THE EXPERT'S VOICE® IN OPEN SOURCE

Beginning

Python

From Novice to Professional

Miaster Pytivon key features with this comprelrensive guide o ome
af thee vearld's wmost popuilar open sonrce prograraiRg anguages,

Magnus Lie Hetland

Apress:

Beginning Python

From Novice to Professional

Magnus Lie Hetland

Apress-

Beginning Python: From Novice to Professional
Copyright © 2005 by Magnus Lie Hetland

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-519-X
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Editor: Matt Moodie

Technical Reviewer: Jeremy Jones

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Beckie Stones

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Linda Marousek

Compositor: Susan Glinert Stevens

Proofreader: Liz Welch

Indexer: Michael Brinkman

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

For Ranveig

Contents at a Glance

AbOUL the AUTNOT Xxiii
About the Technical ReVIEWET i i e i i ie e XXV
51T XXVii
IMtrOdUCHION ... e e XXiX
CHAPTER 1 Instant Hacking: The Basicscoovviiiiiiinnn.. 1
CHAPTER 2 Listsand Tuples ...t e 31
CHAPTER3 Workingwith Stringsot 53
CHAPTER 4 Dictionaries: When IndicesWon’tDo 67
CHAPTER 5 Conditionals, Loops, and Some Other Statements 81
CHAPTER6 Abstraction 109
CHAPTER7 More Abstraction ...t 139
CHAPTER 8 EXCEPtioNS ...t 159
CHAPTER 9 Magic Methods, Properties, and lterators 173
CHAPTER 10 BatteriesIncluded ..., 203
CHAPTER 11 Filesand Stuff 255
CHAPTER 12 Graphical User Interfacesccviiiiiininnt. 269
CHAPTER 13 Database Support ...t 285
CHAPTER 14 Network Programmingccoiiiiiiiiiininninns. 297
CHAPTER 15 PythonandtheWeb it 313
CHAPTER 16 Testing, 1-2-3o e 341
CHAPTER 17 ExtendingPython............., 357
CHAPTER 18 Packaging Your Programsccoiviiiiininnnnnns. 373
CHAPTER 19 Playful Programmingcciiiiiiiiiii i, 381
CHAPTER 20 Project 1:Instant Markupccoiiiiiiinint. 391
CHAPTER 21 Project 2: Painting a Pretty Picture 411

CHAPTER 22 Project 3: XML for All Occasionsccovvevnnns. 421

CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29
APPENDIX A
APPENDIX B
APPENDIX C

Project4:Inthe Newscoiiiii it
Project 5: AVirtual TeaPartyccviiii.
Project 6: Remote Editing withCGI
Project 7: Your Own BulletinBoard
Project 8: File Sharing with XML-RPC
Project 9: File Sharing Il—Now with GUI'
Project 10: Do-It-Yourself Arcade Game
The ShortVersion ...t
Python Referencec.oiiiiiiiiiii i
Online RESOUICES\

Contents

AbOUL the AUTNOT Xxiii
About the Technical ReVIEWET i i e i i ie e XXV
51T XXVii
IMtrOdUCHION ... e e XXix
CHAPTER 1 Instant Hacking: TheBasics 1
Installing Python ... o i 1

WINAOWS . ..o e 1

Linuxand UNDX . ..o e 3

Macintosh ... e 6

Other Distributions 6

Keeping InTouchandUptoDate...................coieintt 8

The Interactive Interpreter ... i 8

Algo. .. What? ... e 9

Numbers and EXpressionsccoviieiiiiiiiiiieeninnanns 10

Large Integers.ooo i e e 12

Hexadecimalsand Octals................ccoiiiiii it 13

Variables ... i 13

Statements ... e e 14

Getting Input fromthe Userc it 15

FUNCHIONS . ..o 16

MOdUIES ... 17

cmath and Complex Numbers. ...t 18

Backtothe _ _future_ _ i 19

Saving and Executing Your Programso 19

Running Your Python Scripts from a Command Prompt 20

Making Your Scripts Behave Like Normal Programs 21

COMMENES . . ot i i e e e 22

vii

viii CONTENTS

CHAPTER 2

CHAPTER 3

SHNGS .« e 23
Single-Quoted Strings and Escaping Quotes................... 23
Concatenating Stringscoovii i e 24
String Representations, strandrepr...................o.ut. 25
input vs. raw_input. ... e 26
Long Strings, Raw Strings, and Unicode 26

AQUICK SUMMArY i e i e 29
New Functionsin ThisChapter.............................. 30
What NOW? .. e e 30

Listsand Tuples L. 31

Common Sequence Operationscoveeiiieniiieeennnn.. 32
INABXING . ..o 33
SlCING vttt e 34
Adding SEQUENCESt ii e e 37
Multiplication. e 37
Membership ... e 39
Length, Minimum, and Maximum............................ 40

Lists: Python’s Workhorse ... 40
ThelistFunction. ... e M
Basic List Operations ... 41
ListMethods ... e 43

Tuples: Immutable SEQUENCESot i 49
Thetuple Functiont 50
Basic Tuple Operationsccooviiiiiiiiniinn.s. 50
SoWhat'sthePoint?co i 51

AQUICK SUMMArY i e i e 51
New Functionsin ThisChapter.............................. 52
What NOW? ... e 52

Working with Strings 53

Basic String Operationsc.covriiiiiiii i e 53

String Formatting: The Short VersionL. 53

String Formatting: The Long Versionccoovvvvinn..t. 55
Simple CONVEISION . ..ottt e i i ci e 56
Widthand Precision ... 57

Signs, Alignment, and Zero-Padding 58

CHAPTER 4

CONTENTS
StringMethods ... 59
fiNd. .o e 60
JOIN L e e e 61
T 62
TEPIACEt e 62
SPIL. . e 63
]] 63
franslate. 64
AQuick SUMMArY ... e 65
New Functionsin ThisChapter.............................. 66
What NOW?o e i e 66
Dictionaries: When Indices Won’tDo 67
ButWhat Are They FOr? ... i 67
Dictionary Syntax ... e 68
ThedictFunction 69
Basic Dictionary Operationsccoiii i 69
String Formatting with Dictionaries 71
Dictionary Methods e 72
Ol . et 72
0] 73
frOMKEYS . ot e 74
0 P 74
NAS_KBY ..ottt 75
itemsand iteritems. ... 75
keys and iterkeySovvr i e 76
0 76
POPIBM .. e 76
setdefault. ... 76
1] 0 1 77
valuesanditervalues ... 77
AQUiCK SUMMArY e 79
New Functionsin ThisChapter.............................. 79

What NOW? .. e 79

ix

CONTENTS

CHAPTER 5

CHAPTER 6

Conditionals, Loops, and Some Other Statements 81
More About printand import 81
PrintingwithCommasccoiiiii it 81
Importing Something As Something Else...................... 82
AsSignment MagiCooiiiii i 83
Sequence Unpackingooveie it 83
Chained Assignments.cooeiii i 84
Augmented ASSIgNMENtS. 84
Blocks: The Joy of Indentationccoiiiiiniat. 85
Conditions and Conditional Statements 86
So That’s What Those Boolean Values Are For................. 86
Conditional Execution and the if Statement.................... 87
else Clausesooiiiii i e e 87
Blf ClaUSES . ..o oot e 88
NestingBlocks ... 88
More Complex Conditions ..., 89
ASSEBIIONSot e 93
0] 1 93
While LOOPS . . v vt e e i e 94
(0 0] 1 95
[terating Over Dictionaries..........covviiiii i nnnnns. 96
Some lteration Utilities.t 96
Breaking Out of LOOPSo v v 98
else Clauses iN LOOPS. .« v vvv v i it ie i ie e 100
List Comprehension—Slightly Loopycccovviieiott. 101
And ThreefortheRoadccc it 102
Nothing Happened!.............cc i 102
Deletingwithdel............cciiiiii it 103
Executing and Evaluating Strings with exec and eval 104
AQUICK SUMMArY ... e 107
New Functionsin ThisChapter............................. 108
What NOW? ... e i e 108
Abstractionl 109
LazinessIsaVirtue ..o 109
Abstractionand Structure 110
Creating Your Own Functionsccoiviiiiiinnnnn.. 11
Documenting Functions. ... 112

Functions That Aren’t Really Functions 112

CHAPTER 7

CONTENTS
The Magic of Parameters ...t 113
Where Do the Values Come From?.......................... 113
CanlChange aParameter?............covviiiiiiiniin.. 114
Keyword Parameters and Defaults.......................... 119
Collecting Parameterscovvieiieiiiiinnnnns 121
SCOPING o vttt e e e 126
Rebinding Global Variablesooiill 127
RECUISION e e 129
Two Classics: Factorial and Power.......................... 130
Another Classic: Binary Search............................. 131
Throwing Functions Around ... 133
= 0 134
11 134
FBAUCE ..ottt e e e 135
APPIY. oo e e 137
AQUiCK SUMMANY i e e i 137
New Functionsin ThisChapter....................covitt 138
What NOW? ..o e e e 138
More Abstractionl 139
The Magic of Objects ... e 139
Polymorphism 140
Encapsulationcc i 143
Inheritance. ... e 146
Classes and TYPES . ..vvrei et i i it i i 147
What Is a Class, Exactly?. ..., 147
Making Your Own Classes...........cccoiieiiiiiinninnnnn 148
Attributes, Functions, and Methods 149
Throwing Methods Around.t 150
The Class Namespaceccovvviiviie i iiennnnn. 151
Specifying a Superclass. 153
Investigating Inheritance i, 153
Multiple SUperclassesc.coviii it 154
Interfaces and Introspectionl 155
Some Thoughts on Object-Oriented Design 156
AQUiCK SUMMANY i e e i 157
New Functionsin ThisChapter............................. 158

WAt NOW? e e 158

Xi

Xii

CONTENTS

CHAPTER 8

CHAPTER 9

Exceptions 159
What Is an Exception? ... 159
Making Things GoWrong ... YourWayccovvvvnnn. 160
The raise Statement.............. ..o, 160
Custom Exception Classes.covvveiiiiiiiiinenn.. 162
Catching EXceptionsooviiiii i 162
Look, Ma, No Arguments! 163
More Than One except Clauseccooviiiiiiiennann.. 164
Catching Two Exceptions with One Block 164
Catchingthe Object 165
ARealCatchall i 165
When AlISWell ... e e 166
AndFinallyo 168
Exceptionsand Functions il 168
The Zen of EXCEptionsoeiii i i 169
AQUiCKk SUMMANYt e e e 171
New Functionsin ThisChapter............................. 171
What NOw?o 171
Magic Methods, Properties, and Iterators 173
Before We Begin 173
CONSIIUCIOrS ..ttt i i e e 174
Overriding the Constructor..............cooviiii et 175
Calling the Unbound Superclass Constructor 177
Using the super Function............... ...t 178
M ACCESS .« oottt ettt e e 179
The Basic Sequence and Mapping Protocol 180
Subclassing list, dict,and str 182
MOre MagiCcovviiii i e e e e 184
PrOPBIIES .ttt e e 184
The property Functiono 185
__Qetattr__, __setattr _,andFriends...................... 188
Reratorso e 189
The lterator Protocol. ... 190
Making Sequences from Iterators..................coviii.t 191
GeNEratOrS . ..ottt 191
Makinga Generatorc.ooviiiiiii 191
ARecursive Generatorciii i 192
GeneratorsinGeneral.ccoiiiiiii i 194

Avoiding Generators.oii i 194

CHAPTER 10

CONTENTS
The Eight QUEENSot e e e i e 195
Backtracking. ... 196
The Problemo e e 196
State Representation i 196
Finding Conflicts.............coo i 197
The Base Case ...ouvvire ittt it i e ieanen, 197
The Recursive Caseovvieiii it i i eaeenn, 198
Wrapping R Up ..o 200
AQUiCK SUMMArY ... 201
New Functionsin ThisChapter.................... 202
What NOW? ... 202
BatteriesIncludedL. 203
MOdUIES ..ot 203
Modules Are Programs.coiiiiii i 203
Modules Are Used to Define Thingst 205
Making Your Modules Available 207
PaCcKages e e 210
ExploringModuleso 211
What'sinaModule?. ...t 211
GettingHelpwithhelp ...l 212
Documentation ... 213
Usethe SOUMCEcovi i 214
The Standard Library: A Few Favorites 215
S ettt e 215
[0 216
fileinputo e 219
Sets, Heaps, and Deques.ccoviiiiiiiiiinnn, 221
M L 226
FANAOM. ..t e e e 228
SheIVE. ..o e 231
D ettt e e e 235
Other Interesting Standard Modules. 251
AQUiCK SUMMANY i e e 252
New Functionsin ThisChapter....................coiitt, 253

What NOW? . et 253

Xiii

Xiv CONTENTS

CHAPTER 11

CHAPTER 12

Filesand Stuff ...l 255
Opening Filesovve e 255
The Mode Argument. ..ot 256
Buffering ... e 257
The Basic FileMethodsccoiiiiiiiii it 257
Readingand Writing. ... 258
Reading and Writing Lines. ..ot 260
Closing Your Files.oovvnvi e 261
[terating Over File Contents ..., 263
Doing ltBytebyByteccoiviii 264
OneLineataTime.......ccviriiiiiii i 264
Reading Everything. ... 265
Lazy Line lteration with fileinput and xreadlines............... 265
The New Kids on the Block: File Iterators 266
AQUICK SUMMArY e e 267
New Functionsin ThisChapter............................. 268
What NOW? ... e e 268
Graphical User Interfaces 269
An Example GUI Application ...t 269
APlethoraof Platforms ... 270
Downloading and Installing wxPython 271
Getting Started ...t e 272
Creating Windows and Componentscovvieiinivinninnnns 273
Labelsand Positions e 274
More IntelligentLayout.t 276
EventHandlingccooiiiii e 278
The Finished Program ... 278
ButPdRatherUse e 280
Using TKINter. ..o e i 281
Using Jythonand Swing ...t 282
Using Something EIse.oovvii i 283
AQUiCK SUMMArY ... i 283

What NOW? .. e 283

CHAPTER 13

CHAPTER 14

CHAPTER 15

CONTENTS

Database Support ... 285
The Python DB APl i e 285
Global Variables ... 286
EXCEPLiONSot e e 287
Connections and CUrSOrS.vvvt v i i ieanens 287
TYPES .ttt e e 289
Downloading and Installing pysqliteccoiiiiitt. 290
Getting Started ... 291
An Example Database Applicationcii.L 291
Creating and Populating Tables 292
Searching and Dealing with Results......................... 294
AQUICK SUMMArY e e 295
New Functionsin ThisChapter............................. 295
What NOW? ... e e 295
Network Programming 297
A Handful of Networking Modulescccvvvvvninnn.. 297
SOCKEL. ..ottt 298
urlliband urllib2 300
Other Modules.covriiii i 301
SocketServerand Friendsccoi i 302
More Information o i 303
Multiple ConNeCtioNSc.vvriii it i 303
Forking and Threading with SocketServers................... 305
Asynchronous I/0 with selectand poll 305
TWIStEd o 308
Downloading and Installing Twisted. 308
Writing a Twisted Servert 309
AQUiICK SUMMArY ... e 311
New Functionsin ThisChapter................cooviiini.t, 312
What NOW? ... e i e 312
PythonandtheWeb 313
SCreen SCrapingvvire i e i e i 313
Tidy and XHTML Parsingcooiiiiiiiiii i 314

Beautiful Soup. ... 319

Xv

Xvi CONTENTS

CHAPTER 16

Dynamic Web Pages with CGIccoiiitL. 321
Step 1. Preparing the Web Server 321
Step 2. Adding the Pound Bang Line 321
Step 3. Setting the File Permissions......................... 322
CGI Security RiSKS.o v vt 323
ASimple CGIScript ..o 323
Debugging withcgitb. ... 324
UsingthecgiModule ...t 325
ASImple FOrm. ..o i 327
One StepUp:mod_python ... 328
Installing ... 329
CGIHandler.........coiiii et 330
PP . 331
The Publisher ... 332
Web Services: Scraping DoneRightcoiiiat 335
RS 335
XML-RPC 337
AQUiCK SUMMArY ... i 339
New Functionsin ThisChapter............................. 339
What NOw?o 339
Testing, 1-2-3 ... 341
TestFirst, Code Latercvieiiiii e 341
Precise Requirement Specification.......................... 342
PlanningforChange. ..., 343
The 1-2-3 (and 4) of Testing.covvvv i 344
ToolsforTesting ..o i 344
dOCteSt. ...t e 344
UNIEESE. Lt e e 347
Beyond Unit Testsovveiiii i i 350
PyCheckerand PyLint ...t 351
Profiling ... oo e e 353
AQUiCK SUMMANY i e e i 354
New Functionsin ThisChapter............................. 355

WAt NOW? e e 355

CHAPTER 17

CHAPTER 18

CHAPTER 19

CONTENTS
ExtendingPython 357
The Really Easy Way: Jython and IronPython 358
Writing C EXIENSIONS v oot e e 360
ASwigof...SWIG. ... 361
Hacking ltonYourOwn............coo i, 365
AQUICK SUMMArY e e 370
New Functionsin ThisChapter............................. 371
What NOW? ... e i 371
Packaging Your Programs 373
Distutils BaSICSovvvii i e 373
Basic Installation ... 374
Wrapping Things Up ..o ove i i 376
Compiling EXTENSIONS ... ovvv i e 378
Creating Executable Programs with py2exeovv.n. 379
AQUiCK SUMMANY i e e i 380
New Functionsin ThisChapter....................covitt 380
What NOW? ..o e e e e 380
Playful Programming 381
Why Playful? ... e e 381
The Ju-Jitsu of Programming, 381
Prototyping ... e 382
Configurationccoiiii i e 383
Extracting Constants. ..., 383
Configuration Filescovviii e 384
LOgOING e 385
If You Can'tBe Botheredccoiiiiiiiiiiiiiinnn.. 387
Project Structure ... 388
AQUiCK SUMMANY i e e i 388

What NOW? .. e 389

Xvii

xvili

CONTENTS
CHAPTER 20 Project1:InstantMarkup 391
What's the Problem? ... 391
SpecificGoals ..ot 392
USEful TOOIS ...t e e 392
Preparationsccoiiiiiiii e e 392
FirstImplementation............... ... i 394
Adding Some Markup. ... 395
Second Implementationc i 396
Handlers. e e 397
A Handler Superclass...........coviiiiii i 398
RUIBS ..o e 399
ARUle SUPEICIASS. . .. v v i e 400
Fiers. ..o e e 401
The Parser.o e e e 401
Constructing the Rules and Filters, 402
Putting It All Together. ...t 403
Further Explorationcc i e 408
What NOw?o 409
CHAPTER 21 Project 2: Painting a Pretty Picture 411
What's the Problem? i 411
SpecificGoals ..o 412
Useful TOOIS ... e 412
How Does EWork? i 412
Preparations ... e 412
FirstImplementation............... ... i 413
Drawing with ReportLabot 413
Constructing Some PolyLinesccvieiina... 415
The Prototype ... v e e e 416
Second Implementation ...t 417
GettingtheDatacoo i 47
Using the LinePlot Class.cov v iieinn 418
Further Exploration ...t 420

What NOW? .. e 420

CONTENTS
CHAPTER 22 Project 3: XML for All Occasions 421
What's the Problem? ... 421

SpecificGoals ..ot 422

USEful TOOIS ...t e e 422

Preparationsccoiiiiiiii e e 423
FirstImplementation............... ... i 424

Creating a Simple ContentHandler.......................... 425

Creating HTML Pages.ovieiiii i i 428

Second Implementation ...t 430

A Dispatcher Mix-InClassccoviiiiiiiinnn.... 430

Factoring Out the Header, Footer, and Default Handling 432

Support for Directories.ovv i 432

The EventHandlers. ... 433

Further Explorationcc i e 437

What NOw?o 437

CHAPTER 23 Project4:IntheNews 439
What's the Problem? i 439

SpecificGoals ..o 440

Useful TOOIS ... e 440

Preparationscciiiiiiiii e 440

First Implementation..............coo i aM

Second Implementation ... 444

Further Exploration ...t 452

What NOW? e e 453

CHAPTER 24 Project5:AVirtualTeaParty 455
What's the Problem? ... 455

Specific Goalsc.v v 455

USEful TOOIS ...t e e 456

What'sltFor? ... e 456

Preparations ...t e e 456

First Implementation..............cco i 457

The ChatServer Class.covviiiiiii i 457

The ChatSession Class.c.ovveiiiiiiiii i, 459

Puttinglt Together oot 461

Xix

XX

CONTENTS

CHAPTER 25

CHAPTER 26

Second Implementationc i 463
Basic Command Interpretation............................. 463
ROOMS . e e 464
Login and Logout RoOmSovvii i 465
The Main ChatRoomccoiiiii e 466
The NEeW Serveroieiii i it 466

Further Exploration i 472
What NOW? ... e e 472

Project 6: Remote Editing withCGI 473

What's the Problem? i 473
SpecificGoals ..o 473

USeful TOOIS ..ot e i 474

Preparationsciiiiiiiiii e e 474

First Implementation..............coo i 474

Second Implementationc i 476
index.html . ..o e 476
T] oo 476
SAVE. OOl .+ o vttt e e 478
Runningthe Editorccoo i 479

Further Exploration i 481
What NOW? ... e e 481

Project 7: Your Own BulletinBoard 483

What's the Problem? i 483
Specific Goalsc.v v 483

USeful TOOIS ..ottt e e i 484

Preparations ... e 484

FirstImplementation............... ... i 486

Second Implementationc i 489
012 11§ o o | 490
112 o 492
T o 493
T2 1= o 494
Trying ROUL. ..ot 496

Further Explorationcc i e 498

WAt NOW? e e 498

CHAPTER 27

CHAPTER 28

CHAPTER 29

CONTENTS
Project 8: File Sharing with XML-RPC 499
What's the Problem? ... 499
SpecificGoals ..ot 500
USEful TOOIS ...t e e 501
Preparationsccoiiiiiiii e e 501
FirstImplementation............... ... i 501
Second Implementationc i 509
The ClientInterfacecccoiiiiiiiiiii .. 509
The Exceptions e 510
Validating FileNames. ... 510
Trying Out the Second Implementation 511
Further Exploration ...t 516
What NOW? e e 516
Project 9: File Sharing ll—Now withGUI! 517
What's the Problem?o 517
SpecificGoals ..o 517
USEful TOOIS ..ot e e 517
Preparations ... e 518
FirstImplementation............... ... i 518
Second Implementation ...t 521
Further Exploration i 525
What NOw?o 525
Project 10: Do-It-Yourself Arcade Game 527
What's the Problem? i 527
SpecificGoals ..o 528
USeful TOOIS ..ot e i 528
PYOAME ettt e 528
pygame.localS.ot e e 529
pygame.display. ... e 529
pygame.font 529
PYOAME.SPIItE . . o et e 530
PYOAME.IMOUSE . v e vte e et vt e et vt aeeieeaneennennens 530
pygame.event e 530

PYOAMEAMAGE v vttt it e e e i i i 530

XXi

XXii

CONTENTS

APPENDIX A

APPENDIX B

APPENDIX C

Preparations ... e 530
FirstImplementation............... ... i i 531
Second Implementation ... 535
Further Exploration i 545

What NOW? ... 546
The ShortVersion .. 547
ThE BaSICS ..ottt e e e 547
FUNCLIONS ..o e 549
Objectsand Stuff 550
Some LooSeENds ..o 554
Python Reference .. 557
EXPreSSIONS ..o e e 557
Statements ... 566

Simple Statements..............coi i 566

Compound Statements.cciii i 569
OnlineResourcescooiiiiiiiiiiinn.. 571
Python Distributions ... 571
Python Documentationo 572
Useful Toolkits and Modulesccoviiiiiiiiienn... 572
Newsgroups and Mailing Listsccciiiiiiii .. 573
... 575

About the Author

MAGNUS LIE HETLAND is an associate professor of algorithms at the
Norwegian University of Science and Technology, NTNU. Even though
he loves learning new programming languages—even quite obscure
ones—Magnus has been a devoted Python fan and an active member
of the Python community for many years, and is the author of the
popular online tutorials “Instant Python” and “Instant Hacking.” His
publications include the forerunner to this book, Practical Python
(Apress, 2002), as well as several scientific papers. When he isn’t busy
staring at a computer screen, he may be found reading (even while bicycling), acting (in a local
theater group), or gaming (mostly roleplaying games).

XXiii

About the
Technical Reviewer

JEREMY JONES is currently a software quality assurance engineer at
The Weather Channel in Atlanta, GA, where he spends the majority of
his time writing Python applications that test other applications. He
began using Python about five years ago after a lengthy and painful
battle with another (unnamed) programming language. He lives in the
suburbs of Atlanta with his wife, Debra, and two children, Zane and
Justus. Between changing diapers, giving baths, and pulling the children
around the neighborhood in a wagon, he finds time to write articles for

DevX and O’Reilly’s ONLamp, and to maintain his open source software projects, Munkware
(http://munkware.sourceforge.net) and ediplex (http://forge.novell.com/modules/xfmod/

project/?ediplex).

XXV

Preface

A few years ago, Jason Gilmore approached me about writing a book for Apress. He had read
my online Python tutorials and wanted me to write a book in a similar style. I was flattered,
excited, and just a little bit nervous. The one thing that worried me the most was how much
time it would take, and how much it would interfere with my studies (I was a PhD student at the
time). It turned out to be quite an undertaking, and it took me a lot longer to finish than I had
expected. Luckily, it didn’t interfere too much with my school work, and I managed to get my
degree without any delays.

Lastyear, Jason contacted me again. Apress wanted an expanded and revised version of my
book. Was I interested? At the time I was busy settling into a new position as associate professor,
while spending all my spare time portraying Peer Gynt, so again time became the major issue.
Eventually (after things had settled down a bit, and I had a bit more time to spare), I agreed to
do the book, and this (as I'm sure you've gathered) is the result. Most of the material is taken
from the first version of the book, Practical Python (Apress, 2002). The existing material has
been completely revised, based on recent changes in the Python language, and several new
chapters have been added. Some of the old material has also been redistributed to accommodate
the new structure. I've received a lot of positive feedback from readers about the first version—
I hope I've been able to keep what people liked and to add more of the same.

Without the persistent help and encouragement from several people, this book would never
have been written. My heartfelt thanks go out to all of them. In particular, I would like to thank
the team that has worked directly with me in the process of writing the book: Jason Gilmore, for
getting the project off the ground and steering it in the right direction; Beckie Stones, for keeping
everything together; Jeremy Jones and Matt Moodie, for their technical comments and insights;
and Linda Marousek, for being so patient with me. I'm also grateful to the rest of the team, for
making the process as smooth as it has been. But this book wouldn’t have been what it is without
several people who worked with me on the previous version: I'd like to thank Jason Gilmore and
Alex Martelli, for their excellent technical editing Jason on the entire book, and Alex on the first
half) and for going above and beyond the call of duty in dispensing advice and suggestions;
Erin Mulligan and Tory McLearn, for holding my hand through the process and for nudging me
along when that was needed; Nancy Rapoport, for her help polishing my prose; and Grace Wong,
for providing answers when no one else could. Pete Shinners gave me several helpful suggestions
on the game in Project 10, for which I am very grateful. My morale has also been heavily boosted
by several encouraging emails from satisfied readers: Thanks! Finally, I would like to thank my
family and friends, and my girlfriend Ranveig, for putting up with me while I was writing this book.

XXvii

Introduction

A C program is like a fast dance on a newly waxed dance floor by people carrying razors.

—Waldi Ravens
C++: Hard to learn and built to stay that way.
—Anonymous
Java is, in many ways, C++——.
—DMichael Feldman

And now for something completely different . . .
—Monty Python’s Flying Circus

I'Ve started this introduction with a few quotes to set the tone for the book—which is rather
informal. In the hope of making it an easy read, I've tried to approach the topic of Python
programming with a healthy dose of humor, and true to the traditions of the Python community,
much of this humor is related to Monty Python sketches. As a consequence, some of my examples
may seem a bit silly; hope you will bear with me. (And, yes, the name Python is derived from
Monty Python, not from snakes belonging to the family Pythonidae.)

In this introduction, I give you a quick look at what Python is, why you should use it, who
uses it, who this book’s intended audience is, and how the book is organized.

So, what is Python, and why should you use it? To quote an official blurb (available from
http://www.python.org/doc/essays/blurb.html), it is “an interpreted, object-oriented, high-
level programming language with dynamic semantics.” Many of these terms will become clear
as you read this book, but the gist of it is that Python is a programming language that knows
how to stay out of your way when you write your programs. It enables you to implement the
functionality you want without any hassle, and lets you write programs that are clear and read-
able (much more so than programs in most other currently popular programming languages).

Even though Python might not be as fast as compiled languages such as C or C++, what you
save in programming time will probably make Python worth using; in most programs the speed
difference won’t be noticeable anyway. If you are a C programmer, you can easily implement
the critical parts of your program in C at a later date, and have them interoperate with the
Python parts. If you haven’t done any programming before (and perhaps are a bit confused by
my references to C and C++), Python’s combination of simplicity and power make it an ideal
choice as a place to start.

XXix

XXX

INTRODUCTION

So, who uses Python? Since Guido van Rossum created the language in the early 1990s, its
following has grown steadily, and interest has increased markedly in the last few years. Python
is used extensively for system administration tasks (it is, for example, a vital component of several
Linux distributions), but it is also used to teach programming to complete beginners. NASA uses
Python for several of its software systems, and has adopted it as the standard scripting language
for its Integrated Planning System; Industrial Light & Magic uses Python in its production of
special effects for large-budget feature films; Yahoo! uses it (among other things) to manage its
discussion groups; and Google has used it to implement many components of its Web crawler
and search engine. Python is being used in such diverse areas as computer games and bioinfor-
matics. Soon one might as well ask, who isn’t using it?

This book is for those of you who want to learn how to program in Python. It is intended to
suit a wide audience, from neophyte programmer to advanced computer wiz. If you have never
programmed before, you should start by reading Chapter 1 and continue until you find that
things get too advanced for you (if, indeed, they do). Then you should start practicing, and write
some programs of your own. When the time is right, you can return to the book and proceed
with the more intricate stuff.

If you already know how to program, then some of the introductory material might not be
new to you (although there will probably be some surprising details here and there). You could
skim through the early chapters to get an idea of how Python works, or perhaps read through
Appendix A, “The Short Version,” which is based on my online Python tutorial “Instant Python.”
Itwill get you up to speed on the most important Python concepts. After getting the big picture,
you could jump straight to Chapter 10 (which describes the Python standard libraries).

The second half of the book consists of ten programming projects, which show off various
capabilities of the Python language. These projects should be of interest to beginner and expert
alike. Although some of the material in the later projects may be a bit difficult for an inexperi-
enced programmer, following the projects in order (after reading the material in the first part of
the book) should be possible.

