THE EXPERT'S VOICE® IN OPEN SOURCE

Beginning

Python

From Novice to Professional

Miaster Pytivon key features with this comprelrensive guide o ome
af thee vearld's wmost popuilar open sonrce prograraiRg anguages,

Magnus Lie Hetland

Apress:

Beginning Python

From Novice to Professional

Magnus Lie Hetland

Apress-

Beginning Python: From Novice to Professional
Copyright © 2005 by Magnus Lie Hetland

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-519-X
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Editor: Matt Moodie

Technical Reviewer: Jeremy Jones

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Beckie Stones

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Linda Marousek

Compositor: Susan Glinert Stevens

Proofreader: Liz Welch

Indexer: Michael Brinkman

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

For Ranveig

Contents at a Glance

AbOUL the AUTNOT Xxiii
About the Technical ReVIEWET i i e i i ie e XXV
51T XXVii
IMtrOdUCHION ... e e XXiX
CHAPTER 1 Instant Hacking: The Basicscoovviiiiiiinnn.. 1
CHAPTER 2 Listsand Tuples ...t e 31
CHAPTER3 Workingwith Stringsot 53
CHAPTER 4 Dictionaries: When IndicesWon’tDo 67
CHAPTER 5 Conditionals, Loops, and Some Other Statements 81
CHAPTER6 Abstraction 109
CHAPTER7 More Abstraction ...t 139
CHAPTER 8 EXCEPtioNS ...t 159
CHAPTER 9 Magic Methods, Properties, and lterators 173
CHAPTER 10 BatteriesIncluded ..., 203
CHAPTER 11 Filesand Stuff 255
CHAPTER 12 Graphical User Interfacesccviiiiiininnt. 269
CHAPTER 13 Database Support ...t 285
CHAPTER 14 Network Programmingccoiiiiiiiiiininninns. 297
CHAPTER 15 PythonandtheWeb it 313
CHAPTER 16 Testing, 1-2-3o e 341
CHAPTER 17 ExtendingPython............., 357
CHAPTER 18 Packaging Your Programsccoiviiiiininnnnnns. 373
CHAPTER 19 Playful Programmingcciiiiiiiiiii i, 381
CHAPTER 20 Project 1:Instant Markupccoiiiiiiinint. 391
CHAPTER 21 Project 2: Painting a Pretty Picture 411

CHAPTER 22 Project 3: XML for All Occasionsccovvevnnns. 421

CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29
APPENDIX A
APPENDIX B
APPENDIX C

Project4:Inthe Newscoiiiii it
Project 5: AVirtual TeaPartyccviiii.
Project 6: Remote Editing withCGI
Project 7: Your Own BulletinBoard
Project 8: File Sharing with XML-RPC
Project 9: File Sharing Il—Now with GUI'
Project 10: Do-It-Yourself Arcade Game
The ShortVersion ...t
Python Referencec.oiiiiiiiiiii i
Online RESOUICES\

Contents

AbOUL the AUTNOT Xxiii
About the Technical ReVIEWET i i e i i ie e XXV
51T XXVii
IMtrOdUCHION ... e e XXix
CHAPTER 1 Instant Hacking: TheBasics 1
Installing Python ... o i 1

WINAOWS . ..o e 1

Linuxand UNDX . ..o e 3

Macintosh ... e 6

Other Distributions 6

Keeping InTouchandUptoDate...................coieintt 8

The Interactive Interpreter ... i 8

Algo. .. What? ... e 9

Numbers and EXpressionsccoviieiiiiiiiiiieeninnanns 10

Large Integers.ooo i e e 12

Hexadecimalsand Octals................ccoiiiiii it 13

Variables ... i 13

Statements ... e e 14

Getting Input fromthe Userc it 15

FUNCHIONS . ..o 16

MOdUIES ... 17

cmath and Complex Numbers. ...t 18

Backtothe _ _future_ _ i 19

Saving and Executing Your Programso 19

Running Your Python Scripts from a Command Prompt 20

Making Your Scripts Behave Like Normal Programs 21

COMMENES . . ot i i e e e 22

vii

viii CONTENTS

CHAPTER 2

CHAPTER 3

SHNGS .« e 23
Single-Quoted Strings and Escaping Quotes................... 23
Concatenating Stringscoovii i e 24
String Representations, strandrepr...................o.ut. 25
input vs. raw_input. ... e 26
Long Strings, Raw Strings, and Unicode 26

AQUICK SUMMArY i e i e 29
New Functionsin ThisChapter.............................. 30
What NOW? .. e e 30

Listsand Tuples L. 31

Common Sequence Operationscoveeiiieniiieeennnn.. 32
INABXING . ..o 33
SlCING vttt e 34
Adding SEQUENCESt ii e e 37
Multiplication. e 37
Membership ... e 39
Length, Minimum, and Maximum............................ 40

Lists: Python’s Workhorse ... 40
ThelistFunction. ... e M
Basic List Operations ... 41
ListMethods ... e 43

Tuples: Immutable SEQUENCESot i 49
Thetuple Functiont 50
Basic Tuple Operationsccooviiiiiiiiniinn.s. 50
SoWhat'sthePoint?co i 51

AQUICK SUMMArY i e i e 51
New Functionsin ThisChapter.............................. 52
What NOW? ... e 52

Working with Strings 53

Basic String Operationsc.covriiiiiiii i e 53

String Formatting: The Short VersionL. 53

String Formatting: The Long Versionccoovvvvinn..t. 55
Simple CONVEISION . ..ottt e i i ci e 56
Widthand Precision ... 57

Signs, Alignment, and Zero-Padding 58

CHAPTER 4

CONTENTS
StringMethods ... 59
fiNd. .o e 60
JOIN L e e e 61
T 62
TEPIACEt e 62
SPIL. . e 63
]] 63
franslate. 64
AQuick SUMMArY ... e 65
New Functionsin ThisChapter.............................. 66
What NOW?o e i e 66
Dictionaries: When Indices Won’tDo 67
ButWhat Are They FOr? ... i 67
Dictionary Syntax ... e 68
ThedictFunction 69
Basic Dictionary Operationsccoiii i 69
String Formatting with Dictionaries 71
Dictionary Methods e 72
Ol . et 72
0] 73
frOMKEYS . ot e 74
0 P 74
NAS_KBY ..ottt 75
itemsand iteritems. ... 75
keys and iterkeySovvr i e 76
0 76
POPIBM .. e 76
setdefault. ... 76
1] 0 1 77
valuesanditervalues ... 77
AQUiCK SUMMArY e 79
New Functionsin ThisChapter.............................. 79

What NOW? .. e 79

ix

CONTENTS

CHAPTER 5

CHAPTER 6

Conditionals, Loops, and Some Other Statements 81
More About printand import 81
PrintingwithCommasccoiiiii it 81
Importing Something As Something Else...................... 82
AsSignment MagiCooiiiii i 83
Sequence Unpackingooveie it 83
Chained Assignments.cooeiii i 84
Augmented ASSIgNMENtS. 84
Blocks: The Joy of Indentationccoiiiiiniat. 85
Conditions and Conditional Statements 86
So That’s What Those Boolean Values Are For................. 86
Conditional Execution and the if Statement.................... 87
else Clausesooiiiii i e e 87
Blf ClaUSES . ..o oot e 88
NestingBlocks ... 88
More Complex Conditions ..., 89
ASSEBIIONSot e 93
0] 1 93
While LOOPS . . v vt e e i e 94
(0 0] 1 95
[terating Over Dictionaries..........covviiiii i nnnnns. 96
Some lteration Utilities.t 96
Breaking Out of LOOPSo v v 98
else Clauses iN LOOPS. .« v vvv v i it ie i ie e 100
List Comprehension—Slightly Loopycccovviieiott. 101
And ThreefortheRoadccc it 102
Nothing Happened!.............cc i 102
Deletingwithdel............cciiiiii it 103
Executing and Evaluating Strings with exec and eval 104
AQUICK SUMMArY ... e 107
New Functionsin ThisChapter............................. 108
What NOW? ... e i e 108
Abstractionl 109
LazinessIsaVirtue ..o 109
Abstractionand Structure 110
Creating Your Own Functionsccoiviiiiiinnnnn.. 11
Documenting Functions. ... 112

Functions That Aren’t Really Functions 112

CHAPTER 7

CONTENTS
The Magic of Parameters ...t 113
Where Do the Values Come From?.......................... 113
CanlChange aParameter?............covviiiiiiiniin.. 114
Keyword Parameters and Defaults.......................... 119
Collecting Parameterscovvieiieiiiiinnnnns 121
SCOPING o vttt e e e 126
Rebinding Global Variablesooiill 127
RECUISION e e 129
Two Classics: Factorial and Power.......................... 130
Another Classic: Binary Search............................. 131
Throwing Functions Around ... 133
= 0 134
11 134
FBAUCE ..ottt e e e 135
APPIY. oo e e 137
AQUiCK SUMMANY i e e i 137
New Functionsin ThisChapter....................covitt 138
What NOW? ..o e e e 138
More Abstractionl 139
The Magic of Objects ... e 139
Polymorphism 140
Encapsulationcc i 143
Inheritance. ... e 146
Classes and TYPES . ..vvrei et i i it i i 147
What Is a Class, Exactly?. ..., 147
Making Your Own Classes...........cccoiieiiiiiinninnnnn 148
Attributes, Functions, and Methods 149
Throwing Methods Around.t 150
The Class Namespaceccovvviiviie i iiennnnn. 151
Specifying a Superclass. 153
Investigating Inheritance i, 153
Multiple SUperclassesc.coviii it 154
Interfaces and Introspectionl 155
Some Thoughts on Object-Oriented Design 156
AQUiCK SUMMANY i e e i 157
New Functionsin ThisChapter............................. 158

WAt NOW? e e 158

Xi

Xii

CONTENTS

CHAPTER 8

CHAPTER 9

Exceptions 159
What Is an Exception? ... 159
Making Things GoWrong ... YourWayccovvvvnnn. 160
The raise Statement.............. ..o, 160
Custom Exception Classes.covvveiiiiiiiiinenn.. 162
Catching EXceptionsooviiiii i 162
Look, Ma, No Arguments! 163
More Than One except Clauseccooviiiiiiiennann.. 164
Catching Two Exceptions with One Block 164
Catchingthe Object 165
ARealCatchall i 165
When AlISWell ... e e 166
AndFinallyo 168
Exceptionsand Functions il 168
The Zen of EXCEptionsoeiii i i 169
AQUiCKk SUMMANYt e e e 171
New Functionsin ThisChapter............................. 171
What NOw?o 171
Magic Methods, Properties, and Iterators 173
Before We Begin 173
CONSIIUCIOrS ..ttt i i e e 174
Overriding the Constructor..............cooviiii et 175
Calling the Unbound Superclass Constructor 177
Using the super Function............... ...t 178
M ACCESS .« oottt ettt e e 179
The Basic Sequence and Mapping Protocol 180
Subclassing list, dict,and str 182
MOre MagiCcovviiii i e e e e 184
PrOPBIIES .ttt e e 184
The property Functiono 185
__Qetattr__, __setattr _,andFriends...................... 188
Reratorso e 189
The lterator Protocol. ... 190
Making Sequences from Iterators..................coviii.t 191
GeNEratOrS . ..ottt 191
Makinga Generatorc.ooviiiiiii 191
ARecursive Generatorciii i 192
GeneratorsinGeneral.ccoiiiiiii i 194

Avoiding Generators.oii i 194

CHAPTER 10

CONTENTS
The Eight QUEENSot e e e i e 195
Backtracking. ... 196
The Problemo e e 196
State Representation i 196
Finding Conflicts.............coo i 197
The Base Case ...ouvvire ittt it i e ieanen, 197
The Recursive Caseovvieiii it i i eaeenn, 198
Wrapping R Up ..o 200
AQUiCK SUMMArY ... 201
New Functionsin ThisChapter.................... 202
What NOW? ... 202
BatteriesIncludedL. 203
MOdUIES ..ot 203
Modules Are Programs.coiiiiii i 203
Modules Are Used to Define Thingst 205
Making Your Modules Available 207
PaCcKages e e 210
ExploringModuleso 211
What'sinaModule?. ...t 211
GettingHelpwithhelp ...l 212
Documentation ... 213
Usethe SOUMCEcovi i 214
The Standard Library: A Few Favorites 215
S ettt e 215
[0 216
fileinputo e 219
Sets, Heaps, and Deques.ccoviiiiiiiiiinnn, 221
M L 226
FANAOM. ..t e e e 228
SheIVE. ..o e 231
D ettt e e e 235
Other Interesting Standard Modules. 251
AQUiCK SUMMANY i e e 252
New Functionsin ThisChapter....................coiitt, 253

What NOW? . et 253

Xiii

Xiv CONTENTS

CHAPTER 11

CHAPTER 12

Filesand Stuff ...l 255
Opening Filesovve e 255
The Mode Argument. ..ot 256
Buffering ... e 257
The Basic FileMethodsccoiiiiiiiii it 257
Readingand Writing. ... 258
Reading and Writing Lines. ..ot 260
Closing Your Files.oovvnvi e 261
[terating Over File Contents ..., 263
Doing ltBytebyByteccoiviii 264
OneLineataTime.......ccviriiiiiii i 264
Reading Everything. ... 265
Lazy Line lteration with fileinput and xreadlines............... 265
The New Kids on the Block: File Iterators 266
AQUICK SUMMArY e e 267
New Functionsin ThisChapter............................. 268
What NOW? ... e e 268
Graphical User Interfaces 269
An Example GUI Application ...t 269
APlethoraof Platforms ... 270
Downloading and Installing wxPython 271
Getting Started ...t e 272
Creating Windows and Componentscovvieiinivinninnnns 273
Labelsand Positions e 274
More IntelligentLayout.t 276
EventHandlingccooiiiii e 278
The Finished Program ... 278
ButPdRatherUse e 280
Using TKINter. ..o e i 281
Using Jythonand Swing ...t 282
Using Something EIse.oovvii i 283
AQUiCK SUMMArY ... i 283

What NOW? .. e 283

CHAPTER 13

CHAPTER 14

CHAPTER 15

CONTENTS

Database Support ... 285
The Python DB APl i e 285
Global Variables ... 286
EXCEPLiONSot e e 287
Connections and CUrSOrS.vvvt v i i ieanens 287
TYPES .ttt e e 289
Downloading and Installing pysqliteccoiiiiitt. 290
Getting Started ... 291
An Example Database Applicationcii.L 291
Creating and Populating Tables 292
Searching and Dealing with Results......................... 294
AQUICK SUMMArY e e 295
New Functionsin ThisChapter............................. 295
What NOW? ... e e 295
Network Programming 297
A Handful of Networking Modulescccvvvvvninnn.. 297
SOCKEL. ..ottt 298
urlliband urllib2 300
Other Modules.covriiii i 301
SocketServerand Friendsccoi i 302
More Information o i 303
Multiple ConNeCtioNSc.vvriii it i 303
Forking and Threading with SocketServers................... 305
Asynchronous I/0 with selectand poll 305
TWIStEd o 308
Downloading and Installing Twisted. 308
Writing a Twisted Servert 309
AQUiICK SUMMArY ... e 311
New Functionsin ThisChapter................cooviiini.t, 312
What NOW? ... e i e 312
PythonandtheWeb 313
SCreen SCrapingvvire i e i e i 313
Tidy and XHTML Parsingcooiiiiiiiiii i 314

Beautiful Soup. ... 319

Xv

Xvi CONTENTS

CHAPTER 16

Dynamic Web Pages with CGIccoiiitL. 321
Step 1. Preparing the Web Server 321
Step 2. Adding the Pound Bang Line 321
Step 3. Setting the File Permissions......................... 322
CGI Security RiSKS.o v vt 323
ASimple CGIScript ..o 323
Debugging withcgitb. ... 324
UsingthecgiModule ...t 325
ASImple FOrm. ..o i 327
One StepUp:mod_python ... 328
Installing ... 329
CGIHandler.........coiiii et 330
PP . 331
The Publisher ... 332
Web Services: Scraping DoneRightcoiiiat 335
RS 335
XML-RPC 337
AQUiCK SUMMArY ... i 339
New Functionsin ThisChapter............................. 339
What NOw?o 339
Testing, 1-2-3 ... 341
TestFirst, Code Latercvieiiiii e 341
Precise Requirement Specification.......................... 342
PlanningforChange. ..., 343
The 1-2-3 (and 4) of Testing.covvvv i 344
ToolsforTesting ..o i 344
dOCteSt. ...t e 344
UNIEESE. Lt e e 347
Beyond Unit Testsovveiiii i i 350
PyCheckerand PyLint ...t 351
Profiling ... oo e e 353
AQUiCK SUMMANY i e e i 354
New Functionsin ThisChapter............................. 355

WAt NOW? e e 355

CHAPTER 17

CHAPTER 18

CHAPTER 19

CONTENTS
ExtendingPython 357
The Really Easy Way: Jython and IronPython 358
Writing C EXIENSIONS v oot e e 360
ASwigof...SWIG. ... 361
Hacking ltonYourOwn............coo i, 365
AQUICK SUMMArY e e 370
New Functionsin ThisChapter............................. 371
What NOW? ... e i 371
Packaging Your Programs 373
Distutils BaSICSovvvii i e 373
Basic Installation ... 374
Wrapping Things Up ..o ove i i 376
Compiling EXTENSIONS ... ovvv i e 378
Creating Executable Programs with py2exeovv.n. 379
AQUiCK SUMMANY i e e i 380
New Functionsin ThisChapter....................covitt 380
What NOW? ..o e e e e 380
Playful Programming 381
Why Playful? ... e e 381
The Ju-Jitsu of Programming, 381
Prototyping ... e 382
Configurationccoiiii i e 383
Extracting Constants. ..., 383
Configuration Filescovviii e 384
LOgOING e 385
If You Can'tBe Botheredccoiiiiiiiiiiiiiinnn.. 387
Project Structure ... 388
AQUiCK SUMMANY i e e i 388

