T g

Noel Rappin
Robin Dunn

/“ MANNING

wxPython in Action

wxPython i Action

NOEL RAPPIN
ROBIN DUNN

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2006 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-62-1

Printed in the United States of America
123456789 10— VHG - 10090807 06

To every Jane and Joe Programmer,
chained to their computer, burning the midnight oil,
striving to make a dream come true

brief contents

O O A W N R

Welcome to wxPython 3

Giving your wxPython program a solid foundation 29
Working in an event-driven environment 56

Making wxPython easier to handle with PyCrust 83
Creating your blueprint 116

Working with the basic building blocks 146

10
11
12

Working with the basic controls 185
Putting widgets in frames 224

Giving users choices with dialogs 258
Creating and using wxPython menus 293
Placing widgets with sizers 323
Manipulating basic graphical images 356

vii

viii BRIEF CONTENTS

13 = Building list controls and managing items 393
14 = Coordinating the grid control 425

15 = Climbing the tree control 460

16 = Incorporating HTML into your application 485
17 = The wxPython printing framework 504

18 = Using other wxPython functionality 521

contents

preface xix
acknowledgments xxit
about this book xxiv

Welcome to wxPython 3
1.1 Getting started with wxPython 5

1.2 Creating the bare-minimum wxPython program 7

Importing wxPython 9 = Working with applications
and frames 11

1.3 Extending the bare-minimum

wxPython program 12
1.4 Creating the final hello.py program 15
1.5 What can wxPython do? 17

1.6 Why choose wxPython? 19
Python programmers 19 = wxWidget users 20 » New users 20

ix

CONTENTS

1.7 How wxPython works 21

The Python language 21 » The wxWidgets toolkit 22
Putting it together: the wxPython toolkit 25

1.8 Summary 27

Giving your wxPython program a solid foundation 29
2.1 What do I need to know about the required objects? 30

2.2 How do I create and use an application object? 31

Creating a wx.App subclass 31 = Understanding the application
object lifecycle 34

2.3 How do I direct output from a wxPython program? 35

Redirecting output 35 = Modifying the default redirect
behavior 37

2.4 How do I shut down my wxPython application? 38

Managing a normal shutdown 38 = Managing an emergency
shutdown 39

2.5 How do I create and use the top-level window object? 39

Working with wx.Frame 40 = Working with wxPython IDs 42
Working with wx.Size and wx.Point 43 = Working with
wx.Frame styles 44

2.6 How do I add objects and subwindows to a frame? 47

Adding widgets to a frame 47 = Adding a menubar, toolbar,
or status bar to a frame 49

2.7 How can I use common dialogs? 51
2.8 What are some common errors with application objects

and frames? 53

2.9 Summary 54

Working in an event-driven environment 56
3.1 What terminology do I need to understand events? 57
3.2 What is event-driven programming? 58

Coding event handlers 60 = Designing for event-driven
programs 61 = Event lriggers 62

3.3 How do I bind an event to a handler? 63
Working with the wx. EvtHandler methods 65

CONTENTS

3.4 How are events processed by wxPython? 68

Understanding the event handling process 69 = Using the
Skip() method 75

3.5 What other event properties are contained in the
application object? 77
3.6 How can I create my own events? 77

Defining a custom event for a custom widget 78

3.7 Summary 81

Making wxPython easier to handle with PyCrust 83

4.1 How do I interact with a wxPython program? 84

4.2 What are the useful features of PyCrust? 86

Autocompletion 87 = Calltips and parameter defaults 88
Syntax highlighting 89 = Python help 90 = Command
recall 91 = Cut and paste 92 = Standard shell
environment 93 ® Dynamic updating 94

4.3 What do the PyCrust notebook tabs do? 95

Namespace tab 95 = Display tab 97 = Calltip tab 97
Session tab 98 = Dispatcher tab 98

4.4 How can I wrap PyCrust around my wxPython
application? 99
4.5 What else is in the Py package? 104

Working with the GUI programs 104 = Working with the
support modules 105

4.6 How can I use modules from the Py package in my

wxPython programs? 112
4.7 Summary 115

Creating your blueprint 116
5.1 How can refactoring help me improve my code? 117

A refactoring example 118 = Starting to refactor 121
More refactoring 122

5.2 How do I keep the Model and View separate
in my program? 126

What is a Model-View-Controller system? 126 = A wxPython
model: PyGridTableBase 128 = A custom model 136

xi

xii

CONTENTS

5.3

5.4

How do you unit-test a GUI program? 140

The unittest module 140 = A unittest sample 141
Testing user events 143

Summary 145

Working with the basic building blocks 146

6.1

6.2

6.3

6.4

6.5

Drawing to the screen 148
How do I draw on the screen? 148
Adding window decorations 155

How do I add and update a status bar? 155 = How do I include
a submenu or checked menu? 158 = How do I include
a toolbar? 161

Getting standard information 165

How do I use standard file dialogs? 165 = How do I use a
standard color picker? 169

Making the application look nice 170

How do I lay out widgets? 170 = How do I build an
about box? 178 = How do I build a splash screen? 180

Summary 181

Working with the basic controls 185

7.1

Displaying text 186
How do I display static text? 186 = How can I get the user to
enter text? 189 = How do I change the text without
user mput? 192 = How do I create a multi-line or styled
text control? 193 = Howdo I create a font? 196 » Can I have
styled text if my platform doesn’t support rich text? 197 = What if
my text control doesn’t match my string? 198 = How do I respond
to text events? 199

7.2 Working with buttons 199

How do I make a button? 200 = How do I make a button with
a bitmap? 201 = How do I create a toggle button? 202
What's a generic button, and why should I use one? 203

CONTENTS

7.3 Entering and displaying numbers 205

How do I make a slider? 205 » How can I get those
neat wp/down arrow buttons? 208 = How can I make
a progress bar? 210
7.4 Giving the user choices 211
How do I create a checkbox? 211 » How can I create a group of
radio buttons? 212 = How can I create a list box? 216 =
Can I combine a checkbox and a list box? 219 = What if I want
a pull-down choice? 220 = Can I combine text entry
and a list? 221

7.5 Summary 222

Putting widgets in frames 224
8.1 The life of a frame 225

How do I create a frame? 225 = What are some different
frame styles? 227 = How do I create a frame with extra style
information? 230 = What happens when I close a frame? 232
8.2 Using frames 234
What are the methods and properties of wx.Frame? 234
How do I find a subwidget of a frame? 237 » How do I create a
[frame with a scrollbar? 238
8.3 Alternative frame types 242
How do I create an MDI frame? 242 = What’s @ mini-frame
and why would I use it? 244 = How do I make a
non-rectangular frame? 245 = How can I drag a frame
without a title bar? 248
8.4 Using splitter windows 250
Creating a splitter window 250 = A splitter example 251
Changing the appearance of the splitter 253 = Manipulating
the splitter programmatically 254 = Responding
to splitter events 255

8.5 Summary 256

Giving users choices with dialogs 258
9.1 Working with modal dialogs 259

How do I create a modal dialog? 259 = How do I create an
alert box? 261 = How do I get short text from the user? 264

xiii

Xiv CONTENTS

How can I display a list of choices in a dialog? 266 = How can I
display progress? 267

9.2 Using standard dialogs 269
How can I use a file picker? 269 = How can I use

a font picker? 273 = How can I use a color picker? 275
Can I allow the user to browse images? 277

9.3 Creating a wizard 278
9.4 Showing startup tips 281
9.5 Using validators to manage data in a dialog 282

How do I use a validator to ensure correct data? 282 = How do
1 use a validator to transfer data? 286 = How do I validate data
as it is entered? 288

9.6 Summary 291

Creating and using wxPython menus 293
10.1 Creating Menus 294

How do I create a menu bar and attach it to a frame? 295
How do I create a menu and attach it to the menu bar? 295
How do I add items to a pull-down menu? 297 = How do 1
respond to a menu event? 301

10.2 Working with menu items 303
How do 1 find a specific menu item in a menu? 303 = How do I
enable or disable a menw item? 306 = How do I associate a menu

item with a keyboard shortcut? 307 = How do I create a toggle
menu item with a checkbox or radio button? 311

10.3 Sprucing up your menus 313

How do I create a submenu? 313 = How do I create a
pop-up menu? 315 = How can I create fancier menus? 317

10.4 Usability guidelines for menus 319

Keeping menus uniform in length 319 = Creating logical
item groups 319

10.5 Summary 321

Placing widgets with sizers 323
11.1 What’s a sizer? 324
11.2 Basic sizers with the grid sizer 326

What is a grid sizer? 327 » How do you add or remove children
from a sizer? 329 = How do sizers manage the size and

CONTENTS

alignment of their children? 331 = Can I specify a minimum size
for my sizer or its chuldren? 334 = How do sizers manage the
border around each child? 336

11.3 Using the other sizer types 337

What'’s a flex grid sizer? 337 = What’s a grid bag sizer? 341
What'’s a box sizer? 345 = What’s a static box sizer? 349

11.4 Can I see a real-world example of sizers in action? 350
11.5 Summary 354

Manipulating basic graphical images 356
12.1 Working with images 357

How do I load images? 357 » What can I do with

an image? 361 = How can I change cursors? 364
12.2 Dealing with device contexts 367

What is a device context, and how can I create one? 367

How do I draw to a device context? 371 » How do I draw images
to the context? 376 = How can I draw text to the context? 379

12.3 Graphics manipulation 381
How do I manage the foreground drawing pen? 381
How do I manage the background drawing brush? 384

How can I manage logical and physical device coordinates? 385
What color names are predefined? 387

12.4 Summary 388

XV

Building list controls and managing items 393
13.1 Building a list control 394

What is icon mode? 394 = What is small icon mode? 395
What s list mode? 396 = What is report mode? 397
How do I create a list control? 398

13.2 Managing items in a list 400

What is an image list and how do I add images to it? 400
How can I add and delete items from a list? 402

13.3 Responding to users 405

How can I respond to a user selection in a list? 405 = How can
I respond to a user selection in a column header? 407

xvi

CONTENTS

13.4 Editing and sorting list controls 411

How can I edit a label? 411 » How can I sort my list? 413
How can I learn more about list controls? 416

13.5 Creating a virtual list control 420
13.6 Summary 423

Coordinating the grid control 425
14.1 Creating your grid 426

Howdo I create a simple grid? 426 » How do I create a grid with
a grid table? 429

14.2 Working with your grid 432

How do I add and delete rows, columns, and cells? 432

How do I manage the row and column headers of a grid? 433
How can I manage the size of grid elements? 436

How can I manage which cells are selected or visible? 440
How do I change the color or font of a grid cell? 442

14.3 Custom renderers and editors 445

How do I use a custom cell renderer? 445 = How do I edit
acell? 449 = How do I use a custom cell editor? 450

14.4 Capturing user events 455

How can I capture user mouse selections? 455 » How can I
capture user keyboard navigation? 457

14.5 Summary 458

Climbing the tree control 460
15.1 Creating tree controls and adding items 461

How do I add a root? 463 = How do I add more items
to the tree? 463 = How do I manage items? 464

15.2 What styles control the display of the tree control? 465
15.3 Sorting elements of a tree control 467

15.4 Controlling the image for each item 468

15.5 Navigating the tree programmatically 471

15.6 Managing the tree selection 472

15.7 Controlling which items are visible 473

15.8 Making a tree control user editable 477

CONTENTS xvii

15.9 Responding to other user events from a tree control 478
15.10 Using a tree list control 480
15.11 Summary 482

Incorporating HTML into your application 485
16.1 Displaying HTML 486

How can I display HTML in a wxPython window? 486
How can I display HTML from a file or URL? 488

16.2 Manipulating the HTML window 490

How can I respond to a user click on an active link? 490
How can I change an HTML window programmatically? 491
How can I display the page title in a frame’s title bar? 493
How can I print an HTML page? 495

16.3 Extending the HITML window 496

How does the HTML parser work? 496 » How can I add
support for new tags? 498 » How can I support other
file formats? 501 = How can I get a more fully featured
HTMIL Widget? 502

16.4 Summary 503

The wxPython printing framework 504
17.1 How do I print in wxPython? 505

Understanding the printout lifecycle 506 = Print framework
i action 507 = Working with wx. Printout methods 511

17.2 How do I display the print dialog? 512
Creating a print dialog 512

17.3 How do I display the page setup dialog? 515
Creating a page setup dialog 515 = Working with page
setup properties 516

17.4 How do I print something? 518

17.5 How can I perform a print preview? 519

17.6 Summary 520

Using other wxPython functionality 521
18.1 Putting objects on the clipboard 522

Getting data in the clipboard 522 = Manipulating data
i the clipboard 523 w Retrieving text data from the

xviii CONTENTS

18.2

18.3

18.4

18.5

18.6

18.7

clipboard 524 = The clipboard in action 524 = Passing other

data formats 526
Being the source of a drag and drop 527
Dragging in action 529
Being the target of a drag and drop 530
Using your drop target 531 = Dropping in action 533
Transferring custom objects 534

Transferring a custom data object 534 = Retrieving
a custom object 535 = Transferring an object in
multiple formats 535

Setting timed events using wx. Timer 536

Generating EVI_TIMER events 536 = Learning other
timer uses 539

Creating a multithreaded wxPython application 539

Working with the global function wx.CallAfter() 540
Managing thread communication with the queue object 543
Developing your own solution 543

Summary 544
index 545

preface

The wxPython part of the story actually begins in 1995, with Harri Pasanen
and Robin Dunn. Robin, who is one of the co-authors of the book, wrote the
following about the history of wxPython, and we decided that it was a story
better told in his own voice than paraphrased:

In 1995 I was working on a project that needed a GUI to be deployed on
HP-UX systems, but my boss also wanted to show something at a trade show
on his Windows 3.1 laptop in a few weeks’ time. So I started searching for a
cross platform C++ GUI toolkit to do a prototype with. In those days it
wasn’t easy without Google, but I found that there were several commercial
alternatives available (none of which is still available today) and lots of tool-
kits with freely available source.

While evaluating each of the free toolkits for my immediate needs and
deciding which of the commercial offerings would be best for our long-term
needs, I ran into the term “Python bindings” on the wxWidgets website (in
this case “binding” refers to the connection between the Python language
and the wxWidgets toolkit). Full of curiosity at how one would “bind” a soft-
ware toolkit to a reptile (I had never heard of the Python language up to this
point), I clicked on the link, and the next link, and the next, until I finally
ended up at the Python 1.2 Tutorial document. Three hours later I was con-
verted from being the local C++ guru to a Python evangelist bugging all

Xix

XX

PREFACE

the developers in the immediate vicinity and showing them the cool new thing
I had discovered.

Instead of working on my prototype, I started working with Harri Pasanen in
Finland to advance the Python bindings for wxWidgets, otherwise known as
wxPython 0.2, with some help from Edward Zimmerman. The mailing list
announcement of that release is archived here: (http:/www.google.com/
groupsrselm=PA.95]Jul27032244%400k.tekla.fi&oe=UTF-8). We got it to be
functional enough that I could build the prototype for my boss using Python,
but wxPython was a nightmare to maintain and to enhance because everything
(C++ extension module code, Python proxy modules, build system, etc.) was
done by hand, and little changes or enhancements to wxWidgets would often
require changes to several places in wxPython code to add the support for the
enhancement or fix to wxPython. When it reached many tens of thousands of
lines of code it became very awkward and fragile to continue working in that
manner. Add to that the fact that there was no central source code repository
(this was also before SourceForge’s time) so we were emailing code changes to
each other—you can get an inkling of the difficulties involved.

About that time, I had to start doing “real” work again as my main project was
building up from a gleam in the eye to a full-force development project with
several developers under my control with design meetings and deadlines, and
I found myself fully back in the C++ world again, although I was able to use
Python for some of the build and test scripts for the project. Harri wasn’t able
to spend any time on it either, so wxPython development slowed to less than a
crawl and eventually stopped.

In 1997 I discovered SWIG (Simple Wrapper and Interface Generator), and
realized that it could help with all the maintenance issues that had pained us
in the wxPython project. In three or four weeks of spare time using SWIG,
I almost completely reimplemented everything in wxPython that had taken
several weeks of full-time work on my part and several months of part-time
work for Harri doing it by hand. After getting sidetracked on another
project for a while, I discovered that wxWidgets 2.0 was in active develop-
ment, but had a whole new architecture, so I had to do it all again. But this
time the new architecture simplified things enough that it took only about a
week’s worth of spare time! So in the summer of 1998 the first “modern ver-
sion” of wxPython was released and has been in active development ever

PREFACE xxi

since. The first announcement is archived here: (http:/groups.yahoo.com/
group/python-announce-list/message/95).

The rest is, as they say, history. It’s important to note that SWIG is allowing me
to easily create and maintain literally hundreds of thousands of lines of code, so
much of the credit for the vastness of wxPython’s feature set deserves to go to
David Beazley and the other developers contributing to that project.

With this book, we hope to share with you our excitement about wxPython, a
toolkit that is truly unique in the ease that it brings to GUI application develop-
ment. We wrote it with the goal of creating a useful resource for both the novice
and the pro.

acknowledgments

Our work on this book has been aided by a number of people, in ways both
obvious and subtle.

Patrick O’Brien was instrumental in getting this project off the ground and
Marjan Bace, our publisher at Manning Publications, gave us the chance to
make it happen. Jackie Carter was our first editor at Manning and Lianna
Wlasiuk came in at a crucial juncture, and, like a great bullpen pitcher, earned
the save. We would like to thank our production team at Manning and every-
one who worked behind the scenes on the book, especially our copyeditor
Elizabeth Martin and our typesetter Denis Dalinnik. Big thanks also to our
agent Laura Lewin for her help and understanding.

We’ve benefited a great deal from the generosity of programmers world-
wide in creating the technologies used in this book. First on that list is the crew
who developed the wxWidgets foundation of wxPython: Julian Smart, Vadim
Zeitlin, Robert Roebling, and the rest of the core wxWidgets team, as well as
many contributors. Of course, without Guido van Rossum and other members
of the Python language development team, there would be no “Python” in
“wxPython.” A large part of this book was written using the jEdit text editor
and the images were manipulated using the GIMP.

Thanks also to the many reviewers who looked at the manuscript in its vari-
ous stages of development and added their valuable insight along the way. They
helped make this a better book: Alex Martelli, Dave Brueck, Christopher Bailey,

xxii

ACKNOWLEDGMENTS xxiii

Mike Stok, Jean Baltus, Thomas Palmer, Jack Herrington, Peter Damoc, Nick
Coghlan, Pim Van Heuven, John Paulson, Ian Brown, Stefan Neis, Chris Mellon,
Kevin Ollivier, and Doug Tillman. Special thanks to Clint Howarth who was our
technical proofreader.

NOEL RAPPIN My wife, Erin, makes my life better every day. Thank you for your
strength, your intelligence, and your love. I also want to thank my parents
Donna and Donnie and my sister Michelle for supporting me fully and com-
pletely. Matt Cohen helped this effort by entertaining me via IM while I was try-
ing to write. Finally, I want to thank my daughter Emma, who is now old enough
to be excited to see her name in a book, and my son Elliot, in anticipation of the
day he will also be glad to see his name.

ROBIN DUNN I’d like to thank my wife, Malaura, and my children, Jordyn,
Myka, Samuel, and Christian, for their patience, understanding, and love. You
make it worth the effort to get past all the difficulties of life. I'd also like to thank
the many wonderful members of the wxPython user community whose praise
and excitement have helped me to stay motivated and have helped me to take
wxPython from an interesting toy to a very useful tool that thousands of develop-
ers all around the world love and depend upon. And finally, many thanks go to
Mitch Kapor, John Anderson, David Surovell, and others at the Open Source
Applications Foundation for believing in the Open Source concept, the poten-
tials of wxPython, and especially for believing in my capabilities and funding my
work on wxPython for several years.

about this book

Who should read this book?

Naturally, we’d love everybody to read this book. If you are reading this in the
bookstore, trying to decide whether to purchase it, we say, go for it! Buy one
for the people next to you too—they’ll thank you later.

That said, we did have certain assumptions about you, the reader, in mind
as we wrote this book. We assume that you don’t need us to explain the basics
of the Python programming language. We present a lot of Python code in this
book. We think Python code is pretty easy to understand, but we want to let
you know up front that we don’t have a tutorial on Python basics. If you’d like
a Python tutorial, we recommend Manning’s The Quick Python Book, by Daryl
Harms and Kenneth McDonald.

We also assume that you are at least familiar with the basic terms describing
graphical interface objects, and have at least some familiarity with graphical
interfaces from a user’s perspective. More advanced user interface concepts, or
less familiar user interface display elements, will be described as they come up.

We do not assume that you have any prior knowledge of wxPython. If you
do have prior experience with wxPython, we expect that you'll still be able to
find new information here, or, at the very least, you’ll find this book to be a
more useful resource than the existing online documentation.

XXiv

http://www.manning.com/books/harms#author
http://www.manning.com/books/harms#author

ABOUT THIS BOOK XXV

How this book is organized

We've divided wxPython In Action into three parts. The first part is an introduc-
tion to wxPython concepts, a tutorial on how to get started with wxPython, and
some information on wxPython best practices. The chapters in part 1 are:

Chapter 1, Welcome to wxPython
In this chapter, we introduce wxPython, explain to you why it’s the greatest
thing since sliced bread, and give some background on the technologies used
to create wxPython.

Chapter 2, Giving your wxPython program a solid foundation
The two most important objects in wxPython are discussed. Every application
must have an application object and a top-level window. This chapter will
show you how to start a wxPython program, and how to manage its lifecycle.

Chapter 3, Working in an event-driven environment
Like all GUI toolkits, control in wxPython is managed by events. This chapter
discusses how events are handled, and how you can use them as hooks to drive
your functionality.

Chapter 4, Making wxPython easier to handle with PyCrust
PyCrust is a Python shell written in wxPython that contains many advanced
and useful features. Not only can you use PyCrust for your wxPython develop-
ment, you can wrap your program inside it for debugging purposes, and you
can reuse the PyCrust components in your own applications.

Chapter 5, Creating your blueprint
This chapter discusses best practices in three areas that are often difficult for
GUI programmers. We show how to use refactoring to improve the structure
and maintainability of your code. The Model/View/Controller design pattern is
explored, and we’ll show you how to unit test our GUI code to minimize errors.

Chapter 6, Working with the basic building blocks
This chapter is a bridge between parts one and two. Building on the basic
ideas already shown, we give hints of some of the features discussed in parts 2
and 3 as we build a sketchpad application.

Part 2 begins the more detailed portion of the book. The chapters in part 2 take
a look at the most commonly used parts of wxPython. This includes a tour of the
basic widget set, a look at standard frames and dialogs, and information on
drawing and layout. The chapters in part 2 are:

XXVi

ABOUT THIS BOOK

Chapter 7, Working with the basic controls
This chapter covers the API for the basic widget set, including text fields, but-
tons, list boxes, and the like.

Chapter 8, Putting widgets in frames
All your wxPython widgets will be inside a frame or a dialog. In this chapter
we cover how frames work, what kind of frames there are, and how to manage
widgets within a frame.

Chapter 9, Giving users choices with dialogs
Dialogs behave slightly differently than frames. We cover how modal dialog
boxes work, as well as the standard predefined wxPython dialogs. We’ll also
show you how to use wxPython validators to help mange the data in a dialog.

Chapter 10, Creating and using wxPython menus
Most windowed applications have a menu. We’ll show you how to add menus
to the menu bar, and menu items to a menu. Specialized menus, such as
checkboxes, and radio menus will also be covered. We’'ll also discuss keyboard
shortcuts and some usability guidelines for using menus effectively.

Chapter 11, Placing widgets with sizers
In wxPython, sizers are used to spare you the drudgery of placing your wid-
gets manually. There are several useful sizers that are part of wxPython, and
we’ll show you how to use them, and what kind of layout is best suited to each.

Chapter 12, Manipulating basic graphical images
The most basic purpose of any UI toolkit is to draw lines and shapes to the
screen. In wxPython, there is a rich set of drawing tools available for your use.
There is also a powerful abstraction called a device context which allows you

to draw to a target without caring whether the target is a window, a printer, or
a file.

Part 3 contains a detailed look at more advanced portions of wxPython. It starts
with a description of the three most complex wxPython widgets, and continues
with a discussion of various print and display mechanisms, closing out with a
tour of useful items that didn’t quite earn their own chapter. The chapters in
part 3 are:

Chapter 13, Building list controls and managing items
The wxPython list control gives you the ability to display lists “explorer-style,”
in icon mode, list mode, or multi-column report mode. You can also custom-
1ze sort behavior, and allow users to edit list entries.

ABOUT THIS BOOK xxvii

Chapter 14, Coordinating the grid control
If you want something that looks like a spreadsheet, the wxPython grid control
is a full-featured widget that will meet your needs. It allows full control over the
display and behavior of the grid, and allows for complete customization.

Chapter 15, Climbing the tree control
The wxPython tree control allows for compact display of hierarchical data,
including, but not limited to a directory tree or class hierarchy. You can also
allow the user to edit entries on the fly.

Chapter 16, Incorporating HTML into your application
Within wxPython, you can use HTML to simplify the display and printing of
styled text. The HTML engine inside wxPython can also be customized to fit
your special needs.

Chapter 17, The wxPython printing framework
Printing is managed from a wxPython application through several dedicated
print, print data, and print preview objects. In this chapter, we explore how all
of them work together.

Chapter 18, Using other wxPython functionality
In this chapter, we cover some important features that are not quite long
enough to justify a chapter on their own, including cut and paste, drag and
drop, and multithreading.

How to use this book

How you use this book will depend on your wxPython knowledge. We designed
this book to be useful for both experts and novices, but we expect that different
parts of the book will have more or less resonance for users at different levels.

If you are a wxPython beginner, you definitely want to start in part 1. Chap-
ters 1-3 will give you a solid grounding in wxPython concepts, and chapter 6 will
give you a nice overview of the steps in building a reasonably sized program.
Chapter 5 will introduce you to some methods for making your code easy to
manage, and chapter 4 will have some tools to help you debug and write wxPy-
thon applications. As you start writing your own wxPython programs, you’ll also
start using the API discussions in part 2—we tried to organize them by function-
ality to make it easy to find useful topics.

If you are already familiar with wxPython, you’ll probably be spending most
of your time in parts 2 and 3. However, we recommend you take a spin through
part 1 as well. If you aren’t familiar with PyCrust, then chapter 4 will be new to
you, and we think you might get something useful out of chapter 5 as well. You'll
find discussion of more complex widgets in part 3, and you’ll also see that the

XXviii

ABOUT THIS BOOK

code samples in that section tend to be longer and more integrated than in the
other sections.

The examples in this book were written against Python version 2.3.x—we don’t
think we included any of the new 2.4 language features—and wxPython 2.5 .x.
The 2.6.x release of wxPython came out too late for coverage in this book; how-
ever, it was largely a bug fix release, numbered for compliance with wxWidgets.

There is one other point that we need to make before we begin. This book is
not intended to be a complete reference to every nook and cranny of wxPython.
We expect that it will be a useful reference to the features that you are most likely
to need to know about, but it is not 100% feature-complete. In the interests of
time and space, we had to choose some elements to focus on and others, well, not
to. For instance, there are a number of wxPython features inherited from the C++
wxWidgets toolkit that are replicated in the standard Python library—we chose not
to cover those features. Also, if you are working in a Windows operating system
whose name includes a date in the 1990s, you’ll probably find that some features
don’t work exactly as described in some cases and we didn’t have the space to
enumerate all of those exceptions. Finally, there were some features of the core
widgets set that we determined were either not often used or that we did not
have the space to do justice.

Typographical conventions
The following conventions are used throughout the book:
= Courier typeface is used in all code listings.
» [talics are used to introduce new terms.
" Courier Bold is sometimes used to draw your attention to a section of code.

= Code annotations are used when directing your attention to a particular
line of code. Annotations are marked with bullets, such as (1}

* Courier typeface is used in text for code words, wxPython class and
method names, or snippets of Python code.

Code downloads
Source code for all of the examples used in this book is available for download
from the publisher’s website at www.manning.com/rappin.

Where to get more help

Although we tried to be as comprehensive as possible, we couldn’t possibly antic-
ipate all the uses and issues you might have using wxPython. The main wxPy-
thon website at http:/www.wxpython.org has some resources that you might visit

http://www.wxpython.org

ABOUT THIS BOOK XXix

for insight into your problem. The official online documentation is at http://www.
wxpython.org/docs/api/. A collaborative wiki site is available at http://wiki.wxpy-
thon.org/, and there are mailing lists that you can subscribe to at http://www.wxpy-
thon.org/maillist.php.

Author Online

Help is also available from the Author Online forum, a private web discussion
board run by Manning Publications. You are encouraged to use this forum to
make comments about the book, ask technical questions, and receive help from
the authors and other readers. Use your browser to navigate to www.man-
ning.com/rappin to take advantage of this free service. The forum’s welcome
page gives you all the information you need to sign up and get going.

The Author Online forum is one of the ways Manning remains committed to
readers. The authors’ participation in the forum is voluntary and without a
specified level of commitment. The forum is a great way to share ideas and
learn from each other. The Author Online forum will remain accessible from
the publisher’s website as long as the book is in print.

about the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people remember are things they discover during
self-motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action guide
is that it is example-driven. It encourages the reader to try things out, to play
with new code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them “in action.” The books in this
series are designed for such readers.

http://www.wxpython.org/docs/api/
http://www.wxpython.org/docs/api/
http://wiki.wxpython.org/
http://wiki.wxpython.org/
http://www.wxpython.org/maillist.php
http://www.wxpython.org/maillist.php
http://www.manning.com/
http://www.manning.com/

XXX

ABOUT THIS BOOK

about the cover illustration

The figure on the cover of wxPython in Action is a “Soldat Japonais,” a Japanese
soldier. The illustration is taken from a French travel book, Encyclopedie des Voy-
ages by J. G. St. Saveur, published in France in 1796. Travel for pleasure was a
relatively new phenomenon at the time and travel guides such as this one were
popular, introducing both the tourist as well as the armchair traveler to the
inhabitants of other regions of France and abroad.

The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of
the uniqueness and individuality of the world’s towns and provinces just 200
years ago. This was a time when the dress codes of two regions separated by a few
dozen miles identified people uniquely as belonging to one or the other. The
travel guide brings to life a sense of isolation and distance of that period and of
every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one
continent from another. Perhaps, trying to view it optimistically, we have traded a
cultural and visual diversity for a more varied personal life. Or a more varied
and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life
two centuries ago, brought back to life by the pictures from this travel guide.

Part 1

Introduction to wxPython

-‘ b e start right off by introducing you to wxPython in chapter 1, “Wel-

come to wxPython,” which explains how wxPython came to be, and what
makes it so great that you should drop everything and start using it. We’ll
show a little bit of sample code, some cool screenshots, and contrast wxPython
with its wxWidgets parent project. In chapter 2, “Giving your wxPython pro-
gram a solid foundation,” we discuss the two objects required in all wxPython
applications. The first, the application object, manages the event loop and
oversees the application lifecycle. The second, the top-level window, is the
focal point of user interaction with your program. We’ll show you how to use
both, and offer troubleshooting tips.

In chapter 3, “Working in an event-driven environment,” we’ll focus on the
wxPython event cycle, covering what events are and how they are generated.
We’ll take a detailed run through the process by which an event is associated
with the code that should be generated in response. You'll also see how to cre-
ate your own custom events. Chapter 4, “Making wxPython easier to handle
with PyCrust,” is an introduction to the PyCrust interactive shell, as well as the
related Py package of useful applications. We’ll show you how to wrap your
own application in a PyCrust shell for easier debugging, and also how to use
the Py objects as part of your applications.

In chapter 5, “Creating your blueprint,” we’ll discuss important general
issues with the creation of user interface code. We’ll show ideas about how to
keep your code clean and easy to maintain. We’ll also show how wxPython can
be used as part of the Model/View/Controller design pattern. The chapter fin-
ishes with a discussion of how to unit-test wxPython applications. In chapter 6,

PART 1
Introduction to wxPython

“Working with the basic building blocks,” we’ll put it all together to build a
sketch application showing several useful pieces of wxPython functionality. By
the end of this first part of the book, you should have a solid grounding in
wxPython and be ready to face the more reference-oriented material in the
rest of the book.

Welcome to wxPython

This chapter covers

m Getting started with wxPython

m Creating a minimum wxPython program

= |mporting wxPython

m Learning the Python programming language
m Putting it all together

CHAPTER 1
Welcome to wxPython

Here’s a simple wxPython program. It creates a window with one text box that
displays the position of the mouse pointer. Counting white space, it’s about

20 lines long.

#!/bin/env python
import wx
class MyFrame (wx.Frame) :

def _ init_ (self):

wx.Frame._init__ (self, None, -1, "My Frame", size=(300, 300))

panel = wx.Panel (self, -1)

panel.Bind (wx.EVT _MOTION, self.OnMove)

wx.StaticText (panel, -1, "Pos:", pos=(10, 12))

self.posCtrl = wx.TextCtrl (panel, -1, "",

def OnMove (self, event):
pos = event.GetPosition()

pos= (40, 10))

self.posCtrl.SetValue("%s, %s" % (pos.x, pos.y))

if name == ' main ':
app = wx.PySimpleApp ()
frame = MyFrame ()
frame.Show (True)
app .MainLoop ()

What can we say about the program in listing 1.1?
It’s very short, for one thing. Admittedly, it doesn’t
do awhole lot, but still, creating a window, populat-
ing it, getting it to respond to mouse events—that’s
not bad for 20 lines. It’s not an exaggeration to say
this example could easily be three or four times
longer in some, more caffeinated, programming
languages. Figure 1.1 shows the running program.

The code sample is quite readable. Even if you
don’t know the details of Python or wxPython, if
you have any experience with interface program-
ming you likely have a sense of what words like
Frame, _init , EVT MOTION, TextCtrl, and Main-
Loop mean. The indentation might seem a bit weird

— My Frame Q@ﬁ

Pos: |[141. 156

Figure 1.1 Our first wxPython
program, showing the position of
the mouse

if you aren’t used to Python (where are all those closing braces, anyway?), and you
probably don’t know what all the arguments mean (what’s with those -1s?), but

1.1

Getting started with wxPython 5

you could quite easily come to some rough understanding of the code without
much help.

In this book, we’ll show you why wxPython is one of the easiest, most powerful
ways of building a real graphical user interface (GUI) program that there is. Most
toolkits that make the building of the interface itself easier (such as a Visual Basic
style tool) don’t have an implementation language with the clarity, flexibility, and
power of Python. Most of the toolkits that have the functionality of wxPython
force you to use a language that is ill-suited to rapid development. You'll find
wxPython right in the sweet spot, where you get the maximum bang for your
development buck. Even better, wxPython is an open-source project, with both
the source code and the binary installations distributed under a license that
allows it to be freely used in both commercial and open source development.

By the time you’ve reached the end of this book, you’ll know how to build a
state-of-the-art GUI using the wxPython toolkit. You’ll be able to create and
manipulate common interface elements such as buttons and menus, as well as less
common ones such as trees and HTML editors. So there’s quite a bit of ground for
us to cover. In this chapter, we’ll get you started with wxPython, and discuss what
wxPython does and why you might choose it for your programming needs.

A good interface allows the user to access the functionality of the application
as simply and cleanly as possible, with a stylish look that is attractive to the users.
A bad interface can keep users from finding the functionality in the program, and
can even cause people to assume that a perfectly working program is malfunc-
tioning. In wxPython, you can create the interface you want with less effort than
you'd expect.

Getting started with wxPython

We’re going to start by working on a real wxPython program, albeit a simple one.
We won'’t create anything complicated, yet. For now, we're going to lead you step-
by-step through the process of creating your very first wxPython program. Let’s
begin by making sure you've got everything installed. Table 1.1 shows everything
you’ll need in order to run wxPython.

Once the installations are complete, get ready to type. We’re going to create a
program that displays a single image file. This will happen in three steps:

1 We'll start with the bare minimum required for aworking wxPython program.
2 We’ll make that code more structured and sophisticated.

3 We'll end with a version that can display the wxPython logo.

CHAPTER 1
Welcome to wxPython

Table 1.1 Everything you'll need to run wxPython on your own computer

Tool Notes

The right This is an easy one—you have a lot of options. Specifically, you must be running one

operating system of the following:

* Any Microsoft Windows 32-bit operating system—meaning anything from
Windows 98 onward (and you can get it going under Windows 95 if you must, but
you'll need to download some extras).

* Any Unix or Linux system capable of running the Gnome Toolkit (GTK).

* A Macintosh running Mac OS X 10.2.3 or higher.

The Python Available for download at www.python.org. Any version 2.3 or higher will work. Many
programming Linux distributions include a version of Python, as does Mac OS X 10.3 or higher.
language Even so, you might still want to download the latest version.

The wxPython Available for download at www.wxpython.org.

Toolkit

There are different versions, depending on your operating system and Python
version. Be sure to download the runtime installer that matches your platform,
Python version, and Unicode preference. Download the packages for the demos and
documentation as well.

If you've installed other software on your system, you should find that installing the
wxPython packages works very similarly. Again, recent versions of Mac OS X and
some Linux distributions already include wxPython, but you should download the
latest version if you can.

A text editor We recommend an editor that recognizes Python syntax and can do things like
colorize the code to make it more readable. Most of the popular editors have
support for Python code, so use the editor you prefer.

If you have no strong feelings for any particular editor, try IDLE, the integrated
development environment included with Python, which includes a source code
editor, interactive shell, debugger, and other tools.

The Python web site has a list of Python-aware editors at www.python.org/editors.

Figures 1.2, 1.3, and 1.4 illustrate what the final program will look like, depend-
ing on your platform.

1 Hello, wxPython! E]@

w1y F#n, ...

Running hello.py
on Windows

Creating the bare minimum wxPython program 7

Figure 1.3
Running hello.py
on Linux

Figure 1.4
Running hello.py
on Mac 0S X

1.2 Creating the bare minimum wxPython program

Let’s begin with the simplest possible wxPython program that will run success-
fully. Create a file named “bare.py” and type in the following code. Remember, in
Python, the spacing at the start of each line is significant.

import wx
class App (wx.App) :

def OnInit (self):
frame = wx.Frame (parent=None, title='Bare')
frame. Show ()
return True

app = App ()

app.MainLoop ()
There’s not much to it, is there? Even at only eight lines of code (not counting
blank lines) this program might seem like a waste of space, as it does little more
than display an empty frame. But bear with us, as we’ll soon revise it, making it
something more useful.

The real purpose of this program is to make sure you can create a Python
source file, verify that wxPython is installed properly, and allow us to introduce
more complex aspects of wxPython programming one step at a time. So humor
us: create a file, type in the code, save the file with a name “bare.py,” run it, and
make sure it works for you.

The mechanism for running the program depends on your operating system.
You can usually run this program by sending it as a command line argument to

CHAPTER 1
Welcome to wxPython

the Python interpreter from an operating system prompt, using one of the follow-
ing commands:

python bare.py

pythonw bare.py

Figures 1.5, 1.6, and 1.7 show what the program looks like running on various
operating systems.

m

Figure 1.5
Running bare.py on Windows.

Figure 1.6
e =1 Running bare.py on Linux.

eoe Bare

. Figure 1.7
T Running bare.py on Mac 0S X.

1.2.1

Creating the bare minimum wxPython program 9

JARGON: When most people look at this running program, they see something

ITLII-IC()SKS they would call a “window.” However, wxPython does not call this a win-

WINDOW... dow. It calls this a “frame.” In wxPython,“window” is the generic term
for any object that displays on the screen (what other toolkits might call a
“widget”). So, a wxPython programmer will often refer to objects such as
buttons or text boxes as “windows.” This may seem confusing, but the
usage dates to the earliest days of the original C++ toolkit, and it’s
unlikely to change now. In this book, we’ll try to avoid the use of window
as a generic term, because it’s confusing and also because it’s the name of
a big product from a major corporation. We’ll use widget as the generic
term. When we’re specifically referring to the operating system of similar
name, we’ll do it with a capital “W.”

While this bare-minimum program does little more than create and display an
empty frame, all of its code is essential; remove any line of code and the program
will not work. This basic wxPython program illustrates the five basic steps you
must complete for every wxPython program you develop:

1 Import the necessary wxPython package

2 Subclass the wxPython application class

3 Define an application initialization method

4 Create an application class instance

5 Enter the application’s main event loop

Let’s examine this bare minimum program step-by-step to see how each one
was accomplished.

Importing wxPython
The first thing you need to do is import the main wxPython package, which is
named wx:

import wx

Once that package is imported, you can refer to wxPython classes, functions, and
constants using the wx package name as a prefix, like this:

class App (wx.App) :

OLD STYLE During the writing of this book the name of the wxPython package
IMPORTS -hanged. Since the old naming convention is still supported, you will
probably encounter wxPython code written in the old style. So, we’ll
digress briefly to explain the older style and why it was changed. The old

10

CHAPTER 1
Welcome to wxPython

package name was wxPython and it contained an internal module
named wx. There were two common ways to import the needed code—
you could import the wx module from the wxPython package:

from wxPython import wx #DEPRECATED-DON'T DO THIS ANY MORE
Or, you could import everything from the wx module directly.

from wxPython.wx import * #DEPRECATED-DON'T DO THIS ANY MORE

Both import methods had serious drawbacks. Using the second method
of import * is generally discouraged in Python because of the possibility
of namespace conflicts. The old wx module avoided this problem by
putting a wx prefix on nearly all of its attributes. Even with this safe-
guard, import * still had the potential to cause problems, but many
wxPython programmers preferred this style, and you'll see it used quite
often in older code. One downside of this style was that class names
began with a lowercase letter, while most of the wxPython methods
begin with an uppercase letter—the exact opposite of the normal
Python programming convention.

However, if you tried to avoid the namespace bloat caused by import *
by doing from wxPython import wx, you now had to type “wx” twice for
each class, function, or constant name—once as the package prefix and
once as the “normal” prefix, such as wx.wxWindow. This got old fast.
Many wxPython programmers saw this dilemma as a wart that should be
removed, and eventually, it was. If you're interested, you can search the
wxPython mailing list archives to read more of the details surrounding
this change.

One more thing to know about importing wxPython: you must import wx before
you import anything else from wxPython. In general, the order of imports in
Python is irrelevant, meaning you can import modules in any order. However,
wxPython, although it looks like a single module, is actually a complex set of
modules (many of which are automatically generated by a tool called the Simpli-
fied Wrapper and Interface Generator, or SWIG) that wrap the functionality pro-
vided by the underlying wxWidgets C+ + toolkit (we’ll discuss wxWidgets in more
detail in section 1.7). When you import the wx module for the first time, wxPy-
thon performs some initialization that is vital to other wxPython modules. As a
result, some of the wxPython subpackages, such as the xrc module, might not
work properly unless the wx module has already been imported:
import wx # Always import wx before

from wx import xrc # any other wxPython packages,
from wx import html # just to be on the safe side.

1.2.2

Creating the bare minimum wxPython program 11

This requirement applies only to the wxPython modules; you can still import
other Python modules as you always have, and those modules can be imported
before or after the wxPython modules. For instance, this example is valid:

import sys

import wx

import os

from wx import xrc
import urllib

Working with applications and frames

Once you've imported the wx module, you can create your application and frame
objects. Every wxPython program must have one application object and at least one
frame object. These objects will be discussed in detail in chapter 2. For now, you just
need to know that the application object must be an instance of wx . App or of a sub-
class you define where you declare an onInit () method. The onInit () method will
be called by the wx.app parent class when your application starts.

Subclass the wxPython application class
Here is how we defined our wx.2pp subclass:

class MyApp (wx.App) :

def OnInit (self):
frame = wx.Frame (parent=None, id=-1, title="Bare")
frame. Show ()
return True
We named our class “MyApp,” which is a common convention, but any valid
Python class name would do.

The onInit () method is where you’ll most often create frame objects. But you
won’t usually directly create instances of wx.Frame as we did here. Instead, you'll
define your own wx.Frame subclass the same way we defined our own wx.App sub-
class. (You'll see an example in the next section.) We’ll explore frames in detail in
the next chapter, so for now we’ll simply point out that the wx.Frame constructor
accepts several parameters. Of the three we supplied, only the first is required,
while the rest have default values.

Invoking the show() method makes the frame visible. If we had left that out,
the frame would have been created, but we wouldn’t be able to see it. We can tog-
gle the frame’s visibility by calling show () with a Boolean parameter:

frame.Show (False) # Make the frame invisible.

frame.Show (True) # True is the default parameter value.
frame.Hide () # Equivalent to frame.Show(False) .

12

1.3

CHAPTER 1
Welcome to wxPython

Define an application initialization method

Notice that we didn’t define an __init__() method for our application class. In
Python, this means that the parent method, wx.App.__init__ (), is automatically
invoked on object creation. This is a good thing. If you define an _ init_ ()
method of your own, don’t forget to call the __init__ () of the base class, like this:

class App (wx.App) :

def init (self):
Call the base class constructor.
wx.App._ init_ (self)
Do something here...

If you forget to do so, wxPython won'’t be initialized and your onInit () method
won't get called.

Create an application class instance and enter its main event loop
The final step is to create an instance of the wx.App subclass, and invoke its Main-
Loop () method:

app = App ()

app.MainLoop ()
That’s it. Once the application’s main event loop processing takes over, control
passes to wxPython. Unlike procedural programs, a wxPython GUI program pri-
marily responds to the events taking place around it, mostly determined by a
human user clicking with a mouse and typing at the keyboard. When all the
frames in an application have been closed, the app.MainLoop() method will
return and the program will exit.

Extending the bare-minimum wxPython program

We showed you a bare-minimum wxPython program to give you a comfortable
start, but something that small isn’t useful for anything but discussion. By over-
simplifying the code, we produced a Python program that was easy to under-
stand, but difficult to extend—which is not how we would encourage you to create
serious wxPython programs.

So now we’re going to enhance this minimal program until it has a reasonable
amount of functionality, incorporates common Python programming standards,
and can serve as a proper foundation for your own programs. Listing 1.2 shows
the next iteration, which we named spare.py.

Extending the bare-minimum wxPython program 13

#!/usr/bin/env python "
"""Spare.py is a starting point for a wxPython program.""" t)
import wx

class Frame (wx.Frame) : G’
pass

class App (wx.App) :

def OnInit (self):

self.frame = Frame (parent=None, title='Spare') ¢)
self.frame. Show ()

self.SetTopWindow (self.frame) (5]

return True

if _name_ == '_main_': @
app = App ()

app.MainLoop ()
||

This version is still quite small, only 14 lines of code, but we added several impor-
tant items that get us closer to what we would consider good, solid code.

The first line in the file is now a shebang line. It looks like a Python comment,
which it is, but on some operating systems, such as Linux and Unix, the shebang
tells the operating system how to find the interpreter that will execute the pro-
gram file. If this program file was then given executable privileges (using the
chmod command, for example) we could run the program from the operating sys-
tem command line by simply supplying the program name:

% spare.py

The shebang line is a convenience for Unix and Mac OS X users and is simply
ignored on other platforms. Even if you aren’t using one of those systems, it’s
polite to include it on a script that might be executed cross-platform.

We added a module docstring (documentation string). When the first statement in
a module is a string, that string becomes the docstring for the module and is
stored in the module’s _doc__ attribute. You can access the docstring in your
code, some development environments, and even the Python interpreter run-
ning in interactive mode:

>>> import spare
>>> print spare. doc

Spare.py is a starting point for simple wxPython programs.
>>>

14

CHAPTER 1
Welcome to wxPython

Docstrings are but one example of Python’s powerful introspection capabilities,
and we will encourage you to provide them for modules, classes, methods, func-
tions, and any other place that Python supports. Python development tools, such
as PyCrust, are able to use the docstring to provide useful information to a devel-
oper while you are coding.

© We changed the way we created the frame object. The “bare” version of this pro-

gram simply created an instance of the wx.Frame class. In the “spare” version we
defined our own Frame class as a subclass of wx.Frame. At this point it hasn’t made
any difference to the final results, but you’ll want your own Frame class if you want
anything interesting, such as text, buttons, and menus, to appear in your frame.
Introducing your own custom Frame class now sets the stage for future iterations.
In fact, once your Frame class becomes complicated, you’ll probably want to move
it into its own module and import it into your main program.

O We added a reference to the frame instance as an attribute of the application class

instance. Again, we're setting the stage for things to come, as well as demonstrat-
ing how easy it is to add attributes to Python classes. It makes no difference that
the attribute is a reference to a complex, graphical object, such as a frame. To
Python, an object is an object is an object.

Inside the onInit() method we called the aApp class’s own SetTopWindow ()
method, passing it our newly created frame instance. We didn’t have to define the
SetTopWindow () method because it was inherited from the wx.App parent class. It’s
an optional method that lets wxPython know which frame or dialog should be
considered the main one. A wxPython program can have several frames, with one
designated as the top window for the application. In this case the choice was easy
since we have but one frame.

@ The final addition to the program represents a common idiom in Python pro-

grams used to test whether the module is being run as a program or was imported
by another module. We do that by examining the module’s __name__ attribute:

if name ==
app = App ()
app.MainLoop ()

' main ':

If the module was imported, its__name__ attribute will be the same as its filename
(without the extension), like this:

>>> import spare

>>> spare. name

'spare’

>>>
But if the module is being executed, rather than imported, Python overrides
the default naming convention and sets the module’s _name attribute to

14

Creating the final hello.py program 15

'_main__', giving us the chance to have the module behave differently when
executed directly. We take advantage of this feature by creating an application
instance and entering its main event-loop only if the module is being executed as
a program.

If we didn’t perform this test, and created an application instance even when
this module was imported, it could conflict with code in the module doing the
importing—especially if the importing module has already started the wxPython
event loop. It would also be quite difficult to test (especially since there can only
be one application instance active at one time in a wxPython program, and once
we enter the event loop, control passes to wxPython.) By not starting our own
application when the module is imported, we make our frame and app classes
readily available to other Python programs, facilitating the reuse of existing code.

Creating the final hello.py program

Now that you’ve got the basics under your belt, let’s create the final version of the
program we showed at the beginning of this chapter. Create a file named
hello.py and enter in the code shown in listing 1.3.

#!/usr/bin/env python " Shebang
""nHello, wxPython! program.""" <— Docstring describes the code

import wx <— Import the wxPackage

<}9 wx . Frame subclass
class Frame (wx.Frame) :

""nFrame class that displays an image."""

def init_ (self, image, parent=None, id=-1, 9 Image parameter
pos=wx.DefaultPosition,
title='Hello, wxPython!'):
"""Create a Frame instance and display image."""
temp = image.ConvertToBitmap ()

size = temp.GetWidth(), temp.GetHeight ()
wx.Frame. init (self, parent, id, title, pos, size) DBPhan
self.bmp = wx.StaticBitmap (parent=self, bitmap=temp) the image
<}9 wx . App subclass
class App (wx.App) :

"""Application class."""

def OnInit (self): Image handling
image = wx.Image ('wxPython.jpg', wx.BITMAP_TYPE JPEG)

self.frame = Frame (image)

16

o
(2]
3

CHAPTER 1
Welcome to wxPython

self.frame. Show ()
self.SetTopWindow (self.frame)
return True

def main() : X

main ()

app = App () function
app.MainLoop ()

if name == ' main_ ': Importvs.

main () execute
||

The shebang line allows this program to be an executable script under Linux and
other Unix-like operating systems.

Defining a custom Frame class that subclasses wx . Frame lets us more easily control
the Frame’s contents and appearance.

We added an image parameter to our Frame’s constructor. This value is provided
by our application class when it creates a Frame instance. As long as we can pass
the required values to wx.Frame. _init__ (), there’s no reason we can’t add more
parameters to our subclass’s constructor.

We’re going to display the image in a wx.StaticBitmap control, which requires a
bitmap. So we convert the image to a bitmap. We also create a size tuple, using
the width and height of the bitmap. The size tuple is supplied to the wx.Frame.__
init_ () call, so that the frame size matches the bitmap size.

Defining a wx.App subclass with an onInit () method is a minimum requirement
for any wxPython application.

We create an image object, using a wxPython. jpg file stored in the same directory
as hello.py. You can get this file from the Manning web site, or substitute one of
your own. A more sophisticated version of this program would accept the name of
a file from the command line. We pass our image object as a parameter when we
create the frame.

The main() function creates an application instance and starts the wxPython
event loop.

Checking if this module is the main module allows it to be used in two different
ways: run from the command line or imported by another module.

What happened when you ran your version of hello.py? Did you see a frame
sized to match the graphic you provided? If not, brush yourself off and try again.
If so, congratulations! You're ready to move on to the next exciting steps.

But before you rush into the next chapter, we’re going to talk about wxPython
a little more broadly, what it’s capable of, and how it came to be. If that doesn’t

1.5

What can wxPython do? 17

interest you, feel free to jump to the next chapter and continue coding—the rest
of the introduction will still be here.

What can wxPython do?

Nearly all of your interface needs can be filled by wxPython. In this section, we’ll
show you what some of the wxPython toolkit looks like, using pictures from ele-
ments of the wxPython demo application. Figure 1.8 is a composite image show-
ing all the basic widgets you’d expect: buttons, checkboxes, a combo box, menus,
list box, a spinner control, text controls and radio buttons.

Figure 1.9 shows less common, but very useful widgets, including a slider con-
trol, an editable list box, a time selector, a toolbar, a notebook control, a tree list
control, and an analog clock.

The grid control is one of wxPython’s most flexible widgets, allowing custom
rendering and editing of cells. Figure 1.10 shows an example of many of the fea-
tures of the grid control.

And that’s not all—you also get a quite fully featured HTML-rendering widget
that you can use for static styled text, as the base of a simple web browser, as a help
system, or anything else you might want to display HTML for. An example is
shown in figure 1.11.

| [Apples Select one:
Cranges om0
P one
HELLD AGAIN! Al o
three
four
Select one: |one - five
two u six
—— = - i seven
_TPlaying with menus four E leight |
i
Planets Elements Shells Check F sl;e
Mercu seven =)
v enus have been created for1 | &ight M 8 (2]
Venus h them to see how they beha LMINE
Earth rthis sample to see how to in
Close wiTexdCirl Test it out and see
Passsword
Muttidine Here is a looooooooooooooong line
of text set in the contral.
wixRadioBox
The quick brown fox jumped over .
@z Oone the lazy dog... Figure 1.8
Otwo Othree A sampling of basic
8"_’” 8“"3 user interface
= il controls, including
O eight o
menus, list boxes,
and text controls.

http://www.manning.com/books/harms#author
http://www.manning.com/books/harms#author

18

CHAPTER 1
Welcome to wxPython

List of Stuff

[E]l ———

This is a nifty ListBox widget
that is editable by the user.

12hourfomat: [1:00: 00 au[f%] [STest TooBar
Dz e T

*fou can put nea
and if the platform th
tabs & on : the notebook.

Main column Column 1
=} = The Root tem col 1root
H=H (£ tem 0 tem Oic1)
=} = tem 1 ftem 1(c1)
A item 12 item 1-alc1)
u., L
ftem 1b-0 item 1b-0(cT) "emet
item 1-b-1 item 1-b-1(z1)

Figure 1.9

More advanced
interface controls,
including a tree list
and an analog clock.

Row This Is A Test

0 0.585719849¢. .|0.17976386154

. © 0.36...
1 0.54807534745(0.11820151794

; © 0.46...
> 0.558786957€. | 075657575971 [

! 4 0.13...
K} 0.223741792¢€.|0.34942896455|

y anN ‘0.24...

A h

4 0.027605108¢...|0.91104139310

d © 0.0€...
5 0.853121424¢...(0.8627939528

. © 0.00...
13 0.3190107213 |0.10368736940|

B 4 0.26...

-

7 0.735043152%.|0.93396253523|

s an 043

Ah

o 0c7sosseane |n 7pn0onngd0alls 1

Figure 1.10

The mega-grid
example, showing
custom grid cell
rendering.

1.6

1.6.1

Why choose wxPython?

click here to go to tables test page!
click here to go to IMAGEMAPS test page!
This is - - default text, now switching to

center, now still ctr, now exiting

exited!.[link to down

Hello, this *is* default charset (helvetica, probably) and it is displayed with one COLOR CHANGE. Of
course we can have as many color changes as we can, what about this M ESS?

There was a space above.

This was a line. (BITW we are in fixed font / typewriter font right now :-)
This is in BOLD face. This is {TALIC. Thisis EVERYTHING.

o CENtEred REALLY Big Text v

you like (space) it?

RIGHT: text2, text-1, text+0, text+1, texi+2, text+3, teXt+4

we are right now
we are center now

we are left now.

Blue italic text is displayed there.._.

Figure 1.11 The wx.HTMLWindow, showing some of the HTML rendering
capability.

19

We’ve only just scratched the surface. The wxPython library also includes tools for
image animation. You also get clipboard and drag-and-drop support, support

for MIME types and audio, all the standard dialogs offered by your system, the
ability to specify an interface definition in an XML file, full control over the layout

of your windows, and more.

Why choose wxPython?

The most powerful benefit of wxPython depends on your needs and expertise.
While we think that all user interface (UI) programmers would benefit from using
wxPython, the specific features that are most helpful will vary from case to case.

Python programmers

If you are already a Python programmer, you've probably noticed that Tkinter,

the interface toolkit distributed with Python, has some problems:

20

1.6.2

1.6.3

CHAPTER 1
Welcome to wxPython

m Tkinter is based on the Tk toolkit, which is somewhat out-of-date in terms
of the kinds of widgets it supports. By default, it doesn’t support more com-
plex widgets such as tree controls or tabbed windows. It also doesn’t have a
particularly rich set of predefined dialogs.

= The Tk toolkit does not use native widget support, resulting in an applica-
tion that looks foreign on all platforms. In wxPython, dialogs and widgets
will look like those that are standard on the underlying operating system.
Your Tk user will find that buttons, fonts, and menus all look slightly differ-
ent from what might be expected.

= Many programmers find Tkinter itself somewhat clunky to work with. In
particular, the process by which events are translated to actions in wxPy-
thon is more flexible and powerful.

You'll find that wxPython solves these problems. The toolkit in wxPython is vastly
more complete and extensive than that of Tkinter and the native widget support
means your application will look at home in your operating system. Additionally,
the Python language support is more fluid in wxPython, making for a somewhat
nicer programming experience.

wxWidget users

If you are already using wxWidgets, then what wxPython has to offer you is the
Python language itself. With its clear syntax, dynamic typing, and flexible object
model, Python can improve your productivity dramatically. Python has a very
extensive standard library that is easily incorporated into your application, and
Python programs tend to be shorter and less error-prone than C++ programs.
There are also a number of Python-only additions to the wxWidgets tool set.

New users

If you’re not currently using either Python or wxWidgets, you're in for a real treat,
since you'll get the benefit of both the extensive toolkit and the Python language.
If you are currently working in Java/Swing, you’ll probably find wxPython less
complex and easier to use, and the Python language significantly less verbose
than Java. If you are currently using a single-platform C++ toolkit like the
Microsoft Foundation Classes (MFC), then you’ll appreciate the cross-platform
nature of wxPython. In order to follow the examples in this book, however, some
Python familiarity is helpful. If you need to get started on Python itself, try The
Quick Python Book, by Daryl Harms and Kenneth McDonald, or the web site
www.diveintopython.org.

1.7

1.7.1

How wxPython works 21

In the next section, you’ll learn about the component pieces of wxPython: the
Python language itself, and the wxWidgets toolkit. You’ll also learn about the ratio-
nale and implementation of wxPython itself.

How wxPython works

In the previous section, we talked about what wxPython can do. In this section,
we’ll take a closer look at how wxPython works. Internally, wxPython is a wrapper
or interface for a popular C+ + interface toolkit called wxWidgets. The wxWid-
gets project has a long history and is the source of most of the functionality of
wxPython. Using wxPython allows you to get the benefits of the wxWidgets tool-
kit, while being able to use Python rather than C++.

The wxPython toolkit is the combination of two distinct pieces of software,
which have over 25 years of development between them. In addition, the wxPython
toolkit itself was the result of a significant amount of work. To make wxPython go,
a tool called SWIG is used to generate wrapper functions, or glue code, which allow a
Python program to use the C+ + wxWidgets library just as if it were any old Python
library. Although SWIG does a lot of the work, there’s still some hand-tooling
needed to make the wxPython objects look and act like other Python objects.
There have also been several additional widgets written directly in wxPython that
are not available in the C++ version of the tool—you’ll encounter several of
them along the way in this book.

In this section we will provide a brief overview of the Python programming lan-
guage and the wxWidgets C+ + toolkit. It is the combination of Python’s ease of
use and wxWidgets’ range of functionality that gives wxPython its unique power.

The Python language

Python is a programming language which is easily able to handle both the script-
ing tasks normally associated with Perl and the full-scale application develop-
ment normally associated with C++ or Java. Using a simple, elegant, concise,
syntax and a clean, consistent, semantic model, Python allows programmers to
easily combine simple pieces to make a complex whole.

Throughout the rest of this book, it’s assumed that you have a good working
knowledge of Python, and are familiar with basic concepts such as how Python
implements objects and classes. You don’t need to be a Python expert to read this
book, but ordinary Python language constructs are not explained in the discus-
sion of the wxPython examples. If you need more background information on
Python, the Python web site contains an excellent tutorial and other documenta-
tion at www.python.org/doc.

22

1.7.2

CHAPTER 1
Welcome to wxPython

One important Python feature is the interactive interpreter, which can be very
helpful in exploring the language and in debugging programs. If Python is
installed and on your path, you can access the interpreter by entering python at a
command prompt. You'll then see >>>, which is the Python command prompt.
From there, you can enter any Python expression, and its value will be displayed
on the screen. For example:

$ python

Python 2.3.3cl (#50, Dec 4 2003, 21:27:34) [MSC v.1200 32 bit (Intel)] on
win32

Type "help", "copyright", "credits" or "license" for more information.

>>> 2 + 2

4

>>> 10 / 3

3

>>> zip(['a', 'b', 'c'l, [1, 2, 3])

[(ta', 1), ('b', 2), ('c', 3)]

>>>
In this short session, I did a couple of simple arithmetic functions, then used the
Python built-in function zip (), to combine two lists into an associated list. You
can do anything from the interpreter that you can do in a standalone Python pro-

gram, including import modules, define functions, and define classes.

The wxWidgets toolkit

The other base component of wxPython is the wxWidgets toolkit. At base, wxWid-
gets is a GUI framework implemented in C+ +, which means it is a set of C++
classes that encapsulate a wide range of features. Although the primary use of
wxWidgets is for UI applications, it also contains useful features for C++ pro-
grammers including C++ implementations of data structures not supported in
ANSI C+ +, such as strings and hashtables, as well as interfaces for system features
like sockets and threads. Since these features and others are already available in
the Python language or standard library, wrappers for these wxWidgets classes are
not provided in wxPython and you should use the Python equivalents instead. For
the most part wxPython only provides wrappers for the GUI classes in wxWidgets.
The goal of wxWidgets is to allow a C+ + program to compile and run on all sup-
ported platforms with only minor changes to the source from platform to plat-
form, and a reasonably consistent look and feel between the platforms.

Here’s a sample C++ wxWidgets program, taken from Robert Roebling’s
tutorial on the wxWidgets site. This creates a blank window with a two-element
menu, Quit and About. This is being shown primarily for comparison with the
Python examples we’ll be seeing throughout the book.

How wxPython works 23

Listing 1.4 A simple Hello World program in C+ + wxWidgets

#include "wx/wx.h"

class MyApp: public wxApp {
virtual bool OnInit () ;
}i

class MyFrame: public wxFrame {
public:
MyFrame (const wxString& title, const wxPointé& pos,
const wxSize& size);
void OnQuit (wxCommandEvent& event) ;
void OnAbout (wxCommandEvent& event) ;
DECLARE_EVENT_TABLE()

}i

enum {
ID Quit = 1,
ID_About,

}i

BEGIN_EVENT TABLE (MyFrame, wxFrame)
EVT_MENU(ID Quit, MyFrame::0nQuit)
EVT_MENU (ID_About, MyFrame::OnAbout)

END_EVENT_TABLE ()

IMPLEMENT APP (MyApp)

bool MyApp::0nInit ()
MyFrame *frame = new MyFrame ("Hello World", wxPoint (50,50),
wxSize (450,340)) ;
frame->Show (TRUE) ;
SetTopWindow (frame) ;
return TRUE;

MyFrame: :MyFrame (const wxString& title, const wxPointé& pos,
const wxSize& size)
wxFrame ((wxFrame *)NULL, -1, title, pos, size) ({

wxMenu *menuFile = new wxMenu;

menuFile->Append(ID_About, "&About...");

menuFile->AppendSeparator () ;

menuFile->Append(ID Quit, "E&xit");

wxMenuBar *menuBar = new wxMenuBar;

menuBar->Append (menuFile, "&File");

SetMenuBar (menuBar) ;

CreateStatusBar() ;

SetStatusText ("Welcome to wxWidgets!");

24

CHAPTER 1
Welcome to wxPython

void MyFrame::0nQuit (wxCommandEvent& WXUNUSED (event)) {
Close (TRUE) ;

void MyFrame: :OnAbout (wxCommandEvent& WXUNUSED (event)) {

wxMessageBox ("This is a wxWidgets Hello world sample",
"About Hello World", wxOK | wXICON_INFORMATION, this) ;

If you're familiar with C++, you probably noticed that something is missing.
Usually, C+ + programs have a function named main () which is the starting point
for the program. In wxWidgets, the macro IMPLEMENT APP (MyApp) automatically
sets up a default main () which manages initialization of the wxWidget program.

As with most cross-platform interface Kkits, the classes and methods visible to
the programmer are actually proxies for a set of subclasses. Typically there is a
subclass for each platform that wxWidgets runs under, and the subclass specific to
the current platform is automatically used. As of this writing, these are the most
significant supported platforms:

m Microsoft Windows
m Mac OS

®» Gnome Toolkit (GTK+), which is applicable on most modern Unix systems

For each platform, wxWidgets attempts to use native widgets and features where
applicable, and generally tries to emulate the native look and feel. In this way,
wxWidgets avoids the “least common denominator” problem that cross-platform
toolkits frequently have.

If you are familiar with any other large-scale object-oriented interface toolkit,
such as MFC or Java Swing, the basic structure of wxWidgets should feel largely
similar. One difference from some toolkits is that wxWidgets does not make a
class distinction between widgets that can contain other widgets and ones that
can’t. (The way that, for example, Java Swing has a JComponent and JContainer
class). The mechanism for adding child widgets is built into the wxWindow base
class so that it is potentially available to all widgets, whether or not they are typi-
cally thought of as containers. Typically, though, widgets that are not containers
prevent you from using this behavior (you can’t put a dialog box inside a button,
for example).

Development of wxWidgets goes back farther than you might think. The
project was begun in 1992 by Julian Smart, at the University of Edinburgh’s Arti-
ficial Intelligence Applications Institute. Smart was trying to build an application

1.7.3

How wxPython works 25

that could run on both Unix and Windows, and the existing commercial toolkits
were prohibitively expensive, so he wrote his own. The name wxWidgets refers to
the two original platforms—“w” for Microsoft Windows and “x” for Unix X
server. The original version was written in terms of MFC, for the Windows version,
and XView on Unix, but that quickly gave way to more general libraries for each
platform as XView was replaced by the Motif toolkit, and MFC was replaced with
direct calls to the Windows API. In 1997, the entire system was built with a more
flexible API, and the GTK+ version became the standard Unix port soon after.
The Macintosh port came on board the next year. More recent developments
in the wxWidget side include a Unix library which is not dependent on a pre-
existing toolkit, and ports for handheld systems.

Python is not the only language which has a binding library for wxWidgets,
although it has the largest user community of the group. The wxWidgets web
site links to projects with support for Ada, Basic, C#, Eiffel, Euphoria, Haskell,
Java, JavaScript, Lua, Perl, and Ruby, although we make no claims for the
robustness or level of support of any of those ports.

Putting it together: the wxPython toolkit

While both Python and wxWidgets are pretty great on their own, they combine
to create an even greater whole, like peanut butter and chocolate. The flexibility
of the Python language makes wxPython much easier to develop in than its
C++ counterpart, while the native C++ code of wxWidgets gives the Python
GUI both the speed and native look and feel it would otherwise lack. Table 1.2
gives a sample of some issues that are difficult to manage in C++ but easy, if not
trivial, in Python.