The projects touch upon a wide range of topics, most of which will be very useful to you
when writing programs of your own. You will learn how to do things that may seem completely
out of reach to you at this point, such as creating a chat server, a peer-to-peer file sharing system, or
a full-fledged graphical computer game. Although much of the material may seem hard at first
glance, I think you will be surprised by how easy most of it really is. If you’d like to download
the source code, it’s available from http://www.apress.com.

Well, that’s it. I always find long introductions boring myself, so I'll let you continue with
your Pythoneering, either in Chapter 1 or in Appendix A. Good luck, and happy hacking.

CHAPTER 1

Instant Hacking: The Basics

It’s time to start hacking.! In this chapter, you learn how to take control of your computer by
speaking a language it understands: Python. Nothing here is particularly difficult, so if you
know the basics of how your computer works, you should be able to follow the examples and
try them out yourself. I'll go through the basics, starting with the excruciatingly simple, but
because Python is such a powerful language, you'll soon be able to do pretty advanced things.

First, I show you how to get the software you need. Then I tell you a bit about algorithms
and their main components, expressions, and statements. Throughout these sections, there
are numerous small examples (most of them using only simple arithmetic) that you can try out
in the Python interactive interpreter (see the section “The Interactive Interpreter,” later in this
chapter). You learn about variables, functions, and modules, and after handling these topics,
I show you how to write and run larger programs. Finally, I deal with strings, an important
aspect of almost any Python program.

Installing Python

Before you can start programming, you need some new software. What follows is a short
description of how to download and install Python. If you want to jump into the installation
process without detailed guidance, you could simply visit http://www.python.org/download to
get the most recent version of Python.

Windows

To install Python on a Windows machine, follow these steps:

1. Open a Web browser and go to http://www.python.org.

2. Click the “Download” link.

1. “Hacking” is not the same as “cracking,” which is a term describing computer crime. The two are often
confused. “Hacking” basically means having fun while programming. For more information, see Eric
Raymond’s article “How to Become a Hacker” at http://www.catb.org/~esr/faqs/hacker-howto.html.

CHAPTER 1 INSTANT HACKING: THE BASICS

3. You should see several links here, with names such as “Python 2.4” and “Python 2.4
Windows installer”. Click the “Windows installer” link—it should give you the installer
file directly. Go to step 5. If you can't find such a link, click the link with the highest
version among those with names like “Python 2.4.” Chances are that this link will be
found early on the page. For Python 2.4, you could simply go to the URL http://www.
python.org/2.4.

4, Follow the instructions for Windows users. This will entail downloading a file called
python-2.4.msi (or something similar), where 2.4 should be the version number of the
newest release.

5. Store the Windows Installer file somewhere on your computer, for example,
C:\download\python-2.4.msi. (Just create a directory where you can find it later.)

6. Run the downloaded file by double-clicking it in Windows Explorer. This brings up the
Python install wizard, which is really easy to use. Just accept the default settings, wait
until the install is finished, and you’re ready to roll!

Note Python for Microsoft Windows is distributed as a Windows Installer file, and requires that your
Windows version supports Windows Installer 2.0 (or later). If you don’t have Windows Installer, it can be
downloaded freely for Windows 95, 98, ME, NT 4.0, and 2000. Windows XP already has Windows Installer,
and many older machines will, too. There are download instructions for the Installer on the Python download
page. Alternatively, you could go to the Microsoft download site, http://www.microsoft.com/downloads,
and search for “Windows Installer” (or simply select it from the download menu). Choose the most recent
version for your platform and follow the download and installation instructions. If you’re uncertain about
whether you have Windows Installer or not, simply try executing step 6 of the previous installation instructions,
double-clicking the MSI file. If you get the install wizard, everything is okay. See http://www.python.
org/2.4/msi.html for advanced features of the Windows Installer related to Python installation.

Assuming that the installation went well, you now have a new program in your Windows
Start menu. Run the Python Integrated Development Environment (IDLE) by selecting Start »
Programs » Python? » IDLE (Python GUI).

You should now see a window that looks like the one shown in Figure 1-1. If you feel a bit
lost, simply select Help » IDLE Help from the menu, and you get a simple description of the
various menu items and basic usage. For more documentation on IDLE, check out http://
www. python.org/idle. (Here you will also find more information on running IDLE on platforms
other than Windows.) If you press F1, or select Help » Python Docs from the menu, you will get
the full Python documentation. (The document there of most use to you will probably be the
“Library Reference.”) All the documentation is searchable.

2. This menu option will probably include your version number: for example, Python 2.4.

CHAPTER 1 INSTANT HACKING: THE BASICS

74 Python Shell =) Okd

Fie Edit Shel Debug Options Windows Help

Python 2.4 (#60, Nowv 30 2004, 11:49:19) [MSC v.1310 32 bit (Intel)] on win32
Type "copyright", "credits" or "license ()" for more information.

A AR A A AR A A A A&
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external

interface and no data is sent to or received from the Internet.
R A R A A A R A vk rk kv kv kv bk

IDIE 1.1
FEE

Ln:12|Cal: 4

Figure 1-1. The IDLE interactive Python shell

Once you've got the IDLE interactive Python shell running, you can continue with the
section “The Interactive Interpreter,” later in this chapter.

Linux and UNIX

In many, if not most, Linux and UNIX installations, a Python interpreter will already be
present. You can check whether this is the case by running the python command at the prompt,
as follows:

$ python

Running this command should start the interactive Python interpreter, with output similar to
the following:

Python 2.4 (#1, Dec 7 2004, 09:18:58)

[GCC 3.4.1] on sunos5

Type "help", "copyright", "credits" or "license" for more information.
>>>

Note To exit the interactive interpreter, use Ctrl-D (press the Ctrl key and while keeping that depressed,
press D).

CHAPTER 1 INSTANT HACKING: THE BASICS

If there is no Python interpreter installed, you will probably get an error message similar to
the following:

bash: python: command not found

In that case, you have to install Python yourself, as described in the following sections.

Linux with RPM

If you are running a Linux distribution with the RPM package manager installed, follow these
steps to install the Python RPM packages:

1. Go to the download page (refer to steps 1 and 2 in the instructions for installing Python
on a Windows system).

2. Follow the link with the most recent version number, such as “Python 2.4.” (Don’t
choose alink with the word “sources” in it.) Chances are that this link will be found early
on the page. For Python 2.4, you could simply go to the URL http://www.python.org/
2.4. Follow the instructions for Fedora users: follow the link “RPMs.”

3. Download all the binary RPMs. Store them in a temporary location (such as ~/rpms/
python).

4, Make sure you are logged in as system administrator (root) and are currently in the
directory where you stored the RPMs. Make sure there are no other RPMs in this
directory.

5. Install the packages by executing the command rpm --install *.rpm. If you already
have an older version of Python installed and wish to upgrade, you should instead use
pm --upgrade *.rpm.

Gaution The preceding command installs all the RPM files in the current directory. Make sure that you
are in the correct directory and that it only contains the packages you want to install. If you want to be more
careful, you can specify the name of each package separately. For more information about RPMs, check out
the man page.

You should now be able to run Python. On occasion, you may run into some unresolved
dependencies—you may lack other RPM packages needed to install Python. To locate these
packages, visit a search facility such as http://www.rpmfind.net.

Sometimes a binary RPM package designed for one Linux distribution (for example, Red
Hat Linux) may not work smoothly with another (for example, Mandrake Linux). If you find
that the binary package is giving you grief, try downloading a source RPM instead (with a name
like packagename.src.rpm). You can then build a set of binary packages tailored for your system
with the command

rpm --rebuild packagename.src.rpm

CHAPTER 1 INSTANT HACKING: THE BASICS

where packagename.src.rpmis the real file name of the package you're rebuilding. After you
have done this, you should have a brand-new set of RPM files that you can install as described
previously.

Note To use the RPM installation, you must be logged in as root (the administrator account). If you don’t
have root access, you should compile Python yourself, as described in the section “Compiling from Sources,”
later in this chapter.

Other Installation Mechanisms for Linux

There are several other package systems and installation mechanisms for Linux than rpm. If
you're running a Linux system with some form of package manager, chances are you can get
Python through it.

Note You will probably have to have administrator privileges (a root account) in order to install Python
using a package manager in Linux.

For example, if you're running Debian Linux, you should be able to install Python with the
following command:

$ apt-get install python2.4

If you're running Gentoo Linux, you should be able to use Portage, like this:

$ emerge python

In both cases, $ is, of course, the bash prompt. Replace 2.4 with the most recent version

number.

Compiling from Sources

If you don’t have a package manager, or would rather not use it, you can compile Python your-
self. This may be the method of choice if you are on a UNIX box but you don’t have root access
(installation privileges). This method is very flexible, and enables you to install Python wherever
you want, including in your own home directory. To compile and install Python, follow these steps:

1. Go to the download page (refer to steps 1 and 2 in the instructions for installing Python
on a Windows system).

2. Follow the instructions for downloading the sources.

3. Download the file with the extension .tgz. Store it in a temporary location. Assuming
that you want to install Python in your home directory, you may want to putitin a
directory such as ~/python. Enter this directory (e.g., using cd ~/python).

CHAPTER 1 INSTANT HACKING: THE BASICS

4, Unpack the archive with the command tar -xzvf Python-2.4.tgz (where 2.4 is the
version number of the downloaded source code). If your version of tar doesn’t support
the z option, you may want to uncompress the archive with gunzip first, and then use
tar -xvf afterward. If there is something wrong with the archive, try downloading it
again. Sometimes errors occur during download.

5. Enter the unpacked directory:

$ cd Python-2.4
Now you should be able to execute the following commands:

./configure --prefix=$(pwd)
make
make install

You should end up with an executable file called python in the current directory. (If this
doesn’'t work, please consult the README file included in the distribution.) Put the current
directory in your PATH environment variable, and you're ready to rock.

To find out about the other configuration directives, execute

./configure --help

Macintosh
If you're using a Macintosh, follow these steps:
1. Go to the standard download page (steps 1 and 2 from the Windows instructions earlier
in this chapter).

2. Follow the link for the Macintosh OS X installer. There should also be a link to the
MacPython download page, which has more information. The MacPython page also
has versions of Python for older versions of the Macintosh OS.

Note As of Python version 2.4, the 0S X installer is still at version 2.3.

Other Distributions

You now have the standard Python distribution installed. Unless you have a particular interest
in alternative solutions, that should be quite all right. If you are curious (and, perhaps, feeling
a bit courageous), read on.. . .

There are other Python distributions, with the most well-known one being ActivePython.
A slightly less well-known but quite interesting distribution is Stackless Python. These distribu-
tions are based on the standard implementation of Python, written in the C programming

CHAPTER 1

INSTANT HACKING: THE BASICS

language. Two distributions that take a different approach are Jython and IronPython. If you're
interested in other development environments than IDLE, Table 1-1 lists some options.

Table 1-1. Some Integrated Development Environments (IDEs) for Python

Environment Description Available From. ..

IDLE The standard Python http://www.python.org/idle
environment

Pythonwin Windows-oriented http://www.python.org/windows
environment

ActivePython Feature-packed; contains http://www.activestate.com
Pythonwin IDE

Komodo Commercial IDE http://www.activestate.com

Wingware Commercial IDE http://www.wingware.com

BlackAdder Commercial IDE and (Qt) http://www.thekompany.com
GUI builder

Boa Constructor Free IDE and GUI builder http://boa-constructor.sf.net

Anjuta Versatile IDE for Linux/UNIX http://anjuta.sf.net

ArachnoPython Commercial IDE http://www.python-ide.com

Code Crusader

Commercial IDE

http://www.newplanetsoftware.com

Code Forge Commercial IDE http://www.codeforge.com
Eclipse Popular, flexible, open http://www.eclipse.org

source IDE
eric Free IDE using Qt http://eric-ide.sf.net
KDevelop Cross-language IDE for KDE http://www.kdevelop.org
VisualWx Free GUI builder http://visualwx.altervista.org
wxDesigner Commercial GUI builder http://www.roebling.de
wxGlade Free GUI builder http://wxglade.sf.net

ActivePython is a Python distribution from ActiveState (http://www.activestate.com). At

its core, it’s the same as the standard Python distribution for Windows. The main difference is
that it includes lots of extra goodies (modules) that are available separately. Definitely worth a
look if you are running Windows.

Stackless Python is a reimplementation of Python, based on the original code, but with
some important internal changes. To a beginning user, these differences won’t show up much,
and one of the more standard distributions would probably be more useful. The main advantages
of Stackless Python are that it allows deeper levels of recursion and more efficient multithreading.
As mentioned, both of these are rather advanced features, not needed by the average user. You
can get Stackless Python from http://www.stackless.com.

CHAPTER 1 INSTANT HACKING: THE BASICS

Jython (http://www.jython.org) and IronPython (http://www. ironpython.com) are
different—they’re versions of Python implemented in other languages. Jython is implemented
inJava, targeting the Java Virtual Machine, and IronPython is implemented in C#, targeting the
.NET and MONO implementations of the common language runtime (CLR). At the time of
writing, Jython is quite stable, but lagging behind Python—the current Jython version is 2.1,
while Python is at 2.4. There are significant differences in these two versions of the language.
IronPython is quite new, and at a rather experimental stage. Still, it is usable, and reported to
be faster than standard Python on some benchmarks.

Keeping In Touch and Up to Date

The Python language evolves continuously. To find out more about recent releases and rele-
vant tools, the python.org Web site is an invaluable asset. To find out what’s new in a given
release, go to the page for the given release, such as http://python.org/2.4 for release 2.4.
There you will also find a link to Andrew Kuchling’s in-depth description of what’s new for the
release, with a URL such as http://python.org/doc/2.4/whatsnew for release 2.4. If there have
been new releases since this book went to press, you can use these Web pages to check out any
new features.

If you want to keep up with newly released third-party modules or software for Python,
you could check out the Python email list python-announce-1ist; for general discussions about
Python you could try python-1ist, but be warned: this list gets a lot of traffic. Both of these lists
are available at http://mail.python.org. If you're a Usenet user, these two lists are also available
as the newsgroups comp. lang.python.announce and comp.lang.python, respectively. If you're
totally lost, you could try the python-help list (available from the same place as the two other
lists) or simply email help@python.org. Before you do, you really ought to see if your question
is a frequently asked one, by consulting the Python FAQ, at http://python.org/doc/fag, or by
performing a quick Web search.

The Interactive Interpreter

When you start up Python, you get a prompt similar to the following:

Python 2.4 (#1, Dec 7 2004, 09:18:58)

[GCC 3.4.1] on sunos5

Type "help", "copyright", "credits" or "license" for more information.
>>>

Note The exact appearance of the interpreter and its error messages will depend on which version you
are using.

This might not seem very interesting, but believe me—it is. This is your gateway to
hackerdom—your first step in taking control over your computer. In more pragmatic terms,
it’s an interactive Python interpreter. Just to see if it’s working, try the following:

>>> print "Hello, world!"

CHAPTER 1 INSTANT HACKING: THE BASICS

When you press the Enter key, the following output appears:

Hello, world!
>>>

Note If you are familiar with other computer languages, you may be used to terminating every line with a
semicolon. There is no need to do so in Python. A line is a line, more or less. You may add a semicolon if you
like, but it won’t have any effect (unless more code follows on to the same line), and it is not a common thing
to do.

What happened here? The >>> thingy is the prompt. You can write something in this space,
like print "Hello, world!".If you press Enter, the Python interpreter prints out the string
“Hello, world!” and you get a new prompt below that.

Note The term “printing” in this context refers to writing text to the screen, not producing hardcopies with
a printer.

What if you write something completely different? Try it out. For example:

>>> The Spanish Inquisition
SyntaxError: invalid syntax
>>>

Obviously, the interpreter didn’t understand that.3 (If you are running an interpreter other
than IDLE, such as the command-line version for Linux, the error message will be slightly
different.) The interpreter also indicates what’s wrong: it will emphasize the word “Spanish” by
giving it a red background (or, in the command-line version, by using a caret, *).

If you feel like it, play around with the interpreter some more. (For some guidance, try
entering the command help at the prompt and pressing Enter. As mentioned, you can press F1
for help about IDLE.) Otherwise, let’s press on. After all, the interpreter isn’t much fun when
you don’t know what to tell it, is it?

Algo . . . What?

Before you start programming in earnest, I'll try to give you an idea of what computer program-
ming is. So, what is it? It’s telling a computer what to do. Computers can do lots of things, but
they aren’t very good at thinking for themselves. They really need to be spoonfed the details.
You have to feed the computer an algorithm, in some language it understands. “Algorithm” is

3. After all, no one expects the Spanish Inquisition . . .

10

CHAPTER 1 INSTANT HACKING: THE BASICS

just a fancy word for a procedure or recipe—a detailed description of how to do something.
Consider the following:

SPAM with SPAM, SPAM, Eggs, and SPAM:

First, take some SPAM.

Then add some SPAM, SPAM, and eggs.

If a particularly spicy SPAM is desired, add some SPAM.
Cook until done - Check every 10 minutes.

This recipe may not be very interesting, but how it’s constructed is. It consists of a series of
instructions to be followed in order. Some of the instructions may be done directly (“take some
SPAM”), while some require some deliberation (“If a particularly spicy SPAM is desired”), and
others must be repeated several times (“Check every 10 minutes.”)

Recipes and algorithms consist of ingredients (objects, things), and instructions (statements).
In this example, SPAM and eggs were the ingredients, while the instructions consisted of
adding SPAM, cooking for a given length of time, and so on. Let’s start with some reasonably
simple Python ingredients and see what you can do with them.

Numbers and Expressions

The interactive Python interpreter can be used as a powerful calculator. Try the following:
>>> 2 + 2
This ought to give you the answer 4. That wasn’t too hard. Well, what about this:

>>> 53672 + 235253
288925

Still not impressed? Admittedly, this is pretty standard stuff. (I'll assume that you've used
a calculator enough to know the difference between 1+2*3 and (1+2)*3.) All the usual arith-
metic operators work as expected—almost. There is one potential trap here, and that is integer
division (in Python versions prior to 3.0, which may not come out for quite a while):

>>> 1/2
0

What happened here? One integer (a nonfractional number) was divided by another, and
the result was rounded down to give an integer result. This behavior can be useful at times, but
often (if not most of the time), you need ordinary division. What do you do to get that? There
are two possible solutions: You use real numbers (numbers with decimal points) rather than
integers, or you can tell Python to change how division works.

Real numbers are called floats (or floating-point numbers) in Python—if either one of the
numbers in a division is a float, the result will be, too:

>>> 1.0 / 2.0
0.5

>>> 1/2.0
0.5

CHAPTER 1 INSTANT HACKING: THE BASICS

>>> 1.0/2
0.5

>>> 1/2.
0.5

If you'd rather have Python do proper division, you could add the following statement to
the beginning of your program (writing full programs is described later) or simply execute it in
the interactive interpreter:

>>> from _ future import division

Another alternative, if you're running Python from the command line (e.g., on a Linux
machine), is to supply the command-line switch -Qnew. In either case, division will suddenly
make a bit more sense:

>»> 1/ 2
0.5

Of course, the single slash can no longer be used for the kind of integer division shown
earlier; but there is a separate operator that will do this for you—the double slash:

>»>>1// 2
0

The double slash consistently performs integer division, even with floats:

>»> 1.0 // 2.0
0.0

There is a more thorough explanation of the __future__ stuffin the section “Back to the
__future__,” later in this chapter.

Now you've seen the basic arithmetic operators (addition, subtraction, multiplication,
and division), but one more operator is quite useful at times:

>>> 1% 2
1

This is the remainder (modulus) operator—x % y gives the remainder of x divided by y.
For example:

>>> 10 / 3

3

>>> 10 % 3

1

>»>9 /3

3

>>>9 %3

0

>>> 2.75 % 0.5
0.25

11

12

CHAPTER 1 INSTANT HACKING: THE BASICS

Here 10/3 is 3 because the result is rounded down. But 3x3 is 9, so you get a remainder of
one. When you divide 9 by 3, the result is exactly 3, with no rounding. Therefore, the remainder
is zero. This may be useful if you want to check something “every 10 minutes” as in the recipe
earlier in the chapter. You can simply check whether minute % 10 is zero. (For a description on
how to do this, see the sidebar “Sneak Peek: The if Statement,” later in the chapter.) As you can
see from the final example, the remainder operator works just fine with floats as well.

The last operator is the exponentiation (or power) operator:

>>> 2 ¥ 3

8

>>> -3 ¥k 2
-9

>>> (-3) ** 2
9

Note that the exponentiation operator binds tighter than the negation (unary minus), so
-3**3 is in fact the same as - (3**2). If you want to calculate (-3)**2, you must say so explicitly.

Large Integers

Python can handle really large integers:

>>> 1000000000000000000
1000000000000000000L

What happened here? The number suddenly got an L tucked onto the end.

Note If you’re using a version of Python older than 2.2, you get the following behavior:

>>> 1000000000000000000
OverflowError: integer literal too large

The newer versions of Python are more flexible when dealing with big numbers.

Ordinary integers can’t be larger than 2147483647 (or smaller than —-2147483648); if you
want really big numbers, you have to use longs. A long (or long integer) is written just like an
ordinary integer but with an L at the end. (You can, in theory, use a lowercase 1 as well, but that
looks all too much like the digit 1, so I'd advise against it.)

In the previous attempt, Python converted the integer to a long, but you can do that your-
self, too. Let’s try that big number again:

>>> 1000000000000000000L
1000000000000000000L

CHAPTER 1 INSTANT HACKING: THE BASICS

Of course, this is only useful in old versions of Python that aren’t capable of figuring this
stuff out.
Well, can you do math with these monster numbers, too? Sure thing. Consider the following:

>>> 1987163987163981639186L * 198763981726391826L + 23
394976626432005567613000143784791693659L

As you can see, you can mix long integers and plain integers as you like. In all likelihood, you
won'’t have to worry about the difference between longs and ints unless you're doing type
checking, as described in Chapter 7—and that’s something you should almost never do.

Hexadecimals and Octals

To conclude this section, I should mention that hexadecimal numbers are written like this:

>>> OXAF
175

and octal numbers like this:

>>> 010
8

The first digit in both of these is zero. (If you don’t know what this is all about, just close your
eyes and skip to the next section—you’re not missing anything important.)

Note For a summary of Python’s numeric types and operators, see Appendix B.

Variables

Another concept that might be familiar to you is variables. If math makes you queasy, don’t
worry: Variables in Python are easy to understand. A variable is basically a name that repre-
sents (or refers to) some value. For example, you might want the name x to represent 3. To
make it so, simply execute the following:

> X =3

This is called an assignment. We assign the value 3 to the variable x. Another way of putting
this is to say that we bind the variable x to the value (or object) 3. After a variable has had a value
assigned to it, you can use the variable in expressions:

>>> X ¥ 2
6

Note that you have to assign a value to a variable before you use it. After all, it doesn’t make
any sense to use a variable if it doesn’t represent a value, does it?

13

14

CHAPTER 1 INSTANT HACKING: THE BASICS

Note Variable names can consist of letters, digits, and underscore characters (). A variable can’t begin
with a digit, so P1an9 is a valid variable name, whereas 9P1an is not.

Statements

Until now we’ve been working (almost) exclusively with expressions, the ingredients of the
recipe. But what about statements—the instructions?

In fact, I've cheated. I've introduced two types of statements already: the print statement,
and assignments. So, what’s the difference between a statement and an expression? Well, an
expression is something, while a statement does something (or, rather, tells the computer to do
something). For example, 2*2 is 4, whereas print 2*2 prints 4. What's the difference, you may
ask. After all, they behave very similarly. Consider the following:

>>> 2%2

4

>>> print 2*2
4

Aslong as you execute this in the interactive interpreter the results are similar, but that is only
because the interpreter always prints out the values of all expressions (using the same repre-
sentation as repr—see the section on string representations later in this chapter). That is not
true of Python in general. Later in this chapter, you’ll see how to make programs that run
without this interactive prompt, and simply putting an expression such as 2*2 in your program
won’t do anything interesting.* Putting print 2*2 in there, on the other hand, will in fact print
out 4.

The difference between statements and expressions may be more obvious when dealing
with assignments. Because they are not expressions, they have no values that can be printed
out by the interactive interpreter:

> X =3
>>>

Asyou can see, you get a new prompt immediately. Something has changed, however; x is now
bound to the value 3.

This is a defining quality of statements in general: They change things. For example, assign-
ments change variables, and print statements change how your screen looks.

Assignments are, perhaps, the most important type of statement in any programming
language; it may be difficult to grasp their importance right now. Variables may just seem like

4. In case you're wondering—yes, it does do something. It calculates the product of 2 and 2. However, the
result isn’t kept anywhere or shown to the user; it has no side effects, beyond the calculation itself.

CHAPTER 1 INSTANT HACKING: THE BASICS 15

temporary “storage” (like the pots and pans of a cooking recipe), but the real power of variables
is that you needn’t know what values they hold in order to manipulate them.® For example, you
know that x * y evaluates to the product of x and y even though you may have no knowledge
of what x and y are. So, you may write programs that use variables in various ways without
knowing the values they will eventually hold (or refer to) when the program is run.

Getting Input from the User

You've seen that you can write programs with variables without knowing their values. Of course,
the interpreter must know the values eventually. So how can it be that we don’t? The interpreter
knows only what we tell it, right?

Notnecessarily. You may have written a program, and somebody else may use it. You cannot
predict what values they will supply to the program. Let’s take a look at the useful function
input. (I'll have more to say about functions in a minute.)

>>> input("The meaning of life: ")
The meaning of life: 42
42

What happens here is that the first line (input(...)) is executed in the interactive interpreter.
It prints out the string "The meaning of life: "asanew prompt.Itype 42 and press Enter. The
resulting value of input is that very number, which is automatically printed out in the last line.
Not very useful. But look at the following:

>>> x = input("x: ")

X: 34

>>> y = input("y: ")
y: 42

>>> print x *y
1428

Here, the statements at the Python prompts (>>>) could be part of a finished program, and the
values entered (34 and 42) would be supplied by some user. Your program would then print out
the value 1428, which is the product of the two. And you didn’t have to know these values when
you wrote the program, right?

Note This is much more useful when you save your programs in a separate file so other users can execute
it. You learn to do that later in this chapter, in the section “Saving and Executing Your Programs.”

5. Note the quotes on “storage.” Values aren’t stored in variables—they’re stored in some murky depths of
computer memory, and are referred to by variables. As will become abundantly clear as you read on,
more than one variable can refer to the same value.

16

CHAPTER 1 INSTANT HACKING: THE BASICS

SNEAK PEEK: THE IF STATEMENT

To make things a bit more fun, I'll give you a sneak peek of something you aren’t really supposed to learn
about until Chapter 5: the if statement. The if statement lets you perform an action (another statement) if a
given condition is true. One type of condition is an equality test, using the equality operator ==. (Yes, it's a
double equality sign. The single one is used for assignments, remember?)

You simply put this condition after the word “if” and then separate it from the following statement with a colon:

>>> if 1 == 2: print 'One equals two'
>>> if 1 == 1: print 'One equals one'

One equals one
>>>

As you can see, nothing happens when the condition is false. When it is true, however, the following
statement (in this case, a print statement) is executed. Note also that when using if statements in the inter-
active interpreter, you have to press Enter twice before it is executed. (The reason for this will become clear in
Chapter 5—don’t worry about it for now.)

So, if the variable time is bound to the current time in minutes, you could check whether you’re “on the
hour” with the following statement:

if time % 60 == 0: print 'On the hour!'

Functions

In the section on numbers and expressions I used the exponentiation operator (**) to calculate
powers. The fact is that you can use a function instead, called pow:

>>> 2*¥*3

8

>>> pow(2,3)
8

A function is like a little program that you can use to perform a specific action. Python has
lots of functions that can do many wonderful things. In fact, you can make your own functions,
too (more about that later); therefore we often refer to standard functions such as pow as built-in
functions.

Using a function as I did in the preceding example is called calling the function. You supply
it with parameters (in this case, 2 and 3) and it returns a value to you. Because it returns a value,
a function call is simply another type of expression, like the arithmetic expressions discussed
earlier in this chapter.5 In fact, you can combine function calls and operators to create more
complicated expressions:

6. Function calls can also be used as statements if you simply ignore the return value.

CHAPTER 1 INSTANT HACKING: THE BASICS

>>> 10 + pow(2, 3*5)/3.0
10932.666666666666

Note The exact number of decimals may vary depending on which version of Python you are using.

There are several built-in functions that can be used in numeric expressions like this. For
example, abs gives the absolute value of a number, and round rounds floating numbers to the
nearest integer:

>>> abs(-10)

10

>>> 1/2

0

>>> round(1.0/2.0)
1.0

Notice the difference between the two last expressions. Integer division always rounds down,
whereas round rounds to the nearest integer. But what if you want to round a given number
down? For example, you might know that a person is 32.9 years old—but you would like to
round that down to 32 because she isn’t really 33 yet. Python has a function for this (called
floor)—it just isn’t available directly. As is the case with many useful functions, it is found in a
module.

Modules

You may think of modules as extensions that can be imported into Python to extend its capa-
bilities. You import modules with a special command called (naturally enough) import. The
function we needed in the previous section (floor) is in a module called math:

>>> import math
>>> math.floor(32.9)
32.0

Notice how this works: We import a module with import, and then use the functions from
that module by writing module.function.

If you want the age to be an integer (32) and not a float (32.0), you can use the
function int:”

>>> int(math.floor(32.9))
32

7. The int function/type will actually round down while converting to an integer, so when converting to
an integer, using math. floor is superfluous; you could simply use int(32.9).

17

18

CHAPTER 1 INSTANT HACKING: THE BASICS

Note Similar functions exist to convert to other types (for example, long and f1oat). In fact, these aren’t
completely normal functions—they’re type objects. I'll have more to say about types later. The opposite of
floor is ceil (short for “ceiling”), which finds the smallest integral value larger than or equal to the given
number.

If you are sure that you won’t import more than one function with a given name (from
different modules), you might not want to write the module name each time you call the function.
Then you can use a variant of the import command:

>>> from math import sqrt
>>> sqrt(9)
3.0

After using from module import function, you can use the function without its module prefix.

Tip You may, in fact, use variables to refer to functions (and most other things in Python). For example, by
performing the assignment foo = math.sqrt you can start using foo to calculate square roots; for example,
foo(4) yields 2.

cmath and Complex Numbers

The sqrt function is used to calculate the square root of a number. Let’s see what happens if we
supply it with a negative number:

>>> from math import sqrt
>>> sqrt(-1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in ?
sqrt(-1)
ValueError: math domain error

Well, that’s reasonable. You can’t take the square root of a negative number—or can you?
Of course you can: The square root of a negative number is an imaginary number. (This is a
standard mathematical concept—if you find it a bit too mind-bending, you are free to skip ahead.)
So why couldn’t sqrt deal with it? Because it only deals with floats, and imaginary numbers
(and complex numbers, the sum of real and imaginary numbers) are something completely
different—which is why they are covered by a different module, cmath (for complex math):

>>> import cmath
>>> cmath.sqrt(-1)

1]

CHAPTER 1 INSTANT HACKING: THE BASICS

Notice thatI didn’tuse from ... import ... here.IfI had, I would have lost my ordinary sqrt.
Name clashes like these can be sneaky, so unless you really want to use the from version, you
should probably stick with a plain import.