What NOW? .. e 389

Xvii

xvili

CONTENTS
CHAPTER 20 Project1:InstantMarkup 391
What's the Problem? ... 391
SpecificGoals ..ot 392
USEful TOOIS ...t e e 392
Preparationsccoiiiiiiii e e 392
FirstImplementation............... ... i 394
Adding Some Markup. ... 395
Second Implementationc i 396
Handlers. e e 397
A Handler Superclass...........coviiiiii i 398
RUIBS ..o e 399
ARUle SUPEICIASS. . .. v v i e 400
Fiers. ..o e e 401
The Parser.o e e e 401
Constructing the Rules and Filters, 402
Putting It All Together. ...t 403
Further Explorationcc i e 408
What NOw?o 409
CHAPTER 21 Project 2: Painting a Pretty Picture 411
What's the Problem? i 411
SpecificGoals ..o 412
Useful TOOIS ... e 412
How Does EWork? i 412
Preparations ... e 412
FirstImplementation............... ... i 413
Drawing with ReportLabot 413
Constructing Some PolyLinesccvieiina... 415
The Prototype ... v e e e 416
Second Implementation ...t 417
GettingtheDatacoo i 47
Using the LinePlot Class.cov v iieinn 418
Further Exploration ...t 420

What NOW? .. e 420

CONTENTS
CHAPTER 22 Project 3: XML for All Occasions 421
What's the Problem? ... 421

SpecificGoals ..ot 422

USEful TOOIS ...t e e 422

Preparationsccoiiiiiiii e e 423
FirstImplementation............... ... i 424

Creating a Simple ContentHandler.......................... 425

Creating HTML Pages.ovieiiii i i 428

Second Implementation ...t 430

A Dispatcher Mix-InClassccoviiiiiiiinnn.... 430

Factoring Out the Header, Footer, and Default Handling 432

Support for Directories.ovv i 432

The EventHandlers. ... 433

Further Explorationcc i e 437

What NOw?o 437

CHAPTER 23 Project4:IntheNews 439
What's the Problem? i 439

SpecificGoals ..o 440

Useful TOOIS ... e 440

Preparationscciiiiiiiii e 440

First Implementation..............coo i aM

Second Implementation ... 444

Further Exploration ...t 452

What NOW? e e 453

CHAPTER 24 Project5:AVirtualTeaParty 455
What's the Problem? ... 455

Specific Goalsc.v v 455

USEful TOOIS ...t e e 456

What'sltFor? ... e 456

Preparations ...t e e 456

First Implementation..............cco i 457

The ChatServer Class.covviiiiiii i 457

The ChatSession Class.c.ovveiiiiiiiii i, 459

Puttinglt Together oot 461

Xix

XX

CONTENTS

CHAPTER 25

CHAPTER 26

Second Implementationc i 463
Basic Command Interpretation............................. 463
ROOMS . e e 464
Login and Logout RoOmSovvii i 465
The Main ChatRoomccoiiiii e 466
The NEeW Serveroieiii i it 466

Further Exploration i 472
What NOW? ... e e 472

Project 6: Remote Editing withCGI 473

What's the Problem? i 473
SpecificGoals ..o 473

USeful TOOIS ..ot e i 474

Preparationsciiiiiiiiii e e 474

First Implementation..............coo i 474

Second Implementationc i 476
index.html . ..o e 476
T] oo 476
SAVE. OOl .+ o vttt e e 478
Runningthe Editorccoo i 479

Further Exploration i 481
What NOW? ... e e 481

Project 7: Your Own BulletinBoard 483

What's the Problem? i 483
Specific Goalsc.v v 483

USeful TOOIS ..ottt e e i 484

Preparations ... e 484

FirstImplementation............... ... i 486

Second Implementationc i 489
012 11§ o o | 490
112 o 492
T o 493
T2 1= o 494
Trying ROUL. ..ot 496

Further Explorationcc i e 498

WAt NOW? e e 498

CHAPTER 27

CHAPTER 28

CHAPTER 29

CONTENTS
Project 8: File Sharing with XML-RPC 499
What's the Problem? ... 499
SpecificGoals ..ot 500
USEful TOOIS ...t e e 501
Preparationsccoiiiiiiii e e 501
FirstImplementation............... ... i 501
Second Implementationc i 509
The ClientInterfacecccoiiiiiiiiiii .. 509
The Exceptions e 510
Validating FileNames. ... 510
Trying Out the Second Implementation 511
Further Exploration ...t 516
What NOW? e e 516
Project 9: File Sharing ll—Now withGUI! 517
What's the Problem?o 517
SpecificGoals ..o 517
USEful TOOIS ..ot e e 517
Preparations ... e 518
FirstImplementation............... ... i 518
Second Implementation ...t 521
Further Exploration i 525
What NOw?o 525
Project 10: Do-It-Yourself Arcade Game 527
What's the Problem? i 527
SpecificGoals ..o 528
USeful TOOIS ..ot e i 528
PYOAME ettt e 528
pygame.localS.ot e e 529
pygame.display. ... e 529
pygame.font 529
PYOAME.SPIItE . . o et e 530
PYOAME.IMOUSE . v e vte e et vt e et vt aeeieeaneennennens 530
pygame.event e 530

PYOAMEAMAGE v vttt it e e e i i i 530

XXi

XXii

CONTENTS

APPENDIX A

APPENDIX B

APPENDIX C

Preparations ... e 530
FirstImplementation............... ... i i 531
Second Implementation ... 535
Further Exploration i 545

What NOW? ... 546
The ShortVersion .. 547
ThE BaSICS ..ottt e e e 547
FUNCLIONS ..o e 549
Objectsand Stuff 550
Some LooSeENds ..o 554
Python Reference .. 557
EXPreSSIONS ..o e e 557
Statements ... 566

Simple Statements..............coi i 566

Compound Statements.cciii i 569
OnlineResourcescooiiiiiiiiiiinn.. 571
Python Distributions ... 571
Python Documentationo 572
Useful Toolkits and Modulesccoviiiiiiiiienn... 572
Newsgroups and Mailing Listsccciiiiiiii .. 573
... 575

About the Author

MAGNUS LIE HETLAND is an associate professor of algorithms at the
Norwegian University of Science and Technology, NTNU. Even though
he loves learning new programming languages—even quite obscure
ones—Magnus has been a devoted Python fan and an active member
of the Python community for many years, and is the author of the
popular online tutorials “Instant Python” and “Instant Hacking.” His
publications include the forerunner to this book, Practical Python
(Apress, 2002), as well as several scientific papers. When he isn’t busy
staring at a computer screen, he may be found reading (even while bicycling), acting (in a local
theater group), or gaming (mostly roleplaying games).

XXiii

About the
Technical Reviewer

JEREMY JONES is currently a software quality assurance engineer at
The Weather Channel in Atlanta, GA, where he spends the majority of
his time writing Python applications that test other applications. He
began using Python about five years ago after a lengthy and painful
battle with another (unnamed) programming language. He lives in the
suburbs of Atlanta with his wife, Debra, and two children, Zane and
Justus. Between changing diapers, giving baths, and pulling the children
around the neighborhood in a wagon, he finds time to write articles for

DevX and O’Reilly’s ONLamp, and to maintain his open source software projects, Munkware
(http://munkware.sourceforge.net) and ediplex (http://forge.novell.com/modules/xfmod/

project/?ediplex).

XXV

Preface

A few years ago, Jason Gilmore approached me about writing a book for Apress. He had read
my online Python tutorials and wanted me to write a book in a similar style. I was flattered,
excited, and just a little bit nervous. The one thing that worried me the most was how much
time it would take, and how much it would interfere with my studies (I was a PhD student at the
time). It turned out to be quite an undertaking, and it took me a lot longer to finish than I had
expected. Luckily, it didn’t interfere too much with my school work, and I managed to get my
degree without any delays.

Lastyear, Jason contacted me again. Apress wanted an expanded and revised version of my
book. Was I interested? At the time I was busy settling into a new position as associate professor,
while spending all my spare time portraying Peer Gynt, so again time became the major issue.
Eventually (after things had settled down a bit, and I had a bit more time to spare), I agreed to
do the book, and this (as I'm sure you've gathered) is the result. Most of the material is taken
from the first version of the book, Practical Python (Apress, 2002). The existing material has
been completely revised, based on recent changes in the Python language, and several new
chapters have been added. Some of the old material has also been redistributed to accommodate
the new structure. I've received a lot of positive feedback from readers about the first version—
I hope I've been able to keep what people liked and to add more of the same.

Without the persistent help and encouragement from several people, this book would never
have been written. My heartfelt thanks go out to all of them. In particular, I would like to thank
the team that has worked directly with me in the process of writing the book: Jason Gilmore, for
getting the project off the ground and steering it in the right direction; Beckie Stones, for keeping
everything together; Jeremy Jones and Matt Moodie, for their technical comments and insights;
and Linda Marousek, for being so patient with me. I'm also grateful to the rest of the team, for
making the process as smooth as it has been. But this book wouldn’t have been what it is without
several people who worked with me on the previous version: I'd like to thank Jason Gilmore and
Alex Martelli, for their excellent technical editing Jason on the entire book, and Alex on the first
half) and for going above and beyond the call of duty in dispensing advice and suggestions;
Erin Mulligan and Tory McLearn, for holding my hand through the process and for nudging me
along when that was needed; Nancy Rapoport, for her help polishing my prose; and Grace Wong,
for providing answers when no one else could. Pete Shinners gave me several helpful suggestions
on the game in Project 10, for which I am very grateful. My morale has also been heavily boosted
by several encouraging emails from satisfied readers: Thanks! Finally, I would like to thank my
family and friends, and my girlfriend Ranveig, for putting up with me while I was writing this book.

XXvii

Introduction

A C program is like a fast dance on a newly waxed dance floor by people carrying razors.

—Waldi Ravens
C++: Hard to learn and built to stay that way.
—Anonymous
Java is, in many ways, C++——.
—DMichael Feldman

And now for something completely different . . .
—Monty Python’s Flying Circus

I'Ve started this introduction with a few quotes to set the tone for the book—which is rather
informal. In the hope of making it an easy read, I've tried to approach the topic of Python
programming with a healthy dose of humor, and true to the traditions of the Python community,
much of this humor is related to Monty Python sketches. As a consequence, some of my examples
may seem a bit silly; hope you will bear with me. (And, yes, the name Python is derived from
Monty Python, not from snakes belonging to the family Pythonidae.)

In this introduction, I give you a quick look at what Python is, why you should use it, who
uses it, who this book’s intended audience is, and how the book is organized.

So, what is Python, and why should you use it? To quote an official blurb (available from
http://www.python.org/doc/essays/blurb.html), it is “an interpreted, object-oriented, high-
level programming language with dynamic semantics.” Many of these terms will become clear
as you read this book, but the gist of it is that Python is a programming language that knows
how to stay out of your way when you write your programs. It enables you to implement the
functionality you want without any hassle, and lets you write programs that are clear and read-
able (much more so than programs in most other currently popular programming languages).

Even though Python might not be as fast as compiled languages such as C or C++, what you
save in programming time will probably make Python worth using; in most programs the speed
difference won’t be noticeable anyway. If you are a C programmer, you can easily implement
the critical parts of your program in C at a later date, and have them interoperate with the
Python parts. If you haven’t done any programming before (and perhaps are a bit confused by
my references to C and C++), Python’s combination of simplicity and power make it an ideal
choice as a place to start.

XXix

XXX

INTRODUCTION

So, who uses Python? Since Guido van Rossum created the language in the early 1990s, its
following has grown steadily, and interest has increased markedly in the last few years. Python
is used extensively for system administration tasks (it is, for example, a vital component of several
Linux distributions), but it is also used to teach programming to complete beginners. NASA uses
Python for several of its software systems, and has adopted it as the standard scripting language
for its Integrated Planning System; Industrial Light & Magic uses Python in its production of
special effects for large-budget feature films; Yahoo! uses it (among other things) to manage its
discussion groups; and Google has used it to implement many components of its Web crawler
and search engine. Python is being used in such diverse areas as computer games and bioinfor-
matics. Soon one might as well ask, who isn’t using it?

This book is for those of you who want to learn how to program in Python. It is intended to
suit a wide audience, from neophyte programmer to advanced computer wiz. If you have never
programmed before, you should start by reading Chapter 1 and continue until you find that
things get too advanced for you (if, indeed, they do). Then you should start practicing, and write
some programs of your own. When the time is right, you can return to the book and proceed
with the more intricate stuff.

If you already know how to program, then some of the introductory material might not be
new to you (although there will probably be some surprising details here and there). You could
skim through the early chapters to get an idea of how Python works, or perhaps read through
Appendix A, “The Short Version,” which is based on my online Python tutorial “Instant Python.”
Itwill get you up to speed on the most important Python concepts. After getting the big picture,
you could jump straight to Chapter 10 (which describes the Python standard libraries).

The second half of the book consists of ten programming projects, which show off various
capabilities of the Python language. These projects should be of interest to beginner and expert
alike. Although some of the material in the later projects may be a bit difficult for an inexperi-
enced programmer, following the projects in order (after reading the material in the first part of
the book) should be possible.

The projects touch upon a wide range of topics, most of which will be very useful to you
when writing programs of your own. You will learn how to do things that may seem completely
out of reach to you at this point, such as creating a chat server, a peer-to-peer file sharing system, or
a full-fledged graphical computer game. Although much of the material may seem hard at first
glance, I think you will be surprised by how easy most of it really is. If you’d like to download
the source code, it’s available from http://www.apress.com.

Well, that’s it. I always find long introductions boring myself, so I'll let you continue with
your Pythoneering, either in Chapter 1 or in Appendix A. Good luck, and happy hacking.

CHAPTER 1

Instant Hacking: The Basics

It’s time to start hacking.! In this chapter, you learn how to take control of your computer by
speaking a language it understands: Python. Nothing here is particularly difficult, so if you
know the basics of how your computer works, you should be able to follow the examples and
try them out yourself. I'll go through the basics, starting with the excruciatingly simple, but
because Python is such a powerful language, you'll soon be able to do pretty advanced things.

First, I show you how to get the software you need. Then I tell you a bit about algorithms
and their main components, expressions, and statements. Throughout these sections, there
are numerous small examples (most of them using only simple arithmetic) that you can try out
in the Python interactive interpreter (see the section “The Interactive Interpreter,” later in this
chapter). You learn about variables, functions, and modules, and after handling these topics,
I show you how to write and run larger programs. Finally, I deal with strings, an important
aspect of almost any Python program.

Installing Python

Before you can start programming, you need some new software. What follows is a short
description of how to download and install Python. If you want to jump into the installation
process without detailed guidance, you could simply visit http://www.python.org/download to
get the most recent version of Python.

Windows

To install Python on a Windows machine, follow these steps:

1. Open a Web browser and go to http://www.python.org.

2. Click the “Download” link.

1. “Hacking” is not the same as “cracking,” which is a term describing computer crime. The two are often
confused. “Hacking” basically means having fun while programming. For more information, see Eric
Raymond’s article “How to Become a Hacker” at http://www.catb.org/~esr/faqs/hacker-howto.html.

CHAPTER 1 INSTANT HACKING: THE BASICS

3. You should see several links here, with names such as “Python 2.4” and “Python 2.4
Windows installer”. Click the “Windows installer” link—it should give you the installer
file directly. Go to step 5. If you can't find such a link, click the link with the highest
version among those with names like “Python 2.4.” Chances are that this link will be
found early on the page. For Python 2.4, you could simply go to the URL http://www.
python.org/2.4.

4, Follow the instructions for Windows users. This will entail downloading a file called
python-2.4.msi (or something similar), where 2.4 should be the version number of the
newest release.

5. Store the Windows Installer file somewhere on your computer, for example,
C:\download\python-2.4.msi. (Just create a directory where you can find it later.)

6. Run the downloaded file by double-clicking it in Windows Explorer. This brings up the
Python install wizard, which is really easy to use. Just accept the default settings, wait
until the install is finished, and you’re ready to roll!

Note Python for Microsoft Windows is distributed as a Windows Installer file, and requires that your
Windows version supports Windows Installer 2.0 (or later). If you don’t have Windows Installer, it can be
downloaded freely for Windows 95, 98, ME, NT 4.0, and 2000. Windows XP already has Windows Installer,
and many older machines will, too. There are download instructions for the Installer on the Python download
page. Alternatively, you could go to the Microsoft download site, http://www.microsoft.com/downloads,
and search for “Windows Installer” (or simply select it from the download menu). Choose the most recent
version for your platform and follow the download and installation instructions. If you’re uncertain about
whether you have Windows Installer or not, simply try executing step 6 of the previous installation instructions,
double-clicking the MSI file. If you get the install wizard, everything is okay. See http://www.python.
org/2.4/msi.html for advanced features of the Windows Installer related to Python installation.

Assuming that the installation went well, you now have a new program in your Windows
Start menu. Run the Python Integrated Development Environment (IDLE) by selecting Start »
Programs » Python? » IDLE (Python GUI).

You should now see a window that looks like the one shown in Figure 1-1. If you feel a bit
lost, simply select Help » IDLE Help from the menu, and you get a simple description of the
various menu items and basic usage. For more documentation on IDLE, check out http://
www. python.org/idle. (Here you will also find more information on running IDLE on platforms
other than Windows.) If you press F1, or select Help » Python Docs from the menu, you will get
the full Python documentation. (The document there of most use to you will probably be the
“Library Reference.”) All the documentation is searchable.

