
	Putting It All Together: Generating User Pages
	Creating the URL
	Writing the View
	Designing the Template
	Populating the Model with Data

	Summary

	Chapter 4: User Registration and Management
	Session Authentication
	Creating the Login Page
	Enabling Logout Functionality

	Improving Template Structure
	User Registration
	Django Forms
	Designing the User Registration Form

	Account Management
	Summary

	Chapter 5: Introducing Tags
	The Tag Data Model
	Creating the Bookmark Submission Form
	Restricting Access to Logged-in Users
	Methods for Browsing Bookmarks
	Improving the User Page
	Creating a Tag Page
	Building a Tag Cloud

	A Word on Security
	SQL Injection
	Cross-Site Scripting (XSS)

	Summary

	Chapter 6: Enhancing the User Interface with Ajax
	Ajax and Its Advantages
	Using an Ajax Framework in Django
	Downloading and Installing jQuery

	The jQuery JavaScript Framework
	Element Selectors
	jQuery Methods
	Hiding and Showing Elements
	Accessing CSS Properties and HTML Attributes
	Manipulating HTML Documents
	Traversing the Document Tree
	Handling Events
	Sending Ajax Requests
	What Next?

	Implementing Live Searching of Bookmarks
	Implementing Searching
	Implementing Live Searching

	Editing Bookmarks in Place
	Implementing Bookmark Editing
	Implementing In-Place Editing of Bookmarks

	Auto-Completion of Tags
	Summary

	Chapter 7: Voting and Commenting
	Sharing Bookmarks on the Main Page
	The SharedBookmark Data Model
	Modifying the Bookmark Submission Form
	Browsing and Voting for Shared Bookmarks
	The Popular Bookmarks Page

	Commenting on Bookmarks
	Enabling the Comments Application
	Creating a View for Comments
	Displaying Comments and a Comment Form
	Creating Comment Templates

	Summary

	Chapter 8: Creating an Administration Interface
	Activating the Administration Interface
	Customizing the Administration Interface
	Customizing Listing Pages
	Overriding Administration Templates

	Users, Groups and Permissions
	User Permissions
	Group Permissions
	Using Permissions in Views

	Summary

	Chapter 9: Advanced Browsing and Searching
	Adding RSS Feeds
	Creating the Recent Bookmarks Feed
	Customizing Item Fields

	Creating the User Bookmarks Feed
	Linking Feeds to HTML Pages

	Advanced Searching
	Retrieving Objects with the Database API
	Advanced Queries with Q Objects
	Improving the Search Feature

	Organizing Content into Pages (Pagination)
	Summary

	Chapter 10: Building User Networks
	Building Friend Networks
	Creating the Friendship Data Model
	Writing Views to Manage Friends
	The Friends List View
	Creating the "Add Friend" View

	Inviting Friends Via Email
	The Invitation Data Model
	The "Invite a Friend" Form and View
	Handling Activation Links

	Improving the Interface with Messages
	Summary

	Chapter 11: Extending and Deploying
	Internationalization (i18n)
	Marking Strings as Translatable
	Creating Translation Files
	Enabling and Configuring the i18n System

	Improving Performance with Caching
	Enabling Caching
	Simple Caching
	Database Caching
	File System Caching
	Memcached

	Configuring Caching
	Caching the Whole Site
	Caching Specific Views

	Unit Testing
	The Test Client
	Testing the Registration View
	Testing the "Save Bookmark" View

	Deploying Django
	The Production Web Server
	The Production Database
	Turning Off Debug Mode
	Changing Configuration Variables
	Setting Error Pages

	Summary

	Chapter 12: What Next?
	Custom Template Tags and Filters
	Model Managers and Custom SQL
	Generic Views
	Contributed Sub-Frameworks
	Flatpages
	Sites
	Markup Filters
	Humanize
	Sitemaps
	Cross-site Request Forgery Protection

	Message System
	Subscription System
	User Scores
	Summary

	Index