The 1j is an imaginary number. These are written with a trailing j (or J), just like longs use
L. Without delving into the theory of complex numbers, let me just show a final example of how
you can use them:

>>> (143]) * (9+43)
(-3+313)

As you can see, the support for complex numbers is built into the language.

Note There is no separate type for imaginary numbers in Python. They are treated as complex numbers
whose real component is zero.

Back to the future

It has been rumored that Guido van Rossum (Python’s creator) has a time machine because
often when people request features in the language, the features have already been implemented.
Of course, we aren’t all allowed into this time machine, but Guido has been kind enough to
build a part of it into Python, in the form of the magic module __future__. From it we can
import features that will be standard in Python in the future but that aren’t part of the language
yet. You saw this in the section about numbers and expressions, and you'll be bumping into it
from time to time throughout this book.

Saving and Executing Your Programs

The interactive interpreter is one of Python’s great strengths. It makes it possible to test solutions
and to experiment with the language in real time. If you want to know how something works,
just try itl However, everything you write in the interactive interpreter is lost when you quit.
What you really want to do is write programs that both you and other people can run. In this
section, you learn how to do just that.

First of all, you need a text editor, preferably one intended for programming. (If you use
something like Microsoft Word, be sure to save your code as plain text.) If you are already using
IDLE, you're in luck: Simply create a new editor window with File » New Window. Another
window appears—without an interactive prompt. Whew!

Start by entering the following:

print "Hello, world!"

Now select File » Save to save your program (which is, in fact, a plain text file). Be sure to
put it somewhere where you can find it later on. You might want to create a directory where
you put all your Python projects, such as C:\python in Windows. In a UNIX environment, you
might use a directory like ~/python. Give your file any reasonable name, such as hello.py. The
.py ending is important.

19

20

CHAPTER 1 INSTANT HACKING: THE BASICS

Note If you followed the installation instructions earlier in this chapter, you may have put your Python
installation in ~/python already, but because that has a subdirectory of its own (such as ~/python/
Python-2.4/), this shouldn’t cause any problems. If you would rather put your own programs somewhere
else, feel free to use a directory such as ~/my_python_programs.

Got that? Don’t close the window with your program in it. If you did, just open it again (File »
Open). Now you can run it with Edit » Run script, or by pressing Ctrl-F5. (If you aren’t using
IDLE, see the next section about running your programs from the command prompt.)

What happens?Hello, world! is printed in the interpreter windows, which is exactly what
we wanted. The interpreter prompt is gone, but you can get it back by pressing Enter (in the
interpreter window).

Let’s extend our script to the following:

name = raw_input("What is your name? ")

print "Hello, " + name +

Note Don’t worry about the difference between input and raw_input—TVll get to that.

If you run this (remember to save it first), you should see the following prompt in the inter-
preter window:

What is your name?
Enter your name, (for example, Gumby) and press Enter. You should get something like this:
Hello, Gumby!

Fun, isn’t it?

Running Your Python Scripts from a Command Prompt

Actually, there are several ways to run your programs. First, let’s assume that you have a DOS
window or a UNIX shell prompt before you and that the Python executable (called python.exe
in Windows, and python in UNIX) has been put in your PATH environment variable.8 Also, let’s
assume that your script from the previous section (hello.py) is in the current directory. Then
you can execute your script with the following command in Windows:

C:\>python hello.py

8. Ifyou don’'t understand this sentence, you should perhaps skip the section. You don't really need it.

CHAPTER 1 INSTANT HACKING: THE BASICS

or UNIX:
$ python hello.py

As you can see, the command is the same. Only the system prompt changes.

Note If you don’t want to mess with environment variables, you can simply specify the full path of the
Python interpreter. In Windows, you might do something like this:

C:\>C:\Python24\python hello.py

Making Your Scripts Behave Like Normal Programs

Sometimes you want to execute a Python program (also called a scripf) the same way you
execute other programs (such as your Web browser, or your text editor), rather than explicitly
using the Python interpreter. In UNIX, there is a standard way of doing this: have the first line
of your script begin with the character sequence #! (called pound bang or shebang) followed by
the absolute path to the program that interprets the script (in our case Python). Even if you
didn’t quite understand that, just put the following in the first line of your script if you want it
to run easily on UNIX:

#!/usr/bin/env python

This should run the script, regardless of where the Python binary is located.

Note In some systems if you install a recent version of Python (e.g., 2.4) you will still have an old one lying
around (e.g.,1.5.2), which is needed by some system programs (so you can’t uninstall it). In such cases, the
/usr/bin/env trick is not a good idea, as you will probably end up with your programs being executed by
the old Python. Instead, you should find the exact location of your new Python executable (probably called
python or python2) and use the full path in the pound bang line, like this:

#/usr/bin/python2

The exact path may vary from system to system.

Before you can actually run your script, you must make it executable:
$ chmod a+x hello.py
Now it can be run like this (assuming that you have the current directory in your path):

$ hello.py

21

22

CHAPTER 1 INSTANT HACKING: THE BASICS

Note If this doesn’t work, try using . /hello. py instead, which will work even if the current directory (.)
is not part of your execution path.

If you like, you can rename your file and remove the py suffix to make it look more like a normal
program.

What About Double-Clicking?

In Windows, the suffix (. py) is the key to making your script behave like a program. Try double-
clicking the file hello.py you saved in the previous section. If Python was installed correctly,
a DOS window appears with the prompt “What is your name?” Cool, huh? (You'll see how to
make your programs look better, with buttons, menus, and so on later.)

There is one problem with running your program like this, however. Once you've entered
your name, the program window closes before you can read the result. The window closes
when the program is finished. Try changing the script by adding the following line at the end:

raw_input("Press <enter>")

Now, after running the program and entering your name, you should have a DOS window
with the following contents:

What is your name? Gumby
Hello, Gumby!
Press <enter>

Once you press the Enter key, the window closes (because the program is finished). Just as a
teaser, rename your file hello.pyw. (This is Windows-specific.) Double-click it as before. What
happens? Nothing! How can that be? I will tell you later in the book—I promise.

Comments

The hash sign (#) is a bit special in Python. When you put it in your code, everything to the right
of it is ignored (which is why the Python interpreter didn’t choke on the /usr/bin/env stuff
used earlier). For example:

Print the circumference of the circle:
print 2 * pi * radius

The first line here is called a comment, which can be useful in making programs easier to
understand—both for other people and for yourself when you come back to old code. It has
been said that the first commandment of programmers is “Thou Shalt Comment” (although
some less charitable programmers swear by the motto “If it was hard to write, it should be hard
to read”). Make sure your comments say significant things and don’t simply restate what is
already obvious from the code. Useless, redundant comments may be worse than none. For
example, in the following example, a comment isn’t really called for:

Get the user's name:
user_name = raw_input("What is your name?")

CHAPTER 1 INSTANT HACKING: THE BASICS

It’s always a good idea to make your code readable on its own as well, even without the
comments. Luckily, Python is an excellent language for writing readable programs.

Strings

Now what was all that raw_input and "Hello,
"Hello" part first and leave raw_input for later.
The first program in this chapter was simply

"

+ name + "!" stuff about? Let’s tackle the

print "Hello, world!"

It is customary to begin with a program like this in programming tutorials—the problem is that I
haven't really explained how it works yet. Well, you know the basics of the print statement (I'll have
more to say about that later), but what is "Hello, world!"?It’s called a string (as in “a string of char-
acters”). Strings are found in almost every useful, real-world Python program and have many uses,
the main one being to represent a bit of text, such as the exclamation “Hello, world!”

Single-Quoted Strings and Escaping Quotes

Strings are values, just like numbers are:

>>> "Hello, world!"
'Hello, world!'

There is one thing that may be a bit surprising about this example, though: When Python
printed out our string, it used single quotes, whereas we used double quotes. What’s the differ-
ence? Actually, there is no difference:

>>> 'Hello, world!'
'Hello, world!'

Here, too, we use single quotes, and the result is the same. So why allow both? Because in some
cases it may be useful:

>>> "Let's go!"

"Let's go!"

>>> '"Hello, world!" she said'
'""Hello, world!" she said'

In the preceding code, the first string contains a single quote (or apostrophe, as we should
perhaps call it in this context), and therefore we can’t use single quotes to enclose the string.
If we did, the interpreter would complain (and rightly so):

>>> 'Let's go!'
SyntaxError: invalid syntax

Here, the stringis 'Let', and Python doesn’t quite know what to do with the following s (or the
rest of the line, for that matter).

In the second string, we use double quotes as part of our sentence. Therefore, we have to
use single quotes to enclose our string, for the same reasons as stated previously. Or, actually

23

24

CHAPTER 1 INSTANT HACKING: THE BASICS

we don’t have to. It’s just convenient. An alternative is to use the backslash character (\) to
escape the quotes in the string, like this:

>>> "Let\'s go!'
"Let's go!"

Python understands that the middle single quote is a character in the string and not the
end of the string. (Even so, Python chooses to use double quotes when printing out the string.)
The same works with double quotes, as you might expect:

>>> "\"Hello, world!\" she said"
""Hello, world!" she said'

Escaping quotes like this can be useful, and sometimes necessary. For example, what would
you do without the backslash if your string contained both a single quote and a double quote,
asin the string 'Let\'s say "Hello, world!"'?

Note Tired of backslashes? As you will see later in this chapter, you can avoid most of them by using long
strings and raw strings (which can be combined).

Concatenating Strings

Just to keep whipping this slightly tortured example, let me show you another way of writing
the same string:

>>> "Let's say " '"Hello, world!"'
'Let\'s say "Hello, world!"'

I've simply written two strings, one after the other, and Python automatically concatenates
them (makes them into one string). This mechanism isn’t used very often, but it can be useful
at times. However, it only works when you actually write both strings at the same time, directly
following one another:

>>> x = "Hello, "

>>> y = "world!"

>>> Xy

SyntaxError: invalid syntax

In other words, this is just a special way of writing strings, not a general method of concat-
enating them. How, then, do you concatenate strings? Just like you add numbers:

>>> "Hello, " + "world!"
'Hello, world!'

>>> x = "Hello, "

>>> y = "world!"

S>> X + Yy

'Hello, world!'

CHAPTER 1 INSTANT HACKING: THE BASICS

String Representations, str and repr

Throughout these examples, you have probably noticed that all the strings printed out by
Python are still quoted. That’s because it prints out the value as it might be written in Python
code, not how you would like it to look for the user. If you use print, however, the result is
different:

>>> "Hello, world!"
'Hello, world!'

>>> 10000L

10000L

>>> print "Hello, world!"
Hello, world!

>>> print 10000L

10000

As you can see, the long integer 10000L is simply the number 10000 and should be written that
way when presented to the user. But when you want to know what value a variable refers to,
you may be interested in whether it’s a normal integer or a long, for example.

What is actually going on here is that values are converted to strings through two different
mechanisms. You can use both mechanisms yourself, through the functions str, which simply
converts a value into a string in some reasonable fashion that will probably be understood by a
user, for example, and repr, which creates a string that is a representation of the value as a legal
Python expression:?

>>> print repr("Hello, world!")
'Hello, world!'

>>> print repr(10000L)

10000L

>>> print str("Hello, world!")
Hello, world!

>>> print str(10000L)

10000

A synonym for repr(x) is “x" (here you use backticks, not single quotes). This can be useful
when you want to print out a sentence containing a number, for example:

>>> temp = 42
>>> print "The temperature is " + temp
Traceback (most recent call last):
File "<pyshell#61>", line 1, in ?

print "The temperature is " + temp
TypeError: cannot add type "int" to string
>>> print "The temperature is " + “temp”
The temperature is 42

The first print statement doesn’t work because you can’t add a string to a number. The second
one, however, works because I have converted temp to the string "42" by using the backticks.

9. Actually, str is a type, just like int and long. repr, however, is simply a function.

25

26

CHAPTER 1 INSTANT HACKING: THE BASICS

(I might, of course, just as well have used repr, which means the same thing, but may be a bit
clearer. Actually, in this case, I could also have used str. Don’t worry too much about this
right now.)

In short: str, repr, and backticks are three ways of converting a Python value to a string.
The function str makes it look good, while repr (and the backticks) tries to make the resulting
string a legal Python expression.

input vs. raw_input

" wpn

Now you know what "Hello, " + name + means. But what about raw_input? Isn’t input
good enough? Let’s try it. Enter the following in a separate script file:

name = input("What is your name? ")

" wyn

print "Hello, " + name +

This is a perfectly valid program, but as you will soon see, it’s a bit unpractical. Let’s try to
runit:

What is your name? Gumby
Traceback (most recent call last):
File "C:/python/test.py", line 2, in ?
name = input("What is your name? ")
File "<string>", line 0, in ?
NameError: name 'Gumby' is not defined

The problem is that input assumes that what you enter is a valid Python expression (it's more
or less the inverse of repr). If you write your name as a string, that’s no problem:

What is your name? "Gumby"
Hello, Gumby!

However, it’s just a bit too much to ask that the user write his or her name in quotes like this;
therefore we use raw_input, which treats all input as raw data, and puts it into a string:

>>> input("Enter a number: ")
Enter a number: 3

3

>>> raw_input("Enter a number: ")
Enter a number: 3

'3

Unless you have a special need for input, you should probably use raw_input.

Long Strings, Raw Strings, and Unicode

Before ending this chapter, I want to first tell you about yet another couple of ways of writing
strings. These alternate string syntaxes can be useful when you have strings that span several
lines, or that contain various special characters.

CHAPTER 1 INSTANT HACKING: THE BASICS

Long Strings

If you want to write a really long string, one that spans several lines, you can use triple quotes
instead of ordinary quotes:

print This is a very long string.
It continues here.

And it's not over yet.

"Hello, world!"

Still here.'"'

You can also use triple double quotes, """1ike this""". Note that because of the distinctive
enclosing quotes, both single and double quotes are allowed inside, without being backslash-
escaped.

Tip Ordinary strings can also span several lines. If the last character on a line is a backslash, the line break
itself is “escaped,” and is ignored. For example:

print "Hello, \
world!"

would print out Hello, world!. The same goes for expressions and statements in general:

>>> 1+ 2 +\
4 +5
12
>>> print \
'Hello, world'
Hello, world

Raw Strings

Raw strings aren’t too picky about backslashes, which can be very useful sometimes.!° In ordi-
nary strings, the backslash has a special role: It escapes things, letting you put things into your
string that you couldn’t normally write directly. For example, a new line is written \n, and can
be put into a string like this:

>>> print 'Hello,\nworld!'
Hello,
world!

This is normally just dandy, but in some cases it’s not what you want. What if you wanted the
string to include a backslash followed by an n? You might want to put the DOS pathname
C:\nowhere into a string, for example:

10. Especially when writing regular expressions. More about those in Chapter 10.

27

28

CHAPTER 1 INSTANT HACKING: THE BASICS

>>> path = 'C:\nowhere'
>>> path
'C:\nowhere'

This looks correct, until you print it and discover the flaw:

>>> print path
C:
owhere

Not exactly what we were after, is it? So what do we do? We can escape the backslash itself:

>>> print 'C:\\nowhere'
C:\nowhere

This is just fine. But for long paths, you wind up with a lot of backslashes:
path = 'C:\\Program Files\\fnord\\foo\\bar\\baz\\frozz\\bozz'

Raw strings are useful in such cases. They don’t treat the backslash as a special character
at all. Every character you put into a raw string stays the way you wrote it:

>>> print r'C:\nowhere'

C:\nowhere

>>> print r'C:\Program Files\fnord\foo\bar\baz\frozz\bozz'
C:\Program Files\fnord\foo\bar\baz\frozz\bozz

Asyou can see, raw strings are written with an r in front. It would seem that you can put almost
anything inside a raw string, and that is almost true. Of course, quotes have to be escaped as
usual, although that means that you get a backslash in your final string, too:

>>> print r'let\'s go!'
Let\'s gol!

The one thing you can’t have in a raw string is a final backslash. In other words, the last
character in a raw string cannot be a backslash. Given the previous example, that ought to be
obvious. If the last character (before the final quote) is a backslash, Python won’t know whether
to end the string or not:

>>> print r"This is illegall\"
SyntaxError: invalid token

Okay, so it’s reasonable, but what if you want the last character in your raw string to be a
backslash? (Perhaps it’s the end of a DOS path, for example.) Well, I've given you a whole bag
of tricks in this section that should help you solve that problem, but basically you need to put
the backslash in a separate string. A simple way of doing that is the following:

>>> print r'C:\Program Files\foo\bar' '\\'
C:\Program Files\foo\bar\

Note that you can use both single and double quotes with raw strings. Even triple-quoted
strings can be raw.

CHAPTER 1 INSTANT HACKING: THE BASICS

Unicode Strings

The final type of string constant is the Unicode string (or Unicode object—they don’t really
belong to the same type as strings). If you don’t know what Unicode is, you probably don’t
need to know about this. (If you want to find out more about it, you can go to the Unicode Web
site, waw.unicode.org.) Normal strings in Python are stored internally as 8-bit ASCII, while
Unicode strings are stored as 16-bit Unicode. This allows for a more varied set of characters,
including special characters from most languages in the world. I'll restrict my treatment of
Unicode strings to the following:

>>> u'Hello, world!"'
u'Hello, world!"'

As you can see, Unicode strings use the prefix u, just as raw strings use the prefix r.

A Quick Summary

This chapter covers quite a bit of material. Let’s take a look at what you've learned before
moving on.

Algorithms. An algorithm is a recipe telling you exactly how to perform a task. When you
program a computer, you are essentially describing an algorithm in a language the computer
can understand, such as Python. Such a machine-friendly description is called a program,
and it mainly consists of expressions and statements.

Expressions. An expression is a part of a computer program that represents a value. For
example, 2+2 is an expression, representing the value 4. Simple expressions are built from
literal values (such as 2 or "Hello") by using operators (such as + or %) and functions (such
as pow). More complicated expressions can be created by combining simpler expressions
(e.g., (2+2)*(3-1)). Expressions may also contain variables.

Variables. A variable is a name that represents a value. New values may be assigned to
variables through assignments such as x = 2. An assignment is a kind of statement.

Statements. A statement is an instruction that tells the computer to do something. That
may involve changing variables (through assignments), printing things to the screen (such
asprint "Hello, world!"), importing modules, or a host of other stuff.

Functions. Functions in Python work just like functions in mathematics: They may take
some arguments, and they return a result. (They may actually do lots of interesting stuff
before returning, as you will find out when you learn to write your own functions in
Chapter 6.)

Modules. Modules are extensions that can be imported into Python to extend its capabili-
ties. For example, several useful mathematical functions are available in the math module.

Programs. You have looked at the practicalities of writing, saving, and running Python
programs.

29

30

CHAPTER 1 INSTANT HACKING: THE BASICS

Strings. Strings are really simple—they are just pieces of text. And yet there is a lot to know
about them. In this chapter, you’'ve seen many ways to write them, and in Chapter 3 you
learn many ways of using them.

New Functions in This Chapter

Function Description

abs(number) Returns the absolute value of a number
cmath. sqrt(number) Square root, also for negative numbers
float(object) Converts a string or number to a floating-point number
help() Offers interactive help

input(prompt) Gets input from the user

int(object) Converts a string or number to an integer
long(object) Converts a string or number to a long integer
math.ceil(number) Returns the ceiling of a number as a float
math.floor (number) Returns the floor of a number as a float
math.sqgrt(number) Square root, not for negative numbers

pow(x, y[, z]) x to the power of y (modulo 2z)
raw_input(prompt) Gets input from the user, as a string
repr(object) Returns a string-representation of a value
round(number[, ndigits]) Rounds a number to a given precision
str(object) Converts a value to a string

What Now?

Now that you know the basics of expressions, let’s move on to something a bit more advanced:
data structures. Instead of dealing with simple values (such as numbers), you'll see how to
bunch them together in more complex structures, such as lists and dictionaries. In addition,
you'll take another close look at strings. In Chapter 5, you learn more about statements, and
after that you'll be ready to write some really nifty programs.

CHAPTER 2

Lists and Tuples

This chapter introduces a new concept: data structures. A data structure is a collection of data
elements (such as numbers or characters—or even other data structures) that is structured in
some way, for example, by numbering the elements. The most basic data structure in Python is
the sequence. Each element of a sequence is assigned a number—its position, or index. The first
index is zero, the second index is one, and so forth.

Note When you count or number things in your daily life, you probably start counting from 1. The numbering
scheme used in Python may seem odd, but it is actually quite natural. One of the reasons for this, as you see
later in the chapter, is that you can also count from the end: The last item of a sequence is numbered —1, the
next-to-last —2, and so forth. That means you can count forward or backward from the first element, which
lies at the beginning, or zero. Trust me, you get used to it.

Python has six built-in types of sequences, butlet’s concentrate on two of the most common
ones—Iists and tuples. The main difference between these is that you can change a list, but you
can’t change a tuple. This means a list might be useful if you need to add elements as you go
along, while a tuple can be useful if, for some reason, you can’t allow the sequence to change.
Reasons for the latter are usually rather technical, having to do with how things work internally
in Python. That’s why you may see built-in functions returning tuples. For your own programs,
chances are you can use lists instead of tuples in almost all circumstances. (One notable excep-
tion, as described in Chapter 4, is using tuples as dictionary keys. There lists aren’t allowed,
because you aren’t allowed to modify keys.)

Note The other built-in sequence types are strings (which | revisit in the next chapter), Unicode strings,
buffer objects, and xrange objects.

31

32

CHAPTER 2 LISTS AND TUPLES

Sequences are useful when you want to work with a collection of values. You might have a
sequence representing a person in a database, with the first element being their name, and the
second their age. Written as a list (the items of a list are separated by commas and enclosed in
square brackets), that would look like this:

>>> edward = ['Edward Gumby', 42]

But sequences can contain other sequences, too, so you could make a list of such persons,
which would be your database:

>>> edward = ['Edward Gumby', 42]

>>> john = ['John Smith', 50]

>>> database = [edward, john]

>>> database

[['Edward Gumby', 42], ['John Smith', 50]]

This chapter begins with some operations that are common to all sequences, including
lists and tuples. These operations will also work with strings, which will be used in some of the
examples, although for a full treatment of string operations, you have to wait until the next
chapter.

After dealing with these basics, we start working with lists and see what’s special about them.
After lists, we come to tuples, which are very similar to lists, except that you can’t change them.

Note Python has a basic notion of a kind of data structure called a container, which is basically any object
that can contain other objects. The two main kinds of containers are sequences (such as lists and tuples) and
mappings (such as dictionaries). While the elements of a sequence are numbered, each element in a mapping
has a name (also called a key). You learn more about mappings in Chapter 4. For an example of a container
type that is neither a sequence nor a mapping, see the discussion of sets in Chapter 10.

Common Sequence Operations

There are certain things you can do with all sequence types. These operations include indexing,
slicing, adding, multiplying, and checking for membership. In addition, Python has built-in
functions for finding the length of a sequence, and for finding its largest and smallest elements.

Note One important operation not covered here is iteration. To iterate over a sequence means to perform
certain actions repeatedly, once per element in the sequence. To learn more about this, see the section
“Loops” in Chapter 5.

CHAPTER 2 LISTS AND TUPLES

Indexing

All elements in a sequence are numbered—from zero and upwards. You can access them
individually with a number, like this:

>>> greeting = 'Hello'
>>> greeting[0]
Wy

Note Astring is just a sequence of characters. The index 0 refers to the first element, in this case the letter H.

This is called indexing—you use an index to fetch an element. All sequences can be indexed in
this way. When you use a negative index, Python counts from the right, that is, from the last
element. The last element is at position -1 (not-0, as that would be the same as the first element):

>>> greeting[-1]

(o]

String literals (and other sequence literals, for that matter) may be indexed directly, without
using a variable to refer to them. The effect is exactly the same:

>>> 'Hello'[1]

e

If a function call returns a sequence, you can index it directly. For instance, if you are simply
interested in the fourth digit in a year entered by the user, you could do something like this:

>>> fourth = raw_input('Year: ')[3]

Year: 2005
>>> fourth
5

Listing 2-1 contains an example program that asks you for a year, a month (as a number from 1 to 12), and a day
(1to 31), and then prints out the date with the proper month name and so on. An example session with this program
might be as follows:

Year: 1974

Month (1-12): 8
Day (1-31): 16
August 16th, 1974

The last line is the output from the program.

33

34

CHAPTER 2 LISTS AND TUPLES

Listing 2-1. Indexing Example

Print out a date, given year, month, and day as numbers

months = [
"January’,
'February',
'"March',
"April’,
‘May",
"June’,
"July’,
'August’,
'September’,
'October’,
"November',
'December’

]

A list with one ending for each number from 1 to 31
endings = ['st', 'nd', 'rd'] + 17 * ["th'] \

+ ['st', 'nd", 'rd'] + 7 * ['th']\
['st']

+

year = raw_input('Year: ")
month = raw_input('Month (1-12): ')
day = raw_input('Day (21-31): ')

month_number = int(month)
day _number = int(day)

Remember to subtract 1 from month and day to get a correct index
month_name = months[month_number-1]
ordinal = day + endings[day number-1]

print month name + ' ' + ordinal + ', ' + year

Slicing
Just as you use indexing to access individual elements, you can use slicing to access ranges of
elements. You do this by using fwo indices, separated by a colon:

>>> tag = 'Python web site’
>>> tag[9:30]

"http://www.python.org'

>>> tag[32:-4]

'Python web site’

CHAPTER 2 LISTS AND TUPLES

As you can see, slicing is very useful for extracting parts of a sequence. The numbering
here is very important. The first index is the number of the first element you want to include.
However, the lastindex is the number of the first element after your slice. Consider the following:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers[3:6]

[4, 5, 6]

>>> numbers[0:1]

[1]

In short, you supply two indices as limits for your slice, where the first is inclusive, and the
second is exclusive.

A Nifty Shortcut

Let’s say you want to access the last three elements of numbers (from the previous example).
You could do it explicitly, of course:

>>> numbers[7:10]
(8, 9, 10]

Now, the index 10 refers to element 11—which does not exist, but is one step after the last
element you want. Got it?
Now, this is fine, but what if you want to count from the end?

>>> numbers[-3:-1]
(8, 9]

It seems you cannot access the last element this way. How about using 0 as the element
“one step beyond” the end?

>>> numbers[-3:0]

[]

Not exactly the desired result. In fact, any time the leftmost index in a slice comes later in
the sequence than the second one (in this case, the third-to-last cominglater than the first), the
result is always an empty sequence. Luckily, you can use a shortcut: If the slice continues to the
end of the sequence, you may simply leave out the last index:

>>> numbers[-3:]
(8, 9, 10]

The same thing works from the beginning:

>>> numbers[:3]
[1, 2, 3]

In fact, if you want to copy the entire sequence, you may leave out both indices:

>>> numbers| :]
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

35

36

CHAPTER 2 LISTS AND TUPLES

Listing 2-2 contains a small program that prompts you for a URL, and (assuming it is of the form http://
www . somedomainname . com) extracts the domain name. Here is a sample run of the program:

Please enter the URL: http://www.python.org
Domain name: python

Listing 2-2. Slicing Example

Split up a URL of the form http://www.something.com

url = raw_input('Please enter the URL: ')
domain = url[11:-4]

n

print "Domain name: " + domain

Longer Steps

When slicing, you specify (either explicitly or implicitly) the start and end points of the slice.
Another parameter (added to the built-in types in Python 2.3), which normally is left implicit,
is the step length. In aregular slice, the step length is one—the slice “moves” from one element
to the next, returning all the elements between the start and end:

>>> numbers[0:10:1]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In this example, you can see that the slice includes another number. This is, as you may
have guessed, the step size, made explicit. If the step size is set to a number greater than one,
elements will be skipped. For example, a step size of two will include only every other element
of the interval between the start and the end:

>>> numbers[0:10:2]
[1, 3, 5, 7, 9]
numbers[3:6:3]

(4]

You can still use the shortcuts mentioned earlier; if you want every fourth element of a
sequence, you only have to supply a step size of four:

>>> numbers[::4]
[1, 5, 9]

Naturally, the step size can’t be zero—that wouldn’t get you anywhere—but it can be
negative, which means extracting the elements from right to left:

CHAPTER 2 LISTS AND TUPLES

>>> numbers[8:3:-1]
[9, 8, 7, 6, 5]

>>> numbers[10:0:-2]
[10, 8, 6, 4, 2]

>>> numbers[0:10:-2]
[]

>>> numbers|[::-2]
[10, 8, 6, 4, 2]

>>> numbers[5::-2]
(6, 4, 2]

>>> numbers[:5:-2]
[10, 8]

Getting things right here can involve a bit of thinking. As you can see, the first limit (the
leftmost) is still inclusive, while the second (the rightmost) is exclusive. When using a negative
step size, you have to have a first limit (start index) that is higher than the second one. What
may be a bit confusing is that when you leave the start and end indices implicit, Python does
the “right thing” here; for a positive step size it moves from the beginning toward the end, and
for a negative step size it moves from the end toward the beginning.

Adding Sequences

Sequences can be concatenated with the addition (plus) operator:

>>> [1, 2, 3] + [4, 5, 6]
[1) 2) 3) 4) 5) 6]
>>> 'Hello, ' + 'world!'
'Hello, world!'
>>> [1, 2, 3] + 'world!'
Traceback (innermost last):
File "<pyshell#2>", line 1, in ?
[1, 2, 3] + 'world!"
TypeError: can only concatenate list (not "string") to list

As you can see from the error message, you can’t concatenate a list and a string, although
both are sequences. In general, you can only concatenate two sequences of the same kind.

Multiplication

Multiplying a sequence by a number x creates a new sequence where the original sequence is
repeated x times:

>>> 'python' * 5
"pythonpythonpythonpythonpython'

>>> [42] * 10

[42, 42, 42, 42, 42, 42, 42, 42, 42, 42]

37

38

CHAPTER 2 LISTS AND TUPLES

None, Empty Lists, and Initialization

An empty list is simply written as two brackets ([])—there’s nothing in it. But what if you want
to have a list with room for ten elements but with nothing useful in it? You could use [42]*10,
as before, or perhaps more realistically [0]*10. You now have a list with ten zeros in it. Some-
times, however, you would like a value that somehow means “nothing,” as in “we haven'’t put
anything here yet.” That’s when you use None. None is a Python value and means exactly that—
“nothing here.” So if you want to initialize a list of length 10, you could do the following:

>>> sequence = [None] * 10
>>> sequence
[None, None, None, None, None, None, None, None, None, None]

Listing 2-3 contains a program that prints (to the screen) a “box” made up of characters,
which is centered on the screen and adapted to the size of a sentence supplied by the user. The
following is a sample run:

Sentence: He's a very naughty boy!

| |
| He's a very naughty boy! |
| |

The code may look complicated, but it’s basically just arithmetic—figuring out how many
spaces, dashes, and so on you need in order to place things correctly.
Listing 2-3. Sequence (String) Multiplication Example

Prints a sentence in a centered "box" of correct width

Note that the integer division operator (//) only works in Python
2.2 and newer. In earlier versions, simply use plain division (/)

sentence = raw_input("Sentence: ")

screen width = 80

text width len(sentence)

box_width text_width + 6

left margin = (screen width - box width) // 2

print

print ' ' * left margin + '+' + '-' * (box width-2) + '+’
print ' ' * left margin + '| '+ ' ' * text width + |
print ' ' * left margin + '| ' + sentence + |
print ' ' * left margin + '| '+ ' ' * text width +
print " ' * left margin + '+ + '-' * (box width-2) + '+’

print

CHAPTER 2 LISTS AND TUPLES

Membership

To check whether a value can be found in a sequence, you use the in operator. This operator is

a bit different from the ones discussed so far (such as multiplication or addition). It checks

whether something is true, and returns a value accordingly: True for true and False for false.