2. This menu option will probably include your version number: for example, Python 2.4.

CHAPTER 1 INSTANT HACKING: THE BASICS

74 Python Shell =) Okd

Fie Edit Shel Debug Options Windows Help

Python 2.4 (#60, Nowv 30 2004, 11:49:19) [MSC v.1310 32 bit (Intel)] on win32
Type "copyright", "credits" or "license ()" for more information.

A AR A A AR A A A A&
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external

interface and no data is sent to or received from the Internet.
R A R A A A R A vk rk kv kv kv bk

IDIE 1.1
FEE

Ln:12|Cal: 4

Figure 1-1. The IDLE interactive Python shell

Once you've got the IDLE interactive Python shell running, you can continue with the
section “The Interactive Interpreter,” later in this chapter.

Linux and UNIX

In many, if not most, Linux and UNIX installations, a Python interpreter will already be
present. You can check whether this is the case by running the python command at the prompt,
as follows:

$ python

Running this command should start the interactive Python interpreter, with output similar to
the following:

Python 2.4 (#1, Dec 7 2004, 09:18:58)

[GCC 3.4.1] on sunos5

Type "help", "copyright", "credits" or "license" for more information.
>>>

Note To exit the interactive interpreter, use Ctrl-D (press the Ctrl key and while keeping that depressed,
press D).

CHAPTER 1 INSTANT HACKING: THE BASICS

If there is no Python interpreter installed, you will probably get an error message similar to
the following:

bash: python: command not found

In that case, you have to install Python yourself, as described in the following sections.

Linux with RPM

If you are running a Linux distribution with the RPM package manager installed, follow these
steps to install the Python RPM packages:

1. Go to the download page (refer to steps 1 and 2 in the instructions for installing Python
on a Windows system).

2. Follow the link with the most recent version number, such as “Python 2.4.” (Don’t
choose alink with the word “sources” in it.) Chances are that this link will be found early
on the page. For Python 2.4, you could simply go to the URL http://www.python.org/
2.4. Follow the instructions for Fedora users: follow the link “RPMs.”

3. Download all the binary RPMs. Store them in a temporary location (such as ~/rpms/
python).

4, Make sure you are logged in as system administrator (root) and are currently in the
directory where you stored the RPMs. Make sure there are no other RPMs in this
directory.

5. Install the packages by executing the command rpm --install *.rpm. If you already
have an older version of Python installed and wish to upgrade, you should instead use
pm --upgrade *.rpm.

Gaution The preceding command installs all the RPM files in the current directory. Make sure that you
are in the correct directory and that it only contains the packages you want to install. If you want to be more
careful, you can specify the name of each package separately. For more information about RPMs, check out
the man page.

You should now be able to run Python. On occasion, you may run into some unresolved
dependencies—you may lack other RPM packages needed to install Python. To locate these
packages, visit a search facility such as http://www.rpmfind.net.

Sometimes a binary RPM package designed for one Linux distribution (for example, Red
Hat Linux) may not work smoothly with another (for example, Mandrake Linux). If you find
that the binary package is giving you grief, try downloading a source RPM instead (with a name
like packagename.src.rpm). You can then build a set of binary packages tailored for your system
with the command

rpm --rebuild packagename.src.rpm

CHAPTER 1 INSTANT HACKING: THE BASICS

where packagename.src.rpmis the real file name of the package you're rebuilding. After you
have done this, you should have a brand-new set of RPM files that you can install as described
previously.

Note To use the RPM installation, you must be logged in as root (the administrator account). If you don’t
have root access, you should compile Python yourself, as described in the section “Compiling from Sources,”
later in this chapter.

Other Installation Mechanisms for Linux

There are several other package systems and installation mechanisms for Linux than rpm. If
you're running a Linux system with some form of package manager, chances are you can get
Python through it.

Note You will probably have to have administrator privileges (a root account) in order to install Python
using a package manager in Linux.

For example, if you're running Debian Linux, you should be able to install Python with the
following command:

$ apt-get install python2.4

If you're running Gentoo Linux, you should be able to use Portage, like this:

$ emerge python

In both cases, $ is, of course, the bash prompt. Replace 2.4 with the most recent version

number.

Compiling from Sources

If you don’t have a package manager, or would rather not use it, you can compile Python your-
self. This may be the method of choice if you are on a UNIX box but you don’t have root access
(installation privileges). This method is very flexible, and enables you to install Python wherever
you want, including in your own home directory. To compile and install Python, follow these steps:

1. Go to the download page (refer to steps 1 and 2 in the instructions for installing Python
on a Windows system).

2. Follow the instructions for downloading the sources.

3. Download the file with the extension .tgz. Store it in a temporary location. Assuming
that you want to install Python in your home directory, you may want to putitin a
directory such as ~/python. Enter this directory (e.g., using cd ~/python).

CHAPTER 1 INSTANT HACKING: THE BASICS

4, Unpack the archive with the command tar -xzvf Python-2.4.tgz (where 2.4 is the
version number of the downloaded source code). If your version of tar doesn’t support
the z option, you may want to uncompress the archive with gunzip first, and then use
tar -xvf afterward. If there is something wrong with the archive, try downloading it
again. Sometimes errors occur during download.

5. Enter the unpacked directory:

$ cd Python-2.4
Now you should be able to execute the following commands:

./configure --prefix=$(pwd)
make
make install

You should end up with an executable file called python in the current directory. (If this
doesn’'t work, please consult the README file included in the distribution.) Put the current
directory in your PATH environment variable, and you're ready to rock.

To find out about the other configuration directives, execute

./configure --help

Macintosh
If you're using a Macintosh, follow these steps:
1. Go to the standard download page (steps 1 and 2 from the Windows instructions earlier
in this chapter).

2. Follow the link for the Macintosh OS X installer. There should also be a link to the
MacPython download page, which has more information. The MacPython page also
has versions of Python for older versions of the Macintosh OS.

Note As of Python version 2.4, the 0S X installer is still at version 2.3.

Other Distributions

You now have the standard Python distribution installed. Unless you have a particular interest
in alternative solutions, that should be quite all right. If you are curious (and, perhaps, feeling
a bit courageous), read on.. . .

There are other Python distributions, with the most well-known one being ActivePython.
A slightly less well-known but quite interesting distribution is Stackless Python. These distribu-
tions are based on the standard implementation of Python, written in the C programming

CHAPTER 1

INSTANT HACKING: THE BASICS

language. Two distributions that take a different approach are Jython and IronPython. If you're
interested in other development environments than IDLE, Table 1-1 lists some options.

Table 1-1. Some Integrated Development Environments (IDEs) for Python

Environment Description Available From. ..

IDLE The standard Python http://www.python.org/idle
environment

Pythonwin Windows-oriented http://www.python.org/windows
environment

ActivePython Feature-packed; contains http://www.activestate.com
Pythonwin IDE

Komodo Commercial IDE http://www.activestate.com

Wingware Commercial IDE http://www.wingware.com

BlackAdder Commercial IDE and (Qt) http://www.thekompany.com
GUI builder

Boa Constructor Free IDE and GUI builder http://boa-constructor.sf.net

Anjuta Versatile IDE for Linux/UNIX http://anjuta.sf.net

ArachnoPython Commercial IDE http://www.python-ide.com

Code Crusader

Commercial IDE

http://www.newplanetsoftware.com

Code Forge Commercial IDE http://www.codeforge.com
Eclipse Popular, flexible, open http://www.eclipse.org

source IDE
eric Free IDE using Qt http://eric-ide.sf.net
KDevelop Cross-language IDE for KDE http://www.kdevelop.org
VisualWx Free GUI builder http://visualwx.altervista.org
wxDesigner Commercial GUI builder http://www.roebling.de
wxGlade Free GUI builder http://wxglade.sf.net

ActivePython is a Python distribution from ActiveState (http://www.activestate.com). At

its core, it’s the same as the standard Python distribution for Windows. The main difference is
that it includes lots of extra goodies (modules) that are available separately. Definitely worth a
look if you are running Windows.

Stackless Python is a reimplementation of Python, based on the original code, but with
some important internal changes. To a beginning user, these differences won’t show up much,
and one of the more standard distributions would probably be more useful. The main advantages
of Stackless Python are that it allows deeper levels of recursion and more efficient multithreading.
As mentioned, both of these are rather advanced features, not needed by the average user. You
can get Stackless Python from http://www.stackless.com.

CHAPTER 1 INSTANT HACKING: THE BASICS

Jython (http://www.jython.org) and IronPython (http://www. ironpython.com) are
different—they’re versions of Python implemented in other languages. Jython is implemented
inJava, targeting the Java Virtual Machine, and IronPython is implemented in C#, targeting the
.NET and MONO implementations of the common language runtime (CLR). At the time of
writing, Jython is quite stable, but lagging behind Python—the current Jython version is 2.1,
while Python is at 2.4. There are significant differences in these two versions of the language.
IronPython is quite new, and at a rather experimental stage. Still, it is usable, and reported to
be faster than standard Python on some benchmarks.

Keeping In Touch and Up to Date

The Python language evolves continuously. To find out more about recent releases and rele-
vant tools, the python.org Web site is an invaluable asset. To find out what’s new in a given
release, go to the page for the given release, such as http://python.org/2.4 for release 2.4.
There you will also find a link to Andrew Kuchling’s in-depth description of what’s new for the
release, with a URL such as http://python.org/doc/2.4/whatsnew for release 2.4. If there have
been new releases since this book went to press, you can use these Web pages to check out any
new features.

If you want to keep up with newly released third-party modules or software for Python,
you could check out the Python email list python-announce-1ist; for general discussions about
Python you could try python-1ist, but be warned: this list gets a lot of traffic. Both of these lists
are available at http://mail.python.org. If you're a Usenet user, these two lists are also available
as the newsgroups comp. lang.python.announce and comp.lang.python, respectively. If you're
totally lost, you could try the python-help list (available from the same place as the two other
lists) or simply email help@python.org. Before you do, you really ought to see if your question
is a frequently asked one, by consulting the Python FAQ, at http://python.org/doc/fag, or by
performing a quick Web search.

The Interactive Interpreter

When you start up Python, you get a prompt similar to the following:

Python 2.4 (#1, Dec 7 2004, 09:18:58)

[GCC 3.4.1] on sunos5

Type "help", "copyright", "credits" or "license" for more information.
>>>

Note The exact appearance of the interpreter and its error messages will depend on which version you
are using.

This might not seem very interesting, but believe me—it is. This is your gateway to
hackerdom—your first step in taking control over your computer. In more pragmatic terms,
it’s an interactive Python interpreter. Just to see if it’s working, try the following:

>>> print "Hello, world!"

CHAPTER 1 INSTANT HACKING: THE BASICS

When you press the Enter key, the following output appears:

Hello, world!
>>>

Note If you are familiar with other computer languages, you may be used to terminating every line with a
semicolon. There is no need to do so in Python. A line is a line, more or less. You may add a semicolon if you
like, but it won’t have any effect (unless more code follows on to the same line), and it is not a common thing
to do.

What happened here? The >>> thingy is the prompt. You can write something in this space,
like print "Hello, world!".If you press Enter, the Python interpreter prints out the string
“Hello, world!” and you get a new prompt below that.

Note The term “printing” in this context refers to writing text to the screen, not producing hardcopies with
a printer.

What if you write something completely different? Try it out. For example:

>>> The Spanish Inquisition
SyntaxError: invalid syntax
>>>

Obviously, the interpreter didn’t understand that.3 (If you are running an interpreter other
than IDLE, such as the command-line version for Linux, the error message will be slightly
different.) The interpreter also indicates what’s wrong: it will emphasize the word “Spanish” by
giving it a red background (or, in the command-line version, by using a caret, *).

If you feel like it, play around with the interpreter some more. (For some guidance, try
entering the command help at the prompt and pressing Enter. As mentioned, you can press F1
for help about IDLE.) Otherwise, let’s press on. After all, the interpreter isn’t much fun when
you don’t know what to tell it, is it?

Algo . . . What?

Before you start programming in earnest, I'll try to give you an idea of what computer program-
ming is. So, what is it? It’s telling a computer what to do. Computers can do lots of things, but
they aren’t very good at thinking for themselves. They really need to be spoonfed the details.
You have to feed the computer an algorithm, in some language it understands. “Algorithm” is

3. After all, no one expects the Spanish Inquisition . . .

10

CHAPTER 1 INSTANT HACKING: THE BASICS

just a fancy word for a procedure or recipe—a detailed description of how to do something.
Consider the following:

SPAM with SPAM, SPAM, Eggs, and SPAM:

First, take some SPAM.

Then add some SPAM, SPAM, and eggs.

If a particularly spicy SPAM is desired, add some SPAM.
Cook until done - Check every 10 minutes.

This recipe may not be very interesting, but how it’s constructed is. It consists of a series of
instructions to be followed in order. Some of the instructions may be done directly (“take some
SPAM”), while some require some deliberation (“If a particularly spicy SPAM is desired”), and
others must be repeated several times (“Check every 10 minutes.”)

Recipes and algorithms consist of ingredients (objects, things), and instructions (statements).
In this example, SPAM and eggs were the ingredients, while the instructions consisted of
adding SPAM, cooking for a given length of time, and so on. Let’s start with some reasonably
simple Python ingredients and see what you can do with them.

Numbers and Expressions

The interactive Python interpreter can be used as a powerful calculator. Try the following:
>>> 2 + 2
This ought to give you the answer 4. That wasn’t too hard. Well, what about this:

>>> 53672 + 235253
288925

Still not impressed? Admittedly, this is pretty standard stuff. (I'll assume that you've used
a calculator enough to know the difference between 1+2*3 and (1+2)*3.) All the usual arith-
metic operators work as expected—almost. There is one potential trap here, and that is integer
division (in Python versions prior to 3.0, which may not come out for quite a while):

>>> 1/2
0

What happened here? One integer (a nonfractional number) was divided by another, and
the result was rounded down to give an integer result. This behavior can be useful at times, but
often (if not most of the time), you need ordinary division. What do you do to get that? There
are two possible solutions: You use real numbers (numbers with decimal points) rather than
integers, or you can tell Python to change how division works.

Real numbers are called floats (or floating-point numbers) in Python—if either one of the
numbers in a division is a float, the result will be, too:

>>> 1.0 / 2.0
0.5

>>> 1/2.0
0.5

CHAPTER 1 INSTANT HACKING: THE BASICS

>>> 1.0/2
0.5

>>> 1/2.
0.5

If you'd rather have Python do proper division, you could add the following statement to
the beginning of your program (writing full programs is described later) or simply execute it in
the interactive interpreter:

>>> from _ future import division

Another alternative, if you're running Python from the command line (e.g., on a Linux
machine), is to supply the command-line switch -Qnew. In either case, division will suddenly
make a bit more sense:

>»> 1/ 2
0.5

Of course, the single slash can no longer be used for the kind of integer division shown
earlier; but there is a separate operator that will do this for you—the double slash:

>»>>1// 2
0

The double slash consistently performs integer division, even with floats:

>»> 1.0 // 2.0
0.0

There is a more thorough explanation of the __future__ stuffin the section “Back to the
__future__,” later in this chapter.

Now you've seen the basic arithmetic operators (addition, subtraction, multiplication,
and division), but one more operator is quite useful at times:

>>> 1% 2
1

This is the remainder (modulus) operator—x % y gives the remainder of x divided by y.
For example:

>>> 10 / 3

3

>>> 10 % 3

1

>»>9 /3

3

>>>9 %3

0

>>> 2.75 % 0.5
0.25

11

12

CHAPTER 1 INSTANT HACKING: THE BASICS

Here 10/3 is 3 because the result is rounded down. But 3x3 is 9, so you get a remainder of
one. When you divide 9 by 3, the result is exactly 3, with no rounding. Therefore, the remainder
is zero. This may be useful if you want to check something “every 10 minutes” as in the recipe
earlier in the chapter. You can simply check whether minute % 10 is zero. (For a description on
how to do this, see the sidebar “Sneak Peek: The if Statement,” later in the chapter.) As you can
see from the final example, the remainder operator works just fine with floats as well.

The last operator is the exponentiation (or power) operator:

>>> 2 ¥ 3

8

>>> -3 ¥k 2
-9

>>> (-3) ** 2
9

Note that the exponentiation operator binds tighter than the negation (unary minus), so
-3**3 is in fact the same as - (3**2). If you want to calculate (-3)**2, you must say so explicitly.

Large Integers

Python can handle really large integers:

>>> 1000000000000000000
1000000000000000000L

What happened here? The number suddenly got an L tucked onto the end.

Note If you’re using a version of Python older than 2.2, you get the following behavior:

>>> 1000000000000000000
OverflowError: integer literal too large

The newer versions of Python are more flexible when dealing with big numbers.

Ordinary integers can’t be larger than 2147483647 (or smaller than —-2147483648); if you
want really big numbers, you have to use longs. A long (or long integer) is written just like an
ordinary integer but with an L at the end. (You can, in theory, use a lowercase 1 as well, but that
looks all too much like the digit 1, so I'd advise against it.)

In the previous attempt, Python converted the integer to a long, but you can do that your-
self, too. Let’s try that big number again:

>>> 1000000000000000000L
1000000000000000000L

CHAPTER 1 INSTANT HACKING: THE BASICS

Of course, this is only useful in old versions of Python that aren’t capable of figuring this
stuff out.
Well, can you do math with these monster numbers, too? Sure thing. Consider the following:

>>> 1987163987163981639186L * 198763981726391826L + 23
394976626432005567613000143784791693659L

As you can see, you can mix long integers and plain integers as you like. In all likelihood, you
won'’t have to worry about the difference between longs and ints unless you're doing type
checking, as described in Chapter 7—and that’s something you should almost never do.

Hexadecimals and Octals

To conclude this section, I should mention that hexadecimal numbers are written like this:

>>> OXAF
175

and octal numbers like this:

>>> 010
8

The first digit in both of these is zero. (If you don’t know what this is all about, just close your
eyes and skip to the next section—you’re not missing anything important.)