Table 1.2 Developing in C+ + versus developing in wxPython

C++ environment wxPython environment
Memory management handled by programmer Memory management handled by Python
Static typing makes polymorphism difficult Dynamic typing makes polymorphism easy
Program reflection very limited Program reflection easy, allowing for powerful
abstraction
Unable to use functions as arguments easily Functions can be passed around like any other variable
Compilation cycle needed before each run Program interpreted at runtime

26

CHAPTER 1
Welcome to wxPython

Here is an example of how the two tools interact. In the previous section, we
showed you a “hello world” example in C++ wxWidgets. Listing 1.5 shows the
same example translated basically line-by-line into wxPython.

Listing 1.5 A simple Hello World program in wxPython

import wx
class MyApp (wx.App) :

def OnInit (self):
frame = MyFrame ("Hello World", (50, 60), (450, 340))
frame. Show ()
self.SetTopWindow (frame)
return True

class MyFrame (wx.Frame) :

def _ init_ (self, title, pos, size):
wx.Frame. init_(self, None, -1, title, pos, size)
menuFile = wx.Menu ()
menuFile.Append (1, "&About...")
menuFile.AppendSeparator ()
menuFile.Append (2, "E&xit")
menuBar = wx.MenuBar ()
menuBar .Append (menuFile, "&File")
self.SetMenuBar (menuBar)
self.CreateStatusBar ()
self.SetStatusText ("Welcome to wxPython!")
self.Bind (wx.EVT MENU, self.OnAbout, id=1)
self.Bind (wx.EVT_MENU, self.OnQuit, id=2)

def OnQuit (self, event):
self.Close()

def OnAbout (self, event):
wx.MessageBox ("This is a wxPython Hello world sample",
"About Hello World", wx.OK | wx.ICON_INFORMATION, self)

if _name == '_main_ ':
app = MyApp (False)
app.MainLoop ()
||

There are two high-level things that we’d like to point out about the wxPython
example compared to the wxWidgets C++ one (beyond merely the difference
between the two languages).

First, notice that wxPython does not have the automatic macro for creating a
main starting point, and must do so explicitly at the end of this module.

Summary 27

Second, the mechanism for associating events with the code to be executed is
different between the two programs. Since Python allows functions to be passed
easily around as objects, the wxPython program can use the relatively straightfor-
ward wx.Bind () methods to do the associating dynamically at runtime. The C+ +
program must use the DECLARE EVENT TABLE and BEGIN EVENT TABLE macros,
which do the binding statically at compile time and are somewhat more awkward.

Beyond those changes, the two programs are quite similar line by line—we
find the Python version more readable, though. As you'll see, Python becomes
more of an advantage in larger programs, due to its simpler syntax, automatic
memory management, and so forth. At this point it’s worth mentioning that
wxPython did not come about by accident. It was developed to fill a specific
need for a cross-platform rapid development environment. It has prospered
and advanced because of the continued efforts of programmers who need rapid
GUI development.

Development of wxPython and wxWidgets continues. Ongoing projects
include support for mobile devices and better multimedia support. The most cur-
rent version of wxPython is available at www.wxpython.org.

1.8 Summary

® You can create a minimal wxPython program in less than 10 lines of code.
Most wxPython programs are much longer than 10 lines, and are typically
divided into separate modules, each containing customized subclasses of
wxPython classes, and, hopetfully, plenty of docstrings.

m Most of the wxPython toolkit is accessed through the wx package which you
access using the import wx statement. Every wxPython program must have
an application object—an instance of a wx.App subclass that defines an
onInit() method. Most wxPython programs will have one or more
frames—instances of subclasses of wx.Frame. A frame is the large, movable,
resizeable window-like container that appears on screen, often with a menu,
status bar, tool bars, and other widgets. Control of your program passes to
wxPython when you call your application’s MainLoop () method.

m Within wxPython are all the basic widgets you would expect, plus common
dialogs, a wide variety of more complex widgets, HTML rendering, spread-
sheet-style grids, and so forth. The wxWidgets toolkit that wxPython is
based on is a C++ framework with a large list of features. It is a cross-
platform toolkit, with most support for Microsoft Windows, Unix GTK+,

28

CHAPTER 1
Welcome to wxPython

and the Mac OS. The basic unit of a wxWidgets application is the window,
meaning any item that can be drawn to the screen.

m The wxPython toolkit is a combination of the Python programming
language and the wxWidgets toolkit and can be downloaded at www.
wxpython.org. It combines a very extensive interface toolkit with an easy-to-
use scripting language. It offers productivity gains and useful features for any
programmer, including existing Python or wxWidgets programmers.

m The wxPython version of the toolkit is a wrapper around wxWidgets con-
taining bindings which allow Python language constructs to interact with
the C++ framework. These bindings are largely created from the SWIG
tool, from a long list of descriptions of how Python objects and C++
objects relate to each other.

Now it’s time to do some wxPython coding. The next chapter starts you off with
writing some code, and the remainder of part 1 explores the most important con-
cepts of wxPython. Let’s go!

Guoimng yowr
wxPython program
a solid foundation

This chapter covers

Creating application objects

Directing output from a wxPython program
Shutting down a wxPython application
Creating and using top-level window objects
Adding objects and subwindows to a frame

29

30

2.1

CHAPTER 2
Giving your wxPython program a solid foundation

The foundation of a house is a concrete structure that provides a strong base for
the rest of the construction. Your wxPython program also has a foundation, made
up of two required objects that support the rest of your application. These are the
application object and the top-level window object. Using these objects properly will
give your wxPython application a strong base to start with, and will make the job
of constructing the rest of your application easier.

In this chapter, you will work with the application object to customize global
aspects of your program, including initialization, redirecting output, and shut-
down. You will use window objects in various styles, and put together basic widget
combinations. You will also use simple default dialog boxes to get user informa-
tion. At the end of the chapter, we’ll help you diagnose and troubleshoot common
problems with usage of application and top-level window objects.

What do I need to know
about the required objects?

Let’s start with a description of the two foundation objects. The application object
manages the main event loop, which is the heartbeat of your wxPython program.
The event loop will be covered in detail in chapter 3. For now, it is enough to say
that it is the application object’s job to start the main event loop. In addition, the
application object has the final chance to respond to any events which are other-
wise ignored by your application. Without the application object, your wxPython
application cannot run.

The top-level window object generally manages the most important data and
controls and presents them to the user. For example, in a word-processing pro-
gram, the main window is the display of the document, and will likely manage at
least some of the data for the document (depending, of course, on the exact
architecture of your application). Similarly, the main window of your web browser
both displays the page you are looking at and manages that page as a data object.

Figure 2.1 gives a basic schematic of the relationship between the two founda-
tion objects and the rest of your application.

As this diagram shows, the application object “owns” both the top-level win-
dow and the main event loop. The top-level window manages the components in
that window, and any other data objects you assign to it. That window and its
components trigger events based on user actions, and receive event notifications
to make changes in the display. In the next sections, we’ll discuss the application
and top-level window objects in more detail.

2.2

2.2.1

How do I create and use an application object? 31

SetTopWindow() property
Application Top-Leve
Object Window

Started by app object

7

diysuonejas piiyoaualed

Event triggered in component

Main
Event < Window Components

Loop
Figure 2.1 A schematic of the basic wxPython application

structure, showing the relationship between the application
object, the top-level window, and the main event loop

How do I create and use an application object?

Every wxPython application needs exactly one application object. The applica-
tion object must be an instance of the class wx.2pp, or a custom subclass thereof.
The primary purpose of the application object is to manage the main event loop
behind the scenes. This event loop responds to windowing system events and dis-
patches them to the appropriate event handler. The application object is so
important to the management of a wxPython process that you cannot create any
wxPython graphical objects until after your program has instantiated an applica-
tion object.

The parent wx.2pp class also defines a few properties which are global to the
entire application. Much of the time, that’s all the functionality youll need from
your application object. A custom application subclass can be used if you need to
manage other global data or connections (such as a database connection). In
some cases, you might also want to extend the main event loop for more special-
ized error or event handling. However, the default event loop will be suitable for
nearly all wxPython applications that you will write.

Creating a wx.App subclass

Creating your own subclass of wx.App is so simple that it’s often a good idea to cre-
ate one when you start your application even if you don’t need any custom func-
tionality. That way, you’ll have the subclass if you need it later. To create and use a
wx . App subclass, you need to perform four steps:

32

CHAPTER 2
Giving your wxPython program a solid foundation

1 Define the subclass.
2 Write an onInit () method within the subclass definition.
3 Create an instance of the class in the main section of your program.

4 Call the MainLoop () method of the application instance. This method
transfers program control to wxPython.

We saw the onInit () method in chapter 1. It’s called by the wxPython system
when the application is started and before the main event loop begins. This
method takes no parameters and returns a boolean value—if the return value is
False, then the application will exit immediately. In most cases, you’ll want to
hardwire True as the result of this method. Exiting might be the proper way to
handle certain error conditions, such as the absence of a required resource.

Because the onInit () method exists, and is part of the wxPython framework,
any initialization needed for your custom class is typically managed there, and
not in the Python _ init__ special method. If you decide that you need an
__init__ method for some reason, you must call the __init__method of the par-
ent class in that method, as in the following.

wx.App._ init__ (self)

Typically, you'll create at least one frame object within the onInit () method, and
you’ll also call the show () method of that frame. You may optionally specify that
the frame is the top window for the application by calling the method SetTopiwin-
dow (). The top window is used as the default parent for dialogs that are created
without a parent—it’s essentially the main window of your program. We’ll discuss
the top-level window in section 2.5.

When to omit a wx.App subclass

You aren’t required to create your own wx . App subclass. You usually will want to do
so to be able to create your top-level frame in the onInit () method. But there is
nothing stopping you from creating the frame outside of the application defini-
tion in some other part of calling script—the most common alternate place is the
_main__clause. The only restriction is that your wx . App instance has to have been
created first. Generally, it is only a good idea to avoid creating a wx. App subclass if
there’s just one frame in the system, and therefore the application setup is trivial.
In such a case, wxPython provides the convenience class wx.PySimpleapp. The
class provides a skeleton onInit () method, and is defined as follows:

class PyS

How do I create and use an application object? 33

impleApp (wx.App) :

def init (self, redirect=False, filename=None,

useBestVisual=False, clearSigInt=True) :

wx.App.__ init_ (self, redirect, filename, useBestVisual,

def O
r

clearSigInt)

nInit (self) :
eturn True

It doesn’t get much simpler than that. A sample usage of wx.PySimpleApp might

look like thi

if _ name
app =
frame
frame

S:

== '_main_ ':
wx . PySimpleApp ()
= MyNewFrame (None)
.Show (True)

app.MainLoop ()

In the first 1

ine of this snippet, you create the application object as an instance of

wx.PySimpleApp (). Since we're using the wx.PySimpleapp class, we don’t have a

custom OnInit method, so we define a frame in the second line of the snippet—
since it has no parent specified, it’s a top-level frame. (Obviously, the MyNewFrame
class needs to be defined somewhere.) The third line of the code shows the frame,

and the last
As you ¢

line calls the application main loop, and we’re good to go.
an see, using wx.PySimpleapp allows you to run your wxPython pro-

gram without creating your own custom application class. You should only use
wx . PySimpleapp if the application is, well, simple, and doesn’t need any other glo-
bal parameters.

NOTE

Naming Conventions—While wxPython does a fantastic job of simplifying
a complex C++ toolkit, the C++ origins of the tool do leak through in
spots. One of the most noticeable examples of the C++ heritage has to do
with naming conventions. In Python, method names usually use the
lower_case_ separated_by_underscores or the lowerCaselnterCap style.
However, the C++ convention which wxWidgets uses for methods is the
UpperCaselnterCap style. This can be jarring if you are used to the Python
style. For consistency’s sake, it is recommended that you use the wxWidgets
style in your wxPython classes. (Of course, you'll need to use it if you
want to override wxWidgets methods).

Also note that the wxPython classes use explicit Get and Set meth-
ods for properties. That's more of a C++ style because most Python
programs wouldn’t define special accessor methods for simple cases.

34

CHAPTER 2
Giving your wxPython program a solid foundation

The data members of the C++ classes are private—in most cases you
must access the data of a wxPython class by using the access methods,
you cannot use bare attribute names.

2.2.2 Understanding the application object lifecycle

The lifecycle of your wxPython application object begins when the application
instance is created and ends just after the last application window is closed.
This does not necessarily correspond to the beginning and ending of the
Python script that surrounds your wxPython application. The script may choose
to do some activity before creating the wxPython application, and may do fur-
ther cleanup after the application MainLoop () exits. All wxPython activity, how-
ever, must be performed during the life of the application object. As we've
mentioned, this means that your main frame object cannot be created until
after the wx.App object is created. (This is one reason why we recommend creat-
ing the top-level frame in the onInit () method—doing so guarantees that the
application already exists.)

As figure 2.2 shows, creating the application object triggers the OnInit ()
method and allows new window objects to be created. After onInit (), the script
calls MainLoop (), signifying that wxPython events are now being handled. The
application continues on its merry way, handling events until the windows are
closed. After all top-level windows are closed, the MainLoop () function returns to
the calling scope and the application object is destroyed. After that, the script can
close any other connections or threads that might exist.

Automatically Events are now
calls Onlnit() . processed
method| .
Script Appllf:atlon MainLoop() _ Appll_catlon Script
object > > object 1
start called end
created destroyed
At this point, | - ’ Y . '

window objects can This happens after all | ,
top-level windows are f

be created closed

Figure 2.2 Major events in the wxPython application lifecycle, including the beginning and ending of
both the wxPython application and the script which surrounds it

2.3

2.3.1

How do I direct output from a wxPython program? 35

One reason to be aware of the main application life cycle is that, while active, a
wxPython application will take control of certain system functions, such as the
standard output streams. We’ll discuss how to direct output in the next section

How do I direct output from a wxPython program?

All Python programs can output text via two standard streams: the standard out-
put stream, sys.stdout, and the standard error stream sys.stderr. An ordinary
Python script directs the standard output streams back to the console from which
the script was launched. However, when your application object is created you can
decide to have wxPython take control of the standard streams and redirect the out-
put to a window instead. This redirect behavior is the default behavior for wxPy-
thon under Windows. In Unix systems, however, where there is more likely to be
an actual console window, wxPython does not control the standard streams by
default. In all systems the redirection behavior can be explicitly specified when the
application object is created. We recommend taking advantage of this feature and
always specifying redirect behavior to avoid any problems from different behavior
on different platforms.

Redirecting output

If wxPython is controlling the standard streams, then text sent to the streams via
any mechanism—including a print statement or a system traceback—is redirected
to a separate wxPython frame. Text sent to the streams before the wxPython appli-
cation begins or after it ends is, of course, processed normally. Listing 2.1, dem-
onstrates both the application lifecycle and the stdout/stderr redirection.

#!/usr/bin/env python

import wx
import sys

class Frame (wx.Frame) :
def _ init_ (self, parent, id, title):
print "Frame _ init "

wx.Frame. init_ (self, parent, id, title)

class App (wx.App) :

36 CHAPTER 2
Giving your wxPython program a solid foundation

def _ init_ (self, redirect=True, filename=None) :
print "App _ init "
wx.App._ init_ (self, redirect, filename)

def OnInit (self) :

print "OnInit" <— WHriting to stdout

self.frame = Frame (parent=None, id=-1, title='Startup') <— Creaﬁng

self.frame.Show () the frame
self.SetTopWindow (self.frame)

print >> sys.stderr, "A pretend error message" <— Writing to stderr

return True

def OnExit (self) :
print "OnExit"

if __name_ == '_main_ ':
app = App(redirect=True) (@ Text redirection starts here
print "before MainLoop"
app .MainLoop () @ The main event loop is entered here

print "after MainLoop"

@ This line creates the application object. After

this line, all text sent to stderr or stdout can [ZlwxPython: stdout/stderr = JCJEd
be redirected to a frame by wxPython. The fom

arguments to the constructor determine —|3petederrnesae
whether this redirection takes place. '

® When run, this application creates a blank Figure 2.3 The stdout/stderr
frame, and also generates a frame with the window created by Listing 2.1
redirected output, as shown in figure 2.3.
Notice also that both stdout and stderr messages get directed to the window.

After you run this program you’ll see that your console has the following output:

App _ init
after MainLoop

The first line is generated before the frames are opened, the second line is gen-
erated after they close.

By looking at both the console and the output frame, we can trace the appli-
cation lifecycle.

The first bubble in figure 2.2—Start Script—corresponds to the first lines run
from the script’s __main__ clause. The transition to the next bubble comes imme-
diately in the line marked @. The instantiation of the instance calls the method

2.3.2

How do I direct output from a wxPython program? 37

wx.App._ init_ (). Then control goes to onInit (), which is automatically called
by wxPython. From there, the program jumps to the wx.Frame.__init__ (), which
is run when the wx.Frame instance is instantiated. Finally, control winds back to
the _main_ clause, where MainLoop() is invoked, corresponding to the third
bubble in figure 2.2. After the main loop ends, then wx.App.onExit () is called by
wxPython, transitioning to the fourth bubble, and then the rest of the script fin-
ishes out the process.

“Wait a minute,” you say, “the message from onexit () didn’t display in either
the window or the console.” As we’ll see, the message does display in the wxPy-
thon frame, but it does so right before the window is closed, so that it’s nearly
impossible to capture in a screen shot.

The quickly vanishing onExit () message is a symptom of a larger issue with
the output frame. Although it’s a useful feature during development, you don’t
necessarily want the error stream frame popping out in a user’s face at run time.
Furthermore, if an error condition happens during the onInit () method, it gets
sent to the output frame, but the error causes the application to exit, since
onInit () will return a False value in case of an error condition. The result is that
the line of text is displayed but disappears far too quickly to be seen.

Modifying the default redirect behavior

In order to modify this behavior, wxPython allows you to set two parameters
when creating the application. The first parameter, redirect, causes output to be
redirected to the frame if it is True. If the value is False, output stays at the con-
sole. If the redirect parameter is True, then the second parameter, filename,
can also be set. If so, output is redirected to a file with that name, rather than to
the wxPython frame. Therefore, changing the wx.aApp creation at annotation @
in listing 2.1 to:
app = App(False)

causes all of the following output to go to the console:

App _ init
OnInit
Frame _ init

A pretend error message
before MainLoop

OnExit

after MainLoop

Notice that the onExit () message is displayed here. Changing the line to:

app = App(True, "output")

38

2.4

24.1

CHAPTER 2
Giving your wxPython program a solid foundation

will cause all the redirected lines to be sent to a file named output. The App
__init_ and after MainLoop messages will still be sent to the console, however,
because they occur outside of the time period where the wx.2pp object has control
of the streams.

How do I shut down my wxPython application?

When the last top-level window in your application is closed by the user, the
wxPython application exits. By top-level, we mean any frame without a parent,
and not just the frame designated using the SetTopwindow() method. This
includes any frames created by wxPython itself. For instance, in listing 2.1, the
application does not exit until both the main frame and the output redirection
frame are closed, even though only the main frame is registered using SetTop-
Window (), and even though the application doesn’t explicitly create the output
redirect frame. To trigger a shutdown programatically, you can call Close () on all
top-level windows.

Managing a normal shutdown

During the shutdown process, wxPython takes care of deleting all its windows and
freeing their resources. You have one hook into the exit process to perform your
own cleanup. If defined, the onExit () method of your wx.app subclass is called
after the last window closes but before wxPython’s internal cleanup. You can use
this method to clean up any non-wxPython resources you've created (a database
connection, for example). Even if the application is closed with wx.Exit (), the
onkExit () method is still triggered.

If for some reason you want the application to continue after the last window
closes, you can change the default behavior using the wx.2pp method SetExiton-
FrameDelete (flag). If the flag parameter is set to False, the program will con-
tinue to run even after the last window closes. This means that the wx.App
instance will continue to live, and the event loop will continue to process events.
You could, for example, then create all new top-level windows. The application
will remain alive until the global function wx.Exit () is explicitly called.

A further subtlety is that wxPython will not trigger the shutdown process
before the main loop is even entered. Specifically, if you open a dialog in your
onInit () method, you can close it without fear that wxPython will interpret that
as closing your last top-level window and shut itself down.

2.4.2

2.5

How do I create and use the top-level window object? 39

Managing an emergency shutdown

You can’t always close your program in a controlled way. Sometimes, you need to
end the application immediately and you don’t care that your program cleans up
after itself fully. For example, a critical resource may have closed or become cor-
rupted. If the system is shutting down, you may not be able to do all the cleanup.

There are two mechanisms for exiting your wxPython application in an emer-
gency situation. You can call the wx.App method ExitMainLoop (). This method
explicitly causes the main message loop to break, causing the control to leave the
MainLoop () function. This will generally end the application—it’s eftectively
equivalent to closing all the top-level windows.

You can also call the global method wx.Exit (). Neither method is recom-
mended for normal use because it may cause some cleanup functions to be skipped.

Sometimes, your application will need to shut down due to an event outside of
its control. An example of this is when the underlying operating system is about
to shut down or log the user off. In that case, your application gets one shot at
cleanup to save documents or close connections or whatever. If your application
binds an event handler for the wx.EVT QUERY END SESSION event, then that event
handler is called when wxPython is notified of the shutdown. (We’ll show how to
bind events to handlers later in the chapter, and in more detail in chapter 3.) The
event parameter is a wx.CloseEvent. The close event may allow the application to
veto the shutdown. Use the event method canveto () to find out. The application
can make its veto known by calling the event method veto (). You might want to
do this if you cannot successfully save or close all resources. The default handler
for the wx.EVT_QUERY END SESSION event calls the Close () method of the top-level
windows, which will in turn send the wx.EVT_CLOSE event to the top-level windows
giving you another chance to control the shutdown process. If any of the close ()
methods returns False then the application attempts to veto the shutdown.

How do I create and use
the top-level window object?

A top-level window object is a widget (usually a frame) that is not contained by
another widget in your application—it’s what a typical user would point to and
say, “That’s the program.” The top-level window object is usually the main
window of your application and contains widgets and interface objects that the
user interacts with. As we have seen, the application exits when all top-level
windows are closed.

40

2.5.1

CHAPTER 2
Giving your wxPython program a solid foundation

Your application must have at least one top-level window object. The top-level
window object is usually a subclass of the class wx . Frame, although it can also be a
subclass of wx.Dialog. Most of the time, you will define custom subclasses of
wx . Frame for use in your application. However, there are a number of pre-defined
wx.Dialog subclasses that provide many of the typical dialogs that you might
encounter in an application.

There’s some naming confusion here, due to overloading of the word top. A
generic “top-level” window is any widget in your application that doesn’t have a
parent container. Your application must have at least one of these, but it can have
as many as you'd like. Only one of these windows, however, can be explicitly
blessed by wxPython as the main top window by using SetTopWindow (). If you do
not specify a main window with SetTopWindow, then the first frame in the wx.App’s
top-level window list is considered to be the top window. So, explicitly specifying
the top window is not always necessary—you don’t need to if, for example, you
only have one top window. Repeated calls to setTopWindow () will replace the cur-
rent top window—an application can only have one top window at a time.

Working with wx.Frame

In wxPython parlance, a frame is the name given to what a GUI user normally
calls a window. That is to say, a frame is a container that the user can generally
move freely around on the screen, and which often includes such decorations as a
title bar, menubar, and resize targets in the corners. The class wx. Frame is the par-
ent class of all frames in wxPython. There are also a few specialized subclasses of
wx . Frame that you may use. This section will give an overview of the wx.Frame fam-
ily—enough for you to get started using them. A more complete description of
the wx.Frame class will be presented in chapter 8.

When you create subclasses of wx.Frame, the _init_ () method of your class
should call the parent constructor wx.Frame. _init_ (). The signature of that
constructor is as follows.

wx.Frame (parent, id=-1, title="", pos=wx.DefaultPosition,

size=wx.DefaultSize, style=wx.DEFAULT FRAME STYLE,

name="frame")
This constructor takes several parameters. In normal use, however, at least
some of the defaults are reasonable options. We will see parameters similar to
this constructor again and again in other widget constructors—it’s a very simi-
lar pattern in wxPython. Table 2.1 describes each of the parameters.

Remember, these are the parameters as passed to the parent constructor
method, wx.Frame.__init__ (). The argument signature of the constructor to your

How do I create and use the top-level window object? 41

Table 2.1 Parameters of the wx . Frame constructor method

Parameter

Description

parent

The parent window of the frame being created. For top-level windows, the value is None.
If another window is used for the parent parameter then the new frame will be owned

by that window and will be destroyed when the parent is. Depending on the platform, the
new frame may be constrained to only appear on top of the parent window. In the case
of a child MDI window, the new window is restricted and can only be moved and resized
within the parent.

The wxPython ID number for the new window. You can pass one in explicitly, or pass -1
which causes wxPython to automatically generate a new ID. See the section “Working with
wxPython ID” for more information.

title

The window title—for most styles, it’s displayed in the window title bar.

pos

A wx .Point object specifying where on the screen the upper left-hand corner of the new
window should be. As is typical in graphics applications, the (0, O) point is the upper left
corner of the monitor. The default is (-1, -1), which causes the underlying system to decide
where the window goes. See the section “Working with wx.Size and wx.Point” for more
information.

size

A wx . Size object specifying the starting size of the window. The default is (-1, -1), which
causes the underlying system to determine the starting size. See the section “Working with
wx.Size and wx.Point” for more information.

style

A bitmask of constants determining the style of the window. You may use the bitwise or
operator (|) to combine them when you want more than one to be in effect. See the
section “Working with wx.Frame styles” for usage guidelines.

name

An internal name given to the frame, used on Motif to set resource values. Can also be
used to find the window by name later.

class can, and often will, be different. This allows you to conveniently ensure
default values for your own frame by not allowing them to be modified by a call to
your constructor. For example, you might want your frame class to always be a 300
pixel square. In that case, you probably wouldn’t have a size argument in your
class constructor, but would just explicitly pass (300, 300) to the wx.Frame.
init__ () method. Listing 2.2 shows a frame class that does not allow any of the
attributes of the window to be passed as an argument.

class MyFrame (wx.Frame) :

def _ init_ (self):

wx.Frame. init (self, None, -1, "My Friendly Window",

(100, 100), (100, 100))

42

2.5.2

CHAPTER 2
Giving your wxPython program a solid foundation

In listing 2.2, the _ init_ () method of MyFrame does not take any arguments.
This means that MyFrame users cannot override the hardwired arguments that
MyFrame. init_ () passes to the superclass wx.Frame. init_ (). Remember
that a determined user of your class can always change the default values by call-
ing setter methods after the frame is instantiated.

Working with wxPython IDs

Table 2.1 lists the wxPython ID number of the new frame. ID numbers are a feature
of all widgets in wxPython, and it’s worth a few paragraphs to explain how they
work. Every widget in a wxPython application has a window identifier. The 1D
numbers must be unique within each frame, but you can reuse ids between
frames. We recommend, however, that you try to have your ID numbers be unique
across your application, to prevent errors and confusion when processing events.
However, there are few standard predefined ID numbers in wxPython, which have
specific meanings within parts of the code (for example, wx.ID 0K and wx.ID_
CANCEL are assumed to be the ID numbers of the OK and Cancel buttons in a dia-
log box). It’s usually not a problem to reuse standard ID numbers in your appli-
cation as long as you use them in the manner expected. The ID number is usually
the second parameter in the constructor of a wxPython widget object, after the
parent widget. The most important use of ID numbers in wxPython is to create a
unique relationship between an event that happens to a specific object and a
function which is called in response to that event. Using a duplicate ID can cause
the wrong function to be triggered in response to an event.
There are three ways to create the ID numbers used by a widget:

1 Explicitly pass a positive integer into the constructor

2 Get wxPython to create IDs for you using the wx.NewId () function

3 Pass either the global constant wx.ID_ANY or -1 to a widget constructor

Explicitly choosing the ID

First and most straightforwardly, you can explicitly pass a positive integer into the
constructor—that number becomes the widget’s ID. If you pass a specific number,
it is your responsibility to make sure that you do not duplicate ID numbers within
a frame or reuse one of the predefined constants. You can ensure that wxPython
does not use your explicit ID elsewhere in the application by calling the global
function wx.RegisterId (). To prevent your program from duplicating wxPython

2.5.3

How do I create and use the top-level window object? 43

IDs, you should avoid using ID numbers between the global constants wx.ID LOWEST
and wx.ID HIGHEST.

Using the global NewlD() function
However, ensuring the uniqueness of ID numbers can become burdensome
quickly. You can instead get wxPython to create ids for you using the
wx.NewId () function:

id = wx.NewId()

frame = wx.Frame._ init_ (None, id)
Using a constant to say ‘I don’t care’
Alternately, you can pass either the global constant wx.ID ANY or -1 to many wid-
get constructors, and then wxPython will generate the new ID for you. Then you
can use the Get1d () method if you need the ID later on:

frame = wx.Frame. init (None, -1)
id = frame.GetId()

There’s no particular functional difference between the styles.

Working with wx.Size and wx.Point

The list of wx.Frame constructor arguments (table 2.1) also referenced the classes
wx.Size and wx.Point. These two classes will be used frequently in your wxPython
programming. Because of that, some Python-specific shortcuts have been added
to the classes.

The wx.Size and wx.Point classes are quite similar both in their wxWidgets
method list and in how they are represented in wxPython. The wx.Point class,
surprisingly enough, represents a point or position. The constructor takes two
arguments for the x and y values of the point. The values both default to zero if
not set:

point = wx.Point (10, 12)

To set both dimensions in one line, use the function Set (x,y). To retrieve them
both at once, use Get (), which returns the two values as a Python tuple. Unlike
most wxWidgets classes, wx. Point has functionality defined to retrieve the x and y
values as simple Python properties such that the x and y values are accessible like
ordinary Python attributes:

X = point.x

y = point.y
In addition, wx. Point instances can be transparently added, subtracted, and com-
pared just like other Python objects. For example:

44

2.5.4

CHAPTER 2
Giving your wxPython program a solid foundation

x = wx.Point (2, 3)

y = wx.Point (5, 7)

Z =X +Yy

bigger = x > y
In a wx.Point instance, the attributes are expected to be integers. If you need
floating-point coordinates, you can use the class wx.RealPoint, which works much
the same way as wx.Point.

The wx.size class is almost identical to wx. Point, except that the instance vari-
ables are named width and height instead of x and y. Otherwise, it has the same
attribute and operator features defined.

When a wx.Point or wx.Size instance is needed anywhere in your wxPython
program—for example, in the constructor for another object—you do not need
to create the instance explicitly. Instead, you can pass a Python tuple to the con-
structor, and wxPython will implicitly create the wx.Point or wx.Size instance:

frame = wx.Frame (None, -1, pos=(10, 10), size=(100, 100))

This works not just in constructors for other objects, but also anyplace where a
wx.Point or wx.Size is expected by a wrapped C+ + method or function call. You
can even write something like this, if you so desire:

frame.SetPosition((2, 3))

Working with wx.Frame styles

The wx.Frame constructor takes a bitmask as a style parameter. Every wxPython
widget object takes a similar style parameter, although the exact values that are
defined are different for each type of widget. This section will discuss the styles
used for wx.Frame. At least some of this is applicable to other wxPython widgets.
The widget definitions in part 2 will discuss styles applicable to each class.

WHAT'S A A bitmask is a way of compactly storing information about system

BITMASK? attributes that is especially useful when there are a limited number of
attributes with boolean values and the values are more or less mutu-
ally independent. In wxPython, bitmasks are used to manage a num-
ber of different attributes throughout the framework, most notably
style information.

In a bitmask, the individual attributes are assigned constant values
corresponding to powers of two, and the value of the bitmask is the sum
of all the attributes which are “turned on”. In binary notation, the power
of two system guarantees that each attribute corresponds to a single bit
in the total sum, allowing all of the attribute state to be compactly stored in

How do I create and use the top-level window object? 45

a single integer or long value. For example, if attribute a=1, b=2, c=4,
and d=8, then any combination of the group has a unique sum that can be
stored in an integer. The pair a and c would be 5 (binary 0101), while b, c,
and d would be 14 (binary 1110). In wxPython, the attributes have sym-
bolic constants, so you don’t need to worry about the individual bit values.

Styles are defined for all wxPython widgets by passing a bitmask to the style
parameter of the constructor. Some widgets also define a Setstyle() method,
allowing you to change the style after the widget is created. All the individual style
elements that you might use have a predefined constant identifier (such as
wx.MINIMIZE BOX). To add multiple styles together, you use the Python bitwise OR
operator, |. For example, the constant wx.DEFAULT FRAME STYLE is defined as a
combination of basic style elements:

wx .MAXIMIZE_BOX | wx.MINIMIZE BOX | wx.RESIZE_BORDER |

wx.SYSTEM MENU | wx.CAPTION | wx.CLOSE_ BOX
To remove individual style bits from a composed style, you use the bitwise exclu-
sive or (XOR) operator, *. For example, to create a window that is based on the
default, but which is not resizable by the user, you could do this:

A

wx .DEFAULT FRAME STYLE
wx .MAXIMIZE BOX)

(wx .RESIZE_BORDER | wx.MINIMIZE_ BOX |

It is highly recommended that you use the default style on top-level frames so
that the user can easily recognize them as being top level. At the very least, you
need to ensure that there is some way for a top-level frame to be closed. This is
most easily done by including the wx.sySTEM MENU style. Also be aware that by
inadvertently using a bitwise AND (&) operation, instead of a bitwise OR, you can
easily wind up with no styles chosen, resulting in an unbordered frame that you
cannot move, resize, or close. This is, of course, not recommended.

Table 2.2 has a listing of the most important styles for wx. Frame.

Table 2.2 Some of the most commonly used style parameters for wx . Frame

Style Description
wx.CAPTION Adds a title bar on the frame, which displays the frame’s Title
property.
wx.CLOSE_BOX Instructs the system to display a close box on the frame’s title bar, using
the system defaults for placement and style. Also enables the close item
on the system menu if applicable.

continued on next page

46 CHAPTER 2
Giving your wxPython program a solid foundation

Table 2.2 Some of the most commonly used style parameters for wx.Frame (continued)

Style Description

wx.DEFAULT_FRAME_STYLE As you might expect from the name, this is the default if no style is
specified. It is defined as wx . MAXIMIZE BOX | wx.MINIMIZE BOX
| wx.RESIZE BORDER | wx.SYSTEM MENU | wx.CAPTION |
wx .CLOSE_BOX.

wx.FRAME_SHAPED Frames created with this style can use the SetShape () method to
create a window with a non-rectangular shape.

wx.FRAME_TOOL_WINDOW Makes the frame look like a toolbox window by giving it a smaller titlebar
than normal. Under Windows a frame created with this style does not
show in the taskbar listing of all open windows.

wx.MAXIMIZE_BOX Adds a maximize box on the frame, using the system parameters for the
look and placement of the box. Also enables maximize functionality in
the system menu if applicable.

wx.MINIMIZE_BOX Adds a minimize box on the frame, using the system parameters for the
look and placement of the box. Also enables minimize functionality in the
system menu if applicable.

wx.RESIZE_BORDER Adds a resizable border to the frame.
wx.SIMPLE_BORDER A plain border without decoration. May not work on all platforms.
wx.SYSTEM_MENU Adds the system menu (with close, move, resize, etc. functionality,

using system look and feel) and the close box to the window. The
availability of resize and close operations within this menu depends on
the styles wx .MAXIMIZE BOX, wx.MINIMIZE BOX and

wx . CLOSE_BOX being chosen.

The next four figures show a few common frame styles.
Figure 2.4 was created with wx.DEFAULT STYLE. Figure 2.5 is a frame created
using the non-resizable style combination shown in the previous code snippet.

O Default M=% INo Resize X
Figure 2.4 A frame created with Figure 2.5 A frame created to
the default style be non-resizable. Notice the lack

of minimize/maximize buttons.

2.6

2.6.1

How do I add objects and subwindows to a frame? 47

Figure 2.6 uses style=wx.DEFAULT FRAME STYLE | wx.FRAME TOOL_WINDOW.

Frame Tool m

THelp
Figure 2.6 A toolbar frame, with a smaller title Figure 2.7 A frame
bar and no system menu with a help button

Figure 2.7 uses the extended style wx.help.FRAME_EX CONTEXTHELE which is descri-
bed in chapter 8.

Now that we've seen how to create wx.Frame objects, we’ll start to show how to
make them useful, by adding additional widgets inside the frame.

How do I add objects and subwindows
to a frame?

We've described how to create wx.Frame objects, but as yet the frames are not very
interesting. For one thing, they are empty. In this section, we’ll show you the
basics of inserting objects and subwindows inside your frame for the user to inter-
act with.

Adding widgets to a frame
Figure 2.8 shows a custom frame subclass called
InsertFrame. When the close button is clicked, the
window will close and the application will end.
Listing 2.3 defines the wx.Frame subclass

shown in figure 2.8. Not all of the concepts in this ~Figure 2.8 The InsertFrame

. s . window is an example demonstrating
snippet have been covered yet, so don’t worry if

the basics of inserting items into
some things are not clear. a frame.

Listing 2.3 The InsertFrame code

#!/usr/bin/env python

import wx

class InsertFrame (wx.Frame) : Adding the button

def _ init_ (self, parent, id): tOthepand

wx.Frame. init (self, parent, id, 'Frame With Button',
size=(300, 100))

panel = wx.Panel (self) o Creating the Pane|

button = wx.Button (panel, label="Close", pos=(125, 10),

48

CHAPTER 2
Giving your wxPython program a solid foundation

size=(50, 50))

self .Bind (wx.EVT_ BUTTON, self.OnCloseMe, button) mndmg
self.Bind (wx.EVT_CLOSE, self.OnCloseWindow) the button
1 click event
def OnCloseMe (self, event): Binding the window
self.Close (True) close event

def OnCloseWindow (self, event) :
self .Destroy ()

if name_ == '_main_':
app = wx.PySimpleApp ()
frame = InsertFrame (parent=None, id=-1)

frame. Show ()
app.MainLoop ()

The init__ method of the InsertFrame class creates two subwindows @, @.
The first is a wx.Panel, which is essentially a plain container for other windows
and has little functionality of its own. The second is a wx.Button, which is an
ordinary button. Next, the button click event and the close window event are
bound to the function that will be executed when the event takes place @, @.

In most cases, you will create a single wx.Panel instance the same size as your
wx.Frame to hold all of the contents of your frame. Doing so keeps the custom
contents of the window separate from other elements such as the toolbar and sta-
tus bar. In addition, on Windows operating systems, the default background color
of a wx.Frame is not standard (it’s gray, not white), while a wx.Panel will have a
white background by default (assuming you haven’t changed your system’s color
and theme settings). The wx.Panel class also enables traversal of the elements
inside via the tab button, which wx.Frame does not.

If you are familiar with other UI toolkits, it may seem strange that you do not
need to explicitly call an add method to insert a subwindow into a parent.
Instead, in wxPython you just specify the parent window when the subwindow is
created, and the subwindow is implicitly added inside that parent object, as is
done in listing 2.3 @.

You might also wonder why the wx.Button in listing 2.5 is created with an
explicit position and size, while the wx. Panel is not. In wxPython, if a frame is cre-
ated with just a single child window, then that child window (in this case, the
wx.Panel) is automatically resized to fill the client area of the frame. This auto-
matic resizing will override any position or size information for the child—even if
a position or size had been specified for the panel, it would have been ignored.
This automatic resizing only happens for a single element if it is within frames or

How do I add objects and subwindows to a frame? 49

dialogs. The button is a child of the panel, not the frame, so its specified size and
position are used. If a size and position had not been specified for the button, it
would have been placed in the default position, which is the upper left corner of
the panel, with its size based on the length of the label.

Explicitly specifying the size and position of every subwindow can get tedious
quickly. More importantly, it doesn’t allow your application to reposition objects
gracefully when the user resizes a window. To solve both of these problems, wxPy-
thon uses objects called sizers to manage complex placement of child windows.
Sizers will be covered briefly in chapter 7 and in more detail in part 2.

2.6.2 Adding a menubar, toolbar, or status bar to a frame

Often, an appllcatlog window will have one or more SToolbars B
of three special subwindows—a menubar at the top, |[Fie &
a toolbar below that, and a status bar at the bottom. |2 | gﬂ:"
This is so common that wxPython provides special | _Poste
shortcut methods for the creation of toolbars and |_Options...
status bars (and menus aren’t that hard either). Fig- |_
opy in status bar

ure 2.9 shows a sample frame with a menubar, tool-
bar, and status bar. Figure 2.9 A sample frame with

Listing 2.4 shows the _init__method which dec. Memba" toelbar, and status bar
orates a plain window with all three subwindows.
Again, this is just an overview, and the classes in question will be covered in more
detail in chapter 7 and later in part 2.

#!/usr/bin/env python

import wx
import images

class ToolbarFrame (wx.Frame) :

def init (self, parent, id): Creating the
wx.Frame. init (self, parent, id, 'Toolbars', status bar
size=(300, 200))

panel = wx.Panel (self) f;::?l::;g the
panel.SetBackgroundColour ('White')
statusBar = self.CreateStatusBar () Addmga
toolbar = self.CreateToolBar () tool to
toolbar.AddSimpleTool (wx.NewId (), images.getNewBitmap(), the bar
"New", "Long help for 'New'")

toolbar.Realize () .

. Preparing the
menuBar = wx.MenuBar () < Creaungalnenubar .

toolbar for display

50

CHAPTER 2
Giving your wxPython program a solid foundation

menul = wx.Menu () . Creating two
menuBar.Append (menul, "&File") individual menus
menu2 = wx.Menu/()
menu2 .Append (wx.NewId (), "&Copy", "Copy in status bar")
menu?2 .Append (wx.NewId (), "C&ut", "") Cr&uhginﬁkud
menu2.Append (wx.NewId(), "Paste", "") menu items
menu2 . AppendSeparator ()
menu?2 .Append (wx.NewId (), "&Options...", "Display Options")
menuBar.Append (menu2, "&Edit") Attaching the menu
self.SetMenuBar (menuBar) to the menubar
Attaching
if name == ' main ': the menubar
app = wx.PySimpleApp () to the frame

frame = ToolbarFrame (parent=None, id=-1)

frame. Show ()

app .MainLoop ()

||

@ This line creates a status bar, which is an instance of the class wx.StatusBar. As far

as the frame is concerned, it’s a subwindow placed at the bottom of the frame
whose width is the same as the width of the frame, and whose height is deter-
mined by the underlying operating system. The purpose of the status bar is to
display text set by various events in the application. The text size and font of the
status window are also set by the underlying system.

Creates an instance of wx . ToolBar, which is a container of command buttons auto-
matically positioned at the top of the frame.

There are two methods to add tools to your toolbar, this line shows the one with
fewer arguments, AddSimpleTool (). The arguments are an ID, a bitmap, short
help text to display as a tooltip for the item, and longer help text to be displayed
in the status bar for the item. (Don’t worry about where the bitmap is coming
from at the moment.) Although the tool as displayed on the toolbar will look like
a button, in terms of the event system, it behaves more like a menu item, which
makes it easy for a tool to act as an exact duplicate for an item in your menubar.
Specifically, pressing the tool button triggers the same kind of wxPython event as
the menu item, meaning that both can be responded to by the same method.
The Realize () method tells the toolbar to calculate where the buttons should be
positioned, and is required if the toolbar has any tools added that depend on the
toolbar’s dynamic positioning because they do not specify their own size or posi-
tion explictly.

Creates a wx.Menu object, which represents a single menu on the bar. (We created
two of them, but only so that we could take a screen shot of the pull-down without
covering the toolbar icon.)

How can I use common dialogs? 51

@ Creates the individual menu items, with the arguments representing an ID, the

2.7

text of the item, and the text displayed on the status bar when the menu is moused
over. The “&” indicates the character to be chosen for a menu accelerator.

In addition to using widgets in your frames, you’ll also communicate with
users via standard dialogs, which is made easy using wxPython’s predefined
dialog functions.

How can I use common dialogs?

The wxPython library provides a rich set of predefined dialog boxes that you can
use to give your application a consistent, familiar look and feel. In this section,
we’ll discuss three basic ways to get information from a user in a dialog:

1 Message dialog
2 Text entry

3 Choosing from a list

There are many other standard dialogs in wxPython, including a file picker, a
color picker, progress dialog, print setup, and a font picker. These will be dis-
cussed in chapter 9.

Sending a message without using Western Union
The most basic mechanism for communicating with the user is wx.MessageDialog,
which is a simple alert box. The wx.MessageDialog can be used as both a simple
OK box, or as a yes/no dialog. The following snippet shows the yes/no behavior:
dlg = wx.MessageDialog (None, 'Is this the coolest thing ever!',
'MessageDialog', wx.YES NO | wx.ICON QUESTION)
result = dlg.ShowModal ()
dlg.Destroy ()
The resulting dialog looks like figure 2.10, and the signature for the construc-
tor is:

wx.MessageDialog (parent, message, MessageDialog B
caption="Message box",
style=wx.OK | wx.CANCEL, \3) Is this the coolest thing ever!

pos=wx.DefaultPosition)

e w]

where parent is a parent window, or None if the dialog
should be top-level. The message is the string which

. .) . N Figure 2.10 A message
appears in the dialog, and the caption is the string that gjalog, configured for a
appears in the dialog’s title bar. The style parameter is yes/no response

52

CHAPTER 2
Giving your wxPython program a solid foundation

a bitmask which covers the buttons and icons displayed in the dialog, The pos
parameter takes either a wx.Point or Python tuple, and allows you to specify the
position of the dialog on the display, if you so desire.

The showModal () method displays the dialog as a modal frame, meaning that
no other window in the application will respond to user events until the dialog is
closed. This method is common to all dialogs. The return value of showModal () is
an integer, signifying the result of the dialog. In this case, the result corresponds
to the button pressed by the user. For a wx.MessageDialog, it will be one of the fol-
lowing constants: wx.ID YES, wx.ID NO, wx.ID_CANCEL, Or wx.ID_ OK.

The style bits can be combined to manage the buttons displayed, with the
legal values being wx.OK, wx, CANCEL, or wx.YES_NO. Style bits can also be used
to set the icon displayed on the window, which is one of wx.ICON_ERROR,
wx.ICON_ EXCLAMATION, wx.ICON INFORMATION, and wx. ICON_ QUESTION.

Just a single line of text, please

If you need to get a single line of text from the user, then you can use the class
wx.TextEntryDialog, as follows. This snippet creates the dialog, and retrieves the
entered value if the user exits with a click on the OK button:

dlg = wx.TextEntryDialog(None, "Who is buried in Grant's tomb?",

'A Question', 'Cary Grant')
if dlg.ShowModal () == wx.ID OK:
response = dlg.GetValue()
Figure 2.11 shows what the dialog looks like in use.

The parameters of the wx.TextEntryDialog constructor are, in order, a parent
window, the text caption inside the window, the text caption for the outside of the
window (which defaults to “Please enter text”), and a default value for the user
entry field (which defaults to the empty string). There is also a style argument
which defaults to wx.0K | wx.CANCEL. You can use the style attribute to display the
dialog without a cancel box, by passing only the
value wx.0K. As with the wx.MessageDialog, the [K'Question &

ShowModal () method returns the ID of the button | woisbuedin Gertstons?
pressed. The Getvalue() method contains the | [FevGen

value the user entered into the text field (there’s
a parallel setvalue () method that allows you to
change the field programmatically). Figure 2.11 A text entry dialog

What are some common errors 53
with application objects and frames?

Choose from the following list

If, instead of all the freedom that comes with being able to enter any thing that
enters his head, you want the user to only be able to select a choice from a
provided list, you can use the wx.SingleChoiceDialog class. A simple usage is
shown here:

dlg = wx.SingleChoiceDialog (None,

'What version of Python are you using?', Single Choice
'Single Choice', : ’
What version of Python are you using?
['1.5.2', '2.0', '2.1.3', '2.2', '2.3.1'],
if dlg.ShowModal() == wx.ID OK: jgz
response = dlg.GetStringSelection/() 213

2.2
231

Figure 2.12 shows the resulting dialog box. The
parameters are similar to the text entry dialog, except
that instead of passing a string default text, you pass a [ox][cone
list of strings that are displayed in the list. There are
two ways that you can get the returned selection. The Figure 2.12 The
method GetSelection() returns the index of the user SingleChoiceDialog

. . . , window, allowing a user
selection, while GetStringSelection () returns the actual

) to choose from a
string selected. predefined list

What are some common errors
with application objects and frames?

There are a few errors that can happen in the creation of your wxPython applica-
tion object or initial top-level window that can be difficult to track down, espe-
cially if you are seeing the error for the first time. The errors listed here are the
kind of thing where the error message is not necessarily completely descriptive of
the actual problem, or where the error can be difficult to diagnose the first time
you see it. These are all fairly common errors for new wxPython programmers.
Here is a troubleshooting guide for some of the most common symptoms:

Symptom Error message at startup saying “unable to import module wx.”

Cause—The wxPython module is not in your PYTHONPATH. This
means wx.Python may not have been correctly installed. Alter-
nately, if there is more than one version of Python on the system,
wxPython may have been installed against a different one than the
one you are using.

54 CHAPTER 2

Giving your wxPython program a solid foundation

Symptom

Symptom

Symptom

2.9 Summary

Solution—Determine which Python version or versions are
installed on the machine you are using. On a Unix system, the
command which python should tell you the default installation. On
a Windows system, you may have to go into the folder options dia-
log and see what application .py files are assigned to. If wxPython
is correctly installed for that Python version, it puts itself in the
<python-home>/Lib/site-packages subdirectory. You will likely
need to install or reinstall wxPython.

The application crashes immediately on startup, or a blank window s dis-
played, followed immediately by an application crash.

Cause—A wxPython object is created or used before the creation of
the wx.App.

Solution—Create the wx.App object immediately on starting your
script.

My top-level windows are created and immediately close. The application
exits immediately.

Cause—The method wx.App.MainLoop () was not called.

Solution—Call the MainLoop () method after all your setup is
complete.

My top-level windows are created and immediately close. The application
exits immediately, and I did call MainLoop ().

Cause—An error in your application’s OnInit () method, or some
method called by it (such as a frame __init__ () method).

Solution—An error before MainLoop() is called can trigger an
exception that exits the program. If your application is set to redi-
rect stdout and stderr to windows, then those windows will not dis-
play long enough for you to see the error. Create your application
object with the redirect=False option to allow you to see the error
message. See the section “Redirecting Output” for more details.

m The foundation of a wxPython program is based on two required objects:
an application object and the top-level window. Every wxPython applica-
tion needs to instantiate one instance of wx.2pp, and have at least one top-
level window.

Summary 55

m The application object contains the wx.App.onInit () method, which is
called on startup. This method is the preferred place to initialize frames
and other global objects. A wxPython application normally shuts down
when all of its top-level windows have closed, or when the main event loop
is otherwise exited.

m The application object also controls where wxPython directs textual output.
By default, wxPython redirects stdout and stderr to a special window. This
behavior can make it hard to troubleshoot startup errors. Luckily, it’s no
trouble at all to change this behavior to allow wxPython to send error mes-
sages to a file or console window.

= A wxPython application usually has at least one subclass of wx.Frame. A
wx . Frame object can be created in multiple styles using the style parameter.
Every wxWidgets object, including frames, has an ID, which can be explic-
itly assigned by the application or generated by wxPython. Subwindows are
the meat of a frame, inserted into a frame by creating the subwindow with
that frame as a parent. Usually, a frame contains a single wx.Panel and fur-
ther subwindows are placed in the panel. A frame’s single subwindow is
automatically resized when the parent frame resizes. Frames have explicit
mechanisms for managing a menubar, toolbar, and status bar.

m Although you’ll use frames for anything complex, when you want to simply
get quick information from a user, you can show the user a standard dialog
window. There are standard dialogs for many tasks, including an alert box,
simple text entry, and entry from a list.

Now that we’ve talked about the foundation of a wxPython program in terms of
the required data objects, we’ll start to talk about the basic blocks of a wxPython
program as it manages the flow of control while running. In the next chapter,
we’ll talk about events and the event loop.

Working in an
event-driven environment

This chapter covers

m Programming in an event-driven environment
m Binding an event to a handler

m Processing events using wxPython

|

Defining other application object
event properties

m Creating custom events

56

3.1

What terminology do I need to understand events? 57

Event handling is the fundamental mechanism that makes wxPython programs
work. A program that works primarily via event handling is called event driven. In
this chapter, we will discuss what an event-driven application is, and how it differs
from a traditional application. We’ll provide an overview of the concepts and ter-
minology involved in GUI programming, covering the interaction between the
user, the toolkit, and the program logic. We’ll also cover the lifecycle of a typical
event-driven program.

An event is something that happens in your system which your application can
respond to by triggering functionality. The event can be a low-level user action,
such as a mouse move or key press, or a higher level user action given a specific
meaning by wxPython because it takes place inside a wxPython widget, such as a
button click or a menu selection. The event can also be created by the underlying
operating system, such as a request to shut down. You can even create your own
objects to generate your own events. A wxPython application works by associat-
ing a specific kind of event with a specific piece of code, which should be exe-
cuted in response. The process by which events are mapped to code is called
event handling.

This chapter will show what an event is, how you write code to respond to an
event, and how the wxPython system knows to invoke your code when the event is
triggered. We'll also show you how to add custom events to the wxPython library,
which contains a listing of standard events for user and system activities.

What terminology do | need
to understand events?

This chapter contains a lot of terminology, much of which begins with the word
event. Table 3.1 is a quick reference guide to the terms we’ll be using.

Table 3.1 Event terms

Term Definition
event Something that happens during your application that requires a response.
event object The concrete representation of an event in wxPython including data attributes that

encapsulate the specifics of the event. Events are represented as instances of the
wx .Event class and its subclasses, such as wx . CommandEvent and
wx .MouseEvent.

continued on next page

58

3.2

CHAPTER 3
Working in an event-driven environment

Table 3.1 Event terms (continued)

Term Definition

event type An integer ID that wxPython adds to every event object. The event type gives further
information about the nature of the event. For example, the event type of a
wx .MouseEvent indicates whether the event is a mouse click or a mouse move.

event source Any wxPython object that creates events. Examples are buttons, menu items, list
boxes, or any other widget.

event-driven A program structure where the bulk of time is spent waiting for, or responding
to, events.
event queue A continuously maintained list of events that have already occurred, but have not yet

been processed.

event handler A written function or method that is called in response to an event. Also called a
handler function or handler method.

event binder A wxPython object that encapsulates the relationship between a specific widget, a
specific event type, and an event handler. In order to be invoked, all event handlers
must be registered with an event binder.

wx.EvtHandler | A wxPython class that allows its instances to create a binding between an event
binder of a specific type, an event source, and an event handler. Note that the class
wx .EvtHandler is not the same thing as an event handler function or method
defined previously.

We hope this table will keep you from getting your event handlers mixed up with
your event binders. Please refer to this table throughout the chapter as necessary.
We’ll begin with a general overview of event-driving programming, and then we’ll
discuss the specifics of how everything is managed in wxPython.

What is event-driven programming?

An event-driven program is mainly a control structure that receives events and
responds to them. The structure of a wxPython program (or of any event-driven
program) is fundamentally different from that of an ordinary Python script. A
typical Python script has a specific starting point and a specific ending point,
and the programmer controls the order of execution using conditionals, loops,
and functions. The program is not linear, but its order is often independent of
user action.

From the users perspective, a wxPython program spends much of its time
doing nothing. Typically, it is idle until the user or the system does something to

What is event-driven programming? 59

Event

B 4
P Handler

User-Triggered
Event

wxPython - Event

MainLoop ~o Handler

AN Event
A

Handler

Figure 3.1 A schematic of the event handling cycle, showing the life of the main
program, a user event, and dispatch to handler functions.

trigger the wxPython program into action. The wxPython program structure is an
example of an event-driven program architecture. Figure 3.1 shows a simple dia-
gram outlining the major parts of an event-driven program.

Think of the main loop of an event-driven system as analogous to an operator
at a customer service call center. When no calls are coming in, the operator is, as
they say, standing by. Eventually, an event occurs, such as the phone ringing. The
operator initiates a response process, which involves talking to the customer until
the operator has enough information to dispatch the customer to the proper
respondent for her call. The operator then waits for the next event.

Although each event-driven system is somewhat different, there are many sim-
ilarities between them. The primary characteristics of an event-driven program
structure are as follows:

= After the initial setup, the program spends most of its time in an idle loop,
where it does little or no information processing. Entering into this loop
signifies the beginning of the user-interactive part of the program, and
exiting the loop signifies its end. In wxPython, this loop is the method
wx.App.MainLoop (), and is explicitly invoked in your script. The main loop
is automatically exited when all top-level windows are closed.

m The program contains events that correspond to things that happen in the
program environment. Events are typically triggered by user activity, but
can also be the result of system activity, or arbitrary code elsewhere in the
program. In wxPython, all events are instances of the class wx.Event or one

60

3.2.1

CHAPTER 3
Working in an event-driven environment

of its subclasses. Each event has an event type attribute (see table 3.1) that
allows different kinds of events to be distinguished. For example, a mouse
up and mouse down event are both delivered as instances of the same class,
but have a different event type.

= As part of the idle loop, the program periodically checks to see whether
anything requiring a response has happened. There are two mechanisms
by which an event-driven system may be notified about events. The more
popular method, used by wxPython, posts the events to a central queue,
which triggers processing of that event. Other event-driven systems use a
polling method, where possible raisers of events are periodically queried by
the central process and asked if they have any events pending.

m When an event takes place, the event-based system processes the event in
an attempt to determine what code, if any, should be executed. In wxPy-
thon, native system events are translated to wx.Event instances and then
given to the method wx.EvtHandler.ProcessEvent () for dispatching out to
the proper handler code. Figure 3.3 presents a basic overview of the pro-
cess. The component parts of the event mechanism are event binder
objects and event handlers, both defined in table 3.1. An event binder is a
predefined wxPython object. There is a separate event binder for each
event type. An event handler is a function or method that takes a wxPython
event instance as an argument. An event handler is invoked when the user
triggers the appropriate event.

Next, we’ll discuss more details about wxPython, beginning with the basic unit of
event response, the event handler.

Coding event handlers

In your wxPython code, events and event handlers are managed on a widget-by-
widget basis. For example, a button click is dispatched to a particular handler
based on the button that was clicked. In order to bind an event from a specific
widget to a specific handler method, you use a binder object to manage the con-
nection. For example,

self.Bind (wx.EVT_BUTTON, self.OnClick, aButton)

uses the predefined event binder object wx.EVT BUTTON to associate a button click
event on the object aButton with the method self.oncClick. The Bind () method is
a method of wx.EvtHandler, which is a parent class of all display objects. There-
fore, the example line of code can be placed in any display class.

3.2.2

What is event-driven programming? 61

Even as your wxPython program appears to be waiting passively for an event,
it’s still doing something. Specifically, it’s running the method wx.App.Main-
Loop (), which is basically an infinite while loop. The MainLoop () can be translated
into oversimplified Python pseudocode as:

while True:
while not self.Pending() :
self.ProcessIdle()
self .DoMessage ()
In other words, if there is no message pending, do some idle processing until
a message comes in, then dispatch the message to the appropriate event-
handling method.

Designing for event-driven programs

The event-driven nature of a wxPython program has several implications for
designing and coding. Since there is no longer an assumption about when events
happen, the programmer cedes much of the control of the program to the user.
Most of the code in your wxPython program is executed as the direct or indirect
result of an action taken by the user or the system. For example, saving work in
your program happens after the user selects a menu item, presses a toolbar but-
ton, or invokes a special key combination. Any of these events can trigger a han-
dler which saves the user’s work.

Another consequence of an event-driven architecture is that the architecture is
often somewhat spread out. The code that is called in response to an event is usu-
ally not defined by the widget that triggered the event. Or to clarify, there’s noth-
ing in the nature of the binding between an event and its handler that requires
them to have any relationship at all. For instance, the code called in response to a
button click doesn’t have to be part of the definition of the button, but can be in
the button’s enclosing frame, or any other location. When combined with a solid
object-oriented design, this architecture can lead to loosely coupled, highly reus-
able code. You'll find that the flexible nature of Python makes it particularly easy
to reuse common event handlers and structures between different wxPython
applications. On the other hand, the uncoupled nature of an event-driven pro-
gram can make it difficult to follow and maintain. When an event click happens in
a button tied to a binder listed in the frame code, and the event invokes a method
in a model class, it can be difficult to track it down. (To some extent, this issue is
true of all object-oriented programming). In chapter 5, we will discuss code struc-
turing guidelines for event-driven programs.

62

CHAPTER 3
Working in an event-driven environment

3.2.3 Event triggers

In wxPython, most widgets cause higher level events to be fired in response to
lower level events. For example, a mouse click within the space of a wx.Button
causes the generation of an EVT_BUTTON event, which is a specific type of wx. Command-
Event. Similarly, a mouse drag in the corner of a window causes a wx.SizeEvent to
be created automatically for you by wxPython. The advantage of these higher
level events is that they make it easier for the rest of your system to focus on the
most relevant events, rather than getting bogged down in tracking every mouse
click. For example, saying that a mouse click is a button activation makes it clear
that a particular click has contextual meaning in the system, whereas another
mouse click may not contain contextual meaning. Higher level events can also
encapsulate more useful information about the event. As you create your own
custom widgets, you can define your own custom events to manage this process
for you.

Events are represented within wxPython by objects. Specifically, event objects
in wxPython are instances of the class wx.Event, or one of its subclasses. The par-
ent wx.Event class is a relatively small abstract class consisting of getters and set-
ters for a few properties common to all events, such as EventType, EventObject,
and Timestamp. Different subclasses of wx.Event each add further information.
For example, wx.MouseEvent contains information about the exact location of the
mouse as the event happened, and information about which mouse button was
clicked, if any.

There are several different subclasses of wx.Event in wxPython. Table 3.2 con-
tains a list of some of the event classes you will most often encounter. Remember,
one event class can have multiple event types, each corresponding to a different
user action.

Table 3.2 Important subclasses of wx.Event

Event Description

wx.CloseEvent Triggered when a frame closes. The event type distinguishes between a normal
frame closing and a system shutdown event.

wx.CommandEvent Triggered by a wide variety of simple interactions with widgets, such as a button
click, menu item selection, or radio button selection. Each of these separate
actions has its own event type. Many more complex widgets, such as the list or
grid controls, define subclasses of wx . CommandEvent. Command events are
treated differently by the event handling system than by other events.

continued on next page

3.3

How do I bind an event to a handler? 63

Table 3.2 Important subclasses of wx.Event (continued)

Event Description

wx.KeyEvent A key press event. The event types distinguish between key down, key up, and
complete key press.

wx.MouseEvent A mouse event. The event types distinguish between a mouse move and a mouse
click. There are separate event types depending on which button is clicked and
whether it's a single or double click.

wx.PaintEvent Triggered when a window’s contents need to be redrawn.

wx.SizeEvent This event is triggered when a window is resized, and typically results in a change
to the window layout.

wx.TimerEvent Can be created by the wx . Timer class, which allows periodic events.

Typically, event objects do very little on their own, but instead, need to be passed
to the relevant event handler method or methods using an event binder and an
event processing system.

How do I bind an event to a handler?

Event binders consist of instances of the class wx.PyEventBinder. A predefined
instance of wx. PyEventBinder is provided for all of the event types supported, and
you can create your own event binders for your custom event types when needed.
There is one event binder instance for each event type, which means that multi-
ple binders may correspond to any one wx.Event subclass. This is because event
types are more detailed than wx.Event subclasses. For example, the wx.Mouse-
Event class has fourteen separate event types, each of which uses the same basic
information about the state of the mouse when the event is triggered by a user
action (i.e., left click, right click, double click).

In wxPython, names of the event binder instances are global. In order to
clearly associate event types with handlers, these names start with wx.EVT and
correspond to the names of the macros used in the C++ wxWidgets code. When
discussing wxPython code, the tendency is to use the wx.EVT_ binder name as a
stand-in for the actual event type. As a result, it’s worth highlighting that the
value of the wx.EVT binder name is not the actual integer code used for event typ-
ing that you'd receive by calling the GetEventType() method of a wx.Event
instance. Event-type integer codes have an entirely different set of global names,
and are not often used in practice.

64

CHAPTER 3
Working in an event-driven environment

As an example of the wx.EVT names, let’s look at the event types of wx.Mouse-
Event. As we just mentioned, there are fourteen of them, nine of which cover
mouse down, mouse up, or double click events based on the button clicked.
Those nine event types use the following names:

wx . EVT_LEFT_DOWN

wx . EVT_LEFT_UP

wx .EVT_LEFT_DCLICK

wx . EVT_MIDDLE_DOWN

wx . EVT_MIDDLE_UP

wx . EVT_MIDDLE_DCLICK

wx . EVT_RIGHT_DOWN

wx . EVT_RIGHT_UP

wx . EVT_RIGHT_DCLICK
Additionally, the type wx.EVT MOTION is caused by the user moving the mouse.
The types wx.ENTER WINDOW and wx.LEAVE WINDOW are caused when the mouse
enters or leaves any widget. The wx.EVT MOUSEWHEEL type is bound to the move-
ment of a mouse scroll wheel. Finally, you can bind all mouse events to a single
function at one time using the wx.EVT_MOUSE_EVENTS type.

Similarly, the wx.CommandEvent class has 28 different event types associated
with it; although several are only for older Windows operating systems. Most of
these are specific to a single widget, such as wx.EVT_BUTTON for a button click, and
wx.EVT_MENU for a menu item selection. Command events for specific widgets are
described with that widget when it is discussed in part 2.

The advantage of this binding mechanism is that it allows wxPython to dis-
patch events on a very granular basis, while still allowing similar events to be
instances of the same class, and to share data and functionality. This makes writ-
ing event handlers much cleaner in wxPython than in other interface toolkits.

Event binders are used to connect a wxPython widget with an event object and
a handler function. This connection allows the wxPython system to respond to an
event on that widget by executing the code in the handler function. In wxPython,
any object which can respond to an event is a subclass of wx . EvtHandler. All window
objects are a subclass of wx.EvtHandler, so every widget in a wxPython application
can respond to events. The wx.EvtHandler class can also be used by non-widget
objects, such as wx.App, so event handling functionality is not limited to display-
able widgets. To clarify the terminology, saying that a widget can respond to
events means that the widget can create event bindings which wxPython recog-
nizes during dispatch. The actual code called by a binder in the event handler
function is not necessarily located in a wx.EvtHandler class.

How do I bind an event to a handler? 65

3.3.1 Working with the wx.EvtHandler methods

The wx.EvtHandler class defines a number of methods that are not called under
normal circumstances. The method of wx.EvtHandler that you will use frequently
is Bind (), which creates the event bindings that we’ve discussed so far. The
method signature is:

Bind(event, handler, source=None, id=wx.ID ANY, id2=wx.ID ANY)

The Bind () function associates an event and an object with an event handler func-
tion. The event parameter is required, and is a wx.PyEventBinder instance as
described in section 3.3. The handler argument, also required, is a Python call-
able object, usually a bound method or function. The handler must be callable
with a single argument, the event object itself. The handler argument can also be
None, in which case the event is disassociated from its current handler. The source
parameter is the widget that is the source of the event. The parameter is used
when the widget triggering the event is not the same as the widget being used as
the event handler. Typically, this is done because you're using a custom wx.Frame
class as the handler and are binding events from the widgets contained in the
frame. The parent window’s __init__ is a convenient location for declaring the
event bindings. However, if the parent window contains more than one source of
button click events (i.e., the OK button and Cancel button), the source parameter
is used to allow wxPython to differentiate between them. Following is a specific
example of this method:

self.Bind (wx.EVT_BUTTON, self.OnClick, button)

The call binds a button event from the object named button (and only the object
named button) to the onClick () method of the instance being bound. Listing 3.1,
adapted from code displayed in chapter 2, illustrates event binding both with and
without a source parameter. You are not required to name your handler methods
On<events, but it is a common convention.

def _ init_ (self, parent, id):
wx.Frame. init (self, parent, id, 'Frame With Button',
size=(300, 100))

panel = wx.Panel (self, -1) Bmdmgthe

button = wx.Button(panel, -1, "Close", pos=(130, 15), frame close
size=(40, 40)) event

self.Bind (wx.EVT_CLOSE, self.OnCloseWindow)

self.Bind (wx.EVT BUTTON, self.OnCloseMe, button) BMdMgthe

button event

66

CHAPTER 3
Working in an event-driven environment

def OnCloseMe (self, event):
self.Close (True)

def OnCloseWindow (self, event):
self .Destroy ()
||

This line binds the frame close event to the self.onCloseWindow method. Since
the event is both triggered by and bound by the frame, there is no need to pass a
source argument.