Such operators are called Boolean operators, and the truth values are called Boolean values.

You learn more about Boolean expressions in the section on conditional statements in Chapter 5.
Here are some examples that use the in operator:

>>> permissions = 'rw

>>> 'w' in permissions

True

>>> 'x' in permissions

False

>>> users = ['mlh', 'foo', 'bar']

>>> raw_input('Enter your user name: ') in users
Enter your user name: mlh

True

>>> subject = "$$$ Get rich now!!! $$$'
>>> '$$$' in subject

True

The first two examples use the membership test to check whether 'w' and 'x' respectively
are found in the string permissions. This could be a script on a UNIX machine checking for
writing and execution permissions on a file. The next example checks whether a supplied user
name (mlh) is found in alist of users. This could be useful if your program enforces some security
policy. (In that case, you would probably want to use passwords as well.) The last example
could be a part of a spam filter, for example—it checks whether the string subject contains the
string '$$$".

Note The last example is a bit different from the others. In general, the in operator checks whether an
object is a member (that is, an element) of a sequence (or some other collection). However, the only members
or elements of a string are its characters. So, the following makes perfect sense:
>>> 'P' in 'Python’

True

In fact, in earlier versions of Python this was the only membership check that worked with strings—finding

out whether a character is found in a string. Trying to check for a longer substring, such as ' $$$ "', would give
you an error message (it would raise a TypeError), and you’d have to use a string method. You learn more

about those in Chapter 3. From Python 2.3, however, you can use the in operator to check whether any string
is a substring of another.

Listing 2-4 shows a program that reads in a user name and checks the entered PIN code
against a database (a list, actually) that contains pairs (more lists) of names and PIN codes. If

39

40

CHAPTER 2 LISTS AND TUPLES

the name/PIN pair is found in the database, the string 'Access granted' is printed. (The if
statement was mentioned in Chapter 1 and will be fully explained in Chapter 5.)

Listing 2-4. Sequence Membership Example

Check a user name and PIN code

database = [
['albert', '1234'],
['dilbert', '4242'],
['smith', '7524']
['jones', '9843']

)

username = raw_input('User name: ')
pin = raw_input('PIN code: ')

if [username, pin] in database: print 'Access granted’

Length, Minimum, and Maximum

The built-in functions len, min, and max can be quite useful. The function len returns the
number of elements a sequence contains, while min and max return the smallest and largest
element of the sequence respectively. (You learn more about comparing objects in Chapter 5,
in the section “Comparison Operators.”)

>>> numbers = [100, 34, 678]
>>> len(numbers)

3

>>> max(numbers)
678

>>> min(numbers)
34

>>> max(2, 3)

3

>>> min(9, 3, 2, 5)
2

How this works should be clear from the previous explanation, except possibly the last two
expressions. Here max and min are not called with a sequence argument; the numbers are supplied
directly as arguments.

Lists: Python’s Workhorse

In the previous examples, I've used lists quite a bit. You've seen how useful they are, but this
section deals with what makes them different from tuples and strings: Lists are mutable—that
is, you can change their contents—and they have many useful specialized methods.

CHAPTER 2 LISTS AND TUPLES

The list Function

Because strings can’t be modified in the same way as lists, often it can be useful to create a list
from a string. You can do this with the 1ist function:!

>>> list('Hello")
['H') Iel’ lll, Ill) Iol]

Note that 1ist works with all kinds of sequences, not just strings.

Tip To converta list of characters such as the preceding code back to a string, you would use the following
expression:

"".join(somelist)

where somelist is your list. For an explanation of what this really means, see the section about join in
Chapter 3.

Basic List Operations

You can perform all the standard sequence operations on lists, such as indexing, slicing,
concatenating, and multiplying; but the interesting thing about lists is that they can be modi-
fied. In this section, you see some of the ways you can change a list: item assignments, item
deletion, slice assignments, and list methods. (Note that not all list methods actually change
their list.)

Changing Lists: Iltem Assignments

Changing a list is easy. You just use ordinary assignment as explained in the first chapter.
However, instead of writing something like x = 2, you use the indexing notation to assign to
a specific, existing position, such as x[1] = 2.

>»> x = [1, 1, 1]
>>> x[1] = 2

>>> X

[1, 2, 1]

Note You cannot assign to a position that doesn’t exist; if your list is of length 2, you cannot assign a value
to index 100. To do that, you would have to make a list of length 101 (or more). See the section “None, Empty
Lists, and Initialization,” earlier in this chapter.

1. It's actually a type, not a function, but the difference isn’t important right now.

41

42

CHAPTER 2 LISTS AND TUPLES

Deleting Elements

Deleting elements from a list is easy too; you can simply use the del statement:

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']
>>> del names[2]

>>> names

['Alice', 'Beth', 'Dee-Dee', 'Earl']

Notice how Cecil is completely gone, and the length of the list has shrunk from five to four.
The del statement may be used to delete things other than list elements. It can be used
with dictionaries (see Chapter 4) or even variables. For more information, see Chapter 5.

Assigning to Slices

Slicing is a very powerful feature, and it is made even more powerful by the fact that you can
assign to slices:

>>> name = list('Perl")
>>> name

[IPI) 'e" II'} '1I]

>>> name[2:] = list('ar')
>>> name
['P', 'e', 'a

' s 1l I_ 1]

So you can assign to several positions at once. You may wonder what the big deal is. Couldn’t
you just have assigned to them one at a time? Sure, but when you use slice assignments, you
may also replace the slice with a sequence whose length is different from that of the original:

>>> name = 1list('Perl")
>>> name[1:] = list('ython')
>>> name
[IPI) 'yIJ Itl) 'hl) 'O') 'n']
Slice assignments can even be used to insert elements without replacing any of the
original ones:

>>> numbers = [1, 5]

>>> numbers[1:1] = [2, 3, 4]
>>> numbers

[1J 2) 3) 4) 5]

Here, I basically “replaced” an empty slice, thereby really inserting a sequence. You can do
the reverse to delete a slice:

>>> numbers

[1) 2) 3) 4) 5]

>>> numbers[1:4] = []
>>> numbers

[1, 5]

As you may have guessed, this last example is equivalent to del numbers[1:4].

CHAPTER 2 LISTS AND TUPLES

List Methods

You've encountered functions already, but now it’s time to meet a close relative: methods.

Note You get a much more detailed explanation of what methods really are in Chapter 7.

A method is a function that is tightly coupled to some object, be it alist, a number, a string,
or whatever. In general, a method is called like this:

object.method(arguments)

As you can see, a method call looks just like a function call, except that the object is put
before the method name, with a dot separating them. Lists have several methods that allow
you to examine or modify their contents.

append
The append method is used to append an object to the end of a list:

>>> Ist = [1, 2, 3]
>>> lst.append(4)
>>> st

[1, 2, 3, 4]

You might wonder why I have chosen such an ugly name as 1st for my list. Why not call it
1ist?I could do that, but as you might remember, 1ist is a built-in function.? If I use the name
foralistinstead, Iwon’tbe able to call the function anymore. You can generally find better names
for a given application. A name such as 1st really doesn’t tell you anything. So if your list is a list
of prices, for instance, you probably ought to call it something like prices, prices_of eggs, or
pricesOfEggs.

It’s also important to note that append, like several similar methods, changes the list in
place. This means that it does not simply return a new, modified list—it modifies the old one
directly. This is usually what you want, but it may sometimes cause trouble. I'll return to this
discussion when I describe sort later in the chapter.

count

The count method counts the occurrences of an element in a list:

>>> ['to', 'be', 'or', 'not', 'to', 'be'].count('to")
2

>»> x = [[1, 2], 1, 1, [2, 1, [1, 2]]]

>>> x.count(1)

2

>>> x.count([1, 2])

1

2. Actually, from version 2.2 of Python, list is a type, not a function. (This is the case with tuple and str
as well.) For the full story on this, see the section “Subclassing 1ist, dict, and str,” in Chapter 9.

43

44

CHAPTER 2 LISTS AND TUPLES

extend

The extend method allows you to append several values at once by supplying a sequence of the
values you want to append. In other words, your original list has been extended by the other one:

>>>a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a.extend(b)
>>> a

[1, 2, 3, 4, 5, 6]

This may seem similar to concatenation, but the important difference is that the extended
sequence (in this case, a) is modified. This is not the case in ordinary concatenation, in which
a completely new sequence is returned:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>»>a+b

[1, 2, 3, 4, 5, 6]
>>> a

[1, 2, 3]

As you can see, the concatenated list looks exactly the same as the extended one in the
previous example, yet a hasn’t changed this time. Because ordinary concatenation has to make
anew list that contains copies of a and b, it isn’t quite as efficient as using extend if what you
want is something like this:

>»>a=a+b

Also, this isn’t an in-place operation—it won’t modify the original.
The effect of extend can be achieved by assigning to slices, as follows:

>>>a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a[len(a):] = b
>>> a

[1, 2, 3, 4, 5, 6]

While this works, it isn’t quite as readable.

index

The index method is used for searching lists to find the index of the first occurrence of a value:

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni']
>>> knights.index('who")
4
>>> knights.index('herring")
Traceback (innermost last):
File "<pyshell#76>", line 1, in ?

knights.index('herring")

ValueError: list.index(x): x not in list

CHAPTER 2 LISTS AND TUPLES

When you search for the word “who,” you find that it’s located at index 4:

>>> knights[4]
'who

However, when you search for 'herring', you get an exception because the word is not
found at all.

insert

The insert method is used to insert an object into a list:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers.insert(3, 'four')
>>> numbers

[1) 2, 3, 'four', 5, 6, 7]

As with extend, you can implement insert with slice assignments:

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers[3:3] = ['four']

>>> numbers

[1) 2, 3, Ifourl) 5, 6, 7]

This may be fancy, but it is hardly as readable as using insert.

pop

The pop method removes an element (by default the last one) from the list and returns it:

>»> x = [1, 2, 3]
>>> x.pop()

3

>>> X

[1, 2]

>>> x.pop(0)

1

>>> X

[2]

Note The pop method is the only list method that both modifies the list and returns a value (other
than None).

Using pop, you can implement a common data structure called a stack. A stack like this
works just like a stack of plates. You can put plates on top, and you can remove plates from the
top. The last one you put into the stack is the first one to be removed. (This principle is called
Last-In, First-Out, or LIFO.)

45

46

CHAPTER 2 LISTS AND TUPLES

The generally accepted names for the two stack operations (putting things in and taking
them out) are push and pop. Python doesn’t have push, but you can use append instead. The pop
and append methods reverse each other’s results, so if you push (or append) the value you just
popped, you end up with the same stack:

>>> x = [1, 2, 3]
>>> x.append(x.pop())
>>> X

[1, 2, 3]

Tip If you want a First-In, First-Out (FIFO) queue, you can use insert (0, ...) instead of append. Alter-
natively, you could keep using append but substitute pop (0) for pop (). An even better solution would be to
use a deque from the collections module. See Chapter 10 for more information.

remove

The remove method is used to remove the first occurrence of a value:

>>> x = ['to', 'be', 'or', 'not', 'to', 'be']
>>> x.remove('be")
>>> X
['to', 'or', 'not', 'to', 'be'l]
>>> x.remove('bee")
Traceback (innermost last):
File "<pyshell#3>", line 1, in ?
x.remove('bee")
ValueError: list.remove(x): x not in list

As you can see, only the first occurrence is removed, and you cannot remove something
(in this case, the string 'bee") if it isn’t in the list to begin with.

It’s important to note that this is one of the “nonreturning in-place changing” methods. It
modifies the list, but returns nothing (as opposed to pop).

reverse

The reverse method reverses the elements in the list. (Not very surprising, I guess.)

>>> x = [1, 2, 3]
>>> x.reverse()
>>> X

(3, 2, 1]

Note that reverse changes the list and does not return anything (just like remove and sort,
for example).

CHAPTER 2 LISTS AND TUPLES

Tip If you want to iterate over a sequence in reverse, you can use the reversed function. This function
doesn’t return a list, though; it returns an iterator. (You learn more about iterators in Chapter 9.) You can
convert the returned object with 1ist, though:

>»> x = [1, 2, 3]
>>> list(reversed(x))
(3, 2, 1]

sort

The sort method is used to sort lists in place.3 Sorting “in place” means changing the original
list so its elements are in sorted order, rather than simply returning a sorted copy of the list:

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort()

>>> X

(1, 2, 4, 6, 7, 9]

You've encountered several methods already that modify the list without returning anything,
and in most cases that behavior is quite natural (as with append, for example). But I want to
emphasize this behavior in the case of sort because so many people seem to be confused by it.
The confusion usually occurs when users want a sorted copy of a list while leaving the original
alone. An intuitive (but wrong) way of doing this is as follows:

> > X = [4J 6, 2, 1, 7, 9]

>>> y = x.sort() # Don't do this!
>>> print y

None

Because sort modifies x but returns nothing, you end up with a sorted x and a y containing
None. One correct way of doing this would be to first bind y to a copy of x, and then sort y,
as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>»>y = x[:]

>>> y.sort()

>>> X

(4, 6, 2, 1, 7, 9]

>y

(1, 2, 4, 6, 7, 9]

Recall that x[:] is a slice containing all the elements of x, effectively a copy of the entire
list. Simply assigning x to y wouldn’t work because both x and y would refer to the same list:

3. In case you're interested: From Python 2.3 on, the sort method uses a stable sorting algorithm.

47

48 CHAPTER 2 LISTS AND TUPLES

>>> Y = X
>>> y.sort()

>>> X

[1, 2, 4, 6, 7, 9]
>>>y

[1, 2, 4, 6, 7, 9]

Another way of getting a sorted copy of a list is using the sorted function:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = sorted(x)

>>> X

(4, 6, 2, 1, 7, 9]

>>>y

[1, 2, 4, 6, 7, 9]

This function can actually be used on any sequence, but will always return a list:*

>>> sorted('Python')
[IPI) lhl, Inl’ 'OI) ltl, Iyl]
If you want to sort the elements in reverse order, you can use sort (or sorted), followed by

acall to the reverse method, or you could use the reverse argument, described in the following
section.

Advanced Sorting

If you want to have your elements sorted in a specific manner (other than sort’s default
behavior, which is to sort elements in ascending order) you can define your own comparison
function, of the form compare(x,y), which returns a negative number when x < y, a positive
number when x > y, and zero when x == y (according to your definition). You can then supply
this as a parameter to sort. The built-in function cmp provides the default behavior:

>>> cmp(42, 32)

1

>>> cmp(99, 100)

-1

>>> cmp(10, 10)

0

>>> numbers = [5, 2, 9, 7]
>>> numbers.sort(cmp)

>>> numbers

[2, 5, 7, 9]

The sort method has two other optional arguments as well—key and reverse. If you want
to use them, you normally specify them by name (so-called keyword arguments; you learn
more about those in Chapter 6). The key argument is similar to the cmp argument: You supply

4. The sorted function can, in fact, be used on any other iterable object. You learn more about iterable
objects in Chapter 9.

CHAPTER 2 LISTS AND TUPLES

a function and it’s used in the sorting process. However, instead of being used directly for
determining whether one element is smaller than another, the function is used to create a key
for each element, and the elements are sorted according to these keys. So, for example, if you
want to sort the elements according to their lengths, you use len as the key function:

>>> x = ['aardvark', 'abalone', 'acme', 'add', 'aerate']
>>> x.sort(key=1len)

> X

['add', 'acme', 'aerate', 'abalone', 'aardvark']

The other keyword argument, reverse, is simply a truth value (True or False; you learn
more about these in Chapter 5) indicating whether the list should be sorted in reverse:

>>> x = [4, 6, 2, 1, 7, 9]
>>> X.sort(reverse=True)
>>> X

(9, 7, 6, 4, 2, 1]

The cmp, key, and reverse arguments are available in the sorted function as well. In many
cases, using custom functions for cmp or key will be useful—you learn how to define your own
functions in Chapter 6.

Tip If you would like to read more about sorting, you may want to check out Andrew Dalke’s “Sorting
Mini-HOWTO,” found at http://python.org/doc/howto.

Tuples: Immutable Sequences

Tuples are sequences, just like lists. The only difference is that tuples can’t be changed.’ (As you
may have noticed, this is also true of strings.) The tuple syntax is simple—if you separate some
values with commas, you automatically have a tuple:

>»> 1, 2, 3
(1, 2, 3)

As you can see, tuples may also be (and often are) enclosed in parentheses:

»> (1, 2, 3)
(1, 2, 3)

The empty tuple is written as two parentheses containing nothing:

>>> ()

0

5. There are some technical differences in the way tuples and lists work behind the scenes, but you probably
won't notice it in any practical way. And tuples don’t have methods the way lists do. Don’t ask me why.

49

50

CHAPTER 2 LISTS AND TUPLES

So, you may wonder how to write a tuple containing a single value. This is a bit peculiar—
you have to include a comma, even though there is only one value:

>>> 42

42

>>> 42,
(42,)

>>> (42,)
(42,)

The last two examples produce tuples of length one, while the first is not a tuple at all. The
comma is crucial. Simply adding parentheses won’t help: (42) is exactly the same as 42. One
lonely comma, however, can change the value of an expression completely:

>>> 3%(40+2)
126

>>> 3%(40+2,)
(42, 42, 42)

The tuple Function

The tuple function works in pretty much the same way as list: It takes one sequence argument
and converts it to a tuple.® If the argument is already a tuple, it is returned unchanged:

>>> tuple([1, 2, 3])
(1, 2, 3)

>>> tuple('abc')
(‘a’, b, ')

>>> tuple((1, 2, 3))
(1, 2, 3)

Basic Tuple Operations

Asyoumay have gathered, tuples aren’t very complicated—and there isn’t really much you can
do with them except make them and access their elements, and you do this the same as with
other sequences:

> Xx =1, 2, 3
>>> x[1]

2

>>> x[0:2]

(1, 2)

As you can see, slices of a tuple are also tuples, just as list slices are themselves lists.

6. And, as I remarked for list, tuple isn’t really a function—it’s a type. But, as for 1ist, you can safely
ignore this for now.

CHAPTER 2 LISTS AND TUPLES

So What’s the Point?

By now you are probably wondering why anyone would ever want such a thing as an immutable
(unchangeable) sequence. Can’t you just stick to lists and leave them alone when you don’t
want them to change? Basically, yes. However, there are two important reasons why you need
to know about tuples:

e They can be used as keys in mappings—Ilists can’t be. (You may remember that mappings
were mentioned in the chapter introduction. You'll learn more about them in Chapter 4.)

* They are returned by some built-in functions and methods, which means that you have
to deal with them. As long as you don’t try to change them, “dealing” with them most
often means treating them just like lists (unless you need methods such as index and
count, which tuples don’t have).

In general, lists will probably be adequate for all your sequencing needs.

A Quick Summary

Let’s review some of the most important concepts covered in this chapter:

Sequences. A sequence is a data structure in which the elements are numbered (starting
with zero). Examples of sequence types are lists, strings, and tuples. Of these, lists are
mutable (you can change them), whereas tuples and strings are immutable (once they're
created, they're fixed). Parts of a sequence can be accessed through slicing, supplying two
indices, indicating the starting and ending position of the slice. To change a list, you assign
new values to its positions, or use assignment to overwrite entire slices.

Membership. Whether a value can be found in a sequence (or other container) is checked

with the operator in. Using in with strings is a special case—it will let you look for substrings.

Methods. Some of the built-in types (such as lists and strings, but not tuples) have many
useful methods attached to them. These are a bit like functions, except that they are tied
closely to a specific value. Methods are an important aspect of object-oriented program-
ming, which we look at later, in Chapter 7.

51

52

CHAPTER 2 LISTS AND TUPLES

New Functions in This Chapter

Function Description

cmp(x, y) Compares two values

len(seq) Returns the length of a sequence

list(seq) Converts a sequence to a list

max(args) Returns the maximum of a sequence or set of arguments
min(args) Returns the minimum of a sequence or set of arguments
reversed(seq) Lets you iterate over a sequence in reverse

sorted(seq) Returns a sorted list of the elements of seq

tuple(seq) Converts a sequence to a tuple

What Now?

Now that you're acquainted with sequences, let’s move on to character sequences, also known
as strings.

CHAPTER 3

Working with Strings

You’ve seen strings before, and know how to make them. You've also looked at how to access
their individual characters by indexing and slicing. In this chapter, you see how to use them to
format other values (for printing, for example), and take a quick look at the useful things you
can do with string methods, such as splitting, joining, searching, and more.

Basic String Operations

All the standard sequence operations (indexing, slicing, multiplication, membership, length,
minimum, and maximum) work with strings, as you saw in the previous chapter. Remember,
however, that strings are immutable, so all kinds of item or slice assignments are illegal:

>>> website = "http://www.python.org’
>>> website[-3:] = 'com'
Traceback (most recent call last):
File "<pyshell#19>", line 1, in ?
website[-3:] = 'com'

TypeError: object doesn't support slice assignment

String Formatting: The Short Version

If you are new to Python programming, chances are you won’t need all the options that are
available in Python string formatting, so I'll give you the short version here. If you are interested in
the details, take a look at the section “String Formatting: The Long Version,” which follows.
Otherwise, just read this and skip down to the section “String Methods.”

String formatting is done with the string formatting operator, the percent (%) sign.

Note As you may remember, % is also used as a modulus (remainder) operator.

To the left of it you place a string (the format string), and to the right of it you place the
value you want to format. You can either use a single value such as a string or a number, or you

53

54

CHAPTER 3 WORKING WITH STRINGS

can use a tuple of values (if you want to format more than one), or, as I discuss in the next chapter,
you can use a dictionary. The most common case is the tuple:

>>> format = "Hello, %s. %s enough for ya?"
>>> values = ('world', 'Hot')

>>> print format % values

Hello, world. Hot enough for ya?

Note If you use a list or some other sequence instead of a tuple, the sequence will be interpreted as
a single value. Only tuples and dictionaries (discussed in Chapter 4) will allow you to format more than
one value.

The %s parts of the format string are called conversion specifiers. They mark the places
where the values are to be inserted. The s means that the values should be formatted as if they
were strings—if they aren’t, they’ll be converted with str. This works with most values; for a list
of other specifier types, see Table 3-1 later in the chapter.

Note To actually include a percent sign in the format string, you must write %% so Python doesn’t mistake
it for the beginning of a conversion specifier.

If you are formatting real numbers (floats), you can use the f specifier type and supply the
precision as a . (dot) followed by the number of decimals you want to keep. The format specifier
always ends with a type character, so you must put the precision before that:

>>> format = "Pi with three decimals: %.3f"
>>> from math import pi

>>> print format % pi

Pi with three decimals: 3.142

TEMPLATE STRINGS

The string module offers another way of formatting values: template strings. They work more like variable
substitution in many UNIX shells, with $foo being replaced by a keyword argument called foo that is passed
to the template method substitute;!

>>> from string import Template

>>> s = Template('$x, glorious $x!")
>>> s.substitute(x="slurm")

'slurm, glorious slurm!'

1. For more about keyword arguments, see Chapter 6.

CHAPTER 3 WORKING WITH STRINGS

If the replacement field is part of a word, the name must be enclosed in braces, in order to make it clear where
it ends:

>>> s = Template("It's ${x}tastic!")
>>> s.substitute(x="slurm")
"It's slurmtastic!"”

In order to insert a dollar sign, use $$:

>>> s = Template("Make $$ selling $x!")
>>> s.substitute(x="slurm")
‘Make $ selling slurm!’

Instead of using keyword arguments, you can supply the value-name pairs in a dictionary (see Chapter 4):

>>> s = Template('A $thing must never $action."')
>>>d = {}

>>> d['thing'] = 'gentleman’

>>> d['action'] = 'show his socks'

>>> s.substitute(d)

'A gentleman must never show his socks.'

There is also a method called sate_substitute that will not complain about missing values or incorrect
uses of the $ character. See Section 4.1.2, “Template strings,” of the Python Library Reference (http://
python.org/doc/1ib/node108.html).

String Formatting: The Long Version

The right operand of the formatting operator may be anything; if it is either a tuple or a mapping
(like a dictionary), it is given special treatment. We haven’t looked at mappings (such as
dictionaries) yet, so let’s focus on tuples here. We’ll use mappings in formatting in Chapter 4,
where they’re discussed in greater detail. If the right operand is a tuple, each of its elements is
formatted separately, and you need a conversion specifier for each of the values.

Note If you write the tuple to be converted as part of the conversion expression, you must enclose it in
parentheses to avoid confusing Python:

>>> '%s plus %s equals %s' % (1, 1, 2)
'1 plus 1 equals 2'
>>> '%s plus %s equals %s' % 1, 1, 2 # Lacks parentheses!
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: not enough arguments for format string

55

56 CHAPTER 3 WORKING WITH STRINGS

In the material that follows, I walk you through the various parts of the conversion specifier.
For a summary, see the sidebar “Conversion Specifier Anatomy.”

CONVERSION SPECIFIER ANATOMY

A basic conversion specifier (as opposed to a full conversion specifier, which may contain a mapping key as
well; see Chapter 4 for more information) consists of the items that follow. Note here that the order is crucial.

¢ The % character. This marks the beginning of the conversion specifier.

e Conversion flags (optional). These may be either -, indicating left alignment; +, indicating that a sign
should precede the converted value; “ ” (a space character), indicating that a space should precede
positive numbers; or 0, indicating that the conversion should be zero-padded.

¢ The minimum field width (optional). The converted string will be at least this wide. If this is an *
(asterisk), the width will be read from the value tuple.

e A. (dot) followed by the precision (optional). If a real number is converted, this many decimals should
be shown. If a string is converted, this number is that maximum field width. If this is an * (asterisk), the
precision will be read from the value tuple.

¢ The conversion type (see Table 3-1).

Simple Conversion

The simple conversion, with only a conversion type, is really easy to use:

>>> 'Price of eggs: $%d' % 42

'Price of eggs: $42'

>>> 'Hexadecimal price of eggs: %x' % 42
'Hexadecimal price of eggs: 2a’

>>> from math import pi

>>> 'Pir %f..0" % pd

'Pi: 3.141593..."

>>> 'Very inexact estimate of pi: %i' % pi
'Very inexact estimate of pi: 3'

>>> 'Using str: %s' % 42L

'Using str: 42'

>>> 'Using repr: %r' % 42L

'Using repr: 42L'

For a list of all conversion types, see Table 3-1.

CHAPTER 3 WORKING WITH STRINGS

Table 3-1. String Formatting Conversion Types

Gonversion Type Meaning

d, i Signed integer decimal

0 Unsigned octal

u Unsigned decimal

X Unsigned hexadecimal (lowercase)

X Unsigned hexadecimal (uppercase)

e Floating point exponential format (lowercase)

E Floating point exponential format (uppercase)

f,F Floating point decimal format

g Same as e if exponent is greater than —4 or less than precision, otherwise
G Same as E if exponent is greater than —4 or less than precision, F otherwise
C Single character (accepts integer or single character string)

T String (converts any Python object using repr)

Width and Precision

A conversion specifier may include a field width and a precision. The width is the minimum
number of characters reserved for a formatted value, while the precision is (for a numeric
conversion) the number of decimals that will be included in the result, or (for a string conversion)
the maximum number of characters the formatted value may have.

These two parameters are supplied as two integer numbers (width first, then precision),
separated by a . (dot). Both are optional, but if you want to supply only the precision, you must
also include the dot:

>>> '%10f" % pi # Field width 10

' 3.141593'

>>> '%10.2f" % pi # Field width 10, precision 2
' 3.14'

>>> '%.2f" % pi # Precision 2

'3.14'

>>> '%.55"' % 'Guido van Rossum'

'Guido’

You can use an * (asterisk) as the width or precision (or both), in which case the number
will be read from the tuple argument:

>>> '%.*s" % (5, 'Guido van Rossum")
"Guido’

57

58

CHAPTER 3 WORKING WITH STRINGS

Signs, Alignment, and Zero-Padding

Before the width and precision numbers, you may put a “flag,” which may be either zero, plus,
minus, or blank. A zero means that the number will be zero-padded:

>>> '%010.2f" % pi
'0000003.14'

It’s important to note here that the leading zero in 010 in the preceding code does not
mean that the width specifier is an octal number, as it would in a normal Python number.
When you use 010 as the width specifier, it means that the width should be 10 and that the
number should be zero-padded, not that the width should be 8:

>>> 010
8

A minus sign (-) left-aligns the value:

>>> '%-10.2f" % pi
'3.14 '

As you can see, any extra space is put on the right-hand side of the number.
Ablank (“ ”) means that a blank should be put in front of positive numbers. This may be
useful for aligning positive and negative numbers:

>>> print ('% 5d' % 10) + '\n' + ('% 5d' % -10)
10
-10

Finally, a plus (+) means that a sign (either plus or minus) should precede both positive
and negative numbers (again, useful for aligning):

>>> print ('%+5d' % 10) + '\n' + ('%+5d' % -10)
+10
-10

In the following example, I use the asterisk width specifier to format a table of fruit prices,
where the user enters the total width of the table. Because this information is supplied by the
user, I can’t hard-code the field widths in my conversion specifiers; by using the asterisk, I can
have the field width read from the converted tuple. The source code is given in Listing 3-1.

Listing 3-1. String Formatting Example

Print a formatted price list with a given width

width = input('Please enter width: ")

CHAPTER 3 WORKING WITH STRINGS
price width = 10
item width = width - price width

header format = '%-*s¥k*s'
format = "%-*skx.2f!

print '=' * width

print header format % (item width, 'Item', price width, 'Price")
print '-' * width

print format % (item width, 'Apples', price width, 0.4)

print format % (item width, 'Pears', price width, 0.5)

print format % (item width, 'Cantaloupes', price width, 1.92)

print format % (item width, 'Dried Apricots (16 o0z.)', price width, 8)
print format % (item width, 'Prunes (4 1lbs.)', price width, 12)

3R 3% 3R 3%

print '=' * width

The following is a sample run of the program:

Please enter width: 35

Item Price
Apples 0.40
Pears 0.50
Cantaloupes 1.92
Dried Apricots (16 oz.) 8.00
Prunes (4 lbs.) 12.00

String Methods

You have already encountered methods in lists. Strings have a much richer set of methods, in
part because strings have “inherited” many of their methods from the string module where
they resided as functions in earlier versions of Python (and where you may still find them, if
you feel the need).