Note For a summary of Python’s numeric types and operators, see Appendix B.

Variables

Another concept that might be familiar to you is variables. If math makes you queasy, don’t
worry: Variables in Python are easy to understand. A variable is basically a name that repre-
sents (or refers to) some value. For example, you might want the name x to represent 3. To
make it so, simply execute the following:

> X =3

This is called an assignment. We assign the value 3 to the variable x. Another way of putting
this is to say that we bind the variable x to the value (or object) 3. After a variable has had a value
assigned to it, you can use the variable in expressions:

>>> X ¥ 2
6

Note that you have to assign a value to a variable before you use it. After all, it doesn’t make
any sense to use a variable if it doesn’t represent a value, does it?

13

14

CHAPTER 1 INSTANT HACKING: THE BASICS

Note Variable names can consist of letters, digits, and underscore characters (). A variable can’t begin
with a digit, so P1an9 is a valid variable name, whereas 9P1an is not.

Statements

Until now we’ve been working (almost) exclusively with expressions, the ingredients of the
recipe. But what about statements—the instructions?

In fact, I've cheated. I've introduced two types of statements already: the print statement,
and assignments. So, what’s the difference between a statement and an expression? Well, an
expression is something, while a statement does something (or, rather, tells the computer to do
something). For example, 2*2 is 4, whereas print 2*2 prints 4. What's the difference, you may
ask. After all, they behave very similarly. Consider the following:

>>> 2%2

4

>>> print 2*2
4

Aslong as you execute this in the interactive interpreter the results are similar, but that is only
because the interpreter always prints out the values of all expressions (using the same repre-
sentation as repr—see the section on string representations later in this chapter). That is not
true of Python in general. Later in this chapter, you’ll see how to make programs that run
without this interactive prompt, and simply putting an expression such as 2*2 in your program
won’t do anything interesting.* Putting print 2*2 in there, on the other hand, will in fact print
out 4.

The difference between statements and expressions may be more obvious when dealing
with assignments. Because they are not expressions, they have no values that can be printed
out by the interactive interpreter:

> X =3
>>>

Asyou can see, you get a new prompt immediately. Something has changed, however; x is now
bound to the value 3.

This is a defining quality of statements in general: They change things. For example, assign-
ments change variables, and print statements change how your screen looks.

Assignments are, perhaps, the most important type of statement in any programming
language; it may be difficult to grasp their importance right now. Variables may just seem like

4. In case you're wondering—yes, it does do something. It calculates the product of 2 and 2. However, the
result isn’t kept anywhere or shown to the user; it has no side effects, beyond the calculation itself.

CHAPTER 1 INSTANT HACKING: THE BASICS 15

temporary “storage” (like the pots and pans of a cooking recipe), but the real power of variables
is that you needn’t know what values they hold in order to manipulate them.® For example, you
know that x * y evaluates to the product of x and y even though you may have no knowledge
of what x and y are. So, you may write programs that use variables in various ways without
knowing the values they will eventually hold (or refer to) when the program is run.

Getting Input from the User

You've seen that you can write programs with variables without knowing their values. Of course,
the interpreter must know the values eventually. So how can it be that we don’t? The interpreter
knows only what we tell it, right?

Notnecessarily. You may have written a program, and somebody else may use it. You cannot
predict what values they will supply to the program. Let’s take a look at the useful function
input. (I'll have more to say about functions in a minute.)

>>> input("The meaning of life: ")
The meaning of life: 42
42

What happens here is that the first line (input(...)) is executed in the interactive interpreter.
It prints out the string "The meaning of life: "asanew prompt.Itype 42 and press Enter. The
resulting value of input is that very number, which is automatically printed out in the last line.
Not very useful. But look at the following:

>>> x = input("x: ")

X: 34

>>> y = input("y: ")
y: 42

>>> print x *y
1428

Here, the statements at the Python prompts (>>>) could be part of a finished program, and the
values entered (34 and 42) would be supplied by some user. Your program would then print out
the value 1428, which is the product of the two. And you didn’t have to know these values when
you wrote the program, right?

Note This is much more useful when you save your programs in a separate file so other users can execute
it. You learn to do that later in this chapter, in the section “Saving and Executing Your Programs.”

5. Note the quotes on “storage.” Values aren’t stored in variables—they’re stored in some murky depths of
computer memory, and are referred to by variables. As will become abundantly clear as you read on,
more than one variable can refer to the same value.

16

CHAPTER 1 INSTANT HACKING: THE BASICS

SNEAK PEEK: THE IF STATEMENT

To make things a bit more fun, I'll give you a sneak peek of something you aren’t really supposed to learn
about until Chapter 5: the if statement. The if statement lets you perform an action (another statement) if a
given condition is true. One type of condition is an equality test, using the equality operator ==. (Yes, it's a
double equality sign. The single one is used for assignments, remember?)

You simply put this condition after the word “if” and then separate it from the following statement with a colon:

>>> if 1 == 2: print 'One equals two'
>>> if 1 == 1: print 'One equals one'

One equals one
>>>

As you can see, nothing happens when the condition is false. When it is true, however, the following
statement (in this case, a print statement) is executed. Note also that when using if statements in the inter-
active interpreter, you have to press Enter twice before it is executed. (The reason for this will become clear in
Chapter 5—don’t worry about it for now.)

So, if the variable time is bound to the current time in minutes, you could check whether you’re “on the
hour” with the following statement:

if time % 60 == 0: print 'On the hour!'

Functions

In the section on numbers and expressions I used the exponentiation operator (**) to calculate
powers. The fact is that you can use a function instead, called pow:

>>> 2*¥*3

8

>>> pow(2,3)
8

A function is like a little program that you can use to perform a specific action. Python has
lots of functions that can do many wonderful things. In fact, you can make your own functions,
too (more about that later); therefore we often refer to standard functions such as pow as built-in
functions.

Using a function as I did in the preceding example is called calling the function. You supply
it with parameters (in this case, 2 and 3) and it returns a value to you. Because it returns a value,
a function call is simply another type of expression, like the arithmetic expressions discussed
earlier in this chapter.5 In fact, you can combine function calls and operators to create more
complicated expressions:

6. Function calls can also be used as statements if you simply ignore the return value.

CHAPTER 1 INSTANT HACKING: THE BASICS

>>> 10 + pow(2, 3*5)/3.0
10932.666666666666

Note The exact number of decimals may vary depending on which version of Python you are using.

There are several built-in functions that can be used in numeric expressions like this. For
example, abs gives the absolute value of a number, and round rounds floating numbers to the
nearest integer:

>>> abs(-10)

10

>>> 1/2

0

>>> round(1.0/2.0)
1.0

Notice the difference between the two last expressions. Integer division always rounds down,
whereas round rounds to the nearest integer. But what if you want to round a given number
down? For example, you might know that a person is 32.9 years old—but you would like to
round that down to 32 because she isn’t really 33 yet. Python has a function for this (called
floor)—it just isn’t available directly. As is the case with many useful functions, it is found in a
module.

Modules

You may think of modules as extensions that can be imported into Python to extend its capa-
bilities. You import modules with a special command called (naturally enough) import. The
function we needed in the previous section (floor) is in a module called math:

>>> import math
>>> math.floor(32.9)
32.0

Notice how this works: We import a module with import, and then use the functions from
that module by writing module.function.

If you want the age to be an integer (32) and not a float (32.0), you can use the
function int:”

>>> int(math.floor(32.9))
32

7. The int function/type will actually round down while converting to an integer, so when converting to
an integer, using math. floor is superfluous; you could simply use int(32.9).

17

18

CHAPTER 1 INSTANT HACKING: THE BASICS

Note Similar functions exist to convert to other types (for example, long and f1oat). In fact, these aren’t
completely normal functions—they’re type objects. I'll have more to say about types later. The opposite of
floor is ceil (short for “ceiling”), which finds the smallest integral value larger than or equal to the given
number.

If you are sure that you won’t import more than one function with a given name (from
different modules), you might not want to write the module name each time you call the function.
Then you can use a variant of the import command:

>>> from math import sqrt
>>> sqrt(9)
3.0

After using from module import function, you can use the function without its module prefix.

Tip You may, in fact, use variables to refer to functions (and most other things in Python). For example, by
performing the assignment foo = math.sqrt you can start using foo to calculate square roots; for example,
foo(4) yields 2.

cmath and Complex Numbers

The sqrt function is used to calculate the square root of a number. Let’s see what happens if we
supply it with a negative number:

>>> from math import sqrt
>>> sqrt(-1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in ?
sqrt(-1)
ValueError: math domain error

Well, that’s reasonable. You can’t take the square root of a negative number—or can you?
Of course you can: The square root of a negative number is an imaginary number. (This is a
standard mathematical concept—if you find it a bit too mind-bending, you are free to skip ahead.)
So why couldn’t sqrt deal with it? Because it only deals with floats, and imaginary numbers
(and complex numbers, the sum of real and imaginary numbers) are something completely
different—which is why they are covered by a different module, cmath (for complex math):

>>> import cmath
>>> cmath.sqrt(-1)

1]

CHAPTER 1 INSTANT HACKING: THE BASICS

Notice thatI didn’tuse from ... import ... here.IfI had, I would have lost my ordinary sqrt.
Name clashes like these can be sneaky, so unless you really want to use the from version, you
should probably stick with a plain import.

The 1j is an imaginary number. These are written with a trailing j (or J), just like longs use
L. Without delving into the theory of complex numbers, let me just show a final example of how
you can use them:

>>> (143]) * (9+43)
(-3+313)

As you can see, the support for complex numbers is built into the language.

Note There is no separate type for imaginary numbers in Python. They are treated as complex numbers
whose real component is zero.

Back to the future

It has been rumored that Guido van Rossum (Python’s creator) has a time machine because
often when people request features in the language, the features have already been implemented.
Of course, we aren’t all allowed into this time machine, but Guido has been kind enough to
build a part of it into Python, in the form of the magic module __future__. From it we can
import features that will be standard in Python in the future but that aren’t part of the language
yet. You saw this in the section about numbers and expressions, and you'll be bumping into it
from time to time throughout this book.

Saving and Executing Your Programs

The interactive interpreter is one of Python’s great strengths. It makes it possible to test solutions
and to experiment with the language in real time. If you want to know how something works,
just try itl However, everything you write in the interactive interpreter is lost when you quit.
What you really want to do is write programs that both you and other people can run. In this
section, you learn how to do just that.

First of all, you need a text editor, preferably one intended for programming. (If you use
something like Microsoft Word, be sure to save your code as plain text.) If you are already using
IDLE, you're in luck: Simply create a new editor window with File » New Window. Another
window appears—without an interactive prompt. Whew!

Start by entering the following:

print "Hello, world!"

Now select File » Save to save your program (which is, in fact, a plain text file). Be sure to
put it somewhere where you can find it later on. You might want to create a directory where
you put all your Python projects, such as C:\python in Windows. In a UNIX environment, you
might use a directory like ~/python. Give your file any reasonable name, such as hello.py. The
.py ending is important.

19

20

CHAPTER 1 INSTANT HACKING: THE BASICS

Note If you followed the installation instructions earlier in this chapter, you may have put your Python
installation in ~/python already, but because that has a subdirectory of its own (such as ~/python/
Python-2.4/), this shouldn’t cause any problems. If you would rather put your own programs somewhere
else, feel free to use a directory such as ~/my_python_programs.

Got that? Don’t close the window with your program in it. If you did, just open it again (File »
Open). Now you can run it with Edit » Run script, or by pressing Ctrl-F5. (If you aren’t using
IDLE, see the next section about running your programs from the command prompt.)

What happens?Hello, world! is printed in the interpreter windows, which is exactly what
we wanted. The interpreter prompt is gone, but you can get it back by pressing Enter (in the
interpreter window).

Let’s extend our script to the following:

name = raw_input("What is your name? ")

print "Hello, " + name +

Note Don’t worry about the difference between input and raw_input—TVll get to that.

If you run this (remember to save it first), you should see the following prompt in the inter-
preter window:

What is your name?
Enter your name, (for example, Gumby) and press Enter. You should get something like this:
Hello, Gumby!

Fun, isn’t it?

Running Your Python Scripts from a Command Prompt

Actually, there are several ways to run your programs. First, let’s assume that you have a DOS
window or a UNIX shell prompt before you and that the Python executable (called python.exe
in Windows, and python in UNIX) has been put in your PATH environment variable.8 Also, let’s
assume that your script from the previous section (hello.py) is in the current directory. Then
you can execute your script with the following command in Windows:

C:\>python hello.py

8. Ifyou don’'t understand this sentence, you should perhaps skip the section. You don't really need it.

CHAPTER 1 INSTANT HACKING: THE BASICS

or UNIX:
$ python hello.py

As you can see, the command is the same. Only the system prompt changes.

Note If you don’t want to mess with environment variables, you can simply specify the full path of the
Python interpreter. In Windows, you might do something like this:

C:\>C:\Python24\python hello.py

Making Your Scripts Behave Like Normal Programs

Sometimes you want to execute a Python program (also called a scripf) the same way you
execute other programs (such as your Web browser, or your text editor), rather than explicitly
using the Python interpreter. In UNIX, there is a standard way of doing this: have the first line
of your script begin with the character sequence #! (called pound bang or shebang) followed by
the absolute path to the program that interprets the script (in our case Python). Even if you
didn’t quite understand that, just put the following in the first line of your script if you want it
to run easily on UNIX:

#!/usr/bin/env python

This should run the script, regardless of where the Python binary is located.

Note In some systems if you install a recent version of Python (e.g., 2.4) you will still have an old one lying
around (e.g.,1.5.2), which is needed by some system programs (so you can’t uninstall it). In such cases, the
/usr/bin/env trick is not a good idea, as you will probably end up with your programs being executed by
the old Python. Instead, you should find the exact location of your new Python executable (probably called
python or python2) and use the full path in the pound bang line, like this:

#/usr/bin/python2

The exact path may vary from system to system.

Before you can actually run your script, you must make it executable:
$ chmod a+x hello.py
Now it can be run like this (assuming that you have the current directory in your path):

$ hello.py

21

22

CHAPTER 1 INSTANT HACKING: THE BASICS

Note If this doesn’t work, try using . /hello. py instead, which will work even if the current directory (.)
is not part of your execution path.

If you like, you can rename your file and remove the py suffix to make it look more like a normal
program.

What About Double-Clicking?

In Windows, the suffix (. py) is the key to making your script behave like a program. Try double-
clicking the file hello.py you saved in the previous section. If Python was installed correctly,
a DOS window appears with the prompt “What is your name?” Cool, huh? (You'll see how to
make your programs look better, with buttons, menus, and so on later.)

There is one problem with running your program like this, however. Once you've entered
your name, the program window closes before you can read the result. The window closes
when the program is finished. Try changing the script by adding the following line at the end:

raw_input("Press <enter>")

Now, after running the program and entering your name, you should have a DOS window
with the following contents:

What is your name? Gumby
Hello, Gumby!
Press <enter>

Once you press the Enter key, the window closes (because the program is finished). Just as a
teaser, rename your file hello.pyw. (This is Windows-specific.) Double-click it as before. What
happens? Nothing! How can that be? I will tell you later in the book—I promise.

Comments

The hash sign (#) is a bit special in Python. When you put it in your code, everything to the right
of it is ignored (which is why the Python interpreter didn’t choke on the /usr/bin/env stuff
used earlier). For example:

Print the circumference of the circle:
print 2 * pi * radius

The first line here is called a comment, which can be useful in making programs easier to
understand—both for other people and for yourself when you come back to old code. It has
been said that the first commandment of programmers is “Thou Shalt Comment” (although
some less charitable programmers swear by the motto “If it was hard to write, it should be hard
to read”). Make sure your comments say significant things and don’t simply restate what is
already obvious from the code. Useless, redundant comments may be worse than none. For
example, in the following example, a comment isn’t really called for:

Get the user's name:
user_name = raw_input("What is your name?")

CHAPTER 1 INSTANT HACKING: THE BASICS

It’s always a good idea to make your code readable on its own as well, even without the
comments. Luckily, Python is an excellent language for writing readable programs.

Strings

Now what was all that raw_input and "Hello,
"Hello" part first and leave raw_input for later.
The first program in this chapter was simply

"

+ name + "!" stuff about? Let’s tackle the

print "Hello, world!"

It is customary to begin with a program like this in programming tutorials—the problem is that I
haven't really explained how it works yet. Well, you know the basics of the print statement (I'll have
more to say about that later), but what is "Hello, world!"?It’s called a string (as in “a string of char-
acters”). Strings are found in almost every useful, real-world Python program and have many uses,
the main one being to represent a bit of text, such as the exclamation “Hello, world!”

Single-Quoted Strings and Escaping Quotes

Strings are values, just like numbers are:

>>> "Hello, world!"
'Hello, world!'

There is one thing that may be a bit surprising about this example, though: When Python
printed out our string, it used single quotes, whereas we used double quotes. What’s the differ-
ence? Actually, there is no difference:

>>> 'Hello, world!'
'Hello, world!'

Here, too, we use single quotes, and the result is the same. So why allow both? Because in some
cases it may be useful:

>>> "Let's go!"

"Let's go!"

>>> '"Hello, world!" she said'
'""Hello, world!" she said'

In the preceding code, the first string contains a single quote (or apostrophe, as we should
perhaps call it in this context), and therefore we can’t use single quotes to enclose the string.
If we did, the interpreter would complain (and rightly so):

>>> 'Let's go!'
SyntaxError: invalid syntax

Here, the stringis 'Let', and Python doesn’t quite know what to do with the following s (or the
rest of the line, for that matter).

In the second string, we use double quotes as part of our sentence. Therefore, we have to
use single quotes to enclose our string, for the same reasons as stated previously. Or, actually

23

24

CHAPTER 1 INSTANT HACKING: THE BASICS

we don’t have to. It’s just convenient. An alternative is to use the backslash character (\) to
escape the quotes in the string, like this:

>>> "Let\'s go!'
"Let's go!"