This line binds the button click event from the button object to the self.onCloseMe
method. In this case, the button which generates the event is not the same as the
frame which is binding it. Therefore, the button ID must be passed to the Bind
method to allow wxPython to distinguish between click events on this button and
click events from other buttons in the frame.

You can also use the source parameter to identify items even if the item is not
the source of the event. For example, you can bind a menu event to the event
handler even though the menu event is technically triggered by the frame. List-
ing 3.2 illustrates an example of binding a menu event.

Listing 3.2 Binding a menu event

#!/usr/bin/env python
import wx
class MenuEventFrame (wx.Frame) :

def init_ (self, parent, id):

wx.Frame. init (self, parent, id, 'Menus',
size=(300, 200))

menuBar = wx.MenuBar ()

menul = wx.Menu ()

menultem = menul.Append(-1, "&Exit...")

menuBar.Append (menul, "&File")

self.SetMenuBar (menuBar)

self.Bind (wx.EVT _MENU, self.OnCloseMe, menultem)

def OnCloseMe (self, event):
self.Close (True)

if name == ' main_ ':
app = wx.PySimpleApp ()
frame = MenuEventFrame (parent=None, id=-1)
frame. Show ()
app.MainLoop ()

How do I bind an event to a handler? 67

The id and id2 parameters of the Bind () method specify the source of the event
using an ID number, rather than the widget itself. Typically, the id and id2 are not
required, since the ID of the event source can be extracted from the source
parameter. However, at times using the ID directly does make sense. For example,
if you are using predefined ID numbers for a dialog box, it’s easier to use the ID
number than to use the widget. If you use both the id and id2 numbers, you can
bind an entire range of widgets to the event with numbers between the two IDs.
This is only useful if the IDs of the widgets you want to bind are sequential.

OLDER The Bind() method is new in wxPython 2.5. In previous versions of
BIIEIEIIII;PI\}-G wxPython, the EVT_* name is used like a function object, so that a bind-

ing call would appear as follows:

wx.EVT_BUTTON (self, self.button.GetId(), self.OnClick)

The disadvantage of the older style is that it does not look or act like an
object-oriented method call. However, the older style still works in 2.5
(because the wx.EVT* objects are still callable), so you’'ll still see it in
wxPython code.

Table 3.3 lists some of the most commonly used methods of wx.EvtHandler that
you may call to manipulate the process of handling events.

Table 3.3 Commonly used methods of wx.EvtHandler

Method Description

AddPendingEvent(event) Places the event argument into the event processing system.
Similar to ProcessEvent (), but it does not actually trigger
immediate processing of the event. Instead, the event is added
to the event queue. Useful for event-based communication
between threads.

Bind(event, handler, source=None, See full description in section 3.3.1.
id=wx.ID_ANY, id2=wx.ID_ANY)

GetEvtHandlerEnabled() The property is True if the handler is currently processing events,
SetEvtHandlerEnabled(boolean) False if otherwise.
ProcessEvent(event) Puts the event object into the event processing system for

immediate handling.

68 CHAPTER 3
Working in an event-driven environment

3.4 How are events processed by wxPython?

A key component of an event-based system is the pro- [SEaWineuten - DEI
cess by which an event that comes into the system is :
dispatched to the piece of code that is executed in 4
response. In this section, we’ll walk through the pro- gigyre3.2 A simple window
cedure wxPython uses when processing an incoming with mouse events
event. We’ll use a small code snippet as an example
to trace the steps in the process. Figure 3.2 displays a sample window with a
single button, which will be used to generate the sample events.

Listing 3.3 contains the code that generated this window. In this code, wxPy-
thon events are generated both by clicking the button and by moving the mouse
over the button.

#!/usr/bin/env python
import wx
class MouseEventFrame (wx.Frame) :

def _ init_ (self, parent, id):
wx.Frame. init (self, parent, id, 'Frame With Button',
size=(300, 100))
self.panel = wx.Panel (self)
self .button = wx.Button(self.panel,
label="Not Over", pos=(100, 15)) <}j’ mndhgthe
self.Bind (wx.EVT_BUTTON, self.OnButtonClick, button event
self .button)
self.button.Bind (wx.EVT ENTER WINDOW,
self.OnEnt':erWindow) Bindingthe mouse
self.button.Bind (wx. EVT_LEAVE_WINDOW, enter event

self.OnLeaveWindow) -
Binding the mouse

def OnButtonClick(self, event): leave event

self .panel.SetBackgroundColour ('Green')
self .panel.Refresh()

def OnEnterWindow (self, event):
self .button.SetLabel ("Over Me!")
event.Skip ()

def OnLeaveWindow (self, event):
self .button.SetLabel ("Not Over")
event.Skip ()

3.4.1

How are events processed by wxPython? 69

if name == '_main_ ':
app = wx.PySimpleApp ()
frame = MouseEventFrame (parent=None, id=-1)
frame. Show ()
app .MainLoop ()
||

The MouseEventFrame contains one button in the middle. Clicking on the mouse
changes the background color of the frame to green. The mouse click event is
bound to the action in line @. When the mouse pointer enters the button, the but-
ton caption changes, as bound in line @. When the mouse pointer leaves the
button, the caption changes back, as bound in line ©.

Looking at the mouse event example raises some questions about event pro-
cessing in wxPython. In line @, the button event triggered by the button is bound
by the frame. How does wxPython know to look for a binding in the frame object,
rather than the button object? In lines @ and @, the mouse enter and leave
events are bound to the button object. Why can’t those events also be bound to
the frame? Both of these questions are answered by examining the procedure
wxPython uses to determine how to respond to an event.

Understanding the event handling process

The wxPython event handling procedure was designed to make it simple for the
programmer to create event bindings in what are generally the most obvious
places, while ignoring unimportant events. As is often the case in simple design,
the underlying mechanism is actually a bit complex. Next, we’ll trace the proce-
dure for a button click event and a mouse entering event.

Figure 3.3 displays a basic flow chart of event handling process. Rectangles
indicate the start and end of the process, circles indicate various wxPython objects
that are part of the process, diamonds indicate decision points, and rectangles
with bars indicate actual event handler methods.

The event process begins with the object that triggered the event. Typically,
wxPython looks first at the triggering object for a bound handler function match-
ing the event type. If one is found, the method is executed. If not, wxPython
checks to see if the event propagates up the container hierarchy. If so, the parent
widget is checked, up the hirerarchy, until wxPython either finds a handler func-
tion or hits a top-level object. If the event doesn’t propagate, wxPython still
checks the application object for a handler method before finishing. When an
event handler is run, the process typically ends. However, the function can tell
wxPython to continue searching for handlers.

70

CHAPTER 3
Working in an event-driven environment

Event
triggered

Triggering
object

Enabled?

Has
matching
handler?

- O OO
ProcessEvent ProcessEvent

Should
Propagate?

Application
object

Is this the
App?

Yes

No Done

v

Figure 3.3 Event handling process, starting with the event being triggered, and moving through the

steps of searching for a handler

Let’s take a closer look at each step of the process. Before discussing each step,
we’ll display a thumbnail for each relevant part of Figure 3.3.

Step 1 Creating the event
The process starts when the event is created.
Most pre-existing event types are created
within the wxPython framework in response
to specific user actions or system notifica-
tions. For example, the mouse entering event
is triggered when wxPython notices a mouse
move entering the bounds of a new widget

Event Triggering

triggered object

Figure 3.4 Creation of the event that
sends focus to the triggering object

object, and the button click event is created after a left mouse down and left

mouse up in the same button.

The event is first handed to the object responsible for creating the event. For a
button click, the object is the button, for a mouse enter event, the object is the

widget entered.

How are events processed by wxPython? 71

Step 2 Determining whether the object is allowed to process events
The next step of the event handling process checks to see if the responsible wid-
get (the wx.EvtHandler) is currently allowed to process events.

A window can be set to allow or disallow event processing by calling the
wx.EvtHandler method SetEvtHandlerEnabled (boolean). The effect of disallow-
ing event processing is that the widget is completely bypassed in the event pro-
cess, binding objects associated with the object are not searched for, and the
processing in this step goes down the no branch.

Enabling or disabling a widget at the event handler level is not the same as dis-
abling the widget at the UI level. Disabling a widget at the UI level is done using
the wx.Window method Disable () and Enable (). Disabling a widget in the UI sense
means that the user cannot interact with the disabled widget. Usually, the dis-
abled widget is grayed out on the screen to indicate its status. A window that has
been disabled at the UI level won’t be able to generate any events; however, if it’s
on the container hierarchy for other events, it still processes events it receives. For
the remainder of this section, we’ll use enabled and disabled in the wx.EvtHandler
sense, referring to whether the widget is allowed to process events.

The check for the enabled/disabled state of the initiating object happens in
the ProcessEvent () method which is called by the wxPython system to start and
handle the event dispatch mechanism. We'll see the ProcessEvent () method
again and again during this process—it’s the method in the wx.EvtHandler class
that actually implements much of the event process depicted in figure 3.3. The
ProcessEvent () method returns True if event processing is complete at the end of
the method. Processing is considered complete if a handler function is found for
the instance and event combination being processed. The handler function can
explicitly request further processing by calling the wx.Event method skip(). In
addition, if the initiating object is a subclass of wx.Window, it can filter the event

Should
Propagate?

Triggering

Enabled? No

object

Yes

Has
matching

handler? .
Figure 3.5

Tests whether the triggering object is enabled

72

CHAPTER 3
Working in an event-driven environment

using a special object called a validator. Validators will be discussed in more detail

in chapter 9.

Step 3 Locating the binder object
The ProcessEvent() method then
looks for a binder object that recog-
nizes a binding between the event type
and the current object.

If a binder isn’t found for the object
itself, the processing walks up the class
hierarchy to find a binder defined in a
superclass of the object—this is differ-
ent than the walk up in the container
hierarchy that happens in the next
step. If a binder object is found, wxPy-
thon calls the associated handler func-

Enabled?

Yes

Has
matching
handler?

Yes

v

tion. After the handler is called, event
processing stops for that event, unless
the handler function explicitly asks for

Event
handler

more processing.

No

Should
Propagate?

Figure 3.6

Verifies that the
triggering object has
an appropriate binder

In listing 3.3, the mouse enter event is captured, and because there is a defined
binding between the button object, the binder object wx.EVT ENTER_WINDOW, and
the associated method onEnterWindow (), the method is called. Since we don’t bind
the mouse button click event, wx.EVT_LEFT_DOWN, wxPython would keep searching

in that case.

Step 4 Determining whether to continue processing

After calling the first event handler, wxPy-
thon checks to see if further processing is
requested. The event handler asks for more
processing by calling the wx.Event method
Skip (). If the skip() method is called, pro-
cessing continues and any handlers defined
in the superclass are found and executed in
this step. The skip () method can be called
at any point in the handler, or any code
invoked by the handler. The Skip () method
sets a flag in the event instance, which wxPy-

Should

Event
handler Propagate?
l Yes
Skip?
No » Done

Figure 3.7 The event handler calls Skip (),
and processing continues

How are events processed by wxPython? 73

thon checks after the handler method is complete. In listing 3.3 the onButton-
Click() doesn’t call Sskip(), so in that case the event process is complete at the
end of the handler method. The other two event handlers do call skip () so the sys-
tem will keep searching for a matching event binding, eventually invoking the
default functionality for mouse enter and leave events for the native widget, such
as mouse-over events.

Step 5 Determining whether to propagate

Eventually wxPython determines whether the event process should propagate up
the container hierarchy to find an event handler. The container hierarchy is the
path from a specific widget to the top-level frame, moving from each widget to its
parent container, and upward.

If the current object doesn't have a handler for the event, or if the handler
called skip (), wxPython determines if the event should propogate up the con-
tainer hierarchy. If the answer is No, the process looks once more for a handler, in
the wx.App instance, and then stops. If the answer is Yes, the event process starts
over using the container of the window currently being searched. The process
continues upward until wxPython either finds an appropriate binding, reaches a

»
ProcessEvent
Application

object

ProcessEvent

Yes

Is this the
App?

No

Yes

Figure 3.8
The event handling process continues looking up the container hierarchy
if the event is a command event, or is otherwise declared to propagate

Done

74

CHAPTER 3
Working in an event-driven environment

top-level frame object with no parent, or reaches a wx.Dialog object (even if the
dialog is not top-level). The event is considered to have found an appropriate
binding if ProcessEvent () for that object returns True, indicating that processing
is complete. The rationale for stopping at a wx.Dialog is to prevent the parent
frame from being hit by spurious events coming from dialog boxes that are unre-
lated and unexpected.

Whether an event should propagate up the container hierarchy is a dynamic
property of each event instance, although in practice the default values are almost
always the ones used. By default, only instances of wx.CommandEvent, or any sub-
class thereof, propagate up the container hierarchy. All other events do not.

In listing 3.3, this is where the button click gets handled. Clicking the mouse
on the wx.Button generates a wx.EVT_BUTTON type of command event. Since the
wx.EVT_ BUTTON is a wx.CommandEvent, after wxPython fails to find a binding in the
button object, it looks to the parent, which in this case is the panel. Since there is
no matching binding in the panel, the panel’s parent, the frame, is checked next.
Since the frame does have a matching binding, pProcessEvent () calls the appro-
priate function, in this case OnButtonClick ().

Step 5 also explains why the mouse enter and mouse leave events need to be
bound to the button and not to the frame. Since mouse events are not a subclass
of wx.CommandEvent, the mouse enter and mouse leave events do not propagate
upward to the parent, thus wxPython cannot find a binding from the button’s
mouse enter event to the frame. If there is a mouse enter or leave event bound to
the frame, the event is triggered by wxPython when the mouse enters or leaves
the frame as a whole.

Command events are privileged in this way because they are intended to be
higher level events indicating that the user is doing something in the applica-
tion space, rather than in the window system. The assumption is that window
system type events are only of interest to the widget that initially receives them,
while application-level events may be of interest higher up in the containment
hierarchy. This rule does not prevent us from declaring the binding an event
anywhere, no matter what object is being bound or what object defines the event
handler. For example, even though the mouse click event binding is to the but-
ton object, the binding itself is defined inside the frame class, and calls a
method of the frame class. In other words, low-level non-command events are
typically used for things that happen to the widget or for some system level noti-
fication, such as a mouse click, key press, paint request, size, or move. On the
other hand, command events, such as a mouse click on a button or a list box
selection, are typically generated and emitted by the widget itself. For example,

3.4.2

How are events processed by wxPython? 75

button command events are generated after a mouse down and mouse up event
on the appropriate widget.

Finally, if the event is not handled after walking through the containment hier-
archy, ProcessEvent () is called on the wx.App object for the application. By
default, this does nothing, however, you can add event bindings to your wx.App to
route events in some non-standard way. For example, if you were writing a GUI
builder, you may want events in your builder window to propagate to your code
window, even though they are both top-level windows. One way of doing that is to
capture the events in the application object and pass them on to the code window.

Using the Skip() method

The first handler function found for an event halts processing on that event unless
the skip() method of the event is called before the handler returns. Calling
Skip () allows additional handler bindings to be searched for, following the rules
described in step 4 of 3.4.1, so parent classes and parent windows are searched just
as if the first handler didn’t exist. In some cases, you want the event to continue pro-
cessing to allow the default behavior in the native widget to be executed along
with your custom handler. Listing 3.4 displays a Skip () example that allows the
program to respond to both a left button down event and a button click in the
same button.

#!/usr/bin/env python
import wx

class DoubleEventFrame (wx.Frame) :

def init (self, parent, id):
wx.Frame. init_(self, parent, id, 'Frame With Button',
size=(300, 100))
self.panel = wx.Panel (self, -1)
self .button = wx.Button(self.panel, -1, "Click Me", pos=(100, 15))

self.Bind (wx.EVT_BUTTON, self.OnButtonClick, Binding the button
self.button) click event
self.button.Bind (wx.EVT LEFT_DOWN, self.OnMouseDown)
Binding the left button down event%

def OnButtonClick(self, event):
self .panel.SetBackgroundColour ('Green')
self .panel.Refresh()

76

o
(2]

CHAPTER 3
Working in an event-driven environment

def OnMouseDown (self, event):
self .button.SetLabel ("Again!")

event.Skip () Skip() ensures

)) more processing
if name == ' main_ ':

app = wx.PySimpleApp ()

frame = DoubleEventFrame (parent=None, id=-1)

frame. Show ()

app.MainLoop ()

||

This line binds the button click event to the onButtonClick() handler, which
changes the background color of the frame.
This line binds the left mouse button down event to the onMouseDown () handler,
which changes the label text of the button. Since left button down is not a com-
mand event, this event must be bound to the button rather than the frame.
When the user clicks the mouse over the button, the left button down event is
generated first, by direct interaction with the underlying operating system.
Under normal circumstances, the left button down event changes the state of the
button such that the subsequent left button up event creates a wx.EVT_BUTTON click
event. The DoubleEventFrame preserves this processing but only because of the
skip() statement in line . Without the skip () statement, the event processing
algorithm finds the binding created in line @, and stops before the button can
generate the wx.EVT_BUTTON event. With the skip () call, event processing contin-
ues normally and the button click is created.

In this example, there is nothing particularly special about the choice of
wx.EVT _LEFT DOWN and wx.EVT BUTTON. The same situation occurs whenever one
handler is found in the same event process as another. For instance, changing
the wx.EVT LEFT DOWN event to another wx.EVT BUTTON event has the same effect.
A skip() call is still required for both handlers to be processed.

As far as event handling is concerned, the default behavior is first come, first
served. To enable further event processing, you must call skip (). Although this
choice is made on a case by case basis, remember that when binding to lower level
events like a mouse up/down, wxPython expects to catch those events in order to
generate further events. If you don’t call skip() in that case, you run the risk of
blocking expected behavior; for example, losing the visual notification that a but-
ton has been clicked.

3.5

3.6

How can I create my own events? 77

What other event properties are contained
in the application object?

To manage the main event loop more directly, you can modify it using some
wx . App methods. For instance, you may want to start processing the next available
event on your own schedule, rather than waiting for wxPython to begin process-
ing. This feature is necessary if you are starting a long procedure, and don’t want
the GUI to appear to freeze. You won’t need to use the methods in this section
often, but it’s occasionally important to have these capabilities.

Table 3.4 lists the wx.App methods you can use to modify the main loop.

Table 3.4 Event main loop methods of wx.App

Method Name Method Description

Dispatch() Programmatically forces the next event in the event queue to be sent. Used
by MainLoop (), for example, or in customized event loops.

Pending() Returns True if there are pending events in the wxPython application
event queue.

Yield(onlylfNeeded=False) | Allows pending wxWidgets events to be dispatched in the middle of a long
process that might otherwise block the windowing system from displaying or
updating. Returns True if there were pending events that were processed,
False otherwise.

If True, the onlyIfNeeded parameter forces the process to yield if there
are actually pending events. If the argument is False, then it is an error to
call yYield recursively.

There is also a global function wx . SafeYield (), which prevents the user
from inputting data during the yield (by temporarily disabling user-input
widgets). This prevents the user from doing something that would violate the
state needed by the yielding task.

Another method for managing events in a custom way is to create your own event
types that match the specifics of your application’s data and widgets. In the next
section, we will discuss how to create your own custom events.

How can I create my own events?

Although a more advanced topic, this is the most obvious place to discuss custom
events. On a first reading, you can probably skip it and come back later. In addi-
tion to different event classes supplied by wxPython, you can create your own cus-
tom events. You can do this in response to data updates or other changes that are

78

3.6.1

CHAPTER 3
Working in an event-driven environment

specific to your application, where event instances are required to carry your cus-

tom data. Another reason to create a custom event class
tom widget with its own unique command event type.
walk through an example of a custom widget.

Defining a custom event for a custom widget

Figure 3.9 displays the widget, a panel containing two
buttons. The custom event, TwoButtonEvent, is trig-
gered only after the user has clicked both buttons. The
event contains a count of how many times the user has
clicked on the widget. The idea here is to show how a
new command event can be created out of smaller
events—in this case, the left button down events on
each individual button.
To create a custom event:

could be to support a cus-
In the next section, we’ll

“IClick Count: 4

Figure 3.9 The custom two-
button widget. Clicking both
buttons in succession
triggers a change in the
window title.

1 Define the new event class as a subclass of the wxPython class wx. PyEvent.
If you want the event to be treated like a command event, create the event
as a subclass of wx.pPyCommandEvent. Like many override situations in

wxPython, the py version of a class allows the wxWidgets system to see that

a method written in Python can override the C

++ method.

2 Create an event type and a binder object to bind the event to specific objects.

3 Add code that can build instances of the new

event, and introduce the

instances into the event processing system using the ProcessEvent ()
method. Once the event is created, you can create bindings and handler
methods as you would with any other wxPython event. Listing 3.5 dis-

plays the code that manages the widget.

import wx

class TwoButtonEvent (wx.PyCommandEvent) :
def _ init__ (self, evtType, id):
wx.PyCommandEvent. init (self, evtType,
self.clickCount = 0

def GetClickCount (self) :
return self.clickCount

Defining
) the event
id)

How can I create my own events? ‘ 79

def SetClickCount (self, count):
self.clickCount = count

ﬁ Generating an event type
myEVT TWO BUTTON = wx.NewEventType ()

EVT_TWO_BUTTON = wx.PyEventBinder (myEVT TWO_BUTTON, 1) Creating a

binder object
class TwoButtonPanel (wx.Panel) :

def init_ (self, parent, id=-1, leftText="Left",

rightText="Right") :

wx.Panel._ init_ (self, parent, id)

self.leftButton = wx.Button(self, label=leftText)

self.rightButton = wx.Button(self, label=rightText,

pos=(100,0))

self.leftClick = False

self.rightClick = False

self.clickCount = 0 Binding the lower level events

self.leftButton.Bind (wx.EVT LEFT DOWN, self.OnLeftClick)

self.rightButton.Bind (wx.EVT_LEFT DOWN, self.OnRightClick)

def OnLeftClick(self, event):
self.leftClick = True
self.onClick ()

event.Skip () o Skip for more processing

def OnRightClick(self, event):
self.rightClick = True
self.OnClick ()
event.Skip() @ Skip for more processing

def OnClick(self) :
self.clickCount += 1
if self.leftClick and self.rightClick:
self.leftClick = False Creating the custom eventj
self.rightClick = False
evt = TwoButtonEvent (myEVT TWO BUTTON, self.GetId())
evt.SetClickCount (self.clickCount) <— Adding data to the event

self.GetEventHandler () . ProcessEvent (evt) Processing

the event
class CustomEventFrame (wx.Frame) :

def _ init_ (self, parent, id):
wx.Frame. init_(self, parent, id, 'Click Count: 0',
size=(300, 100))
panel = TwoButtonPanel (self) Binding the custom eventﬁ
self .Bind (EVT_TWO_BUTTON, self.OnTwoClick, panel)

def OnTwoClick(self, event):
self.SetTitle("Click Count: %s" % event.GetClickCount())
Define an event
if _name_ == '__main__ ': handler function
app = wx.PySimpleApp ()

80

CHAPTER 3
Working in an event-driven environment

frame = CustomEventFrame (parent=None, id=-1)

frame. Show ()

app .MainLoop ()

||

© The constructor for the event class declares it a subclass of wx.PyCommandEvent.

The wx.PyEvent and wx. PyCommandEvent are wxPython-specific constructs you can
use to create new event classes and should be used to bridge the gap between the
C++ classes and your Python code. If you try to use wx.Event directly, wxPython
cannot see the new methods of your subclass during event processing, because
the C++ event handlers do not know about the Python subclass. If you use
wx . PyEvent, a reference to the Python instances are saved and later passed to the
event handler directly, allowing the Python parts of the code to be used.

@ The global function wx.NewEventType () is analogous to wx.NewId(); it returns an

event type ID that is guaranteed to be unique. This value uniquely identifies an
event type for the event processing system.

© The binder object is created using the new event type as a parameter. The second

60

parameter is between 0 and 2, and represents the number of wxId identifiers
expected by the wx.EvtHandler.Bind () method to determine which object is the
source of the event. In this case, there is one ID representing the widget that gen-
erates the command event.

To create the new higher level command event, the program must respond to
specific user events, for instance, left mouse down on each button object.
Depending on which display button is clicked, the events are bound to the
OnLeftClick () and onRightClick () methods. The handlers set a Boolean, indi-
cating that the button has been clicked.

The skip () call in this case allows for further processing after the event handler is
complete. In this specific case, the new event does not require the skip call; it’s
dispatched before the handler method completes. However, all left down events
need to call skip() so that the handler does not block the eventual button click
event. The button click event is not being handled by this program, but wxPython
uses it to draw the button properly during a click. If it’s blocked, the user does not
get the expected feedback from a button push.

We chose not to bind to the wx.EVT_BUTTON event to show you what happens if
you don’t call skip () in cases like this. To see the difference in behavior between
these two buttons, comment out either line 0., 0.

If both left and right buttons are clicked, the code creates an instance of the new
event. The event type and the ID of the two-button widget are the parameters of
the constructor. Typically, a single event class can have more than one event type,
although that’s not the case in this example.

Summary 81

@ The ProcessEvent () call injects the new event into the event system for process-

ing, as described in section 3.4.1. The GetEventHandler () call returns an instance
of wx.EvtHandler. In most cases, the returned instance is the widget object itself,
but if other wx.EvtHandler () methods have been pushed on to the event handler
stack, the top item in the stack is returned instead.

© The custom event is bound just like any other event, in this case using the binder

object created in line ©.

@ The event handler function for this example changes the title of the window to

3.7

display the new click count from the event.

At this point, your custom event can do anything pre-existing wxPython events
can do, such as creating different widgets that trigger the same event. Creating
events is an important part of the customization of wxPython.

Summary

= A wxPython application uses an event-based flow of control. Most of the

application’s time is spent in a main loop, waiting for events and dispatch-
ing them to the appropriate handler function.

All wxPython events are subclasses of the class wx.Event. Lower level events,
such as mouse clicks, are used to build up higher order events, such as but-
ton clicks or menu item selections. These higher order events that result
from wxPython widgets are subclasses of the class wx.CommandEvent. Most
event classes are further classified by an event type field which differenti-
ates between events that may all use the same data set.

To capture the relationship between events and functions, wxPython uses
instances of the class wx.pyEventBinder. There are many predefined
instances of this class, each corresponding to a specific event type. Every
wxPython widget is a subclass of wx.EvtHandler. The wx.EvtHandler class
has a method Bind (), which is usually called at initialization with an event
binder instance and a handler function as arguments. Depending on the
type of event, other wxPython object IDs may also need to be passed to
the Bind () call.

Events are generally sent to the object that generated them to search for a
binding object which binds it to a handler. If the event is a command event,
the event propagates upward through the container hierarchy until a wid-
get is found that has a handler for the event type. Once an event handler is
found, processing on that event stops, unless the handler calls the skip ()
method of the event. You can use the skip() method to allow multiple

82

CHAPTER 3
Working in an event-driven environment

handlers to respond to a single event, or to verify that all the default behav-
ior for the event occurs. Certain aspects of the main loop can be controlled
using methods of wx.App.

m Custom events can be created in wxPython, and emitted as part of the
behavior of a custom widget. Custom events are subclasses of wx.PyEvent,
custom command events are subclasses of wx.PyCommandEvent. To create a
custom event, the new class must be defined, and a binder object must be
created for each event type managed by the new class. Finally, the event
must be generated somewhere in the system by passing a new instance to
the event handler system via the ProcessEvent () method.

In this chapter, we’ve covered the application objects that are most important to
your wxPython application. In the next chapter, we’ll show you a useful tool, writ-
ten using wxPython, that will also assist you with wxPython development work.

Making wxPython easter
to handle with- PyCrust

This chapter covers

m [nteracting with a wxPython program

Reviewing the features of PyCrust

Wrapping PyCrust around a wxPython application
Working with PyCrust GUI and support modules

Interacting with modules from PyCrust in
wxPython programs

83

84

4.1

CHAPTER 4
Making wxPython easier to handle with PyCrust

PyCrust is a graphical shell program, written in wxPython, that you can use to
help analyze your wxPython programs.

Why call it PyCrust? When Patrick O’Brien created an interactive Python shell
using wxPython, the most obvious name—PyShell—was already in use. PyCrust
was chosen instead.

PyCrust is part of a larger Py package that includes additional programs with
related functionality including PyFilling, PyAlaMode, PyAlaCarte, and PyShell.
The common theme of these programs is the combination of a graphical, point-
and-click environment, and wxPython’s interactive and introspective runtime
features. While each of the Py programs leverage this combination, PyCrust rep-
resents the most complete realization of this theme.

In this chapter, we’ll show you what PyCrust and its related programs do, and
how you can use them to make your work with wxPython flow more smoothly.
We’ll start by talking about ordinary Python shells, then PyCrust specifically, and
finally, we’ll cover the remaining the programs in the Py package.

How do I interact with a wxPython program?

A compelling feature of Python compared to other programming languages is
that it can be used in two ways: you can use it to run existing programs written in
the Python language, or you can run Python interactively from a command
prompt. Running Python interactively is similar to having a conversation with
the Python interpreter. You type in a line of code and hit Enter. Python exe-
cutes the code, responds, and prompts you for the next line. It is this interactive
mode that sets Python apart from languages such as C++, Visual Basic, and
Perl. Because of the Python interpreter, there is no need to write an entire pro-
gram in wxPython to do simple things. In fact, you can even use interactive
Python as your desktop calculator.

In listing 4.1 we've started Python from the command line and entered some
mathematical calculations. Python begins by displaying a few lines of informa-
tion, followed by its primary prompt (>>>). When you enter something that
requires additional lines of code, Python displays its secondary prompt (.. .).

$ Python

Python 2.3.3 (#1, Jan 25 2004, 11:06:18)

[GCC 3.2.2 (Mandrake Linux 9.1 3.2.2-3mdk)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> 2 + 2

How do I interact with a wxPython program? 85

4

>>> 7 * 6

42

>>> 5 ** 3

125

>>> for n in range(5) :
print n * 9

18
27
36

>>>

Interactive Python is not only a good desktop calculator; it is also a great learning
tool, because it provides immediate feedback. When in doubt, you can simply
launch Python, type in a few lines of throwaway code, see how Python reacts, and
adjust your main code accordingly. One of the best ways to learn Python, or to
learn how existing Python code works, is to try it interactively.

PyCrust sets the standard for a Python shell

When you work with Python interactively, you work in an environment that
is called the Python shell which is similar to other shell environments, such as
the DOS window on Microsoft platforms, or the bash command line on Unix-
based systems.

The most basic of all the Python shells is the one in listing 4.1, which you see
when you launch Python from the command line. While it is a useful shell, it is
strictly text-based, rather than graphical, and it doesn’t provide all the shortcuts or
helpful hints that Python is capable of providing. Several graphical Python shells
have been developed that provide this additional functionality. The most well-
known is IDLE, the Integrated DeveLopment Environment that is a standard part
of the Python distribution. IDLE’s shell, as seen in figure 4.1, looks much like the
command line Python shell, but has additional graphical features such as calltips.

Other Python development tools, such as PythonWin and Boa Constructor,
include graphical Python shells similar to the one in IDLE. It was the existence of
all these shells that prompted the creation of PyCrust. While each tool’s shell had
some useful features, such as command recall, autocompletion, and calltips, no
tool had a complete set of all the features. One of the goals of PyCrust was to sup-
port a complete set of all the existing Python shell features.

86

4.2

CHAPTER 4
Making wxPython easier to handle with PyCrust
-+ *Python Shell* =]{mi[x]
Hle Edit Debuy Windows Help
Python 2.3.3 (#1, Jan 25 2004, 11:06:13!) A
[3cc 3.2.2 (Mandrake Lirmx 9.1 3.2.2-3mdk!)] on limx2
Type "copyright", "credits" or "license" for more information.
IDLE 0.5 -- press Fl for help
=»> dir [l
|dir[[object]) -» list of strings|
/
L

Figure 4.1 IDLE’s shell provides calltips for functions and methods

The other motivation for creating PyCrust was that tools written using one GUI
toolkit often cannot work with code from a different GUI toolkit. For example, IDLE
is written using Tkinter, not wxPython. Until recently, if you tried to import and
use a wxPython module from within IDLE’s Python shell, you would be caught in a
conflict between the event loop for wxPython and the event loop for Tkinter,
resulting in a frozen or crashed program.

In effect, the two toolkits fought to have control over the event loop. So if
you want runtime introspection features that work with wxPython modules,
your Python shell must be written using wxPython. Since there wasn’t an existing
Python shell that supported a complete feature set, PyCrust was created to fill
that need.

What are the useful features of PyCrust?

Now we will look at some of the shell features that PyCrust provides. The PyCrust
shell looks familiar because it displays the same information lines and uses the
same prompts as the command line Python shell. Figure 4.2 displays an opening
PyCrust screen.

You’ll notice that the PyCrust frame, which contains a wx.SplitterWindow con-
trol, is divided into two sections: the top section looks like the regular Python
shell, the bottom section contains a Notebook control that includes a variety of
tabs with the default tab displaying information about the current namespace.
The top section, the PyCrust shell, has several useful features, discussed in the
next few sections.

4.2.1

What are the useful features of PyCrust? 87

-+ PyCrust
File Edit Options Help

1PyCrust 0.9 4 - The Flakiest Python Shell

2 Sponsored by Orbtech - Your source for Python programming expertise

3 Python 2.3.3 {#1, Jan 25 2004, 11:06:18)

4 [GCC 3. 2.2 (Mandrake Liraec 9.1 3. 2 2-Imdk)] on linuox2

5 Type "help", "copyright', "credits" or "license" for mors information.
B 2y

[+]

Namespacel Displayl Ca\ltipl Sessiunl Dispatcherl
locals() -

Type: <type 'dict'>
Value: {'shell': <wx py.shell. Shell; proxy of G++ wxStyledTextCtrl instance at

_Z00bEb08_p_wxStyledTextCtrls, '_ builtins_ '@ <module '_ builtin_ ' (built-im) >,
'__file_ ': '/homefpobrien/bin/PyCrust', 'notebook': <wx. controls.Notebook; proxy of C++
wrlotebook instance at _98f33708_p_weNotebook>, ' neme_ ': '_ main_ ', '_ doc_ ': Nonej}

|F’yCrust 0.94 - The Flakiest Python Shell, Sponsored by Orbtech - Your source for Python programming expertise.
L

Figure 4.2 Launching PyCrust reveals a shell and tabbed notebook interface.

Autocompletion

Autocompletion occurs when you type in the name of an object followed by the
dot operator. PyCrust displays an alphabetical listing of all known attributes for
that particular object. As you enter additional letters, the highlighted selection in
the list changes to match the letters you have entered. If the item you want is
highlighted, press the Tab key and PyCrust fills in the rest of the attribute name
for you.

In figure 4.3, PyCrust is displaying a list of attributes for a string object. This
autocompletion list includes all the properties and methods of the object.

88

4.2.2

CHAPTER 4
Making wxPython easier to handle with PyCrust

“=» PyCrust
File Edit Options Help
1PyCrust 0.9 4 - The Flakiest Python Shell -
2 Sponsored by Orbtech - Your source for Python programming expertise
3 Python 2.3.3 (#1, Jan 25 2004, 11:06:18)
4 [GCC 3.2.2 (Mandrake Liraec 9.1 3. 2 2-Imdk)] on liruox2
5 Type "help", "copyright', "credits" or "license" for more information.
§>>> 3 = "hello"
T xrr 5.

capitalize
center
count
decode
encods
endswith
expandtabs
find

index

Mamespace | Display | Calltip | Session | Dispatcher

locals() -
Type: <type 'dict'>

¥alue: {'pp': <hound method Display. setItem of <wx py.crust. Display; proxy of G++
wxstyledTextCtrl instance at 68053908 _p wxStyledTextCtrls», 'shell': <wx py.shell. Shell;
proxy of C++ wxStyledTextCtrl instance at _200bZb03_p wxStyledTextCtrly, ' builtins
<module ' builtin ' (built-inj:, '_ file_ ': '/homespobrien/bin/PyCrust’, 's': 'hello’
, 'Filling': <wx.py.filling Filling; proxy of C++ wxSplitterWindow instance at
_80133808_p_weSplitterWindow:, ‘notebook': <wx controls. Notehbook; proxy of C++ welotebook
instance at _98£33708 p wdNotebook:, ' name ': ' main ', ' doc ': None}

|F’yCrust 0.94 - The Flakiest Python Shell, Sponsaored by Orbtech - Your source for Python programming expertise.
L

Figure 4.3 The autocompletion feature displays an object’s attributes.

Calltips and parameter defaults

When you enter a left parenthesis after the name of a callable object, PyCrust
displays a calltip window (see figure 4.4) containing information about the argu-
ments that are supplied to the callable, as well as the docstrings for the callable,
if defined.

A callable object can be a function, method, built-in, or class. All of these can be
defined to accept arguments, and may have docstrings that provide information
about what the item does, and what kind of value is returned. Displaying this
information in a temporary window positioned directly above or below the caret
eliminates the need to refer to the documentation. If you know how to use the
callable object, ignore the calltip and continue typing.

PyCrust fills in default parameters for the call when you enter the left paren-
thesis in the Python shell. As this is happening, PyCrust automatically selects the

4.2.3

What are the useful features of PyCrust? 89

-+ PyCrust
File Edit Options Help

1PyCrust 0.9 4 - The Flakiest Python Shell -
2 Sponsored by Orbtech - Your source for Python programming expertise

3 Python 2.3.3 {#1, Jan 25 2004, 11:06:18)

4 [GCC 3. 2.2 (Mandrake Liraec 9.1 3. 2 2-Imdk)] on liruox2

5 Type "help", "copyright', "credits" or "license" for more information.
§>>> 3 = "hello"

7 3>> s.capitalize |

5. capitalize() -»> string

Eeturn a copy of the string 5 with only its first character
capitalized

Mamespace | Display | Calitip | Session | Dispatcher
locals() -

Type: <type 'dict'>

¥alue: {'pp': <hound method Display. setItem of <wx py.crust. Display; proxy of G++
wxstyledTextCtrl instance at 68053908 _p wxStyledTextCtrls», ‘'shell': <wx py.shell. Shell;
proxy of C++ wxStyledTextCtrl instance at _200bZb03_p wxStyledTextCtrly, ' builtins
<module ' builtin ' (built-in):, '_ file_ ': '/homespobrien/bin/PyCrust’, 's': 'hello’
, 'Filling': <wx.py.filling Filling; proxy of C++ wxSplitterWindow instance at
_80133808_p_weSplitterWindow:, 'notebook': <wx controls. Notebook; proxy of C++ welotebook
instance at _98£33708 p wdNotebook:, ' name ': ' main ', ' doc ': None}

|F’yCrust 0.94 - The Flakiest Python Shell, Sponsaored by Orbtech - Your source for Python programming experise.
L

Figure 4.4 The calltip feature displays information about a callable object.

additional text that was created, and subsequent keystrokes are replaced. To
retain these parameters, press any of the caret movement keys (such as the arrow
keys), and the text is unselected and available for your modifications.

Syntax highlighting

As you enter code into the shell, PyCrust changes the color of the text depend-
ing on its significance. For example, Python keywords appear in one color, lit-
eral string values in another, and comments in yet another. This provides a
visual confirmation that you haven’t missed any trailing quotes, or misspelled
a Python keyword.

Many of the features of PyCrust are made possible by a very powerful text con-
trol distributed with wxPython. The wx.stc.styledTextctrl is a wxPython wrapper
of the Scintilla source code editing component developed by Neil Hodgson. Scin-
tilla (www.scintilla.org) is used by a variety of source code editing applications,

90

4.2.4

CHAPTER 4
Making wxPython easier to handle with PyCrust

including the demo program shipped with wxPython. Although it was a struggle
to make a source code editor behave like a wxPython shell, it would have been
nearly impossible to create PyCrust without Scintilla.

Python help

PyCrust provides full support for Python’s help functionality. Python’s help func-
tion displays information about almost all aspects of Python, as displayed in fig-
ure 4.5.

“j=» PyCrust [=][D[x]
File Edit Options Help
1PyCrust 0.9.4 - The Flakiest Python Shell .

2 Sponsored by Orbtech - Your source for Python programming expertise.
3Python 2.3.3 (#1, Jan E5 2004, 11:06:18)

4 [GCC 3.2 2 (Mandrake Linux 9.1 3 2 2-3mdk)] on linux?

5 Type "help”, "copyright", "credits" or "license" for more information.
& > help

7 Type help() for interactive help, or help(object) for help shout chject
g x> help()

El

10 Welcome to Python 2,31 This is the online help utility.

11

12 If this 1s your first time using Python, you should definitely check out
13 the tutorial on the Internet at http:/ wmr. python. org/doc/tuts.

14

15 Enter the name of any module, keyword, or topic to get help on writing
16 Python programs and using Python modules. To quit this help vutility and
17 return to the interpreter, just type "quit".

18
13 To get a list of available modules, keywords, or topics, type "modules”,
20 "keywords", or "topics". Each module also comes with a one-line summary

21 of what it does; to list the modules whose summaries contain a given word
22 such as "spam"., type "modules spam”.

23

24 help> keywords

25

26 Here is a list of the Python keywords. Enter any keyword to get more help.
27

25 and else inmport raise

23 assert except in returm
30 break exec is try

31 class finally larbhda while

32 continme for not yield

33 def from or

34 del global pass

35 elif if print

36
27 help: quit
28

28 Tou are now leaving help and returning to the Python interpreter.

40 If you want to ask for help on a particular object directly from the
41 interpreter, you can type "help(ohject)". Executing "help('string')"
42 has the same effect as typing a particular string at the help: prompt.
43 3

MNamespace | Display | Calltip = Session Dispatcher
locals() -

+ Type: <type 'dict':

|PyCrust 0.94 - The Flakiest Python Shell, Sponsored by Orbtech - Your source for Python programming expertise.
1

Figure 4.5 Using Python’s help function from within PyCrust

4.2.5

What are the useful features of PyCrust? 91

Python’s help function provides an additional prompt (help). After using help,
you can exit the help mode by entering quit at the help prompt, and return to the
regular Python prompt.

Command recall

There are many ways to avoid typing within the PyCrust shell. Most of them
involve capturing something you have previously entered, modifying it if neces-
sary, and sending it to the Python interpreter.

For example, PyCrust maintains a history of all the commands you have
entered in the current session. You can recall any previously entered Python com-
mands (single-line or multi-line) from the command history. Table 4.1 displays a
list of keyboard shortcuts that relate to this functionality.

Table 4.1 Keyboard shortcuts related to command recall in the PyCrust shell

Key Combination Result
Ctrl+Up Arrow Retrieve previous history item
Alt+P Retrieve previous history item
Ctrl+Down Arrow Retrieve next history item.
Alt+N Retrieve next history item
Shift+Up Arrow Insert previous history item
Shift+Down Arrow Insert next history item
F8 Command-completion of history item. (Type a few characters of a previous
command and press F8)
Ctrl+Enter Insert new line into multiline command

As you can see, there are separate commands for retrieving and inserting old
commands, distinguished by how PyCrust handles the text entered at the current
wxPython prompt. To replace what you have entered, use one of the shortcuts
that retrieves a history item. To insert an old command at the caret, use one of the
shortcuts that inserts a history item.

Inserting a line into the middle of a multi-line command works differently
than inserting into a single-line command. To insert a line into a multi-line com-
mand, you can’t simply press the Enter key, because that sends the current
command to the Python interpreter. Instead, press Ctrl+Enter to insert a break
in the current line. If you are at the end of the line, a blank line is inserted after

92

4.2.6

CHAPTER 4
Making wxPython easier to handle with PyCrust

the current line. This process is similar to the way you would cut and paste text in
a regular text editor.

The final method of recalling a command is to simply move the caret to the com-
mand that you want to recall, and press Enter. PyCrust copies that command to the
current Python prompt, and repositions the caret at the end. You can then modify
the command, or press Enter again and submit the command to the interpreter.

These shortcuts allow you to develop code incrementally, testing your creation
every step of the way. For example, you can define a new Python class, create an
instance of that class, and see how it behaves. Then you can go back to the class
definition, add more methods or edit the existing methods, and create a new
instance. By repeating this as often as you need, you can develop your class defi-
nition to the point that it is good enough to cut and paste into your program’s
source code. Which brings us to our next feature.

Cut and paste

You may often want to reuse code developed within the shell without having to
type it again. At other times, you may find sample code, perhaps from an online
tutorial, and you’d like to apply it to a Python shell. PyCrust provides a couple of
simple cutting and pasting options, listed in table 4.2.

Table 4.2 Keyboard shortcuts related to cutting and pasting in the PyCrust shell

Key Combination Result
Ctrl+C Copy selected text, removing prompts
Ctrl+Shift+C Copy selected text, retaining prompts
Ctrl+X Cut selected text
Ctrl+V Paste from clipboard
Ctrl+Shift+V Paste and run multiple commands from clipboard

Another feature of pasting is that PyCrust recognizes and automatically strips out
the standard Python prompts from any code that is pasted into the PyCrust shell.
This makes it easy to copy example code from a tutorial or email message, paste it
into PyCrust, and try it without having to do manual cleanup.

At times, when you copy code you may want to remove the PyCrust prompts,
such as when copying the code into your source files. Other times you’ll want to
retain the prompts, such as when you are copying examples into a document, or

4.2.7

What are the useful features of PyCrust? 93

posting to a newsgroup. PyCrust provides both options when copying text from
the shell.

Standard shell environment

As much as possible within the wxPython environment, PyCrust behaves the same
as the command line Python shell. This includes some unusual situations, such as
pickling instances of classes that are defined within a shell session. One area
where PyCrust falls short in its ability to duplicate the command line functional-
ity is keyboard interrupts. Once Python code has been entered into the PyCrust
shell, there is no way to interrupt the execution of the code. For example, suppose
you coded an infinite loop in PyCrust, as in the following:

>>> while True:
print "Hello"

After you press Enter, and the code is sent to the Python interpreter, PyCrust
stops responding. To interrupt the infinite loop, shut down the PyCrust program.
This shortcoming of PyCrust is in contrast to the command line Python shell, that
retains the ability to handle a keyboard interrupt (Ctrl+C). From the command
line Python shell, you would see the following behavior:

>>> while True:
print "Hello"
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Traceback (most recent call last):
File "<stdin>", line 2, in ?
KeyboardInterrupt
>>>

The nature of event handling in a GUI environment has made it extremely diffi-
cult to devise a solution that allows PyCrust to break out of an infinite loop, or
interrupt any long-running sequence of code entered at the shell prompt. A
future version of PyCrust may provide a solution to this. In the meantime, keep

94

4.2.8

CHAPTER 4
Making wxPython easier to handle with PyCrust

this behavior in mind. Fortunately, this is the only known difference between
PyCrust and the standard command shell. In all other regards, the PyCrust shell
works exactly the same as the command line Python shell.

Dynamic updating

All of PyCrust’s shell features are updated dynamically as you run PyCrust, which
means that features such as autocompletion and calltips are available even on
objects defined at the shell prompt. For example, take a look at the sessions shown
in figures 4.6 and 4.7 where we have defined and made use of a class.

In figure 4.6, PyCrust displays the autocompletion options available for this
new class.

In figure 4.7, PyCrust displays a calltip for the newly defined method of
the class.

i~ PyCrust
File Edit Options Help

1PyCrust 0.9 4 - The Flakiest Python Shell -
2 Sponsored by Orhtech - Your source for Python programming expertise

3 Python 2.3.3 (#1, Jan 25 2004, 11:06:18)

4 [GoC 3.2.2 (Mandrake Linux 9.1 3 2 2-3mdk)] on linux2

5 Type "help", "copyright', "credits" or "license" for more information.
§>>> class Person.
¥ def 1111t (zelf, name, age):
8 "Create a Person instance. """
... self name = name
10 ... self age = age
11 ... def mtro(self)
1z ... "Return a personal introduction string. """
15 ... retwn "My name is %35 and I am %s years old " % (self name, self. age)
14 .
15 335 p = Personi'Eoh', 16)
16 >3> p.i
age
name
_ class__
_ dict_
_ doc_
_init
_ module_

Mamespace | Display | Calltip | Session | Dispatcher
locals() s

Type: <type 'dict':

Walue: {'pp': <bound method Display. setItem of <wx py.crust. Disp]_ay; proxy of C+s
wxStyledTextCtrl instance at _SB053908_p_wxStyledTextCtrl:», ‘'shell': <wx py.shell. Shell;
proxy of C++ wxStyledTextCtrl instance at _200bZb0O8_p w'xStyledTextCtrl> 'p'r < main__
. Person instance at Oxd147defSc:, ' builtins ': <module ' builtin ' (built-im) >,
file_ ': ' /home/pobrien/bin/PyCrust', 'Ferson': <class _ maim . Person at Oxd1477f8cs, |»

Figure 4.6 PyCrust’s autocompletion information is dynamically generated.

4.3

4.3.1

What do the PyCrust notebook tabs do? 95

-+ PyCrust
File Edit Options Help

1PyCrust 0.9 4 - The Flakiest Python Shell -
2 Sponsored by Orbtech - Your source for Python programming expertise

3 Python 2.3.3 {#1, Jan 25 2004, 11:.06:18)

4 [GCC 3. 2.2 (Mandrake Liraes 9.1 3. 2 2-Imdk)] on liruox2

5 Type "help", "copyright', "credits" or "license" for more information.

6 »»> class Person:

" . def _ init_ (self, name, age):

3. """Create a Person instance. """

... self name = name

in ... self age = age

11 ... def intro(zelf):

12 ... """Return a personal introduction string. """

13 ... retwm "My name is %s and I am %s years old. " % (self name, self. age)

14 ...
15 >>> p = Person{'Bob', 18}
16 >»> p.introf

introf)

Refturn a personal introduction string.

Mamespace | Display | Calltip | Session | Dispatcher
locals() s

Type: <type 'dict'>

Walue: {'pp': <hound method Display. setItem of <wx py.crust. Display; proxy of G++
wxStyledTextCtrl instance at 58053908 p wxStyledTextCtrls», 'shell': <wx py.shell. Shell;
proxy of C++ wxStyledTextitrl instance at _200bZb0E_p wxstyledTextCtrly, 'p': <_ main_ .
. Person instance at Ox4147dedcy, ' bwniltins_ ': <module ' builtin * (built-ing s,
file ': '/home/pobrien/bin/PyCrust', 'Person’: <class _ wain__. Person at Oxd1477f8c», |v

Figure 4.7 PyCrust’s calltip information is also dynamically generated

This illustrates the way that PyCrust leverages the dynamic runtime capabilities
of Python, which would be impossible in other programming languages that are
statically typed and compiled.

What do the PyCrust notebook tabs do?

On the lower half of the PyCrust interface is a notebook control that includes sev-
eral tabs with useful information. The tab you see when PyCrust begins is the
Namespace tab.

Namespace tab

The Namespace tab, displayed in figure 4.8, is split into two parts, again using
the wx.SplitterWindow control. The left-hand side contains a tree control that
displays the current namespace, while the right-hand side displays details about
the object currently selected in the namespace tree.

96

CHAPTER 4
Making wxPython easier to handle with PyCrust

=}-» PyCrust D= IIES)
File Edit Options Help
1PyCrust 0.9 4 - The Flakiest Python Shell -

2 Sponsored by Orbtech - Your source for Python programming expertise
3 Python 2.3.3 (#1, Jan 25 2004, 11:06:18)
4 [GCC 3.2.2 (Mandrake Liranc 9.1 3. 2 2-Imdk)] on liruox2

5 Type "help", "copyright', "credits" or "license" for mors information.

6 »rr import wx

7 »x» dir)

3 ['_builtins_ ', '_doc_ ', '_ file ', '_name_ ', 'filling', ‘notebock', ‘pp', ‘'shell', 'wx']

>3y

Mamespace | Display Calltip Session Dispatcher

—=—locals() 4| = A
—e—__builtins__ Type: <type 'module'>
doc,
ﬂle Value: <module 'wx' from ' home/pobrien/Codes/ws/__init_ pyc'>
—__name__ Source GCode:
—E—filling
f#—notehook # Neme: _ init_ .py
op # Purpose: The presence of this file turns this directory into a
w—shell § Python package.
Buthor Robin Dunn
__builting__ #
Created: A-Aug-1908
_Class__ # ROS-ID $Id: _ dinit_ .py,v 1.6 2003/11,/12 21:32:34 RD Exp §
__delattr__ # Copyright: {c) 1998 by Total Control Software
dict # Licence: wiWindows license
__Hiet__ &
- doc__
__file__ import _ wersion
getattribute _ wersion__ = _ wersion_ . VERSION_STRING
—__hash__ !
4 » # Load the package namespace with the core classes and such b

|F’yCrust 0.94 - The Flakiest Python Shell, Sponsaored by Orbtech - Your source for Python programming expertise.
L

Figure 4.8 PyCrust’s namespace tree allows one to drill down into objects and inspect
their attributes

The namespace tree presents a hierarchical view of all the objects in the current
namespace. These are the items that would be returned if you ran the locals()
built-in Python function. In figure 4.8, we’ve imported the wx package and selected
it in the namespace tree. The right-hand side displays the name of the selected
item, its type, and its current value. If the object has source code associated with it,
PyCrust displays that also. In this case, wx is a wxPython package, so PyCrust dis-
plays the source code from the __init__.py file that resides in the wx directory.

The first line of the display provides a fully qualified object name that you can
cut and paste into the PyCrust shell or into your application source code. For
example, if you import the locale module and drill down into it you can reach
the items stored within an encoding_alias dictionary attribute of the locale mod-
ule. Once you select one of these items, you can cut and paste its displayed name
directly into the PyCrust shell, as in the following:

4.3.2

4.3.3

What do the PyCrust notebook tabs do? 97

>>> import locale

>>> locale.encoding alias['en']

'1S08859-1"

>>>
In this case, PyCrust provided us with a fully qualified name (locale.
encoding alias['en']) that used Python’s index notation (['en']) to reference
the specified item in the encoding_alias dictionary. This mechanism also works
for lists. If you find something in the namespace tree that you want to reference in
your code, PyCrust gives you the exact syntax to fulfill the task.

Display tab

The Display tab displays a pretty print view of an object. PyCrust has a built-in
function, pp (), that uses Python’s pretty print module (pprint) to produce a
nicely formatted view of any wxPython object. However, instead of requiring you
to explicitly import and use pprint repeatedly, the information in the Display tab
is updated every time the displayed object is updated.

For example, to see how the contents of a list change as you manipulate it in the
shell, you can make the Display tab the current tab, use the pp () function within
the shell to display your list object, then run the code that modifies your list. When-
ever the list changes, the changes are immediately visible in the Display tab.

Calltip tab

The Calltip tab displays the contents of the most recent calltip in the Python
shell. If you are working with a callable that requires a large number of parame-
ters to be passed to it, select the Calltip tab. When using the wxPython package
itself, there are a lot of classes that can have many methods, which may take many
parameters. For example, to create a wx.Button, you can supply up to eight
parameters, one of which is required, while the other seven have default values.
The Calltip tab displays the following details about the wx.Button constructor:

__init_ (self, Window parent, int id=-1, String label=EmptyString,
Point pos=DefaultPosition, Size size=DefaultSize,

long style=0, Validator validator=DefaultValidator,
String name=ButtonNameStr) -> Button

Create and show a button. The preferred way to create standard buttons
is to use a standard ID and an empty label. In this case wxWigets will
automatically use a stock label that corresponds to the ID given. In
addition, the button will be decorated with stock icons under GTK+2.

Because the wxPython classes are actually wrappers for C++ classes, the calltip
information is based entirely on the docstrings for the class. These have been

98

4.3.4

4.3.5

CHAPTER 4
Making wxPython easier to handle with PyCrust

generated to show both the parameters that can be passed, and the type (int,
string, point, etc.) required by the underlying C+ + class. That’s why the wx.But-
ton constructor calltip appears the way it does. For objects defined completely in
the Python language, PyCrust inspects the object to determine the nature of its
arguments.

Session tab

The Session tab is a simple text control that lists all the commands that are
entered in the current shell session. This makes it easy to cut and paste com-
mands for use elsewhere, without having to remove the responses that are
returned from the wxPython interpreter.

Dispatcher tab

PyCrust includes a module named dispatcher that provides a mechanism to
loosely couple objects in an application. PyCrust uses this dispatcher to keep
aspects of its interface updated, primarily when commands are sent from the
shell to the Python interpreter. The Dispatcher tab (figure 4.9) lists information
about signals routed through its dispatching mechanism. It’s primarily useful
when working with PyCrust itself.

The Dispatcher tab also illustrates how to add another tab to a wx.Notebook
control. The source code for the text control that appears on the Dispatcher tab
illustrates how the dispatcher module can be used, as in the following:

class DispatcherListing(wx.TextCtrl) :
"mnText control containing all dispatches for session."""

def _ init_ (self, parent=None, id=-1):
style = (wx.TE MULTILINE | wx.TE_READONLY |
wx.TE_RICH2 | wx.TE_DONTWRAP)
wx.TextCtrl._ init_ (self, parent, id, style=style)
dispatcher.connect (receiver=self.spy)

def spy(self, signal, sender):
""nReceiver for Any signal from Any sender."""
text = '$r from %s' % (signal, sender)
self.SetInsertionPointEnd ()
start, end = self.GetSelection()
if start != end:
self.SetSelection (0, 0)
self .AppendText (text + '\n')

Now that we’ve seen what PyCrust can do as a standalone Python shell and
namespace inspector, let’s take a look at some of the ways that you can use
PyCrust in your own wxPython programs.

4.4

How can I wrap PyCrust 99
around my wxPython application?

[=][E]

“-» PyCrust
File Edit Options Help
1PyCrust 0.9 4 - The Flakiest Python Shell
2 Sponsored by Orbtech - Your source for Python programming expertise
8)

3 Python 2.3.3 (#1, Jan 25 2004, 11:06:1
4 [GCC 3. 2.2 (Mandrake Liraws 9.1 3. 2 2-Imdk)] on liruox2

5 Type "help", "copyright', "credits" or "license" for more information.
B »»y dir{)
7 ['_builtins_ ', '_doc__ ', '__file ', '_neme_ ', 'filling'., ‘notebook’', ‘pp', 'shell']

g »»» 5 = "this"

4 »rr s.capitalize ()
10 'This'

15> s

12 'this'

13 x> on o= 23

14 :x> ppis)

15 333 F

Mamespace | Display Callip | Session Dispatcher

‘Shellcalltip’ from <wepy.shell. Shell; proxy of C++ wixStyledTextCirl instance at _z200bZh08_p_w=StyledTextCtrl=
‘Interpreter.push’ fram <we< py interpreter.Interpreter instance at 0x4147880c>
'Interpreter.push’ from <wes.py.interpreter.interpreter instance at Ox4147860c>
'Shell.calltip’ fram swi.py.shell. Shell; proxy of C++ wixStyledTextCirl instance at _200b2h08_p_w=StyledTextCirl=
'Interpreter.push’ from <wecpy.interpreter Interpreter instance at 0x4147860c>
'Interpreter. push’ from <wes py.interpreter interpreter instance at Ox4147860c>
'Interpreter. push' from <we py.interpreter Interpreter instance at Ox414 78600
‘Shellcalltip’ from <wepy.shell. Shell; prosy of C++ wixStyledTextCirl instance at _200bZh08_p_w=StyledTextCtrl=
‘Interpreter.push’ fram <wa< py interpreter.interpreter instance at 0x4147880c>

|F’yCrust 0.94 - The Flakiest Python Shell, Sponsaored by Orbtech - Your source for Python programming expertise.
L

Figure 4.9 Dispatcher keeps PyCrust updated as commands are sent to the Python interpreter.

How can I wrap PyCrust
around my wxPython application?

Let’s assume that you've used wxPython to create a program, and your program is
working, and now you’d like a better understanding of exactly how it works.
You've seen the PyCrust features listed earlier in this chapter, and they look like
they could be very useful in gaining insights into the functioning of your pro-
gram. But you’d rather not change your program just to be able to use PyCrust.
What do you do?

By passing the name of your program to the PyWrap utility, you can start your
program with a PyCrust shell wrapped around it, without changing any of your
program. Listing 4.2 displays a program, spare.py, that we are preparing to
wrap with PyCrust.

100

CHAPTER 4
Making wxPython easier to handle with PyCrust

Listing 4.2 The spare.py program being prepared for a PyCrust wrapper

#!/usr/bin/env python
"""Spare.py 1s a starting point for simple wxPython programs."""
import wx

class Frame (wx.Frame) :
pass

class App (wx.App) :

def OnInit (self) :
self.frame = Frame (parent=None, id=-1, title='Spare')
self.frame.Show ()
self.SetTopWindow (self.frame)
return True

if name_ ==
app = App ()
app .MainLoop ()

' main ':

To run this program with PyCrust wrapped around it, pass the name of the pro-
gram to PyWrap from the directory where spare.py resides. On Linux, the com-
mand line looks like this:

$ pywrap spare.py

When started, PyWrap attempts to import the module included in the com-
mand line. PyWrap then looks inside that module for a wx.App subclass, and
creates an instance of that class. After that, PyWrap creates a wx.py.crust.Crust-
Frame window with a shell, exposes the application object to the PyCrust name-
space tree, and starts the wxPython event loop.

The complete source code for PyWrap is provided in listing 4.3. This is an
example of how a great deal of functionality can be added to your program with
just a small amount of additional code

Listing 4.3 PyWrap.py source code

"""pyWrap is a command line utility that runs a python
program with additional runtime tools, such as PyCrust."""

__author = "Patrick K. O'Brien <pobrien@orbtech.com>"
__cvsid = "$Id: PyCrust.txt,v 1.15 2005/03/29 23:39:27 robind Exp $"

How can I wrap PyCrust

around my wxPython application?

__revision = "$Revision: 1.15 $"[11:-2]

import os
import sys
import wx
from wx.py.crust import CrustFrame

def wrap (app) :
wx.InitAllImageHandlers ()
frame = CrustFrame ()
frame.SetSize ((750, 525))
frame. Show (True)

frame.shell.interp.locals['app'] = app

app.MainLoop ()

def main (modulename=None) :
sys.path.insert (0, os.curdir)
if not modulename:
if len(sys.argv) < 2:

print "Please specify a module name."

raise SystemExit
modulename = sys.argv[1l]
if modulename.endswith('.py'):

modulename = modulename[:-3]
module = _ import__ (modulename)
Find the App class.
App = None

d = module._ dict_
for item in d.keys():
try:

if issubclass(d[item], wx.App) :

App = d[item]
except (NameError, TypeError) :
pass
if App is None:
print "No App class was found."
raise SystemExit

app = App ()
wrap (app)

if name == '__main_ ':
main ()

101

After running the PyWrap command, both the simple frame from spare.py and a

PyCrust frame are displayed.

102

CHAPTER 4
Making wxPython easier to handle with PyCrust

PyCrust in action

Now let’s see what we can do with the spare.py application frame from within the
PyCrust shell. Figure 4.10 displays the result. We’ll start by importing wx and add-

ing a panel to our frame:

>>> import wx
>>> app.frame.panel = wx.Panel (parent=app.frame)
>>> app.frame.panel.SetBackgroundColour ('White')
True

>>>

Secand menu item

Center

File
g

Edit Options

»»» app. frame.

3 True

10
11
iz
13
14
a5
16
17

»»» app. frame.
33> . frame.
Py . frame.

Py
FrE
FrE
FrE
p

1# True

13
20
21
22
23
24
25
26
27
28
23
a0

»»y app. frame
¥ MEL. Appe:
File "<¢inpul
mern. Appe

SyntaxError:

»r» mend. Bppe
{wE. core. Mern
¥y mEenm. Appe
4w, core. Men!
»»» mpp. frame
»»y app. frame

Help

panel. Refresh()

panel. SetBackgroundColovr (White ')

statushar = app. frame. CreateStatusEar (mmber=3)
statusbar. SetStatusText("Left",

0

. statusbar. SetStatusText("Center”, 1}
.statushar. SetStatusText("Right", Z)
.menubar = wx. MenuEar ()

. Hera)
.menubar. Append {menu,

"Primary"}

Restore
ScreenToClient
ScreenToClientXV
Scrolllines
ScrollPages
ScrollWindow
SendSizeEvent

SetAutolLayout

-

.set

Mamespace | Display Calltip | Session | Dispatcher

Ingredients

- builtins__

- app

Type: <class 'spare. Zpp':

Walue: <spare.dpp; proxy of C++ wPyApp instance at _al992e08_p wePyapp:

item")

item")

o item")
stance at _906b3d08_p_weMernItem:
. itemn")
stance at _ef8853d08_p_wdMermItem:

Figure 4.10 Using PyWrap to enhance a wxPython program at runtime

How can I wrap PyCrust 103
around my wxPython application?

The panel that was added to the frame began with a default silver color, then it was
changed to white. However, setting the panel background color doesn’t immedi-
ately change its appearance. Instead, something needs to trigger an event that
causes the panel to repaint itself, using its new background color property. One
way to trigger such an event is to ask the panel to refresh itself:

>>> app.frame.panel.Refresh()

Now a white panel is displayed, and we’re one step closer to understanding the
details of how wxPython actually works.
Next, let’s add a status bar:

>>> app.frame.statusbar = app.frame.CreateStatusBar (number=3)

>>> app.frame.statusbar.SetStatusText ("Left", 0)

>>> app.frame.statusbar.SetStatusText ("Center", 1)

>>> app.frame.statusbar.SetStatusText ("Right", 2)
Notice how the status bar appears within the frame, without changing the outer-
most dimensions of the frame. Also notice that the text added to each of the three
status bar sections appears immediately, and doesn’t require a refresh. Now let’s
add a menu and a menubar:

>>> app.frame.menubar = wx.MenuBar ()

>>> menu = wx.Menu/()
>>> app.frame.menubar.Append (menu, "Primary")

True
>>> app.frame.SetMenuBar (app.frame.menubar)
>>> menu.Append (wx.NewId (), "One", "First menu item")

<wx.core.Menultem; proxy of C++ wxMenultem instance at
_ds8043d08_p_ wxMenultem>
>>> menu.Append (wx.NewId (), "Two", "Second menu item")
<wx.core.Menultem; proxy of C++ wxMenultem instance at
_40a83e08_p_wxMenultem>
>>>
As you manipulate your own wxPython objects in the PyCrust shell, be aware of
the impact that the changes have on your running program. Try to answer the
following questions. When does the menu actually appear within the frame? What
menu attributes can you change while the program is running? Can you add
more menu items? Can you remove them? Can you disable them? Exploring all
your options interactively should help you better understand wxPython, and pro-
vide you more confidence when it comes to writing your actual program code.
Now that we’ve spent most of the chapter discussing PyCrust itself, we’re ready
to take a walk through the rest of the Py package components.

104

CHAPTER 4
Making wxPython easier to handle with PyCrust

4.5 What else is in the Py package?

4.5.1

Under the covers, all of the PyCrust programs simply make use of the Python
modules included in the Py package, such as shell.py, crust.py, introspect.py,
and interpreter.py. These programs are the building blocks that are used to
make PyCrust, which you can use separately or together.

Think of PyCrust as representing one way of assembling the bits and pieces of
functionality contained within the Py package. PyShell is another way, and PyAla-
Mode is a third. In each of these cases, the majority of the underlying code is
common to all of them, with only the outermost containers varying. So think of
the Py package as a library of modules that you can assemble as you like, wherever
you want to display a wxPython shell, a code editor, or runtime introspection
information within your program.

Within the Py package, there is a clear separation between modules that pro-
vide user interface functionality and those that do not. That separation makes it
much easier to use these modules in your own programs. The modules that begin
with Py are all end-user GUI programs, such as PyCrust, PyShell, PyAlaMode, and
PyAlaCarte. You won’t want to import any of these in your programs. The next
section describes the end-user modules.

Working with the GUI programs

The user-level programs are packages that support modules in different ways.
Table 4.3 displays a description of the user-level programs.