59

60 CHAPTER 3 WORKING WITH STRINGS

BUT STRING ISN'T DEAD

Even though string methods have completely upstaged the string module, the module still includes a few
constants and functions that aren’t available as string methods. The maketrans function is one example and
will be discussed together with the translate method in the material that follows. Table 3-2 shows some
useful constants available from stxing. For a more thorough description of the module, check out Section 4.1
of the Python Library Reference (http://python.org/doc/lib/module-string.html).

Table 3-2. Useful Values from the string Module

Constant Description

string.digits A string containing the digits 0-9

string.letters A string containing all letters (upper- and lowercase)
string.lowercase A string containing all lowercase letters
string.printable A string containing all printable characters
string.punctuation A string containing all punctuation characters
string.uppercase A string containing all uppercase letters

Because there are so many string methods, only some of the most useful ones are described
here. For a full reference, see Appendix B. In the description of the string methods, you will find
references to other, related string methods in this chapter (marked “See also”) or in Appendix B.

find

The find method finds a substring within a larger string. It returns the leftmost index where the
substring is found. If it is not found, -1 is returned:

>>> 'With a moo-moo here, and a moo-moo there'.find('moo")
7

>>> title = "Monty Python's Flying Circus"
>>> title.find('Monty")

0

>>> title.find('Python")

6

>>> title.find('Flying")

15

>>> title.find('Zirquss")

-1

In our first encounter with membership in Chapter 2, we created part of a spam filter by
using the expression '$$$' in subject. We could also have used find (which would also have

CHAPTER 3 WORKING WITH STRINGS

worked prior to Python 2.3, when in could only be used when checking for single character
membership in strings):

>>> subject = "$$$ Get rich now!!! $$$'
>>> subject.find('$$$")
0

Note The string method find does ot return a Boolean value. If find returns 0, as it did here, it means
that it has found the substring, at index zero.

You may also supply a starting point for your search and, optionally, also an ending point:

>>> subject = "$$$ Get rich now!!! $$$'
>>> subject.find('$$$")

0

>>> subject.find('$$$', 1) # Only supplying the start
20

>>> subject.find('!!1")

16

>>> subject.find('!!!", 0, 16) # Supplying start and end
-1

Note that the range specified by the start and stop values (second and third parameter)
includes the first index but not the second. This is common practice in Python.
In Appendix B: rfind, index, rindex, count, startswith, endswith.

join
Averyimportant string method, join is the inverse of split, and is used to join the elements of
a sequence:

>>> seq = [1, 2, 3, 4, 5]
>>> sep = '+’
>>> sep.join(seq) # Trying to join a list of numbers
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: sequence item 0: expected string, int found
>>> seq = ["1', '2", '3', '4", '5']
>>> sep.join(seq) # Joining a list of strings

'1+2+3+4+45'

>>> dirs = "', 'usr', 'bin', 'env'
>>> '/'.join(dirs)

"/usr/bin/env’

>>> print 'C:' + "\\'.join(dirs)
C:\usr\bin\env

61

62

CHAPTER 3 WORKING WITH STRINGS

As you can see, the sequence elements that are to be joined must all be strings. Note how
in the last two examples I make use of a list of directories and format them according to the
conventions of UNIX and DOS/Windows simply by using a different separator (and adding a
drive name in the DOS version).

See also: split.

lower

The lower method returns a lowercase version of the string:

>>> 'Trondheim Hammer Dance'.lower()
"trondheim hammer dance'

This can be useful if you want to write code that is “case-insensitive”’—that is, code that
ignores the difference between uppercase and lowercase letters. For instance, you want to
check whether a user name is found in a list. If your list contains the string 'gumby' and the user
enters his name as 'Gumby ', you won't find it:

>>> if 'Gumby' in ['gumby', 'smith', 'jones']: print 'Found it!'
>>>
The same will of course happen if you have stored 'Gumby' and the user writes 'gumby ",

or even 'GUMBY'. A solution to this is to convert all names to lowercase both when storing and
searching. The code would look something like this:

>>> name = 'Gumby'
>>> names = ['gumby', 'smith', 'jones']
>>> if name.lower() in names: print 'Found it!'

Found it!
>>>

See also: translate.
In Appendix B: islower, capitalize, swapcase, title, istitle, upper, isupper.

replace

The replace method returns a string where all the occurrences of one string have been replaced
by another:

>>> 'This is a test'.replace('is', 'eez')
‘Theez eez a test'

If you have ever used the “search and replace” feature of a word processing program, you
will no doubt see the usefulness of this method.

See also: translate.

In Appendix B: expandtabs.

CHAPTER 3 WORKING WITH STRINGS

split

A very important string method, split is the inverse of join, and is used to split a string into
a sequence:

>>> '142+3+4+5" .split('+")

['1') I2') '3IJ I4') ISI]

>>> '/usr/bin/env'.split('/")

['', 'usr', 'bin', 'env']

>>> 'Using the default'.split()
['Using', 'the', 'default']

Note that if no separator is supplied, the default is to split on all runs of consecutive
whitespace characters (spaces, tabs, newlines, and so on).

See also: join.

In Appendix B: rsplit, splitlines.

strip

The strip method returns a string where whitespace on the left and right (but not internally)
has been stripped (removed):

>>> internal whitespace is kept ".strip()
"internal whitespace is kept'

As with lower, strip can be useful when comparing input to stored values. Let’s return to
the user name example from the section on lower, and let’s say that the user inadvertently
types a space after his name:

>>> names = ['gumby', 'smith', 'jones']
>>> name = 'gumby '
>>> if name in names: print 'Found it!'

>>> if name.strip() in names: print 'Found it!'
Found it!
>>>

You can also specify which characters are to be stripped, by listing them all in a string
parameter:

>>> "FEX GPAM * for * everyone!ll *®k' ctrip(' *1')
'SPAM * for * everyone'

Stripping is only performed at the ends, so the internal asterisks are not removed.
In Appendix B: 1strip, rstrip.

63

64

CHAPTER 3 WORKING WITH STRINGS

translate

Similar to replace, translate replaces parts of a string, but unlike replace, translate only works
with single characters. Its strength lies in that it can perform several replacements simultaneously,
and can do so more efficiently than replace.

There are quite a few rather technical uses for this method (such as translating newline
characters or other platform-dependent special characters), but let’s consider a simpler
(although slightly more silly) example. Let’s say you want to translate a plain English text into
one with a German accent. To do this, you must replace the character “c” with “k,” and “s” with “z.”

Before you can use translate, however, you must make a translation table. This translation
table is a full listing of which characters should be replaced by which. Because this table (which is
actually just a string) has 256 entries, you won’t write it out yourself: You’ll use the function
maketrans from the string module.

The maketrans function takes two arguments: two strings of equal length, indicating that
each character in the first string should be replaced by the character in the same position in the
second string. Got that? In the case of our simple example, the code would look like the following:

>>> from string import maketrans
>>> table = maketrans('cs', 'kz')

WHAT’S IN A TRANSLATION TABLE?

A translation table is a string containing one replacement letter for each of the 256 characters in the ASCII
character set:

>>> table = maketrans('cs', 'kz')
>>> len(table)

256

>>> table[97:123]
"abkdefghijklmnopqrztuvwxyz'

>>> maketrans('', '')[97:123]
"abcdefghijklmnopqrstuvwxyz'

As you can see, I've sliced out the part of the table that corresponds to the lowercase letters. Take a look
at the alphabet in the table and that in the empty translation (which doesn’t change anything). The empty
translation has a normal alphabet, while in the preceding code, the letter “c” has been replaced by “k,” and
“s” has been replaced by “z.”

Once you have this table, you can use it as an argument to the translate method, thereby
translating your string:

>>> '"this is an incredible test'.translate(table)
'thiz iz an inkredible tezt'

CHAPTER 3 WORKING WITH STRINGS

An optional second argument can be supplied to translate, specifying letters that should
be deleted. If you wanted to emulate a really fast-talking German, for instance, you could
delete all the spaces:

>>> 'this is an incredible test'.translate(table, ' ")
'thizizaninkredibletezt'

Tip Sometimes string methods such as Lower won’t work quite the way you want them to—for instance,
if you happen to use a non-English alphabet. Let’s say you want to convert the uppercase Norwegian word
“BOLLEFR@” to its lowercase equivalent:

>>> print "BOLLEFRQ'.lower()
bpllefr(

As you can see, this didn’t really work because Python doesn’t consider “@” a real letter. In this case, you can
use translate to do the translation:

>>> table = maketrans('APA', '®pd')

>>> word = 'KAPES@M'

>>> print word.lower()

kApes@m

>>> print word.translate(table)

KaPESgM

>>> print word.translate(table).lower()
kapesom

See also: replace, lower.

A Quick Summary

In this chapter, you have seen two important ways of working with strings:

String formatting. The modulo operator (%) can be used to splice values into a string that
contains conversion flags, such as %s. You can use this to format values in many ways,
including right or left justification, setting a specific field width and precision, adding a
sign (plus or minus), or left-padding with zeros.

String methods. Strings have a plethora of methods. Some of them are extremely useful
(such as split and join), while others are used less often (such as istitle or capitalize).

65

66

CHAPTER 3 WORKING WITH STRINGS

New Functions in This Chapter

Function Description
string.maketrans(from, to) Makes a translation table for translate
What Now?

Lists, strings, and dictionaries are three of the most important data types in Python. You've
seen lists and strings, so guess what’s next? In the next chapter, you see how dictionaries not
only support indices, but other kinds of keys (such as strings or tuples) as well. Dictionaries
also support a few methods, although not as many as strings.

CHAPTER 4

Dictionaries: When Indices
Won’t Do

You’ve seen that lists are useful when you want to group values into a structure and refer to
each value by number. In this chapter, you learn about a data structure in which you can refer
to each value by name. This type of structure is called a mapping, and the only built-in mapping
type in Python is the dictionary. The values in a dictionary don’t have any particular order but
are stored under a key, which may be either a number, a string, or even a tuple.

But What Are They For?

There are many situations where a dictionary is more appropriate than a list. The name
“dictionary” should give you a clue: an ordinary book is made for reading from start to finish.
Ifyou like, you can quickly open it to any given page. This is a bit like a Python list. Dictionaries,
however (both real ones and their Python equivalent) are constructed so that you can look up
a specific word (key) easily, to find its definition (value). Some arbitrary uses of Python dictio-
naries are as follows:

* Representing the state of a gaming board, with each key being a tuple of coordinates
* Storing file modification times, with file names as keys
* A digital telephone/address book
Let’s say you have a list of people:
>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']

What if you wanted to create a little database where you could store the telephone numbers of
these people—how would you do that? One way would be to make another list. Let’s say you're
only storing their four-digit extensions. Then you would get something like this:

>>> numbers = ['2341', '9102', '3158', '0142', '5551']

67

68

CHAPTER 4 DICTIONARIES: WHEN INDICES WON’'T DO

Note You might wonder why | have used strings to represent the telephone numbers—why not integers?
Consider what would happen to Dee-Dee’s number then:

>>> 0142
98

Not exactly what we wanted, is it? As mentioned briefly in Chapter 1, octal numbers are written with an initial
zero. It is impossible to write decimal numbers like that.

>>> 0912
File "<stdin>", line 1
0912

N

SyntaxError: invalid syntax

The lesson is this: Telephone numbers (and other numbers that may contain leading zeros) should be repre-
sented as strings of digits—not integers.

Once you've created these lists, you can look up Cecil’s telephone number as follows:

>>> numbers[names.index('Cecil")]
3158

It works, but it’s a bit impractical. What you really would want to do is something like the
following:

>>> phonebook|['Cecil']
3158

Guess what? If phonebook is a dictionary, you can do just that.

Dictionary Syntax

Dictionaries are written like this:
phonebook = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}

Dictionaries consist of pairs (called items) of keys and their corresponding values. In the
preceding example, the names are the keys and the telephone numbers are the values. Each
key is separated from its value by a colon (:), the items are separated by commas, and the
whole thing is enclosed in curly braces. An empty dictionary (without any items) is written with
just two curly braces, like this: {}.

Note Keys are unique within a dictionary (and any other kind of mapping), while values may not be.

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

The dict Function

You can use the dict function to construct dictionaries from other mappings (for example,
other dictionaries) or from sequences of (key, value) pairs:

>>> items = [('name', 'Gumby'), ('age', 42)]
>>> d = dict(items)

>>> d

{'age': 42, 'name': 'Gumby'}

>>> d['name']

'Gumby '

It can also be used with keyword arguments, as follows:

>>> d = dict(name="Gumby', age=42)
>>> d
{'age': 42, 'name': 'Gumby'}

Although this is probably the most useful application of dict, you can also use it with a
mapping argument to create a dictionary with the same items as the mapping. (If used without
any arguments, it returns a new empty dictionary, just like other similar functions such as 1ist,
tuple, or str.) If the other mappingis a dictionary (which is, after all, the only built-in mapping
type), you can use the dictionary method copy instead, as described later.

Note The dict function isn’t really a function at all. It is a type, just like 1ist, tuple, and str.

Basic Dictionary Operations

The basic behavior of a dictionary in many ways mirrors that of a sequence: len(d) returns the
number of items (key-value pairs) in d, d[k] returns the value associated with the key k, d[k] = v
associates the value v with the key k, del d[k] deletes the item with key k, and k in d checks
whether there is an item in d that has the key k. Although they share several common character-
istics, there are some important distinctions:

¢ Dictionary keys don’t have to be integers (though they may be). They may be any immu-
table type, such as floating-point (real) numbers, strings, or tuples.

¢ You can assign a value to a key even if that key isn’t in the dictionary to begin with; a new
item will be created. You cannot assign a value to an index outside the list’s range
(without using append or something like that).

69

70 CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

* Theexpressionk in d (where dis a dictionary) looks for a key, not a value. The expression
v in 1, on the other hand (where 1 is alist) looks for a value, not an index. This may seem
a bit inconsistent, but it is actually quite natural when you get used to it. After all, if the
dictionary has the given key, checking the corresponding value is easy.

Tip Checking for key membership in a dictionary is much more efficient than checking for membership in
a list—and the difference is greater the larger the data structures are.

The first point—that the keys may be of any immutable type—is the main strength of
dictionaries, while the second point is important, too. Just look at the difference here:

>>> x =[]
>>> x[42] = 'Foobar'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
IndexError: list assignment index out of range

>>> x = {}
>>> x[42] = 'Foobar'
>>> X

{42: 'Foobar'}

First, I try to assign the string 'Foobar' to position 42 in an empty list—clearly impossible
because that position does not exist. To make this possible, I would have to initialize x with
[None]*43 or something, rather than simply []. The next attempt, however, works perfectly.
Here I assign 'Foobar' to the key 42 of an empty dictionary; no problem! A new item is simply
added to the dictionary and I'm in business.

Listing 4-1 shows the code for the telephone book example. Here is a sample run of the program:

Name: Beth
Phone number (p) or address (a)? p
Beth's phone number is 9102.

Listing 4-1. Dictionary Example
A simple database
A dictionary with person names as keys. Each person is represented as

another dictionary with the keys 'phone' and 'addr' referring to their phone
number and address, respectively.

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

people = {

"Alice': {
"phone’: '2341',
'addr': 'Foo drive 23'

I3
'Beth': {
"phone’: '9102',
'addr': 'Bar street 42°'
I3
"Cecil': {
"phone’: '3158",
'addr': 'Baz avenue 90'
}

}

Descriptive labels for the phone number and address. These will be used
when printing the output.
labels = {

"phone’: 'phone number',

'addr': 'address'’

name = raw_input('Name: ')

Are we looking for a phone number or an address?
request = raw_input('Phone number (p) or address (a)? ')

Use the correct key:

if request == 'p': key

if request == 'a': key

"phone’
'addr’

Only try to print information if the name is a valid key in our dictionary:
if name in people: print "%s's %s is %s." % (name, labels[key], people[name][key])

String Formatting with Dictionaries

In Chapter 3, you saw how you could use string formatting to format all the values in a tuple.
If you use a dictionary (with only strings as keys) instead of a tuple, you can make the string
formatting even snazzier. After the % character in each conversion specifier, you add a key
(enclosed in parentheses), which is followed by the other specifier elements:

7

72

CHAPTER 4 DICTIONARIES: WHEN INDICES WON’'T DO

>>> phonebook

{'Beth': '9102', 'Alice': '2341', 'Cecil': '3258'}
>>> "Cecil's phone number is %(Cecil)s." % phonebook
"Cecil's phone number is 3258."

Except for the added string key, the conversion specifiers work as before. When using
dictionaries like this, you may have any number of conversion specifiers, as long as all the
given keys are found in the dictionary. This sort of string formatting can be very useful in
template systems (in this case using HTML):

>>> template = '''<html>
<heady><titles>k(title)s</titles></head>
<body>
<h1>%(title)s</h1>
<p>%(text)s</p>
</body>"""
>>> data = {'title': 'My Home Page', 'text': 'Welcome to my home page!'}
>>> print template % data
<html>
<head><title>My Home Page</title></head>
<body>
<h1>My Home Page</h1>
<p>Welcome to my home page!</p>
</body>

Note The string.Template class (mentioned in Chapter 3) is also quite useful for this kind of application.

Dictionary Methods

Just like the other built-in types, dictionaries have methods. While these methods can be very
useful, you probably will not need them as often as the list and string methods. You might want
to skim this section first to get a picture of which methods are available, and then come back
later if you need to find out exactly how a given method works.

clear

The clear method removes all items from the dictionary. This is an in-place operation (like
list.sort), so it returns nothing (or, rather, None):

>>> d = {}

>>> d['name'] = 'Gumby'

>>> d['age'] = 42

>>> d

{'age': 42, 'name': 'Gumby'}

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO 73

>>> returned value = d.clear()
>>> d

(
>>> print returned value
None

Why is this useful? Consider the following scenarios, and notice the difference in behavior.

Scenario 1:
>»> x = {}
>y = X
>>> x['key'] = 'value'
>y
{"key': "value'}
>»> x = {}
>y

{"key': "value'}
Scenario 2:

>>> x = {}

5>y = X

>>> X['key'] = 'value'
>>> Y

{"key': "value'}

>>> x.clear()

>>> Y

{}

In both scenarios, x and y originally refer to the same dictionary. In the first scenario, I
“blank out” x by assigning a new, empty dictionary to it. That doesn’t affect y at all, which still
refers to the original dictionary. This may be the behavior you want, but if you really want to
remove all the elements of the original dictionary, you must use clear. As you can see in the
second scenario, y is then also empty afterward.

copy

The copy method returns a new dictionary with the same key-value pairs (a shallow copy, since
the values themselves are the same, not copies):

>>> x = {'username': 'admin', 'machines': ['foo', 'bar', 'baz']}
>>> y = x.copy()

>>> y['username'] = 'mlh’

>>> y['machines'].remove('bar")

>>> Y

{'username': 'mlh', 'machines': ['foo', 'baz']}

>>> X

{'username': 'admin', 'machines': ['foo', 'baz']}

74

CHAPTER 4 DICTIONARIES: WHEN INDICES WON’'T DO

As you can see, when you replace a value in the copy, the original is unaffected. However,
if you modify avalue (in place, without replacing it), the original is changed as well because the
same value is stored there (like the “machines” list in this example).

Tip One way to avoid that problem is to make a deep copy, copying the values, any values they contain,
and so forth as well. You accomplish this using the function deepcopy from the copy module:

>>> from copy import deepcopy

>>> d = {}

>>> d['names'] = ['Alfred', 'Bertrand']
>>> ¢ = d.copy()

>>> dc = deepcopy(d)

>>> d['names'].append('Clive")

>>> ¢

{"names': ['Alfred', 'Bertrand', 'Clive']}
>>> dc

{"names': ['Alfred', 'Bertrand']}

fromkeys

The fromkeys method creates a new dictionary with the given keys, each with a default corre-
sponding value of None:

>>> {}.fromkeys(['name', 'age'])
{"age': None, 'name': None}

The previous example first constructs an empty dictionary and then calls the fromkeys
method on that, in order to create another dictionary—a somewhat redundant strategy. Instead,

you can call the method directly on dict, which (as mentioned before) is the type of all dictio-
naries. (The concept of types and classes is discussed more thoroughly in Chapter 7.)

>>> dict.fromkeys(['name’, 'age'])
{"age': None, 'name': None}

If you don’t want to use None as the default value, you can supply your own default:
>>> dict.fromkeys(['name", 'age'], '(unknown)')
{"age': "(unknown)', 'name': '(unknown)'}
get

The get method is a forgiving way of accessing dictionary items. Ordinarily, when you try to
access an item that is not present in the dictionary, things go very wrong:

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

>>> d = {}

>>> print d["name’]

Traceback (most recent call last):
File "<stdin»", line 1, in ?

KeyError: 'name’

Not so with get:

>>> print d.get('name")
None

Asyou can see, when you use get to access a nonexistent key, there is no exception. Instead,
you get the value None. You may supply your own “default” value, which is then used instead
of None:

>>> d.get('name’, 'N/A")
"N/A"

If the key is there, get works like ordinary dictionary lookup:

>>> d['name'] = "Eric'
>>> d.get("'name")
"Eric'

has_key

The has_key method checks whether a dictionary has a given key. The expression d.has_key (k)
is equivalent to k in d. The choice of which to use is largely a matter of taste.
Here is an example of how you might use has_key:

>>> d = {}
>>> d.has_key("'name")
0

>>> d['name'] = 'Eric’
>>> d.has_key("'name")
1

items and iteritems

The items method returns all the items of the dictionary as a list of items in which each item is
of the form (key, value). The items are not returned in any particular order:

>>> d = {"title': 'Python Web Site', 'url': "http://www.python.org', 'spam': 0}
>>> d.items()
[('url", 'http://www.python.org'), ('spam', 0), ('title', 'Python Web Site')]

The iteritems method works in much the same way, but returns an iterator instead of a list:

75

76

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

>>> it = d.iteritems()

>>> it

<dictionary-iterator object at 169050>

>>> list(it) # Convert the iterator to a list

[("url", 'http://www.python.org'), ('spam', 0), ('title', 'Python Web Site')]

Using iteritems may be more efficient in many cases (especially if you want to iterate over
the result). For more information on iterators, see Chapter 9.

keys and iterkeys

The keys method returns a list of the keys in the dictionary, while iterkeys returns an iterator
over the keys.

pop
The pop method can be used to get the value corresponding to a given key, and then remove the
key-value pair from the dictionary:

>>>d = {'x":1 1, 'y': 2}
>>> d.pop('x")

1

>>>d

{'y': 2}

popitem

The popitemmethod is similar to 1ist.pop. Unlike 1ist.pop, however, popitem pops off arandom
item because dictionaries don’t have a “last element” or any order whatsoever. This may be
very useful if you want to remove and process the items one by one in an efficient way (without
retrieving a list of the keys first):

>>> d

{"url': 'http://www.python.org', 'spam': 0, 'title': 'Python Web Site'}
>>> d.popitem()

("url', 'http://www.python.org")

>>> d

{"spam': 0, "title': 'Python Web Site'}

Although popitemis similar to the list method pop, there is no dictionary equivalent of
append. Because dictionaries have no order, such a method wouldn’t make any sense.

setdefault

The setdefault method is somewhat similar to get, except that in addition to the get function-
ality, setdefault sets the value corresponding to the given key if it is not already in the dictionary:

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

>>> d = {}

>>> d.setdefault('name', 'N/A")
"N/A"

>>>d

{"name': 'N/A'}

>>> d['name’] = 'Gumby'

>>> d.setdefault('name', 'N/A")
" Gumby'

>>>d

{"name": 'Gumby'}

As you can see, when the key is missing, setdefault returns the default and updates the
dictionary accordingly. If the key is present, its value is returned and the dictionary is left
unchanged. The default is optional, as with get; if it is left out, None is used:

>>> d = {}

>>> print d.setdefault('name')
None

>>>d

{"name': None}

update

The update method updates one dictionary with the items of another:

>>> d = {

"title': 'Python Web Site',

'url': 'http://www.python.org',

"changed': 'Mar 14 22:09:15 MET 2005’

}

>>> x = {'title': 'Python Language Website'}
>>> d.update(x)
>>> d
{'url': 'http://www.python.org', 'changed': 'Mar 14 22:09:15 MET 2005',
"title': 'Python Language Website'}

The items in the supplied dictionary are added to the old one, overwriting any items there
with the same keys.

The update method can be called in the same way as the dict function (or type constructor),
as discussed earlier in this chapter. This means that update can be called with a mapping, a
sequence (or other iterable object) of (key, value) pairs, or with keyword arguments.

values and itervalues

The values method returns a list of the values in the dictionary (and itervalues returns an iterator
of the values). Unlike keys, the list returned by values may contain duplicates:

77

78 CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO

N
—
1}

>>> d[4] =
>>> d.values()
[1, 2, 3, 1

Our Example Revisited

Listing 4-2 shows a modified version of the program from Listing 4-1, which uses the get method to access the
“database” entries. An example run of this program follows. Notice how the added flexibility of get allows the
program to give a useful response even though the user enters values we weren’t prepared for:

1
2
3
1
S
]

Name: Gumby
Phone number (p) or address (a)? batting average
Gumby's batting average is not available.

Listing 4-2. Dictionary Method Example

A simple database using get()
Insert database (people) from Listing 4-1 here.

labels = {
"phone’: 'phone number',
'addr': 'address'

name = raw_input('Name: ")

Are we looking for a phone number or an address?
request = raw_input('Phone number (p) or address (a)? ')

Use the correct key:
key = request # In case the request is neither 'p' nor 'a

if request == 'p': key = 'phone’

if request == 'a': key = 'addr'

Use get to provide default values:
person = people.get(name, {})

label = labels.get(key, key)

result = person.get(key, 'not available')

print "%s's %s is %s." % (name, label, result)

CHAPTER 4 DICTIONARIES: WHEN INDICES WON'T DO 79

A Quick Summary

In this chapter, you learned about the following:

Mappings. A mapping enables you to label its elements with any immutable object, the
most usual types being strings and tuples. The only built-in mapping type in Python is the
dictionary.

String formatting with dictionaries. You can apply the string formatting operation to

dictionaries by including names (keys) in the formatting specifiers. When using tuples in
string formatting, you need to have one formatting specifier for each element in the tuple.
When using dictionaries, you can have fewer specifiers than you have items in the dictionary.

Dictionary methods. Dictionaries have quite a few methods, which are called in the same
way as list and string methods.

New Functions in This Chapter

Function Description
dict(seq) Creates dictionary from (key, value) pairs
What Now?

You now know a lot about Python’s basic data types and how to use them to form expressions.
As you may remember from Chapter 1, computer programs have another important ingre-
dient—statements. They’re covered in detail in the next chapter.

CHAPTER 5

Conditionals, Loops, and Some
Other Statements

By now, I'm sure you are getting a bit impatient. All right—all these data types are just dandy,
but you can’t really do much with them, can you?

Let’s crank up the pace a bit. You've already encountered a couple of statement types
(print statements, import statements, assignments). Let’s first take a look at some more ways
of using these before diving into the world of conditionals and loops. Then, you'll see how list
comprehensions work almost like conditionals and loops, even though they are expressions,
and finally you'll take a look at pass, del, and exec.

More About print and import

Asyoulearn more about Python, you may notice that some aspects of Python that you thought
you knew have hidden features just waiting to pleasantly surprise you. Let’s take a look at a
couple of such nice features in print and import.

Printing with Commas

You've seen how print can be used to print an expression, which is either a string or is auto-
matically converted to one. But you can actually print more than one expression, as long as you
separate them with commas:

>>> print 'Age:', 42
Age: 42

As you can see, a space character is inserted between each argument.

81

82

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

Note The arguments of print do notform a tuple, as one might expect:

>>> 1, 2, 3

(1, 2, 3)

>>> print 1, 2, 3
123

>>> print (1, 2, 3)
(1, 2, 3)

This behavior can be very useful if you want to combine text and variable values without
using the full power of string formatting:

>>> name = 'Gumby'
>>> salutation = 'Mr.
>>> greeting = 'Hello,'

>>> print greeting, salutation, name
Hello, Mr. Gumby

Note If the greeting string had no comma, how would you get the comma in the result? You couldn’t
just use

print greeting, ',', salutation, name
because that would introduce a space before the comma. One solution would be the following:
print greeting + ',', salutation, name

Here the comma is simply added to the greeting.

If you add a comma at the end, your next print statement will continue printing on the
same line. For example, the statements

print 'Hello,’,
print 'world!'

print out Hello, world!

Importing Something As Something Else

Usually when you import something from a module you either use
import somemodule

or

from somemodule import somefunction

or

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

from somemodule import *

The latter should only be used when you are certain that you want to import everything
from the given module. But what if you have two modules each containing a function called
open, for example—what do you do then? You could simply import the modules using the first
form, and then use the functions as follows:

modulel.open(...)
module2.open(...)

But there is another option: You can add an as clause to the end and supply the name you
want to use, either for the entire module:

>>> import math as foobar
>>> foobar.sqrt(4)
2.0

or for the given function:

>>> from math import sqrt as foobar
>>> foobar(4)
2.0

For the open functions you might use the following:

from modulel import open as openil
from module2 import open as open2

Assignment Magic

The humble assignment statement also has a few tricks up its sleeve.

Sequence Unpacking

You've seen quite a few examples of assignments, both for variables and for parts of data structures
(such as positions and slices in a list, or slots in a dictionary), but there is more. You can perform
several different assignments simultaneously:

S>> X, Y, z2=1, 2,3
>>> print x, vy, z
123

Doesn’t sound useful? Well, you can use it to switch the contents of two (or more)
variables:

5> X, ¥ =Y, X
>>> print x, vy, z
213

Actually, what I'm doing here is called “sequence unpacking”—I have a sequence of values,
and I unpack it into a sequence of variables. Let me be more explicit:

83

84 CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

>>> values = 1, 2, 3
>>> values

(1, 2, 3)

>>> X, Y, z = values
>>> X

This is particularly useful when a function or method returns a tuple (or other sequence or
iterable object); let’s say that you want to retrieve (and remove) an arbitrary key-value pair
from a dictionary. You can then use the popitem method, which does just that, returning the
pair as a tuple. Then you can unpack the returned tuple directly into two variables:

>>> scoundrel = {'name': 'Robin‘', 'girlfriend': 'Marion'}
>>> key, value = scoundrel.popitem()

>>> key

'girlfriend’

>>> value

'Marion'

This allows functions to return more than one value, packed as a tuple, easily accessible
through a single assignment. The sequence you unpack must have exactly as many items as the
targets you list on the left of the = sign; otherwise Python raises an exception when the assignment
is performed.

Chained Assignments

Chained assignments are used as a shortcut when you want to bind several variables to the
same value. This may seem a bit like the simultaneous assignments in the previous section,
except that here you are only dealing with one value:

x =y = somefunction()
which is the same as

y = somefunction()
X =y

Note that the preceding statements may #ot be the same as

somefunction()
y = somefunction()

For more information, see the section about the identity operator (is), later in this chapter.