Python understands that the middle single quote is a character in the string and not the
end of the string. (Even so, Python chooses to use double quotes when printing out the string.)
The same works with double quotes, as you might expect:

>>> "\"Hello, world!\" she said"
""Hello, world!" she said'

Escaping quotes like this can be useful, and sometimes necessary. For example, what would
you do without the backslash if your string contained both a single quote and a double quote,
asin the string 'Let\'s say "Hello, world!"'?

Note Tired of backslashes? As you will see later in this chapter, you can avoid most of them by using long
strings and raw strings (which can be combined).

Concatenating Strings

Just to keep whipping this slightly tortured example, let me show you another way of writing
the same string:

>>> "Let's say " '"Hello, world!"'
'Let\'s say "Hello, world!"'

I've simply written two strings, one after the other, and Python automatically concatenates
them (makes them into one string). This mechanism isn’t used very often, but it can be useful
at times. However, it only works when you actually write both strings at the same time, directly
following one another:

>>> x = "Hello, "

>>> y = "world!"

>>> Xy

SyntaxError: invalid syntax

In other words, this is just a special way of writing strings, not a general method of concat-
enating them. How, then, do you concatenate strings? Just like you add numbers:

>>> "Hello, " + "world!"
'Hello, world!'

>>> x = "Hello, "

>>> y = "world!"

S>> X + Yy

'Hello, world!'

CHAPTER 1 INSTANT HACKING: THE BASICS

String Representations, str and repr

Throughout these examples, you have probably noticed that all the strings printed out by
Python are still quoted. That’s because it prints out the value as it might be written in Python
code, not how you would like it to look for the user. If you use print, however, the result is
different:

>>> "Hello, world!"
'Hello, world!'

>>> 10000L

10000L

>>> print "Hello, world!"
Hello, world!

>>> print 10000L

10000

As you can see, the long integer 10000L is simply the number 10000 and should be written that
way when presented to the user. But when you want to know what value a variable refers to,
you may be interested in whether it’s a normal integer or a long, for example.

What is actually going on here is that values are converted to strings through two different
mechanisms. You can use both mechanisms yourself, through the functions str, which simply
converts a value into a string in some reasonable fashion that will probably be understood by a
user, for example, and repr, which creates a string that is a representation of the value as a legal
Python expression:?

>>> print repr("Hello, world!")
'Hello, world!'

>>> print repr(10000L)

10000L

>>> print str("Hello, world!")
Hello, world!

>>> print str(10000L)

10000

A synonym for repr(x) is “x" (here you use backticks, not single quotes). This can be useful
when you want to print out a sentence containing a number, for example:

>>> temp = 42
>>> print "The temperature is " + temp
Traceback (most recent call last):
File "<pyshell#61>", line 1, in ?

print "The temperature is " + temp
TypeError: cannot add type "int" to string
>>> print "The temperature is " + “temp”
The temperature is 42

The first print statement doesn’t work because you can’t add a string to a number. The second
one, however, works because I have converted temp to the string "42" by using the backticks.

9. Actually, str is a type, just like int and long. repr, however, is simply a function.

25

26

CHAPTER 1 INSTANT HACKING: THE BASICS

(I might, of course, just as well have used repr, which means the same thing, but may be a bit
clearer. Actually, in this case, I could also have used str. Don’t worry too much about this
right now.)

In short: str, repr, and backticks are three ways of converting a Python value to a string.
The function str makes it look good, while repr (and the backticks) tries to make the resulting
string a legal Python expression.

input vs. raw_input

" wpn

Now you know what "Hello, " + name + means. But what about raw_input? Isn’t input
good enough? Let’s try it. Enter the following in a separate script file:

name = input("What is your name? ")

" wyn

print "Hello, " + name +

This is a perfectly valid program, but as you will soon see, it’s a bit unpractical. Let’s try to
runit:

What is your name? Gumby
Traceback (most recent call last):
File "C:/python/test.py", line 2, in ?
name = input("What is your name? ")
File "<string>", line 0, in ?
NameError: name 'Gumby' is not defined

The problem is that input assumes that what you enter is a valid Python expression (it's more
or less the inverse of repr). If you write your name as a string, that’s no problem:

What is your name? "Gumby"
Hello, Gumby!

However, it’s just a bit too much to ask that the user write his or her name in quotes like this;
therefore we use raw_input, which treats all input as raw data, and puts it into a string:

>>> input("Enter a number: ")
Enter a number: 3

3

>>> raw_input("Enter a number: ")
Enter a number: 3

'3

Unless you have a special need for input, you should probably use raw_input.

Long Strings, Raw Strings, and Unicode

Before ending this chapter, I want to first tell you about yet another couple of ways of writing
strings. These alternate string syntaxes can be useful when you have strings that span several
lines, or that contain various special characters.

CHAPTER 1 INSTANT HACKING: THE BASICS

Long Strings

If you want to write a really long string, one that spans several lines, you can use triple quotes
instead of ordinary quotes:

print This is a very long string.
It continues here.

And it's not over yet.

"Hello, world!"

Still here.'"'

You can also use triple double quotes, """1ike this""". Note that because of the distinctive
enclosing quotes, both single and double quotes are allowed inside, without being backslash-
escaped.

Tip Ordinary strings can also span several lines. If the last character on a line is a backslash, the line break
itself is “escaped,” and is ignored. For example:

print "Hello, \
world!"

would print out Hello, world!. The same goes for expressions and statements in general:

>>> 1+ 2 +\
4 +5
12
>>> print \
'Hello, world'
Hello, world

Raw Strings

Raw strings aren’t too picky about backslashes, which can be very useful sometimes.!° In ordi-
nary strings, the backslash has a special role: It escapes things, letting you put things into your
string that you couldn’t normally write directly. For example, a new line is written \n, and can
be put into a string like this:

>>> print 'Hello,\nworld!'
Hello,
world!

This is normally just dandy, but in some cases it’s not what you want. What if you wanted the
string to include a backslash followed by an n? You might want to put the DOS pathname
C:\nowhere into a string, for example:

10. Especially when writing regular expressions. More about those in Chapter 10.

27

28

CHAPTER 1 INSTANT HACKING: THE BASICS

>>> path = 'C:\nowhere'
>>> path
'C:\nowhere'

This looks correct, until you print it and discover the flaw:

>>> print path
C:
owhere

Not exactly what we were after, is it? So what do we do? We can escape the backslash itself:

>>> print 'C:\\nowhere'
C:\nowhere

This is just fine. But for long paths, you wind up with a lot of backslashes:
path = 'C:\\Program Files\\fnord\\foo\\bar\\baz\\frozz\\bozz'

Raw strings are useful in such cases. They don’t treat the backslash as a special character
at all. Every character you put into a raw string stays the way you wrote it:

>>> print r'C:\nowhere'

C:\nowhere

>>> print r'C:\Program Files\fnord\foo\bar\baz\frozz\bozz'
C:\Program Files\fnord\foo\bar\baz\frozz\bozz

Asyou can see, raw strings are written with an r in front. It would seem that you can put almost
anything inside a raw string, and that is almost true. Of course, quotes have to be escaped as
usual, although that means that you get a backslash in your final string, too:

>>> print r'let\'s go!'
Let\'s gol!

The one thing you can’t have in a raw string is a final backslash. In other words, the last
character in a raw string cannot be a backslash. Given the previous example, that ought to be
obvious. If the last character (before the final quote) is a backslash, Python won’t know whether
to end the string or not:

>>> print r"This is illegall\"
SyntaxError: invalid token

Okay, so it’s reasonable, but what if you want the last character in your raw string to be a
backslash? (Perhaps it’s the end of a DOS path, for example.) Well, I've given you a whole bag
of tricks in this section that should help you solve that problem, but basically you need to put
the backslash in a separate string. A simple way of doing that is the following:

>>> print r'C:\Program Files\foo\bar' '\\'
C:\Program Files\foo\bar\

Note that you can use both single and double quotes with raw strings. Even triple-quoted
strings can be raw.

CHAPTER 1 INSTANT HACKING: THE BASICS

Unicode Strings

The final type of string constant is the Unicode string (or Unicode object—they don’t really
belong to the same type as strings). If you don’t know what Unicode is, you probably don’t
need to know about this. (If you want to find out more about it, you can go to the Unicode Web
site, waw.unicode.org.) Normal strings in Python are stored internally as 8-bit ASCII, while
Unicode strings are stored as 16-bit Unicode. This allows for a more varied set of characters,
including special characters from most languages in the world. I'll restrict my treatment of
Unicode strings to the following:

>>> u'Hello, world!"'
u'Hello, world!"'

As you can see, Unicode strings use the prefix u, just as raw strings use the prefix r.

A Quick Summary

This chapter covers quite a bit of material. Let’s take a look at what you've learned before
moving on.

Algorithms. An algorithm is a recipe telling you exactly how to perform a task. When you
program a computer, you are essentially describing an algorithm in a language the computer
can understand, such as Python. Such a machine-friendly description is called a program,
and it mainly consists of expressions and statements.

Expressions. An expression is a part of a computer program that represents a value. For
example, 2+2 is an expression, representing the value 4. Simple expressions are built from
literal values (such as 2 or "Hello") by using operators (such as + or %) and functions (such
as pow). More complicated expressions can be created by combining simpler expressions
(e.g., (2+2)*(3-1)). Expressions may also contain variables.

Variables. A variable is a name that represents a value. New values may be assigned to
variables through assignments such as x = 2. An assignment is a kind of statement.

Statements. A statement is an instruction that tells the computer to do something. That
may involve changing variables (through assignments), printing things to the screen (such
asprint "Hello, world!"), importing modules, or a host of other stuff.

Functions. Functions in Python work just like functions in mathematics: They may take
some arguments, and they return a result. (They may actually do lots of interesting stuff
before returning, as you will find out when you learn to write your own functions in
Chapter 6.)

Modules. Modules are extensions that can be imported into Python to extend its capabili-
ties. For example, several useful mathematical functions are available in the math module.

Programs. You have looked at the practicalities of writing, saving, and running Python
programs.

29

30

CHAPTER 1 INSTANT HACKING: THE BASICS

Strings. Strings are really simple—they are just pieces of text. And yet there is a lot to know
about them. In this chapter, you’'ve seen many ways to write them, and in Chapter 3 you
learn many ways of using them.

New Functions in This Chapter

Function Description

abs(number) Returns the absolute value of a number
cmath. sqrt(number) Square root, also for negative numbers
float(object) Converts a string or number to a floating-point number
help() Offers interactive help

input(prompt) Gets input from the user

int(object) Converts a string or number to an integer
long(object) Converts a string or number to a long integer
math.ceil(number) Returns the ceiling of a number as a float
math.floor (number) Returns the floor of a number as a float
math.sqgrt(number) Square root, not for negative numbers

pow(x, y[, z]) x to the power of y (modulo 2z)
raw_input(prompt) Gets input from the user, as a string
repr(object) Returns a string-representation of a value
round(number[, ndigits]) Rounds a number to a given precision
str(object) Converts a value to a string

What Now?

Now that you know the basics of expressions, let’s move on to something a bit more advanced:
data structures. Instead of dealing with simple values (such as numbers), you'll see how to
bunch them together in more complex structures, such as lists and dictionaries. In addition,
you'll take another close look at strings. In Chapter 5, you learn more about statements, and
after that you'll be ready to write some really nifty programs.

CHAPTER 2

Lists and Tuples

This chapter introduces a new concept: data structures. A data structure is a collection of data
elements (such as numbers or characters—or even other data structures) that is structured in
some way, for example, by numbering the elements. The most basic data structure in Python is
the sequence. Each element of a sequence is assigned a number—its position, or index. The first
index is zero, the second index is one, and so forth.

Note When you count or number things in your daily life, you probably start counting from 1. The numbering
scheme used in Python may seem odd, but it is actually quite natural. One of the reasons for this, as you see
later in the chapter, is that you can also count from the end: The last item of a sequence is numbered —1, the
next-to-last —2, and so forth. That means you can count forward or backward from the first element, which
lies at the beginning, or zero. Trust me, you get used to it.

Python has six built-in types of sequences, butlet’s concentrate on two of the most common
ones—Iists and tuples. The main difference between these is that you can change a list, but you
can’t change a tuple. This means a list might be useful if you need to add elements as you go
along, while a tuple can be useful if, for some reason, you can’t allow the sequence to change.
Reasons for the latter are usually rather technical, having to do with how things work internally
in Python. That’s why you may see built-in functions returning tuples. For your own programs,
chances are you can use lists instead of tuples in almost all circumstances. (One notable excep-
tion, as described in Chapter 4, is using tuples as dictionary keys. There lists aren’t allowed,
because you aren’t allowed to modify keys.)

Note The other built-in sequence types are strings (which | revisit in the next chapter), Unicode strings,
buffer objects, and xrange objects.

31

32

CHAPTER 2 LISTS AND TUPLES

Sequences are useful when you want to work with a collection of values. You might have a
sequence representing a person in a database, with the first element being their name, and the
second their age. Written as a list (the items of a list are separated by commas and enclosed in
square brackets), that would look like this:

>>> edward = ['Edward Gumby', 42]

But sequences can contain other sequences, too, so you could make a list of such persons,
which would be your database:

>>> edward = ['Edward Gumby', 42]

>>> john = ['John Smith', 50]

>>> database = [edward, john]

>>> database

[['Edward Gumby', 42], ['John Smith', 50]]

This chapter begins with some operations that are common to all sequences, including
lists and tuples. These operations will also work with strings, which will be used in some of the
examples, although for a full treatment of string operations, you have to wait until the next
chapter.

After dealing with these basics, we start working with lists and see what’s special about them.
After lists, we come to tuples, which are very similar to lists, except that you can’t change them.

Note Python has a basic notion of a kind of data structure called a container, which is basically any object
that can contain other objects. The two main kinds of containers are sequences (such as lists and tuples) and
mappings (such as dictionaries). While the elements of a sequence are numbered, each element in a mapping
has a name (also called a key). You learn more about mappings in Chapter 4. For an example of a container
type that is neither a sequence nor a mapping, see the discussion of sets in Chapter 10.

Common Sequence Operations

There are certain things you can do with all sequence types. These operations include indexing,
slicing, adding, multiplying, and checking for membership. In addition, Python has built-in
functions for finding the length of a sequence, and for finding its largest and smallest elements.

Note One important operation not covered here is iteration. To iterate over a sequence means to perform
certain actions repeatedly, once per element in the sequence. To learn more about this, see the section
“Loops” in Chapter 5.

CHAPTER 2 LISTS AND TUPLES

Indexing

All elements in a sequence are numbered—from zero and upwards. You can access them
individually with a number, like this:

>>> greeting = 'Hello'
>>> greeting[0]
Wy

Note Astring is just a sequence of characters. The index 0 refers to the first element, in this case the letter H.

This is called indexing—you use an index to fetch an element. All sequences can be indexed in
this way. When you use a negative index, Python counts from the right, that is, from the last
element. The last element is at position -1 (not-0, as that would be the same as the first element):

>>> greeting[-1]

(o]

String literals (and other sequence literals, for that matter) may be indexed directly, without
using a variable to refer to them. The effect is exactly the same:

>>> 'Hello'[1]

e

If a function call returns a sequence, you can index it directly. For instance, if you are simply
interested in the fourth digit in a year entered by the user, you could do something like this:

>>> fourth = raw_input('Year: ')[3]

Year: 2005
>>> fourth
5

Listing 2-1 contains an example program that asks you for a year, a month (as a number from 1 to 12), and a day
(1to 31), and then prints out the date with the proper month name and so on. An example session with this program
might be as follows:

Year: 1974

Month (1-12): 8
Day (1-31): 16
August 16th, 1974

The last line is the output from the program.

33

34

CHAPTER 2 LISTS AND TUPLES

Listing 2-1. Indexing Example

Print out a date, given year, month, and day as numbers

months = [
"January’,
'February',
'"March',
"April’,
‘May",
"June’,
"July’,
'August’,
'September’,
'October’,
"November',
'December’

]

A list with one ending for each number from 1 to 31
endings = ['st', 'nd', 'rd'] + 17 * ["th'] \

+ ['st', 'nd", 'rd'] + 7 * ['th']\
['st']

+

year = raw_input('Year: ")
month = raw_input('Month (1-12): ')
day = raw_input('Day (21-31): ')

month_number = int(month)
day _number = int(day)

Remember to subtract 1 from month and day to get a correct index
month_name = months[month_number-1]
ordinal = day + endings[day number-1]

print month name + ' ' + ordinal + ', ' + year

Slicing
Just as you use indexing to access individual elements, you can use slicing to access ranges of
elements. You do this by using fwo indices, separated by a colon:

>>> tag = 'Python web site’
>>> tag[9:30]

"http://www.python.org'

>>> tag[32:-4]

'Python web site’

CHAPTER 2 LISTS AND TUPLES

As you can see, slicing is very useful for extracting parts of a sequence. The numbering
here is very important. The first index is the number of the first element you want to include.
However, the lastindex is the number of the first element after your slice. Consider the following:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers[3:6]

[4, 5, 6]

>>> numbers[0:1]

[1]

In short, you supply two indices as limits for your slice, where the first is inclusive, and the
second is exclusive.

A Nifty Shortcut

Let’s say you want to access the last three elements of numbers (from the previous example).
You could do it explicitly, of course:

>>> numbers[7:10]
(8, 9, 10]

Now, the index 10 refers to element 11—which does not exist, but is one step after the last
element you want. Got it?
Now, this is fine, but what if you want to count from the end?

>>> numbers[-3:-1]
(8, 9]

It seems you cannot access the last element this way. How about using 0 as the element
“one step beyond” the end?