Table 4.3 End-user programs included in the Py package

Program Description
PyAlaCarte Simple source code editor. Edits one file at a time.
PyAlaMode Multi-file source code editor. Each file is displayed in a separate notebook tab. The first

tab contains a PyCrust splitter window.

PyCrust Combination of a wxPython shell with a notebook of tabs displaying a variety of runtime
information, including a namespace tree viewer.

PyFilling Simple namespace tree viewer. This program isn’t terribly useful on its own. It exists
simply as another example of how to use the underlying library.

PyShell Simple wxPython shell interface, without the additional notebook that appears in PyCrust.
Functionally, the wxPython shells in PyShell and PyCrust are identical.

PyWrap Command-line utility that runs an existing wxPython program alongside a PyCrust frame,
allowing you to manipulate the application within the PyCrust shell.

What else is in the Py package? 105

4.5.2 Working with the support modules

The support modules provide basic functionality for the end-user programs,
and can also be imported into your own programs. These modules are essen-
tially the building blocks used to create the user-level Py programs. Table 4.4
displays a listing of the support modules that are part of the Py package, along
with a brief description.

Table 4.4 The Py support modules

Module Description
buffer Supports file editing
crust Contains GUI elements unique to the PyCrust application program
dispatcher Provides global signal dispatching services
document The document module contains a very simple Document class, which is a

thin wrapper around a file. A document keeps track of various file attributes,
such as its name and path, and provides read () and write () methods.

The Buf fer class delegates these low-level reading and writing operations to a
Document instance.

editor Contains all of the GUI editing components that appear in the PyAlaCarte and
PyAlaMode programs

editwindow The editwindow module contains a single EditWindow class. This class inherits
from the wx . stc.StyledTextCtrl (STC) and provides all the features that are
common between the three main uses of the STC within the Py package: as a Python
shell, as a source code editor, and as a read-only source code displayer.

filling Contains all the GUI controls that allow the user to navigate the namespaces of objects
and display runtime information about those objects

frame The frame module defines a Frame class that is the base class for all the other
frames within the Py package. It has a status bar, icon, and menu that are used

by all the other frame classes. The menu items continuously update themselves,
based on the current status and context. That way, the menus can be the same
across all the programs, and menu items that aren’t valid for the current situation are

simply disabled.
images The images module contains the pie icon used by the various Py programs
interpreter The Interpreter class is responsible for providing autocompletion lists, calltip

information, and the keycodes that will trigger the autocompletion feature).

introspect Provides a variety of introspective-type support functions for things like calltips and
command autocompletion

continued on next page

106

CHAPTER 4
Making wxPython easier to handle with PyCrust

Table 4.4 The Py support modules (continued)

Module Description

pseudo The pseudo module defines file-like classes that allow the Interpreter class to
redirect stdin, stdout, and stderr

shell Contains GUI elements that define the Python shell interface that appears in PyCrust,
PyShell, and PyAlaMode

version This final module is the simplest of them all. It contains a single string variable, named
VERSION, that represents the current version or release of Py as a whole.

In the sections that follow, we’ll discuss the more complex modules.

The buffer module

The buffer module contains a Buffer class that supports the normal editing of a
file. A buffer has methods such as new(), open(), hasChanged(), save(), and
saveas (). The file operated on by a buffer is represented by an instance of the Doc-
ument class defined in the document module. The actual editing of the file con-
tents takes place via one or more instances of the Editor class defined in the
editor module. The buffer acts as a middleman between one or more editors and
the actual physical file.

A unique twist to the Buffer class is that each buffer instance has assigned to it
its own Python interpreter instance. This feature allows buffers to be used in
applications that need to provide autocompletion, calltips, and other runtime
help while editing Python source code files. Each buffer interpreter is completely
independent, and is updated when the buffer’s updateNamespace () method is
called. Listing 4.4 displays the source code for this method.

def updateNamespace (self) :
""nUpdate the namespace for autocompletion and calltips.

Return True if updated, False if there was an error."""

if not self.interp or not hasattr(self.editor, 'getText'):
return False

syspath = sys.path

sys.path = self.syspath

text = self.editor.getText ()

text = text.replace('\r\n', '\n')
text = text.replace('\r', '\n')
name = self.modulename or self.name

module = imp.new_module (name)

What else is in the Py package? 107

newspace = module. dict_ .copy ()

try:
try:
code = compile (text, name, 'exec')
except:
raise
try:
exec code in newspace
except:
raise
else:

No problems, so update the namespace.
self.interp.locals.clear ()
self.interp.locals.update (newspace)
return True
finally:
sys.path = syspath
for m in sys.modules.keys() :
if m not in self.modules:
del sys.modules [m]
||

This method compiles the text in the editor using Python’s built-in compile
method, then executes it using the keyword exec. If the compilation is successful,
the result places a number of variables into the newspace namespace. By reset-
ting the interpreter’s local namespace with the result of the execution, the inter-
preter is provided with access to any classes, methods, or variables defined in the
editor’s buffer.

The crust module

The crust module contains the six GUI elements that are unique to the PyCrust
application program. The most general class is CrustFrame, which is a subclass of
wx.Frame. If you review listing 4.1, you can see how the PyWrap program imports
CrustFrame and creates an instance of it. That’s the simplest way to embed a
PyCrust frame into your own program. If you want something smaller than an
entire frame, you can use one or more of the other classes listed in table 4.5.

Table 4.5 Classes defined in the crust module

Class Description

Crust Based on wx.SplitterWindow and containing both a shell and notebook tab with
runtime information

Display Styled text control used to display an object using Pretty Print

continued on next page

108

CHAPTER 4
Making wxPython easier to handle with PyCrust

Table 4.5 Classes defined in the crust module (continued)

Class Description
Calltip Text control containing the most recent shell calltip
SessionListing Text control containing all commands for a session
DispatcherListing Text control containing all dispatches for a session
CrustFrame A frame containing a Crust splitter window

These GUI elements can be used in any wxPython program to provide useful
introspective visualizations.

The dispatcher module

The dispatcher provides global signal dispatching services. That means it acts as
a middleman, allowing objects to send and receive messages without having to
know anything about each other. All they need to know is the signal (typically a
simple string) that is being sent. One or more objects can ask the dispatcher to
notify them whenever that signal has been sent, and one or more objects can tell
the dispatcher to send that particular signal.

Listing 4.5 is an example of why the dispatcher is so useful. Because all Py pro-
grams are built upon the same underlying modules, both PyCrust and PyShell
use almost identical code. The only difference is that PyCrust includes a notebook
with extra functions, like the namespace tree view, that are updated whenever
commands are sent to the interpreter. The interpreter uses the dispatcher to send
a signal whenever a command is pushed through it:

def push(self, command) :
"mrSend command to the interpreter to be executed.

Because this may be called recursively, we append a new list
onto the commandBuffer list and then append commands into
that. If the passed in command is part of a multi-line
command we keep appending the pieces to the last list in
commandBuffer until we have a complete command. If not, we
delete that last list."""
command = str(command) # In case the command is unicode.
if not self.more:

try: del self.commandBuffer[-1]

except IndexError: pass
if not self.more: self.commandBuffer.append([])
self.commandBuffer[-1] .append (command)

What else is in the Py package? 109

source = '\n'.join(self.commandBuffer([-1])

more = self.more = self.runsource (source)

dispatcher.send(signal='Interpreter.push', sender=self,
command=command, more=more, source=source)

return more

Various interested parties in the crust and filling modules set themselves up as
receivers of this signal by connecting to the dispatcher in their constructors. List-
ing 4.6 shows the complete source code for the SessionListing control appears in
the Session tab in PyCrust:

Listing 4.6 Code for the PyCrust session tab

class SessionListing(wx.TextCtrl) :
"mnText control containing all commands for session."""

def _ init_ (self, parent=None, id=-1):
style = (wx.TE_MULTILINE | wx.TE READONLY |
wx.TE_RICH2 | wx.TE_DONTWRAP)
wx.TextCtrl. init (self, parent, id, style=style)
dispatcher.connect (receiver=self.push,
signal='Interpreter.push')

def push(self, command, more) :
""nReceiver for Interpreter.push signal."""
if command and not more:
self.SetInsertionPointEnd ()
start, end = self.GetSelection()
if start != end:
self.SetSelection (0, 0)
self.AppendText (command + '\n')

Notice how SessionListing’s receiver (its push() method) ignores the sender and
source parameters sent by the interpreter. The dispatcher is very flexible, and only
sends along parameters that the receivers are able to accept.

The editor module

The editor module contains all of the GUI editing components that appear in the
PyAlaCarte and PyAlaMode programs. If you'd like to include a Python source
code editor in your program, use the classes described in table 4.6.

These classes can be used in any program to provide useful code style edit-
ing functionality.

110

CHAPTER 4
Making wxPython easier to handle with PyCrust

Table 4.6 Classes defined in the editor module

Class Description

EditorFrame Used by PyAlaCarte to support the editing of one file at a time
EditorFrame is a subclass of the more general Frame class from the
frame module.

EditorNotebookFrame Subclass of EditorFrame that extends EditorFrame by adding a
notebook interface and the ability to edit more than one file at the same
time. This is the frame class used by PyAlaMode.

EditorNotebook The control used by EditorNotebookFrame to display each file in a
separate tab.

Editor Manages the relationship between a buffer and its associated EditWindow

EditWindow Text editing control based on StyledTextCtrl

The filling module

The filling module contains all the GUT controls that allow the user to navigate
the namespaces of objects, and displays runtime information about those objects.
The four classes defined in the filling module are described in Table 4.7.

Table 4.7 Classes defined in the filling module

Class Description
FillingTree Based on wx . TreeCtrl, FillingTree provides a hierarchical tree of an objects
namespace
FillingText A subclass of editwindow.EditWindow, used to display details about the object

currently selected in the FillingTree

Filling Awx.SplitterWindow thatincludes a FillingTree in its left side and a
FillingText on its right side

FillingFrame A frame containing a Fi11ing splitter window. Double-clicking on an item in the filling
tree will open up a new FillingFrame, with the selected item as the root of the tree

Using these classes in your own program allows you to easily create a hierarchical
tree of a Python namespace. This can be used as a quick data browser if you set up
your data as Python objects.

The interpreter module
The interpreter module defines an Interpreter class, based on the Interactive-
Interpreter class of the code module from the Python standard library. Besides

What else is in the Py package? 111

being responsible for sending source code to Python, the Interpreter class is also
responsible for providing autocompletion lists, calltip information, and even the
keycodes that trigger the autocompletion feature (typically the dot "." keycode).

Because of this clean division of responsibility, you can create your own subclass
of Interpreter and pass an instance of it to the PyCrust shell, instead of the default
interpreter. This has been done in a few programs to support custom language
variations, while still getting the benefit of the PyCrust environment. For example,
one program of this sort allows users to control laboratory equipment from an
embedded PyCrust shell. That program uses the forward slash (/) to trigger the
autocompletion feature whenever the forward slash appears after a reference to
one of the pieces of equipment. The autocompletion options that appear are spe-
cific to that piece of equipment, how it was configured, and its current state.

The introspect module
The introspect module is used by the Interpreter and FillingTree classes. It
provides a variety of introspective-type support functions for calltips and com-
mand autocompletion. The following presents the use of wx.py. introspect to get
all of the attribute names for a list object, suppressing those attributes with lead-
ing double underscores:

>>> import wx

>>> L = [1, 2, 3]

>>> wx.py.introspect.getAttributeNames (L, includeDouble=False)
['append', 'count',6 'extend', 'index', ‘'insert', 'pop',
'remove', 'reverse',6 'sort']

>>>

The getAttributeNames () function is used by the FillingTree class to populate its
namespace hierarchy. One of the best ways to understand the introspect module
is to look at the unit tests that it successfully passes. View the test_introspect.py
file in the Lib/site-packages/wx/py/tests directory of your Python installation.

The shell module
The shell module contains GUI elements that define the Python shell interface
appearing in PyCrust, PyShell, and PyAlaMode. Table 4.8 provides a description
of each element. The most general class is ShellFrame, a subclass of frame.Frame.
It contains an instance of the Shell class, which is the class that handles the bulk
of the work involved in providing an interactive Python environment.

The shellFacade class was created during the development of PyCrust as a way
to simplify things when accessing the shell object itself from within the shell.
When you start PyCrust or PyShell, the shell class instance is made available in

112

4.6

CHAPTER 4
Making wxPython easier to handle with PyCrust

Table 4.8 Classes defined in the shell module

Class Description

Shell Python shell based on the wx.stc.StyleTextCtrl. Shell subclasses
editwindow.EditWindow, then jumps through many hoops to make the underlying
text control behave like a Python shell, rather than a source code file editor

ShellFacade Simplified interface to all shell-related functionality. This is a semi-transparent facade,
in that all attributes of the real shell are still accessible, even though only some are
visible to the user from the shell itself.

ShellFrame A frame containing a Shell window

the Python shell. For example, you can call the shell’s about () method at the shell
prompt, as in the following:

>>> shell.about ()

Author: "Patrick K. O'Brien <pobrien@orbtech.com>"

Py Version: 0.9.4

Py Shell Revision: 1.7

Py Interpreter Revision: 1.5

Python Version: 2.3.3

wxPython Version: 2.4.1.0p7

Platform: linux2

>>>
Because the Shell inherits from StyledTextCtrl, it contains over 600 attributes.
Most of the attributes aren’t useful from the shell prompt, so a shellFacade was
created to limit the number of attributes that appear in the autocompletion list
when you enter shell. at the shell prompt. Now the shell object only displays
about 25 of the most useful shell attributes. If you want to use one that isn’t
included in the autocompletion list, you can enter it and it will get forwarded to

the “real” shell, which is stored as an attribute of the facade.

How can I use modules from the Py package
in my wxPython programs?

What do you do if you don’t want an entire PyCrust frame in your application?
What if you just want the shell interface in one frame, and perhaps a namespace
viewer in another? And what if you want them to be permanent additions to your
program? These alternatives are not only possible, they’re also fairly easy. We’ll
end this chapter with one example of how this can be done.

We’re going to revisit the program we created in chapter 2, the one with a
menubar, toolbar, and status bar. We’ll add another menu with one item that

How can I use modules from the Py package 113
in my wxPython programs?

4~ PyShell
File Edit Options Help

4PyShell 0.0 4 - The Flakiest Python Shell
2 Sponsored by Orbtech - Your source fox Python programiing expsrtiss
3Python 2 3.3 (#1, Jan 25 2004, 11:06:18)
o fooo 32 z (Mandrake Lims 3.1 3.2.3-3ndk)] on Limec
5 Type “eopyright”, 'credite’ o "license’ for more infomation
60> app e Set5tatusText (Fargs, I**KiErgs)

SetStatusText (String text, int mmber=0) |

PyShell 0.9.4 - The Flakiest Python Shell, Spansared by Orbtech - Your source for Fythan programming expertise

X

File Edit Debug

n}

Tocals (3
Type: ctype ‘dict'>

Value: (shell : <wmpy. shell. Shell, prony of Ore wiStyledTextitrl instance ot
_c00:3c08_p_wiStyledTextCeely, ' builtind ' <medule ' builtin ' (owilt-inb,
" file ™. 'pycrust-foundation py’, 'ShellFrame': cclass 'wx.py. shell.ShellFrane’
> ‘ToolbarFrame': cclass ' maln ToolbarFrame' > E‘lll)ng!‘rame <class
. py. £illing. FillingFram: mages s <hodule inages” frow
—FilingFrame /'hame/pobnen/Dode/w}:PyBaak/’.baok/l/PyDrust/xmages pye's, !
{-E—images (=g’ o coce BySinpleapp, proxy of Cee wEyapp instance ol saaazhnaj wxPyApp
o shell e T ont o iotule. e Trom + Ihime fpab e sen SodE A/ AnTiT pye o)

ShellFrame

L

[PyFilling - Th Testiest Hamespace Inspsclor
LY &

Figure 4.11 Foundation program with shell and filling frames

‘\ 3 file:/home/pobrien/Cod % pobrien@localhost: /hor | &l PyShell
| '@ emacs@localhost <2> | X Toolbars |t PyFilling

displays a shell frame, and another item that displays a filling frame. Finally, we’ll
set the root of the filling tree to the frame object from our main program. The
results are displayed in figure 4.11.

Listing 4.7 shows the modified source code. (Refer to chapter 2 for an expla-
nation of the original program.) As you can see, only a couple of extra lines of
code were used to add the ability to launch a shell frame and a filling frame, with
each operating on the primary application frame.

#!/usr/bin/env python

import wx
from wx.py.shell import ShellFrame Importing the
from wx.py.filling import FillingFrame frame classes

114 CHAPTER 4

Making wxPython easier to handle with PyCrust

import images

class ToolbarFrame (wx.Frame) :

def init (self, parent, id):
wx.Frame._ init_ (self, parent, id, 'Toolbars',
size=(300, 200))
panel = wx.Panel (self, -1)

panel.SetBackgroundColour ('White')

statusBar
toolbar

self.CreateStatusBar ()
self.CreateToolBar ()
toolbar.AddSimpleTool (wx.NewId (),

images.getNewBitmap (),

"New", "Long help for 'New'")
toolbar.Realize ()
menuBar = wx.MenuBar ()
menul = wx.Menu ()
menuBar.Append (menul, "&File")
menu2 = wx.Menu/()
menu2 .Append (wx.NewId (), "&Copy", "Copy in status bar")
menu2.Append (wx.NewId(), "C&ut", "")
menu?2 .Append (wx.NewId (), "Paste", "")
menu?2 . AppendSeparator ()
menu2 .Append (wx.NewId(), "&Options...", "Display Options")
menuBar.Append (menu2, "&Edit")
menu3 = wx.Menu/()
shell = menu3.Append(-1, "&wxPython shell",

"Open wxPython shell frame")
filling = menu3.Append (-1, "&Namespace viewer",
"Open namespace viewer frame")

menuBar.Append (menu3, "&Debug")
self.Bind (wx.EVT_MENU, self.OnShell, shell)
self.Bind(wx.EVT_MENU, self.OnFilling, filling)

self.SetMenuBar (menuBar)

def OnCloseMe (self,

self.Close (True)

event) :

def OnCloseWindow (self, event

self .Destroy ()

def OnShell (self, event):
frame ShellFrame (parent

frame. Show ()

def OnFilling(self,
frame

frame. Show ()

event) :

if _ name_ == '__main_ ':
app wx.PySimpleApp ()

=sgelf)

FillingFrame (parent=self)

)

The OnShell menu
item handler

The OnFilling menu
item handler

Creating
the Debug
menu and
items

Setting the menu
event handlers

Summary 115

app.frame = ToolbarFrame (parent=None, id=-1)
app . frame. Show ()
app .MainLoop ()

@ Here we import the shellFrame and FillingFrame classes.

@ As with the previous two menus, we append items to our third menu, the Debug
menu, and append it to the frame’s menubar.

(3) Binding a function to wx.EVT MENU() allows us to associate a handler with a menu
item, so that when the menu item is selected the handler is called.

O When the user selects Python shell from the Debug menu, a shell frame is created
whose parent is the toolbar frame. When the toolbar frame is closed, any open
shell or filling frames is also closed.

4.7 Summary

m Toolkits like wxPython are by their very nature large and complex. Interac-
tions between GUI controls are not always intuitive, and the entire process is
determined by events, and responses to events, rather than a linear sequence
of execution. Using tools like the PyCrust shell can greatly enhance your
understanding of this event-driven environment.

m PyCrust is just another Python shell, similar to the shells included with
IDLE, Boa Constructor, PythonWin, and other development tools. How-
ever, PyCrust was created using wxPython, which is beneficial when you are
developing programs with wxPython. In particular, you won’t have prob-
lems with conflicting event loops, and you can manipulate all aspects of
your program at runtime within PyCrust’s shell and namespace viewer.

m Because PyCrust is part of the wxPython distribution, it is installed along
with wxPython, including all the source code. That makes PyCrust easy to
use, and eases the learning curve of figuring out how to provide introspec-
tive functionality in your own programs.

m In addition, the modular design of the Py package makes it very easy for
you to pick and choose the modules that would benefit your program the
most, such as source editing, namespace browsing, or shell functionality.

m PyCrust reduces the learning curve associated with wxPython, and helps
you grasp the finer points of your own program’s runtime behavior.

In the next chapter, we’ll use the knowledge we’ve learned about wxPython, and
provide some practical advice about how to structure your GUI programs without
getting tangled in knots.

Creating your blueprint

This chapter covers

m Refactoring and how it improves code
Separating the Model and View
Using a Model class

Unit testing a GUI program

Testing user events

116

5.1

How can refactoring help me improve my code? 117

GUI code has a reputation for being hard to read, hard to maintain, and always
looking like spaghetti—long, stringy, and tangled. One prominent Python GUI
module (not written with wxPython) includes this note in its comments: “Why is it
that GUI code always ends up looking a mess, despite all the best intentions to
keep it tidy?” It doesn’t have to be that way. There’s no particular reason why UI
code has to be any harder to write or manage than any other part of your pro-
gram. In this chapter we’ll discuss three techniques for taming your UI code.
Since layout code is particularly susceptible to poor structure, we’ll discuss refac-
toring the code to make it easier to read, manage, and maintain. Another area
where a UI programmer can get tied into knots is the interaction between the dis-
play code and the underlying business objects. The Model/View/Controller (MVC)
design pattern is a structure for keeping display and data separate to allow each
to change without affecting the other. Finally, we’ll discuss techniques for unit
testing your wxPython code. Although all the examples in this chapter will use
wxPython, many of the principles are applicable to any UI toolkit—although the
Python language and wxPython toolkit make some techniques particularly ele-
gant. The design and architecture of your code is the blueprint of your system. A
well thought out blueprint will make your application simpler to build and easier
to maintain. The suggestions in this chapter will help you design a solid blueprint
for your program.

How can refactoring help me improve my code?

There are many reasons why bad interface or layout code happens to good pro-
grammers. Even a simple UI can require many lines to show all of its elements
on the screen. Programmers often try to accomplish this using a single method,
and the method quickly becomes long and hard to control. Furthermore, inter-
face code is susceptible to being tweaked and changed constantly, which can
wreak havoc unless you are disciplined about managing the changes. Because
writing all the layout code can be tedious, an interface programmer will often
use a design toolkit that generates code. The machine-generated code is noto-
rious for being awkward and hard to make sense of without using the genera-
tion tool.

In principle, it’s not hard to keep UI code under control. The key is refactoring,
or continually improving the design and structure of existing code. The goal in
refactoring is to keep the code in a state where it can be easily read and main-
tained in the future. Table 5.1 contains a description of some of the principles to
keep in mind when refactoring. The most basic goal is to remember that somebody

118

CHAPTER 5
Creating your blueprint

is going to have to read and understand your code in the future. Try to make that
person’s life easier—after all, it might be you.

Table 5.1 A listing of some important principles of refactoring

Principle

Description

No duplication

You should avoid having multiple segments of code with the same
functionality. This can become a maintenance headache when the
functionality needs to change.

One thing at a time

A method should do one thing, and one thing only. Separate things should be
moved into separate methods. Methods should be kept short.

Build shallow nests

Try to keep from nesting code more than two or three levels deep. Deeply
nested code is also a good candidate for a separate method.

Avoid magic literals

String and numeric literals should be kept to a minimum. A good way to
manage this is to separate literal data from the main portion of your code,
and store it in a list or dictionary.

Some of these principles are particularly important in Python code. Because of
Python’s indentation-based syntax, small, compact methods are very easy to read.
Longer methods, however, can be harder to decipher, especially if they are unable
to fit on a single screen. Similarly, deep nesting in Python can make it tricky to
trace the beginning and ending of code blocks. However, Python is a particularly
good language for avoiding duplication, especially because of the ease with which
functions and methods can be passed as arguments.

5.1.1 A refactoring example

To show you how these principles work in action, (= rafactor B BEX

we’ll walk you through a refactoring example. [Fie it
Figure 5.1 shows a window that might be used as [l e L wed= || vt
the front end to a Microsoft Access-like database. Fret Name

This layout is a little more complex than Lot Ham
those we have seen so far, but by the standard of
real-world applications, it is still quite simple.

Listing 5.1 shows a poorly structured way to pro- Figure 5.1 The sample window for

duce Figure 5.1. When people talk about UI

the refactoring example

code being a mess, this is what they mean. Having several problems compressed
into a few lines of code may be a bit of an exaggeration, but it’s representative of

How can refactoring help me improve my code? 119

the trouble you can get into in layout code. Certainly, it’s representative of the
trouble I get into when writing layout code.

ing 5.1 An un-refactored way to produce figure 5.1

#!/usr/bin/env python
import wx
class RefactorExample (wx.Frame) :

def init_ (self, parent, id):

wx.Frame. init__ (self, parent, id, 'Refactor Example',
size=(340, 200))
panel = wx.Panel (self, -1)

panel.SetBackgroundColour ("White")

prevButton = wx.Button(panel, -1, "<< PREV", pos=(80, 0))
self.Bind (wx.EVT_BUTTON, self.OnPrev, prevButton)
nextButton = wx.Button(panel, -1, "NEXT >>", pos=(160, 0))
self.Bind (wx.EVT_BUTTON, self.OnNext, nextButton)
self.Bind (wx.EVT_CLOSE, self.OnCloseWindow)

menuBar = wx.MenuBar ()

menul = wx.Menu ()

openMenultem = menul.Append (-1, "&Open", "Copy in status bar")
self.Bind (wx.EVT_MENU, self.OnOpen, openMenultem)
quitMenuItem = menul.Append (-1, "&Quit", "Quit")

self.Bind (wx.EVT_MENU, self.OnCloseWindow, quitMenuItem)
menuBar .Append (menul, "&File")

menu2 = wx.Menu ()

copyltem = menu2.Append (-1, "&Copy", "Copy")
self.Bind (wx.EVT_MENU, self.OnCopy, copyItem)
cutItem = menu2.Append (-1, "C&ut", "Cut")
self.Bind (wx.EVT_MENU, self.OnCut, cutItem)
pasteltem = menu2.Append (-1, "Paste", "Paste")
self .Bind (wx.EVT_MENU, self.OnPaste, pasteltem)
menuBar.Append (menu2, "&Edit")

self.SetMenuBar (menuBar)

static = wx.StaticText (panel, wx.NewId(), "First Name",
pos= (10, 50))

static.SetBackgroundColour ("White")

text = wx.TextCtrl (panel, wx.NewId(), "", size=(100, -1),
pos= (80, 50))

static2 = wx.StaticText (panel, wx.NewId(), "Last Name",
pos= (10, 80))

static2.SetBackgroundColour ("White")

text2 = wx.TextCtrl (panel, wx.NewId(), "", size=(100, -1),
pos= (80, 80))

120 CHAPTER 5
Creating your blueprint

firstButton = wx.Button(panel, -1, "FIRST")
self.Bind (wx.EVT BUTTON, self.OnFirst, firstButton)

menu2 . AppendSeparator ()
optItem = menu2.Append (-1, "&Options...", "Display Options")
self.Bind (wx.EVT_MENU, self.OnOptions, optItem)

lastButton = wx.Button(panel, -1, "LAST", pos=(240, 0))
self.Bind (wx.EVT_BUTTON, self.OnLast, lastButton)

Just grouping the empty event handlers together
def OnPrev(self, event): pass

def OnNext (self, event): pass

def OnLast (self, event): pass

def OnFirst (self, event): pass

def OnOpen(self, event): pass

def OnCopy(self, event): pass

def OnCut (self, event): pass

def OnPaste(self, event): pass

def OnOptions (self, event): pass

def OnCloseWindow (self, event) :
self .Destroy ()

if name_ == '_main_':
app = wx.PySimpleApp ()
frame = RefactorExample (parent=None, id=-1)
frame. Show ()
app.MainLoop ()
||

Let’s categorize how this code example works against the principles in table 5.1.
On the positive side, there’s no deep nesting. On the negative side, the other
three ideas listed in table 5.1 aren’t followed at all. Table 5.2 summarizes the ways
in which refactoring might improve this code.

Table 5.2 Refactoring opportunities in listing 5.1

Principle Problem in code

No duplication Several patterns are duplicated repeatedly, including “add a button, and give it an

action,” “add a menu item and give it an action,” and “create a caption/text entry pair.”
One thing This code does several things. In addition to basic frame setup, it creates the menu
at a time bar, adds the buttons, and adds the text fields. Worse, the three functions are mixed

up through the code, as if late changes were just added at the bottom of the method.

Avoid magic Every button, menu item, and text box has a literal string and a literal point
literals in the constructor.

5.1.2

How can refactoring help me improve my code? 121

To give you a general idea of how to fix this code, we’ll pull all the button code
into a separate method.

Starting to refactor

Listing 5.2 contains the code used to create just the button bar in the previous
listing. As a first step in refactoring, we’ve extracted the code to its own method.

Listing 5.2 The button bar as a separate method

def createButtonBar (self) :
firstButton = wx.Button(panel, -1, "FIRST")
self .Bind (wx.EVT BUTTON, self.OnFirst, firstButton)
prevButton = wx.Button(panel, -1, "<< PREV", pos=(80, 0))
self.Bind (wx.EVT_BUTTON, , self.OnPrev, prevButton)
nextButton = wx.Button(panel, -1, "NEXT >>", pos=(160, 0))
self.Bind (wx.EVT_BUTTON, self.OnNext, nextButton)
lastButton = wx.Button(panel, -1, "LAST", pos=(240, 0))
self .Bind (wx.EVT_BUTTON, self.OnLast, lastButton)
||

With the code separated out like this, it’s easy to see what the commonality is
between all the button additions. We can factor that portion out into a generic
method, and just call the method repeatedly, as shown in listing 5.3:

Listing 5.3 A generic and improved button-bar method

def createButtonBar (self, panel):
self.buildOneButton (panel, "First", self.OnFirst)
self .buildOneButton (panel, "<< PREV", self.OnPrev, (80, 0))
self .buildOneButton (panel, "NEXT >>", self.OnNext, (160, 0))
self.buildOneButton (panel, "Last", self.OnLast, (240, 0))

def buildOneButton(self, parent, label, handler, pos=(0,0)):
button = wx.Button (parent, -1, label, pos)
self.Bind (wx.EVT_BUTTON, handler, button)
return button

There are a couple of advantages in following the second example instead of the
first. For one thing, the intent of the code is clearer just from reading it—having
short methods with meaningful names goes a long way toward signaling intent.
The second example also gets rid of all the local variables that are needed just to
hold on to IDs (admittedly, you could also get rid of the local variables by hard-
wiring the IDs, but that can cause duplicate ID problems). This is helpful because

122

5.1.3

CHAPTER 5
Creating your blueprint

it makes the code less complicated, and also because it almost eliminates the com-
mon error of cutting and pasting a couple of lines of code and forgetting to
change all the variable names. (In a real application, you might need to store the
buttons as instance variables to be able to access them later, but for this example,
you do not.) In addition, the buildoneButton () method is easily moved to a utility
module and could be reused in other frames or other projects. A toolkit of com-
mon utilities is a useful thing to have.

More refactoring

Having made a significant improvement, we could stop here. But there are still a
lot of magic literals—hardcoded constants used in multiple locations—in the code.
For one thing, the literal points used for positioning could make the code prone
to errors when another button is being added to the bar, especially if the new but-
ton is placed in the middle of the bar. So let’s go one step farther and separate the
literal data from the processing. Listing 5.4 shows a more data-driven mechanism
for creating buttons.

def buttonData (self) :
return (("First", self.OnFirst),
("<< PREV", self.OnPrev),
("NEXT >>", self.OnNext),
("Last", self.OnLast))

def createButtonBar (self, panel, yPos=0):
xPos = 0
for eachLabel, eachHandler in self.buttonData () :
pos = (xPos, yPos)
button = self.buildOneButton (panel, eachLabel, eachHandler, pos)
xPos += button.GetSize() .width

def buildOneButton(self, parent, label, handler, pos=(0,0)):
button = wx.Button(parent, -1, label, pos)
self.Bind (wx.EVT_BUTTON, handler, button)
return button

In listing 5.4, the data for the individual buttons is stored in a nested tuple in the
buttonData () method. The choice of data structure and use of a constant method
is not inevitable. The data could be stored as a class-level or module-level vari-
able, rather than the result of a method, or it could be stored in an external file.
One advantage to using a method is being able to make a relatively simple

How can refactoring help me improve my code? 123

transition if you wish to store the button data in another location—just change
the method so that instead of returning a constant, it returns the external data.

The createButtonBar () method iterates over the list returned by button-
Data() and creates each button from that data. The method now calculates the
x-axis position of the buttons automatically as it traverses the list. This is helpful
because it ensures that the order of the buttons in the code will be identical to the
order on the screen, making the code clearer and less error-prone. If you need to
add a button in the middle of the bar now, you can just add the data to the middle
of the list and the code guarantees that it will be placed correctly.

The separation of the data has other benefits. In a more elaborate example,
the data could be stored externally in a resource or XML file. This would allow
interface changes to be made without even looking at the code, and also makes
internationalization easier, by making it easier to change text. We’re currently still
hard-wiring the button width, but that could easily be added to the data method
as well. (In reality, we’d probably use a wxPython sizer object, which is covered in
chapter 11). Also, with the specifics of the data removed, createButtonBar is now
well on its way to being a utility method itself, and could easily be reused in
another frame or project.

After performing the same steps of consolidating, factoring the common pro-
cess, and separating data for the menu and text field code, the result is shown in
listing 5.5.

#!/usr/bin/env python
import wx
class RefactorExample (wx.Frame) :

def _ init__ (self, parent, id):

wx.Frame. init (self, parent, id, 'Refactor Example',
size=(340, 200))

panel = wx.Panel (self, -1)
panel.SetBackgroundColour ("White")
self.Bind (wx.EVT_CLOSE, self.OnCloseWindow)
self.createMenuBar () . . .
self.createButtonBar (panel) <FT Simplified init method
self.createTextFields (panel)

def menuData (self): <— Data for menus
return (("&File",

124 CHAPTER 5

Creating your blueprint

def

def

def

def

def

def

("&Open", "Open in status bar", self.OnOpen),

("&Quit", "Quit", self.OnCloseWindow)),
("&Edit",
("&Copy", "Copy", self.OnCopy),
("C&ut", "Cut", self.OnCut),
("&Paste", "Paste", self.OnPaste),
(
(

nn nn ny
’ ’ ’

"&Options...", "DisplayOptions", self.OnOptions)))

createMenuBar (self) :

menuBar = wx.MenuBar ()

for eachMenuData in self.menuData () :
menulLabel = eachMenuData[0]
menultems = eachMenuDatal[l:]

menuBar.Append (self.createMenu (menultems), menulLabel)

self.SetMenuBar (menuBar)

createMenu (self, menuData) :
menu = wx.Menu ()
for eachLabel, eachStatus, eachHandler in menuData:
if not eachLabel:
menu.AppendSeparator ()
continue
menultem = menu.Append (-1, eachLabel, eachStatus)
self.Bind (wx.EVT_MENU, eachHandler, menultem)
return menu

buttonData (self) : <}—1 Button bar data

return (("First", self.OnFirst),
("<< PREV", self.OnPrev),
("NEXT >>", self.OnNext)
("Last", self.OnLast))

’

createButtonBar (self, panel, yPos = 0):

xPos = 0

for eachlLabel, eachHandler in self.buttonData() :
pos = (xPos, yPos)
button = self.buildOneButton (panel, eachLabel,
eachHandler, pos)
xPos += button.GetSize() .width

buildOneButton(self, parent, label, handler, pos=(0,0)):

button = wx.Button (parent, -1, label, pos)
self.Bind (wx.EVT_BUTTON, handler, button)
return button

textFieldData (self): < Textdata
return (("First Name", (10, 50)),
("Last Name", (10, 80)))

<+

<+

Menu
creation
here

Create
buttons

How can refactoring help me improve my code? 125

def createTextFields(self, panel):
for eachlLabel, eachPos in self.textFieldData() :

self.createCaptionedText (panel, eachLabel, eachPos) Create

text

def createCaptionedText (self, panel, label, pos):
static = wx.StaticText (panel, wx.NewId(), label, pos)
static.SetBackgroundColour ("White")
textPos = (pos[0] + 75, pos[1l])
wx.TextCtrl (panel, wx.NewId(), "", size=(100, -1), pos=textPos)

Just grouping the empty event handlers together
def OnPrev(self, event): pass
def OnNext (self, event): pass
def OnLast (self, event): pass
def OnFirst (self, event): pass
def OnOpen(self, event): pass
def OnCopy(self, event): pass
def OnCut (self, event): pass
def OnPaste(self, event): pass
def OnOptions (self, event): pass
def OnCloseWindow (self, event):
self .Destroy ()

if name == ' main_ ':
app = wx.PySimpleApp ()
frame = RefactorExample (parent=None, id=-1)
frame.Show ()
app.MainLoop ()
|

The amount of effort involved in moving from listing 5.1 to listing 5.5 was mini-
mal, but the reward is tremendous—a code base that is much clearer and less
error-prone. The layout of the code logically matches the layout of the data. Sev-
eral common ways that poorly structured code can lead to errors—such as requir-
ing a lot of copying and pasting to create new objects—have been removed. Much
of the functionality can now be easily moved to a superclass or utility module,
making the code savings continue to pay off in the future. As an added bonus, the
data separation makes it easy to use the layout as a template with different data,
including international data.

The key to successfully refactoring is to keep doing it in small increments as
you write your code. Like dirty dishes, poor code can pile up to an overwhelming
mess quickly unless you make an effort to clean it up regularly. If you can acquire
the mindset that working code is only an intermediate step toward the final goal
of well-factored working code, then you can make refactoring part of your regular
developing process.

126

5.2

5.2.1

CHAPTER 5
Creating your blueprint

However, even with the refactoring that has been done, the code in listing 5.5
is still missing something important: the actual user data. Most of what your
application will do depends on manipulating data in response to user requests.
The structure of your program can go a long way toward making your program
flexible and stable. The MVC pattern is the accepted standard for managing the
interaction between interface and data.

How do | keep the Model and View
separate in my program?

Dating back to the late 1970s and the seminal language Smalltalk-80, the MVC pat-
tern is probably the oldest explicitly identified object-oriented design pattern
around. It’s also one of the most prevalent, having been adopted in one way or
another by nearly every GUI toolkit written since then (not to mention a good num-
ber of other systems, such as web application frameworks). The MVC pattern is the
standard for structuring programs that both manipulate and display information.

What is a Model-View-Controller system?

An MVC system has three subsystems. The Model contains what is often called
business logic, or all the data and information manipulated by your system. The
View contains the objects that display the data, and the Controller manages the
interaction with the user and mediates between the Model and the View. Table 5.3
summarizes the components.

Table 5.3 The components of standard MVC architecture

Component Description

Model Business logic. Contains all the data manipulated by the system. This can include an
interface to an external store, such as a database. Typically the model exposes only a
public API to the other components.

View Display code. The widgets that actually place the information in the user’s view.
In wxPython, pretty much anything in the wx . Window hierarchy is part of the
view subsystem.

Controller Interaction logic. The code that receives user events and ensures that they are
handled by the system. In wxPython, this subsystem is represented by the
wx .EvtHandler hierarchy.

In many modern UI toolkits, the View and Controller components are somewhat
intertangled. This is because the Controller components themselves need to be

How do I keep the Model and View 127
separate in my program?

displayed on the screen, and because often you want widgets that display data to
also respond to user events. In wxPython, this relationship is enshrined by the
fact that all wx.window objects are also subclasses of wx.EvtHandler, meaning they
function as both View elements and Controller elements. In contrast, most web-
application frameworks have a stricter separation between View and Controller,
since the interaction logic happens behind the scenes on the server.

Figure 5.2 shows one rendering of how data and information is passed in an
MVC architecture.

An event notification is handled by the Controller system, which dispatches it
to the appropriate place. As we saw in chapter 3, wxPython manages this mecha-
nism using the wx.EvtHandler method ProcessEvent (). In a strict MVC design,
your handler functions might actually be declared in a separate controller object,
rather than in the frame class itself.

In response to the event, the model objects can do some processing on the
application data. When that processing is done, the model sends an update noti-
fication. If there is a controller object, the notification is usually sent back to the
controller and the controller notifies the appropriate view objects to update
themselves. In a smaller system or a simpler architecture, the notification is
often directly received by the view objects. In wxPython, the exact nature of the
update from the model is up to you. Options include explicitly raising custom
wxPython events from the model or controller, having the model maintain a list
of objects that receive update notifications, or having views register themselves
with the model.

Dispatch
Event Updated Data
Update
Notification
<4— New Display View

Figure 5.2 The data flow of an MVC request

128

CHAPTER 5
Creating your blueprint

The key to a successful MVC design is not in making sure that every object knows
about every other object. Instead, a successful MVC program explicitly hides
knowledge about one part of the program from the other parts. The goal is for
the systems to interact minimally, and over a well-defined set of methods. In par-
ticular, the Model component should be completely isolated from the View and
Controller. You should be able to make arbitrary changes to either of those sys-
tems without changing your Model classes. Ideally, you’d even be able to use the
same Model classes to drive non-wxPython interfaces, but that would preclude,
say, using wxPython events for update notification.

From the View side, you should be able to make arbitrary changes in the
implementation of the Model objects without changing the View or the Control-
ler. While the View will depend on the existence of certain public methods, it
should never get to see the private internals of the Model. Admittedly, this is dif-
ficult to enforce in Python, but one way to help enforcement it is to create an
abstract Model class that defines the API that the View can see. Subclasses of the
Model can either act as proxies for an internal class that can be changed, or can
simply contain the internal workings themselves. The first option is more struc-
tured, the second is easier to implement.

In the next section, we’ll take a look at one of the Model classes built into
wxPython, wx.grid.PyGridTableBase. This class makes it possible to use a grid
control within an MVC design framework. After that, we’ll take a look at building
and using a custom model class for a custom widget.

5.2.2 A wxPython model: PyGridTableBase

The class wx.grid.crid is the wxPython control for a [F{ghd BE X
spreadsheet-style layout of rows and columns. You're First Last
probably familiar with the basic concept, but figure 5.3 |[cF 7 Demer
. 2B Ryre Sandberg

shows how the wxPython version looks. LF Gay atthews

The grid control has a lot of interesting features, = = e
including the ability to create custom renderers and & - e
editors on a cell-by-cell basis, as well as dragable rows =2 = o
and columns. Those features will be discussed in

greater detail in chapter 13. In this chapter, we’ll stick
to the basics and show how to use a model to populate a
grid. Listing 5.6 shows the simple non-model way of
setting the cell values in a grid. In this case, the grid val-
ues are the lineup for the 1984 Chicago Cubs.

Figure 5.3 A sample of the
wxPython grid control

How do I keep the Model and View
separate in my program?

129

Listing 5.6 Populating a grid without models

import wx
import wx.grid

class SimpleGrid(wx.grid.Grid) :
def _ init_ (self, parent):

wx.grid.Grid._ init__ (self, parent, -1)
self.CreateGrid (9, 2)
self.SetColLabelValue (0, "First")
self.SetColLabelvValue (1, "Last")
self.SetRowLabelValue (0, "CF")
self.SetCellValue (0, 0, "Bob")
self.SetCellVvalue (0, 1, "Dernier")
self.SetRowLabelValue (1, "2B")
self.SetCellvalue(1l, 0, "Ryne")
self.SetCellvalue (1, 1, "Sandberg")
self.SetRowLabelValue (2, "LF")
self.SetCellvalue(2, 0, "Gary")
self.SetCellValue (2, 1, "Matthewsg")
self.SetRowLabelValue (3, "1B")
self.SetCellvValue (3, 0, "Leon")
self.SetCellvValue (3, 1, "Durham")
self.SetRowLabelValue (4, "RF")
self.SetCellvValue (4, 0, "Keith")
self.SetCellValue (4, 1, "Moreland")
self.SetRowLabelValue (5, "3B")
self.SetCellValue(5, 0, "Ron")
self.SetCellvalue(5, 1, "Cey")
self.SetRowLabelvValue (6, "C")
self.SetCellvalue(6, 0, "Jody")
self.SetCellValue(6, 1, "Davis")
self.SetRowLabelValue (7, "SS")
self.SetCellvalue(7, 0, "Larry")
self.SetCellvValue(7, 1, "Bowa")
self.SetRowLabelvValue (8, "P")
self.SetCellvalue (8, 0, "Rick")
self.SetCellVvalue (8, 1, "Sutcliffe")

class TestFrame (wx.Frame) :

def _ init_ (self, parent):

wx.Frame. init (self, parent, -1, "A Grid",

size=(275, 275))
SimpleGrid (self)

grid
if _ name_ == '__main_ ':
app wx.PySimpleApp ()
frame TestFrame (None)
frame.Show (True)
app .MainLoop ()

130

CHAPTER 5
Creating your blueprint

In listing 5.6, we have the class SimpleGrid, a subclass of the wxPython class
wx.grid.Grid. As mentioned earlier, wx.grid.Grid has oodles of methods that
we're going to discuss later. For now, we’ll focus on the setRowLabelvalue (), Set-
ColLabelValue (), and SetCellvValue () methods which are actually setting the val-
ues displayed in the grid. As you can see by comparing figure 5.3 and listing 5.6,
the setCellvalue () method takes a row index, a column index, and a value, while
the other two methods take an index and a value. The row and column labels are
not considered part of the grid for the purposes of assigning indexes to the cells.

This code directly assigns values to the grid using the setter methods. While
this method has an admirable directness, it can become tedious and error-prone
on larger grids. And even if we were to create utility methods to ease the burden,
the code would still have the problem we saw in the refactoring section of this
chapter. The data would be intertwined with the display in a way that would make
future modifications to the code—such as adding a column or swapping the data
out completely—difficult.

The answer is wx.grid.PyGridTableBase. As with other classes we've seen thus
far, the py prefix indicates that this is a Python-specific wrapper around a C++
class. Like the pyEvent class we saw in chapter 3, the PyGridTableBase class is
implemented as a simple Python wrapper around a wxWidgets C+ + class specif-
ically for the purpose of allowing Python subclasses to be declared. A pyGrid-
TableBase is a model class for a grid. That is, it contains methods that the grid
object can use to draw itself, without having to know about the internal structure
of that data.

Methods of PyGridTableBase

The wx.grid.pyGridTableBase has several methods, many of which you will not
have to deal with. The class is abstract and cannot be instantiated directly. You will
have to provide an implementation of five required methods every time you cre-
ate a PyGridTableBase. Table 5.4 describes the methods.

Table 5.4 Required methods of wx.grid.PyGridTableBase

Method Description
GetNumberRows() Returns an integer indicating the number of rows in the grid.
GetNumberCols() Returns an integer indicating the number of columns in the grid.
IsEmptyCell(row, col) Returns True if the cell at index (row, col) is empty.

continued on next page

How do I keep the Model and View 131
separate in my program?

Table 5.4 Required methods of wx.grid.PyGridTableBase (continued)

Method Description
GetValue(row, col) Returns the value that should be displayed at the cell (row, col).
SetValue(row, col, Sets the value associated with (row, col). If you want a read-only model, you still
value) must include this method, but you can have it pass.

The table is attached to the grid by using the SetTable () method of the grid.
After that property is set, the grid object will call the methods of the table to get
the information it needs to draw the grid. The grid will no longer expect to have
the values explicitly set with grid methods.

Using a PyGridTableBase

In general, there are two ways to use a PyGridTableBase. You can explicitly have
your model class be a subclass of pyGridTableBase, or you can create a separate
PyGridTableBase subclass that connects to your actual model class. The first
option is easier and makes sense when your data is not very complex. The second
option enforces a stronger separation between the Model and the View, which is
preferable if your data is complex. The second option is also preferred if you have
a pre-existing data class that you want to adapt into wxPython, because you can
create a table without changing the existing code. We’ll show an example of both
options in this section.

Using a PyGridTableBase: application-specific subclass

Our first example will use an application-specific subclass of PyGridTableBase as
our model. This works because our lineup example is relatively straightforward,
so we can directly incorporate the data into a class derived from pPyGridTableBase.
We'll set up the actual data in a two-dimensional Python list, and set up the other
methods to read from that list. Listing 5.7 shows the Cubs lineup generated from
a Model class.

import wx
import wx.grid

class LineupTable (wx.grid.PyGridTableBase) :
data = (("CF", "Bob", "Dernier"), ("2B", "Ryne", "Sandberg"),

("LF", "Gary", "Matthews"), ("1B", "Leon", "Durham"),
("RF", "Keith", "Moreland"), (IIBBH, "ROI’]", nceyn),

132

CHAPTER 5
Creating your blueprint

(|Ic|l, |lJody|l, IlDavisll) , ("SS", ”Larry", llBOwall) ,
("p", "Rick", "Sutcliffe"))
colLabels = ("Last", "First")

def _ init_ (self):
wx.grid.PyGridTableBase.__init__ (self)

def GetNumberRows (self) :
return len(self.data)

def GetNumberCols (self) :
return len(self.datal0]) - 1

def GetColLabelValue (self, col):
return self.colLabels[col]

def GetRowLabelValue (self, row):
return self.datal[row] [0]

def IsEmptyCell (self, row, col):
return False

def GetValue(self, row, col):
return self.datal[row] [col + 1]

def SetValue(self, row, col, value):
pass

class SimpleGrid(wx.grid.Grid) :
def _ init_ (self, parent):
wx.grid.Grid. init (self, parent, -1)
self.SetTable (LineupTable
(P o) “7] Table set here

class TestFrame (wx.Frame) :
def init (self, parent):
wx.Frame._ init__ (self, parent, -1, "A Grid",
size=(275, 275))
grid = SimpleGrid(self)

if name == '__main '
app = wx.PySimpleApp ()
frame = TestFrame (None)
frame.Show (True)
app.MainLoop ()

In listing 5.7, we've defined all the required PyGridTableBase methods, plus the
additional methods GetColLabelvValue () and GetRowLabelValue (). Hopefully you
will not be too surprised to learn that these methods allow the table to specify the

How do I keep the Model and View 133
separate in my program?

column and row labels, respectively. As in the refactoring section, the effect of
using the model class is to separate the data from the display. In this case, we’ve
also moved the data into a more structured format, which could easily be separated
to an external file or resource (a database would be particularly easy to add here).

Using a PyGridTableBase: a generic example
In fact, we're very close to having a generic table that can read any two-dimensional
Python list. Listing 5.8 shows what the generic model would look like.

Listing 5.8 A generic table for two-dimensional lists

import wx
import wx.grid

class GenericTable (wx.grid.PyGridTableBase) :

def _ init_ (self, data, rowLabels=None, colLabels=None) :
wx.grid.PyGridTableBase.__init__ (self)
self.data = data
self.rowlLabels = rowLabels
self.colLabels = colLabels

def GetNumberRows (self) :
return len(self.data)

def GetNumberCols (self) :
return len(self.datal0])

def GetColLabelValue (self, col):
if self.colLabels:
return self.colLabels[col]

def GetRowLabelValue (self, row):
if self.rowLabels:
return self.rowLabels [row]

def IsEmptyCell (self, row, col):
return False

def GetValue (self, row, col):
return self.datalrow] [coll]

def SetValue(self, row, col, value):
pass

134

CHAPTER 5
Creating your blueprint

The GenericTable class takes a two-dimensional list of data and an optional list of
row and/or column headers. It’s suitable to be imported into any wxPython pro-
gram. With a slight change in the data format, we can now use the generic table to
display the lineup, as in listing 5.9.

Listing 5.9 The lineup display using the generic table

import wx
import wx.grid
import generictable

data = (("Bob", "Dernier"), ("Ryne", "Sandberg"),
("Gary", "Matthews"), ("Leon", "Durham"),
("Keith", "Moreland"), ("Ron", "Cey"),
("Jody", "Davis"), ("Larry", "Bowa'"),
("Rick", "Sutcliffe"))
colLabels = ("Last", "First")
rowLabels = ("CF", "2B", "LF", "1B", "RF", "3B", "C", "Ss", "pP")

class SimpleGrid(wx.grid.Grid) :
def init_ (self, parent):

wx.grid.Grid. init_(self, parent, -1)
tableBase = generictable.GenericTable (data, rowLabels,
colLabels)

self.SetTable (tableBase)

class TestFrame (wx.Frame) :
def init (self, parent):
wx.Frame. init_(self, parent, -1, "A Grid",
size=(275, 275))
grid = SimpleGrid(self)

if __name_ == '_main_ ':
app = wx.PySimpleApp ()
frame = TestFrame (None)
frame.Show (True)
app.MainLoop ()

Using a PyGridTableBase: a standalone Model class

At the risk of being repetitive, there is one more way to use the PyGridTable-
Base that is worth showing here. This is the second option alluded to earlier,
where the data is kept in a separate model class which is accessed by the pyGrid-
TableBase. Python’s self-inspection capabilities are very useful here, allowing you
to make a list of the attributes that are displayed in each column and then use the

How do I keep the Model and View 135
separate in my program?

built-in function getattr() to retrieve the actual value. In this case, the model
takes a list of elements. Structuring your program with separate model objects has
one big advantage in wxPython. Under normal circumstances, you can only call
SetTable () once for a grid—if you want to change the table, you need to create a
new grid, and that can be annoying. However, if, as in the next example, your
PyGridTableBase only stores references to instances of your real data class, then
you can update the table to new data by just changing the underlying data object
in the table.

Listing 5.10 shows the pyGridTableBase using a separate data class for the
lineup entries we’ve been displaying—we’ll spare you another listing of the frame
and data creation itself, as it’s quite similar to the previous ones.

import wx
import wx.grid

class LineupEntry:

def init_(self, pos, first, last):
self.pos = pos
self.first = first
self.last = last

class LineupTable (wx.grid.PyGridTableBase) : The column
J headers
colLabels = ("First", "Last")
colAttrs = ("first", "last") " The attribute names
def init_(self, entries): Initializing
wx.grid.PyGridTableBase._ init (self) the model
self.entries = entries

def GetNumberRows (self) :
return len(self.entries)

def GetNumberCols (self) :
return 2

def GetColLabelValue(self, col):
return self.colLabels[col] <— Reading the value of the header

def GetRowLabelValue (self, row):
return self.entries[row] .pos G’ Reading the row header

def IsEmptyCell (self, row, col):
return False

136

CHAPTER 5
Creating your blueprint

def GetValue(self, row, col):

entry = self.entries[row] <}ﬁ, Reaﬁ“gthe
return getattr(entry, self.colAttrs([col]) attribute value

def SetValue(self, row, col, value):
pass

@ This list contains the attributes that need to be referenced to display the values

column by column.

® The model takes a list of entries where each entry is an instance of the Lineup-

Entry class. (We're not doing any error checking or validation here).

© To get the row header, we look up the pos attribute of the entry in the proper row.

O The first step here is getting the correct entry based on the row. The attribute is

5.2.3

taken from the list in line @, and then the getattr () built-in is used to reference
the actual value. This mechanism is extensible even in the case where you don’t
know if the name refers to an attribute or a method by checking to see if
<object>.<attribute> is callable(). If it is, then call it using normal Python
function syntax, and return that value.

The grid class is an example where wxPython already has a valuable model com-
ponent to help you structure your application. The next section will discuss how
to create model components for other wxPython objects.

A custom model

The basic idea behind creating your model objects is simple. Construct your data
classes without worrying about how they will be displayed. Then document a pub-
lic interface for that class which will be accessible to the display objects. Obviously,
the size and complexity of the project will determine how formal this public dec-
laration needs to be. In a small project, with simple objects, it’s probably enough
to do the simple thing and allow the View objects direct access to the attributes of
the model. In a more complex object, you may want to define specific methods
for this use, or create a separate model class that is the only thing that the view
sees (as we did in listing 5.10).

You also need some kind of mechanism for allowing the view to be notified of
changes in the model. Listing 5.11 shows a simple one—an abstract base class
that you can use as the parent for any of your model classes. You can think of this
as an analogue to PyGridTableBase for use when the display is not a grid.

How do I keep the Model and View 137
separate in my program?

Listing 5.11 A custom model for updating a view

class AbstractModel (object) :

def _ init_ (self):
self.listeners = []

def addListener(self, listenerFunc):
self.listeners.append(listenerFunc)

def removelListener (self, listenerFunc) :
self.listeners.remove (listenerFunc)

def update (self) :
for eachFunc in self.listeners:
eachFunc (self)

The listeners in this case are expected to be callable objects which can take self as
an argument—obviously the actual class of self can vary, so your listener might
have to flexible. Also, we've set up AbstractModel as a Python new-style class, as
evidenced by the fact that it is a subclass of object. Therefore, this example
requires Python 2.2 or higher to run.

How can we use the abstract model class? Fig- T
ure 5.4 shows a new window, similar to the win- Ftintstones [OEd
dow we used for the refactoring earlier in this [ty J o J_ferwy J e]
chapter. The window is simple. The text boxes | fsitare
are read-only. Clicking one of the buttons sets | ="
the text boxes to display the name of the rele-
vant character.

The program that runs this window uses a

. Figure 5.4 A simple window
simple MVC structure. The button-handler ghowing how models work

methods change the model, and the model-
update structure causes the text fields to change. Listing 5.12 shows this in detail.

Listing 5.12 The MVC program to “Flintstonize” your window

#!/usr/bin/env python

import wx
import abstractmodel

class SimpleName (abstractmodel.AbstractModel) :

def _ init_ (self, first="", last=""):

138 CHAPTER 5
Creating your blueprint

abstractmodel.AbstractModel. init_ (self)
self.set (first, last)

def set(self, first, last):
self.first = first
self.last = last
self.update() () Updating

class ModelExample (wx.Frame) :

def init_(self, parent, id):

wx.Frame._ init_ (self, parent, id, 'Flintstones',
size=(340, 200))

panel = wx.Panel (self)
panel.SetBackgroundColour ("White")
self.Bind (wx.EVT_CLOSE, self.OnCloseWindow)
self.textFields = {}
self.createTextFields (panel)
self.model = SimpleName () @ Creating
self.model.addListener (self.OnUpdate) L the model
self.createButtonBar (panel)

def buttonData (self) :
return (("Fredify", self.OnFred),
("Wilmafy", self.OnWilma),
("Barnify", self.OnBarney),
("Bettify", self.OnBetty))

def createButtonBar (self, panel, yPos = 0):
xPos = 0
for eachLabel, eachHandler in self.buttonDataf() :
pos = (xPos, yPos)
button = self.buildOneButton (panel, eachLabel, eachHandler, pos)
xPos += button.GetSize() .width

def buildOneButton(self, parent, label, handler, pos=(0,0)):
button = wx.Button (parent, -1, label, pos)
self.Bind (wx.EVT_BUTTON, handler, button)
return button

def textFieldData (self):
return (("First Name", (10, 50)),
("Last Name", (10, 80)))

def createTextFields (self, panel):
for eachLabel, eachPos in self.textFieldData() :
self.createCaptionedText (panel, eachLabel, eachPos)

def createCaptionedText (self, panel, label, pos):
static = wx.StaticText (panel, wx.NewId(), label, pos)
static.SetBackgroundColour ("White")

o

How do I keep the Model and View 139
separate in my program?

textPos = (pos[0] + 75, pos[1l])

self.textFields[label] = wx.TextCtrl (panel, wx.NewId(),
"n, size=(100, -1), pos=textPos,
style=wx. TE_READONLY)

def OnUpdate (self, model) :
self.textFields["First Name"] .SetValue (model.first)

self.textFields["Last Name"] .SetValue (model.last) Setting
text fields

def OnFred(self, event):
self.model.set ("Fred", "Flintstone")

def OnBarney(self, event) :

self .model.set ("Barney", "Rubble") Button click

) handlers
def OnWilma (self, event):

self.model.set ("Wilma", "Flintstone")

def OnBetty(self, event):
self .model.set ("Betty", "Rubble")

def OnCloseWindow (self, event) :
self .Destroy ()

if name_ == '_main_':
app = wx.PySimpleApp ()
frame = ModelExample (parent=None, id=-1)
frame. Show ()
app.MainLoop ()

This line performs the update.

These two lines create the model object, and register the onUpdate () method as a
listener. Now that method will be called whenever the update is invoked.

The onUpdate () method itself simply sets the value of the text fields using the
model passed around as part of the update. The code could use the self.model
instance instead (they should be the same object). Using the method argument is
more robust in the case where the same code is listening on multiple objects.
The button-click handlers change the value of the model object, which triggers
the update.

In an example this small, the model update mechanism may seem overly
baroque. There’s no reason why the button handlers couldn’t directly set the text
field values. The model mechanism becomes more valuable, however, when the
model class has a more complex internal state and processing. You would be
able, for example, to change the internal representation from a Python dictio-
nary to an external database without making any changes in the view.

140

5.3

5.3.1

CHAPTER 5
Creating your blueprint

If you are dealing with an existing class that you cannot or do not want to
change, then AbstractModel can be used as a proxy for the existing class in much
the same way as the LineupTable is in listing 5.10.

In addition, wxPython contains two separate implementations of similar MVC
update mechanisms that have more features than the one described here. The
first is the module wx.lib.pubsub, which is quite similar in structure to the
AbstractModel class given previously. The model class, called publisher, allows
objects to listen for only specific kinds of messages. The other update system,
wx.1lib.evtmgr.eventManager, is built on top of pubsub, and has some additional
features, including a more elaborate object-oriented design and easy connection
and removal of event relationships.

How do you unit-test a GUI program?

A key advantage of good refactoring and the MVC design pattern is that it makes
it easier to validate the performance of your program using unit tests. A unit test is
a test of a single, specific function of your program. Because both refactoring and
the use of an MVC design pattern tend to break your program into smaller pieces,
it is easier for you to write specific unit tests targeting individual parts of your pro-
gram. Unit testing is a particularly useful tool when combined with refactoring,
because a complete suite of unit tests allows you to verify that you are not intro-
ducing any errors as you move your code around.

A continual challenge in unit testing is how to test UI code. Testing a model is
relatively straightforward, as most of the model functionality will not depend on
user input. Testing the functionality of the interface itself can be more difficult
because the behavior of the interface depends on user behavior that can be hard
to encapsulate. In this section we’ll show you how to use unit testing in wxPython,
particularly the use of manually generated events to trigger behavior during a
unit test.

The unittest module

When writing user tests, it’s helpful to use a pre-existing test engine to spare you
the repetitive task of writing code to run your tests. Since version 2.1, Python has
been distributed with the unittest module. The unittest module implements a
test framework called PyUnit (a Tkinter based user interface for unittest and
some other goodies are available at http://pyunit.sourceforge.net/). A PyUnit mod-
ule is made up of tests, test cases, and test suites. Table 5.5 defines the three groups.

How do you unit-test a GUI program? 141

Table 5.5 The three levels of abstraction in the unittest module

Item Definition

Test An individual method called by the PyUnit engine. By convention, the name of a test
method begins with test. A test method typically executes some code, then performs one
or more assert statements to test whether the results are as expected.

TestCase A class defining one or more individual tests that share a common setup. The class is
defined in PyUnit to manage a group of such tests. The TestCase class has support for
doing common setup before and tear down after each test, ensuring that each test runs
separately from the others. The TestCase class also defines some special assert
methods, such as assertEqual.

TestSuite One or more test methods or Test Case objects grouped together for the purpose of being
run at the same time. When you actually tell PyUnit to run tests, you pass it a TestSuite
object to run.

A single PyUnit test can have one of three results: success, failure, or error. Suc-
cess indicates that the test method ran to completion, all assertions were true, and
no errors were triggered. That is, of course, the desirable outcome. Failure and
error indicate different problems with the code. A failure result means that one of
your assertions returned false, indicating that the code runs successfully, but is
not doing what you expect. An error result means that a Python exception was
triggered somewhere in the execution of the test, showing that your code is not
running successfully. The first failure or error in a single test will end the execu-
tion of that test, even if there are more assertions to test in the code, and the test
runner will move on to the next test.

5.3.2 A unittest sample

Listing 5.13 shows a sample unittest module, in this case, tests for the model
example in Listing 5.12.

import unittest
import modelExample
import wx

q? Declaring
class TestExample (unittest.TestCase) : a test case

def setUp(self): 49 Set up for each test

self.app = wx.PySimpleApp ()
self.frame = modelExample.ModelExample (parent=None, id=-1)

def tearDown(self): (@) Tear down after each test

142

CHAPTER 5
Creating your blueprint

self.frame.Destroy ()

4? Declaring
def testModel (self) : a test

self.frame.OnBarney (None)

self.assertEqual ("Barney", self.frame.model.first,
msg="First is wrong")

self.assertEqual ("Rubble", self.frame.model.last)

def suite(): <}9 Creating a test suite

suite = unittest.makeSuite (TestExample, 'test')
return suite

An assertion
that could fail

if name_ == '_main_':
unittest.main(defaultTest='suite') (@ Starting the test
|

@ The test case is a subclass of unittest.TestCase. The test runner creates an

instance of the class for each test, in order to best allow the tests to be indepen-
dent of each other.

The setUp () method is called before each test is run. This allows you to guarantee
that each test starts with your application in the same state. In this case, we create
an instance of the frame that we are testing.

The tearDown () method is called after each test is run. This allows you to do any
clean-up necessary to ensure that the system state remains consistent from test to
test. Generally this includes resetting global data, closing database connections
and the like. In this case we call Destroy () on the frame, which forces wxWidgets
to exit, and keeps the system in a good state for the next test.

The test method usually begins with the prefix test, although that is under your
control (see line @). Test methods take no arguments. This method starts by
explicitly calling the onBarney event handler method to test behavior.

This line uses the assertEqual () method to test that the model object has been
correctly changed. The assertEqual () method takes two arguments, and the test
fails if they are not equal. All PyUnit assertion methods take an optional msg argu-
ment which is displayed if the assertion fails (the default for assertEqual() is
almost always useful enough).

This method creates a test suite through the easiest mechanism available, the
makeSuite () method. The method takes a Python class object and a string prefix
as arguments, and returns a test suite containing all the test methods in that class
whose names begin with the prefix. There are other mechanisms that allow for
more explicit setting of a test suite’s contents, but this method is generally all you
need. The suite () method as written here is a boilerplate template that can be
used in all of your test modules.

How do you unit-test a GUI program? 143

@ This line invokes the PyUnit text-based runner. The argument is the name of a

5.3.3

method that returns a test suite. The suite is then run, and the results are output
to the console. If you wanted to use the GUI test runner, you would change this
line to call the main method of that module.

The results of this PyUnit test, run from a console window, are as follows:

Ran 1 test in 0.190s

OK

This is a successful test. The top line, with the dot, indicates that the one test ran
successfully. Each test gets one character in the display, . indicates success, F indi-
cates failure, and E indicates error. Then comes the simple listing of the number
of tests and the total time elapsed, and an ok indicating that all tests passed.

On a failure or error, you receive a stack trace showing how Python got to the
point of the error. If we were to change the last name test to Fife, for instance,
we’d receive the following result:

FAIL: testModel (_ main__.TestExample)

Traceback (most recent call last):
File "C:\wxPyBook\book\1\Blueprint\testExample.py", line 18, in testModel
self.assertEqual ("Fife", self.frame.model.last)
File "c:\python23\lib\unittest.py", line 302, in failUnlessEqual
raise self.failureException, \
AssertionError: 'Fife' != 'Rubble’

Ran 1 test in 0.070s

FAILED (failures=1)

This indicates the failure in the first line, gives the name of the method that
failed, and a traceback showing that the assertion on line 18 failed, and how it
failed. You generally need to go a few levels deep in the stack trace to show where
the actual failure was; the last line or two of the stack trace is likely to be in the
unittest module itself.