Augmented Assignments

Instead of writing x = x + 1, you can just put the expression operator (in this case +) before the
assignment operator (=) and write x += 1. This is called an augmented assignment, and it works
with all the standard operators, such as *, /, %, and so on:

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

1}
"
N

+
i
NP

xX X X X
*

It also works with other data types:

>>> fnord = 'foo'
>>> fnord += 'bar’
>>> fnord

'foobar'

Augmented assignments can make your code more compact and concise, and in many
cases, more readable.

Tip In general, you should not use += with strings, especially if you are building a large string piece by
piece in a loop (see the section “Loops” later in this chapter for more information about loops). Each addition
and assignment needs to create a new string, and that takes time, making your program slower. A much
better approach is to append the small strings to a list, and use the string method join to create the big string
when your list is finished.

Blocks: The Joy of Indentation

This isn’t really a type of statement but something you're going to need when you tackle the
next two sections.

Ablock is a group of statements that can be executed if a condition is true (conditional
statements), or executed several times (loops), and so on. A block is created by indenting a part
of your code; that is, putting spaces in front of it.

Note You can use tab characters to indent your blocks as well. Python interprets a tab as moving to the
next tab stop, with one tab stop every eight spaces, but the standard and preferable style is to use spaces
only, no tabs, and specifically four spaces per each level of indentation.

Each line in a block must be indented by the same amount. The following is pseudocode
(not real Python code) but shows how the indenting works:

this is a line
this is another line:
this is another block
continuing the same block
the last line of this block
phew, there we escaped the inner block

85

86

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

In many languages a special word or character (for example, begin or {) is used to start a
block, and another (such as end or }) is used to end it. In Python, a colon (:) is used to indicate
that a block is about to begin, and then every line in that block is indented (by the same amount).
When you go back to the same amount of indentation as some enclosing block, you know that
the current block has ended.

Now I'm sure you are curious to know how to use these blocks. So, without further ado,
let’s have a look.

Conditions and Conditional Statements

Until now you’ve only written programs in which each statement is executed, one after the
other. It’s time to move beyond that and let your program choose whether or not to execute a
block of statements.

So That’s What Those Boolean Values Are For

Now you are finally going to need those truth values (also called Boolean values, after George
Boole, who did a lot of smart stuff on truth values) that you've been bumping into repeatedly.

Note If you've been paying close attention, you noticed the sidebar in Chapter 1, “Sneak Peek: The if
Statement,” which describes the if statement. | haven’t really introduced it formally until now, and as you’ll
see, there is a bit more to it than what I've told you so far.

The following values are considered by the interpreter to mean false:
False None 0 " 0O [] {}

In other words, the standard values False and None, numeric zero of all types (including
float, long, and so on), empty sequences (such as empty strings, tuples, and lists), and empty
dictionaries are all false. Everything else is interpreted as true, including the special value True.
Laura Creighton describes this as discerning between something and nothing, rather than true
and false.

Got it? This means that every value in Python can be interpreted as a truth value, which
can be a bit confusing at first, but it can also be extremely useful. And even though you have all
these truth values to choose from, the “standard” truth values are True and False. In older
versions of Python, the standard truth values were 0 (for false) and 1 (for true). In fact, True and
False are just glorified versions of 0 and 1 that look different but act the same:

>>> True
True

>>> False
False

>>> True ==
True

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

>>> False ==

True

>>> True + False + 42
43

So now, if you see a logical expression returning 1 or 0 (probably in an older version of
Python), you will know that what is really meant is True and False.

The Boolean values True and False belong to the type bool, which can be used (just like, for
example, list, str, and tuple) to convert other values:

>>> bool('I think, therefore I am')
True

>>> bool(42)

True

>>> bool('")

False

>>> bool(0)

False

Because any value can be used as Boolean values, you will most likely rarely (if ever) need
such an explicit conversion.

Conditional Execution and the if Statement

Truth values can be combined (which you’ll see in a while), but let’s first see what you can use
them for. Try running the following script:

name = raw_input('What is your name? ')
if name.endswith('Gumby"'):
print 'Hello, Mr. Gumby'

This is the if statement, which lets you do conditional execution. That means that if the
condition (the expression after if but before the colon) evaluates to true (as defined previously),
the following block (in this case, a single print statement) is executed. If the condition is false,
then the block is not executed (but you guessed that, didn’t you?).

Note In the sidebar “Sneak Peek: The if Statement” in Chapter 1, the statement was written on a single
line. That is equivalent to using a single-line block, as in the preceding example.

else Clauses

In the example from the previous section, if you enter a name that ends with “Gumby,” the
method name.endswith returns True, making the if statement enter the block, and the greeting
is printed. If you want, you can add an alternative, with the else clause (called a clause because
itisn’t really a separate statement, just a part of the if statement):

87

88

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

name = raw_input('What is your name? ')
if name.endswith('Gumby"):

print 'Hello, Mr. Gumby'
else:

print 'Hello, stranger'

Here, if the first block isn’t executed (because the condition evaluated to false), you enter
the second block instead. This really makes you see how easy it is to read Python code, doesn’t
it? Just read the code aloud (from if) and it sounds just like a normal (or perhaps not quite
normal) sentence.

elif Clauses

If you want to check for several conditions, you can use elif, which is short for “else if.” It is a
combination of an if clause and an else clause—an else clause with a condition:

num = input('Enter a number: ')
if num > o:

print 'The number is positive'
elif num < o:

print 'The number is negative
else:

print 'The number is zero'

Nesting Blocks

Let’s throw in a few bells and whistles. You can have if statements inside other if statement
blocks, as follows:

name = raw_input('What is your name? ')
if name.endswith('Gumby"):
if name.startswith('Mr."):
print 'Hello, Mr. Gumby'
elif name.startswith('Mrs."):
print 'Hello, Mrs. Gumby'
else:
print 'Hello, Gumby'
else:
print 'Hello, stranger'

Here, if the name ends with “Gumby,” you check the start of the name as well—in a separate
if statement inside the first block. Note the use of elif here. The last alternative (the else clause)
has no condition—if no other alternative is chosen, you use the last one. If you want to, you can
leave out either of the else clauses. If you leave out the inner else clause, names that don’t start
with either “Mr.” or “Mrs.” are ignored (assuming the name was “Gumby”). If you drop the
outer else clause, strangers are ignored.

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

More Complex Conditions

That’s really all there is to know about if statements. Now let’s return to the conditions them-
selves, because they are the really interesting part of conditional execution.

Comparison Operators

Perhaps the most basic operators used in conditions are the comparison operators. They are
used (surprise, surprise) to compare things. The comparison operators are summed up in
Table 5-1.

Table 5-1. The Python Comparison Operators

Expression Description

X ==y x equals y.

X<y x isless thany.

X >y x is greater than y.

X >=y x is greater than or equal to y.

X <=y x is less than or equal to y.

x =y xisnotequaltoy.

x isy x and y are the same object.

x is not y x and y are different objects.

x iny x is a member of the container (e.g., sequence) y.
xnot iny x is not a member of the container (e.g., sequence) y.

If you stumble across the expression x <> y somewhere, thismeans x /= y.The <> operator is
deprecated, however, and you should avoid using it. Comparisons can be chained in Python, just
like assignments—you can put several comparison operators in a chain, like this: 0 < age < 100.

Tip When comparing things, you can also use the built-in function cmp as described in Chapter 2.

Some of these operators deserve some special attention and will be described in the
following sections.

The Equality Operator

If you want to know if two things are equal, you use the equality operator, written as a double
equality sign, ==:

89

90

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

>>> "foo" == "foo"
True
>>> "foo" == "bar"
False

Double? Why can’t you just use a single equality sign, like they do in mathematics? I'm sure
you're clever enough to figure this out for yourself, but let’s try it:

>>> "foo" = "foo"
SyntaxError: can't assign to literal

The single equality sign is the assignment operator, which is used to change things, which
is not what you want to do when you compare things.

is: The Identity Operator

The is operator is interesting. It seems to work just like ==, but it doesn’t:

> X =y =
>>> z = [1,
>>> X ==y
True
>>> X
True
>>> X is y
True

>>> X is z
False

[1, 2, 3]
2, 3]

1}
1}
N

Until the last example, this looks fine, but then you get that strange result, that x is not z
even though they are equal. Why? Because is tests for identity, rather than equality. The variables x
and y have been bound to the same list, while z is simply bound to another list that happens to
contain the same values in the same order. They may be equal, but they aren’t the same object.

Does that seem unreasonable? Consider this example:

>»> x = [1, 2, 3]
>>>y = [2, 4]
>>> x 1s not y
True

>>> del x[2]

>»> y[1] =1

>>> y.reverse()

In this example, I start with two different lists, x and y. As you can see, x is not y (just the
inverse of x is y), which you already know. I change the lists around a bit, and though they are
now equal, they are still two separate lists:

> X ==y
True
>>> X is y

True

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

Here it is obvious that the two lists are equal but not identical.
To summarize: Use == to see if two objects are equal, and use is to see if they are identical
(the same object).

Caution Avoid the use of is with basic, immutable values such as numbers and strings. The result is
unpredictable because of the way Python handles these objects internally.

in: The Membership Operator

I have already introduced the in operator (in Chapter 2, in the section “Membership”). It can
be used in conditions, just like all the other comparison operators:

name = raw_input('What is your name? ")
if 's' in name:
print 'Your name contains the letter "s".'
else:
print 'Your name does not contain the letter "s".'

Comparing Strings and Sequences
Strings are compared according to their order when sorted alphabetically:

>>> "alpha" < "beta"
True

If you throw in capital letters, things get a bit messy. (Actually, characters are sorted by
their ordinal values. The ordinal value of a letter can be found with the ord function, whose
inverse is chr.) To ignore the difference between uppercase and lowercase letters, use the
string methods upper or lower:

>>> '"Fn0OrD'.lower() == 'Fnord'.lower()
True

Other sequences are compared in the same manner, except that instead of characters you
may have other types of elements:

>>> [1, 2] < [2, 1]
True

If the sequences contain other sequences as elements, the same rule applies to these
sequence elements:

>>> [2, [1, 4]]1 < [2, [1, 5]]
True

Boolean Operators

Now, you've got plenty of things that return truth values. (In fact, given the fact that all values
can be interpreted as truth values, all expressions return them.) But you may want to check for

91

92

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

more than one condition. For example, let’s say you want to write a program that reads a number
and checks whether it’s between 1 and 10 (inclusive). You can do it like this:

number = input('Enter a number between 1 and 10: ')
if number <= 10:
if number >= 1:
print 'Great!’
else:
print 'Wrong!'
else:
print 'Wrong!'

This will work, but it’s clumsy. The fact that you have to write print 'Wrong!' in two places
should alert you to this clumsiness. Duplication of effort is not a good thing. So what do you do?
It’s so simple:

if number <= 10 and number >= 1:
print 'Great!’

else:
print 'Wrong!'

Note In this example, you could (and quite probably should) have made this even simpler by using the
following chained comparison:

1 <= number <= 10

The and operator is a so-called Boolean operator. It takes two truth values, and returns true
if both are true, and false otherwise. You have two more of these operators, or and not. With
just these three, you can combine truth values in any way you like:

if ((cash > price) or customer has good credit) and not out of stock:
give goods()

SHORT-CIRCUIT LOGIC

The Boolean operators have one interesting property: They only evaluate what they need to. For example, the
expression x and y requires both x and y to be true; so if x is false, the expression returns false immediately,
without worrying about y. Actually, if x is false, it returns x—otherwise it returns y. (Can you see how this
gives the expected meaning?) This behavior is called short-circuit logic: the Boolean operators are often called
logical operators, and as you can see, the second value is sometimes “short-circuited.” This works with or, too.
In the expression x or vy, if x is true, it is returned, otherwise y is returned. (Can you see how this makes sense?)
So, how is this useful? Let’s say a user is supposed to enter his or her name, but may opt to enter

nothing, in which case you want to use the default value ' <unknown>". You could use an if statement, but
you could also state things very succinctly:

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

name = raw_input('Please enter your name: ') or '<unknown>'

In other words, if the return value from raw_input is true (not an empty string), it is assigned to name
(nothing changes); otherwise, the default ' <unknown> " is assigned to name.

This sort of short-circuit logic can be used to implement the so-called “ternary operator” (or conditional
operator), found in languages such as C and Java. For a thorough explanation, see Alex Martelli’s recipe on the
subject in the Python Cookbook (http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/
52310).

Assertions

There is a useful relative of the if statement, which works more or less like this (pseudocode):

if not condition:
crash program

Now, why on earth would you want something like that? Simply because it’s better that
your program crashes when an error condition emerges than at a much later time. Basically,
you can require that certain things be true. The keyword used in the statement is assert:

>>> age = 10

>>> assert 0 < age < 100

>>> age = -1

>>> assert 0 < age < 100

Traceback (most recent call last):
File "<stdin>", line 1, in ?

AssertionError

It can be useful to put the assert statement in your program as a checkpoint, if you know
something has to be true for your program to work correctly.
A string may be added after the condition, to explain the assertion:

>>> age = -1
>>> assert 0 < age < 100, 'The age must be realistic’
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AssertionError: The age must be realistic

Loops

Now you know how to do something if a condition is true (or false), but how do you do some-
thing several times? For example, you might want to create a program that reminds you to pay
the rent every month, but with the tools we have looked at until now, you’d have to write the
program like this (pseudocode):

93

94

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

send mail
wait one month
send mail
wait one month
send mail
wait one month
(...and so on)

But what if you wanted it to continue doing this until you stopped it? Basically, you want
something like this (again, pseudocode):

while we aren't stopped:
send mail
wait one month

Or, let’s take a simpler example. Let’s say that you want to print out all the numbers from
1 to 100. Again, you could do it the stupid way:

print 1
print 2
print 3

... and so on. But you didn’t start using Python because you wanted to do stupid things, right?

while Loops

In order to avoid the cumbersome code of the preceding example, it would be useful to be able
to do something like this:

X =1

while x <= 100:
print x
X += 1

Now, how do you do that in Python? You guessed it—you do it just like that. Not that
complicated is it? You could also use a loop to ensure that the user enters a name, as follows:

name =
while not name:

name = raw_input('Please enter your name: ')
print 'Hello, %s!' % name

Try running this, and then just pressing the Enter key when asked to enter your name: the
question appears again because name is still an empty string, which evaluates to false.

Tip What would happen if you entered just a space character as your name? Try it. It is accepted because
a string with one space character is not empty, and therefore not false. This is definitely a flaw in our little
program, but easily corrected: just change while not nameto while not name or name.isspace()
or, perhaps, while not name.strip().

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

for Loops

Thewhile statement is very flexible. It can be used to repeat a block of code while any condition
is true. While this may be very nice in general, sometimes you may want something tailored to
your specific needs. One such need is to perform a block of code for each element of a set (or,
actually, sequence or other iterable object) of values. You can do this with the for statement:

words = ['this', 'is', 'an', 'ex', 'parrot']
for word in words:
print word

or

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for number in numbers:
print number

Because iterating (another word for “looping”) over a range of numbers is a common thing
to do, there is a built-in function to make ranges for you:

>>> range(0, 10)
[O) 1) 2) 3) 4) 5) 6) 7) 8) 9]

Ranges work like slices. They include the first limit (in this case 0), but not the last (in this
case 10). Quite often, you want the ranges to start at 0, and this is actually assumed if you only
supply one limit (which will then be the last):

>>> range(10)
[0) 1) 2) 3) 4) 5) 6) 7) 8) 9]

Tip There is also another function called xrange that works just like range in loops, but where range
creates the whole sequence at once, xrange creates only one number at a time. This can be useful when
iterating over huge sequences more efficiently, but in general you needn’t worry about it.

The following program writes out the numbers from 1 to 100:

for number in range(1,101):
print number

Notice that this is much more compact than the while loop I used earlier.

Tip If you can use a for loop rather than a while loop, you should probably do so.

95

96

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

Iterating Over Dictionaries

To loop over the keys of a dictionary, you can use a plain for statement, just as you can with
sequences:

d={'x"t1, 'y':2, 'z': 3}
for key in d:
print key, 'corresponds to', d[key]

In Python versions before 2.2, you would have used a dictionary method such as keys to
retrieve the keys (since direct iteration over dictionaries wasn’t allowed). If only the values
were of interest, you could have used d.values instead of d. keys. You may remember that
d.items returns key-value pairs as tuples. One great thing about for loops is that you can use
sequence unpacking in them:

for key, value in d.items():
print key, 'corresponds to', value

To make your iteration more efficient, you can use the methods iterkeys (equivalent to
the plain for loop), itervalues, or iteritems. (These don’t return lists, but iterators, which are
explained in Chapter 9.)

Note As always, the order of dictionary elements is undefined. In other words, when iterating over either
the keys or the values of a dictionary, you can be sure that you’ll process all of them, but you can’t know in
which order. If the order is important, you can store the keys or values in a separate list and, for example, sort
it before iterating over it.

Some Iteration Utilities

There are a few functions that can be useful when iterating over a sequence (or other iterable
object). Some of these are available in the itertools module (described in Chapter9), but there
are some built-in functions that come in quite handy as well.

Parallel Iteration

Sometimes you want to iterate over two sequences at the same time. Let’s say that you have the
following two lists:

names = ['anne', 'beth', 'george', 'damon']
ages = [12, 45, 32, 102]

If you want to print out names with corresponding ages, you could do the following:

for i in range(len(names)):
print names[i], 'is', ages[i], 'years old’

Here I use i as a standard variable name for loop indices (as these things are called).

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

A useful tool for parallel iteration is the built-in function zip, which “zips” together the
sequences, returning a list of tuples:

>>> zip(names, ages)
[(‘anne', 12), ('beth', 45), ('george', 32), ('damon', 102)]

Now I can unpack the tuples in my loop:

for name, age in zip(names, ages):
print name, 'is', age, 'years old'

The zip function works with as many sequences as you want. It's important to note what
zip does when the sequences are of different lengths: it stops when the shortest sequence is
“used up”:

>>> zip(range(5), xrange(100000000))

[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

Iwouldn’t recommend using range instead of xrange in the preceding example—although
only the first five numbers are needed, range calculates all the numbers, and that may take alot
of time. With xrange, this isn’t a problem because it calculates only those numbers needed.

Numbered Iteration

In some cases you want to iterate over a sequence of objects and at the same time have access
to the index of the current object. For example, you might want to replace every string that
contains the substring 'xxx"' in a list of strings. There would certainly be many ways of doing
this, but let’s say you want to do something along the following lines:

for string in strings:

if "xxx' in string:
index = strings.index(string)
strings[index] = '[censored]’

This would work, but it seems unnecessary to search for the given string before replacing
it. Also, if you didn’t replace it, the search might give you the wrong index (that is, the index of
some previous occurrence of the same word). A better version would be the following:

index = 0
for string in strings:
if "xxx' in string:
strings[index] = '[censored]’
index += 1

This also seems a bit awkward, although acceptable. There is another solution, however;
you can use the built-in function enumerate:

for index, string in enumerate(strings):
if 'xxx' in string:
strings[index] = '[censored]’

This function lets you iterate over index-value pairs, where the indices are supplied
automatically.

97

98

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

Reversed and Sorted Iteration

Let’s look at another couple of useful functions: reversed and sorted. They're similar to the list
methods reverse and sort (with sorted taking similar arguments as sort), but they work on
any sequence or iterable object, and instead of modifying the object in place, they return
reversed and sorted versions:

>>> sorted([4, 3, 6, 8, 3])
(3, 3, 4, 6, 8]
>>> sorted('Hello, world!")

[I I’ l!l, I)l, IHI) ldl) Iel, lll, Ill) Ill) 'OI, IO', lII) lwl]
>>> list(reversed('Hello, world!'))
[I!I) ldl, Ill, III) '0') IW', 1 I, I)l) IOI) lll, Ill, leI) lHl]

>>> ''.join(reversed('Hello, world!"))
"ldlrow ,o0lleH’

Note that although sorted returns a list, reversed returns a more mysterious iterable object.
You needn’t worry about what this really means; you can use it in for loops or methods such as
join without any problems. You just can’t index or slice it or call list methods on it directly; in
order to do that you have to convert it, using the 1ist type, as shown in the previous example.

Breaking Out of Loops

Usually, aloop simply executes a block until its condition becomes false, or until it has used up
all sequence elements—but sometimes you may want to interrupt the loop, to start a new iter-
ation (one “round” of executing the block), or to simply end the loop.

break

To end (break out of) a loop, you use break. Let’s say you wanted to find the largest square (an
integer that is the square of another integer) below 100. Then you start at 100 and iterate down-
wards to 0. When you’ve found a square, there’s no need to continue, so you simply break out
of the loop:

from math import sqrt
for n in range(99, 0, -1):
root = sqrt(n)
if root == int(root):
print n
break

If you run this program, it will print out 81, and stop. Notice that I've added a third argu-
ment to range—that’s the step, the difference between every pair of adjacent numbers in the
sequence. It can be used to iterate downwards as I did here, with a negative step value, and it
can be used to skip numbers:

>>> range(0, 10, 2)
[O) 2) 4) 6) 8]

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

continue

The continue statement is used less often than break. It causes the current iteration to end, and
to “jump” to the beginning of the next. It basically means “skip the rest of the loop body, but
don’t end the loop.” This can be useful if you have a large and complicated loop body and
several possible reasons for skipping it—in that case you can use continue as follows:

for x in seq:
if conditioni: continue
if condition2: continue
if condition3: continue

do_something()
do_something else()
do_another thing()
etc()

In many cases, however, simply using an if statement is just as good:

for x in seq:
if not (conditionl or condition2 or condition3):
do_something()
do_something else()
do_another thing()
etc()

Even though continue can be a useful tool, it is not essential. The break statement, however,
is something you should get used to because it is used quite often in concert with while True,
as explained in the next section.

The while True/break Idiom

Thewhile and for loops in Python are quite flexible, but every once in a while you may encounter
a problem that makes you wish you had more functionality. For example, let’s say you want to
do something while a user enters words at a prompt, and you want to end the loop when no
word is provided. One way of doing that would be

word = 'dummy’

while word:
word = raw_input('Please enter a word: ')
do something with the word:
print 'The word was ' + word

Here is an example session:

Please enter a word: first
The word was first

Please enter a word: second
The word was second

Please enter a word:

99

100

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

This works just like you want it to. (Presumably you’d do something more useful with the
word than print it out, though.) However, as you can see, this code is a bit ugly. To enter the
loop in the first place, you have to assign a dummy (unused) value to word. Dummy values like
this are usually a sign that you aren’t doing things quite right. Let’s try to get rid of it:

word = raw_input('Please enter a word: ')
while word:

do something with the word:

print 'The word was ' + word

word = raw_input('Please enter a word: ')

Here the dummy is gone, but I have repeated code (which is also a bad thing): have to use
the same assignment and call to raw_input in two places. How can I avoid that? I can use the
while True/break idiom:

while True:
word = raw_input('Please enter a word: ')
if not word: break
do something with the word:
print 'The word was ' + word

Note Anidiom is a common way of doing things that people who know the language are assumed to know.

The while True part gives you a loop that will never terminate by itself. Instead, you put
the condition in an if statement inside the loop, which calls break when the condition is
fulfilled. Thus you can terminate the loop anywhere inside the loop instead of only at the begin-
ning (as with anormalwhileloop). The if/breakline splits the loop naturally in two parts: The first
takes care of setting things up (the part that would be duplicated with a normal while loop), and
the other part makes use of the initialization from the first part, provided that the loop condi-
tion is true.

Although you should be wary of using break too often (because it can make your loops
harder to read), this specific technique is so common that most Python programmers (including
yourself) will probably be able to follow your intentions.

else Clauses in Loops

When you use break statements in loops, it is often because you have “found” something, or
because something has “happened.” It’s easy to do something when you break out (like print n),
but sometimes you may want to do something if you didn’t break out. But how do you find out?
You could use a Boolean variable, set it to False before the loop, and set it to True when you
break out. Then you can use an if statement afterwards to check whether you did break out
or not:

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

broke out = False
for x in seq:
do_something(x)
if condition(x):
broke out =
break
do_something else(x)
if not broke out:
print "I didn't break out!"

True

A simpler way is to add an else clause to your loop—it is only executed if you didn’t call
break. Let’s reuse the example from the preceding section on break:

from math import sqrt
for n in range(99, 81, -1):
root = sqrt(n)
if root == int(root):
print n
break
else:
print "Didn't find it!"

Notice that I changed the lower (exclusive) limit to 81 to test the else clause. If you run the
program, it prints out “Didn’t find it!” because (as you saw in the section on break) the largest
square below 100 is 81. You can use continue, break, and else clauses both with for loops and
while loops.

List Comprehension—Slightly Loopy

List comprehension is a way of making lists from other lists (similar to set comprehension, if
you know that term from mathematics). It works in a way similar to for loops, and is actually
quite simple:

>>> [x*x for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The list is composed of x*x for each x in range (10). Pretty straightforward? What if you only
want to print out those squares that are divisible by 3?2 Then you can use the modulo operator—
y % 3 returns zero when y is divisible by 3. (Note that x*x is divisible by 3 only if x is divisible by
3.) You put this into your list comprehension by adding an if part to it:

>>> [x*x for x in range(10) if x % 3 == 0]
[0, 9, 36, 81]

101

102 CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

You can also add more for parts:

>>> [(x, y) for x in range(3) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

This can be combined with an if clause, just like before:

>>> girls = ['alice', 'bernice', 'clarice']

>>> boys = ['chris', 'arnold’, 'bob']

>>> [b+'+"+g for b in boys for g in girls if b[0] == g[0]]
['chris+clarice', 'arnold+alice', 'bob+bernice']

This gives the pairs of boys and girls who have the same initial letter in their first name.

A BETTER SOLUTION

The boy/girl pairing example isn’t particularly efficient because it checks every possible pairing. There are
many ways of solving this problem in Python. The following was suggested by Alex Martelli:

girls = ['alice', 'bernice', 'clarice']
boys = ['chris', 'arnold', 'bob']
letterGirls = {}
for girl in girls:
letterGirls.setdefault(girl[o], []).append(girl)
print [b+'+'+g for b in boys for g in letterGirls[b[o0]]]

This program constructs a dictionary called letterGirl where each entry has a single letter as its key
and a list of girls’ names as its value. (The setdefault dictionary method is described in the previous chapter.)
After this dictionary has been constructed, the list comprehension loops over all the boys and looks up all the
girls whose name begins with the same letter as the current boy. This way the list comprehension doesn’t
have to try out every possible combination of boy and girl and check whether the first letters match.

And Three for the Road

To end the chapter, let’s take a quick look at three more statements: pass, del, and exec.

Nothing Happened!

Sometimes you need to do nothing. This may not be very often, but when it happens, it’s good
to know that you have the pass statement:

>>> pass
>>>

Not much going on here.

Now, why on earth would you want a statement that does nothing? It can be useful as a
placeholder while you are writing code. For example, you may have written an if statement
and you want to try it, but you lack the code for one of your blocks. Consider the following:

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

if name == 'Ralph Auldus Melish':
print 'Welcome!'

elif name == 'Enid':
Not finished yet...
elif name == 'Bill Gates':

print 'Access Denied’

This code won't run because an empty block is illegal in Python. To fix this, simply add a
pass statement to the middle block:

if name == 'Ralph Auldus Melish':
print 'Welcome!'

elif name == 'Enid':
Not finished yet...
pass

elif name == 'Bill Gates':

print 'Access Denied’

Note An alternative to the combination of a comment and a pass statement is to simply insert a string.
This is especially useful for unfinished functions (see Chapter 6) and classes (see Chapter 7) because they will
then act as docstrings (explained in Chapter 6).

Deleting with del

In general, Python deletes names (or parts of data structures) that you don’t use anymore:

>>> scoundrel = {'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = scoundrel

>>> scoundrel

{'age': 42, 'first name':
>>> robin

{'age': 42, 'first name':
>>> scoundrel = None

>>> robin

{'age': 42, 'first name':
>>> robin = None

'Robin', 'last name': 'of Locksley'}

'Robin', 'last name': 'of Locksley'}

'Robin', 'last name': 'of Locksley'}

Atfirst, robin and scoundrel are both bound to the same dictionary. So when I assign None
to scoundrel, the dictionary is still available through robin. But when I assign None to robin as
well, the dictionary suddenly floats around in the memory of the computer with no name
attached to it. There is no way I can retrieve it or use it, so the Python interpreter (in its infinite
wisdom) simply deletes it. (This is called garbage collection.) Note that I could have used any
value other than None as well. The dictionary would be just as gone.

Another way of doing this is to use the del statement (which we used to delete sequence
and dictionary elements in Chapters 2 and 4, remember?). This not only removes a reference to
an object, it also removes the name itself:

103

104

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

>»> x =1
>>> del x
>>> X

Traceback (most recent call last):
File "<pyshell#255>", line 1, in ?
X
NameError: name 'x' is not defined

This may seem easy, but it can actually be a bit tricky to understand at times. For instance,
in the following example, x and y refer to the same list:

>>> x = ["Hello", "world"]
>y = X

>>> y[1] = "Python"

>>> X

['Hello', 'Python']

You might assume that by deleting x, you would also delete y, but that is not the case:

>>> del x
>y
['Hello', 'Python']

Why is this? x and y referred to the samelist, but deleting x didn’t affect y at all. The reason
for this is that you only delete the name, not the list itself (the value). In fact, there is no way to
delete values in Python (and you don’t really need to because the Python interpreter does it by
itself whenever you don’t use the value anymore).

Executing and Evaluating Strings with exec and eval

Sometimes you may want to create Python code “on the fly” and execute it as a statement or
evaluate it as an expression. This may border on dark magic at times—consider yourself warned.

Gaution In this section, you learn to execute Python code stored in a string. This is a potential security
hole of great dimensions. If you execute a string where parts of the contents have been supplied by a user,
you have little or no control over what code you are executing. This is especially dangerous in network appli-
cations, such as CGl scripts, which you will learn about in Chapter 15.

exec

The statement for executing a string is exec:

>>> exec "print 'Hello, world!'"
Hello, world!

However, using this simple form of the exec statement is rarely a good thing; in most cases
you want to supply it with a namespace, a place where it can put its variables. You want to do
this so that the code doesn’t corrupt your namespace (that is, change your variables). For example,
let’s say that the code uses the name sqrt:

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

>>> from math import sqrt
>>> exec "sqrt = 1"
>>> sqrt(4)
Traceback (most recent call last):
File "<pyshell#18>", line 1, in ?
sqrt(4)
TypeError: object is not callable: 1

Well, why would you do something like that in the first place, you ask? The exec statement
is mainly useful when you build the code string on the fly. And if the string is built from parts
that you get from other places, and possibly from the user, you can rarely be certain of exactly
what it will contain. So to be safe, you give it a dictionary, which will work as a namespace for it.