>>> numbers[-3:0]

[]

Not exactly the desired result. In fact, any time the leftmost index in a slice comes later in
the sequence than the second one (in this case, the third-to-last cominglater than the first), the
result is always an empty sequence. Luckily, you can use a shortcut: If the slice continues to the
end of the sequence, you may simply leave out the last index:

>>> numbers[-3:]
(8, 9, 10]

The same thing works from the beginning:

>>> numbers[:3]
[1, 2, 3]

In fact, if you want to copy the entire sequence, you may leave out both indices:

>>> numbers| :]
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

35

36

CHAPTER 2 LISTS AND TUPLES

Listing 2-2 contains a small program that prompts you for a URL, and (assuming it is of the form http://
www . somedomainname . com) extracts the domain name. Here is a sample run of the program:

Please enter the URL: http://www.python.org
Domain name: python

Listing 2-2. Slicing Example

Split up a URL of the form http://www.something.com

url = raw_input('Please enter the URL: ')
domain = url[11:-4]

n

print "Domain name: " + domain

Longer Steps

When slicing, you specify (either explicitly or implicitly) the start and end points of the slice.
Another parameter (added to the built-in types in Python 2.3), which normally is left implicit,
is the step length. In aregular slice, the step length is one—the slice “moves” from one element
to the next, returning all the elements between the start and end:

>>> numbers[0:10:1]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In this example, you can see that the slice includes another number. This is, as you may
have guessed, the step size, made explicit. If the step size is set to a number greater than one,
elements will be skipped. For example, a step size of two will include only every other element
of the interval between the start and the end:

>>> numbers[0:10:2]
[1, 3, 5, 7, 9]
numbers[3:6:3]

(4]

You can still use the shortcuts mentioned earlier; if you want every fourth element of a
sequence, you only have to supply a step size of four:

>>> numbers[::4]
[1, 5, 9]

Naturally, the step size can’t be zero—that wouldn’t get you anywhere—but it can be
negative, which means extracting the elements from right to left:

CHAPTER 2 LISTS AND TUPLES

>>> numbers[8:3:-1]
[9, 8, 7, 6, 5]

>>> numbers[10:0:-2]
[10, 8, 6, 4, 2]

>>> numbers[0:10:-2]
[]

>>> numbers|[::-2]
[10, 8, 6, 4, 2]

>>> numbers[5::-2]
(6, 4, 2]

>>> numbers[:5:-2]
[10, 8]

Getting things right here can involve a bit of thinking. As you can see, the first limit (the
leftmost) is still inclusive, while the second (the rightmost) is exclusive. When using a negative
step size, you have to have a first limit (start index) that is higher than the second one. What
may be a bit confusing is that when you leave the start and end indices implicit, Python does
the “right thing” here; for a positive step size it moves from the beginning toward the end, and
for a negative step size it moves from the end toward the beginning.

Adding Sequences

Sequences can be concatenated with the addition (plus) operator:

>>> [1, 2, 3] + [4, 5, 6]
[1) 2) 3) 4) 5) 6]
>>> 'Hello, ' + 'world!'
'Hello, world!'
>>> [1, 2, 3] + 'world!'
Traceback (innermost last):
File "<pyshell#2>", line 1, in ?
[1, 2, 3] + 'world!"
TypeError: can only concatenate list (not "string") to list

As you can see from the error message, you can’t concatenate a list and a string, although
both are sequences. In general, you can only concatenate two sequences of the same kind.

Multiplication

Multiplying a sequence by a number x creates a new sequence where the original sequence is
repeated x times:

>>> 'python' * 5
"pythonpythonpythonpythonpython'

>>> [42] * 10

[42, 42, 42, 42, 42, 42, 42, 42, 42, 42]

37

38

CHAPTER 2 LISTS AND TUPLES

None, Empty Lists, and Initialization

An empty list is simply written as two brackets ([])—there’s nothing in it. But what if you want
to have a list with room for ten elements but with nothing useful in it? You could use [42]*10,
as before, or perhaps more realistically [0]*10. You now have a list with ten zeros in it. Some-
times, however, you would like a value that somehow means “nothing,” as in “we haven'’t put
anything here yet.” That’s when you use None. None is a Python value and means exactly that—
“nothing here.” So if you want to initialize a list of length 10, you could do the following:

>>> sequence = [None] * 10
>>> sequence
[None, None, None, None, None, None, None, None, None, None]

Listing 2-3 contains a program that prints (to the screen) a “box” made up of characters,
which is centered on the screen and adapted to the size of a sentence supplied by the user. The
following is a sample run:

Sentence: He's a very naughty boy!

| |
| He's a very naughty boy! |
| |

The code may look complicated, but it’s basically just arithmetic—figuring out how many
spaces, dashes, and so on you need in order to place things correctly.
Listing 2-3. Sequence (String) Multiplication Example

Prints a sentence in a centered "box" of correct width

Note that the integer division operator (//) only works in Python
2.2 and newer. In earlier versions, simply use plain division (/)

sentence = raw_input("Sentence: ")

screen width = 80

text width len(sentence)

box_width text_width + 6

left margin = (screen width - box width) // 2

print

print ' ' * left margin + '+' + '-' * (box width-2) + '+’
print ' ' * left margin + '| '+ ' ' * text width + |
print ' ' * left margin + '| ' + sentence + |
print ' ' * left margin + '| '+ ' ' * text width +
print " ' * left margin + '+ + '-' * (box width-2) + '+’

print

CHAPTER 2 LISTS AND TUPLES

Membership

To check whether a value can be found in a sequence, you use the in operator. This operator is

a bit different from the ones discussed so far (such as multiplication or addition). It checks

whether something is true, and returns a value accordingly: True for true and False for false.

Such operators are called Boolean operators, and the truth values are called Boolean values.

You learn more about Boolean expressions in the section on conditional statements in Chapter 5.
Here are some examples that use the in operator:

>>> permissions = 'rw

>>> 'w' in permissions

True

>>> 'x' in permissions

False

>>> users = ['mlh', 'foo', 'bar']

>>> raw_input('Enter your user name: ') in users
Enter your user name: mlh

True

>>> subject = "$$$ Get rich now!!! $$$'
>>> '$$$' in subject

True

The first two examples use the membership test to check whether 'w' and 'x' respectively
are found in the string permissions. This could be a script on a UNIX machine checking for
writing and execution permissions on a file. The next example checks whether a supplied user
name (mlh) is found in alist of users. This could be useful if your program enforces some security
policy. (In that case, you would probably want to use passwords as well.) The last example
could be a part of a spam filter, for example—it checks whether the string subject contains the
string '$$$".

Note The last example is a bit different from the others. In general, the in operator checks whether an
object is a member (that is, an element) of a sequence (or some other collection). However, the only members
or elements of a string are its characters. So, the following makes perfect sense:
>>> 'P' in 'Python’

True

In fact, in earlier versions of Python this was the only membership check that worked with strings—finding

out whether a character is found in a string. Trying to check for a longer substring, such as ' $$$ "', would give
you an error message (it would raise a TypeError), and you’d have to use a string method. You learn more

about those in Chapter 3. From Python 2.3, however, you can use the in operator to check whether any string
is a substring of another.

Listing 2-4 shows a program that reads in a user name and checks the entered PIN code
against a database (a list, actually) that contains pairs (more lists) of names and PIN codes. If

39

40

CHAPTER 2 LISTS AND TUPLES

the name/PIN pair is found in the database, the string 'Access granted' is printed. (The if
statement was mentioned in Chapter 1 and will be fully explained in Chapter 5.)

Listing 2-4. Sequence Membership Example

Check a user name and PIN code

database = [
['albert', '1234'],
['dilbert', '4242'],
['smith', '7524']
['jones', '9843']

)

username = raw_input('User name: ')
pin = raw_input('PIN code: ')

if [username, pin] in database: print 'Access granted’

Length, Minimum, and Maximum

The built-in functions len, min, and max can be quite useful. The function len returns the
number of elements a sequence contains, while min and max return the smallest and largest
element of the sequence respectively. (You learn more about comparing objects in Chapter 5,
in the section “Comparison Operators.”)

>>> numbers = [100, 34, 678]
>>> len(numbers)

3

>>> max(numbers)
678

>>> min(numbers)
34

>>> max(2, 3)

3

>>> min(9, 3, 2, 5)
2

How this works should be clear from the previous explanation, except possibly the last two
expressions. Here max and min are not called with a sequence argument; the numbers are supplied
directly as arguments.

Lists: Python’s Workhorse

In the previous examples, I've used lists quite a bit. You've seen how useful they are, but this
section deals with what makes them different from tuples and strings: Lists are mutable—that
is, you can change their contents—and they have many useful specialized methods.

CHAPTER 2 LISTS AND TUPLES

The list Function

Because strings can’t be modified in the same way as lists, often it can be useful to create a list
from a string. You can do this with the 1ist function:!

>>> list('Hello")
['H') Iel’ lll, Ill) Iol]

Note that 1ist works with all kinds of sequences, not just strings.

Tip To converta list of characters such as the preceding code back to a string, you would use the following
expression:

"".join(somelist)

where somelist is your list. For an explanation of what this really means, see the section about join in
Chapter 3.

Basic List Operations

You can perform all the standard sequence operations on lists, such as indexing, slicing,
concatenating, and multiplying; but the interesting thing about lists is that they can be modi-
fied. In this section, you see some of the ways you can change a list: item assignments, item
deletion, slice assignments, and list methods. (Note that not all list methods actually change
their list.)

Changing Lists: Iltem Assignments

Changing a list is easy. You just use ordinary assignment as explained in the first chapter.
However, instead of writing something like x = 2, you use the indexing notation to assign to
a specific, existing position, such as x[1] = 2.

>»> x = [1, 1, 1]
>>> x[1] = 2

>>> X

[1, 2, 1]

Note You cannot assign to a position that doesn’t exist; if your list is of length 2, you cannot assign a value
to index 100. To do that, you would have to make a list of length 101 (or more). See the section “None, Empty
Lists, and Initialization,” earlier in this chapter.

1. It's actually a type, not a function, but the difference isn’t important right now.

41

42

CHAPTER 2 LISTS AND TUPLES

Deleting Elements

Deleting elements from a list is easy too; you can simply use the del statement:

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']
>>> del names[2]

>>> names

['Alice', 'Beth', 'Dee-Dee', 'Earl']

Notice how Cecil is completely gone, and the length of the list has shrunk from five to four.
The del statement may be used to delete things other than list elements. It can be used
with dictionaries (see Chapter 4) or even variables. For more information, see Chapter 5.

Assigning to Slices

Slicing is a very powerful feature, and it is made even more powerful by the fact that you can
assign to slices:

>>> name = list('Perl")
>>> name

[IPI) 'e" II'} '1I]

>>> name[2:] = list('ar')
>>> name
['P', 'e', 'a

' s 1l I_ 1]

So you can assign to several positions at once. You may wonder what the big deal is. Couldn’t
you just have assigned to them one at a time? Sure, but when you use slice assignments, you
may also replace the slice with a sequence whose length is different from that of the original:

>>> name = 1list('Perl")
>>> name[1:] = list('ython')
>>> name
[IPI) 'yIJ Itl) 'hl) 'O') 'n']
Slice assignments can even be used to insert elements without replacing any of the
original ones:

>>> numbers = [1, 5]

>>> numbers[1:1] = [2, 3, 4]
>>> numbers

[1J 2) 3) 4) 5]

Here, I basically “replaced” an empty slice, thereby really inserting a sequence. You can do
the reverse to delete a slice:

>>> numbers

[1) 2) 3) 4) 5]

>>> numbers[1:4] = []
>>> numbers

[1, 5]

As you may have guessed, this last example is equivalent to del numbers[1:4].

CHAPTER 2 LISTS AND TUPLES

List Methods

You've encountered functions already, but now it’s time to meet a close relative: methods.

Note You get a much more detailed explanation of what methods really are in Chapter 7.

A method is a function that is tightly coupled to some object, be it alist, a number, a string,
or whatever. In general, a method is called like this:

object.method(arguments)

As you can see, a method call looks just like a function call, except that the object is put
before the method name, with a dot separating them. Lists have several methods that allow
you to examine or modify their contents.

append
The append method is used to append an object to the end of a list:

>>> Ist = [1, 2, 3]
>>> lst.append(4)
>>> st

[1, 2, 3, 4]

You might wonder why I have chosen such an ugly name as 1st for my list. Why not call it
1ist?I could do that, but as you might remember, 1ist is a built-in function.? If I use the name
foralistinstead, Iwon’tbe able to call the function anymore. You can generally find better names
for a given application. A name such as 1st really doesn’t tell you anything. So if your list is a list
of prices, for instance, you probably ought to call it something like prices, prices_of eggs, or
pricesOfEggs.

It’s also important to note that append, like several similar methods, changes the list in
place. This means that it does not simply return a new, modified list—it modifies the old one
directly. This is usually what you want, but it may sometimes cause trouble. I'll return to this
discussion when I describe sort later in the chapter.

count

The count method counts the occurrences of an element in a list:

>>> ['to', 'be', 'or', 'not', 'to', 'be'].count('to")
2

>»> x = [[1, 2], 1, 1, [2, 1, [1, 2]]]

>>> x.count(1)

2

>>> x.count([1, 2])

1

2. Actually, from version 2.2 of Python, list is a type, not a function. (This is the case with tuple and str
as well.) For the full story on this, see the section “Subclassing 1ist, dict, and str,” in Chapter 9.

43

44

CHAPTER 2 LISTS AND TUPLES

extend

The extend method allows you to append several values at once by supplying a sequence of the
values you want to append. In other words, your original list has been extended by the other one:

>>>a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a.extend(b)
>>> a

[1, 2, 3, 4, 5, 6]

This may seem similar to concatenation, but the important difference is that the extended
sequence (in this case, a) is modified. This is not the case in ordinary concatenation, in which
a completely new sequence is returned:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>»>a+b

[1, 2, 3, 4, 5, 6]
>>> a

[1, 2, 3]

As you can see, the concatenated list looks exactly the same as the extended one in the
previous example, yet a hasn’t changed this time. Because ordinary concatenation has to make
anew list that contains copies of a and b, it isn’t quite as efficient as using extend if what you
want is something like this:

>»>a=a+b

Also, this isn’t an in-place operation—it won’t modify the original.
The effect of extend can be achieved by assigning to slices, as follows:

>>>a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a[len(a):] = b
>>> a

[1, 2, 3, 4, 5, 6]

While this works, it isn’t quite as readable.

index

The index method is used for searching lists to find the index of the first occurrence of a value:

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni']
>>> knights.index('who")
4
>>> knights.index('herring")
Traceback (innermost last):
File "<pyshell#76>", line 1, in ?

knights.index('herring")

ValueError: list.index(x): x not in list

CHAPTER 2 LISTS AND TUPLES

When you search for the word “who,” you find that it’s located at index 4:

>>> knights[4]
'who

However, when you search for 'herring', you get an exception because the word is not
found at all.

insert

The insert method is used to insert an object into a list:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers.insert(3, 'four')
>>> numbers

[1) 2, 3, 'four', 5, 6, 7]

As with extend, you can implement insert with slice assignments:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers[3:3] = ['four']

>>> numbers

[1) 2, 3, Ifourl) 5, 6, 7]

This may be fancy, but it is hardly as readable as using insert.

pop

The pop method removes an element (by default the last one) from the list and returns it:

>»> x = [1, 2, 3]
>>> x.pop()

3

>>> X

[1, 2]

>>> x.pop(0)

1

>>> X

[2]

Note The pop method is the only list method that both modifies the list and returns a value (other
than None).

Using pop, you can implement a common data structure called a stack. A stack like this
works just like a stack of plates. You can put plates on top, and you can remove plates from the
top. The last one you put into the stack is the first one to be removed. (This principle is called
Last-In, First-Out, or LIFO.)

45

46

CHAPTER 2 LISTS AND TUPLES

The generally accepted names for the two stack operations (putting things in and taking
them out) are push and pop. Python doesn’t have push, but you can use append instead. The pop
and append methods reverse each other’s results, so if you push (or append) the value you just
popped, you end up with the same stack:

>>> x = [1, 2, 3]
>>> x.append(x.pop())
>>> X

[1, 2, 3]

Tip If you want a First-In, First-Out (FIFO) queue, you can use insert (0, ...) instead of append. Alter-
natively, you could keep using append but substitute pop (0) for pop (). An even better solution would be to
use a deque from the collections module. See Chapter 10 for more information.

remove

The remove method is used to remove the first occurrence of a value:

>>> x = ['to', 'be', 'or', 'not', 'to', 'be']
>>> x.remove('be")
>>> X
['to', 'or', 'not', 'to', 'be'l]
>>> x.remove('bee")
Traceback (innermost last):
File "<pyshell#3>", line 1, in ?
x.remove('bee")
ValueError: list.remove(x): x not in list

As you can see, only the first occurrence is removed, and you cannot remove something
(in this case, the string 'bee") if it isn’t in the list to begin with.

It’s important to note that this is one of the “nonreturning in-place changing” methods. It
modifies the list, but returns nothing (as opposed to pop).

reverse

The reverse method reverses the elements in the list. (Not very surprising, I guess.)

>>> x = [1, 2, 3]
>>> x.reverse()
>>> X

(3, 2, 1]

Note that reverse changes the list and does not return anything (just like remove and sort,
for example).