Testing user events

This test is not a complete test of the system, of course. We could also test that the
TextField instances in the frame were updated with the values after the model

144

CHAPTER 5
Creating your blueprint

was updated. That test would be reasonably straightforward. Another test you
might want to run would be to automatically generate the button-click event
itself, and ensure that the proper handler is called. That test is a little less
straightforward. Listing 5.14 shows an example:

def testEvent (self):
panel = self.frame.GetChildren() [0]
for each in panel.GetChildren() :

if each.GetLabel() == "Wilmafy":
wilma = each
break

event = wx.CommandEvent (wx.wxEVT COMMAND BUTTON CLICKED, wilma.GetId())
wilma.GetEventHandler () . ProcessEvent (event)

self.assertEqual ("Wilma", self.frame.model.first)

self.assertEqual ("Flintstone", self.frame.model.last)

The first few lines of this example find the appropriate button (in this case, the
“Wilmafy” button). Since we did not explicitly store the buttons as Python
instance variables, we just need to walk through the panel’s children list until we
find the right button. (You could also do this as a Python list comprehension if
you wanted). The next two lines create the wx.CommandEvent to be sent from the
button. The single parameter to the creator is wx.wxEVT_COMMAND BUTTON_
CLICKED, a constant for the actual integer event type that is bound to the EVT_
BUTTON binder object. (You can find the integer constants in the wxPython source
file wx.py). After that, we set the ID of the event to the ID of the Wilmafy button.
At this point, the event has all the relevant features of the actual event as it would
be created by wxPython. So, we call processEvent () to send it into the system. If
the code works as planned, then the model first and last names will be changed to
“Wilma” and “Flintstone.”

By generating events, you can test the responsiveness of your system from
beginning to end. In theory, you could generate a mouse-down and mouse-up
event within your button to ensure that the button-click event is created as a
response. In practice, this won’t work with native widgets because the low level
wx.Events aren’t translated back into native system events and sent to the native
widget. However, a similar process could be useful when testing custom widgets
(such as the two-button control in chapter 3). This kind of unit testing can give
you confidence in the responsiveness of your application.

Summary 145

5.4 Summary

m GUI code has a bad reputation for being messy and hard to maintain. This
can be overcome with a little extra effort, which will pay off when it’s time to
make changes to your code.

m Refactoring is the improvement of existing code. Some goals of refactoring
are to remove duplication, remove magic literals, and create short methods
that do only one thing. Continually striving for those goals will make your
code easier to read and understand. In addition, good refactoring also
make certain types of errors (such as cut-and-paste errors) much less likely.

m Separating your data from your layout code makes both data and layout
easier to work with. The standard mechanism for managing this separation
is the MVC mechanism. In wxPython terms, the View is the wx.Window
objects that display your data, the Controller is the wx.EvtHandler objects
that dispatch events, and the Model is your own code that contains the
information to be displayed.

m Perhaps the clearest example of an MVC structure in the core wxPython
classes is the wx.grid.PyGridTableBase, which is used to model data for dis-
play in a wx.grid.Grid control. The data in the table can either come from
the class itself, or the class can reference another object containing the rel-
evant data.

® You can create your own MVC setup with a simple mechanism for notifying
the view when the model has been updated. There are also existing mod-
ules within wxPython that will help you do this.

m Unit testing is a useful way to verify the validity of your program. In Python,
the unittest module is one of the standard ways of executing unit tests. In
some packages, unit testing of a GUI is difficult, but wxPython makes it rel-
atively easy to programmatically create events. This allows you to test the
event handling behavior of your application from beginning to end.

In the next chapter, we’ll show you how to build a small application and how to do
several things that will be common to many of the wxPython applications that you

will build.

Working with
the basic building blocks

This chapter covers

Using a device context to draw to the screen
Adding window decorations to a frame

Working with standard file dialogs and
color pickers

Laying out widgets and creating a sizer
Building about boxes and splash screens

146

Working with the basic building blocks 147

Even a simple wxPython program needs to use standard elements such as menus
and dialogs. These are the basic building blocks of any GUI application. Using
these building blocks, along with fancier widgets like a splash screen, status bar,
or about box, provides a more user-friendly environment, and gives your appli-
cation a professional look and feel. To conclude the first part of the book, we’ll
guide you through the creation of a program using all of these components. We’ll
build a simple draw program, then add these building block elements and
explain some of the issues in using them. We’'ll reinforce the fundamental con-
cepts covered in the previous chapters, and at the end you’ll have a simple but
professional application. This chapter is a middle ground between the basic con-
cepts discussed in the previous chapters and the more detailed discussion of
wxPython functionality in parts 2 and 3.

The application we’ll build in this chapter is loosely based on the Doodle and
Super Doodle samples that are distributed with wxPython in the wxPython/samples
directory. It’s a very simple draw program that tracks the mouse pointer when the
left mouse button is down, and draws a line. Figure 6.1 displays a simple initial
sketch window.

—ISketch Frame M =)/

Figure 6.1 A simple sketch window, with no further decorations

148

6.1

6.1.1

CHAPTER 6
Working with the basic building blocks

We chose a sketch sample because it’s a fairly simple program that illustrates
many of the issues involved in creating more complex applications. Within this
chapter, we’ll show you how to draw lines on the screen, and add a status bar, a
toolbar, and menubar. You'll see how to use common dialogs, such as a file
chooser and a color picker. We’ll use sizers to lay out complicated widget sets, and
we’ll add an about box and a splash screen. At the end of the chapter, you'll have
created a nice looking sketch program.

Drawing to the screen

The first job of your sketch program is to draw the sketch lines to the display. Like
many other GUI tools, wxPython provides a device-independent set of tools for
drawing to various kinds of displays. In the following section we’ll discuss how to
draw on the screen.

How do I draw on the screen?

To draw on the screen, we use a wxPython object called a device context. A device con-
text abstracts a display device, giving each device a common set of draw methods, so
that your draw code is the same no matter what kind of device you are targeting. A
device context is represented by the abstract wxPython class wx . DC and its subclasses.
Since wx.DC is abstract, you’ll need to use one of its subclasses for your application.

Using a device context

Table 6.1 displays a field guide to the subclasses of wx.DC and their usage. Device
contexts, which are used to draw to a wxPython widget, should always be locally cre-
ated, temporary objects, and should not be kept between method calls in an instance
variable, global variable, or other manner. On some platforms device contexts are a
limited resource and so holding references to a wx.DcC could cause your program to
be unstable. Because of the way wxPython uses device contexts internally, there are
several subtly different wx.DcC subclasses used for drawing in a widget. Chapter 12
will explain these differences in more detail.

Table 6.1 A brief guide to the device context subclasses of wx.DC

Device Context Usage

wx .BufferedDC Used to buffer a set of drawing commands until they are complete and ready
to draw to screen. This prevents unwanted flicker in the display.

wx .BufferedPaintDC | As wx.BufferedDC but only used within the processing of a
wx . PaintEvent. Only create instances of this class temporarily.

continued on next page

Drawing to the screen 149

Table 6.1 A brief guide to the device context subclasses of wx.DC (continued)

Device Context Usage

wx.ClientDC Used to draw on a window object. Use this when you want to draw on the
main area of the widget—not the border or any other decoration. The main
area is sometimes called the client area, hence the name of this DC. The
wx.ClientDC class should only be created temporarily. This class is only
used outside of the processing of a wx . PaintEvent.

wx . MemoryDC Used to draw graphics to a bitmap stored in memory, not being displayed.
You can then select the bitmap, and use the wx.DC.B1it () method to
draw the bitmap to a window.

wx .MetafileDC On Windows operating systems, this device context allows you to create
standard windows metafile data.

wx .PaintDC Identical to wx .ClientDC except that it is only used within the processing
of a wx.PaintEvent. Only create instances of this class temporarily.

wx .PostScriptDC Used to write encapsulated PostScript files
wx .PrinterDC Used on Windows operating systems to write to a printer.
wx .ScreenDC Used to draw directly to the screen itself, on top and outside of any windows

being displayed. This class should only be created temporarily.

wx . WindowDC Used to draw on the entire area of a window object, including the border, and
any other decorations not included in the client area. Non-Windows operating
systems might not support this class.

Listing 6.1 contains the code for the initial pass of the sketch window displayed in
figure 6.1. Because this code shows tricks of drawing to device contexts, we’ll
annotate it in detail.

import wx

class SketchWindow (wx.Window) :
def _ init_ (self, parent, ID):

wx.Window. init (self, parent, ID)
self.SetBackgroundColour ("White")
self.color = "Black"

self.thickness = 1

self.pen = wx.Pen(self.color, self.thickness, wx.SOLID)
self.lines = [] Creating aqa
self.curLine = [] wx . Pen object
self.pos = (0, 0)

self.InitBuffer ()

150

CHAPTER 6

Working with the basic building blocks

def

def

def

def

def

def

def

self.Bind (wx.EVT_LEFT DOWN, self.OnLeftDown)

self.Bind (wx.EVT_LEFT UP, self.OnLeftUp)

self.Bind (wx.EVT_MOTION, self.OnMotion) t’ Lhkhgthe
self.Bind (wx.EVT_SIZE, self.OnSize) events
self.Bind (wx.EVT_IDLE, self.OnIdle)

self.Bind (wx.EVT_PAINT, self.OnPaint)

InitBuffer (self) : Creating a buffered

size = self.GetClientSize() device context
self .buffer = wx.EmptyBitmap(size.width, size.height)
dc = wx.BufferedDC (None, self.buffer)
dc.SetBackground (wx.Brush (self.GetBackgroundColour()))
dc.Clear ()
self.DrawLines (dc) Using the device context
self.reInitBuffer = False

GetLinesData (self) :

return self.lines[:]

SetLinesData (self, lines):
self.lines = lines/[:]
self.InitBuffer ()
self.Refresh()

OnLeftDown (self, event) :
self.curLine = []
self.pos = event.GetPositionTuple() () Getting the mouse position

self.CaptureMouse () Capturing

the mouse
OnLeftUp (self, event):

if self.HasCapture() :
self.lines.append((self.color,
self.thickness,
self.curLine))
self.curlLine = []

self.ReleaseMouse () @ Releasing the mouse
OnMotion (self, event): Determining if a
if event.Dragging() and event.LeftIsDown () : drag is ongoing
dc = wx.BufferedDC(wx.ClientDC(self), self.buffer)
self.drawMotion (dc, event)
event.Skip () Creating another buffered context
drawMotion (self, dc, event):

dc.SetPen(self.pen)

newPos = event.GetPositionTuple ()
coords = self.pos + newPos Drawing to
self.curLine.append (coords) device context

dc.DrawLine (*coords)
self.pos = newPos

Drawing to the screen 151

def OnSize(self, event):
self.reInitBuffer = True J) Handling a resize event

def OnIdle(self, event): (@ Idle processing
if self.reInitBuffer:
self.InitBuffer ()
self.Refresh(False)

def OnPaint (self, event):
dc = wx.BufferedPaintDC(self, self.buffer) @ Handlinga paint request

def DrawLines (self, dc):
for colour, thickness, line in self.lines:
pen = wx.Pen(colour, thickness, wx.SOLID) Drmﬂng
dc.SetPen (pen) all lines
for coords in line:
dc.DrawLine (*coords)

def SetColor(self, color):
self.color = color

self.pen = wx.Pen(self.color, self.thickness, wx.SOLID)

def SetThickness(self, num) :
self.thickness = num
self.pen = wx.Pen(self.color, self.thickness, wx.SOLID)

class SketchFrame (wx.Frame) :
def _ init_ (self, parent):
wx.Frame. init (self, parent, -1, "Sketch Frame",
size=(800,600))
self.sketch = SketchWindow(self, -1)

if name == ' main_ ':
app = wx.PySimpleApp ()
frame = SketchFrame (None)
frame.Show (True)
app.MainLoop ()

@© The wx.pen instance determines the color, thickness, and style of lines drawn to
the device context. Styles other than wx.SoLID include wx.DOT, wx.LONGDASH, and
wx . SHORTDASH.

@ Thiswindow needs to respond to several different mouse event types in order to draw
the sketch. It responds to left mouse button up and down, mouse motion, window
resize, and window repaint. It also specifies processing to take place during idle times.

© The buffered device context is created in two steps: (1) Create the empty bitmap
that serves as the offscreen bufter and (2) Create a buffered device context using
the offscreen buffer. The buffered context is used to prevent the redrawing of the

152

o

e
(6]

1)

[12)

CHAPTER 6
Working with the basic building blocks

sketched lines from causing screen flicker. Later in this section, we’ll discuss the
buffered device contexts in more detail.

These lines issue drawing commands to the device context; specifically, setting
the background drawing brush and clearing the device. The wx.Brush object
determines the color and style of the background for fill commands.

The event method GetPositionTuple() returns a Python tuple containing the
exact position of the mouse click being processed.

The captureMouse () method directs all mouse input to the window, even if you
drag the mouse outside the border of the window. This call must be negated by
calling ReleaseMouse () later in the program.

The ReleaseMouse () call returns the system to the state before the previous cap-
tureMouse () call. The wxPython application uses a stack to keep track of windows
that have captured the mouse, and calling ReleaseMouse () is equivalent to pop-
ping that stack. This implies that you need the same number of CaptureMouse ()
and ReleaseMouse () calls.

This line determines if the motion event is part of a line draw, defined by whether
the motion event occurs while the left mouse button is down. Both Dragging()
and LeftIsDown () are methods of wx.MouseEvent that return True if the associated
condition is true when the motion event occurs.

Since wx.BufferedDC is one of the device contexts that is created temporarily, we
need to create another one before we draw the lines. In this case we create a new
wx.ClientDC as the main device context, and reuse our instance variable bitmap

as the buffer.

These lines actually use the device context to draw the newly sketched line to the
screen. First, we create the coords tuple, which is a combination of the self.pos
and the newpPos tuples. In this case, the new point comes from the event Get-
PositionTuple (), and the old point is stored from the last call to onMotion (). We
save that tuple to the self.curLine list, and then use the function call unpack
syntax to call DrawLine (), with the elements of the tuple as the arguments. The
DrawLine () method takes as parameters (x1, y1, x2, y2), and draws a line from
the point (x1, yl) to the point (x2, y2). The frequency with which the motion
event occurs and gives the sketch pad a new data point, is dependent on the
underlying system speed.

If the window is resized, we make a note of it by storing a True value in the
self.reInitBuffer instance attribute. We don’t actually do anything until the
next idle event.

When an idle event comes along, the application takes that opportunity to
respond to a resize event, if one (or more) has occurred. The reason we respond

Drawing to the screen 153

in the idle event, rather than the resize event itself, is to allow multiple resize
events to occur in quick succession without having to redraw for each one.
Handling the request for redraw is surprisingly simple: create a buffered paint
device context. The real wx.PaintDC is created (since we are inside a paint request,
we need wx.PaintDC and not a wx.ClientDC instance), and then the bitmap is blit-
ted to it after the dc instance is deleted. More detailed information about buffer-
ing is provided in the following paragraphs.

This is used when the application needs to redraw the lines from the instance
data due to a resize (and later due to a load from file). Again, we use the Draw-
Func () wrapper. In this case, we walk the list of lines stored in the instance vari-
able, recreate the pen for each line (currently all the same—support for changing

pen characteristics will be added shortly), and then draw all the coordinate tuples
added for that line.

The sketch example uses two special subclasses of wx.pc to allow the use of a
buffer for drawing. A drawing buffer is an undisplayed area where all your prim-
itive drawing commands can be performed one at a time, and then copied to the
screen in one step. The advantage of a buffer is that the user does not see indi-
vidual drawing commands happening, and thus, the screen refreshes with less
flicker. For this reason, buffering is commonly used in animation or in cases
where the drawing is made up of several smaller parts.

In wxPython, there are two classes used for buffering: wx.BufferDc, usually used
to buffer a wx.ClientDC; and wx.BufferPaintDC, used to buffer a wx.PaintDC. Each
works essentially the same way. The buffer device context is created with two argu-
ments. The first is a target device context of the appropriate type (for example, in
line @ of listing 6.1, it’s a new wx.ClientDC instance). The second is a wx.Bitmap
object. In listing 6.1, we create a bitmap using the wx.EmptyBitmap function.
When draw commands are made to the buffered device context, an internal
wx .MemoryDC is used to draw to the bitmap. When the buffer object is destroyed,
the C++ destructor uses the Blit () method to automatically copy the bitmap to
the target. In wxPython, the destruction typically occurs when the object drops
out of scope. The implication of this is that buffered device contexts are only use-
ful when created temporarily, so that they can be destroyed and do the blit.

For example, in the onpPaint () method of listing 6.1, the self.buffer bitmap
has already been written during the events that built the sketch. The buffered
object simply needs to be created, thereby establishing a connection between the
existing bitmap and the temporary wx.PaintDC() for the window. The method
ends, and the buffered bc immediately drops out of scope, triggering its destruc-
tor, and copying the bitmap to the screen.

154

CHAPTER 6

Working with the basic building blocks

Functions of the device context

When using device contexts, remember to use the correct context for the kind of
drawing you are trying to do (specifically, remember the distinction between
wx.PaintDC and wx.ClientDC). Once you have the correct device context, then
you can do something with it. Table 6.2 lists some of the more interesting meth-

ods of wx.DcC.

Table 6.2 Commonly used methods of wx.DC

Function

Description

Blit(xdest, ydest, width,
height, source, xsrc,
ysrc)

Copies bits directly from a source device context to the device context
making the call. The xdest and ydest parameters are the starting point
for the copy on the destination context. The next two parameters specify the
width and height of the copy area. The source is the source device context,
and xsrc and ysrc are the starting point of the copy in the source context.
There are further optional parameters to specify a logical overlay function
and a mask.

Clear()

Clears the device context by painting the whole thing with the current
background brush.

DrawArc(x1, y1, x2, y2,
Xc, yc)

Draws a circular arc with a start point of (x4, y1) and an end point of (x2, y2).
The point (xc, yc) is the center of the circle whose arc is drawn. The resulting
arc is filled using the current brush. The function assumes that it will draw a
counterclockwise arc from the start point to the end point. There is a related
method, DrawEllipticalArc ().

DrawBitmap(bitmap, x,
y, transparent)

Copies a wx . Bitmap object starting at the point (x, y). If transparent is
True, then the bitmap will be drawn transparently.

DrawCircle(x, y, radius)
DrawCircle(point, radius)

Draws a circle centered at the given point with the given radius. There is a
related method, DrawEllipse.

Drawlcon(icon, X, y)

Draws a wx . Icon object to the context, starting at the point (x, y).

DrawLine(x1, y1, x2, y2)

Draws a line from the point (x1, y1) to the point (x2, y2). There is a related
method DrawLines () which takes a Python list of wx . Point objects and
connects them.

DrawPolygon(points)

Draws a polygon, given a Python list of wx . Point objects. Differs from
DrawLines () in that the end point is connected to the first point, and that
the resulting shape is filled using the current brush. There are optional
parameters to set an x and y offset and a fill style.

DrawRectangle(x, v,
width, height)

Draws a rectangle whose upper left corner is (x, y) and which has the given
width and height. The rectangle is filled.

continued on next page

Adding window decorations 155

Table 6.2 Commonly used methods of wx.DC (continued)

Function

Description

DrawText(text, X, y)

Draws the given string starting at the point (x, y), using the current font.
Related functions include DrawRotatedText () and GetTextExtent ().
Text items have separate text foreground and background color properties.

FloodFill(x, y, color,
style)

Performs a flood fill starting at (x, y) and using the color of the current brush.
The style parameter is optional. The default, wx . FLOOD SURFACE, assumes
the color parameter is the surface to flood—it stops when any other color is
found. The other value, wx . FLOOD BORDER, assumes the color is the border
of the shape to flood, and flooding stops when that color is found.

GetBackground() The background brush is a wx . Brush object, and is used when the
SetBackground(brush) Clear () method is called.

GetBrush() The Brush is a wx . Brush object and is used to fill any shapes that are drawn
SetBrush(brush) on the device context.

GetFont() The font is a wx . Font object and is used for all text draw operations.
SetFont(font)

GetPen() The pen is a wx . Pen object and is used for all drawing operations that draw
SetPen(pen) a line.

GetPixel(x, y) Returns a wx . Colour object for the pixel at (x, y).

GetSize() Returns the pixel size of the device context as either a wx . Size object or a
GetSizeTuple() Python tuple.

This is not an exhaustive list. In the interest of simplicity, several of the more
obscure drawing methods were left out, as were text processing and pixel map-
ping functions. Those methods will be described in chapter 12.

6.2 Adding window decorations

6.2.1

While drawing to the screen is an indispensable part of a sketch program, it’s far
from the only thing necessary to make your application look polished. In this sec-
tion, we’ll talk about common window decorations: the status bar, the menubar,
and the toolbar. We’ll also discuss these features in more detail in chapter 10.

How do I add and update a status bar?

In wxPython, you can add and place a status bar in the bottom of a frame by calling
the frame’s CreatestatusBar () method. The status bar automatically resizes itself
when the parent frame resizes. By default, the status bar is an instance of the class

156

CHAPTER 6
Working with the basic building blocks

wx.StatusBar. To create a custom status bar subclass, attach it to your frame using
the SetStatusBar () method, with an instance of your new class as the argument.

To display a single piece of text in your status bar, you can use the SetStatus-
Text () method of wx.StatusBar. Listing 6.2 extends the SketchFrame class illus-
trated in listing 6.1 to display the current mouse pointer position in the status bar.

import wx
from examplel import SketchWindow

class SketchFrame (wx.Frame) :
def init (self, parent):
wx.Frame._init__ (self, parent, -1, "Sketch Frame",
size=(800,600))
self.sketch = SketchWindow(self, -1)
self.sketch.Bind (wx.EVT _MOTION, self.OnSketchMotion)
self.statusbar = self.CreateStatusBar()

def OnSketchMotion (self, event):
self.statusbar.SetStatusText (str (event.GetPositionTuple()))
event.Skip ()

if _name == '__main_':
app = wx.PySimpleApp ()
frame = SketchFrame (None)

frame. Show (True)
app.MainLoop ()

We’ve hooked up the status bar by having the frame also capture the
wx .EVT_MOTION event of the sketch window. The event handler sets the status text
using the data provided by the event. Then it calls skip () to ensure that the other
onMotion () method is called, otherwise the line won’t be drawn.

You can treat the status bar like any other widget by adding objects to it. As a
shortcut, if you want to display more than one text element, you can create mul-
tiple status text fields in the status bar. To use this functionality, call the method
SetFieldsCount () with the number of fields you want; the default, as we’ve seen,
is one. After that, use SetStatusText () as before, but with a second argument
specifying the field being set by the method. The field numbers start at zero. If
you don’t specify a field, the zero field is set by default, which is why the previous
example works even though we didn’t specify the field.

By default, each of the fields have the same width. However that’s not always
what you want. To adjust the sizes of the text fields, wxPython provides the method

Adding window decorations 157

SetStatusWidth(). The method takes a Python list of integers, which must be the
same length as the number of fields in the status bar. The integer list is used to cal-
culate the width of the fields in order. If the integer is positive, it is the absolute
fixed width of the field. If you want the field width to change with the frame, indi-
cate that by using a negative integer. The absolute value of the negative integer
indicates the relative size of the field; think of it as the number of shares of the
total width that field gets. For example, the call statusbar.SetStatusWidth([-1, -2,
-3]1) results in the rightmost field getting half the width (3 parts out of 6), the cen-
ter field getting a third of the width (2 parts out of 6), and the leftmost field getting
a sixth of the width (1 part out of 6). Figure 6.2 displays the results.

Pos: (609, 213) Current Pts: 39 Line Count: 4 H

Figure 6.2 A sample status bar with the fields getting 1/6, 2/3, and 1/2 of the total width

Listing 6.3 adds support for two more status fields, one which shows the number
of points in the current line being drawn, the other shows the number of lines in
the current sketch. This listing produces the status bar displayed in figure 6.2.

import wx
from examplel import SketchWindow

class SketchFrame (wx.Frame) :

def init (self, parent):

wx.Frame._init__ (self, parent, -1, "Sketch Frame",
size=(800,600))

self.sketch = SketchWindow(self, -1)
self.sketch.Bind (wx.EVT _MOTION, self.OnSketchMotion)
self.statusbar = self.CreateStatusBar()
self.statusbar.SetFieldsCount (3)
self.statusbar.SetStatusWidths ([-1, -2, -31)

def OnSketchMotion (self, event):
self.statusbar.SetStatusText ("Pos: %s" %

str (event.GetPositionTuple()), 0)
self.statusbar.SetStatusText ("Current Pts: %s" %
len(self.sketch.curLine), 1)

self.statusbar.SetStatusText ("Line Count: %s" %
len(self.sketch.lines), 2)
event.Skip ()

if name == ' main_ ':
app = wx.PySimpleApp ()

158

6.2.2

CHAPTER 6

Working with the basic building blocks

frame = SketchFrame (None)

frame.Show (True)
app.MainLoop ()

The statusBar class allows you to treat the status fields as a last in/first out stack.
Although not useful for the demo application in this chapter, the PushStatus-
Text () and PopStatusText () methods allow you to return to the previous status
text after temporarily displaying new text. Both of these methods take an optional
field number, so they can be used in the case of multiple status fields.

Table 6.3 summarizes the most commonly used methods of wx.StatusBar.

Table 6.3 Methods of wx.StatusBar

Function

Description

GetFieldsCount()
SetFieldsCount(count)

Property for the number of fields in the status bar

GetStatusText(field=0)
SetStatusText(text, field=0)

Property for the text displayed in the specified status field. The index of
0 is the default and represents the leftmost field

PopStatusText(field=0)

Pops the text statck of the specified status field, changing the text of
that field to the popped value

PushStatusText(text, field=0)

Changes the display of the specified status field to the given text, and
pushes that value to the top of the stack for that field

SetStatusWidths(widths)

Takes a Python list of integers and specifies the width of the status
fields. A positive number indicates a fixed width in pixels, and a negative
number indicates a dynamic share of the width proportional to the
absolute value of the number.

In chapter 10, we’ll provide more details about status bars. In the meantime, we’ll

discuss menus.

; —1Sketch Frame
How do I include a submenu or checked menu? T
In this section, we’ll present two common menu tricks, the sub- o —H—
menu and the checked or radio menu. A submenu is a menu (e soc
which is accessible inside one of the top menus. A checkbox or | ou | Re
radio menu is a group of menu items that behaves like a group Blue

of checkboxes or radio buttons. Figure 6.3 displays a menubar,

including a submenu with radio menu items. Figure 6.3

To create a submenu, build it just as you would any other menu,

A menu that uses
a submenu with

and append it to the parent menu using wx.Menu.AppendMenu (). radio menu items

Adding window decorations 159

Menu items with checkbox or radio button decorations can be created either
by using the wx.Menu methods AppendCheckItem() and AppendRadioItem(), or by
passing the kind attribute to the creator for wx.MenuItem one of the following val-
ues: wx.ITEM NORMAL, wx.ITEM CHECKBOX, or wx.ITEM RADIO. A checkbox menu
item displays a check that automatically toggles on and off as the item is selected;
you do not have to manually manage that process. The start value of a checked
menu item is off. Radio menu items are implicitly grouped. Consecutive radio
items are considered to be part of the same group (a menu separator will break up
the group). By default, the topmost member of the group is checked, after which
selecting any member of the group automatically transfers the check to that item.
To programmatically check a menu item, use the wx.Menu method Check (id,
bool), where id is the wxPython ID of the item to be changed, and the Boolean
specifies the checked state of the item.

Listing 6.4 adds menu support to the sketch application frame. The menu
functionality here is an evolutionary descendent of the refactored utility code dis-
played in listing 5.5. In this case, the data format is tweaked to provide submenus,
and the creation code recursively creates a submenu when necessary. Support is
also added for radio and checkbox menus.

import wx
from examplel import SketchWindow

class SketchFrame (wx.Frame) :
def _ init_ (self, parent):
wx.Frame. init (self, parent, -1, "Sketch Frame",
size=(800,600))
self.sketch = SketchWindow(self, -1)
self.sketch.Bind (wx.EVT MOTION, self.OnSketchMotion)
self.initStatusBar ()

Note slight
self.createMenuBar () e

refactoring

def initStatusBar (self) :
self.statusbar = self.CreateStatusBar()
self.statusbar.SetFieldsCount (3)
self.statusbar.SetStatusWidths ([-1, -2, -31)

def OnSketchMotion (self, event):
self.statusbar.SetStatusText ("Pos: %s" %
str (event.GetPositionTuple()), 0)
self.statusbar.SetStatusText ("Current Pts: %s" %
len(self.sketch.curLine), 1)
self.statusbar.SetStatusText ("Line Count: %s" %
len(self.sketch.lines), 2)
event.Skip ()

160 CHAPTER 6

Working with the basic building blocks

def menuData (self) :
return [("&File", (
("&New", "New Sketch file", self.OnNew),
("&Open", "Open sketch file", self.OnOpen),
("&Save", "Save sketch file", self.OnSave),
[
("&Color", (
("&Black", "", self.OnColor,
wx.ITEM_RADIO),
("&Red", "", self.OnColor, Idﬂﬁﬁﬁng
wx .ITEM RADIO), menu data
("&Green", "", self.OnColor,
wx.ITEM_RADIO),
("&Blue", "", self.OnColor,
wx.ITEM RADIO))),
[
("&Quit", "Quit", self.OnCloseWindow)))]
def createMenuBar (self) :
menuBar = wx.MenuBar ()
for eachMenuData in self.menuData () :
menulabel = eachMenuData[0]
menultems = eachMenuData[1]
menuBar .Append (self.createMenu (menultems), menuLabel)
self.SetMenuBar (menuBar)
def createMenu(self, menuData) :
menu = wx.Menu ()
for eachItem in menuData:
if len(eachItem) ==
label = eachItem[0]
subMenu = self.createMenu (eachItem[1]) Creating
menu.AppendMenu (wx.NewId (), label, subMenu) submenus
else:
self.createMenultem(menu, *eachItem)
return menu
def createMenultem(self, menu, label, status, handler,
kind:wx.ITEM_NORMAL):
if not label:
menu.AppendSeparator ()
return
menultem = menu.Append (-1, label, status, kind) Creaﬁng
self .Bind (wx.EVT_MENU, handler, menultem) menu items
with kind

def OnNew(self, event): pass
def OnOpen(self, event): pass
def OnSave(self, event): pass

©

6.2.3

Adding window decorations 161

def OnColor (self, event):

menubar = self.GetMenuBar ()

itemId = event.GetId() Handﬁng
item = menubar.FindItemById (itemId) color change
color = item.GetLabel ()

self.sketch.SetColor (color)

def OnCloseWindow (self, event):
self .Destroy ()

if name == ' main_ ':
app = wx.PySimpleApp ()
frame = SketchFrame (None)
frame. Show (True)
app .MainLoop ()
||

Now that the _ init method contains more functionality, we’ve encapsulated
the status bar stuff into its own method.

The format of the menu data is now (label, (items)), where each item is either a list
(label, status text, handler, optional kind) or a menu with a label and items. To
determine whether a subitem of data is a menu or a menu item, remember, menus
are length 2, and items are length 3 or 4. In a production system, where the data
is more complex, I recommend using XML or some other external format.

If the data piece is of length 2, it’s meant to be a submenu, so break it up the same
way the top-level was broken up, and recursively call createMenu and append it.
Given the implementation of the menus here, it was easier to add the kind param-
eter to the wx.MenuItem constructor than to use the special methods of wx.Menu.
The oncolor method is set up to handle the color changes of all the menu items,
rather than setting up separate handlers for each item. In this case, the code gets
the item id from the event, and uses the FindItemById() method to get the
appropriate menu item (notice that this does not require us to maintain a sepa-
rate hash table of item ids—we’re using the menubar as that data structure). This
method assumes that the label of the menu item is a wxPython color name, and
passes that label to the sketch window, which updates its pen.

How do I include a toolbar?

Menu bars and toolbars are often tightly linked, making most or all of the func-
tionality of the toolbar available via a menu item. In wxPython, this similarity is
enhanced by the toolbar buttons emitting wx.EVT_MENU events when clicked, mak-
ing it easy to use the same methods to handle both the menu item selection, and
the toolbar click. A wxPython toolbar is an instance of the class wx.ToolBar, and as

162

CHAPTER 6
Working with the basic building blocks

we saw in chapter 2, can be created using the Frame method
CreateToolBar (). Like a status bar, a toolbar automatically
resizes along with the parent frame. The toolbar is similar to
other wxPython windows in that it can have arbitrary subwin-
dows. Toolbars also contain methods for creating tool but-
tons. Figure 6.4 displays a portion of the sketch window with a
toolbar replicating the menu functionality we just created.

_ISketch Frame
File

Dz HE H

Figure 6.4 A typical
toolbar showing both
regular and toggle
buttons

As in the menu code, the color bitmaps are radio buttons, and switching one
causes it to appear selected. Rather than duplicate the menu code in listing 6.5,

we’ll include new and changed methods of SketchFrame.

def init_ (self, parent):
wx.Frame. init (self, parent, -1, "Sketch Frame",
size=(800,600))
self.sketch = SketchWindow(self, -1)
self.sketch.Bind (wx.EVT MOTION, self.OnSketchMotion)
self.initStatusBar ()
self.createMenuBar ()
self.createToolBar ()
Creating
def createToolBar (self) : the toolbar
toolbar = self.CreateToolBar ()
for each in self.toolbarData() :
self.createSimpleTool (toolbar, *each)
toolbar.AddSeparator ()
for each in self.toolbarColorData () :
self.createColorTool (toolbar, each)
toolbar.Realize() (@ Realizing the toolbar

def createSimpleTool (self, toolbar, label, filename,

help, handler) :

if not label:
toolbar.AddSeparator ()
return

bmp = wx.Image (filename,

wx.BITMAP_TYPE BMP) .ConvertToBitmap ()
tool = toolbar.AddSimpleTool (-1, bmp, label, help)
self.Bind (wx.EVT_MENU, handler, tool)

def toolbarData (self) :
return (("New", "new.bmp", "Create new sketch",
self.OnNew) ,
(e, o, ey,
("Open", "open.bmp", "Open existing sketch",
self.OnOpen) ,

Creating the
simple tools

Adding window decorations 163

("Save", "save.bmp", "Save existing sketch",
self.OnSave))

def createColorTool (self, toolbar, color):
bmp = self.MakeBitmap (color) Creating
newId = wx.NewId() color tools
tool = toolbar.AddRadioTool (-1, bmp, shortHelp=color)
self.Bind (wx.EVT_MENU, self.OnColor, tool)

def MakeBitmap (self, color):
bmp = wx.EmptyBitmap (16, 15)
dc = wx.MemoryDC ()

dc.SelectObject (bmp) Creating a
dc.SetBackground (wx.Brush (color)) solid bitmap
dc.Clear ()

dc.SelectObject (wx.NullBitmap)
return bmp

def toolbarColorData (self) :
return ("Black", "Red", "Green", "Blue")

def OnColor(self, event):
menubar = self.GetMenuBar ()
itemId = event.GetId()
item = menubar.FindItemById (itemId)
if not item:
toolbar = self.GetToolBar ()
item = toolbar.FindById(itemId)
color = item.GetShortHelp ()
else:
color = item.GetLabel ()
self.sketch.SetColor (color)

Changing color
in response to
toolbar click

The toolbar code is similar in setup to the menu code in that it is data-driven.
However, in this case, we set up different loops for the typical buttons and for the
radio toggle buttons, since they are not nested in the toolbar.

The Realize () method actually lays out the toolbar objects within the bar. It must
be called before the toolbar is displayed, and it must be recalled if any tools are
added or removed from the bar.

This method is similar to the creation of menu items. The main difference is that
simple toolbar tools require bitmaps. In this case, we've placed three basic bit-
maps in the same directory as the sample code. At the end of the method, we
hook up the same wx.EVT_MENU event that is used for menu items. For a signature
of the AddTool method, providing more specification of tools, see table 6.4.

The color tools are created similarly to the simple tools, with just a different

method to tell the toolbar they are radio tools. The solid bitmaps are created by
the MakeBitmap () method.

164 CHAPTER 6
Working with the basic building blocks

@ This method creates a solid bitmap of the proper size by creating a bitmap,
attaching a wx.MemoryDC to it, and clearing the bitmap with the desired color used
in the background brush.

O A slight addition to the onColor () method searches the toolbar for the proper
tool, and sets the color accordingly. However, one problem with the code as writ-
ten is that changing the color via the menu item doesn’t change the toolbar radio
state, and vice versa.

Toolbars do have one piece of event flexibility that menu items don’t have. They
can generate the event type wx.EVT TOOL_RCLICKED when the tool is clicked with
the right mouse button. Toolbars also have a few different styles that are passed
as bitmaps as an argument to CreateToolBar (). Table 6.4 lists some of the tool-
bar styles.

Table 6.4 Styles of the wx.ToolBar class

Style Description
wx.TB_3DBUTTONS Makes the tools display with a 3D look
wx.TB_HORIZONTAL Default style, lays out the toolbar horizontally
wx.TB_NOICONS Do not display the bitmaps for each tool
wx.TB_TEXT The toolbar will show the short help text along with the default bitmaps
wx.TB_VERTICAL Lays the toolbar out vertically

Toolbars are more complicated than status bars. Table 6.5 displays some of the
more commonly used methods.

Table 6.5 Commonly used methods of wx.ToolBar

Function Description

AddControl(control) Adds an arbitrary wxPython control widget to the toolbar. Also see the
related method InsertControl().

AddSeparator() Places empty space between tools.

AddSimpleTool(id, bitmap, Adds a simple tool button to the toolbar, with the given bitmap. The
shortHelpString="", shortHelpString is displayed as a tooltip. The kind can be
kind=wx.ITEM_NORMAL) wx .ITEM_NORMAL, wx.ITEM CHECKBOX, Of wx.ITEM RADIO.

continued on next page

6.3

6.3.1

Getting standard information 165

Table 6.5 Commonly used methods of wx . ToolBar (continued)

Function Description
AddTool(id, bitmap, Additional parameters for simple tools. The bitmap2 is displayed
bitmap2=wx.NullBitmap, when the tool is pressed. The longHelpString is displayed in the
kind=wx.ITEM_NORMAL, status bar when the pointer is in the tool, and clientData can be
shortHelpString="", used to associate an arbitrary piece of data with the tool. There is a
longHelpString="", related InsertTool () method.

clientData=None)

AddCheckTool(...) Adds a checkbox toggle tool, with the same parameters as AddTool ().

AddRadioTool(...) Adds a radio toggle tool, with the same parameters as AddTool (). A
consecutive, unbroken sequence of radio tools is considered a group
for toggling.

DeleteTool(toolld) Deletes the tool with the given id, or which is displayed at the

DeleteToolByPosition(x, y) given point.

FindControl(toolld) Finds and returns the tool with the given id, or displayed at the

FindToolForPosition(x, y) given point.

ToggleTool(toolld, toggle) If the tool with the specified id is a radio or checkbox, sets the toggle of

that tool based on the Boolean toggle argument.

In the next section, we’ll show you how to use common dialogs to get informa-
tion from the user. On most operating systems, you can leverage standard dia-
logs to provide your user with a familiar interface for common tasks, such as
choosing a file.

Getting standard information

Your application often needs basic information from the user, typically through
dialog boxes. In this section, we’ll talk about using the standard file and color dia-
logs for standard user information.

How do I use standard file dialogs?

Most GUI applications must save and load data of some kind or another. For the
sanity of both you and your users, having a single, consistent mechanism for
choosing files is desirable. Happily, wxPython provides the standard dialog
wx.FileDialog to insert into your applications for this purpose. Under MS Win-
dows, this class is a wrapper around the standard Windows file dialog. Under an
X Window system, this is a similar looking custom dialog. Figure 6.5 displays the
file dialog for the sketch application.

166 CHAPTER 6
Working with the basic building blocks

Open sketch file... X
Lookin: | 3 Bells v @& e @
I3 xvpics
72 = cvs
test.sketch
My Recent
Documents
Desktop
;\;5
Mleocuments
— File name | [l] [Open]
1 Flescftype: | Sketchfiles ("sketch)] [Cancd] Figure 6.5
My Computer [Open as read-only A standard file

dialog for Windows

The most important method for using the wx.FileDialog is the constructor,
which has the following signature.

wx.FileDialog (parent, message="Choose a file", defaultDir="",
defaultFile="", wildcard="*.*", style=0)

Table 6.6 describes the parameters of the constructor.

Table 6.6 The parameters of the wx.FileDialog constructor

Parameter Description
parent The parent window for the dialog, or None if there is no parent window.
message The message is displayed in the title bar of the dialog.

defaultDir The directory that the dialog should start with. If empty, the dialog starts in the current
working directory.

defaultFile The file selected when the dialog opens. If empty, no file is selected.

wildcard The options for the wildcard filter which allows the user to limit the display to selected file
types. The format is <display> | <wildcards>, which may be repeated multiple times to

give the user multiple options; for example, “Sketch files (*.sketch) | *.sketch | All files
(*. *) | *.*"

style A bitmask style. Styles are listed in table 6.6.

Table 6.7 lists the style options for the style bitmask.

Getting standard information

Table 6.7 Style options for wx.FileDialog

167

Style Description
wx.CHANGE_DIR After the user selects a file, the current working directory is changed
to that directory.
wx.MULTIPLE Only applicable for an open dialog, this style allows the user to select
multiple files.
wx.OPEN The style is used for opening a file.

wx.OVERWRITE_PROMPT

Only applicable for a save dialog, this style gives a prompt to confirm the
choice if an existing file is selected to be overwritten.

wx.SAVE

The style is used for saving a file.

To use the file dialog,
method returns either

self.filename =

call the ShowModal () method on a dialog instance. The
wx.ID_OK or wx.ID_CANCEL, depending on the button the
user clicks to dismiss the dialog. After the selection, use the GetFilename (), Get-
Directory (), or GetPath() methods to retrieve the data. Afterwards, it’s a good
idea to destroy the dialog with the Destroy () method.

Listing 6.6 displays the modifications necessary to the SketchFrame to support
saving and loading. These changes also require the import of the cpickle and os
standard modules. We’'ll use cpickle to convert the list of data from the sketch
window to a format that can be written to, and read from, the file.

Listing 6.6 Saving and loading methods of SketchFrame

def init_ (self, parent):
self.title = "Sketch Frame"
wx.Frame. init_ (self, parent, -1, self.title,
size=(800,600))

self.sketch = SketchWindow(self, -1)
self.sketch.Bind (wx.EVT _MOTION, self.OnSketchMotion)
self.initStatusBar ()

self.createMenuBar ()

self.createToolBar ()

def SaveFile(self):

if self.filename:

data = self.

sketch.GetLinesData () Saving

f = open(self.filename, 'w') the file
cbPickle.dump (data, f)

f.close()

168 CHAPTER 6
Working with the basic building blocks

def ReadFile(self): @ Reading the file
if self.filename:
try:

f = open(self.filename, 'r')

data = cPickle.load(f)

f.close()

self.sketch.SetLinesData (data)
except cPickle.UnpicklingError:

wx .MessageBox ("%s is not a sketch file."

% self.filename, "oops!",

style=wx.OK|wx.ICON EXCLAMATION)

wildcard = "Sketch files (*.sketch) |*.sketch|All files (*.*)|*.x"

def OnOpen(self, event) :
dlg = wx.FileDialog(self, "Open sketch file...",

Popping up the
o§.getcwd(), style:wx.OPEN, open dialog
wildcard=self.wildcard)

if dlg.ShowModal() == wx.ID OK:

self.filename =

self.ReadFile ()

self.SetTitle(self.title + ' -- ' + gelf.filename)
dlg.Destroy ()

dlg.GetPath ()

def OnSave(self, event): " Saving the file
if not self.filename:
self.OnSaveAs (event)
else:
self.SaveFile ()

def OnSaveAs (self, event):
dlg = wx.FileDialog(self, "Save sketch as...", () Popping up the save dialog
os.getcwd (),
style=wx.SAVE | wx.OVERWRITE PROMPT,
wildcard=self.wildcard)

if dlg.ShowModal() == wx.ID OK:
filename = dlg.GetPath()
if not os.path.splitext(filename) [1]: (@ Ensuring filename extensions
filename = filename + '.sketch'
self.filename = filename
self.SaveFile ()
self.SetTitle(self.title + ' -- ' +

self.filename)
dlg.Destroy ()
|

@ This method writes the file data to disk, given the filename, and uses the
cPickle module.

00

6.3.2

Getting standard information 169

This method reads the file using cpickle. If the file is not of the expected type, it
pops up a message box alert to that effect.

The onopen () method creates a dialog with the wx.0PEN style, in the current direc-
tory. The wildcard string on the previous line allows the user to limit the selection
to .sketch files. If the user clicks OK, this method calls the ReadFile () method
with the selected path.

If a filename has already been selected for the current data, we save the file, oth-
erwise, we treat it as a save as, and open the save dialog.

The onsave () method creates a wx.SAVE file dialog.

This line ensures that filenames typed without an extension get the .sketch
extension.

In the next section, we’ll describe how to use the color picker.

How do I use a standard color picker?

It would be useful if the user was allowed to select an arbitrary color in the sketch
dialog. For that purpose, we can use the standard wx.ColourDialog provided by
wxPython. Use of this dialog is similar to the file dialog. The constructor takes
only a parent and an optional data attribute. The data attribute is an instance of
wx.ColourData, storing some data associated with the dialog such as the user-chosen
color, and the list of custom colors. Using the data attribute allows you to keep the
custom colors consistent from one usage to the next.

Using the color dialog in the sketch application requires the addition of a
menu item, and a pretty straightforward handler method. Listing 6.7 shows the
additions to the code.

def menuData (self) :

return [("&File", (
("&New", "New Sketch file", self.OnNew),
("&Open", "Open sketch file", self.OnOpen),
("&Save", "Save sketch file", self.OnSave),
(mw, o,y
("&Color", (
("&Black", "", self.OnColor,
wx.ITEM RADIO),
("&Red", "", self.OnColor,
wx.ITEM_RADIO) ,
("&Green", "", self.OnColor,

WX . ITEM_RADIO) ,
("&Blue", "", self.OnColor,

170

6.4

6.4.1

CHAPTER 6
Working with the basic building blocks

wx.ITEM RADIO),
("&Other...", "", self.OnOtherColor,
wx.ITEM_RADIO))),

(uu, UL ||||)’

("&Quit", "Quit", self.OnCloseWindow)))]

def OnOtherColor(self, event):
dlg = wx.ColourDialog(self)

dlg.GetColourData () .SetChooseFull (True) <— Creating color data object
if dlg.ShowModal() == wx.ID_OK:

self.sketch.SetColor (dlg.GetColourData () .GetColour ())
dlg.Destroy () Setting color from user inpm

We’ve done two things with the color dialog that may not be immediately obvi-
ous. The setChooseFull() method of the color data instance tells the dialog to
display with the full palette, including the custom color information. After the
dialog is closed, we grab the color data again to get the color. The color data is
returned as a wx.Color instance and is suitable for passing back to the sketch to
set the color.

Making the application look nice

In this section, we’ll discuss issues related to how you give your application that
final coat of polish. These range from the serious, such as how you arrange things
so that the user can resize the window, to the more trivial, such as how you can dis-
play an about box. These topics are covered in more detail in part 2.

How do I lay out widgets?

One way to lay out your widgets in your wxPython application is to explicitly spec-
ify the position and size of every widget when it is created. Although this method
is reasonably simple, over time it has a few flaws. For one thing, because widget
sizes and default font sizes differ, it can be very difficult to get the positioning
exactly right on all systems. In addition, you must explicitly change the position
of each widget every time the user resizes the parent window. This can be a real
pain to implement properly.

Fortunately, there’s a better way. The layout mechanism in wxPython is called
a sizer, and the idea is similar to layout managers in Java AWT and other interface
toolkits. Each different sizer manages the size and position of its windows based
on a set of rules. The sizer belongs to a container window (typically a wx.Panel).

Making the application look nice 171

Subwindows created inside the parent must be added to the sizer, and the sizer
manages the size and position of each widget.

Creating a sizer
To create a sizer:

1

6

Create the panel or container that you want to be automatically sized.
Create the sizer.
Create your subwindows as you would normally.

Add each subwindow to the sizer using the sizer’s Add () method. This is in
addition to adding the subwindow to the parent container. When you add
the window, give the sizer additional information, including the amount
of space to surround the window, how to align the window within the
allotted space managed by the sizer, and how to extend the window when
the container window resizes.

Sizers can nest, meaning that you can add other sizers to the parent sizer
as well as window objects. You can also set aside a certain amount of
empty space as a separator.

Call the method SetSizer (sizer) of the container.

Table 6.8 lists the most commonly used sizers available in wxPython. For a more
complete description of each particular sizer, see chapter 11.

Table 6.8 The most commonly used wxPython sizers

Sizer Description

wx.BoxSizer Lays children out in a line. A wx.BoxSizer can be either horizontally or vertically

oriented, and can contain subsizers in any orientation to create complex layouts.
Parameters passed to the sizer when items are added govern how children react
when resized along either the main or perpendicular axis of the box.

wx.FlexGridSizer A fixed two-dimensional grid, which differs from wx . GridSizer in that the size
of each row and column is set separately based on the largest element in that row
or column.

wx.GridSizer A fixed two-dimensional grid, where each element is the same size—the size needed

by the largest element in the sizer. When creating a grid sizer, you fix either the
number of columns or the number of rows. ltems are added left to right until a row is
filled, and then the next row is started.

continued on next page

172 CHAPTER 6
Working with the basic building blocks

Table 6.8 The most commonly used wxPython sizers (continued)

Sizer Description

wx.GridBagSizer A two-dimensional grid, based on wx . FlexGridSizer. Allows for items to

be placed in a specfic spot on the grid, and also allows items to span multiple
grid locations.

wx.StaticBoxSizer Identical to a wx . BoxSizer, with the one addition of a border (and optional

caption) around the box.

Using a sizer

To demonstrate the use of a sizer, we’ll add a control panel to the Sketch applica-
tion. The control panel contains buttons for setting the color and thickness of the
line. This example uses instances of both wx.GridSizer (for the buttons) and

wx.BoxSizer (for the rest of the layout). Figure 6.6 displays the Sketch application
with the panel, illustrating how the grid and box layouts appear in practice.

—JSketch Frame M =] X
File

068 HE N

1(2]3
5|6|7

===

9| 10| 1

N -

Pos: (101, 215) Current Pts: 0

Line Count: 4

Figure 6.6 The Sketch application with an automatically laid out control panel

Making the application look nice 173

Listing 6.8 displays the changes to the Sketch application required to imple-
ment the control panel. The discussion in this section will focus on the sizer

implementation.
def _ init_ (self, parent):
self.title = "Sketch Frame"
wx.Frame. init (self, parent, -1, self.title,

size=(800,600))
self.filename = ""
self.sketch = SketchWindow(self, -1)
self.sketch.Bind (wx.EVT_MOTION, self.OnSketchMotion)
self.initStatusBar ()
self.createMenuBar ()
self.createToolBar ()
self.createPanel ()

def createPanel (self):
controlPanel = ControlPanel (self, -1, self.sketch)
box = wx.BoxSizer (wx.HORIZONTAL)
box.Add (controlPanel, 0, wx.EXPAND)
box.Add (self.sketch, 1, wx.EXPAND)
self.SetSizer (box)
||

In listing 6.8, the createpanel () method creates the instance of ControlPanel
(described in the next listing), and puts together the box sizer. The only parameter
to the constructor for wx.BoxSizer is the orientation, which can be either wx.
HORIZONTAL Or wx . VERTICAL. Next, the new control panel and the previously created
SketchWindow are each added to the sizer using the Add () method. The first argu-
ment is the object that should be added to the sizer. The second argument is used
by wx.BoxSizer as a stretch factor to determine how the sizer should resize its chil-
dren when its own size changes. In the case of a horizontal sizer, the stretch factor
determines how the horizontal size of each child changes (the vertical stretching is
performed by the box sizer based on the flags in the third argument).

If the stretch factor is zero, the object shouldn’t change size no matter what
happens to the sizer. If the factor is greater than zero, that is interpreted as a
share of the total size relative to the shares of the other children in the sizer (sim-
ilar to how wx.statusBar manages text field widths). If all children in the sizer
have the same factor, they all resize at the same rate and equally share in the
space that is left after positioning the fixed size elements. In this case, the 0 for
the control panel indicates that the panel should not change horizontal size if the

174

CHAPTER 6
Working with the basic building blocks

user stretches the frame, while the 1 for the sketch window means that all the size
changes are absorbed there.

The third argument to Add () is another bitmask flag. Full details on expected
flag values will be given later in the chapter. The wx.EXPAND value is one of several
values that govern how the item changes size across the axis perpendicular to the
main axis for a box sizer; in this case, what happens when the frame changes size
vertically. Using the wx.EXPAND flag directs the sizer to resize the child to com-
pletely fill the available space. Other possible options allow the child to be resized
proportionally or aligned to a particular part of the sizer. Figure 6.7 should help
clarify which parameter governs which resize direction.

The result of these settings is that when you run the frame with this box sizer,
any size change in a horizontal direction causes the sketch window to change size,
and the control panel remains the same. A size change in the vertical direction
causes both subwindows to expand or contract vertically.

The controlPanel class referenced in listing 6.8 uses a combination of grid
and box sizers. Listing 6.9 contains the code for that class.

Vertical Box Horizontal Box

Widget Widget Widget Widget :Tesﬁﬁtor

Widget &

Resize by Flag w

>

e}

. (0]

Widget e~

9]

o

Resize by Factor

Figure 6.7 A drawing showing which argument determines resize behavior in each direction.

Making the application look nice 175

Listing 6.9 The control panel class, using grid and box sizers

class ControlPanel (wx.Panel) :

BMP_SIZE = 16

BMP_BORDER = 3

NUM_COLS = 4

SPACING = 4

colorList = ('Black', 'Yellow', 'Red', 'Green',6 'Blue', 'Purple’',
'Brown', 'Agquamarine', 'Forest Green', 'Light Blue',
'Goldenrod', 'Cyan', 'Orange', 'Navy',6 'Dark Grey',
'Light Grey')

maxThickness = 16

def _ init__ (self, parent, ID, sketch):

wx.Panel. init (self, parent, ID,
style=wx.RAISED BORDER)
self.sketch = sketch
buttonSize = (self.BMP_SIZE + 2 * self.BMP_BORDER,
self .BMP_SIZE + 2 * self.BMP_BORDER)

colorGrid = self.createColorGrid(parent, buttonSize)
thicknessGrid = self.createThicknessGrid (buttonSize)
self.layout (colorGrid, thicknessGrid)

def createColorGrid(self, parent, buttonSize):
self.colorMap = {}
self.colorButtons = {}
colorGrid = wx.GridSizer (cols=self.NUM COLS, hgap=2,
vgap=2)
for eachColor in self.colorList:
bmp = parent.MakeBitmap (eachColor)
b = buttons.GenBitmapToggleButton (self, -1, bmp,
size=buttonSize)
b.SetBezelWidth (1)
b.SetUseFocusIndicator (False)
self.Bind (wx.EVT_BUTTON, self.OnSetColour, b)
colorGrid.Add (b, 0)
self.colorMap[b.GetId()] = eachColor
self.colorButtons [eachColor] = b
self.colorButtons[self.colorList [0]] .SetToggle (True)
return colorGrid

Creating the
color grid

def createThicknessGrid(self, buttonSize):
self.thicknessIdMap = {}
self.thicknessButtons = {}
thicknessGrid = wx.GridSizer (cols=self.NUM COLS, hgap=2,
vgap=2)
for x in range(l, self.maxThickness + 1):
b = buttons.GenToggleButton(self, -1, str(x),
size=buttonSize)

Creating the
thickness grid

176 CHAPTER 6
Working with the basic building blocks

b.SetBezelWidth (1)
b.SetUseFocusIndicator (False)
self.Bind (wx.EVT_BUTTON, self.OnSetThickness, b)
thicknessGrid.Add (b, 0)
self.thicknessIdMap [b.GetId ()] = x
self.thicknessButtons[x] = b
self.thicknessButtons[1] .SetToggle (True)
return thicknessGrid
Combining
def layout (self, colorGrid, thicknessGrid): 4 the grids
box = wx.BoxSizer (wx.VERTICAL)
box.Add (colorGrid, 0, wx.ALL, self.SPACING)
box.Add (thicknessGrid, 0, wx.ALL, self.SPACING)
self.SetSizer (box)
box.Fit (self)

def OnSetColour(self, event):
color = self.colorMap[event.GetId()]
if color != self.sketch.color:
self.colorButtons [self.sketch.color] .SetToggle (False)
self.sketch.SetColor (color)

def OnSetThickness (self, event):
thickness = self.thicknessIdMap [event.GetId()]
if thickness != self.sketch.thickness:
self.thicknessButtons[self.sketch.thickness] .SetToggle (False)
self.sketch.SetThickness (thickness)
||

@ The createcolorGrid() method builds the grid sizer that contains the color but-
tons. First, we create the sizer itself, specifying the number of columns as four.
Since the column count is set, the buttons will be laid out from left to right, and
then down. Then, we take the list of colors, and create a button for each color.
Inside the for loop, we create a square bitmap of the proper color, and create a
toggle button with that bitmap using one set of generic button widget classes
defined in the wxPython library. Then we hook the button up to an event, and
add it to the grid. After that, we add it to a few dictionaries to make it easier to
relate color, ID, and button in later code. We don’t have to specify the button’s
placement within the grid; the sizer takes care of that for us.

@® The createThicknessGrid () method is almost identical to the color grid method.
In fact, an enterprising programmer might be able to merge them into a com-
mon utility function. The grid sizer is created, and the sixteen buttons are added
one at a time, with the sizer making sure they line up nicely on the screen.

© We use a vertical box sizer to place the grids one on top of the other. The second
argument for each grid is 0, indicating that the grid sizers should not change size
when the control panel stretches vertically. (Since we already know that the control

Making the application look nice 177

panel doesn’t change size horizontally, we don’t need to specify the horizontal
behavior.) This example shows the fourth argument to Add (), which is the width of
the border to place around the item, in this case specified by the self.SPACING vari-
able. The wx.ALL as the third argument is one of a set of flags that governs which
sides to apply the border. Not surprisingly, wx.ALL says that the border should be
applied on all four sides of the object. At the end, we call the Fit () method of the
box sizer, with the control panel as an argument. The method tells the control
panel to resize itself to match the minimum size that the sizer thinks it needs. Typ-
ically, you'll call this method as part of the creation of a window that uses sizers, to
ensure that the enclosing window is large enough to encompass the sizer.

The wx.Sizer base class contains several methods common to all sizers. Table 6.9

lists the most commonly used methods.

Table 6.9 Methods of wx.Sizer

Function

Description

Add(window, proportion=0,
flag=0, border=0,
userData=None)
Add(sizer, proportion=0,
flag=0, border=0,
userData=None)

Add(size, proportion=0,
flag=0, border=0,
userData=None)

Adds an item to the sizer. The first version adds a wxWindow, the second a
nested sizer. The third version adds empty space which is used as a
separator and is subject to the same rules for positioning as a window
would be. The proportion argument manages the size amount that the
window changes relative to other windows—it’s only meaningful for a

wx .BoxSizer. The £lag argument is a bitmap with many different flags
for alignment, border position, and growth. A full list is in chapter 11. The
border argument is the amount of space in pixels to place around the
window or sizer. userData allows you to associate data with the object,
for example in a subclass that might need more information for sizing.

Fit(window)
Fitinside(window)

Causes the window argument to resize to the sizer's minimum size. The
argument is usually the window using the sizer. The FitInside ()
method is similar, but instead of changing the screen display of the
window, only changes its internal representation. This is used for a window
inside a scroll panel to trigger scroll bar display.

GetSize()

Returns the size of the sizer as a wx . Size object.

GetPosition()

Returns the position of the sizer as a wx . Point object.

GetMinSize()

Returns the minimum size needed to fully lay out the sizer as
a wx.Size object.

Layout() Programatically forces the sizer to recalculate the size and position of its
children. Call after dynamically adding or removing a child.
Prepend(...) Identical to Add () (all three versions, but the new object is placed at the

beginning of the sizer list for layout purposes).

continued on next page

178

6.4.2

CHAPTER 6
Working with the basic building blocks

Table 6.9 Methods of wx.Sizer (continued)

Function Description
Remove(window) Removes an object from the sizer. Depending on the version, either a
Remove(sizer) specific object or the nth in the sizer list is removed. If this is done after
Remove(nth) startup, call Layout () after.
SetDimension(x, y, width, Programatically forces the sizer to take the given size, and causes all
height) children to reposition themselves

For more detailed information about sizers and nesting sizers, refer to chapter 11.

How do I build an about box?

An about box is a good example of a display dialog that displays more complex
information than is possible in a plain message box, but doesn’t require other
functionality. In this case, you can use wx.html.HtmlWindow as a straightforward
mechanism to display styled text. Actually, wx.html.HtmlWindow is much more
powerful than we show here, and includes methods to manage user interaction
and rendering in detail. Chapter 16 covers the features of wx.html.HtmlWindow.
Listing 6.10 displays a class that creates an about box using the HTML renderer.

class SketchAbout (wx.Dialog) :
text = '"!
<html>
<body bgcolor="#ACAAR60">
<center><table bgcolor="#455481" width="100%" cellspacing="0"
cellpadding="0" border="1">
<tr>
<td align="center"><hl>Sketch!</hl></td>
</tr>
</table>
</centers>
<p>Sketch is a demonstration program for
wxPython In Action
Chapter 6. It is based on the SuperDoodle demo included
with wxPython, available at http://www.wxpython.org/
</p>

<p>SuperDoodle and wxPython are brought to you by
Robin Dunn and Total Control Software, Copyright
© 1997-2006.</p>

</body>

</html>

Making the application look nice 179

def init_ (self, parent):
wx.Dialog. init (self, parent, -1, 'About Sketch',
size=(440, 400))

html = wx.html.HtmlWindow (self)
html.SetPage (self.text)
button = wx.Button(self, wx.ID OK, "Okay")

sizer = wx.BoxSizer (wx.VERTICAL)
sizer.Add (html, 1, WX.EXPAND|WX.ALL, 5)
sizer.Add (button, 0, wx.ALIGN CENTER|wx.ALL, 5)

self.SetSizer (sizer)
self.Layout ()

Most of this listing is taken up with the HTML string itself, which has some layout
and font tags. The dialog is a combination of wx.html.HtmlWindow, and a button
with the wx.ID_0x ID. Clicking the button automatically closes the window, as with
any other dialog. A vertical box sizer is used to manage the layout.

Figure 6.8 displays the resulting dialog.

M

[skeenT]

Figure 6.8
The HTML about box

To use this, wire up a menu item and a handler as in the following:

def OnAbout (self, event):
dlg = SketchAbout (self)
dlg.ShowModal ()
dlg.Destroy ()

180

CHAPTER 6
Working with the basic building blocks

6.4.3 How do I build a splash screen?

Displaying a great splash screen with your application provides a professional
look for your users. It can also distract the user while your application completes
a time-consuming setup. In wxPython, it is easy to build a splash screen from any
bitmap using the wx.SplashScreen class. The splash screen can be displayed for a
specific length of time, and whether or not the time has been set, the screen
always closes when the user clicks on it. The class consists almost entirely of its
constructor as follows:
wx.SplashScreen (bitmap, splashStyle, milliseconds, parent, id,

pos=wx.DefaultPosition, size=wx.DefaultSize,
style=wx.SIMPLE BORDER |wx.FRAME NO TASKBAR|wx.STAY ON TOP)

Table 6.10 defines the parameters for the wx.SplashScreen constructor.

Table 6.10 The parameters for the wx.SplashScreen constructor

Parameter description
bitmap A wx .Bitmap, this is exactly what is displayed on screen.
splashStyle Another bitmap style, this can be any combination of the following:

wx .SPLASH CENTRE ON_ PARENT, wx.SPLASH CENTRE ON_ SCREEN,
wx.SPLASH NO_CENTRE, wx.SPLASH TIMEOUT, wx.SPLASH NO_ TIMEOUT, all of
which are pretty descriptively named.

milliseconds If wx . SPLASH_TIMEOUT is specified as the splashStyle, this is the number of
milliseconds before it times out.

parent Parent window. Generally None.

id The window id, -1 is usually fine.

pos Position on screen if wx.SPLASH_NO_CENTER is the splashStyle

size Size. Generally you don’t need to specify this, since the size of the bitmap is used.
style Ordinary wxPython frame style, the default is generally what you want

Listing 6.11 displays the code for a splash screen. In this case, we’ve replaced
wx.PySimpleApp with a custom wx.App subclass.

class SketchApp (wx.App) :

def OnInit (self):
image = wx.Image ("splash.bmp", wx.BITMAP_TYPE BMP)

Summary 181

bmp = image.ConvertToBitmap ()
wx.SplashScreen (bmp, wx.SPLASH CENTRE ON SCREEN |

wx.SPLASH _TIMEOUT, 1000, None, -1)
wx.Yield ()

frame = SketchFrame (None)
frame.Show (True)
self.SetTopWindow (frame)
return True

Typically, the splash screen is declared in the onInit method during application
startup. The splash screen displays itself on construction and displays until it is
clicked on, or until it times out. In this case, the splash screen displays in the cen-
ter of the screen, and times out after one second. The vield() call is important
because it allows any pending events to be processed before continuing. In this
case, it ensures that the splash screen receives and processes its initial paint event
betfore the application continues startup.

6.5 Summary

m Most wxPython programs use common elements such as menus, toolbars,
and splash screens. Using them helps the usability of your program and
makes it look more professional. In this chapter we used a simple sketch
application and enhanced it with a toolbar, status bar, menu bar, common
dialogs, a complex layout, and an about and splash box.

® You can draw directly to the wxPython display by using a device context.
Different kinds of displays require different device context classes, how-
ever, they all share a common API. Device contexts can be buffered for
smoother display.

m A status bar can be automatically created at the bottom of a frame. It can
contain one or more text fields, that can be sized and set independently.

m Menus can contain nested submenus, and menu items can have toggle
states. Toolbars emit the same kinds of events as menu bars, and are
designed to be easy to lay out groups of tool buttons.

® Opening and saving your data can be managed with the standard wx.File-
Dialog. Colors can be chosen using wx.ColourDialog.

m Complex layouts are created without explicitly placing each widget using siz-
ers. A sizer automatically places its child objects according to a set of rules.
Sizers include wx . Gridsizer, which lays objects out in a two-dimensional grid,

182 CHAPTER 6
Working with the basic building blocks

and wx.BoxSizer, which lays items out in a single line. Sizers can be nested,
and can also control the behavior of their children when the sizer is stretched.

® An about box, or other simple dialog, can be created using wx.html.Html-
Window. Splash screens are created using wx.SplashScreen.

In part 1, we've covered the basic concepts behind wxPython, and we’ve also
covered some of the most common tasks. In part 2, we’ll use the now familiar
question-and-answer format, but we’ll ask more detailed questions about the
makeup and functionality of the wxPython toolkit.

Part 2

Essential wxPython

In this part of the book, we will explore the essential widgets that make up
the core of the wxPython toolkit. These basics will be a critical part of any
wxPython program you write. For each element, we’ll show you the most
important parts of the API for dealing with that element, as well as sample
code and tips on how to use the element in actual programs.

Chapter 7, “Working with the basic controls,” starts us off with the basic wid-
get set. We’ll cover text labels, text entry, buttons, and numerical and list choice
widgets. We’ll show you how to use each element, how to customize its look to
match your application, and how to respond to user interaction. In chapter 8,
“Putting widgets in frames,” we’ll move up the container hierarchy and talk
about frames. We’ll show you how to add widgets into a frame, and describe the
available frame styles. We’ll also cover the frame lifecycle from creation to
destruction. In chapter 9, “Giving users choices with dialogs,” we’ll focus on dia-
logs, starting with the ways in which dialog containers differ from frames. We’'ll
also show the range of predefined dialogs available in wxPython, as well as
shortcuts for using them easily.

The focus of chapter 10, “Creating and using wxPython menus,” is on
menus. We’ll discuss how to create menu items, which can be attached to
menus, which can be placed on a menu bar. We’ll also cover toggle menus,
pop-up menus, and various ways to customize your menu display. In chapter 11,
“Placing widgets with sizers,” we demystify the art of the sizer. Sizers are used
to simplify widget layout inside wxPython frames and dialogs. We’ll cover
the six kinds of predefined sizers, show you how they behave, and give some
hints on when they are best used. Finally, in chapter 12, “Manipulating basic

184 PART 2
Essential wxPython

graphical images,” we discuss the raw basics of drawing to the screen via a device
context. This section lists the primitive drawing methods that you can use to
draw your own widgets, or to support user drawing, or just for decoration.