Note The concept of namespaces, or scopes, is a very important one. You will look at it in depth in the
next chapter, but for now you can think of a namespace as a place where you keep your variables, much like
an invisible dictionary. So when you execute an assignment like x = 1, you store the key x with the value 1
in the current namespace, which will often be the global namespace (which we have been using, for the most
part, up until now), but doesn’t have to be.

You do this by adding in <scope>, where <scope> is some dictionary that will function as
the namespace for your code string:

>>> from math import sqrt
>>> scope = {}

>>> exec 'sqrt =1
>>> sqrt(4)

2.0

>>> scope['sqrt']
1

in scope

As you can see, the potentially destructive code does not overwrite the sqrt function; the
function works just like it should, and the sqrt variable resulting from the exec’ed assignment
is available from the scope.

Note that if you try to print out scope, you see that it contains a lot of stuff because the
dictionary called __builtins__is automatically added and contains all built-in functions and
values:

>>> len(scope)

2

>>> scope.keys()
['sqrt', ' builtins_ ']

eval

A built-in function that is similar to exec is eval (for “evaluate”). Just as exec executes a series
of Python statements, eval evaluates a Python expression (written in a string) and returns the

105

106

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

value. (exec doesn’t return anything because it is a statement itself.) For example, you can use
the following to make a Python calculator:

>>> eval(raw_input("Enter an arithmetic expression: "))
Enter an arithmetic expression: 6 + 18 * 2
42

Note The expression eval (raw_input(...)) is, in fact, equivalent to input(...).

You can supply a namespace with eval, just as with exec, although expressions rarely
rebind variables in the way statements usually do. (In fact, you can supply eval with two
namespaces, one global and one local. The global one must be a dictionary, but the local one
may be any mapping.)

CGaution Even though expressions don’t rebind variables as a rule, they certainly can (for example by
calling functions that rebind global variables). Therefore, using eval with an untrusted piece of code is no
safer than using exec. There is, at present, no safe way of executing untrusted code in Python. One alterna-
tive is to use an implementation of Python such as Jython (see Chapter 17) and use the some native mechanism
such as the Java sandbox.

PRIMING THE SCOPE

When supplying a namespace for exec or eval, you can also put some values in before actually using the
namespace:

>>> scope = {}
>>> scope['x"'] = 2
>>> scope['y']
>>> eval('x * y', scope)

In the same way, a scope from one exec or eval call can be used again in another one:

>>> scope = {}
>>> exec 'x = 2' in scope
>>> eval('x*x", scope)

Actually, exec and eval are not used all that often, but they can be nice tools to keep in your back
pocket (figuratively, of course).

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS 107

A Quick Summary

In this chapter you’ve seen several kinds of statements:

Printing. You can use the print statement to print several values by separating them with
commas. If you end the statement with a comma, later print statements will continue
printing on the same line.

Importing. Sometimes you don’t like the name of a function you want to import—perhaps
you've already used the name for something else. You can use the import...as... statement,
to locally rename a function.

Assignments. You've seen that through the wonder of sequence unpacking and chained
assignments, you can assign values to several variables at once, and that with augmented
assignments you can change a variable in place.

Blocks. Blocks are used as a means of grouping statements through indentation. They are
used in conditionals and loops, and as you see later in the book, in function and class defi-
nitions, among other things.

Conditionals. A conditional statement either executes a block or not, depending on a condi-
tion (Boolean expression). Several conditionals can be strung together with if/elif/else.

Assertions. An assertion simply asserts that something (a Boolean expression) is true,
optionally with a string explaining why it has to be so. If the expression happens to be false,
the assertion brings your program to a halt (or actually raises an exception—more on that
in Chapter 8). It’s better to find an error early than to let it sneak around your program
until you don’t know where it originated.

Loops. You either can execute a block for each element in a sequence (such as a range of
numbers) or continue executing it while a condition is true. To skip the rest of the block
and continue with the next iteration, use the continue statement; to break out of the loop,
use the break statement. Optionally, you may add an else clause at the end of the loop,
which will be executed if you didn’t execute any break statements inside the loop.

List comprehension. These aren’t really statements—they are expressions that look a lot
like loops, which is why I grouped them with the looping statements. Through list compre-
hension, you can build new lists from old ones, applying functions to the elements, filtering
out those you don’t want, and so on. The technique is quite powerful, but in many cases
using plain loops and conditionals (which will always get the job done) may be more readable.

pass, del, exec, and eval. The pass statement does nothing, which can be useful as a place-
holder, for example. The del statement is used to delete variables or parts of a datastructure,
but cannot be used to delete values. The exec statement is used to execute a string as if it
were a Python program. The built-in function eval evaluates an expression written in a
string and returns the result.

108

CHAPTER 5 CONDITIONALS, LOOPS, AND SOME OTHER STATEMENTS

New Functions in This Chapter

Function

Description

chr(n)
eval(source[, globals[, locals]])

enumerate(seq)

ord(c)

range([start,] stop[, step])

reversed(seq)

sorted(seq[, cmp][, key][, reverse])
xrange([start,] stop[, step])

zip(seql, seq2,...)

Returns a one-character string with ordinal n
(0<n <256)

Evaluates a string as an expression and returns
the value

Yields (index, value) pairs suitable for iteration

Returns the integer ordinal value of a one-
character string

Creates a list of integers

Yields the values of seq in reverse order, suitable
for iteration

Returns a list with the values of seq in sorted order
Creates an xrange object, used for iteration

Creates a new sequence suitable for parallel
iteration

What Now?

Now you've cleared the basics. You can implement any algorithm you can dream up; you can
read in parameters and print out the results. In the next couple of chapters, you learn about
something that will help you write larger programs without losing the big picture. That some-

thing is called abstraction.

CHAPTER 6

Abstraction

In this chapter, you learn how to group statements into functions, which enables you to tell
the computer how to do something, and to tell it only once. You won’t have to give it the same
detailed instructions over and over. The chapter provides a thorough introduction to parameters
and scoping; you learn what recursion is and what it can do for your programs, and you see how
functions themselves can be used as parameters, just like numbers, strings, and other objects.

Laziness Is a Virtue

The programs we’ve written so far have been pretty small, but if you want to make something
bigger, you’ll soon run into trouble. Consider what happens if you have written some code in

one place and need to use it in another place as well. For example, let’s say you wrote a snippet
of code that computed some Fibonacci numbers (a series of numbers in which each number is
the sum of the two previous ones):

fibs = [0, 1]

for i in range(8):
fibs.append(fibs[-2] + fibs[-1])

After running this, fibs contains the first ten Fibonacci numbers:

>>> fibs
[0) 1, 1, 2, 3, 5, 8, 13, 21, 34]

This is all right if what you want is to calculate the first ten Fibonacci numbers once. You
could even change the for loop to work with a dynamic range, with the length of the resulting
sequence supplied by the user:

fibs = [0, 1]
num = input('How many Fibonacci numbers do you want? ')
for i in range(num-2):
fibs.append(fibs[-2] + fibs[-1])
print fibs

Note Remember that you can use raw_input if you want to read in a plain string. In this case, you would
then have had to convert it to an integer by using the int function.

109

110

CHAPTER 6 ABSTRACTION

But what if you also want to use the numbers for something else? You could certainly just
write the same loop again when needed, but what if you had written a more complicated piece
of code, for example, one that downloaded a set of Web pages and computed the frequencies
of all the words used? Would you still want to write all the code several times, once for each
time you needed it? No, real programmers don’t do that. Real programmers are lazy. Not lazy
in a bad way, but in the sense that they don’t do unnecessary work.

So what do real programmers do? They make their programs more abstract. You could
make the previous program more abstract as follows:

num = input('How many numbers do you want? ')
print fibs(num)

Here, only what is specific to this program is written concretely (reading in the number, and
printing out the result). Actually computing the Fibonacci numbers is done in an abstract manner:
you simply tell the computer to do it. You don’t say specifically how it should be done. You create a
function called fibs, and use it when you need the functionality of the little Fibonacci program.
It saves you a lot of effort if you need it in several places.

Abstraction and Structure

Abstraction can be useful as a labor saver, but it is actually more important than that. It is the
key to making computer programs understandable to humans (which is essential, whether
you're writing them or reading them). The computers themselves are perfectly happy with very
concrete and specific instructions, but humans generally aren’t. If you ask me for directions to
the cinema, for example, you wouldn’t want me to answer, “Walk 10 steps forward, turn 90 degrees
to your left, walk another 5 steps, turn 45 degrees to your right, walk 123 steps.” You would soon
lose track, wouldn’t you?

Now, if T instead told you to “Walk down this street until you get to a bridge, cross the
bridge, and the cinema is to your left,” then you'd certainly understand me. The point is that
you already know how to walk down the street, and how to cross a bridge. You don’t need
explicit instructions on how to do either.

You structure computer programs in a similar fashion. Your programs should be quite
abstract, as in “Download page, compute frequencies, print the frequency of each word.” This
is easily understandable. In fact, let’s translate this high-level description to a Python program
right now:

page = download page()
freqs = compute frequencies(page)
for word, freq in fregs:

print word, freq

From reading this, you can understand what the program does. However, you haven’t
explicitly said anything about how it should do it. You just tell the computer to download the
page and compute the frequencies. The specifics of these operations will have to be written
somewhere else—in separate function definitions.

CHAPTER 6 ABSTRACTION

Creating Your Own Functions

A function is something you can call (possibly with some parameters, the things you put in the
parentheses), which performs an action and returns a value. In general, you can tell whether
something is callable or not with the built-in function callable:

>>> import math
>»> x =1

>>> y = math.sqrt
>>> callable(x)

>>> callable(y)

As you know from the previous section, creating functions is central to structured program-
ming. So how do you define a function? With the def (or “function definition”) statement:

def hello(name):
return 'Hello, ' + name + '!'

After running this, you have a new function available, called hello, which returns a string
with a greeting for the name given as the only parameter. You can use this function just like you
used the built-in ones:

>>> print hello('world")
Hello, world!
>>> print hello('Gumby")
Hello, Gumby!

Pretty neat, huh? Consider how you would write a function that returned a list of Fibonacci
numbers. Easy! You just use the code from before, and instead of reading in a number from the
user, you receive it as a parameter:

def fibs(num):
result = [0, 1]
for i in range(num-2):
result.append(result[-2] + result[-1])
return result

After running this statement, you've basically told the interpreter how to calculate
Fibonacci numbers—so now you don’t have to worry about the details anymore. You simply
use the function fibs:

>>> fibs(10)

[0) 1, 1, 2, 3, 5, 8, 13, 21, 34]

>>> fibs(15)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

The names num and result are quite arbitrary in this example, but return is important. The
return statement is used to return something from the function (which is also how we used it
in the preceding hello function).

111

112

CHAPTER 6 ABSTRACTION

Tip Your functions can return more than one value—simply collect them in a tuple and return that.

Documenting Functions

If you want to document your functions so that you're certain that others will understand them
later on, you can add comments (beginning with the hash sign, #). Another way of writing
comments is simply to write strings by themselves. Such strings can be particularly useful in
some places, such as right after a def statement (and at the beginning of a module or a class—
you learn more about those later in the book). If you put a string at the beginning of a function,
it is stored as part of the function and is called a docstring. The following code demonstrates
how to add a docstring to a function:

def square(x):
'Calculates the square of the number x.'
return x*x

The docstring may be accessed like this:

>>> square. doc__
'Calculates the square of the number x.'

Note doc__is a function attribute. You'll learn a lot more about attributes in Chapter 7. The double
underscores in the attribute name mean that this is a special attribute. Special or “magic” attributes like this
are discussed in Chapter 9.

There is a built-in function called help, which can be quite useful. If you use it in the inter-
active interpreter, you can get information about a function, including its docstring:

>>> help(square)
Help on function square in module _main_:

square(x)
Calculates the square of the number x.

You meet the help function again in Chapter 10.

Functions That Aren’t Really Functions

Functions, in the mathematical sense, always return something that is calculated from their
parameters. In Python, some functions don’t return anything. In other languages (such as Pascal),
such functions may be called other things (such as procedures), but in Python a function is a
function, even if it technically isn’t. Functions that don’t return anything simply don’t have a
return statement. Or, if they do have return statements, there is no value after the word return:

CHAPTER 6 ABSTRACTION

def test():
print 'This is printed’
return
print 'This is not'

Here, the return statement is used simply to end the function:

>>> x = test()
This is printed

As you can see, the second print statement is skipped. (This is a bit like using break in
loops, except that you break out of the function.) Butif test doesn’t return anything, what does
x refer to? Let’s see:

>>> X
>>>

Nothing there. Let’s look a bit closer:

>>> print x
None

That’s a familiar value: None. So all functions do return something: it’s just that they return
None when you don’t tell them what to return. I guess I was a bit unfair when I said that some
functions aren’t really functions.

The Magic of Parameters

Using functions is pretty straightforward, and creating them isn’t all that complicated either.
The way parameters work may, however, seem a bit like magic at times. First, let’s do the basics.

Where Do the Values Come From?

Sometimes, when defining a function, you may wonder where parameters get their values
from. In general, you shouldn’t worry about that. Writing a function is a matter of providing a
service to whatever part of your program (and possibly even other programs) might need it.
Your task is to make sure the function does its job if it is supplied with acceptable parameters,
and preferably fails in an obvious manner if the parameters are wrong. (You do this with assert
or exceptions in general. More about exceptions in Chapter 8.)

Note The variables you write after your function name in def statements are often called the formal
parameters of the function, while the values you supply when you callthe function are called the actual parameters,
or arguments. In general, | won’t be too picky about the distinction. If it is important, | will call the actual
parameters “values” to distinguish them from the formal parameters.

113

114

CHAPTER 6 ABSTRACTION

Can I Change a Parameter?

So, your function gets a set of values in through its parameters. Can you change them? And
what happens if you do? Well, the parameters are just variables like all others, so this works as
you would expect. Assigning a new value to a parameter inside a function won’t change the
outside world at all:

>>> def try to change(n):
n = 'Mr. Gumby'

>>> name = 'Mrs. Entity’
>>> try to_change(name)
>>> name

'Mrs. Entity'

Inside try_to_change, the parameter n gets a new value, but as you can see, that doesn’t
affect the variable name. After all, it’s a completely different variable. It’s just as if you did some-
thing like this:

>>> name = 'Mrs. Entity’

>>> n = name # This is almost what happens when passing a parameter
>>> n = 'Mr. Gumby' # This is done inside the function

>>> name

'Mrs. Entity’

Here, the result is obvious. While the variable n is changed, the variable name is not. Similarly,
when you rebind (assign to) a parameter inside a function, variables outside the function will
not be affected.

Note Parameters are stored in what is called a local scope. Scoping is discussed later in this chapter.

Strings (and numbers and tuples) are immutable: you can’t modify them. Therefore there
isn’t much to say about them as parameters. But consider what happens if you use a mutable
data structure such as a list:

>>> def change(n):
n[0] = 'Mr. Gumby'

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> change(names)

>>> names

['Mr. Gumby', 'Mrs. Thing']

In this example, the parameter is changed. There is one crucial difference between this
example and the previous one. In the previous one, we simply gave the local variable a new
value, but in this one we actually modify the list that the variable names is bound to. Sound
strange? It’s not really that strange; let’s do it again without the function call:

CHAPTER 6 ABSTRACTION

>>> names = ['Mrs. Entity', 'Mrs. Thing']

>>> n = names # Again pretending to pass names as a parameter
>>> n[0] = "Mr. Gumby' # Change the list

>>> names

['Mr. Gumby', 'Mrs. Thing']

You've seen this sort of thing before. When two variables refer to the same list, they . ..
refer to the same list. It’s really as simple as that. If you want to avoid this, you have to make a
copy of the list. When you do slicing on a sequence, the returned slice is always a copy. Thus, if
you make a slice of the entire list you get a copy:

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> n = names[:]

Now n and names contain two separate (nonidentical) lists that are equal:

>>> n is names

>>> n == names

If you change n now (as you did inside the function change), it won’t affect names:

>>> n[0] = "Mr. Gumby'

>>> N

['Mr. Gumby', 'Mrs. Thing']
>>> names

['Mrs. Entity', 'Mrs. Thing']

Let’s try this trick with change:

>>> change(names[:])
>>> names
['Mrs. Entity', 'Mrs. Thing']

Now, the parameter n contains a copy, and your original list is safe.

Note In case you wonder: Names that are local to a function, including parameters, do not clash with
names outside of the function (that is, global ones). For more information about this, see the discussion of
scoping, later in this chapter.

Why Would | Want to Modify My Parameters?

Using a function to change a data structure (such as a list or a dictionary) can be a good way of
introducing abstraction into your program. Let’s say you want to write a program that stores
names and that allows you to look up people either by their first, middle, or last names. You
might use a data structure like this:

115

116

CHAPTER 6 ABSTRACTION

storage = {}

storage['first'] = {
storage['middle'] =
storage['last'] = {}

}

(
The data structure storage is a dictionary with three keys: 'first', 'middle', and 'last’.

Under each of these keys, you store another dictionary. In these subdictionaries, you'll use

names (first, middle, or last) as keys, and insert lists of people as values. For example, to add me
to this structure, you could do the following:

>>> me = 'Magnus Lie Hetland'

>>> storage['first']['Magnus'] = [me
>>> storage['middle’]['Lie'] = [me]
>>> storage['last']['Hetland'] = [me

]
]

Under each key, you store a list of people. In this case, the lists contain only me.
Now, if you want a list of all the people registered who have the middle name Lie, you
could do the following:

>>> storage['middle']['Lie"]
['Magnus Lie Hetland']

As you can see, adding people to this structure is a bit tedious, especially when you get
more people with the same first, middle, or last names, because then you have to extend the list
that is already stored under that name. Let’s add my sister, for example, and let’s assume you
don’t know what is already stored in the database:

>>> my_sister = 'Anne Lie Hetland'

>>> storage['first'].setdefault('Anne’, []).append(my sister)
>>> storage['middle'].setdefault('Lie’, []).append(my sister)
>>> storage['last'].setdefault('Hetland', []).append(my sister)
>>> storage['first']['Anne']

['Anne Lie Hetland']

>>> storage['middle']['Lie"]

['Magnus Lie Hetland', 'Anne Lie Hetland']

Imagine writing a large program filled with updates like this—it would quickly become
quite unwieldy.

The point of abstraction is to hide all the gory details of the updates, and you can do that
with functions. Let’s first make a function to initialize a data structure:

def init(data):
data['first'] = {}
data['middle'] = {}
data['last'] = {}

In the preceding code, I've simply moved the initialization statements inside a function.
You can use it like this:

CHAPTER 6 ABSTRACTION

>>> storage = {}

>>> init(storage)

>>> storage

{'middle': {}, 'last': {}, 'first': {}}

As you can see, the function has taken care of the initialization, making the code much
more readable.

Note The keys of a dictionary don’t have a specific order, so when a dictionary is printed out, the order
may vary. If the order is different in your interpreter, don’t worry about it.

Before writing a function for storing names, let’s write one for getting them:

def lookup(data, label, name):
return data[label].get(name)

With lookup you can take a label (such as 'middle’) and a name (such as 'Lie') and geta
list of full names returned. In other words, assuming my name was stored, you could do this:

>>> lookup(storage, 'middle', 'Lie')
['Magnus Lie Hetland']

It’s important to notice that the list that is returned is the same list that is stored in the data
structure. So if you change the list, the change also affects the data structure. (This is not the
case if no people are found: then you simply return None.)

Now it’s time to write the function that stores a name in your structure:

def store(data, full name):
names = full name.split()
if len(names) == 2: names.insert(1, '")
labels = 'first', 'middle', 'last'
for label, name in zip(labels, names):
people = lookup(data, label, name)
if people:
people.append(full name)
else:
data[label][name] = [full name]

The store function performs the following steps:

1. You enter the function with the parameters data and full name set to some values that
you receive from the outside world.

2. You make yourself a list called names by splitting full name.

3. If the length of names is 2 (you only have a first and a last name), you insert an empty
string as a middle name.

117

118

CHAPTER 6 ABSTRACTION

4, You store the strings 'first', 'middle’, and 'last' as a tuple in labels. (You could
certainly use a list here: it’s just convenient to drop the brackets.)

5. You use the zip function to combine the labels and names so they line up properly, and
for each pair (label, name), you do the following: (1) Fetch the list belonging to the
given label and name; (2) Append full name to that list, or insert a new list if needed.

Let’s try it out:

>>> MyNames = {}

>>> init(MyNames)

>>> store(MyNames, 'Magnus Lie Hetland')
>>> lookup(MyNames, 'middle', 'Lie')
['Magnus Lie Hetland']

It seems to work. Let’s try some more:

>>> store(MyNames, 'Robin Hood')

>>> store(MyNames, 'Robin Locksley')

>>> lookup(MyNames, 'first', 'Robin')

['Robin Hood', 'Robin Locksley']

>>> store(MyNames, 'Mr. Gumby')

>>> lookup(MyNames, 'middle', '')

['Robin Hood', 'Robin Locksley', 'Mr. Gumby']

As you can see, if more people share the same first, middle, or last name, you can retrieve
them all together.

Note This sort of application is well suited to object-oriented programming, which is explained in the
next chapter.

What If My Parameter Is Inmutable?

In some languages (such as C++, Pascal, or Ada), rebinding parameters and having these changes
affect variables outside the function is an everyday thing. In Python, it’s not directly possible:
you can only modify the parameter objects themselves. But what if you have an immutable
parameter, such as a number?

Sorry, but it can’t be done. What you should do is return all the values you need from your
function (as a tuple, if there is more than one). For example, a function that increments the
numeric value of a variable by one could be written like this:

>>> def inc(x): return x + 1

>>> foo = 10
>>> foo = inc(foo)
>>> foo

11

CHAPTER 6 ABSTRACTION

WHAT IF | REALLY WANT T0?

If you really want to modify your parameter, you can use a little trick—wrap your value in a list:
>>> def inc(x): x[0] = x[0] + 1

>>> foo = [10]

>>> inc(foo)

>>> foo
[11]

Simply returning the new value is generally considered a cleaner solution.

Keyword Parameters and Defaults

The parameters we’ve been using until now are called positional parameters because their
positions are important—more important than their names, in fact. Consider the following
two functions:

def hello 1(greeting, name):

print '%s, %s!' % (greeting, name)
def hello 2(name, greeting):

print '%s, %s!' % (name, greeting)

They both do exactly the same thing, only with their parameter names reversed:

>>> hello 1('Hello', 'world')
Hello, world!
>>> hello 2('Hello', 'world')
Hello, world!

Sometimes (especially if you have many parameters) the order may be hard to remember.
To make things easier, you can supply the name of our parameter:

>>> hello 1(greeting="Hello', name='world")
Hello, world!

The order here doesn’t matter at all:

>>> hello 1(name='world', greeting='Hello')
Hello, world!

The names do, however (as you may have gathered):

>>> hello 2(greeting="Hello', name='world")
world, Hello!

119

120

CHAPTER 6 ABSTRACTION

The parameters that are supplied with a name like this are called keyword parameters. On
their own, the key strength of keyword parameters is that they can help clarify the role of each
parameter. Instead of having to use some odd and mysterious call like

>>> store('Mr. Brainsample', 10, 20, 13, 5)
you could use
>>> store(patient="Mr. Brainsample', hour=10, minute=20, day=13, month=5)

Even though it takes a bit more typing, it is absolutely clear what each parameter does.
Also, if you get the order mixed up, it doesn’t matter.

What really makes keyword arguments rock, however, is that you can give the parameters
in the function default values:

def hello 3(greeting="Hello', name='world'):
print '%s, %s!' % (greeting, name)

When a parameter has a default value like this, you don’t have to supply it when you call
the function! You can supply none, some, or all, as the situation might dictate:

>>> hello 3()

Hello, world!

>>> hello_3('Greetings")

Greetings, world!

>>> hello 3('Greetings', 'universe')
Greetings, universe!

As you can see, this works well with positional parameters, except that you have to supply
the greeting if you want to supply the name. What if you want to supply only the name, leaving
the default value for the greeting? I'm sure you've guessed it by now:

>>> hello 3(name="Gumby")
Hello, Gumby!

Pretty nifty, huh? And that’s not all. You can combine positional and keyword parameters.
The only requirement is that all the positional parameters come first. If they don'’t, the inter-
preter won’t know which ones they are (that is, which position they are supposed to have).

Note Unless you know what you’re doing, you might want to avoid such mixing. It is generally used when
you have a small number of mandatory parameters and many modifying parameters with default values.

For example, our hello function might require a name, but allow us to (optionally) specify
the greeting and the punctuation:

def hello 4(name, greeting='Hello', punctuation="!"):
print '%s, %s%s' % (greeting, name, punctuation)

This function can be called in many ways. Here are some of them:

CHAPTER 6 ABSTRACTION

>>> hello 4('Mars")
Hello, Mars!
>>> hello 4('Mars', 'Howdy')
Howdy, Mars!
>>> hello 4('Mars', 'Howdy', '...")
Howdy, Mars...
>>> hello 4('Mars', punctuation='.")
Hello, Mars.
>>> hello 4('Mars', greeting='Top of the morning to ya')
Top of the morning to ya, Mars!
>>> hello 4()
Traceback (most recent call last):

File "<pyshell#64>", line 1, in ?

hello 4()

TypeError: hello 4() takes at least 1 argument (0 given)

Note If | had given name a default value as well, the last example wouldn’t have raised an exception.

That’s pretty flexible, isn’t it? And we didn’t really have to do much to achieve it either. In
the next section we get even more flexible.

Collecting Parameters

Sometimes it can be useful to allow the user to supply any number of parameters. For example,
in the name-storing program (described earlier in this chapter), you can store only one name
at a time. It would be nice to be able to store more names, like this:

>>> store(data, namel, name2, name3)

For this to be useful, you should be allowed to supply as many names as you wanted. Actually,
that’s quite possible.
Try the following function definition:

def print_params(*params):
print params

Here, I seemingly specify only one parameter, but it has an odd little star (or asterisk) in
front of it. What does that mean? Let’s call the function with a single parameter and see what
happens:

>>> print_params('Testing')
('Testing',)

You can see that what is printed out is a tuple because it has a comma in it. (Those tuples
oflength one are a bit odd, aren’t they?) So using a star in front of a parameter puts it in a tuple?
The plural in params ought to give a clue about what’s going on:

121

122

CHAPTER 6 ABSTRACTION

>>> print_params(1, 2, 3)
(1, 2, 3)

The star in front of the parameter puts all the values into the same tuple. It gathers them
up, so to speak. I wonder if we can combine this with ordinary parameters. . . Let’s write
another function and see:

def print params 2(title, *params):
print title
print params

Let’s try it:

>>> print_params 2('Params:', 1, 2, 3)
Params:
(1, 2, 3)

It works! So the star means “Gather up the rest of the positional parameters.” I bet if I don’t
give any parameters to gather, params will be an empty tuple:

>>> print_params 2('Nothing:")
Nothing:
0

Indeed. How useful. Does it handle keyword arguments (the same as parameters), t0o?

>>> print_params 2('Hmm...', something=42)
Traceback (most recent call last):
File "<pyshell#60>", line 1, in ?
print_params 2('Hmm...', something=42)
TypeError: print params 2() got an unexpected keyword argument 'something'

Doesn’t look like it. So we probably need another “gathering” operator for keyword
arguments. What do you think that might be? Perhaps **?

def print params 3(**params):
print params

At least the interpreter doesn’t complain about the function. Let’s try to call it:

>>> print_params_3(x=1, y=2, z=3)
{"z": 3, 'x':+ 1, 'y': 2}

Yep. We get a dictionary rather than a tuple. Let’s put them all together:
def print _params 4(x, y, z=3, *pospar, **keypar):

print x, y, z

print pospar

print keypar

This works just like expected:

>>> print_params 4(1, 2, 3, 5, 6, 7, foo=1, bar=2)
123

CHAPTER 6 ABSTRACTION

(5, 6, 7)

{'foo': 1, 'bar': 2}
>>> print_params 4(1, 2)
123

0

(

By combining all these techniques, you can do quite a lot. If you wonder how some combi-
nation might work (or whether it’s allowed), just try it! (In the next section, you see how * and
** can be used at the point of call as well, regardless of whether they were used in the function
definition.)

Now, back to the original problem: how you can use this in the name-storing example.
The solution is shown here:

def store(data, *full names):
for full name in full names:
names = full name.split()
if len(names) == 2: names.insert(1, '")
labels = 'first', 'middle', 'last’
for label, name in zip(labels, names):
people = lookup(data, label, name)
if people:
people.append(full name)
else:
data[label][name] = [full name]

Using this function is just as easy as using the previous version, which only accepted
one name:

>>> d = {}
>>> init(d)
>>> store(d, 'Han Solo")

But now you can also do this:

>>> store(d, 'Luke Skywalker', 'Anakin Skywalker')
>>> lookup(d, 'last', 'Skywalker')
['Luke Skywalker', 'Anakin Skywalker']

Reversing the Process

Now you've learned about gathering up parameters in tuples and dictionaries, but it is in fact
possible to do the “opposite” as well, with the same two operators, * and **. What might the
opposite of parameter gathering be? Let’s say we have the following function available:

def add(x, y): return x + vy

Note You can find a more efficient version of this function in the operator module.

123

124

CHAPTER 6 ABSTRACTION

Also, let’s say you have a tuple with two numbers that you want to add:
params = (1, 2)

This is more or less the opposite of what we did previously. Instead of gathering the
parameters, we want to distribute them. This is simply done by using the asterisk operator in
the “other end,” that is, when calling the function rather than when defining it:

>>> add(*params)
3

This works with parts of a parameter list, too, as long as the expanded part is last. You can
use the same technique with dictionaries, using the double asterisk operator. Assuming that
you have defined hello_3 as before, you can do the following:

>>> params = {'name': 'Sir Robin', 'greeting': 'Well met'}
>>> hello_3(**params)
Well met, Sir Robin!

Using the asterisk (or double asterisk) both when you define and call the function will
simply pass the tuple or dictionary right through, so you might as well not have bothered:

>>> def with_stars(**kwds):
print kwds['name'], "is', kwds['age'], 'years old'

>>> def without stars(kwds):
print kwds['name'], "is', kwds['age'], 'years old'

>>> args = {'name’': 'Mr. Gumby', 'age': 42}
>>> with_stars(**args)

Mr. Gumby is 42 years old

>>> without stars(args)

Mr. Gumby is 42 years old

As you can see, inwith_stars, I use stars both when defining and calling the function. In
without_stars, I don’t use the stars in either place but achieve exactly the same effect. So the
stars are only really useful if you use them either when defining a function (to allow a varying
number of arguments) or when calling a function (to “splice in” a dictionary or a sequence).