CHAPTER 2 LISTS AND TUPLES

Tip If you want to iterate over a sequence in reverse, you can use the reversed function. This function
doesn’t return a list, though; it returns an iterator. (You learn more about iterators in Chapter 9.) You can
convert the returned object with 1ist, though:

>»> x = [1, 2, 3]
>>> list(reversed(x))
(3, 2, 1]

sort

The sort method is used to sort lists in place.3 Sorting “in place” means changing the original
list so its elements are in sorted order, rather than simply returning a sorted copy of the list:

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort()

>>> X

(1, 2, 4, 6, 7, 9]

You've encountered several methods already that modify the list without returning anything,
and in most cases that behavior is quite natural (as with append, for example). But I want to
emphasize this behavior in the case of sort because so many people seem to be confused by it.
The confusion usually occurs when users want a sorted copy of a list while leaving the original
alone. An intuitive (but wrong) way of doing this is as follows:

> > X = [4J 6, 2, 1, 7, 9]

>>> y = x.sort() # Don't do this!
>>> print y

None

Because sort modifies x but returns nothing, you end up with a sorted x and a y containing
None. One correct way of doing this would be to first bind y to a copy of x, and then sort y,
as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>»>y = x[:]

>>> y.sort()

>>> X

(4, 6, 2, 1, 7, 9]

>y

(1, 2, 4, 6, 7, 9]

Recall that x[:] is a slice containing all the elements of x, effectively a copy of the entire
list. Simply assigning x to y wouldn’t work because both x and y would refer to the same list:

3. In case you're interested: From Python 2.3 on, the sort method uses a stable sorting algorithm.

47

48 CHAPTER 2 LISTS AND TUPLES

>>> Y = X
>>> y.sort()

>>> X

[1, 2, 4, 6, 7, 9]
>>>y

[1, 2, 4, 6, 7, 9]

Another way of getting a sorted copy of a list is using the sorted function:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = sorted(x)

>>> X

(4, 6, 2, 1, 7, 9]

>>>y

[1, 2, 4, 6, 7, 9]

This function can actually be used on any sequence, but will always return a list:*

>>> sorted('Python')
[IPI) lhl, Inl’ 'OI) ltl, Iyl]
If you want to sort the elements in reverse order, you can use sort (or sorted), followed by

acall to the reverse method, or you could use the reverse argument, described in the following
section.

Advanced Sorting

If you want to have your elements sorted in a specific manner (other than sort’s default
behavior, which is to sort elements in ascending order) you can define your own comparison
function, of the form compare(x,y), which returns a negative number when x < y, a positive
number when x > y, and zero when x == y (according to your definition). You can then supply
this as a parameter to sort. The built-in function cmp provides the default behavior:

>>> cmp(42, 32)

1

>>> cmp(99, 100)

-1

>>> cmp(10, 10)

0

>>> numbers = [5, 2, 9, 7]
>>> numbers.sort(cmp)

>>> numbers

[2, 5, 7, 9]

The sort method has two other optional arguments as well—key and reverse. If you want
to use them, you normally specify them by name (so-called keyword arguments; you learn
more about those in Chapter 6). The key argument is similar to the cmp argument: You supply

4. The sorted function can, in fact, be used on any other iterable object. You learn more about iterable
objects in Chapter 9.

CHAPTER 2 LISTS AND TUPLES

a function and it’s used in the sorting process. However, instead of being used directly for
determining whether one element is smaller than another, the function is used to create a key
for each element, and the elements are sorted according to these keys. So, for example, if you
want to sort the elements according to their lengths, you use len as the key function:

>>> x = ['aardvark', 'abalone', 'acme', 'add', 'aerate']
>>> x.sort(key=1len)

> X

['add', 'acme', 'aerate', 'abalone', 'aardvark']

The other keyword argument, reverse, is simply a truth value (True or False; you learn
more about these in Chapter 5) indicating whether the list should be sorted in reverse:

>>> x = [4, 6, 2, 1, 7, 9]
>>> X.sort(reverse=True)
>>> X

(9, 7, 6, 4, 2, 1]

The cmp, key, and reverse arguments are available in the sorted function as well. In many
cases, using custom functions for cmp or key will be useful—you learn how to define your own
functions in Chapter 6.

Tip If you would like to read more about sorting, you may want to check out Andrew Dalke’s “Sorting
Mini-HOWTO,” found at http://python.org/doc/howto.

Tuples: Immutable Sequences

Tuples are sequences, just like lists. The only difference is that tuples can’t be changed.’ (As you
may have noticed, this is also true of strings.) The tuple syntax is simple—if you separate some
values with commas, you automatically have a tuple:

>»> 1, 2, 3
(1, 2, 3)

As you can see, tuples may also be (and often are) enclosed in parentheses:

»> (1, 2, 3)
(1, 2, 3)

The empty tuple is written as two parentheses containing nothing:

>>> ()

0

5. There are some technical differences in the way tuples and lists work behind the scenes, but you probably
won't notice it in any practical way. And tuples don’t have methods the way lists do. Don’t ask me why.

49

50

CHAPTER 2 LISTS AND TUPLES

So, you may wonder how to write a tuple containing a single value. This is a bit peculiar—
you have to include a comma, even though there is only one value:

>>> 42

42

>>> 42,
(42,)

>>> (42,)
(42,)

The last two examples produce tuples of length one, while the first is not a tuple at all. The
comma is crucial. Simply adding parentheses won’t help: (42) is exactly the same as 42. One
lonely comma, however, can change the value of an expression completely:

>>> 3%(40+2)
126

>>> 3%(40+2,)
(42, 42, 42)

The tuple Function

The tuple function works in pretty much the same way as list: It takes one sequence argument
and converts it to a tuple.® If the argument is already a tuple, it is returned unchanged:

>>> tuple([1, 2, 3])
(1, 2, 3)

>>> tuple('abc')
(‘a’, b, ')

>>> tuple((1, 2, 3))
(1, 2, 3)

Basic Tuple Operations

Asyoumay have gathered, tuples aren’t very complicated—and there isn’t really much you can
do with them except make them and access their elements, and you do this the same as with
other sequences:

> Xx =1, 2, 3
>>> x[1]

2

>>> x[0:2]

(1, 2)

As you can see, slices of a tuple are also tuples, just as list slices are themselves lists.

6. And, as I remarked for list, tuple isn’t really a function—it’s a type. But, as for 1ist, you can safely
ignore this for now.

CHAPTER 2 LISTS AND TUPLES

So What’s the Point?

By now you are probably wondering why anyone would ever want such a thing as an immutable
(unchangeable) sequence. Can’t you just stick to lists and leave them alone when you don’t
want them to change? Basically, yes. However, there are two important reasons why you need
to know about tuples:

e They can be used as keys in mappings—Ilists can’t be. (You may remember that mappings
were mentioned in the chapter introduction. You'll learn more about them in Chapter 4.)

* They are returned by some built-in functions and methods, which means that you have
to deal with them. As long as you don’t try to change them, “dealing” with them most
often means treating them just like lists (unless you need methods such as index and
count, which tuples don’t have).

In general, lists will probably be adequate for all your sequencing needs.

A Quick Summary

Let’s review some of the most important concepts covered in this chapter:

Sequences. A sequence is a data structure in which the elements are numbered (starting
with zero). Examples of sequence types are lists, strings, and tuples. Of these, lists are
mutable (you can change them), whereas tuples and strings are immutable (once they're
created, they're fixed). Parts of a sequence can be accessed through slicing, supplying two
indices, indicating the starting and ending position of the slice. To change a list, you assign
new values to its positions, or use assignment to overwrite entire slices.

Membership. Whether a value can be found in a sequence (or other container) is checked

with the operator in. Using in with strings is a special case—it will let you look for substrings.

Methods. Some of the built-in types (such as lists and strings, but not tuples) have many
useful methods attached to them. These are a bit like functions, except that they are tied
closely to a specific value. Methods are an important aspect of object-oriented program-
ming, which we look at later, in Chapter 7.

51

52

CHAPTER 2 LISTS AND TUPLES

New Functions in This Chapter

Function Description

cmp(x, y) Compares two values

len(seq) Returns the length of a sequence

list(seq) Converts a sequence to a list

max(args) Returns the maximum of a sequence or set of arguments
min(args) Returns the minimum of a sequence or set of arguments
reversed(seq) Lets you iterate over a sequence in reverse

sorted(seq) Returns a sorted list of the elements of seq

tuple(seq) Converts a sequence to a tuple

What Now?

Now that you're acquainted with sequences, let’s move on to character sequences, also known
as strings.

CHAPTER 3

Working with Strings

You’ve seen strings before, and know how to make them. You've also looked at how to access
their individual characters by indexing and slicing. In this chapter, you see how to use them to
format other values (for printing, for example), and take a quick look at the useful things you
can do with string methods, such as splitting, joining, searching, and more.

Basic String Operations

All the standard sequence operations (indexing, slicing, multiplication, membership, length,
minimum, and maximum) work with strings, as you saw in the previous chapter. Remember,
however, that strings are immutable, so all kinds of item or slice assignments are illegal:

>>> website = "http://www.python.org’
>>> website[-3:] = 'com'
Traceback (most recent call last):
File "<pyshell#19>", line 1, in ?
website[-3:] = 'com'

TypeError: object doesn't support slice assignment

String Formatting: The Short Version

If you are new to Python programming, chances are you won’t need all the options that are
available in Python string formatting, so I'll give you the short version here. If you are interested in
the details, take a look at the section “String Formatting: The Long Version,” which follows.
Otherwise, just read this and skip down to the section “String Methods.”

String formatting is done with the string formatting operator, the percent (%) sign.

Note As you may remember, % is also used as a modulus (remainder) operator.

To the left of it you place a string (the format string), and to the right of it you place the
value you want to format. You can either use a single value such as a string or a number, or you

53

54

CHAPTER 3 WORKING WITH STRINGS

can use a tuple of values (if you want to format more than one), or, as I discuss in the next chapter,
you can use a dictionary. The most common case is the tuple:

>>> format = "Hello, %s. %s enough for ya?"
>>> values = ('world', 'Hot')

>>> print format % values

Hello, world. Hot enough for ya?

Note If you use a list or some other sequence instead of a tuple, the sequence will be interpreted as
a single value. Only tuples and dictionaries (discussed in Chapter 4) will allow you to format more than
one value.

The %s parts of the format string are called conversion specifiers. They mark the places
where the values are to be inserted. The s means that the values should be formatted as if they
were strings—if they aren’t, they’ll be converted with str. This works with most values; for a list
of other specifier types, see Table 3-1 later in the chapter.

Note To actually include a percent sign in the format string, you must write %% so Python doesn’t mistake
it for the beginning of a conversion specifier.

If you are formatting real numbers (floats), you can use the f specifier type and supply the
precision as a . (dot) followed by the number of decimals you want to keep. The format specifier
always ends with a type character, so you must put the precision before that:

>>> format = "Pi with three decimals: %.3f"
>>> from math import pi

>>> print format % pi

Pi with three decimals: 3.142

TEMPLATE STRINGS

The string module offers another way of formatting values: template strings. They work more like variable
substitution in many UNIX shells, with $foo being replaced by a keyword argument called foo that is passed
to the template method substitute;!

>>> from string import Template

>>> s = Template('$x, glorious $x!")
>>> s.substitute(x="slurm")

'slurm, glorious slurm!'

1. For more about keyword arguments, see Chapter 6.

CHAPTER 3 WORKING WITH STRINGS

If the replacement field is part of a word, the name must be enclosed in braces, in order to make it clear where
it ends:

>>> s = Template("It's ${x}tastic!")
>>> s.substitute(x="slurm")
"It's slurmtastic!"”

In order to insert a dollar sign, use $$:

>>> s = Template("Make $$ selling $x!")
>>> s.substitute(x="slurm")
‘Make $ selling slurm!’

Instead of using keyword arguments, you can supply the value-name pairs in a dictionary (see Chapter 4):

>>> s = Template('A $thing must never $action."')
>>>d = {}

>>> d['thing'] = 'gentleman’

>>> d['action'] = 'show his socks'

>>> s.substitute(d)

'A gentleman must never show his socks.'

There is also a method called sate_substitute that will not complain about missing values or incorrect
uses of the $ character. See Section 4.1.2, “Template strings,” of the Python Library Reference (http://
python.org/doc/1ib/node108.html).

String Formatting: The Long Version

The right operand of the formatting operator may be anything; if it is either a tuple or a mapping
(like a dictionary), it is given special treatment. We haven’t looked at mappings (such as
dictionaries) yet, so let’s focus on tuples here. We’ll use mappings in formatting in Chapter 4,
where they’re discussed in greater detail. If the right operand is a tuple, each of its elements is
formatted separately, and you need a conversion specifier for each of the values.

Note If you write the tuple to be converted as part of the conversion expression, you must enclose it in
parentheses to avoid confusing Python:

>>> '%s plus %s equals %s' % (1, 1, 2)
'1 plus 1 equals 2'
>>> '%s plus %s equals %s' % 1, 1, 2 # Lacks parentheses!
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: not enough arguments for format string

55

56 CHAPTER 3 WORKING WITH STRINGS

In the material that follows, I walk you through the various parts of the conversion specifier.
For a summary, see the sidebar “Conversion Specifier Anatomy.”

CONVERSION SPECIFIER ANATOMY

A basic conversion specifier (as opposed to a full conversion specifier, which may contain a mapping key as
well; see Chapter 4 for more information) consists of the items that follow. Note here that the order is crucial.

¢ The % character. This marks the beginning of the conversion specifier.

e Conversion flags (optional). These may be either -, indicating left alignment; +, indicating that a sign
should precede the converted value; “ ” (a space character), indicating that a space should precede
positive numbers; or 0, indicating that the conversion should be zero-padded.

¢ The minimum field width (optional). The converted string will be at least this wide. If this is an *
(asterisk), the width will be read from the value tuple.

e A. (dot) followed by the precision (optional). If a real number is converted, this many decimals should
be shown. If a string is converted, this number is that maximum field width. If this is an * (asterisk), the
precision will be read from the value tuple.

¢ The conversion type (see Table 3-1).

Simple Conversion

The simple conversion, with only a conversion type, is really easy to use:

>>> 'Price of eggs: $%d' % 42

'Price of eggs: $42'

>>> 'Hexadecimal price of eggs: %x' % 42
'Hexadecimal price of eggs: 2a’

>>> from math import pi

>>> 'Pir %f..0" % pd

'Pi: 3.141593..."

>>> 'Very inexact estimate of pi: %i' % pi
'Very inexact estimate of pi: 3'

>>> 'Using str: %s' % 42L

'Using str: 42'

>>> 'Using repr: %r' % 42L

'Using repr: 42L'

For a list of all conversion types, see Table 3-1.

CHAPTER 3 WORKING WITH STRINGS

Table 3-1. String Formatting Conversion Types

Gonversion Type Meaning

d, i Signed integer decimal

0 Unsigned octal

u Unsigned decimal

X Unsigned hexadecimal (lowercase)

X Unsigned hexadecimal (uppercase)

e Floating point exponential format (lowercase)

E Floating point exponential format (uppercase)

f,F Floating point decimal format

g Same as e if exponent is greater than —4 or less than precision, otherwise
G Same as E if exponent is greater than —4 or less than precision, F otherwise
C Single character (accepts integer or single character string)

T String (converts any Python object using repr)

Width and Precision

A conversion specifier may include a field width and a precision. The width is the minimum
number of characters reserved for a formatted value, while the precision is (for a numeric
conversion) the number of decimals that will be included in the result, or (for a string conversion)
the maximum number of characters the formatted value may have.

These two parameters are supplied as two integer numbers (width first, then precision),
separated by a . (dot). Both are optional, but if you want to supply only the precision, you must
also include the dot:

>>> '%10f" % pi # Field width 10

' 3.141593'

>>> '%10.2f" % pi # Field width 10, precision 2
' 3.14'

>>> '%.2f" % pi # Precision 2

'3.14'

>>> '%.55"' % 'Guido van Rossum'

'Guido’

You can use an * (asterisk) as the width or precision (or both), in which case the number
will be read from the tuple argument:

>>> '%.*s" % (5, 'Guido van Rossum")
"Guido’

57

58

CHAPTER 3 WORKING WITH STRINGS

Signs, Alignment, and Zero-Padding

Before the width and precision numbers, you may put a “flag,” which may be either zero, plus,
minus, or blank. A zero means that the number will be zero-padded:

>>> '%010.2f" % pi
'0000003.14'

It’s important to note here that the leading zero in 010 in the preceding code does not
mean that the width specifier is an octal number, as it would in a normal Python number.
When you use 010 as the width specifier, it means that the width should be 10 and that the
number should be zero-padded, not that the width should be 8:

>>> 010
8

A minus sign (-) left-aligns the value:

>>> '%-10.2f" % pi
'3.14 '

As you can see, any extra space is put on the right-hand side of the number.
Ablank (“ ”) means that a blank should be put in front of positive numbers. This may be
useful for aligning positive and negative numbers:

>>> print ('% 5d' % 10) + '\n' + ('% 5d' % -10)
10
-10

Finally, a plus (+) means that a sign (either plus or minus) should precede both positive
and negative numbers (again, useful for aligning):

>>> print ('%+5d' % 10) + '\n' + ('%+5d' % -10)
+10
-10

In the following example, I use the asterisk width specifier to format a table of fruit prices,
where the user enters the total width of the table. Because this information is supplied by the
user, I can’t hard-code the field widths in my conversion specifiers; by using the asterisk, I can
have the field width read from the converted tuple. The source code is given in Listing 3-1.

Listing 3-1. String Formatting Example

Print a formatted price list with a given width

width = input('Please enter width: ")

CHAPTER 3 WORKING WITH STRINGS
price width = 10
item width = width - price width

header format = '%-*s¥k*s'
format = "%-*skx.2f!

print '=' * width

print header format % (item width, 'Item', price width, 'Price")
print '-' * width

print format % (item width, 'Apples', price width, 0.4)

print format % (item width, 'Pears', price width, 0.5)

print format % (item width, 'Cantaloupes', price width, 1.92)

print format % (item width, 'Dried Apricots (16 o0z.)', price width, 8)
print format % (item width, 'Prunes (4 1lbs.)', price width, 12)

3R 3% 3R 3%

print '=' * width

The following is a sample run of the program:

Please enter width: 35

Item Price
Apples 0.40
Pears 0.50
Cantaloupes 1.92
Dried Apricots (16 oz.) 8.00
Prunes (4 lbs.) 12.00

String Methods

You have already encountered methods in lists. Strings have a much richer set of methods, in
part because strings have “inherited” many of their methods from the string module where
they resided as functions in earlier versions of Python (and where you may still find them, if
you feel the need).