Working with
the basic controls

This chapter covers

m Displaying text

m Working with buttons

m Entering and displaying numbers
m Providing the user with choices

185

186

7.1

7.1.1

CHAPTER 7
Working with the basic controls

The wxPython toolkit provides many different widgets, including the basic con-
trols that are the topic of this chapter. We’ll describe the wxPython starter kit,
including static text, editable text, buttons, spinners, sliders, checkboxes, radio
buttons, choosers, list boxes, combo boxes, and gauges. For each widget, we’ll
provide a brief example of how to use it, followed by a description of the relevant
parts of the wxPython API.

Displaying text

This section begins with examples of displaying text on the screen, including
static text fields that you use for labels, which come in both styled and unstyled
varieties. You can also create text fields for single-line and multi-line user entry.
In addition, we’ll discuss how to choose a text font.

How do I display static text?

Perhaps the most basic task for any Ul tool- [Sgiific Text S BEx
kit is drawing plain text on the screen. In
wxPython, this is accomplished with the
wx.StaticText class. Figure 7.1 displays
the static text control.

This is an example of static text

. Bon can also change the font.
In a wx.StaticText, you can change

the alignment, font, and color of the text. gl pigyefn
. . . . over multiple lines be right aligned

A single static text widget can contain

multiple lines of text, however, it cannot

handle multiple fonts or styles. For multi-

even blank ones even with a blank

ple fonts or styles, use a more elaborate Figure 7.1 Samples of wx.StaticText,
text control, such as wx.html.HTMLWindow, including font, alignment, and color changes
described in chapter 16. To display multi-

ple lines within a static text control, include a string with newline characters
inside it, and make the control big enough to display all the text. One feature that
you cannot see from just the figure is that the wx.StaticText window never
receives or responds to mouse events, and never takes the user focus.

Displaying text 187

How to display static text
Listing 7.1 displays the code that produced figure 7.1.

ing 7.1 A basic example of how to use static text

import wx

class StaticTextFrame (wx.Frame) :
def _ init_ (self):
wx.Frame. init (self, None, -1, 'Static Text Example',
size=(400, 300))

panel = wx.Panel (self, -1) Viewing basic static text
wx.StaticText (panel, -1, "This is an example of static text",
(100, 10))
rev = wx.StaticText (panel, -1,
"Static Text With Reversed Colors", Desi .
(100, 30)) 4_‘ esignating
’ reversed colors

rev.SetForegroundColour ('white')
rev.SetBackgroundColour ('black")
center = wx.StaticText (panel, -1,

"align center", (100, 50), 4—} Deﬁgnaﬁng

(160, -1), wx.ALIGN_CENTER) center aligned

center.SetForegroundColour ('white')
center.SetBackgroundColour ('black')
right = wx.StaticText (panel, -1,

"align right", (100, 70), . .
(160, -1), wx.ALIGN RIGHT) 4_‘ D.eﬁgmftmg
) ’ ’ = right aligned
right.SetForegroundColour ('white')
right.SetBackgroundColour ('black')
str = "You can also change the font." Defining a
text = wx.StaticText (panel, -1, str, (20, 100)) new font
font = wx.Font (18, wx.DECORATIVE,
wx.ITALIC, wx.NORMAL)
text.SetFont (font)
wx.StaticText (panel, -1, " . .
"Your text\ncan be split\n" <}J prhwnglnukbhnes
"over multiple lines\n\neven blank ones", (20,150))

wx.StaticText (panel, -1,
"Multi-line text\ncan also\n"
"be right aligned\n\neven with a blank", (220,150),
style=wx. ALIGN_RIGHT)

<}J Displaying aligned multi-lines

if name == '_main_':
app = wx.PySimpleApp ()
frame = StaticTextFrame ()
frame.Show ()
app.MainLoop ()

188

CHAPTER 7
Working with the basic controls

The constructor for wx.StaticText is identical to the basic wxWidget construc-
tors, as in the following:

wx.StaticText (parent, id, label, pos=wx.DefaultPosition,
size=wx.DefaultSize, style=0, name="staticText")

Table 7.1 displays what the parameters are—most wxPython widgets have a simi-
lar set in their constructor. Refer to the widget discussion in chapter 2 for a more
detailed description of constructor parameters.

Table 7.1 Parameters of the wx.StaticText constructor

Parameter Purpose
parent The containing widget
id The wxPython identifier. To automatically create a unique identifier, use -1
label Contains the text that you want to display in the static control.
pos The position of the widget as a wx.Point object or a Python tuple
size The size of the widget as a wx.Size object or a Python tuple
style The style flag
name Name used for finding the object

In the next section, we’ll discuss style flags in more detail.

Working with the styles

All of the methods called on the static text instances in listing 7.1 belong to the
parent wx.Window class; wx.StaticText defines no new methods of its own. A few
style bits are specific to wx.StaticText, and they are listed in table 7.2.

Table 7.2 Style bit flags unique to the wx.StaticText class

Style Description
wx.ALIGN_CENTER Centers the static text within the size rectangle of the static text widget.
WX.ALIGN_LEFT The text is left-aligned in the widget. This is the default.
WX.ALIGN_RIGHT The text is right-aligned in the widget.

wx.ST_NO_AUTORESIZE If this bit is used, the static text widget will not resize itself after the text is
changed with SetLabel (). You would use this in conjunction with a center
or right-aligned control to preserve the alignment.

7.1.2

Displaying text 189

The wx.staticText control overrides SetLabel () in order to resize itself based on
the new text, which happens unless the wx.ST NO_AUTORESIZE style is set.

When creating a single line static text control with a center or right alignment,
you should explicitly set the size of the control in the constructor. Specifying the
size prevents wxPython from automatically sizing the control. The wxPython
default size is the minimum rectangle surrounding the text. Since by default the
text control is no larger than the text contained, and there is no blank space to
show the alignment, it is irrelevant whether the control is left, right, or center
aligned. To change the text in the widget dynamically during the program with-
out changing the size of the control, set the wx.ST NO_AUTORESIZE style. This pre-
vents the widget from resizing itself back to a minimum rectangle after the text is
reset. If the static text is inside a dynamic layout, changing its size may move
other widgets on the screen, creating a distraction for the user.

Other techniques for text display

There are other ways of adding static text onto your display. One is the
wx.lib.stattext.GenStaticText class, which is a Python-only reimplementation
of wx.staticText. It is more consistent cross-platform than the standard C+ +
version, and it receives mouse events. It’s also preferable when you want to sub-
class and create your own static text control.

You can draw text directly to your device context using the DrawText (text, x,
y) method or the DrawRotatedText (text, x, y, angle) method. The latter is the
easiest way to add angled text to your display, although a subclass of Genstatic-
Text that handles rotation is also available. Device contexts were covered briefly
in chapter 6, and will be covered in more detail in chapter 12.

How can | get the user to enter text?

Moving beyond the mere display of static text, we’ll
begin discussing user interaction when entering |—Text Entry Example |_ [0/E3
text. The wxPython class for the text entry widgetis [Jeeesdsmeeal
wx.TextCtrl, which allows both single-line and
multi-line text entry. It can also act as a password

| Ki he k d. If db Figure 7.2 Examples of the
control, masking the keys pressed. supporte . Y single line text control, both plain
the platform, the wx.TextCtrl also provides rich and password
text display, with multiple text styles defined and
displayed. Figure 7.2 displays a sample of wx.TextCtrl as a single-line control,
both with and without password masking.

Password: sessenes

190

CHAPTER 7
Working with the basic controls

In the next section, we’ll illustrate how to create the text, then discuss the style
options for text controls.

How to do it
Listing 7.2 displays the code used to generate figure 7.2.

Listing 7.2 The wx.TextCtrl single line example

import wx
class TextFrame (wx.Frame) :

def _ init_ (self):

wx.Frame. init (self, None, -1, 'Text Entry Example',
size=(300, 100))

panel = wx.Panel (self, -1)

basicLabel = wx.StaticText (panel, -1, "Basic Control:")

basicText = wx.TextCtrl (panel, -1, "I've entered some text!",
size=(175, -1))

basicText.SetInsertionPoint (0)

pwdLabel = wx.StaticText (panel, -1, "Password:")

pwdText = wx.TextCtrl (panel, -1, "password", size=(175, -1),
style:wx.TE_PASSWORD)

sizer = wx.FlexGridSizer (cols=2, hgap=6, vgap=6)

sizer.AddMany ([basicLabel, basicText, pwdLabel, pwdText])

panel.SetSizer (sizer)

if _ name_ == '__main_ ':
app = wx.PySimpleApp ()
frame = TextFrame ()
frame.Show ()
app.MainLoop ()

The wx.TextCtrl class has a slightly more elaborate constructor than the wx.wWindow
parent class, adding two arguments:
wx.TextCtrl (parent, id, value = "", pos=wx.DefaultPosition,
size=wx.DefaultSize, style=0, validator=wx.DefaultValidator
name=wx.TextCtrlNameStr)
The parent, id, pos, size, style, and name arguments are all identical to those in
the wx.Window constructor. The value argument is the initial value of the text dis-
played in the control.
The validator argument is used for a wx.vValidator. A validator is often used
to filter data to ensure that only acceptable data is entered into the control. Vali-
dators are discussed in more detail in chapter 9.

Displaying text 191

Using single line text control styles
In this section, we’ll begin discussing some of the unique text control style bits.

Table 7.3 describes the

Table 7.3 The style bits for

style flags that are used for a single-line text control.

a single line wx.TextCtrl

Style

Description

wx.TE_CENTER

The text is centered within the control.

wWx.TE_LEFT

The text is left justified within the control. This is the default behavior.

wx.TE_NOHIDESEL

The name of this option parses to “no hide sel,” in case you were having
trouble decoding it. It's a Windows option to override a default behavior of the
Windows text widget, namely that it doesn’t highlight the selected text unless
the widget has focus. With this option selected, the widget will always
highlight the text. Has no effect on other systems.

wx.TE_PASSWORD

The text entered will not be displayed, but instead masked by asterisks.

wx.TE_PROCESS_ENTER

If this bit is specified, a text enter event is triggered when the user presses
the enter key within the control. Otherwise, the keypress is managed
internally by either the text control or the dialog.

wx.TE_PROCESS_TAB

If this bit is specified, a normal character event will be created for a tab key
pressed (generally meaning a tab will be inserted into the text). If not
specified, then the tab will be managed by the dialog, usually for keyboard
navigation between controls.

wx.TE_READONLY

The text control is read-only, and cannot be modified by user input.

wx.TE_RIGHT

The text is right-justified within the control.

Like other style flags, these can be combined using the | operator, although the
three alignment flags are mutually exclusive.

The text control automatically manages the user’s keypress and mouse events
to add text and to move the insertion point. The following common control com-

binations are included:

m <ctrl-x> cut
m <ctrl-c> copy
m <ctrl-v> paste

m <ctrl-z> undo

192 CHAPTER 7

Working with the basic controls

7.1.3 How do I change the text without user input?

In addition to changing the text of the display based on user input, wx.TextCtrl
provides a number of methods that change the text in the display from within
your program. You can change the text outright, or just move the insertion point
to a different place in the text. Table 7.4 lists the text manipulation methods of

wx.TextCtrl.

Table 7.4 Text manipulation methods of wx.TextCtrl

Method Description
AppendText(text) Appends the text argument to the end of the text in the control. The insertion
point also moves to the end of the control.
Clear() Resets the text value of the control to "'. Also generates a text updated event.

EmulateKeyPress(event)

Given a keypress event, inserts into the control the character associated with
the event, just as if the actual keypress had occured.

GetlnsertionPoint()
SetInsertionPoint(pos)
SetInsertionPointEnd()

The position is the integer index of the current insertion point, or to put it
another way, the index where the next inserted character would be placed.
The beginning of the control is 0.

GetRange(from, to)

Returns the string between the given integer positions of the control.

GetSelection()
GetStringSelection()
SetSelection(from, to)

GetSelection () returns a tuple (start, end) with the indexes of the
currently selected text. GetStringSelection () returns the string
contents of that range. The setter takes the integer endpoints of the range.

GetValue()
SetValue(value)

SetValue () changes the entire value of the control. The getter returns the
entire string.

Remove(from, to)

Removes the given range from the text.

Replace(from, to, value)

Replaces the given range with new value. This can change the length
of the text.

WriteText(text)

Similar to AppendText () except that the new text is placed at the current
insertion point.

These methods are particularly useful when you have a read-only control, or
if you want the text in the control to change based on events other than a user

key press.

Displaying text 193

7.1.4 How do I create a multi-line or styled text control?

You can create a multi-line text control using the —— e

wx.TE_MULTILINE style flag. If the native widget has | Fece s eoooooocoooocoong e
support for styles, you can change font and color St s s
styles within the text managed by the control, which

is sometimes called rich text. For other platforms, | ..

. . . If;u_pporled the natw; control,
the calls to set styles are simply ignored. Figure 7.3 otorent ot
displays an example of multi-line text controls.

Listing 7.3 contains the code used to create
figure 7.3. Typically, creating a multi-line control
is handled b . h 1 Figure 7.3 Examples of multi-
is handled by setting the wx.TE_MULTILINE Style jne toxt controls, both with and
flag. Later in this section, we’ll discuss using rich without rich text
text styles.

Listing 7.3 Creating a multi-line text control

import wx
class TextFrame (wx.Frame) :

def _ init_ (self):
wx.Frame. init (self, None, -1, 'Text Entry Example',
size=(300, 250))
panel = wx.Panel (self, -1)
multilLabel = wx.StaticText (panel, -1, "Multi-line")
multiText = wx.TextCtrl (panel, -1, <— Creating a text control
"Here is a loooooooocooocooocong line "
"of text set in the control.\n\n"
"See that it wrapped, and that "
"this line is after a blank",
size=(200, 100), style=wx.TE_MULTILINE)

multiText.SetInsertionPoint (0) QA}SeﬁMgthecunorpomt

richLabel = wx.StaticText (panel, -1, "Rich Text")
richText = wx.TextCtrl (panel, -1, <+— Creating a rich text control
"If supported by the native control, "
"this is reversed, and this is a different font.",
size=(200, 100),
style=wx.TE_MULTILINE|wx.TE_RICH2)
richText.SetInsertionPoint (0) Setting text StYIe:]J
richText.SetStyle (44, 52, wx.TextAttr ("white", "black"))
points = richText.GetFont () .GetPointSize ()
f = wx.Font (points + 3, wx.ROMAN, <,J Creating a font
wx.ITALIC, wx.BOLD, True)
richText.SetStyle (68, 82, wx.TextAttr ("blue", Setting a style in
wx.NullColour, f)) the new font
sizer = wx.FlexGridSizer (cols=2, hgap=6, vgap=6)

194

CHAPTER 7
Working with the basic controls

sizer.AddMany ([multiLabel, multiText, richLabel, richText])
panel.SetSizer (sizer)

if __name_ == '__main_ ':
app = wx.PySimpleApp ()
frame = TextFrame ()
frame. Show ()
app.MainLoop ()

Using multiple or rich text styles

In addition to wx.TE MULTILINE, there are other style flags that are only mean-
ingful in the context of a multi-line or rich text control. Table 7.5 lists those win-
dow styles.

Table 7.5 The style bits for wx.TextCtrl, when used as a multiple line control

Style Description

wx.HSCROLL If the text control is multi-line, and if this style is declared, long lines will be
horizontally scrolled instead of wrapped. This option is ignored in GTK+.

wx.TE_AUTO_URL If the rich text option is set and the platform supports it, this style causes an event
to be generated when the user mouses over or clicks on a URL in the text.

wx.TE_DONTWRAP Another name for wx . HSCROLL.

wx.TE_LINEWRAP A contrast to wx . TE_WORDWRAP. Lines which are wrapped can be wrapped at

any character. Some operating systems may ignore this style.

wx.TE_MULTILINE The text control will display multiple lines.

wx.TE_RICH Under Windows, use the rich text control as the underlying widget. This allows the
use of styled text.

wx.TE_RICH2 Under Windows, use the most recent version of the rich text control as the
underlying widget.
wx.TE_WORDWRAP Contrast to wx . TE_ LINEWRAP, lines which wrap will only do so at word

boundaries. This option is ignored on many systems.

Remember that style bits can be combined, so the multi-line rich text control in
this example is declared with a style of wx.TE MULTILINE | wx.TE_RICH2.

The text styles used in a wx. TextCtrl widget are instances of the class wx. Text -
Attr. A wx.TextAttr instance has a text color, a background color, and a font, all
of which can be specified in the constructor as in the following:

wx.TextAttr (colText, colBack=wx.NullColor, font=wx.NullFont)

Displaying text 195

The text and background colors are wxPython wx.Color objects that can be spec-
ified with a string naming the color or a tuple with the (red, green, blue) values of
the color. The wx.NullcColor indicates that the existing background color of the
control should be used. The font is a wx.Font object, which we’ll discuss in
the next subsection. The wx.NullFont object indicates that the current default
font should be used.

The wx.TextAttr class has getter methods for the attributes GetBackground-
Colour (), GetFont (), and GetTextColour (), as well as Boolean existence methods
for HasBackgroundColour (), HasFont (), and HasTextColour (). If the attribute con-
tains a default value, the existence methods return False. The IsDefault()
method returns true if all three attributes contain default values. The class does
not have setter methods, since instances of wx.TextAttr are immutable. To
change the style of text, you must create an instance.

To use a text style, call setDefaultStyle(style) or SetStyle(start, end,
style). The first method sets the current style of the control. Any text inserted
into the control, either by typing or by using AppendText () or WriteText (), is dis-
played in that style. If any of the attributes of the style are default, the current value
for that style is kept. However, if all of the attributes of the style are default, the
default style is reinstated. The SetStyle() method is similar, but takes effect
immediately on the text between the start and end positions. Default attributes
in the style argument are resolved by verifying the current default style for the
control. Listing 7.3 uses the following line of code to reverse the colors on several
characters of text:

richText.SetStyle (44, 52, wx.TextAttr ("white", "black"))

The background color becomes white, and the text color for those characters
becomes black.

Table 7.6 lists the methods of wx.Textctrl, which are useful in manipulating
multi-line controls and rich text.

Table 7.6 Multi-line and style methods of wx.TextCtrl

Method Description
GetDefaultStyle() See the earlier part of this section for a description of default styles.
SetDefaultStyle(style)
GetLineLength(lineNo) Returns the integer length of the given line.
GetLineText(lineNo) Returns the text of the given line

continued on next page

196

7.1.5

CHAPTER 7
Working with the basic controls

Table 7.6 Multi-line and style methods of wx . TextCtrl (continued)

Method Description
GetNumberOfLines() Returns the number of lines in the control. For a single-line control, returns 1.
IsMultiLine() Boolean methods for determining state of the control
IsSingleLine()
PositionToXY(pos) Given an integer position within the text, returns a tuple with the (col, row)

index of the position. The column and row indexes both start at O.

SetStyle(start, end, Immediately changes the style for the given range of text.

style)

ShowPosition(pos) Causes a multi-line control to scroll such that the given position is in view.
XYToPosition(x, y) Inverse of PositionToXY—given a row and column, it returns the

integer position.

Creating styles is much more flexible if you can use arbitrary fonts in the system.
Next, we’ll show you how to create and use font instances.

How do I create a font?

Fonts are specified as instances of the class wx.Font. You have access to any font that
has been installed and is accessible to the underlying system. To create a font
instance, use the following constructor:
wx.Font (pointSize, family, style, weight, underline=False,
faceName="", encoding=wx.FONTENCODING DEFAULT)

The pointsize is the font’s integer size in points. The family is used to quickly
specify a font without having to know the actual name of the font. The exact font
chosen depends on the system and specific fonts available. A sample of available
font families are displayed in table 7.7. The exact fonts you get will depend on
your system.

Table 7.7 Sample of the existing font families

Font Description
wx . DECORATIVE A formal, old-English style font
wx .DEFAULT The system default font
wx . MODERN A monospace (fixed-pitch) font

continued on next page

7.1.6

Displaying text 197

Table 7.7 Sample of the existing font families (continued)

Font Description
wx . ROMAN A serif font, generally something like Times New Roman
wx .SCRIPT A Aﬂna/wﬂfé/nﬁb or cursive fﬂnf
wx.SWISS A sans-serif font, generally something like Helvetica or Arial

The style parameter indicates the italicized nature of the font, and is either
wx . NORMAL, wx.SLANT, or wx.ITALIC. Similarly, the weight parameter indicates the
boldness of the font, and is either wx.NORMAL, wx.LIGHT, or wx.BOLD. The constants
here behave as expected based on their name. The underline parameter works
only on Windows systems, and if set to True causes the font to be underlined. Use
the faceName argument to specify the system name of the font you want to display.

The encoding parameter allows you to select one of several encodings, which
are mappings between internal characters and font display characters. Encodings
are not Unicode encodings, just different 8-bit encodings used by wxPython. For
most usage, you can use the default encoding.

To retrieve a list of available fonts on the system, and make them available to
the user, use the special class wx.FontEnumerator as in the following:

e = wx.FontEnumerator ()

e.EnumerateFacenames ()

fontList = e.GetFacenames ()
To limit the list to only fixed-width, change the first line to e = wx.FontEnumera-
tor (fixedWidth=True).

Can I have styled text if my platform
doesn’t support rich text?

Yes. There is a cross-platform styled text widget in wxPython, called wx.stc.
StyledTextCtrl, that is a Python wrapper around the Scintilla rich text compo-
nent. Since Scintilla is not part of wxWidgets, but rather a separate third-party
component that has been incorporated into wxPython, it does not share the same
API as the classes we have discussed. A full discussion of wx.stc.StyledCtrl is
beyond our scope here, however, you can find documentation at http://wiki.
wxpython.org/index.cgi/wxStyled TextCtrl.

198

CHAPTER 7
Working with the basic controls

7.1.7 What if my text control doesn’t match my string?

When using a multi-line wx.TextCtrl, be aware of a small gotcha involving the
way in which the text control stores the string. Internally, the multi-line string
inside the wx.TextCtrl is stored using \n as the line separator. This is true no mat-
ter what the underlying operating system is, even though some systems use dif-
ferent character combinations as a line separator. When you retrieve the string
using GetValue (), the native system’s line separator is restored, so you don’t have
to worry about manual conversion backwards. The advantage is the text inside
the control isn’t dependent on any specific operating system.

The disadvantage is the line length and the line indexes inside the text control
can be different than they are outside the text control. For example, if you are on
a Windows system, where the line separator is \r\n, the length of the string
as reported by Getvalue () will be longer than the end of the string in the con-
trol as reported by GetLastPosition(). By adding the following two lines in
listing 7.3,

print "getValue", len(multiText.GetValue())
print "lastPos", multiText.GetLastPosition/()

we would get the following results from a Unix operating system:

getValue 119
lastPos 119

and the following results from a Windows operating system:

getValue 121
lastPos 119
The implication is that you should never use the position indexes of a multi-line
text control to refer back to the original string, rather, they should only be used as
arguments to other methods of wx.Textctrl. For a substring of the text within the
control, use GetRange () or GetSelectedText (). Also do not cross the indexes in
reverse; don’t use indexes of the original string to refer back into the text control.
Following is an example of the incorrect way to get 10 characters immediately
after the insertion point:
alongString = """Any old
multi line string
will do here.
Just as long as
it is multiline"""
text = wx.TextCtrl (panel, -1, aLongString, style=wx.TE MULTILINE)

X = text.GetInsertionPoint ()
selection = aLongString[x : x + 10] ### THIS WILL BE INCORRECT

7.1.8

7.2

Working with buttons 199

The last line should be commented out for Windows or Mac systems because it
uses x (the position of the insertion point in the text control) as an index for the
original string. To return the correct characters in Windows or Mac systems,
the last line should be written as follows:

selection = text.GetRange(x, x + 10)

How do I respond to text events?

There are a handful of command events generated by wx.TextCtrl widgets that
you may want to use. All of these events are bound to the text widget in question,
so you need to pass it to the Bind method to catch the event, as in the following:

frame.Bind (wx.EVT_TEXT, frame.OnText, text)

Table 7.8 describes these command events.

Table 7.8 Events of wx.TextCtrl

Event Description
EVT_TEXT Generated when the text in the control changes. This event is generated both in
response to user input, and to the programmatic change via the Setvalue ()
method.
EVT_TEXT_ENTER Generated when the user presses Enter in a text control with the

wx.TE_PROCESS_ ENTER style set.

EVT_TEXT_URL If on @ Windows system, and wx.TE_RICH or wx.TE_RICH2 is set, and
wx.TE_AUTO_URL is also set, then this event is triggered when a mouse event
occurs over a URL within the text control.

EVT_TEXT_MAXLEN If a maximum length is specified for the control using SetMaxLength (), then
this event is triggered when the user attempts to enter a string longer than the
maximum length. You might use this, for example, to display a warning message
to the user.

Next, let’s discuss controls that are designed primarily to take mouse input. The
simplest of these is a button.

Working with buttons

There are numerous different types of buttons in wxPython. In this section we’ll
cover text buttons, bitmap buttons, toggle buttons, and generic buttons.

200 CHAPTER 7
Working with the basic controls

7.2.1 How do I make a button?

In part 1, we described several examples of but-
tons, so we will only briefly cover the basics here.

utton Example

Figure 7.4 displays a simple button.
Using a button is very straightforward. Listing 7.4
displays the code for this simple button example. Figure 7.4 A simple button

Listing 7.4 Creating and displaying a simple button

import wx

class ButtonFrame (wx.Frame) :
def _ init_ (self):

wx.Frame.__init__ (self, None, -1, 'Button Example',
size=(300, 100))
panel = wx.Panel (self, -1)

self.button = wx.Button(panel, -1, "Hello", pos=(50, 20))
self.Bind (wx.EVT BUTTON, self.OnClick, self.button)
self .button.SetDefault ()

def OnClick(self, event):
self .button.SetLabel ("Clicked")

if name_ == ' main_':
app = wx.PySimpleApp ()
frame = ButtonFrame ()
frame. Show ()
app.MainLoop ()

The wx.Button constructor is similar to constructors we’ve already seen, as in
the following:
wx.Button (parent, id, label, pos, size=wxDefaultSize, style=0,
validator, name="button")

The argument specific to wx.Button is the label, the text displayed on the button.
It can be changed during the program with setLabel (), and retrieved with Get-
Label (). Two other useful methods are GetDefaultSize (), which returns the sys-
tem suggested default button size (useful for consistency across frames), and
SetDefault (), which sets that button as the default for the dialog or frame. The
default button is often drawn differently than other buttons and is typically acti-
vated by pressing Enter while the dialog has focus.

The wx.Button class has one cross-platform style flag, wx.BU_EXACTFIT. If
defined, the button does not use the system default size as a minimum, but

7.2.2

Working with buttons 201

instead is sized as small as possible while allowing the label to fit. If the native
widget supports it, you can change the alignment of the label within the button
using the flags wx.BU_LEFT, wx.BU_RIGHT, wx.BU_TOB and wx.BU_BOTTOM. Each flag
aligns the label to exactly the side you would expect based on its name. As we dis-
cussed in part 1, a wx.Button triggers one command event when clicked, with the
event type EVT_BUTTON.

How do I make a button with a bitmap?

Occasionally, you’ll want a picture on your button,
rather than a text label, as in figure 7.5.

In wxPython, use the class wx.BitmapButton to cre-
ate a button with a picture. The code to manage a
wx.BitmapButton is very similar to the general button Figure 7.5 A demonstration of

code, as displayed in listing 7.5. a basic bitmap button. The left
button is drawn with a 3D effect.

Listing 7.5 Creating a bitmap button

import wx

class BitmapButtonFrame (wx.Frame) :
def _ init_ (self):
wx.Frame. init (self, None, -1, 'Bitmap Button Example',
size=(200, 150))
panel = wx.Panel (self, -1)
bmp = wx.Image ("bitmap.bmp", wx.BITMAP_TYPE BMP) .ConvertToBitmap ()
self .button = wx.BitmapButton(panel, -1, bmp, pos=(10, 20))
self.Bind (wx.EVT_BUTTON, self.OnClick, self.button)
self .button.SetDefault ()
self .button2 = wx.BitmapButton (panel, -1, bmp, pos=(100, 20),
style=0)

self.Bind(ex.EVT_BUTTON, self.OnClick, self.button2)

def OnClick(self, event):
self .Destroy ()

if name_ == ' _main_':
app = wx.PySimpleApp ()
frame = BitmapButtonFrame ()
frame. Show ()
app.MainLoop ()

The primary difference is that for a bitmap button you need to supply a bit-
map, rather than a label. Otherwise, the constructor and most of the code is

202

7.2.3

CHAPTER 7
Working with the basic controls

identical to the text button case. A bitmap button emits the same EVT BUTTON
event when clicked.

There are a couple of interesting features related to bitmap buttons. First,
there’s a style flag, wx.BU_AUTODRAW, which is on by default. If the flag is on, the bit-
map is surrounded by a 3D border to make it look like a text button (left button of
figure 7.5), and the button is a few pixels larger than the original bitmap. If the
flag is off, the bitmap is simply drawn as a button with no border. The right but-
ton in figure 7.5 shuts off the default by setting style=0, and it does not have the
3D effect.

By default, simply pass wxPython a single bitmap for the main display, and
wxPython automatically creates standard derivative bitmaps when the button is
pressed, has the focus, or is disabled. If the normal behavior is not what you want,
you can explicitly tell wxPython which bitmaps to use with the following meth-
ods: SetBitmapDisabled(), SetBitmapFocus (), SetBitmapLabel (), and SetBitmap-
Selected (). Each of these methods takes a wx.Bitmap object, and each has an
associated getter function.

You cannot combine a bitmap and text by using the normal wxWidgets C++
library. You could create a bitmap that contains text. However, as we’ll see in the
generic button question, there is a wxPython addition that allows this behavior.

How do I create a toggle button?

You can create a toggle button using wx.ToggleButton. A toggle button looks
exactly like a text button, but behaves more like a checkbox in that it gives a visual
cue to a selected or unselected state. In other words, when you press a toggle but-
ton, it shows its state by continuing to look pressed until you click it again.

There are only two differences between a wx.ToggleButton and the parent
wx.Button class :

®m A wx.ToggleButton sends an EVT TOGGLEBUTTON event when clicked.

® A wx.ToggleButton has GetValue () and SetValue () methods, which manip-
ulate the binary state of the button.

Toggle buttons can be a useful and attractive alternative to checkboxes, especially
in a toolbar. Remember, you cannot combine a toggle button with a bitmap but-
ton using the wxWidgets provided objects, but wxPython has a generic button
class that provides this behavior, which we’ll describe in the next section.

Working with buttons 203

7.2.4 What’s a generic button, and why should I use one?

A generic button is a button widget that has been completely reimplemented in

Python, bypassing the use of the native system widget. The parent class is

wx.1lib.buttons. GenButton, and there are generic bitmap and toggle buttons.
There are several reasons for using generic buttons:

m The generic button look is more similar across platforms than native but-
tons. The flip side is that generic buttons may look slightly different from
native buttons on a particular system.

m Using a generic button, you have more control over the look, and can
change attributes, such as the 3D bevel width and color, in ways that the
native control may not allow.

m The generic button family allows for combinations of features that the
wxWidgets button does not. There is a GenBitmapTextButton which allows
a text label and a bitmap, and a GenBitmapToggleButton which allows a tog-
gle bitmap.

m If you are creating a button class, it’s easier to use the generic buttons as
a base class. Since the code and parameters are written in Python, they
are more accessible for you to inspect and overwrite when creating a
new subclass.

Figure 7.6 displays the generic buttons in action.

Listing 7.6 displays the code for figure 7.6. The second import statement,
import wx.lib.buttons as buttons, is required for the generic button classes to
be available.

“1TGeneric Button Example Q@ﬁ

[A Button 1 I non-default wx Button]

Genric Burtoﬂl | blgger

Bimapped Text Figure 7.6
i - o % Generic buttons. The top row has

regular buttons for contrast. This
Toggle Button

shows different color combinations,
bitmap, bitmap toggle, and bitmap
text buttons.

204 CHAPTER 7
Working with the basic controls

ng 7.6 Creating and using wxPython generic buttons

import wx
import wx.lib.buttons as buttons

class GenericButtonFrame (wx.Frame) :
def _ init_ (self):
wx.Frame._init__ (self, None, -1, 'Generic Button Example',
size=(500, 350))
panel = wx.Panel (self, -1)

sizer = wx.FlexGridSizer (1, 3, 20, 20)
b = wx.Button(panel, -1, "A wx.Button")
b.SetDefault ()

sizer.Add (b)

b = wx.Button(panel, -1, "non-default wx.Button")
sizer.Add (b)

sizer.Add ((10,10))
Basic generic

b = buttons.GenButton (panel, -1, 'Generic Button') button

sizer.Add (b)
Disabled generic butto:J

b = buttons.GenButton(panel, -1, 'disabled Generic')
b.Enable (False)

sizer.Add (b)
A button with a

b = buttons.GenButton (panel, -1, 'bigger') custom size and color
b.SetFont (wx.Font (20, wx.SWISS, wx.NORMAL, wx.BOLD, False))
b.SetBezelWidth (5)

b.SetBackgroundColour ("Navy")

b.SetForegroundColour ("white")

b.SetToolTipString ("This is a BIG button...")

sizer.Add (b)

bmp = wx.Image ("bitmap.bmp", wx.BITMAP_TYPE BMP) .ConvertToBitmap ()

b = buttons.GenBitmapButton (panel, -1, bmp) <FW Generic bitmap

sizer.Add (b) button

Generic bitmap

b = buttons.GenBitmapToggleButton (panel, -1, bmp)
sizer.Add (b) <FW

toggle button
?BftbuttozstezﬁltméprTESEtt:2;$anel, -1, bmp, Bkmapand
itmappe ex ' size= . text button
b.SetUseFocusIndicator (False)
sizer.Add (b) .
Generic toggle butto:J
b = buttons.GenToggleButton (panel, -1, "Toggle Button")

sizer.Add (b)
panel.SetSizer (sizer)

if name == ' main ':

7.3

7.3.1

Entering and displaying numbers 205

app = wx.PySimpleApp ()

frame = GenericButtonFrame ()

frame. Show ()

app.MainLoop ()

||

In listing 7.6, the use of a generic button is very similar to a regular button.
Generic buttons emit the same EVT BUTTON and EVT TOGGLEBUTTON events as regu-
lar buttons. The generic button includes the GetBevelWidth() and SetBevel-
width() methods to change the amount of the 3D effect bevel. These are used in
the large button in figure 7.6.

The generic bitmap button class GenBitmapButton works like the normal
wxPython version. The GenBitmapTextButton takes first the bitmap and then the
text in the constructor. The generics offer the GenToggleButton class, the GenBit-
mapToggleButton, and the GenBitmapTextToggleButton. All three are the same
as the non-toggle version, and respond to GetToggle () and SetToggle () to man-
age the toggle state of the button.

In the next section, we’ll discuss options for allowing your user to enter or view
a numerical value.

Entering and displaying numbers

At times, you want to display numerical information graphically, or you want the
user to enter a numerical quantity without having to use the keyboard. In this sec-
tion, we’ll explore the slider, the spinner box, and the display gauge, tools in
wxPython for numerical entry and display.

y Ty pray —ISlider Example M=%

How do I make a slider?

A slider is a widget that allows the user to select a E
number from within a range by dragging a :
marker across the width or height of the control.
In wxPython, the control class is wx.Slider, :
which includes a read-only text display of the oo
current value of the slider. Figure 7.7 displays
examples of a vertical and horizontal slider. Figure 7.7 Averticalwx.S1ider
Basic slider use is fairly straightforward, but and a horizontal wx.s1ider,

there are a number of events you can add. which use the style flag
wx . SL_LABELS

206 CHAPTER 7
Working with the basic controls

How to use a slider
As displayed in listing 7.7, a slider can manage a single value through the control.

Listing 7.7 Displays code for the horizontal and vertical slider

import wx

class SliderFrame (wx.Frame) :
def _ init_ (self):
wx.Frame. init (self, None, -1, 'Slider Example',
size=(340, 320))
panel = wx.Panel (self, -1)
self.count = 0
slider = wx.Slider (panel, 100, 25, 1, 100, pos=(10, 10),
size= (250, -1),
style=wx.SL_HORIZONTAL | wx.SL_AUTOTICKS | wx.SL_LABELS)
slider.SetTickFreqg(5, 1)
slider = wx.Slider (panel, 100, 25, 1, 100, pos=(125, 50),
size=(-1, 250),
style=wx.SL_VERTICAL | wx.SL AUTOTICKS | wx.SL_LABELS)
slider.SetTickFreqg (20, 1)

if name == ' main ':
app = wx.PySimpleApp ()
frame = SliderFrame ()
frame. Show ()
app .MainLoop ()

Typically, when you use the wx.slider class, all you'll need is the constructor,
which differs from the other calls as in the following:

wx.Slider (parent, id, wvalue, minValue, maxValue,
pos=wxDefaultPosition, size=wx.DefaultSize,
style=wx.SL_HORIZONTAL, validator=wx.DefaultValidator,
name="glider")

The value is the starting value of the slider, while minvalue and maxvalue are the
extreme values.

Entering and displaying numbers 207

Working with slider styles

The styles for a slider govern the placement and orientation of the slider, as listed
in table 7.9.

Table 7.9 Styles for wx.Slider

Style Description

wx.SL_AUTOTICKS If set, the slider will display tick marks across it. The spacing is governed by the
setter method SetTickFreq.

wx.SL_HORIZONTAL The slider will be horizontal. This is the default.

wx.SL_LABELS If set, the slider will display labels for the minimum and maximum value, and a
read-only display of the current value. The current value might not display on all
platforms.

wx.SL_LEFT For a vertical slider, the ticks will be on the left of the slider.

wx.SL_RIGHT For a vertical slider, the ticks will be on the right of the slider.

wx.SL_TOP For a horizontal slider, the ticks will be on top of the slider.

wx.SL_VERTICAL The slider will be vertical.

If you want changes in the slider value to affect another part of your application,
there are several events you can use. These events are identical to those emitted
by a window scroll bar, and are described in detail in the scrolling section of
chapter 8.

Table 7.10 lists the setter properties you can apply to a slider. Each setter has
an associated Get method—the descriptions in the table refer to the setter only.

Table 7.10 Settable attributes of a slider

Function Description
GetRange() Sets the boundary range of the slider
SetRange(minValue, maxValue)
GetTickFreq() Sets the spacing between ticks, using the n argument. The pos
SetTickFreq(n, pos) argument is not actually used, but it’s still required. Set it to 1.
GetLineSize() Sets the amount by which the value changes if you adjust the slider by
SetLineSize(lineSize) one line by pressing an arrow key.

continued on next page

208

7.3.2

CHAPTER 7
Working with the basic controls

Table 7.10 Settable attributes of a slider (continued)

Function Description
GetPageSize() Sets the amount by which the value changes if you adjust the slider by
SetPageSize(pageSize) one page by pressing page up or page down.
GetValue() Sets the value of the slider.
GetValue(value)

Although sliders provide a quick visual representation of where the value lies
along the possible range, they also have a couple of weaknesses. They take up a
lot of space in their primary dimension, and it’s difficult to set the slider exactly
using a mouse, particularly if the range is quite large, or if the user has an acces-
sibility issue. The spinner, which we’ll discuss in the next section, resolves both of
these issues.

How can I get those neat up/down arrow buttons?

A spinner is a combination text control and pair of arrow buttons &g W= X
that adjust a numeric value, and is a great alternative to a slider
when you have minimal screen space. Figure 7.8 displays a
wxPython spinner control.
In wxPython, the wx.spinCtrl class manages both the spin- Figure 7.8
ner buttons and the associated text display. In the next section, A spinner control
, i in wxPython
we’ll create a spinner.

How to create a spinner

Use wx.SpinCtrl to change the value either by pressing the buttons or by typing
in the text control. Non-numeric text typed into the control is ignored, although
the control doesn’t change back to the previous value until a button is pressed. A
numeric value outside the control range is treated as the relevant maximum or
minimum value, although that value doesn’t revert to the end of the range until
you press a button. Listing 7.8 displays the use of wx.Spinctrl.

import wx

class SpinnerFrame (wx.Frame) :
def init_ (self):
wx.Frame._ init__ (self, None, -1, 'Spinner Example',
size=(100, 100))

Entering and displaying numbers 209

panel = wx.Panel (self, -1)

sc = wx.SpinCtrl (panel, -1, "", (30, 20), (80, -1))
sc.SetRange (1,100)

sc.SetValue (5)

if __name_ == '__main_ ':
app = wx.PySimpleApp ()
SpinnerFrame () . Show ()

app.MainLoop ()
||

Nearly all of the complexity of the spin control is in the constructor, which has
several arguments as in the following:
wx.SpinCtrl (parent, id=-1, value=wx.EmptyString,
pos=wx.DefaultPosition, size=wx.DefaultSize,
style=wx.SP_ARROW_KEYS, min=0, max=100, initial=0,
name="wxSpinCtrl")
The first part of this constructor is similar to all the other wx.Wwindow constructors.
However, the value argument here is a dummy. Set the initial value of the control
using the initial argument, and use the min and max arguments to set the range
of the control.

There are two style flags for wx.spinCtrl. By default, wx.SP_ARROW_KEYS is
declared because it allows the user to change the value of the control from the
keyboard using the up and down arrow keys. The wx.Sp WRAP style causes
the value of the control to wrap, meaning that if you go off the edge at one
extreme, you wind up at the other extreme. Also, you can catch the EVT SPINCTRL
event, which is generated whenever the spin value is changed (even if it is
changed via text entry). If the text is changed, an EVT_TEXT is fired, just as it would
be if you were using a standalone text control.

As displayed in listing 7.8, you can set the range and value using the Set-
Range (minval, maxVal) and SetValue (value) methods. The setvalue () function
can take either a string or an integer. To get the values, use the methods
GetValue () (which returns an integer), GetMin(), and GetMax ().

When you need more control over the behavior of the spinner, such as spin-
ning through floating point values, or a list of strings, you can put a wx.Spin-
Button together with a wx.TextcCtrl, and build plumbing between them. Put the
two controls next to each other and catch EVT _SPIN events from the wx.Spin-
Button, updating the value in the wx.TextCtrl.

210 CHAPTER 7
Working with the basic controls

7.3.3 How can I make a progress bar?

If you want to graphically display a numeric L e ™ =) X% |

value without allowing the user to change it,

use the relevant wxPython widget wx.Gauge.

An example of this numeric value is a progress || (12280]

bar, displayed in figure 7.9.
. Listing 7.9 d.isplays the code that creat(?d Flgure 7.9 Awx.Gauge displaying

this figure. Unlike many other examples in gome progress

this chapter, in this example we added an

event handler. The following code adjusts the value of the gauge during idle

time, causing it to loop from start to finish and back again.

Listing 7.9 Displaying and updating a wx . Gauge

import wx

class GaugeFrame (wx.Frame) :

def _ init_ (self):

wx.Frame. init (self, None, -1, 'Gauge Example',
size=(350, 150))

panel = wx.Panel (self, -1)
self.count = 0
self.gauge = wx.Gauge (panel, -1, 50, (20, 50), (250, 25))
self.gauge.SetBezelFace (3)
self.gauge.SetShadowWidth (3)
self.Bind (wx.EVT_IDLE, self.OnIdle)

def OnIdle(self, event):
self.count = self.count + 1
if self.count >= 50:
self.count = 0
self.gauge.SetValue (self.count)

if name == '__main_ ':
app = wx.PySimpleApp ()
GaugeFrame () . Show ()
app.MainLoop ()

The constructor for wx.Gauge is similar to the other numerical widgets:

wx.Gauge (parent, id, range, pos=wx.DefaultPosition,
size=wx.DefaultSize, style=wx.GA HORIZONTAL,
validator=wx.DefaultValidator, name="gauge")

74

7.4.1

Giving the user choices 211

As you enter the numerical value using the range argument, it represents the
upper bound of the gauge, while the lower bound is always 0. The default style,
wx.GA_HORIZONTAL provides a horizontal bar. To rotate it 90 degrees, you use the
style wx.GA_VERTICAL. If you are on Windows, the style wx.GA PROGRESSBAR gives
you the native progress bar from the Windows toolkit.

As a read-only control, wx.Gauge has no events. However, it does have proper-
ties you can set. You can adjust the value and range using Getvalue(), Set-
Value (pos), GetRange (), and SetRange (range). If you are on Windows, and are
not using the native progress bar style, you can use SetBezelFace (width) and Set-
Shadowlidth () to change the width of the 3D effect.

Giving the user choices

Nearly every application requires a user to choose between a set of predefined
options at some point. In wxPython, there are a variety of widgets to help the user
in this task, including checkboxes, radio buttons, list boxes, and combo boxes.
The following section will guide you through these widgets.

How do I create a checkbox?

A checkbox is a toggle button with a text label. Checkboxes are
often displayed in groups, but the toggle state of each check-
box is independent. Checkboxes are used when you have one
or more options that have clear on/off states, and the state of
one option doesn’t affect the state of the others. Figure 7.10
displays a group of checkboxes.

Checkboxes are easy to use in wxPython. They are
instances of the class wx.CheckBox, and can be displayed Figure 7.10
together by placing them inside the parent container together. /:hg;::go?(fe\;vxPython
Listing 7.10 provides the code that generated figure 7.10.

import wx

class CheckBoxFrame (wx.Frame) :
def init_ (self):
wx.Frame._ init_(self, None, -1, 'Checkbox Example',
size=(150, 200))
panel = wx.Panel (self, -1)

212

7.4.2

CHAPTER 7
Working with the basic controls

wx.CheckBox (panel, -1, "Alpha", (35, 40), (150, 20))

wx .CheckBox (panel, -1, "Beta", (35, 60), (150, 20))

wx .CheckBox (panel, -1, "Gamma", (35, 80), (150, 20))
if name == ' main_ ':

app = wx.PySimpleApp ()
CheckBoxFrame () .Show ()
app .MainLoop ()

The wx.CheckBox class has a typical wxPython constructor:

wx .CheckBox (parent, id, label, pos=wx.DefaultPosition,
size=wx.DefaultSize, style=0, name="checkBox")

The label argument takes the text that is displayed next to the checkbox. Check-
boxes have no style flags which are unique to them, but they do trigger a unique
command event, EVT CHECKBOX. The toggle state of a wx.CheckBox can be
retrieved with the methods Getvalue () and SetvValue (state), and its value is a
Boolean. The method IsChecked() is identical to GetValue () and is included to
make the code clearer.

How can I create a group of radio buttons?

A radio button is a widget that allows the user to choose from among several
options. Unlike checkboxes, radio buttons are explicitly deployed in groups and
only one of the options can be selected at a time. When a new option is selected,
the existing selection is switched off. The name radio button comes from the
group of selection buttons on older car radios that exhibited the same behavior.
Radio buttons are a bit more complex to use than checkboxes, because they need
to be organized into a group in order to be useful.

In wxPython, there are two ways to create a group of ([Fradia .. WX
radio buttons. One of them, wx.RadioButton, requires you to
create the buttons one at a time, while wx.RadioBox allows

. . . . O Emo
you to deploy an entire group of buttons with a single object, o |
. . . e |fred
displaying the buttons in a rectangle. s

The wx.RadioButton class is simpler, and is preferred in
the case where the radio buttons have a direct influence on
other widgets, or where the layout of the radio buttons is not Figure 7.11 Example

in a simple rectangle. Figure 7.11 displays an example of a ©f wx-RadioButton
where radio buttons

enable text control

few wx .RadioButton objects in a group.

Giving the user choices 213

We are using wx.RadioButton in this example because each radio button con-
trols an associated text control. Since widgets outside the radio button group are
involved, we can’t just use a radio box.

How to create radio buttons
Listing 7.11 displays the code for figure 7.11, which manages the relationship
between the radio buttons and the text controls.

Listing 7.11 Using wx.RadioButton to control another widget

import wx

class RadioButtonFrame (wx.Frame) :
def init (self):

wx.Frame. init (self, None, -1, 'Radio Example',

size= (200, 200))
panel = wx.Panel (self, -1) Creating radio bUttO":]J
radiol = wx.RadioButton (panel, -1, "Elmo", pos=(20, 50),

style=wx.RB_GROUP)

radio2 = wx.RadioButton(panel, -1, "Ernie", pos=(20, 80))

radio3 = wx.RadioButton (panel, -1, "Bert", pos=(20, 110))

textl = wx.TextCtrl (panel, -1, "", pos=(80, 50)) Creating text
text2 = wx.TextCtrl (panel, -1, "", pos=(80, 80)) controls
text3 = wx.TextCtrl (panel, -1, "", pos=(80, 110))

self.texts = {"Elmo": textl, "Ernie": text2, "Bert": textB}

for eachText in [text2, text3]: Linking buttons and text

eachText .Enable (False) Y
for eachRadio in [radiol, radio2, radio3]: <FJ &ndmgevens

self.Bind (wx.EVT_RADIOBUTTON, self.OnRadio, eachRadio)
self.selectedText = textl

def OnRadio(self, event): <— Event handler
if self.selectedText:
self.selectedText.Enable (False)
radioSelected = event.GetEventObject ()
text = self.texts[radioSelected.GetLabel ()]
text.Enable (True)
self.selectedText = text

if name_ == ' main_':
app = wx.PySimpleApp ()
RadioButtonFrame () . Show ()
app.MainLoop ()
||

We’ve created radio buttons and text boxes, then initialized a dictionary contain-
ing the connections between them. A for loop disables two of the text boxes, and

214

CHAPTER 7
Working with the basic controls

another one binds the radio button command event. When the event is clicked,
the currently active text box is disabled, and the box matching the clicked button
is enabled.
Using wx.RadioButton is similar to wx.CheckBox. The constructor is nearly
identical, as in the following:
wx .RadioButton (parent, id, label, pos=wx.DefaultPosition,
size=wx.DefaultSize, style=0,
validator=wx.DefaultValidator, name="radioButton")
As in the checkbox, the 1abel is used for the caption displayed next to the button.
The wx.RB_GROUP style declares the button to be the beginning of a new group
of radio buttons. The definition of a group of radio buttons is important because
it governs toggle behavior. When one button in the group is selected, the previ-
ously selected button in the group is toggled to the unchecked state. After a radio
button is created with wx.RB_GROUE all subsequent radio buttons added to the
same parent are added to the same group. This continues until another radio
button is created with wx.RB_GROUE starting the next group. In listing 7.11, the
first radio button is declared with wx.RB_GROUB and subsequent ones are not. The
result of this is that all the buttons are considered to be in the same group, and
clicking on one of them toggles off the previously selected button.

Using a radio box

Typically, if you want to display a group of but- (Sgagig sex Example BEX
tons, declaring them separately is not the best

A Radio Box

method. Instead, wxPython allows you to cre- Oz Oune 8:::
1 : . Oitwa Othree

ate a single object that encapsulates the entire | Sew @me Oeih

group using the class wx.RadioBox. As dis- 8:‘;« O

played in figure 7.12, it looks very similar to a
group of radio buttons.

To use the wx.RadioBox class, all you need is Figure 7.12 Two examples of
the constructor. Listing 7.12 displays the code ¥x:RadioBox built from the same

underlying data with different
that created figure 7.12. configurations

import wx

class RadioBoxFrame (wx.Frame) :
def _ init_ (self):
wx.Frame. init (self, None, -1, 'Radio Box Example',

Giving the user choices 215

size=(350, 200))

panel = wx.Panel (self, -1)

sampleList = ['zero', 'one', 'two', 'three', 'four',6 'five',
'six', 'seven', 'eight']

wx .RadioBox (panel, -1, "A Radio Box", (10, 10), wx.DefaultSize,

sampleList, 2, wx.RA SPECIFY_ COLS)

wx .RadioBox (panel, -1, "", (150, 10), wx.DefaultSize,
sampleList, 3, wx.RA SPECIFY_ COLS)

if name == ' main_ ':
app = wx.PySimpleApp ()
RadioBoxFrame () .Show ()
app.MainLoop ()
||

The constructor for wx.RadioBox is more complex than the simple radio button,
since you need to specify the data for all the buttons at once, as in the following:
wx.RadioBox (parent, id, label, pos=wx.DefaultPosition,

size=wxDefaultSize, choices=None, majorDimension=0,

style=wx.RA SPECIFY COLS, validator=wx.DefaultValidator,

name="radioBox")
There are a few arguments to the constructor that are unfamiliar or different. In
this constructor, the label argument is the static text which is displayed on the
border of the box. The buttons themselves are specified in the choices argument,
which is a Python sequence of the string labels.

Like a grid sizer, you specify the dimensions of a wx.RadioBox by stating the
size in one dimension, and wxPython fills as many slots in the other dimension as
needed. The major dimension size is specified in the majorDimension argument.
Which dimension is considered major depends on the style flag. The default
value, which is also used for the example in listing 7.12 and figure 7.12, is
wx.RA SPECIFY_COLS. In the example, the number of columns is set to 2 (in the left
box) or 3 (in the right box), and the number of rows is determined dynamically by
the number of elements in the choices list. If you want the opposite behavior, set
the style to wx.RA _SPECIFY ROWS. If you want to respond to the command event
when a radio box is clicked, the event is EVT RADIOBOX.

The wx.RadioBox class has a number of methods to manage the state of the
various radio buttons inside the box. For the methods that allow you to manage a
specific internal button, pass the index of the button. The indexes start at 0 and
proceed in the exact order that was used when the button labels were passed to
the constructor. Table 7.11 lists the methods.

216

7.4.3

CHAPTER 7

Working with the basic controls

Table 7.11 Methods of wx.RadioBox

Method

Description

Enableltem(n, flag)

The £lag argument is a Boolean which is used to enable or disable the
button at index n. To enable the entire box at once, use Enable ().

FindString(string) Returns the integer index of the button with the given label, or -1 if the
label is not found.
GetCount() Returns the number of buttons in the box.

GetltemLabel(n)
SetltemLabel(n, string)

Returns or sets the string label of the button at index n.

GetSelection()
GetStringSelection()
SetSelection(n)
SetStringSelection(string)

The GetSelection() and SetSelection () methods manage the
integer index of the currently selected radio button.
GetStringSelection () returns the string label of the currently
selected button, while SetStringSelection () changes the selection
to the button with the given string. Neither of the setter functions causes an
EVT_RADIOBOX to be sent.

Showltem(item, show)

The show argument is a Boolean used to display or hide the button

at index item.

Radio buttons aren’t the only way to give the user a choice of a series of options.
List and combo boxes often take up less space, and can also be configured to
allow the user to make multiple selections from the same group.

How can I create a list box?

A list box is another mechanism for presenting a
choice to the user. The options are placed in a rectan-
gular window and the user can select one or more of
them. List boxes take up less space than radio boxes,
and are good choices when the number of options is
relatively small. However, their usefulness drops some-
what if the user has to scroll far to see all options. Fig-
ure 7.13 displays a wxPython list box.

In wxPython, a list box is an element of the class
wx.ListBox. The class has methods that allow you to
manipulate the choices in the list.

“JList Box Exa... Q@ﬁ

Figure 7.13 A wx.ListBox.
with a simple list of options

Giving the user choices ‘ 217

How to create a list box
Listing 7.13 displays the list box code that produced figure 7.13.

Listing 7.13 Using a wx.ListBox
import wx

class ListBoxFrame (wx.Frame) :
def init (self):

wx.Frame._ init_ (self, None, -1, 'List Box Example',
size= (250, 200))
panel = wx.Panel (self, -1)
sampleList = ['zero',6 'one', 'two', 'three', 'four',6 'five',
'six', 'seven', 'eight', 'nine', 'ten', 'eleven',
'twelve', 'thirteen', 'fourteen']
listBox = wx.ListBox(panel, -1, (20, 20), (80, 120), samplelist,

wx.LB_SINGLE)
listBox.SetSelection(3)

if name_ == ' main_ ':
app = wx.PySimpleApp ()
ListBoxFrame () .Show ()

app -MainLoop ()
||

The constructor for the wx.ListBox is similar to the one for a radio box, as in
the following:
wx.ListBox (parent, id, pos=wx.DefaultPosition,
size=wx.DefaultSize, choices=None, style=0,
validator=wx.DefaultValidator, name="listBox")
The main difference between a radio box and a list box is that a wx.ListBox has
no label attribute. The elements to be displayed in the list are placed in the
choices argument, which should be a sequence of strings. There are three mutu-
ally exclusive styles which determine how the user can select elements from the
list, as described in table 7.12.

Users often have problems with multiple and extended selections, because
they usually expect to see a single selection list, and maintaining the multiple
selections can be challenging, especially for users with accessibility issues. If you
do use a multiple or extended list, we recommend that you clearly label the list
as such.

218

CHAPTER 7
Working with the basic controls

Table 7.12 Selection type styles for a list box

Style Description

wx .LB_EXTENDED The user can select a range of multiple items by using a mouse shift-click, or the
keyboard equivalent.

wx.LB_MULTIPLE The user can have more than one item selected at a time. Essentially, in this
case, the list box acts like a group of checkboxes.

wx.LB SINGLE The user can have only one item selected at a time. Essentially, in this case, the
list box acts like a group of radio buttons.

There are three styles that govern the display of scroll bars in a wx.ListBox, as dis-
played in table 7.13.

Table 7.13 Scroll bar type styles for a list box

Style Description

wx.LB_ALWAYS SB The list box will always display a vertical scroll bar, whether or not it is needed.

wx .LB_HSCROLL If the native widget supports it, the list box will create a horizontal scrollbar if
items are too wide to fit.

wx.LB NEEDED_SB The list box will only display a vertical scroll bar if needed. This is the default.

There is also the style wx.LB_SORT, which causes the elements of the list to be
sorted alphabetically.

There are two command events specific to wx.ListBox. The EVT_LISTBOX event
is triggered when an element of the list is selected (even if it’s the currently
selected element). If the list is double-clicked, the event EVT LISTBOX DCLICK
is fired.

There are several methods specific to list boxes which that you to manipulate
the items in the box. Table 7.14 describes many of them. All indexes start at zero,
and represent the current list of items in the list from top to bottom.

Once you have a list box, it’s only natural to want to combine it with other wid-
gets, such as a pull-down menu, or a checkbox. In the next section, we’ll explore
these options.

Table 7.14 Methods of list boxes

Giving the user choices 219

Method Description
Append(item) Appends the string item to the end of the list.
Clear() Empties the list box.
Delete(n) Removes the item at index n from the list.
Deselect(n) In a multiple select list box, causes the item at position n to be

deselected. No effect in other styles.

FindString(string) Returns the integer position of the given string, or -1 if not found.
GetCount() Returns the number of strings in the list.
GetSelection() Get selection returns the integer index currently selected (single list
SetSelection(n, select) only). For a multiple list, use GetSelections (), which returns a
GetStringSelection() tuple of integer positions. For a single list,

SetStringSelection(string, select)
GetSelections()

GetStringSelection () returns the string at the selected index.
The set methods set the given position or string to the state specified
by the Boolean argument. Changing the selection in this way does not
trigger the EVT_LISTBOX event.

GetString(n)
SetString(n, string)

Gets or sets the string at position n.

Insertitems(items, pos)

Inserts the list of strings in the items argument into the list box
before the position in the pos argument. A pos of 0 puts the items
at the beginning of the list.

Selected(n) Returns a Boolean corresponding to the selected state of the item at
index n.
Set(choices) Resets the list box to the list given in choices—that is, the current

elements are removed from the list and replaced by the new list.

and a list box?

You can combine a checkbox with a list box using the
class wx.CheckListBox. Figure 7.14 displays a check-
box and a list box together.

The constructor and most methods of wx.Check-
ListBox are identical to wx.ListBox. There is one new

7.4.4 Can I combine a checkbox

~ICheck Box E... |- | B4
one bl

two
three
four
five

sic
seven
eight M

o

event, wx.EVT_CHECKLISTBOX, which is triggered when

one of the checkboxes in the list is clicked. There are
two new methods for managing the checkboxes:

Figure 7.14 A check list
box is very similar to a
regular list box

220

7.4.5

CHAPTER 7
Working with the basic controls

Check (n, check) sets the check state of the item at index n, and IsChecked (item)
returns True if the item at the given index is checked.

What if I want a pull-down choice?

A pull-down choice is a selection mechanism that only shows the choices when the
pull-down arrow is clicked. A pull-down is the most compact way to display a
choice of elements, and is most useful when screen space is tight. From a user per-
spective, a choice is most useful for a relatively large list of options, although they
are also preferred when it’s not necessary for the user to see all the options at all
times. Figure 7.15 displays a closed choice. And figure 7.16 displays an open

pull-down.
is! x Exa...
Select one: D
Figure 7.15
A pull-down
choice, with

no selection

15 X d...
Select one: v
e
one
two
thres
four
five
six
Seven
eigl

Figure 7.16

A pull-down choice
in the process of
having an element
selected

The use of a choice is very similar to a regular list box. Listing 7.14 displays how

to create a pull-down choice.

Listing 7.14 Creating a pull-down choice

import wx

class ChoiceFrame (wx.Frame) :
def _ init_ (self):

wx.Frame._ init_(self, None, -1, 'Choice Example',

size= (250, 200))

panel = wx.Panel (self, -1)

sampleList = ['zero',6 'one', 'two', 'three',6 'four',

'six', 'seven', 'eight']

wx.StaticText (panel, -1,
wx.Choice (panel, -1, (85,

if name_ == '_main_ ':
app = wx.PySimpleApp ()
ChoiceFrame () .Show ()
app.MainLoop ()

"Select one:", (15, 20))
18), choices=sampleList)

'fiver',

7.4.6

Giving the user choices 221

The constructor for a choice is basically identical to the one for a list box:

wx.Choice (parent, id, pos=wx.DefaultPosition,
size=wx.DefaultSize, choices=None, style=0,
validator=wx.DefaultValidator, name="choice")
A wx.Choice has no specific styles, but it does have a unique command event,
EVT_CHOICE. Almost all of the methods in table 7.14 that apply to single-selection
list boxes also apply to wx.Choice objects.

Can | combine text entry and a list?

om| X Example
The widget that combines text entry and a list e
is called a combo box, and is essentially a text —] ‘::c" value
box bolted to a pull-down choice. Figure 7.17 one
displays a combo box. g'"ee
On Windows, you can use the right-hand =

eight

style, which is a text box bolted to a list box.
The code for creating a combo box is sim-
ilar to the choice elements we have already
seen. In this case the class is wx . ComboBox, which
is a direct subclass of wx.Choice. Listing 7.15 Figure 7.17 A combo box showing the

. . left box in the style wx . CB_ DROPDOWN,
dlsplays the code details. and the right in wx.CB_SIMPLE

Listing 7.15 Code for a demonstration of wx . ComboBox

import wx

class ComboBoxFrame (wx.Frame) :
def init_ (self):
wx.Frame. init (self, None, -1, 'Combo Box Example',
size=(350, 300))

panel = wx.Panel (self, -1)
sampleList = ['zero',6 'one', 'two', 'three', 'four',6 'five',
'six', 'seven', 'eight']
wx.StaticText (panel, -1, "Select one:", (15, 15))
wx .ComboBox (panel, -1, "default value", (15, 30), wx.DefaultSize,
sampleList, wx.CB_DROPDOWN)
wx .ComboBox (panel, -1, "default value", (150, 30), wx.DefaultSize,

sampleList, wx.CB_SIMPLE)

if _name == '_main_':
app = wx.PySimpleApp ()
ComboBoxFrame () . Show ()
app.MainLoop ()

222

7.5

CHAPTER 7
Working with the basic controls

The constructor for wx. ComboBox should look familiar by now:

wx . ComboBox (parent, id, value="", pos=wx.DefaultPosition,
size=wx.DefaultSize, choices, style=0,
validator=wx.DefaultValidator, name="comboBox")
There are four styles for a wx.ComboBox. Two of them determine how the combo
box is drawn: wx.CB_DROPDOWN creates a combo box with a pull-down list, and
wx.CB_SIMPLE creates a combo box with a full list box. You can only use wx.CB_SIMPLE
on Windows systems. Any combo box can be designated wx.CcB_READONLY, which
prevents the user from typing in the text area. When the combo box is designated
read only, the selection must come from one of the elements in the choice list, even
if you set it programmatically. Finally, there is wx.CB_sORT, which causes the ele-
ments of the choice list to be displayed alphabetically.

Since wx.ComboBox Is a subclass of wx.Choice, all of the methods of wx.Choice
can be called on a combo box, as displayed in table 7.14. In addition, a number
of methods are defined to manipulate the text component, all of which behave
the way they do for a wx.Textctrl (see table 7.4 for details). The defined meth-
ods are Copy (), Cut (), GetInsertionPoint (), GetValue(), Paste (), Replace (from,
to, text), Remove (from, to), SetInsertionPoint (pos), SetInsertionPointEnd(),
and Setvalue()

Summary

In this chapter, we showed you how to use many of wxPython’s most basic and
commonly used controls. The generic version is somewhat more consistent
across platforms.

= For the display of static text labels, you can use the wx.StaticText class.
There is also a version implemented completely in wxPython, called
wx.lib.stattext.GenStaticText.

= If you need a control that allows the user to enter text, the class to use is
wx.TextCtrl. It allows both single and multi-line entry, as well as password
masking and other effects. If the native widget supports it, you can use
wx.TextCtrl to have styled text. Styles are instances of the class wx.Text-
Attr, and also use wx.Font to encapsulate font information. On all systems,
you can use the class wx.stc.StyledTextCtrl, which is a wxPython wrapper
around the open-source Scintilla text component, to achieve color and font
styles in an editable text component.

m To create a button, use the wx.Button class, which also has a generic coun-
terpart, wx.1lib.buttons.GenButton. A button can have a bitmap instead of

Summary 223

a text label (wx.BitmapButton), or have its state toggle between pressed and
unpressed (wx.ToggleButton). There are generic equivalents to both bit-
map and toggle buttons, which have a fuller range of features than the
standard versions.

m There are a few ways to select or display numerical values. You can use the
wx.Slider class to display a vertical or horizontal slider. The wx.SpinCtrl
displays a text control with up and down buttons to change a numerical
value. The wx.Gauge control displays a progress bar indicator of a number.

® You can choose from among a series of controls for letting the user pick
from a list of options. The best control to use is based on the number of
options, whether the user can select more than one, and the amount of
screen space you want to use. Checkboxes are managed with the wx.Check-
Box class. There are two ways to get radio buttons: wx.RadioButton gives a
single radio button, while wx.RadioBox gives a group of buttons displayed
together. There are several list display widgets that are used similarly. A list
box is created with wx.ListBox, and you can add checkboxes by using
wx . CheckListBox. For a more compact pull-down, use wx.Choice. wx.Combo-
Box combines the features of a list and a text control.

Now that we’ve covered the basics of common widgets, in the next chapter we’ll
discuss the different kinds of frames that you can use to contain them.

Putting widgets in frames

This chapter covers

Creating frames and applying styles
Working with frames and scrollbars
Creating alternative frame types

Creating and manipulating splitter windows

224

8.1

8.1.1

The life of a frame 225

All user interaction in your wxPython program takes place inside a widget con-
tainer, which would commonly be called a window. In wxPython, that container is
called a frame. In this chapter, we’ll discuss several different styles of frames in
wxPython. The primary wx.Frame class has several different frame style bits which
can change its appearance. In addition, wxPython offers miniframes, and frames
that implement the Multiple Document Interface (MDI). Frames can be split into
sections using splitter bars, and can encompass panels larger than the frame itself
using scrollbars.

The life of a frame

We’ll start by discussing the most basic elements of frames: creating and dispos-
ing of them. Creating a frame involves knowing about all the style elements that
can be applied; disposing of frames can be more complex than you might ini-
tially suppose.

How do I create a frame?

We’ve already seen numerous examples of frame creation in this book, but at the
risk of repeating ourselves, we’ll review the initial principles of frame creation.

Creating a simple frame
Frames are instances of the class wx.Frame. Listing 8.1 displays a very simple
example of frame creation.

Listing 8.1 Basic wx.Frame creation

import wx

if name_ == ' main_ ':
app = wx.PySimpleApp ()
frame = wx.Frame (None, -1, "A Frame", style=wx.DEFAULT FRAME STYLE,
size=(200, 100))
frame. Show ()
app.MainLoop ()
|

This creates a frame with the title A Frame, and a size of EArame ok
200 by 100 pixels. The default frame style used in list-
ing 8.1 provides the standard frame decorations like a -
close box and minimize and maximize boxes. Figure 8.1

displays the result. Figure 8.1
The simple frame

226

CHAPTER 8
Putting widgets in frames

This constructor for wx.Frame is similar to the other widget constructors we
saw in chapter 7.
wx .Frame (parent, id=-1, title="", pos=wx.DefaultPosition,
size=wx.DefaultSize, style=wx.DEFAULT FRAME STYLE,
name="frame")
There are over a dozen style flags specific to wx.Frame, which we’ll cover in the
next section. The default style provides you with minimize and maximize boxes,
the system pull-down menu, thick resizable borders, and a caption. This is suit-
able for most of your standard application window needs.

There are no event types tied to a wx.Frame beyond those that apply to any
widget. However, since a wx.Frame is the one element on your screen that the user
is most likely to close, you’ll usually want to define a handler for the close event so
that subwindows and data are properly managed.

Creating a frame subclass

You will rarely create wx.Frame instances directly. As we’ve seen in nearly every
other example in this book, a typical wxPython application creates subclasses of
wx.Frame and creates instances of those subclasses. This is because of the unique
status of wx . Frame—although it defines very little behavior by itself, a subclass with
a unique initializer is the most logical place to put information about the layout
and behavior of your frame. Having to juggle your application-specific layouts
and data without creating subclasses is possible, but is awkward in anything but the
smallest application. Listing 8.2 displays an example of a wx.Frame subclass.

import wx

class SubclassFrame (wx.Frame) :
def _ init_ (self):
wx.Frame. init (self, None, -1, 'Frame Subclass',
size=(300, 100))
panel = wx.Panel (self, -1)
button = wx.Button(panel, -1, "Close Me", pos=(15, 15))
self.Bind (wx.EVT_BUTTON, self.OnCloseMe, button)
self.Bind (wx.EVT_CLOSE, self.OnCloseWindow)

def OnCloseMe (self, event):
self.Close (True)

def OnCloseWindow (self, event):
self .Destroy ()

8.1.2

The life of a frame 227

if name == '_main_ ':
app = wx.PySimpleApp ()
SubclassFrame () . Show ()
app.MainLoop ()

The resulting frame looks like figure 8.2.
, 5 . . st . I Frame Subclass Q@ﬁ
We’ve seen this basic structure in many other
examples, so let’s discuss some of the frame-
specific aspects of this code. The call to the

wx.Frame.__init__ method has the same signa- Figure 8.2 The simple frame as
ture as the wx.Frame constructor. The constructor a subclass

for the subclass itself has no arguments, which

allows you as the programmer to define the arguments that get passed to the par-
ent, and keeps you from having to specify the same arguments repeatedly.

Also noteworthy in listing 8.2, is that the subwidgets of the frame are them-
selves placed inside a panel. A panel is an instance of the class wx.Panel, and is a
simple container for other widgets with little functionality of its own. You should
almost always use a wx.Panel as the top-level subwidget of your frame. For one
thing, the extra level can allow greater code reuse, as the same panel and layout
could be used in more than one frame. Using a wx.Panel gives you some of the
functionality of a dialog box within the frame. This functionality manifests itself
in a couple of ways. One is simply that wx. Panel instances have a different default
background color under MS Windows operating systems—white, instead of gray.
Secondly, panels can have a default item that is automatically activated when the
Enter key is pressed, and panels respond to keyboard events to tab through the items
or select the default item in much the same way that a dialog does.

What are some different frame styles?

The wx.Frame class has a multitude of possible style flags. Typically, the default
style is what you want, but there are several useful variations. The first set of style
flags that we’ll discuss governs the general shape and size of the frame. Although
not strictly enforced, these flags should be considered mutually exclusive—a
given frame should only use one of them. Using a style flag from this group does
not imply the existence of any decorators described in the other tables in this sec-
tion; you'll need to compose the shape flag together with the other desired deco-
rator flags. Table 8.1 describes the shape and size flags.

228 CHAPTER 8

Putting widgets in frames

Table 8.1 Style flags for the shape and size of a frame

Style Flag

Description

wx.FRAME_NO_TASKBAR

A perfectly normal frame, except for one thing: under Windows
systems and others supporting this ability, it will not display in the
taskbar. When minimized, the frame will iconize to the desktop rather
than to the taskbar. (This is the way that frames behaved in pre-95
versions of Windows).

wx.FRAME_SHAPED

The frame is nonrectangular. The exact shape of the frame is set with
the SetShape () method. Shaped windows will be discussed later in
this chapter.

wx.FRAME_TOOL WINDOW

The frame has a smaller than normal title bar, typically used for auxiliary
frames that contain a variety of tool buttons. Under Windows operating
systems, a tool window will not display in the task bar.

wx.ICONIZE The window will initially be shown minimized. This style only has an effect
in Windows operating systems.

wx.MAXIMIZE The window will initially be shown maximized (full-screen). This style only
has an effect in Windows operating systems.

wx.MINIMIZE The same as wx . ICONIZE

Out of this group, the style most in need of a screen
shot is wx.FRAME TOOL_WINDOW. Figure 8.3 displays a
small sample of the wx.FRAME TOOL WINDOW with
wx . CAPTION and wx.SYSTEM MENU also declared. If you
can’t get the scale from the picture, let us assure

you that the title bar of the tool frame is narrower Figure8.3 Anexample of the

than the other frame styles we’ve seen.

tool window style

There are two mutually exclusive styles that con-
trol whether a frame stays on top of other frames, even when the other frames
gain the focus. This can be useful for small dialogs that don’t remain visible for
long. Table 8.2 describes the styles.

Finally, there are several decorations you can place on your window. These are
not placed automatically if you abandon the default style, so you must add them,
otherwise it’s easy to end up with a window that doesn’t close or move. Table 8.3
gives the list of decoration styles.

The life of a frame 229

Table 8.2 Styles for frame floating behavior

Style Flag

Description

wx.FRAME_FLOAT ON_PARENT

The frame will float on top of its parent, and only its parent.
(Obviously, to use this style the frame needs to have a parent). Other
frames will overshadow this frame.

wx.STAY_ON_TOP

The frame will always be on top of any other frame in the system. (If
you have more than one frame designated as stay on top, the frames
will overlap normally relative to each other, but will still be on top of all
the other frames in the system.)

The default style is wx.DEFAULT FRAME STYLE and is equivalent to wx.MINIMIZE
BOX | wx.MAXIMIZE BOX | wx.CLOSE BOX | wx.RESIZE BORDER | wx.SYSTEM MENU |
wx.CAPTION. This style creates a typical window that you can resize, minimize,
maximize, or close. It’s a good idea when composing other styles to start with the

Table 8.3 Styles for decorating a window

Style Flag

Description

wx.CAPTION

Gives the window a title bar. You must include this style to have a place
for the other elements that traditionally are placed here (the minimize
and maximize box, the system menu, and context help).

wx.FRAME_EX_CONTEXTHELP

This is for Windows operating systems, and places the question mark
Help icon in the right corner of the title bar. This style is mutually
exclusive with wx . MAXIMIZE BOX and WX.MINIMIZE_ BOX. This style
is an extended style, and must be added with the two-step creation
process described later.

wx.FRAME_EX_METAL

On Mac OS X, frames with this style will have a brushed metal look. This
is an extra style which must be set with the SetExtraStyle method.

wx.MAXIMIZE_BOX

Puts a maximize box in the normal place on the title bar.

wx.MINIMIZE_BOX

Puts a minimize box in the normal place on the title bar.

wx.CLOSE_BOX

Puts a close box in the normal place on the title bar.

wx.RESIZE_BORDER

Gives the frame a normal border with handles for resizing.

wx.SIMPLE_BORDER

Gives the frame a minimal border with no resizing or decorators. This
style is mutually exclusive with all the other decorator styles.

wx.SYSTEM_MENU

Puts a system menu on the title bar. The exact contents of the system
menu are consistent with the other chosen decorator styles—you have a
“minimize” option only if wx.MINIMIZE BOX is declared, for example.

230

8.1.3

CHAPTER 8
Putting widgets in frames

default style to ensure that you have the right set of decorators. For example, to cre-
ate a tool frame, you might use style=wx.DEFAULT FRAME_STYLE | wx.FRAME_ TOOL
WINDOW. Remember, you can use a * operator to remove the flag from a bitmask.

How do I create a frame with extra style information?

The wx.FRAME_EX_CONTEXTHELP style is an extended SHelp Context Bx|
style, which means that the value of its flag is too

large to be set using the normal constructor _
(because of the specific limitations of the underly-
ing C+ + variable type). Normally you can set extra Figure 8.4 A frame with the
styles after the widget has been created using the extended context help enabled
SetExtraStyle method, but some styles, such as

wx.FRAME_EX CONTEXTHELR must be set before the native UI object is created. In
wxPython, this needs to be done using a slightly awkward method known as two-
step construction. After using this construction, a frame is created with the famil-
iar question mark icon in the title bar, as displayed in figure 8.4.

The flag value has to be set using the method SetExtrastyle (). Sometimes
the extra style information must be set before the frame is instantiated, leading
to the philosophical question of how you can call a method on an instance that
does not yet exist. In the next sections, we’ll show two mechanisms for perform-
ing this operation, with the second being a generic abstraction of the first.

Adding extra style information

In wxPython, extra style information is added before creation by using the special
class wx.PreFrame, which is a kind of partial instance of a frame. You can set the
extra style bit on the preframe, and then create the actual frame instance using
the preframe. Listing 8.3 displays how two-step construction is done in a subclass
constructor. Notice that it’s actually a three-step process in wxPython (in the
C++ wxWidgets toolkit, it is a two-step process, hence the name).

Listing 8.3 A two-stage window creation

import wx

class HelpFrame (wx.Frame) :

def _ init_ (self): <]P The pre-construction object
pre = wx.PreFrame ()

pre.SetExtraStyle (wx.FRAME EX CONTEXTHELP)
pre.Create(None, -1, "Help Context", size=(300, 100),
style=wx.DEFAULT FRAME STYLE "

The life of a frame ‘ 231

(wx .MINIMIZE BOX | wx.MAXIMIZE BOX)) This call creates

self.PostCreate (pre)
Transfer of underlying the frame
if name == ' main_ ': C+ + pointers

app = wx.PySimpleApp ()

HelpFrame () . Show ()

app.MainLoop ()

|

@ Create an instance of wx.PreFrame() (for dialog boxes, there’s an analogous
wx . PreDialog () —other wxWidgets widgets have their own preclasses). After this
call, you can do whatever other initialization you need.

@ Call the create() method, which has the same signature as the wxPython
constructor.

© This is the wxPython-specific line and is not done in C++. The PostCreate
method does some internal housekeeping that makes your wxPython instance a
wrapper around the C++ object you created in the first step.

Adding extra style information generically

The algorithm given earlier is a bit awkward, but it can be refactored into some-
thing a little easier to manage. The first step is to create a generic utility function
that can manage any two-step creation. Listing 8.4 provides an example using
Python’s reflective ability to call arbitrary functions passed as variables. This
example is meant to be called in the __init_ method during the Python instan-
tiation of a new frame.

def twoStepCreate (instance, preClass, prelnitFunc, *args,
**kwargs) :
pre = preClass()
prelnitFunc (pre)
pre.Create(*args, **kwargs)
instance.PostCreate (pre)

In listing 8.4, the function takes three required arguments. The instance argument
is the actual instance being created. The preClass argument is the class object for
the temporary preclass—for frames it is wx. PreFrame. The preInitFunc is a function
object that would generally be a callback to an initialization method of the instance.
After that, an arbitrary number of other optional arguments can be added.

The first line of the function, pre = preClass(), reflectively instantiates the
pre-creation object, using the class object passed as an argument. The next line
reflectively calls the callback function passed to the preInitFunc—in this context,

232

8.1.4

CHAPTER 8
Putting widgets in frames

that would usually set the extended style flag. Then the pre.create () method is
called, using the optional arguments. Finally, the PostCreate method is called to
transplant internal values from pre to instance. At that point, the instance argu-
ment has been fully created. Assuming that twoStepCreate is imported, the utility
function could be used as in listing 8.5.

import wx
class HelpFrame (wx.Frame) :

def init_ (self, parent, ID, title,
pos=wx.DefaultPosition, size=(100,100),
style=wx. DEFAULTiDIALOGisTYLE) :
twoStepCreate (self, wx.PreFrame, self.prelnit, parent,
id, title, pos, size, style)

def prelInit (self, pre):
pre.SetExtraStyle (wx.FRAME EX CONTEXTHELP)
|

The class wx.PreFrame, and the function self.prelnit are passed to the generic
function, and the preInit method is defined as the callback.

What happens when I close a frame?

When you close a frame, it goes away. Eventually. Unless the frame is explicitly
told not to close. In other words, it’s not completely straightforward. The pur-
pose behind the widget closure architecture in wxPython is to give the closing
widget ample opportunity to close documents or free any non-wxPython
resources it might be holding onto. This is especially welcome if you are holding
onto some kind of expensive external resource, such as a large data structure or a
database connection.

Admittedly, managing resources is a more serious issue in the C++ wxWidgets
world, since C++ does not manage cleanup of memory allocations for you. In
wxPython, the explicit need for a multiple step closing process is lessened, but it
can still be useful to have the extra hooks into the process. (By the way, the switch
from the word frame to the word widget in this paragraph is deliberate—everything
in this section is applicable to all top-level widgets, such as frames or dialogs).

When a user triggers the close process
The close process is most commonly triggered by a user action, such as clicking on
a close box or choosing Close from the system menu or when the application calls

The life of a frame 233

the frame’s Close method in response to some other event. When that happens,
the wxPython framework causes an EVT_CLOSE event to be fired. Like any other
event in the wxPython framework, you can bind an event handler to be called
when an EVT_CLOSE happens.

If you do not declare your own event handler, the default behavior is invoked.
This default behavior is different for frames and dialogs.

m By default, the frame handler calls the Destroy () method and deletes the
frame and all of its component widgets.

m By default, the close handler for dialogs does not destroy the dialog—it
merely simulates a cancel button press, and hides the dialog. The dialog
object continues to exist in memory so the application can fetch values from
its data entry widgets, if desired. The application should call the dialog’s
Destroy () method when it is finished with the dialog.

If you write your own close handler, you can use that handler to close or delete
any external resources, but it’s your responsibility to call the Destroy() method
explicitly if you choose to delete the frame. Even though Destroy () is often called
from Close (), just calling the Close () method does not guarantee the destruction
of the frame. It’s perfectly legitimate to decide to not destroy the frame under
certain circumstances, such as when the user cancels the close. However, you’ll
still need a way to destroy the frame if you choose to. If you choose not to destroy
the window, it’s good practice to call the wx.CloseEvent.Veto() method of the
close event, to signal to any interested party that the frame has declined the invi-
tation to close itself.

If you choose to close your frame from somewhere within your program other
than the close handler, such as from a different user event like a menu item, the
recommended mechanism is to call the close () method of the frame. This starts
the process described previously in exactly the same way as a system close action
would. If you must ensure that the frame is definitely deleted, you can call the
Destroy () method directly; however, doing so may result in resources or data
managed by the frame not being freed or saved.

When the system triggers the close process

If the close event is triggered by the system itself, due to system shutdown or
something similar, there’s one other place where you can manage the event. The
wx.App class receives an EVT QUERY END_SESSION event that allows you to veto
the application shutdown if desired, followed by a EVT_END SESSION event if all

234

8.2

8.2.1

CHAPTER 8
Putting widgets in frames

running apps have approved the shutdown of the system or GUI environment.
The behavior if you choose to veto the close is system-dependent.

Finally, it’s worth noting that calling the Destroy () method of a widget doesn’t
mean that the widget is immediately destroyed. The destruction is actually pro-
cessed when the event loop next goes idle—after any events that were pending
when the Destroy () was called have been handled. This prevents certain prob-
lems that may occur if events are processed for widgets that no longer exist.

Over the next couple of sections we’ll be switching from the lifecycle of a frame
to discussing some things you can do with the frame while it’s alive.

Using frames

Frames contain many methods and properties. Among the most important are
the methods used to find arbitrary widgets inside the frame, and the ones used to
scroll the content in your frame. In this section, we will discuss how these can
be accomplished.

What are the methods and properties of wx.Frame?

The tables in this section contain the most basic properties of wx.Frame, and its
wx.Window parent class. Many of these properties and methods are covered in
more detail elsewhere in the book. Table 8.4 contains some of the publicly read-
able and modifiable properties of wx.Frame.

Table 8.4 Public properties of wx.Frame

Property Description
GetBackgroundColor() The background color of a frame is the color chosen for any part of the
SetBackgroundColor(wx.Color) frame not covered by a child widget. You can pass a wx . Color to the

setter method or you can pass a string with the color name. Any string
passed to a wxPython method expecting a color is interpreted as a call
to the function wx . NamedColour ().

Getld() Returns or sets the wxPython identifier for the widget.

Setld(int)

GetMenuBar() Gets or sets the menu bar object that is currently used by the frame,

SetMenuBar(wx.MenuBar) or None if there is no menu bar.

GetPosition() Returns the x, y position of the upper-left corner of the window, as a

GetPositionTuple() wx . Point or as a Python tuple. For top-level windows, the position is
SetPosition(wx.Point) in terms of the display coordinates, for child windows, the position is

in terms of the parent window.

continued on next page

Table 8.4 Public properties of wx.

Using frames 235

Frame (continued)

Property Description
GetSize() The C++ versions of the getter and setter are overloaded. The default
GetSizeTuple() getter and setter use a wx . Size object. The method

SetSize(wx.Size)

GetSizeTuple () returns the size as a Python tuple. Also see
SetDimensions () for other ways of accessing this information.

GetTitle()
SetTitle(String)

The title string associated with a frame is displayed in the title bar of
the frame if it was created with the wx . CAPTION style.

Table 8.5 displays some of the more useful nonproperty methods of wx.Frame.
One to keep in mind is Refresh (), which you can use to manually trigger a redraw

a frame.

Table 8.5 Methods of wx.Frame

Property

Description

Center(direction=wx.BOTH)

Centers the frame (note that the non-American spelling Centre, is
also defined). The argument can have the value wx . BOTH in which
case the frame is centered in both directions, or wx . HORIZONTAL
or wx . VERTICAL, in which case it centers in only one direction.

Enable(enable=true)

If the argument is True, the frame is enabled to receive user input.
If the argument is False, user input is disabled in the frame. A
related method is Disable ().

GetBestSize() For a wx . Frame, returns the minimum size for the frame that fits
all of its subwindows.

Iconize(iconize) If the argument is True, minimizes the frame to an icon (the exact
behavior is, of course, system-dependent). If the argument is
False, an iconized frame is restored to normal.

IsEnabled() Returns True if the frame is currently enabled.

IsFullScreen()

Returns True if the frame is being displayed in full screen mode,
False otherwise. See ShowFullScreen for details.

Islconized()

Returns True if the frame is currently iconized, False otherwise.

IsMaximized()

Returns True if currently in the maximized state, False otherwise.

IsShown()

Returns True if the frame is currently visible.

IsTopLevel()

Always returns True for top-level widgets such as frames or
dialogs, and False for other widget types.

continued on next page

236 CHAPTER 8
Putting widgets in frames

Table 8.5 Methods of wx.Frame (continued)

Property Description

Maximize(maximize) If the argument is True, maximizes the frame to fill the screen
(the exact behavior is, of course, system-dependent). This will

do the same thing as the user clicking on the Maximize box of
the frame, which normally will enlarge the frame such that it fills
the desktop but leaves the taskbar and other system components

still visible.
Refresh(eraseBackground=True, Triggers a repaint event for the frame. If rect is none, then the
rect=None) entire frame is repainted. If a rectangle is specified, only that

rectangle is repainted. If eraseBackground is True, the
background of the window will also be repainted, if False, the
background will not be repainted.

SetDimensions(x, y, width, height, Allows you to set the size and position of the window in one method
sizeFlags=wx.SIZE_AUTO) call. The position goes into the x and y arguments, the size into the
width and height arguments. A value of -1 passed to any of the
first four parameters is interpreted based on the value of the
sizeFlags argument. Table 8.6 contains the possible values for
the sizeFlags argument

Show(show=True) If passed a value of True, causes the frame to be displayed. If
passed a value of False, causes the frame to be hidden. The call
Show (False) is equivalent to Hide ().

ShowFullScreen(show, If the Boolean argument is True, the frame is displayed in full
style=wx.FULLSCREEN_ALL) screen mode—meaning it is enlarged to fill the entire display
including covering the taskbar or other system components on the
desktop. If the argument is False, the frame is restored to normal
size. The style argument is a bitmask. The default value,

wx . FULLSCREEN_ ALL, directs wxPython to hide all style elements
of the window when in full screen mode. The following other values
can be composed using bitwise operations to suppress certain
parts of the frame in full screen mode:

wx . FULLSCREEN NOBORDER, wx .FULLSCREEN NOCAPTION,
wx . FULLSCREEN NOMENUBAR,

wx . FULLSCREEN NOSTATUSBAR,

wx . FULLSCREEN NOTOOLBAR.

The setDimensions () method described in table 8.5 uses a bitmask of size flags
to define default behavior if the user specifies -1 as the value for a dimension.
Table 8.6 describes those flags.

These methods do not cover the subject of locating specific children that are
contained by a frame. This subject requires its own section to describe it fully.

Using frames 237

Table 8.6 Size flags for the method SetDimensions

Flag -1 interpreted as
wx .ALLOW_MINUS_ONE a valid position or size
wx.SIZE AUTO converted to a wxPython default
wx.SIZE AUTO HEIGHT a valid width, or a wxPython default height
wx.SIZE AUTO WIDTH a valid height, or a wxPython default width
wx.SIZE_USE_EXISTING the current value should be carried forward

8.2.2 How do I find a subwidget of a frame?

Occasionally, you'll need to find a specific widget on a frame or panel without
already having a reference to that widget. A common application of this, as shown
in chapter 6, is to find the actual menu item object associated with a menu selec-
tion (since the event doesn’t hold a reference to it). Another use case is when you
want an event on one item to change the state of an arbitrary other widget in the
system. For example, you may have a button and a menu item that mutually
change each other’s toggle state. When the button is clicked, you need to get the
menu item to toggle it. Listing 8.6 displays a small example taken from chapter 7.
In this code, the FindItemById () method is used to acquire the menu item associ-
ated with the ID provided by the event object. The label from that item is used to
drive the requested color change.

def OnColor(self, event):
menubar = self.GetMenuBar ()
itemId = event.GetId()
item = menubar.FindItemById (itemId)
color = item.GetLabel ()
self.sketch.SetColor (color)

In wxPython, there are three methods for finding a subwidget, all of which act
similarly. These methods are applicable to any widget that is used as a container,
not just frames, but also dialogs and panels. You can look up a subwidget by inter-
nal wxPython ID, by the name passed to the constructor in the name argument, or
by the text label. The text label is defined as the caption for widgets that have a
caption, such as buttons and frames.

238

8.2.3

CHAPTER 8
Putting widgets in frames

The three methods are:

B wx.FindWindowById(id, parent=None)
B wx.FindWindowByName (name, parent=None)

B wx.FindWindowByLabel (label, parent=None)

In all three cases, the parent argument can be used to limit the search to a partic-
ular subhierarchy (i.e., it’s equivalent to calling the Find method of that argu-
ment). Also, FindWindowByName () looks first in the name arguments’ if it does not
find a match, it calls FindWwindowByLabel () to look for a match.

How do I create a frame with a scrollbar?
In wxPython, scrollbars are not an element of the frame itself, but rather are con-
trolled by the class wx.ScrolledWindow. You can use a wx.ScrolledWindow any place
that you would use a wx. Panel, and the scrollbars move all the items that are inside
that scrolled window. Figure 8.5 and figure 8.6 display a scroller in action, both in
its initial state and after it has been scrolled. The top-left button scrolls off the view-
port, and the lower-right button scrolls on.

In this section, we’ll discuss how to create a window with a scrollbar and how to
manipulate the scrolling behavior from within your program.

[~ v
£] 1111 I [i] lﬂ [111 I)]
Figure8.5 Awx.Scrolled-Window Figure 8.6 The same window
after initial creation after it has been scrolled

How to create the scrollbar
Listing 8.7 displays the code used to create the scrolled window.

Listing 8.7 Creating a simple scrolled window

import wx

class ScrollbarFrame (wx.Frame) :
def init (self):
wx.Frame. init (self, None, -1, 'Scrollbar Example',
size=(300, 200))

Using frames 239

self.scroll = wx.ScrolledWindow(self, -1)
self.scroll.SetScrollbars (1, 1, 600, 400)
self.button = wx.Button(self.scroll, -1, "Scroll Me",
pos= (50, 20))
self.Bind (wx.EVT_ BUTTON, self.OnClickTop, self.button)
self.button2 = wx.Button(self.scroll, -1, "Scroll Back",
pos= (500, 350))
self.Bind (wx.EVT_BUTTON, self.OnClickBottom, self.button2)

def OnClickTop (self, event):
self.scroll.Scroll (600, 400)

def OnClickBottom(self, event) :
self.scroll.Scroll (1, 1)

if _name_ == '_ _main_':
app = wx.PySimpleApp ()
frame = ScrollbarFrame ()

frame. Show ()
app.MainLoop ()

The constructor for wx.ScrolledwWindow is nearly identical to the one for wx. Panel:

wx.ScrolledWindow (parent, id=-1, pos=wx.DefaultPosition,
size=wx.DefaultSize, style=wx.HSCROLL | wx .VSCROLL,
name="scrolledWindow")

All of the attributes behave as you might expect, although the size attribute is the
physical size of the panel within its parent, and not the logical size of the window
for scrolling.

Specifying scroll area size
There are several automatic methods of specifying the size of the scrolling area.
The most manual way, as displayed in listing 8.1, uses the method SetScrollBars:

SetScrollbars (pixelsPerUnitX, pixelsPerUnitY, noUnitsX, noUnitsy,
xPos=0, yPos=0, noRefresh=False)

The key concept is that of scroll unit, which is the amount of space the window
shifts for one movement of the scrollbar (often called a thumb shift, as opposed
to a page shift). The first two parameters, pixelsPerUnitX and PixelsPerUnitY
allow you to set the size of a scroll unit in both dimensions. The second two
parameters, noUnitsX, and noUnitsY allow you to set the size of the scroll area in
terms of scroll units. In other words, the size of the scroll area in pixels is (pixels-
PerUnitX * noUnitsX, pixelsPerUnitY * noUnitsY). Listing 8.7 avoids any potential

240

CHAPTER 8
Putting widgets in frames

confusion by making the scroll unit one pixel. The xPos and yPos parameters
allow you set the initial position of the scrollbars in terms of scroll units (not pix-
els), and the norRefresh argument, if true, prevents automatic refresh of the win-
dow after any scroll caused by the SetScrollbars() call.

There are three other methods that you can use to set the size of the scrolling
area and then separately set the scroll rate. You might find these methods easier
to use, because they allow you to specify dimensions more directly. You can use
the scroll window method setvirtualSize (), by setting the size directly in pixels,
as in the following.

self.scroll.SetVirtualSize ((600, 400))

Using the method FitInside(), you can set up the widgets inside the scroll area
so that the scroll window bounds them. This method sets the boundaries of the
scroll window to the minimum required to exactly fit all sub-windows:

self.scroll.FitInside()

A common use case for FitInside () is when there is exactly one widget inside the
scroll window (like a text area), and the logical size of that widget has already been
set. If we had used FitInside() in listing 8.7, a smaller scroll area would have
been created, since the area would exactly match the edge of the lower-right but-
ton, rather than having additional padding.

Finally, if the scroll window has a sizer set inside it, using SetSizer () sets the
scrolling area to the size of the widgets as managed by the sizer. This is the mech-
anism used most frequently in a complex layout. For more detailed information
about sizers, see chapter 11.

With all three of these mechanisms, the scroll rate needs to be set separately
using the method setscrollRate (), as in the following.

self.scroll.SetScrollRate (1, 1)

The arguments are the scroll unit size in the x and y directions, respectively. A size
greater than zero enables scrolling in that direction.

Scrollbar events
The button event handlers in listing 8.7 programmatically change the position of
the scrollbars using the Scroll () method. This method takes the x and y coordi-
nates of the scroll window, using scroll units and not pixels.

In chapter 7, we promised a listing of the events you can capture from a scroll-
bar, since they are also used to control sliders. Table 8.7 lists all scroll events

Using frames 241

handled internally by the scroller window. Typically, you won’t use many of these
events unless you are building custom widgets.

Table 8.7 Events of a scroll bar

Event Type Description

EVT_SCROLL Called when any scroll event is triggered.

EVT_SCROLL_BOTTOM Triggered when the user moves the scrollbar to the maximum end of its
range (the bottom or right side, depending on orientation).

EVT_SCROLL_ENDSCROLL On MS Windows, triggered at the end of any scrolling session, whether
it be caused by mouse drag or key press.

EVT_SCROLL_LINEDOWN Triggered when the user moves the scrollbar down one line.

EVT_SCROLL_LINEUP Triggered when the user moves the scrollbar up one line.

EVT_SCROLL_PAGEDOWN The user has moved the scrollbar down one page.

EVT_SCROLL_PAGEUP The scrollbar has moved up one page.

EVT_SCROLL_THUMBRELEASE Called at the end of any scroll session that has been driven by the user
actually dragging the scrollbar thumb with the mouse.

EVT_SCROLL THUMBTRACK Called repeatedly while the thumb is being dragged.

EVT_SCROLL_TOP Triggered when the user moves the scrollbar to the minimum end of its
range, which is either the top or left, depending on orientation.

The exact definition of line and page depends on the scroll units you've set, one
line is one scroll unit and one page is the number of complete scroll units that fit
in the visible portion of the scrolled window. For each of the EVT_scroLL* events
listed in the table there is a corresponding EVT_SCROLLWIN* event emitted by the
wx.ScrolledWindow in response to the events from its scroll bars.

There is a wxPython-specific scrolled window subclass, wx.1ib.scrolledpanel.
Scrolledpanel, that allows you to automatically set up scrolling on panels that are
using a sizer to manage the layout of child widgets. An added benefit of the
wx.lib.scrolledpanel.ScrolledPanel is it allows the user to select the tab key to
move between subwidgets. The panel automatically scrolls to put the newly
focused widget in view. To use wx.lib.scrolledpanel.Scrolledpanel, declare it
like a scrolled window, then, after all the sub-windows have been added, call the
following method.

SetupScrolling(self, scroll x=True, scroll y=True, rate x=20,
rate_y=20)

242

CHAPTER 8
Putting widgets in frames

The rate x and rate_y are the scroll units of the window, and the class automat-
ically sets the virtual size based on the size of the subwidgets as calculated by
the sizer.

Remember, when determining the position of a widget inside a scrolled win-
dow, its position is always the physical position of the widget relative to the actual
origin of the scroll window in the display frame, not the widget’s logical position
relative to the virtual size of the frame. This is true even if the widget is no longer
visible. For example, after clicking on the Scroll Me button in figure 8.5, the but-
ton reports its position as (-277, -237). If this isn’t what you want, switch between
the display coordinates and the logical coordinates using the methods calc-
ScrolledPosition (x, y) and CalcUnscrolledPosition (x, y). In each case, after the
button click moves the scroller to the bottom right, you pass the coordinates of
the point, and the scroll window returns an (x, y) tuple, as in the following.

CalcUnscrolledPostion(-277, -237) returns (50, 20)

8.3 Alternative frame types

8.3.1

Frames are not limited to ordinary rectangles with widgets inside, they can assume
other shapes. You can also create MDI frames which contain other frames inside.
Or you can leave the title bar off the frame, and still allow the user to drag the
frame around.

How do I create an MDI frame?

Remember MDI? Many people don’t. MDI was an early "90s Microsoft innovation,
that allowed multiple child windows in an application to be controlled by a single
parent window, essentially providing a separate desktop for each application. In
most applications, MDI requires all windows in the application to minimize
together and maintain the same z-order relative to the rest of the system, which is
limiting. We recommend using MDI only in cases where the user expects to see all
of the application windows together, such as a game. Figure 8.7 displays a typical
MDI environment.

MDI is supported in wxPython by using native widgets under Windows oper-
ating systems, and simulating the child windows in other operating systems. List-
ing 8.8 provides a simple example of MDI in action.

Alternative frame types

File Window
2 Child Window
[B3Child Window

Figure 8.7
An MDI window

243

Listing 8.8 How to create an MDI window

import wx

class MDIFrame (wx.MDIParentFrame) :
def init (self):
wx.MDIParentFrame. init (self, None, -1, "MDI Parent",
size=(600,400))
menu = wx.Menu ()
menu.Append (5000, "&New Window")
menu.Append (5001, "E&xit")
menubar = wx.MenuBar ()
menubar.Append (menu, "&File")
self.SetMenuBar (menubar)
self .Bind (wx.EVT_MENU, self.OnNewWindow, i1d=5000)
self.Bind (wx.EVT_MENU, self.OnExit, 1d=5001)

def OnExit (self, evt):
self.Close (True)

def OnNewWindow (self, evt):
win = wx.MDIChildFrame (self, -1, "Child Window")
win.Show (True)

if name == ' main_ ':
app = wx.PySimpleApp ()
frame = MDIFrame ()
frame. Show ()
app.MainLoop ()

244

8.3.2

CHAPTER 8
Putting widgets in frames

The basic concept of MDI is quite simple. The parent window is a subclass of
wx.MDIParentFrame, and child windows are added just like any other wxPython
widget, except that they are subclasses of wx.MDIChildFrame. The wx.MDIParent-
Frame constructor is almost identical to wx.Frame, as in the following:
wx .MDIParentFrame (parent, id, title, pos = wx.DefaultPosition,
size=wxDefaultSize,
style=wx.DEFAULT_FRAME STYLE | wx.VSCROLL | wx.HSCROLL,
name="frame")
One difference is that a wx.MDIParentFrame has scrolling on by default. The
wx .MDIChildFrame constructor is identical, except that it does not have the scroll-
ing. As in listing 8.8, adding the child frame is accomplished by creating one,
with the parent frame as the parent.

You can change the position and size of all child frames simultaneously by
using the parent frame methods Cascade () or Tile (), which mimic the common
menu items of the same name. Calling cascade (), causes the windows to appear
one on top of the other, as in figure 8.7, while Tile () makes each window the
same size and moves them so they don’t overlap. To programmatically move
the focus among the child windows, use the parent methods ActivateNext () and
ActivatePrevious ().

What’s a mini-frame and why would I use it?

A mini-frame is just like a regular frame
with two primary exceptions: it has a
smaller title area, and it doesn’t display in
the window task bar under MS Windows or
GTK. Figure 8.8 displays an example of a
smaller title area.

The code for creating the mini-frame is
almost identical to creating a regular frame, the only difference is that the parent
class is now wx.MiniFrame. Listing 8.9 displays the code.

Mini Frame =

Figure 8.8 A mini-frame in action

import wx

class MiniFrame (wx.MiniFrame) :
def init (self):
wx.MiniFrame. init_(self, None, -1, 'Mini Frame',
size=(300, 100))
panel = wx.Panel(self, -1, size=(300, 100))

8.3.3

Alternative frame types 245

button = wx.Button(panel, -1, "Close Me", pos=(15, 15))
self.Bind(wx.EVT BUTTON, self.OnCloseMe, button)
self.Bind (wx.EVT_CLOSE, self.OnCloseWindow)

def OnCloseMe (self, event):
self.Close (True)

def OnCloseWindow (self, event):
self .Destroy ()

if name == ' main_ ':
app = wx.PySimpleApp ()
MiniFrame () .Show ()

app.MainLoop ()
||

The constructor for wx.MiniFrame is identical to the constructor for wx.Frame,
however the mini-frame supports additional style flags, listed in table 8.8.

Table 8.8 Style flags for wx.MiniFrame

Style Description

wx.THICK_FRAME Under MS Windows or Motif, draws the frame with a thick border.

wx.TINY_CAPTION_HORIZONTAL Replaces wx . CAPTION to display a smaller horizontal caption.

wx.TINY_CAPTION_VERTICAL Replaces wx . CAPTION to display a smaller vertical caption.

Typically, mini-frames are used in toolbox windows (i.e., Photoshop), where they
are always available and they don’t clutter up the task bar. The smaller caption
makes them more space efficient, and visually separates them from normal frames.

How do I make a non-rectangular frame?

In most applications, frames are rectangles because rectangles have a nice regular
shape and are relatively simple for an application to draw and maintain. Some-
times, though, you need to break out of the straight line straitjacket. In wxPython,
you can give a frame an arbitrary shape. If an alternate shape is defined, the parts
of the frame that are outside the shape are not drawn, and do not respond to
mouse events; as far as the user is concerned, they are not part of the frame. Fig-
ure 8.9 displays a sample shaped window, displayed against a backdrop of the
code in the text editor.

Events are set up so that a double-click toggles the non-standard shape on and
off, and a right-click closes the window. This example uses the images module from
the wxPython demo as the source of the image of Vippi, the wxPython mascot.

246

CHAPTER 8
Putting widgets in frames

eaRrame(wx.FramE] H

(=elf):

._ipnit (self, None, -1, "S5
style = wx.FRAME SHAPED | wx
[F*. FRAME MO TASKBAR)

thape = False

= images.getVippiBitmap ()
ClientSize | (self.bmp.GetWidt

class ,Bfap
da

(s

0,0, True)

Figure 8.9
A window shaped into a

pi ck (se1f, ev familiar non-rectangular shape

Listing 8.10 displays the code behind the non-rectangular frame (assuming that
you can’t read it behind the mascot in figure 8.9). This example is slightly more
elaborate than some of the others we’ve seen, to display how to manage things
like window closing in the absence of typical window interface decorations.

import wx
import images

class ShapedFrame (wx.Frame) :
def _ init_ (self):

wx.Frame. init (self, None, -1, "Shaped Window",
style = wx.FRAME_SHAPED | wx.SIMPLE BORDER |
wx . FRAME_NO_TASKBAR) Acquiring

self.hasShape = False theimage

self .bmp = images.getVippiBitmap ()

self.SetClientSize((self.bmp.GetWidth(), self.bmp.GetHeight()))

dc = wx.ClientDC (self) Drawing

dc.DrawBitmap (self.bmp, 0,0, True) the image

self.SetWindowShape ()

self.Bind (wx.EVT_LEFT DCLICK, self.OnDoubleClick)

self.Bind (wx.EVT_RIGHT_UP, self.OnExit)

self .Bind (wx.EVT_ PAINT, self.OnPaint)

self.Bind (wx.EVT WINDOW CREATE, self.SetWindowShape)

Binding
. the
def SetWindowShape (self, evt=None) : window
r = wx.RegionFromBitmap (self.bmp) Setting create
self.hasShape = self.SetShape(r) theshape event

def OnDoubleClick(self, evt):
if self.hasShape:

Alternative frame types 247

self.SetShape (wx.Region())

self.hasShape = False
else:

self.SetWindowShape ()

Resetting
the shape

def OnPaint (self, evt):
dc = wx.PaintDC(self)
dc.DrawBitmap (self.bmp, 0,0, True)

def OnExit (self, evt):
self.Close()

if __name_ == '__main_ ':
app = wx.PySimpleApp ()
ShapedFrame () .Show ()
app.MainLoop ()
||

O After getting the image from the images module, we set the size of the inside por-

tion of the window to the size of the bitmap. You can also create the wxPython bit-
map from a regular image file, which will be discussed in more detail in chapter 16.

In this case, we're drawing the image in the window. This is by no means an inev-
itable choice. You can place widgets and text inside a shaped window just like any
other one (although they must be inside the shape region).

This event, which forces a call to SetWindowShape () after the window is created,
is redundant on most platforms. However, the GTK implementation requires
that the native UI object for the window be created and finalized before the
shape is set, so we use the window create event to be notified when that happens
and set the shape in its handler.

O We use the global method wx.RegionFromBitmap to create the wx.Region object

(5]

needed to set the shape. This is the easiest way to create an irregular shape. You
can also create a wx.Region from a list of points that define a polygon. The trans-
parent portion of the image’s mask is used as the boundary for the purpose of
defining the region.

The double-click event toggles the shape of the window. To return the shape to the
normal rectangle, call Setshape () with an empty wx.Region as the argument.

Except for the behavior around the edges and the fact that it doesn’t have a nor-
mal close box or title bar, the shaped frame behaves like an ordinary frame. Any
frame can change its shape, since the SetShape () method is part of the wx.Frame
class, it would be inherited by any subclass. A shaped frame is particularly effec-
tive in a wx.SplashScreen.

248 CHAPTER 8

Putting widgets in frames

8.3.4 How can I drag a frame without a title bar?

One obvious result of the previous example is that the frame is stuck—in the
absence of a title bar, there’s no standard method of dragging the window. To
resolve this problem, we need to add event handlers to move the window when
dragging occurs. Listing 8.11 displays the same shaped window as before, with
the addition of some events for handling left mouse clicks and mouse moves.
This technique is applicable to any other frame, or even to a window inside a

frame that you want to move (such as an element in a draw program).

Listing 8.11 Events to allow a user to drag a frame from the body of the frame

import wx
import images

class ShapedFrame (wx.Frame) :

def

def

def

def

__init (self):
wx.Frame. init (self, None,
style
hasShape
delta
bmp

-1,

self.
self.
self.
self.
dc wx.ClientDC (self)

dc.DrawBitmap (self.bmp,
self.SetWindowShape ()

self.Bind(wx.EVT LEFT DCLICK,
self.Bind (wx.EVT_LEFT_ DOWN,
self.Bind (wx.EVT_LEFT UP,
self.Bind (wx.EVT_ MOTION,
(
(
(

False
wx.Point (0,0)
images.getVippiBitmap ()

0,0, True)

X
X
X
self.Bind (wx.EVT_RIGHT UP,
self.Bind (wx. EVT_PAINT,
self.Bind (wx.EVT WINDOW CREATE,
SetWindowShape (self, evt=None) :
r wx.RegionFromBitmap (self.bmp)
self.hasShape self.SetShape (r)

OnDoubleClick (self,
if self.hasShape:
self.SetShape (wx.Region())
self.hasShape False
else:
self.SetWindowShape ()

evt) :

OnPaint (self, evt):
dc = wx.PaintDC (self)
dc.DrawBitmap (self.bmp,

0,0, True)

SetClientSize ((self.bmp.GetWidth(),

"Shaped Window",

wx .FRAME SHAPED | wx.SIMPLE BORDER)

self.bmp.GetHeight ()))

self.OnDoubleClick)
self.OnLeftDown)
self.OnLeftUp)
self.OnMouseMove)
self.OnExit)
self.OnPaint)
self.SetWindowShape)

New
events

Alternative frame types ‘ 249

def OnExit (self, evt):
self.Close()

def OnLeftDown (self, evt):
Mouse down
self.CaptureMouse ()
pos = self.ClientToScreen (evt.GetPosition())
origin = self.GetPosition/()

self.delta = wx.Point (pos.x - origin.x, pos.y - origin.y)

def OnMouseMove (self, evt): M
. . ouse move
if evt.Dragging() and evt.LeftIsDown () : G!\\
pos = self.ClientToScreen(evt.GetPosition())
newPos = (pos.x - self.delta.x, pos.y - self.delta.y)
self .Move (newPos)
def OnLeftUp(self, evt):
. Mouse
if self.HasCapture(): u
self.ReleaseMouse () P

if name == ' main ':
app = wx.PySimpleApp ()
ShapedFrame () . Show ()
app .MainLoop ()
|

O Were adding handlers for three events to make this work. Left mouse down, left
mouse up, and mouse movement.

@ A drag event starts when the left mouse is pressed. This event handler does two
things. First, it captures the mouse, which prevents mouse events from being sent
to other widgets until the mouse is released. Second, it calculates an offset between
the position of the event and the upper left-hand corner of the window, which will
be used to calculate the new position of the window as the mouse moves.

© This handler, called when the mouse moves, first checks to see if the event is a
drag with the left button down. If so, it uses the new position of the mouse and the
previously calculated offset to determine the new position of the window, and
moves the window.

O When the left mouse button is released, ReleaseMouse () is called, which again
allows mouse events to be sent to other widgets.

This drag technique can be refined to suit other needs. For example, if the
mouse click should only start a drag if it is within is a defined region, you can do
a test on the initial location of the mouse down event and only enable dragging
if the click is in the right place.

250 CHAPTER 8
Putting widgets in frames

8.4 Using splitter windows

A splitter window is a particular kind of container widget that manages exactly
two sub-windows. The two sub-windows can be stacked horizontally or next to
each other left and right. In between the two sub-windows is a sash, which is a
movable border that changes the size of the two sub-windows. Splitter windows
are often used for sidebars to the main window (i.e., a browser). Figure 8.10 dis-
plays a sample splitter window.

Splitter windows are useful when you have two panes of information and want
the user to independently determine the size of each pane. Mac OS X Finder win-
dows are an example of splitter window, and many text editors or graphics pro-
grams use something similar to maintain a list of open files.

8.4.1 Creating a splitter window

In wxPython, a splitter window is an instance of the class wx.SplitterWindow.
Unlike most other wxPython widgets, splitter windows require further initializa-
tion after they are created before they can be used. The constructor is pretty
straightforward.

Splitter Example

R A ——

Figure 8.10 A sample splitter window after initialization

Using splitter windows 251

wx.SplitterWindow (parent, id=-1, pos=wx.DefaultPosition,
size=wx.DefaultSize, style=wx.SP_3D,
name="splitterWindow")
The parameters have the standard meanings—parent is the container for the
widget, pos is the widget’s location on its parent, size is its size.

After creating the splitter window, you must call one of three methods on the
window before it can be used. If you want your splitter to initially display with
only one sub-window, call Initialize (window), where the window parameter is the
single sub-window (typically a kind of wx . Panel). In this case, the window will split
later on in response to some user action.

To display the splitter already split, use either SplitHorizontally (windowl,
window2, sashPosition=0) or SplitVertically(windowl, window2, sashPosition=
0). Both methods work similarly, with the windowl and window2 parameters con-
taining the two sub-windows, and the sashPosition parameter containing the ini-
tial location of the sash. For the horizontal version, windowl is placed on top of
window2. If the sashPosition is a positive number, it represents the initial height
of the top window (i.e., the sash is that number of pixels from the top). If sashpo-
sitionis a negative number, it defines the size of the bottom window, or the num-
ber of pixels from the bottom. If the sashPosition is 0, then the sash goes in the
exact middle of the splitter. In the vertical split method, windowl is on the left,
and window2 is on the right. Again, a positive sashPosition sets the size of windowl
and is the number of pixels the sash is from the left border. A negative sashposi-
tion similarly sets the size of the right window, and an 0 puts the sash in the cen-
ter. If your sub-windows are complex, we recommend that you use sizers in the
layout so that they react gracefully to the window resizing when the sash is moved.

8.4.2 A splitter example

The sample code in listing 8.12 displays how the splitter can be created in one
sub-window and split later in response to a menu selection. This listing also uses
some events that we’ll talk about later. Notice how the sub-panel that we don’t
plan on making visible in the splitter right away is hidden by calling its Hide ()
method. We do this because we will not initially be telling the splitter to manage
the size and placement of that sub-panel, so we hide it to get it out of the way. If
we were to split the splitter and display both sub-panels at the beginning, we
wouldn’t have to worry about this.

252

CHAPTER 8
Putting widgets in frames

ng 8.12 How to create your very own splitter window

import wx

class SplitterExampleFrame (wx.Frame) :

def _ init (self, parent, title):
wx.Frame. init (self, parent, title=title)
self .MakeMenuBar ()
self.initpos = 100
self.sp = wx.SplitterWindow (self)
self.pl = wx.Panel (self.sp, style=wx.SUNKEN_BORDER)
self.p2 = wx.Panel (self.sp, style=wx.SUNKEN_ BORDER) <FW

self.p2.Hide () .
self.pl.SetBackgroundColour ("pink") j En;urmg Ithehs'I;:Ire
self.p2.SetBackgroundColour ("sky blue") sub-panel Is hidden

self.sp.Initialize(self.pl) eps 1o e .
self.sp.SetMinimumPaneSize (10) Q_WInumhnngasphuer

def MakeMenuBar (self) :

menu = wx.Menu ()

item = menu.Append (-1, "Split horizontally")

self.Bind (wx.EVT _MENU, self.OnSplitH, item)

self.Bind (wx.EVT_UPDATE UI, self.OnCheckCanSplit, item)

item = menu.Append (-1, "Split vertically")

self.Bind (wx.EVT _MENU, self.OnSplitV, item)

self.Bind (wx.EVT_UPDATE UI, self.OnCheckCanSplit, item)

item = menu.Append (-1, "Unsplit")

self.Bind (wx.EVT _MENU, self.OnUnsplit, item)

self.Bind (wx.EVT_UPDATE UI, self.OnCheckCanUnsplit, item)

menu.AppendSeparator ()

item = menu.Append (wx.ID EXIT, "E&xit")

self.Bind (wx.EVT_MENU, self.OnExit, item)

mbar = wx.MenuBar ()

mbar.Append (menu, "Splitter")

self.SetMenuBar (mbar)
def OnSplitH(self, evt): <1 Responding to a split horizontal request

self.sp.SplitHorizontally(self.pl, self.p2, self.initpos)
def onSplitV(self, evt): <] Responding to a split vertical request
self.sp.SplitVertically(self.pl, self.p2, self.initpos)

def OnCheckCanSplit (self, evt):
evt.Enable (not self.sp.IsSplit())

def OnCheckCanUnsplit (self, evt):
evt .Enable (self.sp.IsSplit())

def OnUnsplit (self, evt):
self.sp.Unsplit ()

< Creating a splitter window

8.4.3

Using splitter windows 253

def OnExit (self, evt):
self.Close()

app = wx.PySimpleApp (redirect=True)

frm = SplitterExampleFrame (None, "Splitter Example")

frm.SetSize ((600,500))

frm.Show ()

app.SetTopWindow (frm)

app .MainLoop ()

||

A splitter window can be split only one way at a time. An attempt to split a window
that is already split will fail, resulting in the split method returning False (on suc-
cess, it will return True). To determine if the splitter is currently split, call the
method IsSplit (). This is done in listing 8.12 to ensure that the proper menu
items are always enabled.

If you want to unsplit the window, use Unsplit (toRemove=None). The toRemove
parameter is the actual wx.window object to remove, and must be one of the two
sub-windows. If toRemove is None, the bottom or right window is removed,
depending on the orientation of the splitter. By default, the removed window is
not deleted by wxPython, so you can add it back later. The unsplit method returns
True if the unsplit is successful. If the splitter is not currently split, or if the tore-
move argument is not one of the splitter sub-windows, the method returns False.

To ensure you have an accurate reference to the sub-window you want, use the
getter methods GetWindowl() and GetWindow2(). The GetWindowl() method
returns the top or left sub-window, while Getwindow2 () returns the bottom or right
window. Since there isn’t a direct setter, to change a sub-window, use the method
ReplaceWindow (winOld, winNew), where win0ld is the wx.Window object you are
replacing, and winNew is the new window to display.

Changing the appearance of the splitter

A number of style flags control the onscreen appearance of the splitter window.
Note that since the splitter attempts to draw the sash in a manner that blends
with the native platform controls, not all of the style flags listed will affect all sys-
tems. Table 8.9 describes the available flags.

As we’ll see in the next section, you can also change the display of the splitter
from your application, either in response to user action or on your own whim.

254

8.4.4

CHAPTER 8
Putting widgets in frames

Table 8.9 Style flags for the splitter window

Style Description
wx.SP_3D Draw the border and sash with a 3D effect. This is the default style.
wx.SP_3DBORDER Draws the border in a 3D style, but not the sash.
wx.SP_3DSASH Draws the sash in a 3D style, but not the border.
wx.SP_BORDER Draws a non-3D border around the window.
wx.SP_LIVE_UPDATE Changes the default behavior for responding to a sash move. If this flag is not

set, a line is drawn to indicate the new sash position while the user drags the
sash. The sub-window sizes are not actually updated until the sash drag ends.
If this flag is set, then the sub-windows are continually resized, repositioned,
and redrawn as the sash is dragged.

wx.SP_NOBORDER Does not draw any border at all.

wx.SP_NO_XP_THEME Under Windows XP systems, does not use the XP theme for the sash, giving
the window a more classic windows look.

wx.SP_PERMIT_UNSPLIT | If set, the window can always be unsplit. If not set, you can prevent the window
from being unsplit by setting the minimum pane size greater than zero.

Manipulating the splitter programmatically

Once the splitter window is created, you can use window methods to manipulate
the position of the sash. Specifically, you can use the method Setsashposi-
tion(position, redraw=True) to move the sash. The position is the new posi-
tion in pixels, defined from the top for a horizontal sash, or from the left for a
vertical one. Negative indexes are used as in the split methods to indicate posi-
tion from the other side. If redraw is True, the window updates immediately, oth-
erwise it waits for a regular window refresh. The behavior of the set method is
not defined if your pixel value is out of range. To get the current sash position,
use GetSashPosition().

Under the default splitter behavior, the user can move the sash anywhere
between the two borders. Moving the sash all the way to one border reduces the
size of one sub-window to zero, causing a de facto unsplit of the window. To pre-
vent this, you can specify the minimum size of the sub-windows using the method
SetMinimumPaneSize (paneSize). The paneSize parameter is the minimum pixel
size of a sub-window. The user is prevented from dragging the sash far enough to
create a smaller sub-window, and programmatic changes to the sash position are
similarly constrained. As mentioned earlier in this chapter, you can allow pro-
grammatic unsplitting even in a minimum sub-window size, by declaring the

8.4.5

Using splitter windows 255

window with the style wx.sp_PERMIT UNSPLIT To get the current minimum sub-
window size, use the method GetMinimumPaneSize ().

Change the split mode of the window with the method setSplitMode (mode),
where the mode parameter is one of the constants wx.SPLIT VERTICAL oOr
wx.SPLIT HORIZONTAL. If the mode changes, the top window becomes the left,
while the bottom becomes the right (and vice-versa if the switch is the other way).
This method does not cause a redraw of the window, instead, you must explicitly
force a redraw. You can get the current split mode with GetsplitMode () which
returns one of the two constant values. If the window is currently unsplit,
GetSplitMode () returns the most recent split mode.

Typically, if the wx.Sp_LIVE UPDATE style is not set, the sub-windows only
resizes at the end of a sash drag session. If you want to force a sub-window redraw
at any other time, you can use the method UpdateSize ().

Responding to splitter events

Splitter windows trigger events of type wx.SplitterEvent. There are four differ-
ent event types of the splitter window, as listed in table 8.10.

Table 8.10 Event types of the splitter window

Event Type Description

EVT_SPLITTER_DCLICK Triggered when the sash is double-clicked. Trapping this event
does not block the normal unsplit behavior of this action, unless
you call the event Veto () method.

EVT_SPLITTER_SASH_POS_CHANGED Triggered at the end of a sash change, but before the change is
displayed on screen (so you can react to it). This event can also
be halted with veto ().

EVT_SPLITTER_SASH_POS_CHANGING | Triggered repeatedly when the sash is being dragged. This event
can be halted by using the event veto () method, in which
case the sash position does not change.

EVT_SPLITTER_UNSPLIT This is triggered after the splitter has unsplit.

The splitter event class is a subclass of wx.CommandEvent. From the splitter event
instance, you can get access to information about the current state of the splitter
window. For the two events that concern the movement of the sash, call GetSash-
Position() to recover the sash position relative to the left or the top, depending
on the splitter orientation. In the position changing event, call setSashposi-
tion(pos), and the XOR tracking line showing the expected position of the sash

256

CHAPTER 8
Putting widgets in frames

moves to the new position. In the position changed event, the same method will
move the sash itself. For the double-click event, you can get the exact location of
the click using the event’s Getx () and GetY() methods. For an unsplit event, you
can tell which window is going away using the GetWindowBeingRemoved () method.

8.5 Summary

Most user interaction in a wxPython program takes place inside either a
wx.Frame or a wx.Dialog. The wx.Frame class represents what a user would
typically call a window. Instances of wx.Frame are created in much the same
way as other wxPython widgets. A typical usage of wx.Frame involves creat-
ing a subclass which extends the base class, usually by defining subwidgets,
layout, and behavior. Usually, a frame contains a single top level subwidget
of type wx.Panel or some other container window.

There are a variety of style flags specific to wx.Frame. Some of these flags
affect the size and shape of the frame, others affect how it is drawn relative
to other frames in the system, and others define what interface decorators
are on the frame border. In some cases, a two-stage creation process is
needed to define a style flag.

A request can be made to close a frame by calling the close () method. This
gives the frame an opportunity to close any resources it might be holding.
The frame can also veto a close request. Calling the Destroy() method
forces a frame to go away without reprieve.

A specific subwidget inside a frame can be found using its wxPython 1D, its
name, or its text label.

Scrolling is managed by including a container widget of type wx.Scrolled-
window. There are several ways to set the scrolling parameters, the easiest is
to use a sizer inside the scrolled window, in which case wxPython automat-
ically determines the virtual size of the scroll panel. However, the virtual
size can be set manually if desired.

There are a couple of different frame subclasses that allow for different looks.
The class wx.MDIParentFrame can be used to create an MDI, while a wx.Mini -
Frame can create a toolbox-style window with a smaller title bar. Frames can
be made to appear non-rectangular using the Setshape () method. The
region can be defined by any bitmap, with a simple color mask to determine
the edge of the region. Non-rectangular windows are usually without the
normal title bar allowing the frame to be dragged, but that can be managed
by explicitly handling mouse events.

Summary 257

m A draggable sash between two sub-windows can be implemented using
wx.SplitterWindow, which can be manipulated interactively by the user or
programmatically if needed.

In the next chapter, we’ll discuss dialog boxes, which behave similarly to frames.

Giuing users choices

with dialogs

This chapter covers

Creating modal dialogs and alert boxes
Using standard dialogs

Creating wizards

Showing startup tips

Creating validators and using them
to transfer data

258

9.1

9.1.1

Working with modal dialogs 259

Where frames are used for long-term interactions with the user, a dialog is typi-
cally used to get a small amount of information from the user, and is then quickly
dispatched. Dialog windows are often modal, which means that no other frame in
the application can handle events until the dialog is closed. In this chapter we will
discuss the many varieties of dialogs available in wxPython. In addition to allow-
ing you to create your own dialog styles, wxPython provides you with several pre-
defined dialog types. These predefined dialogs include both simple interactions,
such as a basic alert box, and more complex dialogs that mimic system interac-
tions, such as page layout or file selection.

Working with modal dialogs

Modal dialogs are used for quick interactions with the user or for any time that
information in a dialog absolutely must be entered before the user can move for-
ward in the program. Within wxPython, there are several standard functions to dis-
play basic modal dialogs. These dialogs include alert boxes, one line of text entry,
and choosing from a list. In the following sections, we’ll show you what these dia-
logs look like, and how using the predefined functions will make your life easier.

How do I create a modal dialog?

A modal dialog blocks other widgets from receiving (§i7iog Subclass B3
user events until it is closed; in other words, it
places the user in dialog mode for the duration of
its existence. As you can see from figure 9.1, you
can’t always distinguish between dialogs and Figure 9.1
frames by their appearance. In wxPython, the dif- A sample modal dlalog
ference between a dialog and a frame is not based on how they display, but is
largely a matter of the way in which they handle events.

A dialog is created and deployed somewhat differently from a frame. List-
ing 9.1 shows the code used to generate figure 9.1. After a dialog is displayed
and a button is clicked, the dialog closes, and a message is printed to stdout.

Fok] [cancel

import wx

class SubclassDialog(wx.Dialog) : . .
def _ init_ (self): < Initializing the dialog
wx.Dialog._ init__ (self, None, -1, 'Dialog Subclass',
size=(300, 100))

260

CHAPTER 9
Giving users choices with dialogs

okButton = wx.Button(self, wx.ID OK, "OK", pos=(15, 15))

okButton.SetDefault ()

cancelButton = wx.Button(self, wx.ID CANCEL, "Cancel",
pos= (115, 15))

if name_ == ' main_':
app = wx.PySimpleApp ()
dialog = SubclassDialog/()

result = dialog.ShowModal() <— Showing the modal dialog
if result == wx.ID_OK:

print "OK"
else:

print "Cancel"
dialog.Destroy ()
||

Compared to the wx.Frame examples in the previous chapter, there are a couple of
interesting things to note about this code. In the __init__ method, the button is
added directly to wx.Dialog, rather than to a wx.Panel. Panels are used much less
commonly in dialogs than in frames, partially because dialogs tend to be simpler
than frames, but largely because the features of a wx. panel (standard system back-
ground and tab key transversal through the controls) already exist by default
In wx.Dialog.

To get the dialog to display modally, use the ShowModal () method. This has a
different effect on program execution than the modeless show () method used for
frames. Your application will wait at the point of the showModal () call until the
dialog is dismissed. The dialog being shown is the only part of the wxPython
application that receives user events during that time, although system windows
from other applications will still work.

The mode continues until the dialog method EndModal (retCode) is called,
which closes the dialog. The retCode argument is an integer value, which is then
also returned by the original showModal () method. Typically, the application uses
the return value to learn how the user closed the dialog as a guide to future pro-
cessing. However, ending the mode does not destroy or even close the dialog.
Keeping the dialog around can be a good thing, because it means that you can
store information about the user’s selections as data members of the dialog
instance, and recover that information from the dialog even after the dialog is
closed. In the next sections, we’ll see examples of that pattern as we deal with dia-
logs where the user enters data for use elsewhere in the program.

Since there are no event handlers defined in listing 9.1, you may be wondering
how the dialog does anything in response to the button clicks. The behavior is
already defined in wx.Dialog. There are two predefined wxPython ID numbers

9.1.2

Working with modal dialogs 261

that have special meaning in dialogs. When a wx.Button with the ID wx.ID OK is
clicked in a dialog, the mode is ended, the dialog is closed, and wx . ID_OKis the return
value of the ShowModal () call. Similarly, a button with the ID wx.ID_CANCEL does the
same things, but returns the value wx.ID_CANCEL. It’s up to the rest of the applica-
tion to ensure that the semantics of OK and Cancel are appropriately enforced.

Listing 9.1 displays a typical method of dealing with a modal dialog. After the
dialog is invoked, the return value is used as the test in an if statement. In this
case, we simply print the result. In a more complex example, the wx.ID_ok branch
would implement the actions that the user took within the dialog, such as open-
ing the file or choosing the color.

Typically you should explicitly destroy a dialog when you are finished with it.
This signals the C+ + object that it should destroy itself which will then allow the
Python parts of it to be garbage collected. If you wish to reuse the dialog later in
your application without having to recreate it, perhaps to speed the response time
for complex dialogs, you can keep a reference to the dialog and simply call its
ShowModal () method when you need to activate it again. Be sure to destroy it when
the application is ready to exit, otherwise MainLoop () will see it as a still existing
top-level window and will not exit normally.

How do I create an alert box?

The three simplest ways of interacting with the user via a
dialog box are wx.MessageDialog, which represents an alert |A Message Box

box, wx.TextEntryDialog, which prompts the user to enter | | \‘r/ P
some short text, and wx.SingleChoiceDialog, which allows
the user to select from a list of available options. The next | Y= []
three sections discuss these simple dialogs.

A message box dialog displays a short message and Figure 9.2 ASta“da“;
. . message box, in a yes,

allows the user to press a l.)utton'ln response. Typically, configuration
message boxes are used to display important alerts, yes/no
questions, or to ask the user to continue with or cancel some action. Figure 9.2
displays a typical message box.

Using a message box is quite simple. Listing 9.2 displays two ways of creating a
message box.

import wx

if name_ == "_main_ ":
app = wx.PySimpleApp ()

262

CHAPTER 9
Giving users choices with dialogs

dlg = wx.MessageDialog(None, "Is this explanation OK?",

'A Message Box', Uﬁng
wx.YES NO | wx.ICON QUESTION) a class
retCode = dlg.ShowModal ()
if (retCode == wx.ID YES):
print "yes"
else:

print "no"
dlg.Destroy ()

Using a function

retCode = wx.MessageBox("Is this way easier?", "Via Function",
wx.YES NO | wx.ICON QUESTION)

||

Listing 9.2 creates two message boxes, one after the other. The first method cre-
ates an instance of the class wx.MessageDialog, and displays it using ShowModal ().

Using the wx.MessageDialog class

Using the constructor for the wx.MessageDialog, you can set the message and but-
tons for the dialog, as in the following:

wx.MessageDialog(parent, message, caption="Message box",
style=wx.OK | wx.CANCEL, pos=wx.DefaultPosition)

The message argument is the text that is actually displayed inside the body of the
dialog. If the message string contains \n newline characters, there will be line
breaks in the text. The caption argument is displayed in the title box of the dia-
log. The pos argument allows you to specify where the dialog is displayed on the
screen—under MS Windows, this argument is ignored.

The style flags for a wx.MessageDialog split into two types. The first type con-
trols the buttons that display in the dialog. Table 9.1 describes these styles.

Table 9.1 Button styles for a wx.MessageDialog

Button Style Description
wx.CANCEL Include a cancel button. This button will have the ID value of wx.ID_CANCEL.
wx.NO_DEFAULT In a wx.YES_NO dialog, the No button is the default.
wx.0K Include an OK button. This button will have the ID value of wx.ID_OK.

wx.YES_DEFAULT In a wx.YES_NO dialog, the Yes button is the default. This is the default behavior.

wx.YES_NO Include buttons labeled Yes and No, with the ID values of wx.ID_YES and
wx . ID_NO, respectively.

Working with modal dialogs 263

The second set of style flags controls the icon displayed next to the message text.
Those styles are listed in Table 9.2.

Table 9.2 Icon styles for a wx.MessageDialog

Style Description
wx.ICON_ERROR An icon indicating an error.
wx.ICON_EXCLAMATION An icon indicating an alert.
wx.ICON_HAND The same as wx . ICON_ERROR
wx.ICON_INFORMATION The letter “i” information icon.
wx.ICON_QUESTION A question mark icon.

Finally, you can use the style wx.STAY ON_ToP to display the dialog above any
other windows in the system, including system windows and wxPython applica-
tion windows.

Asyou can see in listing 9.2, the dialog is invoked using ShowModal () . Depend-
ing on the displayed buttons, the result is either wx.ID OK, wx.ID_CANCEL,
wx.ID_YES, or wx.ID NO. As with other dialogs, you'll typically use the response
value to control program execution in response to the dialog.

Using the wx.MessageBox() function

Line @ of listing 9.2 displays a shorter method for invoking a message box. The
convenience function wx.MessageBox () creates the dialog, calls showModal (), and
returns, wx.YES, wx.NO, wx.CANCEL, or wx.OK. The signature of the function is sim-
pler than the constructor for the MessageDialog object, as in:

wx .MessageBox (message, caption="Message", style=wx.OK)

In this example, message, caption, and style have the same meanings as in the
constructor, and you can use all of the same style flags. As we’ll see throughout
this chapter, several of the predefined dialogs in wxPython also have convenience
functions. As long as you are creating the dialogs for a single use, the mechanism
you choose is a matter of preference. If you plan to hold onto the dialog to invoke
it more than once, it may be preferable to instantiate yourself the object so you
can hold onto the reference, although for simple dialogs such as these, the time
saved is probably negligible.

To display a lot of text in your message box (i.e., an end-user license agree-
ment display), you can use the wxPython-specific class wx.1ib.dialogs.Scrolled-
MessageDialog, which contains the following constructor:

264

9.1.3

CHAPTER 9
Giving users choices with dialogs

wx.lib.dialogs.ScrolledMessageDialog (parent, msg, caption,
pos=wx.wxDefaultPosition, size=(500,300))
This dialog doesn’t use the native message box widget, it builds a dialog from
other wxPython widgets. It only displays an OK button, and takes no further
style information.

How do I get short text from the user?

The second simple type of dialog box is wx . Text -
EntryDialog, which is used to get short text Text Entry |
entry from the user. Typically, you'll see this [-re o

used when requesting a username or password Pefaut Vaoe |
at the beginning of a program, or as a very rudi-
mentary replacement for a data entry form. Fig-
ure 9.3 displays a typical text dialog.

el

Figure 9.3
The code for this example is displayed in A text entry standard dialog

listing 9.3.