59

60 CHAPTER 3 WORKING WITH STRINGS

BUT STRING ISN'T DEAD

Even though string methods have completely upstaged the string module, the module still includes a few
constants and functions that aren’t available as string methods. The maketrans function is one example and
will be discussed together with the translate method in the material that follows. Table 3-2 shows some
useful constants available from stxing. For a more thorough description of the module, check out Section 4.1
of the Python Library Reference (http://python.org/doc/lib/module-string.html).

Table 3-2. Useful Values from the string Module

Constant Description

string.digits A string containing the digits 0-9

string.letters A string containing all letters (upper- and lowercase)
string.lowercase A string containing all lowercase letters
string.printable A string containing all printable characters
string.punctuation A string containing all punctuation characters
string.uppercase A string containing all uppercase letters

Because there are so many string methods, only some of the most useful ones are described
here. For a full reference, see Appendix B. In the description of the string methods, you will find
references to other, related string methods in this chapter (marked “See also”) or in Appendix B.

find

The find method finds a substring within a larger string. It returns the leftmost index where the
substring is found. If it is not found, -1 is returned:

>>> 'With a moo-moo here, and a moo-moo there'.find('moo")
7

>>> title = "Monty Python's Flying Circus"
>>> title.find('Monty")

0

>>> title.find('Python")

6

>>> title.find('Flying")

15

>>> title.find('Zirquss")

-1

In our first encounter with membership in Chapter 2, we created part of a spam filter by
using the expression '$$$' in subject. We could also have used find (which would also have

CHAPTER 3 WORKING WITH STRINGS

worked prior to Python 2.3, when in could only be used when checking for single character
membership in strings):

>>> subject = "$$$ Get rich now!!! $$$'
>>> subject.find('$$$")
0

Note The string method find does ot return a Boolean value. If find returns 0, as it did here, it means
that it has found the substring, at index zero.

You may also supply a starting point for your search and, optionally, also an ending point:

>>> subject = "$$$ Get rich now!!! $$$'
>>> subject.find('$$$")

0

>>> subject.find('$$$', 1) # Only supplying the start
20

>>> subject.find('!!1")

16

>>> subject.find('!!!", 0, 16) # Supplying start and end
-1

Note that the range specified by the start and stop values (second and third parameter)
includes the first index but not the second. This is common practice in Python.
In Appendix B: rfind, index, rindex, count, startswith, endswith.

join
Averyimportant string method, join is the inverse of split, and is used to join the elements of
a sequence:

>>> seq = [1, 2, 3, 4, 5]
>>> sep = '+’
>>> sep.join(seq) # Trying to join a list of numbers
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: sequence item 0: expected string, int found
>>> seq = ["1', '2", '3', '4", '5']
>>> sep.join(seq) # Joining a list of strings

'1+2+3+4+45'

>>> dirs = "', 'usr', 'bin', 'env'
>>> '/'.join(dirs)

"/usr/bin/env’

>>> print 'C:' + "\\'.join(dirs)
C:\usr\bin\env

61

62

CHAPTER 3 WORKING WITH STRINGS

As you can see, the sequence elements that are to be joined must all be strings. Note how
in the last two examples I make use of a list of directories and format them according to the
conventions of UNIX and DOS/Windows simply by using a different separator (and adding a
drive name in the DOS version).

See also: split.

lower

The lower method returns a lowercase version of the string:

>>> 'Trondheim Hammer Dance'.lower()
"trondheim hammer dance'

This can be useful if you want to write code that is “case-insensitive”’—that is, code that
ignores the difference between uppercase and lowercase letters. For instance, you want to
check whether a user name is found in a list. If your list contains the string 'gumby' and the user
enters his name as 'Gumby ', you won't find it:

>>> if 'Gumby' in ['gumby', 'smith', 'jones']: print 'Found it!'
>>>
The same will of course happen if you have stored 'Gumby' and the user writes 'gumby ",

or even 'GUMBY'. A solution to this is to convert all names to lowercase both when storing and
searching. The code would look something like this:

>>> name = 'Gumby'
>>> names = ['gumby', 'smith', 'jones']
>>> if name.lower() in names: print 'Found it!'

Found it!
>>>

See also: translate.
In Appendix B: islower, capitalize, swapcase, title, istitle, upper, isupper.

replace

The replace method returns a string where all the occurrences of one string have been replaced
by another:

>>> 'This is a test'.replace('is', 'eez')
‘Theez eez a test'

If you have ever used the “search and replace” feature of a word processing program, you
will no doubt see the usefulness of this method.

See also: translate.

In Appendix B: expandtabs.

CHAPTER 3 WORKING WITH STRINGS

split

A very important string method, split is the inverse of join, and is used to split a string into
a sequence:

>>> '142+3+4+5" .split('+")

['1') I2') '3IJ I4') ISI]

>>> '/usr/bin/env'.split('/")

['', 'usr', 'bin', 'env']

>>> 'Using the default'.split()
['Using', 'the', 'default']

Note that if no separator is supplied, the default is to split on all runs of consecutive
whitespace characters (spaces, tabs, newlines, and so on).

See also: join.

In Appendix B: rsplit, splitlines.

strip

The strip method returns a string where whitespace on the left and right (but not internally)
has been stripped (removed):

>>> internal whitespace is kept ".strip()
"internal whitespace is kept'

As with lower, strip can be useful when comparing input to stored values. Let’s return to
the user name example from the section on lower, and let’s say that the user inadvertently
types a space after his name:

>>> names = ['gumby', 'smith', 'jones']
>>> name = 'gumby '
>>> if name in names: print 'Found it!'

>>> if name.strip() in names: print 'Found it!'
Found it!
>>>

You can also specify which characters are to be stripped, by listing them all in a string
parameter:

>>> "FEX GPAM * for * everyone!ll *®k' ctrip(' *1')
'SPAM * for * everyone'

Stripping is only performed at the ends, so the internal asterisks are not removed.
In Appendix B: 1strip, rstrip.

63

64

CHAPTER 3 WORKING WITH STRINGS

translate

Similar to replace, translate replaces parts of a string, but unlike replace, translate only works
with single characters. Its strength lies in that it can perform several replacements simultaneously,
and can do so more efficiently than replace.

There are quite a few rather technical uses for this method (such as translating newline
characters or other platform-dependent special characters), but let’s consider a simpler
(although slightly more silly) example. Let’s say you want to translate a plain English text into
one with a German accent. To do this, you must replace the character “c” with “k,” and “s” with “z.”

Before you can use translate, however, you must make a translation table. This translation
table is a full listing of which characters should be replaced by which. Because this table (which is
actually just a string) has 256 entries, you won’t write it out yourself: You’ll use the function
maketrans from the string module.

The maketrans function takes two arguments: two strings of equal length, indicating that
each character in the first string should be replaced by the character in the same position in the
second string. Got that? In the case of our simple example, the code would look like the following:

>>> from string import maketrans
>>> table = maketrans('cs', 'kz')

WHAT’S IN A TRANSLATION TABLE?

A translation table is a string containing one replacement letter for each of the 256 characters in the ASCII
character set:

>>> table = maketrans('cs', 'kz')
>>> len(table)

256

>>> table[97:123]
"abkdefghijklmnopqrztuvwxyz'

>>> maketrans('', '')[97:123]
"abcdefghijklmnopqrstuvwxyz'

As you can see, I've sliced out the part of the table that corresponds to the lowercase letters. Take a look
at the alphabet in the table and that in the empty translation (which doesn’t change anything). The empty
translation has a normal alphabet, while in the preceding code, the letter “c” has been replaced by “k,” and
“s” has been replaced by “z.”

Once you have this table, you can use it as an argument to the translate method, thereby
translating your string:

>>> '"this is an incredible test'.translate(table)
'thiz iz an inkredible tezt'

CHAPTER 3 WORKING WITH STRINGS

An optional second argument can be supplied to translate, specifying letters that should
be deleted. If you wanted to emulate a really fast-talking German, for instance, you could
delete all the spaces:

>>> 'this is an incredible test'.translate(table, ' ")
'thizizaninkredibletezt'

Tip Sometimes string methods such as Lower won’t work quite the way you want them to—for instance,
if you happen to use a non-English alphabet. Let’s say you want to convert the uppercase Norwegian word
“BOLLEFR@” to its lowercase equivalent:

>>> print "BOLLEFRQ'.lower()
bpllefr(

As you can see, this didn’t really work because Python doesn’t consider “@” a real letter. In this case, you can
use translate to do the translation:

>>> table = maketrans('APA', '®pd')

>>> word = 'KAPES@M'

>>> print word.lower()

kApes@m

>>> print word.translate(table)

KaPESgM

>>> print word.translate(table).lower()
kapesom

See also: replace, lower.

A Quick Summary

In this chapter, you have seen two important ways of working with strings:

String formatting. The modulo operator (%) can be used to splice values into a string that
contains conversion flags, such as %s. You can use this to format values in many ways,
including right or left justification, setting a specific field width and precision, adding a
sign (plus or minus), or left-padding with zeros.

String methods. Strings have a plethora of methods. Some of them are extremely useful
(such as split and join), while others are used less often (such as istitle or capitalize).

65

66

CHAPTER 3 WORKING WITH STRINGS

New Functions in This Chapter

Function Description
string.maketrans(from, to) Makes a translation table for translate
What Now?

Lists, strings, and dictionaries are three of the most important data types in Python. You've
seen lists and strings, so guess what’s next? In the next chapter, you see how dictionaries not
only support indices, but other kinds of keys (such as strings or tuples) as well. Dictionaries
also support a few methods, although not as many as strings.

CHAPTER 4

Dictionaries: When Indices
Won’t Do

You’ve seen that lists are useful when you want to group values into a structure and refer to
each value by number. In this chapter, you learn about a data structure in which you can refer
to each value by name. This type of structure is called a mapping, and the only built-in mapping
type in Python is the dictionary. The values in a dictionary don’t have any particular order but
are stored under a key, which may be either a number, a string, or even a tuple.

But What Are They For?

There are many situations where a dictionary is more appropriate than a list. The name
“dictionary” should give you a clue: an ordinary book is made for reading from start to finish.
Ifyou like, you can quickly open it to any given page. This is a bit like a Python list. Dictionaries,
however (both real ones and their Python equivalent) are constructed so that you can look up
a specific word (key) easily, to find its definition (value). Some arbitrary uses of Python dictio-
naries are as follows:

* Representing the state of a gaming board, with each key being a tuple of coordinates
* Storing file modification times, with file names as keys
* A digital telephone/address book
Let’s say you have a list of people:
>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']

What if you wanted to create a little database where you could store the telephone numbers of
these people—how would you do that? One way would be to make another list. Let’s say you're
only storing their four-digit extensions. Then you would get something like this:

>>> numbers = ['2341', '9102', '3158', '0142', '5551']

67

68

CHAPTER 4 DICTIONARIES: WHEN INDICES WON’'T DO

Note You might wonder why | have used strings to represent the telephone numbers—why not integers?
Consider what would happen to Dee-Dee’s number then:

>>> 0142
98

Not exactly what we wanted, is it? As mentioned briefly in Chapter 1, octal numbers are written with an initial
zero. It is impossible to write decimal numbers like that.

>>> 0912
File "<stdin>", line 1
0912

N

SyntaxError: invalid syntax

The lesson is this: Telephone numbers (and other numbers that may contain leading zeros) should be repre-
sented as strings of digits—not integers.

Once you've created these lists, you can look up Cecil’s telephone number as follows:

>>> numbers[names.index('Cecil")]
3158

It works, but it’s a bit impractical. What you really would want to do is something like the
following:

>>> phonebook|['Cecil']
3158

Guess what? If phonebook is a dictionary, you can do just that.

Dictionary Syntax

Dictionaries are written like this:
phonebook = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}

Dictionaries consist of pairs (called items) of keys and their corresponding values. In the
preceding example, the names are the keys and the telephone numbers are the values. Each
key is separated from its value by a colon (:), the items are separated by commas, and the
whole thing is enclosed in curly braces. An empty dictionary (without any items) is written with
just two curly braces, like this: {}.

Note Keys are unique within a dictionary (and any other kind of mapping), while values may not be.

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

The dict Function

You can use the dict function to construct dictionaries from other mappings (for example,
other dictionaries) or from sequences of (key, value) pairs:

>>> items = [('name', 'Gumby'), ('age', 42)]
>>> d = dict(items)

>>> d

{'age': 42, 'name': 'Gumby'}

>>> d['name']

'Gumby '

It can also be used with keyword arguments, as follows:

>>> d = dict(name="Gumby', age=42)
>>> d
{'age': 42, 'name': 'Gumby'}

Although this is probably the most useful application of dict, you can also use it with a
mapping argument to create a dictionary with the same items as the mapping. (If used without
any arguments, it returns a new empty dictionary, just like other similar functions such as 1ist,
tuple, or str.) If the other mappingis a dictionary (which is, after all, the only built-in mapping
type), you can use the dictionary method copy instead, as described later.

Note The dict function isn’t really a function at all. It is a type, just like 1ist, tuple, and str.

Basic Dictionary Operations

The basic behavior of a dictionary in many ways mirrors that of a sequence: len(d) returns the
number of items (key-value pairs) in d, d[k] returns the value associated with the key k, d[k] = v
associates the value v with the key k, del d[k] deletes the item with key k, and k in d checks
whether there is an item in d that has the key k. Although they share several common character-
istics, there are some important distinctions:

¢ Dictionary keys don’t have to be integers (though they may be). They may be any immu-
table type, such as floating-point (real) numbers, strings, or tuples.

¢ You can assign a value to a key even if that key isn’t in the dictionary to begin with; a new
item will be created. You cannot assign a value to an index outside the list’s range
(without using append or something like that).

69

70 CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

* Theexpressionk in d (where dis a dictionary) looks for a key, not a value. The expression
v in 1, on the other hand (where 1 is alist) looks for a value, not an index. This may seem
a bit inconsistent, but it is actually quite natural when you get used to it. After all, if the
dictionary has the given key, checking the corresponding value is easy.

Tip Checking for key membership in a dictionary is much more efficient than checking for membership in
a list—and the difference is greater the larger the data structures are.

The first point—that the keys may be of any immutable type—is the main strength of
dictionaries, while the second point is important, too. Just look at the difference here:

>>> x =[]
>>> x[42] = 'Foobar'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
IndexError: list assignment index out of range

>>> x = {}
>>> x[42] = 'Foobar'
>>> X

{42: 'Foobar'}

First, I try to assign the string 'Foobar' to position 42 in an empty list—clearly impossible
because that position does not exist. To make this possible, I would have to initialize x with
[None]*43 or something, rather than simply []. The next attempt, however, works perfectly.
Here I assign 'Foobar' to the key 42 of an empty dictionary; no problem! A new item is simply
added to the dictionary and I'm in business.

Listing 4-1 shows the code for the telephone book example. Here is a sample run of the program:

Name: Beth
Phone number (p) or address (a)? p
Beth's phone number is 9102.

Listing 4-1. Dictionary Example
A simple database
A dictionary with person names as keys. Each person is represented as

another dictionary with the keys 'phone' and 'addr' referring to their phone
number and address, respectively.

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

people = {

"Alice': {
"phone’: '2341',
'addr': 'Foo drive 23'

I3
'Beth': {
"phone’: '9102',
'addr': 'Bar street 42°'
I3
"Cecil': {
"phone’: '3158",
'addr': 'Baz avenue 90'
}

}

Descriptive labels for the phone number and address. These will be used
when printing the output.
labels = {

"phone’: 'phone number',

'addr': 'address'’

name = raw_input('Name: ')

Are we looking for a phone number or an address?
request = raw_input('Phone number (p) or address (a)? ')

Use the correct key:

if request == 'p': key

if request == 'a': key

"phone’
'addr’

Only try to print information if the name is a valid key in our dictionary:
if name in people: print "%s's %s is %s." % (name, labels[key], people[name][key])

String Formatting with Dictionaries

In Chapter 3, you saw how you could use string formatting to format all the values in a tuple.
If you use a dictionary (with only strings as keys) instead of a tuple, you can make the string
formatting even snazzier. After the % character in each conversion specifier, you add a key
(enclosed in parentheses), which is followed by the other specifier elements:

7

72

CHAPTER 4 DICTIONARIES: WHEN INDICES WON’'T DO

>>> phonebook

{'Beth': '9102', 'Alice': '2341', 'Cecil': '3258'}
>>> "Cecil's phone number is %(Cecil)s." % phonebook
"Cecil's phone number is 3258."

Except for the added string key, the conversion specifiers work as before. When using
dictionaries like this, you may have any number of conversion specifiers, as long as all the
given keys are found in the dictionary. This sort of string formatting can be very useful in
template systems (in this case using HTML):

>>> template = '''<html>
<heady><titles>k(title)s</titles></head>
<body>
<h1>%(title)s</h1>
<p>%(text)s</p>
</body>"""
>>> data = {'title': 'My Home Page', 'text': 'Welcome to my home page!'}
>>> print template % data
<html>
<head><title>My Home Page</title></head>
<body>
<h1>My Home Page</h1>
<p>Welcome to my home page!</p>
</body>

Note The string.Template class (mentioned in Chapter 3) is also quite useful for this kind of application.

Dictionary Methods

Just like the other built-in types, dictionaries have methods. While these methods can be very
useful, you probably will not need them as often as the list and string methods. You might want
to skim this section first to get a picture of which methods are available, and then come back
later if you n