Listing 9.3 Code for text entry

import wx

if name == "_main_ ":
app = wx.PySimpleApp ()
dialog = wx.TextEntryDialog (None,
"What kind of text would you like to enter?",
"Text Entry", "Default Value", style:wx.OK|wx.CANCEL)
if dialog.ShowModal() == wx.ID_OK:
print "You entered: %$s" % dialog.GetValue ()
dialog.Destroy ()

As in the previous section, we create an instance of a dialog class, in this case

wx.TextEntryDialog. The constructor for this class is a bit more complex than the

simple message dialog:

wx.TextEntryDialog(parent, message, caption="Please enter text",

defaultvalue="", style=wx.OK | wx.CANCEL | wx.CENTRE,
pos=wx.DefaultPosition)

The message argument is the text prompt that is displayed in the dialog, while the

caption is displayed in the title bar. The defaultvalue, if set, is displayed inside

the text box. The style information can include wx.0x and wx.CANCEL, which dis-

plays the appropriate button.

Working with modal dialogs 265

Several of the styles from an ordinary wx.TextCtrl can also be set here. The
most useful would be wx.TE_PASSWORD, which masks the input for securely enter-
ing a password. You can also use wx.TE_MULTILINE to allow the user to enter more
than one line of text in the dialog, and wx.TE_LEFT, wx.TE_CENTRE, and wx.TE_RIGHT
to adjust the justification of the entered text.

The last line of listing 9.3 displays another difference between the text box
and the message box. The information entered by the user is stored in the dia-
log instance, and must be retrieved by the application afterwards. In this case,
you can get at the value by using the dialog’s Getvalue () method. Remember,
if the user presses Cancel to exit the dialog, it means they don’t want you to use
his entered value. You can also programmatically set the value with the Set-
Value () method.

The following are convenience functions for dealing with text dialogs:

B wx.GetTextFromUser ()
B wx.GetPasswordFromUser ()

B wx.GetNumberFromUser ()
Most similar to the usage in listing 9.3 is wx.GetTextFromUser:

wx .GetTextFromUser (message, caption="Input text",
default_value="", parent=None)

In this example, message, caption, default_value, and parent are all in the
wx.TextEntryDialog constructor. If the user presses OK, the return value of the
function is the user entered string. If the user presses Cancel, the function returns
the empty string.

If you want the user to enter a masked password, you can use the wx.Get-
PasswordFromUser function.

wx .GetPasswordFromUser (message, caption="Input text",
default value="", parent=None)

In this example, the arguments mean what you'd expect. The user input is dis-
played as asterisks, and the return value is as in the previous function—the string
if the user hits OK, an empty string if the user hits cancel.

Finally, you can request a number from a user with the wx.GetNumberFrom-
UserMethod.

wx .GetNumberFromUser (message, prompt, caption, value, min=0,
max=100, parent=None)

266

9.1.4

CHAPTER 9
Giving users choices with dialogs

The argument names here are a bit different. The message is an arbitrarily long
message displayed above the prompt string, which is directly above the text entry
field. The value argument is a numeric long, and is the default value. The min
and max arguments allow you to specify a valid range for user input. If the user exits
with the OK button, the method returns the entered value, converted to a long. If
the value cannot be converted to a number, or the value is outside the min and max
range, the function returns -1, which means that if you use this function for a
range of negative numbers, you may want to consider an alternate plan.

How can I display a list of choices in a dialog? SOy X|
Pick A Word

If allowing your users a blank text entry seems like too much =

freedom, you can restrict their options by using wx.Single- Crate

Delta

ChoiceDialog to give them a single choice out of a group of
options. Figure 9.4 displays an example.
The essential code displayed in listing 9.4 is similar to

the dialog examples we’ve already discussed in this chapter.

Figure 9.4 A single
choice dialog

import wx

if name == "_ main ":
app = wx.PySimpleApp ()
choices = ["Alpha", "Baker", "Charlie", "Delta"]
dialog = wx.SingleChoiceDialog (None, "Pick A Word", "Choices",
choices)
if dialog.ShowModal () == wx.ID OK:

o

print "You selected: %$s\n" % dialog.GetStringSelection()
dialog.Destroy ()

The constructor for the wx.SingleChoiceDialog is as follows:

wx.SingleChoiceDialog (parent, message, caption, choices,
clientData=None, style=wx.OK | wx.CANCEL | wx.CENTRE,
pos=wx.DefaultPosition)
The message and caption arguments are as before, displaying the prompt in the
dialog and the title bar, respectively. The choices argument takes a Python list of
strings, and they are, as you might suspect, the choices presented in the dialog.
The style argument has the three options that are in the default, allowing an OK
button, a Cancel button, and the option to center the dialog on the screen. The

9.1.5

Working with modal dialogs 267

centre option does not work on Windows operating systems, and neither does
the pos argument.

If you want to set the dialog default before the user sees it, use the method
SetSelection(selection). The argument to that method is the integer index of
the selection, and not the actual string to be selected. After the user has made a
selection, you can retrieve it by using either GetSelection(), which returns the
integer index of the selected option, or GetStringSelection() which returns the
actual selected string.

There are two convenience functions for single choice dialogs. The first,
wx.GetSingleChoice, returns the string that the user selected.

wx .GetSingleChoice (message, caption, aChoices, parent=None)

The message, caption, and parent arguments are as in the wx.SingleChoiceDialog
constructor. The aChoices argument is the list of items. The return value is the
selected string if the user presses OK, and the empty string if the user presses
Cancel. This means that if the empty string is a valid choice, you should probably
not use this function.

Instead, you might use wx.GetSingleChoiceIndex.

wx .GetSingleChoiceIndex (message, caption, aChoices, parent=None)
This function has the same arguments, but a different return value. It returns the

index of the user choice if OK, and -1 if the user hits Cancel.

How can I display progress?

In many programs, the program needs to g0 (Fprogress box X
oft and do something by itself unencumbered
by user input. At that time, it’s customary for
the program to give the user some visual indi- [““"I““E e |
cation that it’s actually doing something. In nem::ng:::n-m-m
wxPython, that is often managed with a
progress box, as displayed in figure 9.5.
The sample code to generate this progress Figure 9.5 A sample progress box,
box is displayed in listing 9.5. Joined in progress

Time remaining

import wx

if name == "_main_ ":
app = wx.PySimpleApp ()

268

CHAPTER 9
Giving users choices with dialogs

progressMax = 100

dialog = wx.ProgressDialog("A progress box",
"Time remaining", progressMax,
style=wx.PD_CAN ABORT | wx.PD_ELAPSED TIME
wx.PD_REMAINING TIME)

keepGoing = True

count = 0

while keepGoing and count < progressMax:

count = count + 1
wx.Sleep (1)
keepGoing dialog.Update (count)

dialog.Destroy ()
||

All the options for the progress box are set in the constructor, which looks
like this:

wx .ProgressDialog(title, message, maximum=100, parent=None,
style=wx.PD_AUTO HIDE | wx.PD_APP_MODAL)

The arguments are different than in other dialog boxes. The title is placed in
the title bar of the window, and the message is displayed in the dialog itself. The
maximum is the highest possible value of the counter you are using to display
progress. As you can tell from figure 9.5, the user does not see this number, so feel
free to make it any value that is convenient for your application.

Table 9.3 lists the six styles specific to the wx.ProgressDialog that affect
its behavior.

Table 9.3 Styles for wx.ProgressDialog

Style Description

wx.PD_APP_MODAL If this flag is set, the progress dialog is modal with respect to the
entire application, meaning that it will block all user events. If the
flag is not set, the progress dialog is modal only with respect to its
parent window.

wx.PD_AUTO_HIDE The progress dialog will automatically hide itself when it reaches its
maximum value.

wx.PD_CAN_ABORT Puts a Cancel button on the progress box for the user to stop the process.
How to respond to a cancel from this dialog will be explained later.

wx.PD_ELAPSED_TIME Displays the elapsed time that the dialog has been visible.

continued on next page

9.2

9.2.1

Using standard dialogs 269

Table 9.3 Styles for wx.ProgressDialog (continued)

Style Description

wx.PD_ESTIMATED_TIME Displays an estimate of the total time to complete the process based on the
amount of time already elapsed, the current value of the counter, and the
maximum value of the counter.

wx.PD_REMAINING_TIME Displays an estimate of the amount of time remaining in a process, or
(estimated time — elapsed time).

To use the progress dialog, make a call to its only method, Update (value,
newmsg=""). The value argument is the new internal value of the progress dialog,
and calling update causes the progress bar to be redrawn based on the propor-
tion between the new value and the maximum value set in the constructor. The
value argument can be higher, lower, or equal to the current value argument. If
the optional newmsg argument is included, the text message on the dialog
changes to that string. This allows you to give the user a text description of the
current progress.

The vupdate () method usually returns True. However, if the user has canceled
the dialog via the Cancel button, the next time you Update (), the method will
return False. This is your chance to respond to the user’s request to cancel, pre-
sumably by stopping whatever process you are measuring. Given this mechanism
for detecting a user cancel, it is recommended that you update the progress bar as
often as possible, so you can test for the cancel.

Using standard dialogs

Most operating systems offer standard dialog boxes for tasks like file choosing,
font selection, and color picking. This enables users to see a consistent look and
feel across the entire platform. You can use these dialogs from wxPython to give
your application the same advantage. In addition, if you use wxPython, it provides
similar dialogs even on platforms that don’t have system dialogs for the feature.

How can I use a file picker?

File-choosing dialogs tend to be consistent from application to application. In
wxPython, the wx.FileDialog uses the native OS dialog for the major platforms,
and uses non-native look-alikes for other operating systems. The MS Windows
version is displayed in figure 9.6.

270

CHAPTER 9
Giving users choices with dialogs

!5'!!!!‘ﬂ!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE;Eir

Look in ‘@ Dialog 0 |} =S '
" 1) xvpics
%

i/ &, choice_box.py

My em B, file_box.py
Documerts | @ message_box.py

&, modal_dialog.py
. progress_box.py
B text_box.py

Desktop

My Documents

File name: El [Open]
Fles of type: Python source (py) Cancel Figure 9.6

My Computer The standard Windows

Compiled Pyth | o .
M?ﬁg'sr.fu‘“ on fere) 2t file chooser

You can set up the file dialog to start in any directory, and you can also pass it a
wildcard filter to limit the display to only certain file types. Listing 9.6 displays
a basic example.

Listing 9.6 Using wx.FileDialog

import wx
import os

if __name_ == "__main_ ":
app = wx.PySimpleApp ()
wildcard = "Python source (*.py)|*.py|" \

"Compiled Python (*.pyc) |*.pyc|" \
"All files (*.*%)[*.*n
dialog = wx.FileDialog(None, "Choose a file", os.getcwd(),
"n, wildcard, wx.OPEN)
if dialog.ShowModal () == wx.ID_OK:
print dialog.GetPath/()
dialog.Destroy ()

The file dialog is the most complex dialog we’ve seen in this chapter, in that it has
several properties that can be programmatically read and written. The construc-
tor allows you to set some of the properties, as in:

wx.FileDialog (parent, message="Choose a file", defaultDir="",
defaultFile="", wildcard="*.*", style=0,
pos=wx.DefaultPosition)
The message argument appears in the title bar of the window. The defaultDir

tells the dialog what directory to display initially. If the argument is empty or

Using standard dialogs 271

represents a directory that doesn’t exist, the dialog starts in the current working
directory. The defaultFile preselects a file, typically used when saving a file. The
wildcard argument allows you to filter the list based on a given pattern, using the
usual * and » as wildcard characters. The wildcard can either be a single pattern,
such as *.py, or a set of patterns in the format <description> | <pattern> |
<description> | <pattern>—similar to the wildcard used in listing 9.6.
"Python source (*.py) |*.py|Compiled Python (*.pyc) |*.pyc|
All files (*.*)|*.*v

If there is a pattern with multiple entries, they display in the familiar pull-down
menu shown in figure 9.6. The pos argument is not guaranteed to be supported
by the underlying system.

Selecting a file
The two most important style flags for wx.FileDialog are wx.OPEN and wx.SAVE,
which indicate the kind of dialog and affect the behavior of the dialog.

A dialog used for opening a file has two flags that further affect behavior. The
flag wx .HIDE READONLY causes the dialog to gray out the checkbox that allows the
user to open the file in read-only mode. The flag wx.MULTIPLE allows the user to
select multiple files in a single directory for opening.

Save file dialogs have one useful flag, wx.OVERWRITE PROMPT, that forces the
user to confirm saving a file if the file already exists.

Either kind of file dialog can use the wx.CHANGE DIR flag. When this flag is
raised, a file selection also changes the application’s working directory to the
directory where the selection took place. Among other things, this allows the next
file dialog to open in the same directory without requiring that the application
store that value elsewhere.

Unlike the other dialogs we’ve seen so far in this chapter, these properties are
all gettable and settable via methods. This is true for the properties directory,
filename, style, message, and wildcard, all of which have getters and setters
using the usual Get/set naming convention.

After the user has exited the dialog, and after checking that it was exited with
wx . OK, you can get the user’s choice by using the method Getpath (), which returns
the full pathname of the file as a string. If the dialog is an open dialog with
wx .MULTIPLE selected, use GetPaths () instead. That method returns a Python list
of path strings. If for some reason you need to know which of the pull-down filters
was active when the user made her selection, you can use the GetFilterIndex()
method, which returns an integer index into the list. To change the index pro-
grammatically, use SetFilterIndex().

272

CHAPTER 9
Giving users choices with dialogs

The following is a convenience function for using file dialogs.

wx.FileSelector (message, default path="", default filename="",
default extension="", wildcard="*.*'', flags=0, parent=None,
x=-1, y=-1)

The message, default_path, default_filename, and wildcard arguments do what
you'd expect from the constructor, despite being named differently. The flags
argument is normally called style, and the default_extension adds an exten-
sion onto a selected file name that doesn’t when you save a file. The return value
is the string pathname if the user presses OK, or an empty string if the user
presses Cancel.

Selecting a directory
If the user wants to select a directory rather than a file, use wx.DirDialog, which
presents a tree view of the directory structure as shown in figure 9.7.

The directory selector is somewhat simpler than a file dialog. Listing 9.7 dis-
plays the relevant code.

Listing 9.7 Displaying a directory chooser dialog

import wx

if name == "_ main ":
app = wx.PySimpleApp ()
dialog = wx.DirDialog(None, "Choose a directory:",
style=wx.DD_DEFAULT STYLE | wx.DD NEW DIR BUTTON)
if dialog.ShowModal() == wx.ID_OK:
print dialog.GetPath ()
dialog.Destroy ()

Browse For Folder 2JE

Choose a directory:

[Desktop

) My Documents

g

&4 My Network Places
[New Folder

Make New Folder] ok | [Cancel] Figure 9.7

A directory selection dialog

9.2.2

Using standard dialogs 273

Nearly all of the functionality of this dialog is in the constructor.

wx.DirDialog (parent, message="Choose a directory", defaultPath="",
style=0, pos = wx.DefaultPosition, size = wx.DefaultSize,
name="wxDirCtrl")
Because the message argument displays inside the dialog itself, you don’t need a
hook to change the title bar. The defaultPath tells the dialog what to select, and if
it’s empty, the dialog shows the root of the file system. The pos and size argu-
ments are ignored under MS Windows, and the name argument is ignored in all
operating systems. The style flag for this dialog, wx.DD_NEW_DIR BUTTON, gives the
dialog a button for creating a directory. This flag may not work in older versions
of MS Windows.

The path, message, and style properties of this class have typical getters and set-
ters. You can use the GetPath () method to retrieve the user selection after the dia-
log is dispatched. This dialog also has a convenience function.

wx.DirSelector (message=wx.DirSelectorPromptStr, default path="",

style=0, pos=wxDefaultPosition, parent=None)
All arguments are as in the constructor. The function returns the selected direc-
tory name as a string if OK is pressed, and the empty string if Cancel is pressed.

How can I use a font picker?

The font picker dialog in wxPython is different than the file dialog, because it
uses a separate helper class to manage the information it presents. Figure 9.8 dis-
plays the MS Windows version of the font dialog.

Listing 9.8 displays the code used to generate figure 9.8, and should look
somewhat different than previous dialog examples.

import wx

if name_ == "_main_ ":
app = wx.PySimpleApp ()
dialog = wx.FontDialog (None, wx.FontDataf())
if dialog.ShowModal () == wx.ID OK:
data = dialog.GetFontData/()
font = data.GetChosenFont ()
colour = data.GetColour ()
print 'You selected: "%s", %d points\n' % (
font .GetFaceName (), font.GetPointSize())
dialog.Destroy ()

274

CHAPTER 9

Giving users choices with dialogs

Font %]
Font: Font style: Size.
Apple Garamond| Regular 16 [ok |
B Antique Type » || |Regular 16 A
B Apple Garamond H ltalic 18 U
B Apple Garamond Light Bold 20
0 Azl Bold Halic 2 E]
0 Azl Black 24
Azl Namow 26
() Azl Rounded MT BD|M 28 Il]

Effects Sample

Color:
I Eack Serpt

[Strikeout |
[Underline AﬂBbYYZZ

|Wastem

[v]

Figure 9.8

A sample font picker dialog

The constructor for wx. FontDialog is much simpler than the previous constructors.

wx .FontDialog (parent, data)

You cannot set a message or caption for this dialog, and the information that is
ordinarily passed as style flags is instead contained in the data argument, which is
of the class wx.FontData. The wx.FontDialog class has only one useful method of
its own, which is GetFontData (), returning the font data instance.

The wx.FontData instance allows you to set the values that govern the display
of the font dialog, and also contains the information entered by the user. For
example, in listing 9.8 the code calls two getter methods of the wx.FontData
instance to determine the details of the selected font. The constructor for
wx . FontData takes no arguments—all properties must be set by using the methods

in table 9.4

Table 9.4 Methods of wx.FontData

Method

Description

GetAllowSymbols()
SetAllowSymbols(allowSymbols)

Determines whether symbol-only fonts (like dingbats) are displayed in
the dialog. The argument is a Boolean. Only meaningful in Windows
systems. The initial value of this property is True.

GetChosenFont()
SetChosenFont(font)

Returns the font that the user has chosen as a wx . Font object. You
should never need to call the setter for this property. If the user has
selected Cancel, this property is None. The wx . Font class will be
discussed in more detail in Chapter 12.

continued on next page

9.2.3

Using standard dialogs 275

Table 9.4 Methods of wx.FontData (continued)

Method Description
GetColour() Returns the color selected in the color portion of the dialog. The setter
SetColour(colour) allows you to preset the default value. The getter returns a

wx . Colour instance. The setter can take one of those, or a string
with the name of a color. The initial value of this property is black.

GetEnableEffects() In the MS Windows version of the dialog, this property controls the
EnableEffects(enable) appearance or nonappearance of controls to select color, strikeout,
and underline features of the font.

GetlnitialFont() Returns the font which is the initial value of the dialog (i.e., the current
SetlnitialFont(font) application font). This property should be explicitly set by the
application before the dialog is displayed. Its initial value is None.

SetRange(min, max) Sets the available range for the point size of the font. Only used on
MS Windows systems. The initial values are 0 and 0, which means
there are no limits on the range.

GetShowHelp() If True, the MS Windows version of this dialog will display a Help
SetShowHelp() button. The initial value is False.

A convenience function for the font dialog, which helpfully sidesteps the whole
wx .FontData class, is as follows.

wx .GetFontFromUser (parent, fontInit)

The fontInit argument is an instance of wx.Font that is used as the initial value of
the dialog. The return value of the function is a wx.Font instance. If the user
closes the dialog with an OK, the method wx.Font .0k () returns True, otherwise, it
returns False.

How can I use a color picker?

The color picker dialog is similar to the font dialog, because it uses an external
data class to manage its information. Figure 9.9 displays the MS Windows version
of the dialog.

Listing 9.9 displays the code to generate the dialog, which is nearly identical
to the code seen in the previous section for the font picker.

import wx

if _name_ == "_ _main_":
app = wx.PySimpleApp ()

276

CHAPTER 9
Giving users choices with dialogs

dialog = wx.ColourDialog (None)
dialog.GetColourData () .SetChooseFull (True)
if dialog.ShowModal () == wx.ID OK:

data = dialog.GetColourData ()

print 'You selected: %s\n' % str(data.GetColour().Get())
dialog.Destroy ()

[¥]

Basic colors:

11 THEEERN

Hue: 1
] eree@
ColoriSolid |, . EI Blue: El

[Add to Custom Colors]

Figure 9.9
A standard wxPython color picker

The wxPython class for the color selector is wx.ColourDialog. Those of you in
America will need to remember the non-USA spelling “colour.” For those of you
outside America, I'm sure this is a welcome change of pace. The constructor is
simple, without many options to tweak, as in the following:

wx.ColourDialog (parent, data=None)

The data argument is an instance of the class wx.ColourData, which is simpler
than its font data counterpart. It contains only the default no-argument construc-
tor, and the following three properties:

® GetChooseFull/SetChooseFull (flag) A Boolean property that works under
MS Windows only. When set, the color picker shows the full dialog, includ-
ing the custom color selector. When unset, the custom color selector is
not shown.

® GetColour/SetColour (colour) The property is of the type wx.Colour. This is
the color value selected by the user. After the graph is closed, call this getter
to see the user selection. Initially it is set to black. If it is set before the dia-
log is displayed, the dialog initially displays this color.

m GetCustomColour (i)/SetCustomColour (i, colour) returns or sets the ele-
ment in the custom color array with index i. The index is between 0 and
15. Initially all of the custom colors are white.

9.24

Using standard dialogs 277

A simple convenience function bypasses the wx.ColorData entirely:
wx.GetColourFromUser (parent, colInit)

Where colInit is a wx.Colour instance and is the initial value of the dialog when
displayed. The return value is also a wx.Colour instance. If the user closes the dia-
log with an OK, the method wx.Colour.0K () returns True. If the user closes it with
a Cancel, the method returns False.

Can I allow the user X

to browse images?

‘Image Browser

C:\Noe\Writing‘wecPy Book \book 2\Dialog

If you are doing graphics manipulation
M T =
in your program, it’s often useful to pro- e oo A [r—
vide the user with thumbnails of the otulyorg =
. . . dir_box.png
images while they’re browsing the file mor_con prg
) A emor_icon trﬁ_
tree. A wxPython dialog for this purpose Smtion Joon £re
: . . ﬁle,bou.pn97
is called wx.lib.imagebrowser.Image- fle_box i [v]

Dialog. Figure 9.10 displays a sample.
Listing 9.10 displays the simple code
for this image browser dialog.

Figure 9.10 A typical image dialog browser

Listing 9.10 Creating an image browser dialog

import wx
import wx.lib.imagebrowser as imagebrowser

if name == "_main_ ":
app = wx.PySimpleApp ()
dialog = imagebrowser.ImageDialog (None)
if dialog.ShowModal () == wx.ID OK:
print "You Selected File: " + dialog.GetFile()
dialog.Destroy ()

The wx.1ib.imagebrowser.ImageDialog class is straightforward, and has relatively
few options for the programmer to set. To change the dialog’s behavior, review
the Python source for changing the types of files displayed. The constructor takes

just two arguments.
ImageDialog (parent, set dir=None)

The set_dir argument is the directory in which the dialog when displayed. If it
is not set, the application’s current working directory is used. After the dialog is

278

9.3

CHAPTER 9
Giving users choices with dialogs

closed, GetFile () returns the complete path string of the selected file, and Get-

Directory () returns just the directory portion.

Creating a wizard

A wizard is a series of simple dialogs chained
together to force the user to step through them one
by one. Typically, they are used to guide a user
through installation or a complex setup procedure
by breaking down the information into small
pieces. Figure 9.11 displays a sample wizard, dis-
playing Back and Next buttons.

In wxPython, a wizard is a series of pages con-
trolled by an instance of the class wx.wizard.Wizard.
The wizard instance manages the events that take
the user through the pages. The pages themselves
are instances of either the class wx.wizard.wizard-
PageSimple or wx.wizard.WizardPage. In both cases,
they are merely wx.Panel instances with the addi-
tional logic needed to manage the page chain. The
difference between the two instances is manifested

Simple Wizard E
Page 1
Testing the wizand

Figure 9.11 A simple wizard

sample

only when the user presses the Next button. An instance of wx.wizard.Wizardpage
allows you to determine dynamically which page to navigate to at runtime, whereas
an instance of wx.wizard.WizardPageSimple requires that the order be preset
before the wizard is displayed. Listing 9.11 displays the code for a simple wizard.

import wx
import wx.wizard

class TitledPage (wx.wizard.WizardPageSimple) :
def init (self, parent, title):

wx.wizard.WizardPageSimple. init (self, parent)

self.sizer = wx.BoxSizer (wx.VERTICAL)
self.SetSizer (self.sizer)

titleText = wx.StaticText (self, -1, title)

titleText.SetFont (

wx.Font (18, wx.SWISS, wx.NORMAL, wx.BOLD))

self.sizer.Add(titleText, O,
wx.ALIGN CENTRE | wx.ALL, 5)
self.sizer.Add (wx.StaticLine (self, -1),
wx .EXPAND | wx.ALL, 5)

0,

@ (Creating
sample

pages

Creating a wizard ‘ 279

if name == "_main_ ":
app = wx.PySimpleApp () Freatingwizard
wizard = wx.wizard.Wizard(None, -1, "Simple Wizard") instance
pagel = TitledPage(wizard, "Page 1")
page2 = TitledPage (wizard, "Page 2") Creating
page3 = TitledPage (wizard, "Page 3") whanipages
page4 = TitledPage(wizard, "Page 4")
pagel.sizer.Add (wx.StaticText (pagel, -1,
"Testing the wizard"))
page4.sizer.Add (wx.StaticText (page4, -1,
"This is the last page."))
wx.wizard.WizardPageSimple Chain(pagel, page2) Creating
wx.wizard.WizardPageSimple Chain(page2, page3) page chain
wx.wizard.WizardPageSimple Chain(page3, page4)
wizard.FitToPage (pagel)
46 Sizing the wizard
if wizard.RunWizard (pagel) :
print "Success" 4& Running the wizard

@ Yor the purpose of populating a wizard, we create a simple little page that con-
tains a static text title. Typically, you’d have some form elements here, and prob-
ably some data for the user to enter.

@ The function wx.wizard.WizardPageSimple Chain() is a convenience method that
mutually calls setNext () and SetPrev() of the two pages passed as arguments.
© Calling FitTosize () sizes the wizard based on the page passed as an argument,
and also all the pages reachable from that page in the chain. Call this method

only after the page chain has been created.

O The argument to this method is the page to start the wizard on. The wizard
knows to close when it reaches a page that has no Next page. The Runwizard ()
method returns True if the user goes through the whole wizard and exits by
pressing the Finish button.

Creating the wx.wizard.Wizard instance is the first part of using a wizard. The
constructor looks similar to the following:

wx.wizard.Wizard (parent, id=-1, title=wx.EmptyString,

bitmap=wx.NullBitmap, pos=wx.DefaultPosition)

In this example, the parent, id, title, and pos are as in wx. Panel. If set, the bitmap
argument displays on each page. There is one style flag, wx.wizard.WIZARD EX
HELPBUTTON, that causes a Help button to display. This is an extended flag, and
must be set using the two-step creation process outlined in chapter 8.

Typically, you’ll manage the size of the window by calling FitToSize () as dis-
played in line O of listing 9.11, however, you can also set a minimal size by

280

CHAPTER 9
Giving users choices with dialogs

calling setPageSize() with a tuple or wx.size instance. The GetPageSize ()
method returns the current size. In both cases, the size is only used for the part
of the dialog reserved for individual pages, while the dialog as a whole will be
somewhat larger.

You can manage the pages from within this class. The method GetCurrent-
Page () returns the page currently being displayed, and if the wizard is not cur-
rently being displayed, the method returns None. You can determine if the current
page has a next or previous page by calling HasNextPage () or HasPrevPage ().
Running the wizard is managed with the RunWizard() method, as described in
line @ of listing 9.11.

Wizards fire command events that you can capture for more specialized pro-
cessing, as displayed in table 9.5. In all these cases, the event object itself is of the
class wx.wizard.WizardEvent, which exposes two methods. GetPage () returns the
wx.WizardPage instance which was active when the event was generated, rather
than the instance that may be displayed as a result of the event. The method Get -
Direction() returns True if the event is a page change going forward, and False if
it is a page change going backward.

Table 9.5 Events of wx.wizard.WizardDialog

Event Description
EVT_WIZARD_CANCEL Fired when the the user presses the Cancel button. This event
may be vetoed using Veto (), in which case the dialog will not
be dismissed.
EVT_WIZARD_FINISHED Fired when the user presses the Finished button.
EVT_WIZARD_HELP Fired when the user presses the Help button.

EVT_WIZARD_PAGE_CHANGED Fired after the page has already been changed, to allow
for postprocessing.

EVT_WIZARD_PAGE_CHANGING Fired when the user has requested a page change, but it has not
yet occurred. This event may be vetoed (if, for example, there is a
required field that needs to be filled).

The wx.wizard.WizardPageSimple class is treated as though it were a panel. The
constructor for the class allows you to set the Previous and Next pages, as in
the following:

wx.wizard.WizardPageSimple (parent=None, prev=None, next=None)
If you don’t want to set them in the constructor, you can use the SetpPrev() and
SetNext () methods. And if that’s too much trouble, you can use wx.wizard.

9.4

Showing startup tips 281

WizardPageSimple Chain(), which sets up the chaining relationship between
two pages.

The complex version of wizard pages, wx.wizard.Wizardpage, differs slightly.
Rather than setting the Previous and Next explicitly, it defines handler methods
that allow you to use more elaborate logic to define where to go next. The con-
structor is as follows:

wx .WizardPage (parent, bitmap=wx.NullBitmap, resource=None)

If set, the bitmap argument overrides the bitmap set in the parent wizard. The
resource argument loads the page from a wxPython resource. To handle the page
logic, override GetpPrev () and GetNext () to return whatever you want the wizard
to do next. A typical usage may be to dynamically determine the Next page based
on user response to the current page.

Tip of the Day a

Showing startup tips & Did you know...

'You can do startup tips very easily.

Many applications use startup tips as a way of intro-
ducing users to program features they otherwise
may not see. There is a very simple mechanism in

wxPython for showing startup tips. Figure 9.12 dis- | __ pE—
plays a sample tip window.

Listing 9.12 displays the code. Figure 9.12 A sample tip
window with a helpful message.

import wx

if name == "_ main ":
app = wx.PySimpleApp ()
provider = wx.CreateFileTipProvider ("tips.txt", 0)
wx .ShowTip (None, provider, True)

There are two convenience functions that govern the startup tips. The first cre-
ates a wx.TipProvider, as in the following:

wx .CreateFileTipProvider (filename, currentTip)

The filename attribute is the name of a file with the string tips. The currentTip is
the index of the tip within the file to start with, and the first tip in the file is index
0. The application is responsible for storing that information between runs.

282

9.5

9.5.1

CHAPTER 9
Giving users choices with dialogs

The tip file is a simple text file where each line is a new tip. Blank lines in the
file are skipped, and lines beginning with # are considered comments, and are
also skipped. Here is the tip file for this example.

You can do startup tips very easily.

Feel the force, Luke.

The tip provider is an instance of the class wx.PyTipProvider. If you need more
elaborate functionality, you can create your own subclass of wx.TipProvider and
override the function GetTip().

The function that displays the tip is wx.ShowTip ().

wx .ShowTip (parent, tipProvider, showAtStartup)

The parent is the parent window, if any, and the tipProvider is usually created
from wx.CreateFileTipProvider. The showAtStartup argument controls whether
the Show Tips At Startup checkbox is selected. It does not control whether the
tips are actually displayed at startup, that’s up to you. The return value of this
function is the Boolean state of the Show Tips At Startup checkbox so that you
can use that value the next time your application starts.

Using validators to manage data in a dialog

Awalidator is a special wxPython object that simplifies managing data in a dialog.
When we discussed events in chapter 3, we mentioned briefly that if a widget has
a validator, the validator can be automatically invoked by the event system. We’ve
also seen validator as a parameter in the constructor of several of the wxPython
widget classes, but we haven’t yet discussed them.

The validator has three unrelated functions:

m Validates the data in the control before the dialog closes
» Automatically transfers data to and from the dialog

= Validates the data as the user types

How do I use a validator to ensure correct data?

A validator object is a subclass of wx.validator. The parent class is abstract, and
isn’t used directly. Although there are a couple of predefined validator classes in
the C++ wxWidget set, in wxPython, you will need to define your own validator
classes. As we've seen in other cases, your Python classes need to inherit from a
Python-specific subclass, wx.pPyvalidator, to be able to override all the parent

Using validators to manage data in a dialog 283

methods. A custom validator subclass must also override the method Clone (),
which should return an identical copy of the validator.

A validator is attached to a specific widget in your system. That can be accom-
plished in one of two ways. First, if the widget allows it, the validator can be
passed as an argument to the widget constructor. If the widget does not have a
validator argument to its constructor, you can still attach a validator by creating a
validator instance and calling the widget’s Setvalidator (validator) method.

To validate the data in the control, start by overriding the method vali-
date (parent) in your validator subclass. The parent argument is the parent win-
dow of the validator’s widget, either the dialog or a panel. Use this to get the
data from other widgets in the dialog if that’s important, or you can ignore the
argument altogether. You can use self.GetWindow() to get a reference to the
widget being validated. The return value of your validate (parent) method is a
Boolean. A True value indicates to the rest of the system that the data in the val-
idator’s widget is valid. A False value indicates a problem. You are allowed to
use wx.MessageBox () to display an alert from the validate() method, but you
shouldn’t do anything else that could raise events in the wxPython application.

The return value of the validate () method is important. It comes into play
when you attempt to close a dialog using the OK button, (the button with an ID of
wx.ID_OK). As part of the processing of the OK click, wxPython calls the vali-
date () function of any widget the dialog contains that has a validator. If any of
those methods return False, the dialog will not close. Listing 9.13 displays a sam-
ple dialog with a validator that checks to see that all text controls have data.

import wx

about txt = """\

The validator used in this example will ensure that the text
controls are not empty when you press the Ok button, and
will not let you leave if any of the Validations fail."""

class NotEmptyValidator (wx.PyValidator) : <+— Creating the validator subclass
def init_ (self):
wx.PyValidator._ init (self)

def Clone (self):

Note that every validator must implement the Clone() method.

return NotEmptyValidator ()

284

CHAPTER 9

Giving users choices with dialogs

def Validate(self, win): () Using the validator method

textCtrl = self.GetWindow ()
text = textCtrl.GetValue ()

if len(text) ==

wx .MessageBox ("This field must contain some text!", "Error")

textCtrl.SetBackgroundColour ("pink")
textCtrl.SetFocus ()
textCtrl.Refresh()
return False
else:
textCtrl.SetBackgroundColour (
wx.SystemSettings_GetColour (wx.SYS_COLOUR_WINDOW))
textCtrl.Refresh()
return True

def TransferToWindow (self) :

return True

def TransferFromWindow (self) :

return True

class MyDialog(wx.Dialog) :

def

__init_ (self):
wx.Dialog.__init__ (self, None, -1, "Validators: validating")

Create the text controls

about = wx.StaticText (self, -1, about_txt)
name 1 = wx.StaticText (self, -1, "Name:")
email 1 = wx.StaticText (self, -1, "Email:")
phone_ 1 = wx.StaticText (self, -1, "Phone:")

name_t = wx.TextCtrl (self, validator=NotEmptyValidator())
email_t = wx.TextCtrl (self, validator=NotEmptyValidator())
phone t wx.TextCtrl (self, validator=NotEmptyValidator())

Using the validator

Use standard button IDs

okay = wx.Button(self, wx.ID OK)
okay.SetDefault ()

cancel = wx.Button(self, wx.ID_ CANCEL)

Layout with sizers

sizer = wx.BoxSizer (wx.VERTICAL)

sizer.Add (about, 0, wx.ALL, 5)

sizer.Add (wx.StaticLine (self), O, wx.EXPAND|wx.ALL, 5)

fgs = wx.FlexGridSizer(3, 2, 5, 5)
fgs.Add (name_1, 0, wx.ALIGN RIGHT)
fgs.Add (name_t, 0, wx.EXPAND)
fgs.Add(email_l, 0, wx.ALIGN_RIGHT)
fgs.Add(email t, 0, wx.EXPAND)

Using validators to manage data in a dialog 285

fgs.Add (phone_1, 0, wx.ALIGN RIGHT)
fgs.Add (phone_t, 0, wx.EXPAND)
fgs.AddGrowableCol (1)

sizer.Add (fgs, 0, wx.EXPAND|wx.ALL, 5)

btns = wx.StdDialogButtonSizer ()
btns.AddButton (okay)

btns.AddButton (cancel)

btns.Realize ()

sizer.Add (btns, 0, wx.EXPAND|wx.ALL, 5)

self.SetSizer (sizer)
sizer.Fit (self)

app = wx.PySimpleApp ()
dlg = MyDialog()
dlg.ShowModal ()

dlg.Destroy ()

app .MainLoop ()
||

@ This method tests that the underlying control has some data. If it does not, the
background color of the widget is changed to pink.
@ 1n these lines, a new validator it attached to each text field in the dialog.

Figure 9.13 displays the dialog after attempting to close it with a blank field.
The code that explicitly tells the dialog to check the validators is not in the list-
ing—it is a part of the wxPython event system.

Another difference between dialogs and frames is Validators: validating X
1 1 1 1lt-1 The validator used in this exampie wil hat th

that dialogs have the validator behavior built-in e Ll

and frames do not. If you would like to use valida- e

tors for validating controls not located in a dialog, Name: [fred Finstone

call the parent window’s validate () method. If the :ﬂa”: e]
. I0NE: | FRK-HR5H
wx.WS_EX_VALIDATE RECURSIVELY extra style is set
. . . _OK -Cam:el
for the window, validate () of all the child win- Lo o)
dows is also called. If any of the Val'ldatlons fail, Figure 9.13 Attempting to
Validate returns False. Next, we’ll discuss how to close an invalid validator

use validators to transfer data.

286

CHAPTER 9
Giving users choices with dialogs

9.5.2 How do I use a validator to transfer data?

The second important function of a validator is
that it automatically transfers data into the dialog
display when a dialog is opened, and automatically
transfers data from the dialog to an external source
when the dialog is closed. Figure 9.14 displays a
sample dialog.

To accomplish this, you must override two
methods in your validator subclass. The method
TransferToWindow() is automatically called when
the dialog is opened. You must use this method to
put data into the validator’s widget. The method
TransferFromWindow () is automatically called when

Validators: data transfer E

The validator used in this example shows how the validator
can be used to transfer data to and from each text control
automatically when the dialog is shown and dismissed.

Hame: | Jordyn Dunn|
Email:

Phone:

Figure 9.14 The transferring
validator—this dialog will
automatically display entered
values when closed

the dialog is closed using the OK button, after it has already been validated. You
must use this method to move the data from the widget to some other source.
The fact that a data transfer must happen implies that the validator must
know something about an external data object, as displayed in listing 9.14. In this
example, each validator is initialized with a reference to a global data dictionary,
and a key within that dictionary that is important to that control. When the dialog
is opened, the TransferToWindow () method reads from the dictionary at that key
and places the data in the text field. When the dialog is closed, TransferFrom-
Window () reverses the process and writes to the dictionary. The example displays a

dialog box to show you the transferred data.

import wx
import pprint

about txt = """\

The validator used in this example shows how the validator
can be used to transfer data to and from each text control
automatically when the dialog is shown and dismissed."""

class DataXferValidator (wx.PyValidator) :
def init (self, data, key):
wx.PyValidator. init (self)
self.data = data
self .key = key

def Clone (self):

<— Declaring the validator

Using validators to manage data in a dialog 287

Note that every validator must implement the Clone() method.

return DataXferValidator (self.data, self.key)

def Validate(self, win): <— Not validating data
return True

def TransferToWindow(self): <— Called on dialog open
textCtrl = self.GetWindow ()
textCtrl.SetValue (self.data.get (self.key, ""))
return True

def TransferFromWindow(self): <— Called on dialog close
textCtrl = self.GetWindow ()
self.datal[self.key] = textCtrl.GetValue ()

return True

class MyDialog(wx.Dialog) :
def _ init_ (self, data):

wx.Dialog. init (self, None, -1, "Validators: data transfer")
about = wx.StaticText (self, -1, about_txt)
name 1 = wx.StaticText (self, -1, "Name:")

self, -1, "Email:")
self, -1, "Phone:")

email 1 = wx.StaticText

(
(
(
phone_1 = wx.StaticText (

name t = wx.TextCtrl (self, <1 Associating a validator with widget
validator=DataXferValidator (data, "name"))

email t = wx.TextCtrl (self,
validator=DataXferValidator (data, "email"))

phone_t = wx.TextCtrl (self,
validator=DataXferValidator (data, "phone"))

okay = wx.Button(self, wx.ID OK)
okay.SetDefault ()
cancel = wx.Button(self, wx.ID CANCEL)

sizer = wx.BoxSizer (wx.VERTICAL)
sizer.Add (about, 0, wx.ALL, 5)
sizer.Add (wx.StaticLine (self), O, wx.EXPAND|wx.ALL, 5)

fgs = wx.FlexGridSizer (3, 2, 5, 5)
fgs.Add (name_1, 0, wx.ALIGN_ RIGHT)
fgs.Add (name_t, 0, wx.EXPAND)
fgs.Add(email 1, 0, wx.ALIGN_RIGHT)
fgs.Add(email _t, 0, wx.EXPAND)

fgs.Add (phone_1, 0, wx.ALIGN_ RIGHT)
fgs.Add (phone_t, 0, wx.EXPAND)
fgs.AddGrowableCol (1)

sizer.Add (fgs, 0, wx.EXPAND|wx.ALL, 5)

288

9.5.3

CHAPTER 9
Giving users choices with dialogs

btns = wx.StdDialogButtonSizer ()
btns.AddButton (okay)

btns.AddButton (cancel)

btns.Realize()

sizer.Add (btns, 0, wx.EXPAND|wx.ALL, 5)

self.SetSizer (sizer)
sizer.Fit (self)

app = wx.PySimpleApp ()
data = { "name" "Jordyn Dunn" }
dlg = MyDialog(data)

dlg.ShowModal ()
dlg.Destroy ()

wx .MessageBox ("You entered these values:\n\n" +
pprint.pformat (data))

app .MainLoop ()
||

Calling of the transfer data methods of validators happens automatically for dia-
logs. To use validators for transferring data in non-dialog windows, call the parent
widget’s TransDataFromWindow() and TransferDataToWindow() methods as neces-
sary. If the window has the wx.WS_EX_VALIDATE RECURSIVELY extra style set, the
transfer functions are also called on all of the child widgets.

In the next section, we’ll discuss the most active use of a validator object, using
it to evaluate data as the user enters it into the dialog box. This uses the validator
and help from the wxPython event system.

How do I validate data as it is entered?

You can also use a validator to validate data
entered into the dialog as the user enters it, before
the data is passed to the widget. This is very pow-
erful, since it can prevent bad data from getting
into your application. Figure 9.15 displays an
example, the dialog text explains the idea.

This method of validating data is less auto-
mated than other mechanisms. You must explic-

Validators: behavior modific...

The validator used in this example wil validate the input on the fiy
instead of waiting until the okay button is pressed. The first field
will not allow digits to be typed, the second will allow anything
and the third will not allow alphabetic characters to be entered.

Name: | ng digits here
Emall: | anything@anything.com
Phone: 1234567

itly bind the character events from the validator’s
widget to a function, as in the following:

self.Bind (wx.EVT_CHAR, self.OnChar)

Figure 9.15 A validator verifying
data on the fly

Using validators to manage data in a dialog ‘ 289

The widget assumes that the event source belongs to the validator. Listing 9.15
displays this binding in action.

Listing 9.15 Validating on the fly

import wx
import string

about_txt = ""r\

The validator used in this example will validate the input on the fly
instead of waiting until the okay button is pressed. The first field
will not allow digits to be typed, the second will allow anything

and the third will not allow alphabetic characters to be entered.
nnn

class CharValidator (wx.PyValidator) :
def init_ (self, flag):
wx.PyValidator. init_ (self)
self.flag = flag
self .Bind (wx.EVT_CHAR, self.OnChar) <— Binding the character event

def Clone (self):

Note that every validator must implement the Clone () method.

return CharValidator(self.flag)

def Validate(self, win):
return True

def TransferToWindow (self) :
return True

def TransferFromWindow (self) :
return True

def OnChar (self, evt):
key = chr(evt.GetKeyCode ())

if self.flag == "no-alpha" and key in string.letters: Viewing
return the data

if self.flag == "no-digit" and key in string.digits: handler
return

evt.Skip ()

class MyDialog(wx.Dialog) :
def _ init_ (self):
wx.Dialog. init (self, None, -1, "Validators: behavior
modification")

Create the text controls

290 CHAPTER 9
Giving users choices with dialogs

about = wx.StaticText (self, -1, about_ txt)

name_1 = wx.StaticText (self, -1, "Name:")

email 1 = wx.StaticText(self, -1, "Email:")

phone 1 = wx.StaticText (self, -1, "Phone:") Binding the
validator

name_t = wx.TextCtrl(self, validator=CharValidator ("no-digit"))

email t = wx.TextCtrl(self, validator=CharValidator ("any"))
phone t = wx.TextCtrl(self, validator=CharValidator ("no-alpha"))
okay = wx.Button(self, wx.ID OK)

okay.SetDefault ()

cancel = wx.Button(self, wx.ID_ CANCEL)

sizer = wx.BoxSizer (wx.VERTICAL)

gsizer.Add (about, 0, wx.ALL, 5)

sizer.Add (wx.StaticLine (self), O, wx.EXPAND|wx.ALL, 5)

fgs = wx.FlexGridSizer(3, 2, 5, 5)
fgs.Add (name_1, 0, wx.ALIGN RIGHT)
fgs.Add (name_t, 0, wx.EXPAND)

fgs.Add (emai l_l , 0, wx .ALIGN_RIGHT)
fgs.Add(email t, 0, wx.EXPAND)

fgs.Add (phone_1, 0, wx.ALIGN_RIGHT)
fgs.Add (phone_t, 0, wx.EXPAND)
fgs.AddGrowableCol (1)

sizer.Add(fgs, 0, wx.EXPAND|wx.ALL, 5)

btns = wx.StdDialogButtonSizer ()
btns.AddButton (okay)

btns.AddButton (cancel)

btns.Realize()

sizer.Add (btns, 0, wx.EXPAND|wx.ALL, 5)

self.SetSizer (sizer)
sizer.Fit (self)

app = wx.PySimpleApp ()
dlg = MyDialog()
dlg.ShowModal ()

dlg.Destroy ()

app .MainLoop ()
||

Because the onchar () method is in a validator, it gets called before the widget
responds to the character event. The method allows the event to pass on to the
widget by using Skip (). You must call skip (), otherwise the validator interferes
with normal event processing. The validator performs a test to see if the character
1s valid for the control. If the character is invalid, Skip () is not called, and event

Summary 291

processing stops. If necessary, events other than wx.EVT CHAR can also be bound
and the validator handles those events before the widget does.

Validators are a powerful and flexible mechanism for handling data in your
wxPython application. Using them properly helps make the development and
maintenance of your application smoother.

9.6 Summary

m Dialogs are used to handle interaction with the user in cases where there is
a specific set of information to be obtained, and the interaction is usually
over quickly. In wxPython, you can use the generic wx.Dialog class to create
your own dialogs, or you can use one of several predefined dialogs. In
many cases, commonly used dialogs also have convenience functions that
make the use of the dialog easier.

m Dialogs can be displayed modally, meaning that all other user input within
the application is blocked while the dialog is visible. A modal dialog is
invoked by using the ShowModal () method, which returns a value based on
whether the user pressed OK or Cancel to the dialog. Closing a modal dia-
log does not destroy it, and the same dialog instance can be used again.

m There are three generic simple dialogs available in wxPython. wx.Message-
Dialog displays an alert box or a yes/no question. wx.TextEntryDialog
allows the user to enter text, and wx.SingleChoiceDialog gives the user a
choice based on a list of items.

m When performing a long background task, you can use wx.ProgressDialog
to display progress information to the user. The user can pick a file using
the standard file dialog by using the wx.FileDialog class. There is a stan-
dard tree view which allows the user to pick a directory that is created using
the wx.DirDialog class.

® You can access the standard font picker using wx.FontDialog and the stan-
dard color picker using wx.ColorDialog. In both cases, the dialog behavior
and user response are controlled by a separate data class.

= To browse thumbnail images, use the wxPython-specific class wx.1ib.image-
browser.ImageDialog. This class allows the user to walk through her file
system and select an image.

® You can create a wizard by using the wx.wizard.wizard class to tie together a
group of related dialog forms. The dialog forms are instances of either the
class wx.wizard.WizardSimplePage or wx.wizard.WizardPage. The difference

292 CHAPTER 9
Giving users choices with dialogs

is that the page to page path for a simple page needs to be laid out before
the wizard is displayed, while the standard page allows you to manage that
logic at runtime.

m Startup tips can easily be displayed using the functions wx.CreateFileTip-
Provider and wx.ShowTip.

m Validators are powerful objects that can automatically prevent a dialog from
closing if the data entered is incorrect. They can also automatically transter
data between a dialog display and an external object, and can verify data
entry on the fly.

Creating and using
wxPython menus

This chapter covers
m Creating menus
m Working with menu items

m Adding submenus, pop-up menus,
and custom menus

m Usability guidelines for menus

293

294

10.1

CHAPTER 10
Creating and using wxPython menus

It’s difficult to imagine an application without the familiar bar at the top starting
with File and Edit and ending with Help. Menus are such a common part of the
standard interface kit that they tend to fade into the background without drawing
much attention. That’s too bad, because the way that menus give the user access
to all functionality quickly and easily was truly revolutionary.

In wxPython, there are three primary classes that manage menu functionality.
The class wx.MenuBar manages the menu bar itself, while wx.Menu manages an
individual pull-down or pop-up menu. A wx.MenuBar instance can, of course, con-
tain multiple wx.Menu instances. The class wx.MenuItem represents one specific
item within a wx.Menu.

In chapter 2 we provided a brief introduction to menus, in listing 5.5 we pro-
vided a mechanism for easily creating menu items, and in chapter 7 we intro-
duced information on special menu effects. In this chapter, we will provide more
detail on the creation and use of wxPython menus.

Creating Menus

First, we will discuss menu bars. To use a menu bar, perform the following actions:

m (Create the menu bar

m Attach the menu bar to the frame

m Create the individual menus

m Attach the menus to the menu bar or to a parent menu
m Create the individual menu items

= Attach the menu items to the appropriate menu

m Create an event binding for each menu item

The order in which you perform these actions is somewhat flexible, as long as you
create all items before use, and all actions are completed in the frame initializa-
tion method. You can manipulate the menus later in the process, but after the
frame is visible, the order in which you do things may affect what the user sees.
For example, it doesn’t matter if you attach the menu bar to the frame right after
creation, or if you wait until all other procedures are complete. For readability
and maintenance purposes, we recommend that you keep related components
together. For suggestions on how to organize menu creation, see the section on
refactoring in chapter 5. In the next sections, we’ll cover basic menu tasks.

10.1.1

10.1.2

Creating Menus 295

How do I create a menu bar and attach it to a frame?
To create a menu bar, use the wx.MenuBar constructor, which takes no arguments.
wx .MenuBar ()

Once the menu bar is created, attach it to a wx. Frame (or a subclass) using the Set-
MenuBar () method. Typically, you would do this inside the __init__ () or OnInit ()
method of the frame:

menubar = wx.MenuBar ()

self.SetMenuBar
You don’t need to maintain a temporary variable for the menu bar, but doing so
will make adding menus to the bar somewhat more straightforward. To get at the
menu bar from someplace else in the program, use wx.Frame.GetMenuBar ().

How do I create a menu and attach it to the menu bar?

A wxPython menu bar consists of individual menus, each of which needs to be
created separately. The following displays the constructor for wx.Menu.

wx.Menu (title="", style=0)
There is only one valid style for wx.Menu I S e WEx
instances. Under GTK, the style wx.MENU_ [ieftMenu Middle Menu Right Menu

TEAROFF allows the menu to be detached
from the menu bar and used as a stand-
alone selector. Under other platforms,
the style has no effect. If the platform
supports it, a title can be given to the
menu when it is created, which will add
the text at the top of the menu above any
regular menu items that are added to the
menu. Figure 10.1 displays a blank win-
dow with three menus.

Figure 10.1
A blank window with three menus

Listing 10.1 displays the series of menus being added to a menu bar, without
any items being added.

import wx

class MyFrame (wx.Frame) :
def init (self):
wx.Frame._ init_(self, None, -1, "Simple Menu Example")
p = wx.Panel (self)

296

CHAPTER 10

Creating and using wxPython menus

menuBar = wx.MenuBar () <+— Creating a menu bar
menu = wx.Menu() <— Creatinga menu
menuBar.Append (menu, "Left Menu" .
PP () Appending the
menu2 = wx.Menu ()
) menu to the bar
menuBar.Append (menu2, "Middle Menu")

menu3 = wx.Menu ()
menuBar .Append (menu3, "Right Menu")
self.SetMenuBar (menuBar)

if __name_ == "_ _main_":
app = wx.PySimpleApp ()
frame = MyFrame ()

frame. Show ()

app.MainLoop ()

In the wxPython menu API, most of the manipulation of an object is managed by
its container class. Later in this chapter, we’ll discuss the specific methods of
wx.Menu, since most of the methods concern manipulation of the menu items
within the menu. In the remainder of this section, since we are talking about
manipulating wx.Menu objects, we’ll be listing the methods of wx.MenuBar that
concern menus. Table 10.1 displays the four methods within wx.MenuBar
that manipulate the contents of the menu bar.

Table 10.1 Methods of wx .MenuBar for manipulating the menus in the menu bar

Function

Description

Append(menu, title)

Appends the menu parameter to the end of the menu bar (the rightmost
element displayed). The title parameter will be used to display the new
menu. Returns True if successful, otherwise False.

Insert(pos, menu, title)

Inserts the given menu so that it is at the given pos (after this call,
GetMenu (pos) == menu is true). As if inserting into a list, all the
following menus are shifted to the right. The menu indexes are zero-based,
S0 a pos of 0 is equivalent to putting the menu at the left of the menu bar.
Inserting at GetMenuCount () as the pos is the same as using Append.
The title is used for the display nhame. Returns True if successful.

Remove(pos)

Removes the menu at the position pos, shifting all other menus leftward.
Returns the menu being removed.

Replace(pos, menu, title)

Replaces the menu at position pos, with the new menu passed in the menu
parameter, and using the display name given by the title parameter. The
other menus on the menu bar are unaffected. Returns the menu which was
previously at the position pos.

Creating Menus 297

The wx.MenuBar class contains a few other methods that manipulate the compo-
nent menus in other ways, as displayed in table 10.2.

Table 10.2 Menu property methods of wx . MenuBar

Method Description

EnableTop(pos, enable) Sets the enable/disable state of the menu at position pos. If enable is
True, then the menu is enabled, if False, then it is disabled.

GetMenu(pos) Returns the menu object at the given position.
GetMenuCount() Returns the number of menus in the menu bar.
FindMenu(title) Returns the integer index of the menu in the menu bar with the given title.

If there is no such menu, the method returns the constant wx . NOT_FOUND.
The method will ignhore decorations for keyboard shotcuts, if any.

GetLabelTop(pos) Getter and setter method for the display label of the menu at the
SetLabelTop(pos, label) given position.

10.1.3 How do I add items to a pull-down menu?

There are a couple of mechanisms for adding new menu items to a pull-down
menu. The easier is to use the Append () method of wx.Menu, as in:

Append (id, string, helpStr="", kind=wx.ITEM_ NORMAL)

The id parameter is a wxPython ID. The string argument is the string that will be
displayed on the menu. The helpstr, if defined, will be displayed in the frame’s
status bar when the menu is highlighted. The kind argument allows you to set the
type of the menu item to a toggle item. Later in this chapter we’ll describe better
ways of managing toggle items. The Append method places the new item at the
end of the menu.

If you want to append a menu separator to the menu, the easiest way is the no-
argument method wx.Menu.AppendSeparator (), which places a new separator at
the end of the menu.

Listing 10.2 displays an example of using the Append() method to build a
menu with two items and a separator.

import wx

class MyFrame (wx.Frame) :
def _ init_ (self):
wx.Frame. init (self, None, -1,
"Menu Example with StatusBar")

298 CHAPTER 10
Creating and using wxPython menus

def

def

p = wx.Panel (self)
self.CreateStatusBar ()

menu = wx.Menu ()
simple = menu.Append (-1, "Simple menu item",
"This is some help text")
menu.AppendSeparator ()
exit = menu.Append(-1, "Exit",
"Selecting this item will exit the program")
self.Bind (wx.EVT_MENU, self.OnSimple, simple)
self.Bind (wx.EVT_MENU, self.OnExit, exit)

menuBar = wx.MenuBar ()
menuBar.Append (menu, "Menu")
self.SetMenuBar (menuBar)

OnSimple (self, event):
wx .MessageBox ("You selected the simple menu item")

OnExit (self, event):
self.Close()

if name == " main ":

app

= wx.PySimpleApp ()

frame = MyFrame ()

frame. Show ()

app

.MainLoop ()

Figure 10.2 displays the menu with sepa-

T Menu Example with StatusBar M@m

rators and status text. Menu
Along with Append(), there are two SinplEmen e
other families of methods for menu item =

insertion.

beginning of the menu, use one of the
following methods:

®m Prepend(id, string, helpStr="",
kind=wx.ITEM NORMAL)

To put a menu item at the

This is some help text

and status text.

m PrependSeparator().

Figure 10.2 A sample menu, with separators

These two methods take the same arguments as their appending counterparts,
with the only difference being the placement of the resulting menu item at the
top of the menu rather than at the bottom.

To place the new item at an arbitrary place within the menu, use one of the fol-

lowing Insert methods:

Creating Menus 299

®m Insert(pos, id, string, helpStr="", kind=wx.ITEM NORMAL)

® InsertSeparator (pos)

The new argument here, pos, is the index within the menu where the new item is
displayed, so an index of 0 puts the new item at the beginning, and an index of
the menu size puts the new item at the end. All menu items after the point of inser-
tion are shifted downward.

All of these insertion methods implicitly create an instance of the class
wx.MenuItem. You can also explicitly create an instance of that class using its con-
structor to set additional properties of the menu item besides just its label. For
instance, you can set custom fonts or colors. The constructor for wx.MenuIten is
as follows:

wx.MenulItem(parentMenu=None, id=ID ANY, text="",
helpString="", kind=wx.ITEM_ NORMAL, subMenu=None)

The parentMenu argument, if specified must be a wx.Menu instance. The new menu
item is not automatically added to the display of the parent menu when con-
structed. You must do this yourself. This behavior is different than the ordinary
behavior of wxPython widgets and their containers. The id argument is the iden-
tifier for the new item. The trick of setting the id to -1 to automatically generate
an ID works the same for menu items as it does for windows. The text argument
is the menu item’s display string in the menu, and the helpString argument is the
display string in the status bar, when highlighted. The kind is wx. ITEM_NORMAL for
plain menu items; we’ll see next that toggle menu items have different values. If
the subMenu argument is not null, the new menu item is actually a submenu. We
do not recommend that you use this mechanism to create submenus; instead use
the mechanism described in section 10.3, Sprucing up your menus.

Unlike most widgets, creating the menu item does not add it to the specified
parent menu. To add the new menu item to a menu, use one of the following
methods of wx.Menu:

® AppendItem(aMenultem)
B InsertItem(pos, aMenultem)

® PrependItem(aMenultem)

All three behave the same as their implicit counterparts described earlier.

To remove a menu item from the menu, use the method Remove (id), which
takes a wxPython ID, or RemoveItem(item), which takes a menu item as the argu-
ment. Any subsequent menu items are shifted upward in the display. The Remove ()

300

CHAPTER 10
Creating and using wxPython menus

methods return the actual menu item that was affected. This allows you to store
the item for later use. Unlike menu bars, menus don’t have a method for direct
replacement of menu items. A replacement must be managed as a removal and
subsequent insertion.

The wx.Menu class also has two getters for obtaining information about its com-
ponent menu items. GetMenuItemCount () returns the number of items in the
menu, and GetMenuItems () returns a list of the menu items in the menu ordered
by their position within the menu. This list is a copy of the actual list in the menu,
meaning that changing the returned list does not change the menu itself. There-
fore, you cannot use this list to bypass the methods for adding and removing
menu items.

You can continue to add or remove menu items from a menu during runtime
while the menu is active. Listing 10.3 displays sample code that adds menus dur-
ing runtime. The onAddItem() method, called when the button is pressed, inserts
a new item at the end of the menu.

import wx

class MyFrame (wx.Frame) :
def _ init_ (self):
wx.Frame. init (self, None, -1,
"Add Menu Items")
p = wx.Panel (self)
self.txt = wx.TextCtrl(p, -1, "new item")
btn = wx.Button(p, -1, "Add Menu Item")

self.Bind (wx.EVT_BUTTON, self.OnAddItem, btn) <k1 Binding the

)) button event
sizer = wx.BoxSizer (wx.HORIZONTAL)

sizer.Add (self.txt, 0, wx.ALL, 20)
sizer.Add(btn, 0, wx.TOP|wx.RIGHT, 20)
p.SetSizer (sizer)

self.menu = menu = wx.Menu()

simple = menu.Append (-1, "Simple menu item")
menu.AppendSeparator ()

exit = menu.Append (-1, "Exit")

self.Bind (wx.EVT MENU, self.OnSimple, simple)
self.Bind (wx.EVT_MENU, self.OnExit, exit)

menuBar = wx.MenuBar ()
menuBar.Append (menu, "Menu")
self.SetMenuBar (menuBar)

10.1.4

Creating Menus 301

def OnSimple(self, event):
wx .MessageBox ("You selected the simple menu item")

def OnExit (self, event):
self.Close()

def OnAddItem(self, event): <J Adding
item = self.menu.Append(-1, self.txt.GetValue()) the item
self.Bind (wx.EVT MENU, self.OnNewItemSelected, item) . e

- Binding

T a menu

def OnNewItemSelected(self, event):
event

wx .MessageBox ("You selected a new item")

if name == "_ main_ ":
app = wx.PySimpleApp ()
frame = MyFrame ()
frame. Show ()
app .MainLoop ()
||

In this sample, onAddItem() reads the value of the text in the text field, and uses
Append () to add a new item to the menu. In addition, it binds a menu event
so that the new menu item has functionality. In the next section, we’ll discuss
menu events.

How do I respond to a menu event?

In the last section, we displayed two code examples that respond to a menu
selection. Like many of the widgets we saw in chapter 8, selecting a menu item
triggers an instance of wx.CommandEvent of a specific type. In this case, the type is
wx . EVT_MENU.

Menu item events vary from other command events in the system in two ways.
First, the Bind() function that associates the menu item event with a specific
function is called, not on the menu item instance or its containing menu or
menu bar instances, but on the frame which contains the menu bar. Secondly,
since the frame usually has multiple menu items responding to the same
wx.EVT_MENU trigger, the Bind () method needs to take a third parameter, which is
the menu item itself. This allows the frame to differentiate between menu events
from different items.

So, a typical call to bind a menu event would look like this:

self.Bind(wx.EVT MENU, self.OnExit, exit menu item)

where self is the frame, self.onExit is the handling method, and exit menu_
itemis the menu item itself.

302

CHAPTER 10
Creating and using wxPython menus

Although the idea of binding the menu event through the frame may seem a
little odd, there is a reason for it. Binding events through the frame allows you to
transparently bind a toolbar button to the same handler as the menu item. If the
toolbar button has the same wxPython ID as a menu item, the single Bind () call
for wx.EvT MENU will bind both the menu selection and the toolbar button click.
This is possible because both the menu item event and the toolbar event get
routed through the frame. If the menu item event was handled in the menu bar, it
would never see the toolbar event.

Occasionally, you will have multiple menu items that need to be bound to the
same handler. For example, a set of radio button toggle menus, all of which do
essentially the same thing, may be bound to the same handler. To avoid having to
bind each one separately, if the menu items have consecutive identifier numbers,
use the wx.EVT_MENU_RANGE event type:

self.Bind (wx.EVT_MENU_RANGE, function, id=menul, id2=menu2)

In this case, any menu item with an identifier between menul and menu2 (inclusive)
would bind to the given function.

Although typically you’ll only care about menu item command events, there
are other menu events that you can respond to. In wxPython, the class wx.Menu-
Event manages menu drawing and highlighting events. Table 10.3 details four
event types for wx.MenuEvent.

Table 10.3 Event types of wx.MenuEvent

Event type Description
EVT_MENU_CLOSE Triggered when a menu is closed.
EVT_MENU_HIGHLIGHT Triggered when a menu item is highlighted. Bound to a specific menu
item ID. By default causes help text to be displayed in the frame’s
status bar.

EVT_MENU_HIGHLIGHT_ALL Triggered when a menu item is highlighted, but not bound to a specific
menu item ID—meaning that there’s just one handler for the entire menu
bar. You'd call this if you wanted any menu highlight change to trigger an
action, no matter which items are selected.

EVT_MENU_OPEN Triggered when a menu is opened.

Now that we’ve covered the basics of menu creation, we’ll begin describing how to
work with menu items.

Working with menu items 303

10.2 Working with menu items

10.2.1

Although menus and menu bars are obviously vital to the structure of a menu sys-
tem, most of your time and effort will be spent dealing with the menu items. In
the next few sections, we’ll talk about common menu item functions such as find-
ing an item, enabling or disabling an item, creating toggle menu items, and
assigning keyboard shortcuts.

How do I find a specific menu item in a menu?

There are a number of ways in wxPython to find a specific menu or menu item
given a label or an identifier. You often use these methods in event handlers,
especially when you want to modify a menu item or display its label text in
another location. Listing 10.4 augments the previous dynamic menu example by
using FindItemById() to get the appropriate menu item for display.

import wx

class MyFrame (wx.Frame) :
def init (self):
wx.Frame._ init__ (self, None, -1,
"Find Item Example")

p = wx.Panel (self)
self.txt = wx.TextCtrl(p, -1, "new item")
btn = wx.Button(p, -1, "Add Menu Item")
self.Bind (wx.EVT_BUTTON, self.OnAddItem, btn)

sizer = wx.BoxSizer (wx.HORIZONTAL)
sizer.Add (self.txt, 0, wx.ALL, 20)
sizer.Add (btn, 0, wx.TOP|wx.RIGHT, 20)
p.SetSizer (sizer)

self.menu = menu = wx.Menu()

simple = menu.Append (-1, "Simple menu item")
menu.AppendSeparator ()

exit = menu.Append(-1, "Exit")

self.Bind (wx.EVT_MENU, self.OnSimple, simple)
self.Bind (wx.EVT MENU, self.OnExit, exit)

menuBar = wx.MenuBar ()
menuBar .Append (menu, "Menu")
self.SetMenuBar (menuBar)

def OnSimple(self, event):
wx .MessageBox ("You selected the simple menu item")

304

CHAPTER 10
Creating and using wxPython menus

def OnExit (self, event):
self.Close()

def OnAddItem(self, event):
item = self.menu.Append (-1, self.txt.GetValue())
self.Bind (wx.EVT _MENU, self.OnNewItemSelected, item)

def OnNewItemSelected(self, event):
item = self.GetMenuBar () .FindItemById (event.GetId())

. Gettin,
text = item.GetText () theméiu
wx .MessageBox ("You selected the '$s' item" % text) item

if __name_ == "_ _main_":
app = wx.PySimpleApp ()
frame = MyFrame ()
frame. Show ()
app.MainLoop ()
||

In this example, FindItemById() is used to get the item for the purpose of getting
its text label for the display.

Both wx.MenuBar and wx.Menu have essentially the same methods for finding
out information about specific menu items. The primary difference is that the
wx .MenuBar methods will find an item anywhere on the menu bar, while the wx.Menu
items will find an item only if it is in that particular menu. For most uses, the
wx.MenuBar items are preferred, at least in part because the menu bar is easily
accessible using the wx.Frame.GetMenuBar () method.

To find a top-level menu from the menu bar, use the menu bar method Find-
Menu (title). This method returns either the index of the appropriate menu or the
constant wx.NOT_FOUND. To get the actual menu, use GetMenu ():

def FindMenuInMenuBar (menuBar, title):
pos = menuBar.FindMenu (title)
if pos == wx.NOT_ FOUND:
return None

return menuBar.GetMenu (pos)
The title parameter of FindMenu matches the menu t