With so many ways of supplying and receiving parameters, it's easy to get confused. So let me tie it all together with
an example. First, let me define some functions:

def story(**kwds):
return 'Once upon a time, there was a ' \
'%(job)s called %(name)s.' % kwds

def power(x, y, *others):
if others:

CHAPTER 6 ABSTRACTION
print 'Received redundant parameters:', others
return pow(x, y)

def interval(start, stop=None, step=1):
'Imitates range() for step > o'

if stop is None: # If the stop is not supplied...
start, stop = 0, start # shuffle the parameters
result = []
i = start # We start counting at the start index
while i < stop: # Until the index reaches the stop index...
result.append(i) # ...append the index to the result...
i += step # ...increment the index with the step (> 0)

return result
Now let’s try them out:

>>> print story(job="king', name='Gumby")

Once upon a time, there was a king called Gumby.

>>> print story(name='Sir Robin', job='brave knight")
Once upon a time, there was a brave knight called Sir Robin.
>>> params = {'job': 'language', 'name': 'Python'}
>>> print story(**params)

Once upon a time, there was a language called Python.
>>> del params['job']

>>> print story(job='stroke of genius', **params)
Once upon a time, there was a stroke of genius called Python.
>>> power(2,3)

8

>>> power(3,2)

9

>>> power(y=3,x=2)

8

>>> params = (5,) * 2

>>> power (*params)

3125

>>> power(3, 3, 'Hello, world')

Received redundant parameters: ('Hello, world',)

27

>>> interval(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> interval(1,5)

[1, 2, 3, 4]

>>> interval(3,12,4)

(3, 7, 11]

>>> power(*interval(3,7))

Received redundant parameters: (5, 6)

81

125

126

CHAPTER 6 ABSTRACTION

Feel free to experiment with these functions and functions of your own until you are confident that you understand
how this stuff works.

Scoping

What are variables, really? You can think of them as names referring to values. So, after the
assignment x = 1, the name x refers to the value 1. It’s almost like using dictionaries, where
keys refer to values, except that you're using an “invisible” dictionary. Actually, this isn’t far
from the truth. There is a built-in function called vars, which returns this dictionary:

>>> X =1

>>> scope = vars()
>>> scope['x"]

1

>>> scope['x'] += 1
>>> X

2

Gaution In general, you should not modify the dictionary retumed by vars because, according to the official
Python documentation, the result is undefined. In other words, you might not get the result you're after.

This sort of “invisible dictionary” is called a namespace or scope. So, how many namespaces
are there? In addition to the global scope, each function call creates a new one:

>>> def foo(): x = 42
> x =1
>>> foo()

>>> X
1

Here foo changes (rebinds) the variable x, but when you look at it in the end, it hasn’t
changed after all. That’s because when you call foo a new namespace is created, which is used
for the block inside foo. The assignment x = 42 is performed in this inner scope (the local
namespace), and therefore it doesn’t affect the x in the outer (global) scope. Variables that are
used inside functions like this are called local variables (as opposed to global variables). The
parameters work just like local variables, so there is no problem in having a parameter with the
same name as a global variable:

>>> def output(x): print x
>>> X =1
>>>y =2

>>> output(y)
2

CHAPTER 6 ABSTRACTION

So far, so good. But what if you want to access the global variables inside a function? As
long as you only want to read the value of the variable (that is, you don’t want to rebind it),
there is generally no problem:

>>> def combine(parameter): print parameter + external

>>> external = 'berry'
>>> combine('Shrub")
Shrubberry

THE PROBLEM OF SHADOWING

Reading the value of global variables is not a problem in general, but one thing may make it problematic. If a
local variable or parameter exists with the same name as the global variable you want to access, you can’t do
it directly. The global variable is shadowed by the local one.

If needed, you can still gain access to the global variable by using the function globals, a close relative
of vars, which returns a dictionary with the global variables. (1ocals returns a dictionary with the local variables.)

For example, if you had a global variable called parameter in the previous example, you couldn’t access
it from within combine because you have a parameter with the same name. In a pinch, however, you could
have referred to it as globals()['parameter']:

>>> def combine(parameter):
print parameter + globals()['parameter']

>>> parameter = 'berry’
>>> combine('Shrub")
Shrubberry

Rebinding Global Variables

Rebinding global variables (making them refer to some new value) is another matter. If you
assign a value to a variable inside a function, it automatically becomes local unless you tell
Python otherwise. And how do you think you can tell it to make a variable global?

»> x =1

>>> def change_global():
global x
X =x+1

>>> change_global()
>»> X
2

Piece of cake!

127

128 CHAPTER 6 ABSTRACTION

Note Use global variables only when you have to. They tend to make your code less readable and less
robust. Local variables make your program more abstract because they are “hidden” inside functions.

NESTED SCOPES

Python’s scopes may (from Python 2.2 on) be nested. This means that you can (among other things) write
functions like the following:

def multiplier(factor):
def multiplyByFactor(number):
return number*factor
return multiplyByFactor

One function is inside another, and the outer function returns the inner one. Each time the outer function
is called, the inner one gets redefined, and each time, the variable factor may have a new value. With nested
scopes, this variable from the outer local scope (of multiplier) is accessible in the inner function later on,
as follows:

>>> double = multiplier(2)
>>> double(5)

10

>>> triple = multiplier(3)
>>> triple(3)

9

>>> multiplier(5)(4)

20

A function such as multiplyByFactor that stores its enclosing scopes is called a closure.
If, for some reason, you’re using Python 2.1, you have to add the following line at the beginning of
your program:

from future import nested scopes

In older versions of Python, variables from surrounding nested scopes are not available. You get an error
message like this:

>>> double = multiplier(2)
>>> double(2)
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3, in multiplyByFactor
NameError: factor

Because old versions of Python only have local and global scopes, and factor is not a local variable in
multiplyByFactor, Python assumes that it must be a global variable. But it isn’t, so you get an exception.
To store a variable from an enclosing scope, you can use a trick—storing it as a default value:

CHAPTER 6 ABSTRACTION

def multiplier(factor):
def multiplyByFactor(number, factor=factor):
return number*factor
return multiplyByFactor

This works because default values are “frozen” when a function is defined.

Recursion

You've learned a lot about making functions and calling them. You also know that functions
can call other functions. What might come as a surprise is that functions can call themselves.

If you haven’t encountered this sort of thing before, you may wonder what this word
“recursion” is. It simply means referring to (or, in our case, “calling”) yourself. A humorous
definition goes like this:

rescuresion \ri-’k&r-zh&n\ n: see recursion.

Recursive definitions (including recursive function definitions) include references to the
term they are defining. Depending on the amount of experience you have with it, recursion can
be either mind-boggling or quite straightforward. For a deeper understanding of it, you should
probably buy yourself a good textbook on computer science, but playing around with the Python
interpreter can certainly help.

In general, you don’t want recursive definitions like the humorous one of the word “recur-
sion” because you won'’t get anywhere. You look up recursion, which again tells you to look up
recursion, and so on. A similar function definition would be

def recursion():
return recursion()

It is obvious that this doesn’t do anything—it’s just as silly as the mock dictionary defini-
tion. But what happens if you run it? You're welcome to try: The program simply crashes (raises
an exception) after a while. Theoretically, it should simply run forever. However, each time a
function is called, it uses up a little bit of memory, and after enough function calls have been
made (before the previous calls have returned), there is no more room, and the program ends
with the error message maximum recursion depth exceeded.

The sort of recursion you have in this function is called infinite recursion (just as a loop
beginning with while True and containing no break or return statements is an infinite loop)
because it never ends (in theory). What you want is a recursive function that does something
useful. A useful recursive function usually consists of the following parts:

* A base case (for the smallest possible problem) when the function returns a value directly
* Arecursive case, which contains one or more recursive calls on smaller parts of the problem

The point here is that by breaking the problem up into smaller pieces, the recursion can’t
go on forever because you always end up with the smallest possible problem, which is covered
by the base case.

129

130

CHAPTER 6 ABSTRACTION

Soyou have a function calling itself. But how is that even possible? It’s really not as strange
as it might seem. As I said before, each time a function is called, a new namespace is created for
that specific call; that means that when a function calls “itself,” you are actually talking about
two different functions (or, rather, the same function with two different namespaces). You
might think of it as one creature of a certain species talking to another one of the same species.

Two Classics: Factorial and Power

In this section, we examine two classic recursive functions. First, let’s say you want to compute
the factorial of a number n. The factorial of n is defined as n x (n-1) x (n-2) x ... x 1. It’s used
in many mathematical applications (for example, in calculating how many different ways there
are of putting n people in a line). How do you calculate it? You could always use a loop:

def factorial(n):
result = n
for i in range(1,n):
result *= i
return result

This works and is a straightforward implementation. Basically, what it does is this: first, it
sets the result to n; then, the result is multiplied by each number from 1 to n-1 in turn; finally,
it returns the result. But you can do this differently if you like. The key is the mathematical defi-
nition of the factorial, which can be stated as follows:

¢ The factorial of 1 is 1.
* The factorial of a number rn greater than 1 is the product of n and the factorial of n-1.

As you can see, this definition is exactly equivalent to the one given at the beginning of
this section.

Now, consider how you implement this definition as a function. It is actually pretty
straightforward, once you understand the definition itself:

def factorial(n):
if n==1:
return 1
else:
return n * factorial(n-1)

This is a direct implementation of the definition. Just remember that the function call
factorial(n) is a different entity from the call factorial(n-1).

Let’s consider another example. Assume you want to calculate powers, just like the built-in
function pow, or the operator **. You can define the (integer) power of a number in several
different ways, but let’s start with a simple one: power (x,n) (x to the power of n) is the number x
multiplied by itself n-1 times (so that x is used as a factor n times). So power(2,3) is 2 multiplied
with itself twice, or2x 2 x 2 =8.

This is easy to implement:

CHAPTER 6 ABSTRACTION

def power(x, n):

result = 1
for i in range(n):
result *= x

return result

This is a sweet and simple little function, but again you can change the definition to a
recursive one:

e power(x, 0) is1 forall numbers x.
e power(x, n)forn > 0isthe product of x and power(x, n-1).

Again, as you can see, this gives exactly the same result as in the simpler, iterative definition.
Understanding the definition is the hardest part—implementing it is easy:

def power(x, n):
if n == o0:
return 1
else:
return x * power(x, n-1)

Again, I have simply translated my definition from a slightly formal textual description
into a programming language (Python).

Tip If a function or an algorithm is complex and difficult to understand, clearly defining it in your own
words before actually implementing it can be very helpful. Programs in this sort of “almost-programming-
language” are often referred to as pseudocode.

So what is the point of recursion? Can’t you just use loops instead? The truth is—yes, you
can, and in most cases it will probably be (at least slightly) more efficient. But in many cases,
recursion can be more readable—sometimes much more readable—especially if one under-
stands the recursive definition of a function. And even though you could conceivably avoid
ever writing a recursive function, as a programmer you will most likely have to understand
recursive algorithms and functions created by others, at the very least.

Another Classic: Binary Search

As a final example of recursion in practice, let’s have a look at the algorithm called binary search.
You probably know of the game where you are supposed to guess what someone is thinking

about by asking 20 yes-or-no questions. To make the most of your questions, you try to cut the

number of possibilities in (more or less) half. For example, if you know the subject is a person,

you might ask “Are you thinking of a woman?” You don’t start by asking “Are you thinking

of John Cleese?” unless you have a very strong hunch. A version of this game for those more

131

132

CHAPTER 6 ABSTRACTION

numerically inclined is to guess a number. For example, your partner is thinking of a number
between 1 and 100, and you have to guess which one it is. Of course, you could do it in a hundred
guesses, but how many do you really need?

As it turns out, you only need seven questions. The first one is something like “Is the number
greater than 50?” If it is, then you ask “Is it greater than 752” You keep halving the interval until
you find the number. You can do this without much thought.

The same tactic can be used in many different contexts. One common problem is to find
out whether a number is to be found in a (sorted) sequence, and even to find out where it is.
Again, you follow the same procedure: “Is the number to the right of the middle of the sequence?”
Ifitisn’t, “Is it in the second quarter (to the right of the middle of the left half)?” and so on. You
keep an upper and a lower limit to where the number may be, and keep splitting that interval
in two with every question.

The point is that this algorithm lends itself naturally to a recursive definition and imple-
mentation. Let’s review the definition first, to make sure we know what we’re doing:

¢ If the upper and lower limits are the same, they both refer to the correct position of the
number, so return it.

¢ Otherwise, find the middle of the interval (the average of the upper and lower bound),
and find out if the number is in the right or left half. Keep searching in the proper half.

The key to the recursive case is that the numbers are sorted, so when you have found the
middle element, you can just compare it to the number you're looking for. If your number is
larger, then it must be to the right, and if it is smaller, it must be to the left. The recursive part
is “Keep searching in the proper half,” because the search will be performed in exactly the
manner described in the definition. (Note that the search algorithm returns the position where
the number should be—ifit’s not present in the sequence, this position will, naturally, be occu-
pied by another number.)

You're now ready to implement binary search:

def search(sequence, number, lower, upper):
if lower == upper:
assert number == sequence[upper]
return upper
else:
middle = (lower + upper) // 2
if number > sequence[middle]:
return search(sequence, number, middle+1, upper)
else:
return search(sequence, number, lower, middle)

This does exactly what the definition said it should: If lower == upper, then return upper,
which is the upper limit. Note that you assume (assert) that the number you are looking for
(number) has actually been found (number == sequence[upper]). If you haven’t reached your
base case yet, you find the middle, check whether your number is to the left or right, and call

CHAPTER 6 ABSTRACTION

search recursively with new limits. You could even make this easier to use by making the limit
specifications optional. You simply add the following conditional to the beginning of the
function definition:

def search(sequence, number, lower=0, upper=None):
if upper is None: upper = len(sequence)-1

Now, if you don’t supply the limits, they are set to the first and last positions of the sequence.
Let’s see if this works:

>>> seq = [34, 67, 8, 123, 4, 100, 95]
>>> seq.sort()

>>> seq

(4, 8, 34, 67, 95, 100, 123]

>>> search(seq, 34)

>>> search(seq, 100)

But why go to all this trouble, you ask? For one thing, you could simply use the list method
index, and if you wanted to implement this yourself, you could just make a loop starting at the
beginning and iterating along until you found the number.

Sure. Using index is just fine. But using a simple loop may be a bit inefficient. Remember I
said you needed seven questions to find one number (or position) among 100? And the loop
obviously needs 100 questions in the worst-case scenario. Big deal, you say. But if the list has
100,000,000,000,000,000,000,000,000,000,000,000 elements, and the same number of questions
with a loop (perhaps a somewhat unrealistic size for a Python list), this sort of thing starts to
matter. Binary search would then need only 117 questions. Pretty efficient, huh?

Tip There is a standard library module called bisect, which implements binary search very efficiently.

Throwing Functions Around

By now, you are probably used to using functions just like other objects (strings, number,
sequences, and so on) by assigning them to variables, passing them as parameters, and
returning them from other functions. Some programming languages (such as Scheme or LISP)
use functions in this way to accomplish almost everything. Even though you usually don’t rely
that heavily on functions in Python (you usually make your own kinds of objects—more about
that in the next chapter), you can. This section describes a few functions that are useful for this
sort of “functional programming.” These functions are map, filter, reduce, and apply.

133

134

CHAPTER 6 ABSTRACTION

LAMBDA EXPRESSIONS

In the material that follows, | sometimes use something called /ambda expressions. These are small, unnamed
functions that can only contain an expression, and that return its value. A lambda expression is written like this:

lambda x, y, z: x +y + z

The first word, 1ambda, is a reserved word (keyword).1 It is followed by the parameters, a colon (:), and
finally the body (an expression).

Although lambdas can be useful at times, you are usually better off writing a full-fledged function, espe-
cially because the function name will then say something about what your function does.

map

The map function “maps” one sequence into another (of the same length) by applying a function
to each of the elements. For example, you may have a list of numbers, and you want to create
another list in which all the numbers are doubled:

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> map(lambda n: 2*n, numbers)
[144, 202, 216, 216, 222, 88, 64, 238, 222, 228, 216, 200, 66]

You don’t have to use lambda expressions—it works just fine with named functions as well:

>>> map(chr, numbers)
[IHI) leI, Ill’ lll) 'O', I,l’ 1 I, IW', Iol) 'II, Ill’ ldl) l!l]
The built-in function chr takes a number as its only parameter and returns the character

corresponding to that number (the so-called ordinal number, which is really its ASCII code).
The reverse of chr is ord:

>>> map(ord, 'Hello, world!")
[72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]

Because strings are just sequences of characters, you can use map directly. Note that the
result is a list, not another string. See the following section for a note about map, filter, and list
comprehensions.

filter

The filter function returns a new list in which the elements that you don’t want have been
filtered out. Or, to put it another way, it returns exactly those you do want. You supply filter
with a function that returns a Boolean (truth) value for a given sequence element. If the function
returns true, the element is part of the returned sequence; if it returns false, the element is not
included in the returned sequence. (The original sequence is not modified.) For example, you
might want to retain only the even numbers from the list numbers:

1. The name “lambda”’ comes from the Greek letter A, which is used in mathematics to indicate an
anonymous function.

CHAPTER 6 ABSTRACTION

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> filter(lambda n: n % 2 == 0, numbers)
[72, 108, 108, 44, 32, 114, 108, 100]

The lambda expression simply checks whether the remainder of a given number when
divided by 2 is zero (which is another way of saying that the number is even).

Now, map and filter can be very useful, but they were added to the language before list
comprehension came along. If you think about it, anything that map and filter can accomplish
can also be done with list comprehensions:

>>> [chr(n) for n in numbers] # characters corresponding to numbers

['H", 'e', '1', '1', o', ',", "', 'w', o', 'r', '1', 'd', "I']

>>> [ord(c) for c in 'Hello, world!'] # numbers corresponding to characters
[72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]

>>> [n for n in numbers if n % 2 == 0] # filters out the odd numbers

[72, 108, 108, 44, 32, 114, 108, 100]

In my opinion, list comprehensions are, in most cases, more readable than using map and
filter.Iwon'’t go so far as to say that you always should use list comprehensions: it’s largely a
matter of taste, and the demands of each specific programming task.

Note I itis speed you are after, you may want to go with map and filter after all. When used with built-
in functions, they are faster than list comprehensions.

reduce

But what about the third function, reduce? This is a tricky one, and I confess that I rarely use it.
But people used to functional programming may find it useful. It combines the first two elements
of a sequence with a given function, and combines the result with the third element, and so on
until the entire sequence has been processed and a single result remains. For example, if you
wanted to sum all the numbers of a sequence, you could use reduce with lambda x, y: x+y (still
using the same numbers):2

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> reduce(lambda x, y: x+y, numbers)
1161

In this example, all the numbers of numbers are summed by successively adding the current
sum and the next number in the sequence. What actually happens is very close to this:

sum = 0
for number in numbers:
sum = sum + number

2. Actually, instead of this lambda function, you could import the function add from the operator module,
which has a function for each of the built-in operators. Using functions from the operator module is
always more efficient than using your own functions.

135

136

CHAPTER 6 ABSTRACTION

In the original example, reduce takes care of the sum and the looping, while the 1ambda
represents the expression sum + number. Let’s take a peek at what’s happening. The following
defines a function for adding numbers that also prints out its arguments:

def peek_sum(x, y):
print 'Adding', x, 'and', y
return x +y

Let’s use this with reduce:

>>> reduce(peek _sum, [1, 2, 3, 4, 5])
Adding 1 and 2

Adding 3 and 3

Adding 6 and 4

Adding 10 and 5

15

What happens is that reduce first adds 1 and 2, then adds the result with 3, and so on until
all the elements have been added. Finally, after printing out all the operations it goes through,
the sum (15) is returned.

Note There is a built-in function called sum, which returns the sum of a sequence. (It cannot be used to
join a sequence of strings.)

As another example, let’s imagine that you could only use max with two arguments (in fact, it
works with entire sequences) and you wanted to use it on a sequence. Then you could use reduce:

>>> reduce(max, numbers)
119

The max function is used here to return the maximum of two numbers, and instead of
keeping track of a sum, reduce keeps track of the maximum so far. Let’s take another peek
under the hood:

def peek max(x, y):
print 'Finding max of', x, 'and', y
return max(x, y)

Just like peek sum, peek max prints out its arguments when it is executed. Let’s use it
with reduce:

>>> reduce(peek max, [3, 5, 2, 6, 9, 2])
Finding max of 3 and 5
Finding max of 5 and 2
Finding max of 5 and 6
Finding max of 6 and 9
Finding max of 9 and 2

9

CHAPTER 6 ABSTRACTION 137

Asyou can see, the left argument is always the largest number found so far, while the right
argument is the next number in the sequence.

Note You have seen that reduce can be replaced by a for loop, but it cannot be reduced (pun intended)
to a list comprehension because it doesn’t return a list.

apply

Before leaving the subject of functional programming, I'll touch upon the built-in function
apply. It takes a function as an argument and calls it. You may also optionally supply a tuple of
positional parameters and a dictionary of keyword arguments. You use this if you have a tuple
(or dictionary) of arguments and want to apply a function to it:

>>> def rectangleArea(width, height):
return width * height

>>> rectangle = 20, 30
>>> apply(rectangleArea, rectangle)
600

However, this function is a bit outdated now that you can simply use the nifty little stars to
unpack the arguments (as discussed earlier in this chapter, in the section “Collecting
Parameters”):

>>> rectangleArea(*rectangle)
600

Even though you'll probably rarely use apply, it has been used extensively in older programs,
and you never know when you'll have to read someone else’s code.

A Quick Summary

In this chapter, you've learned several things about abstraction in general, and functions in
particular:

Abstraction. Abstraction is the art of hiding unnecessary details. You can make your
program more abstract by defining functions that handle the details.

Function definition. Functions are defined with the def statement. They are blocks of
statements that receive values (parameters) from the “outside world” and may return one
or more values as the result of their computation.

Parameters. Functions receive what they need to know in the form of parameters—vari-
ables that are set when the function is called. There are two types of parameters in Python,
positional parameters and keyword parameters. Parameters can be made optional by
giving them default values.

138 CHAPTER 6 ABSTRACTION

Scopes. Variables are stored in scopes (also called namespaces). There are two main
scopes in Python—the global scope and the local scope. Scopes may be nested.

Recursion. A function can call itself—and if it does, it’s called recursion. Everything you
can do with recursion can also be done by loops, but sometimes a recursive function is
more readable.

Functional programming. Python has some facilities for programming in a functional
style. Among these are lambda expressions and the map, filter, and reduce functions.

New Functions in This Chapter

Function Description

map(func, seq [, seq, ...]) Applies the function to all the elements in the sequences

filter(func, seq) Beturns a list of those elements for which the function
1s true

reduce(func, seq [, initial]) Equivalent to func(func(func(seq[0], seq[1]),
seq[2]), ...)

sum(seq) Returns the sum of all the elements of seq

apply(func[, args[, kwargs]]) Calls the function, optionally supplying arguments

What Now?

The next chapter takes abstractions to another level, through object-oriented programming.
You learn how to make your own types (or classes) of objects to use alongside those provided
by Python (such as strings, lists, and dictionaries), and you learn how this enables you to write
better programs. Once you've worked your way through the next chapter, you'll be able to write
some really big programs without getting lost in the source code.

CHAPTER 7

More Abstraction

In the previous chapters, you looked at Python’s main built-in object types (numbers, strings,
lists, tuples, and dictionaries); you peeked at the wealth of built-in functions and standard
libraries; you even created your own functions. Now, only one thing seems to be missing—
making your own objects. And that’s what you do in this chapter.

You may wonder how useful this is. It might be cool to make your own kinds of objects, but
what would you use them for? With all the dictionaries and sequences and numbers and strings
available, can’t you just use them and make the functions do the job? Certainly. But making
your own objects (and especially types or classes of objects) is a central concept in Python—so
central, in fact, that Python is called an object-oriented language (along with SmallTalk, C++,
Java, and many others). In this chapter, you learn how to make objects, and you learn about
polymorphism and encapsulation, methods and attributes, superclasses and inheritance—
you learn a lot. So let’s get started.

Note If you're already familiar with the concepts of object-oriented programming, you probably know
about constructors. Constructors will not be dealt with in this chapter; for a full discussion, see Chapter 9.

The Magic of Objects

In object-oriented programming, the term object loosely means a collection of data (attributes)
with a set of methods for accessing and manipulating those data. There are several reasons for
using objects instead of sticking with global variables and functions. Some of the most important
benefits of objects include the following:

* Polymorphism
* Encapsulation
e Inheritance

Roughly, these terms mean that you can use the same operations on objects of different
classes, and they will work as if “by magic” (polymorphism); you hide unimportant details of
how objects work from the outside world (encapsulation), and you can create specialized
classes of objects from general ones (inheritance).

139

140

CHAPTER 7 MORE ABSTRACTION

In many presentations of object-oriented programming, the order of these concepts is
different. Encapsulation and inheritance are presented first, and then they are used to model
real-world objects. That’s all fine and dandy, but in my opinion, the most interesting feature of
object-oriented programming is polymorphism. It is also the feature most people (in my
experience) get confused by. Therefore I'll start with polymorphism, and show that this concept
alone should be enough to make you like object-oriented programming.

Polymorphism

The term polymorphism is derived from a Greek word meaning “having multiple forms.” Basically,
that means that even if you don’t know what kind of object a variable refers to, you may still be
able to perform operations on it that will work differently depending on the type (or class) of
the object. For example, assume that you are creating an online payment system for a commercial
Web site that sells food. Your program receives a “shopping cart” of goods from another part of
the system (or other similar systems that may be designed in the future)—all you need to worry
about is summing up the total and billing some credit card.

Your first thought may be to specify exactly how the goods must be represented when your
program receives them. For example, you may want to receive them as tuples, like this:

('SPAM', 2.50)

If all you need is a descriptive tag and a price, this is fine. But it’s not very flexible. Let’s say
that some clever person starts an auctioning service as part of the Web site—where the price of
an item is gradually reduced until somebody buys it. It would be nice if the user could put the
object in his or her shopping cart and proceed to the checkout (your part of the system) and
just wait until the price was right before pressing the Pay button.

But that wouldn’t work with the simple tuple scheme. For that to work, the object would
have to check its current price (through some network magic) each time your code asked for
it—it couldn’t be frozen like in a tuple. You can solve that; just make a function:

Don't do it like this...
def getPrice(object):
if isinstance(object, tuple):
return object[1]
else:
return magic_network_method(object)

Note The type/class checking and use of isinstance here is meant to illustrate a point—namely that
type checking isn’t generally a satisfactory solution. Avoid type checking if you possibly can. The function
isinstance is described in the section “Investigating Inheritance,” later in this chapter.

In the preceding code, I use the functions type and isinstance to find out whether the
object is a tuple. If it is, its second element is returned; otherwise, some “magic” network
method is called.

CHAPTER 7 MORE ABSTRACTION

Assuming that the network stuff already exists, you’ve solved the problem—for now. But
this still isn’t very flexible. What if some clever programmer decides that she’ll represent the
price as a string with a hex value, stored in a dictionary under the key 'price'? No problem: you
just update your function:

Don't do it like this...
def getPrice(object):
if isinstance(object, tuple):
return object[1]
elif isinstance(object, dict):
return int(object['price'])
else:
return magic_network method(object)

Now, surely you must have covered every possibility? But let’s say someone decides to add
a new type of dictionary with the price stored as under a different key. What do you do now?
You could certainly update getPrice again, but for how long could you continue doing that?
Every time someone wanted to implement some priced object differently, you would have to
reimplement your module. But what if you already sold your module and moved on to other,
cooler projects—what would the client do then? Clearly this is an inflexible and impractical
way of coding the different behaviors.

So what do you do instead? You let the objects handle the operation themselves. It sounds
really obvious, but think about how much easier things will get. Every new object type can
retrieve or calculate its own price and return it to you—all you have to do is ask for it.

And this is where polymorphism (and, to some extent, encapsulation) enters the scene.
You receive an object and have no idea of how it is implemented—it may have any one of many
“shapes.” All you know is that you can ask for its price, and that’s enough for you. The way you
do that should be familiar:

>>> object.getPrice()
2.5

Functions that are bound to object attributes like this are called methods. You've already
encountered them in the form of string, list, and dictionary methods. There, too, you saw some
polymorphism:

>>> "abc'.count('a")

1

>>> [1, 2, 'a'].count('a")
1

If youhad a variable x, you wouldn’t have to know whether it was a string or a list to call the
count method—it would work regardless (as long as you supplied a single character as the
argument).

Let’s do an experiment. The standard library random contains a function called choice that
selects arandom element from a sequence. Let’s use that to give your variable a value:

>>> from random import choice
>>> x = choice(['Hello, world!', [1, 2, 'e', 'e', 4]])

141

142

CHAPTER 7 MORE ABSTRACTION

After performing this, x can either contain the string 'Hello, world!’, or the list
[1, 2, 'e', 'e', 4]—youdon’t know, and you don’t have to worry about it. All you care
about is how many times you find “e” in x, and you can find that out regardless of whether
x is a list or a string. By calling the count method as before, you find out just that:

>>> x.count('e")
2

In this case, it seems that the list won out. But the point is that you didn’t have to check:
Your only requirement was that x had a method called count that took a single character as an
argument and returned an integer. If someone else had made their own class of objects that
had this method, it wouldn’t matter to you—you could use their objects just as well as the
strings and lists.

Polymorphism Comes in Many Forms

Polymorphism is at work every time you can “do something” to an object without having to
know exactly what kind of object it is. This doesn’t only apply to methods—we’ve already used
polymorphism a lot in the form of built-in operators and functions. Consider the following:

>>> 142

3

>>> 'Fish'+'license’
'Fishlicense’

Here the plus operator works fine for both numbers (integers in this case) and strings (as
well as other types of sequences). To illustrate the point, let’s say you wanted to make a function
called add that added two things together. You could simply define it like this (equivalent to,
but less efficient than, the add function from the operator module):

def add(x, y):
return x+y

This would also work with many kinds of arguments:

>>> add(1, 2)

3

>>> add('Fish', 'license')
'Fishlicense’

This might seem silly, but the point is that the arguments can be anything that supports
addition.! If you want to write a function that prints a message about the length of an object,
all that’s required is that it have a length (that the len function work on it):

def length message(x):
print "The length of", repr(x), "is", len(x)

1. Note that these objects have to support addition with each other. So calling add(1, 'license') would
not work.

CHAPTER 7 MORE ABSTRACTION

Note As described in Chapter 1, repr gives a string representation of a Python value.

As you can see, the function also uses repr, but repr is one of the grand masters of poly-
morphism—it works with anything. Let’s see how:

>>> length_message('Fnord")
The length of 'Fnord' is 5
>>> length message([1, 2, 3])
The length of [1, 2, 3] is 3

Many functions and operators are polymorphic—probably most of yours will be, too, even
if you don’t intend them to be. Just by using polymorphic functions and operators, the poly-
morphism “rubs off.” In fact, virtually the only thing you can do to destroy this polymorphism
is to do explicit type checking with functions such as type, isinstance, and issubclass. If you
can, you really should avoid destroying polymorphism this way. What matters should be that
an object acts the way you want, not whether it has the right type (or class) or not.

Note The form of polymorphism discussed here, which is so central to the Python way of programming,
is sometimes called “duck typing.” The term derives from the phrase, “If it quacks like a duck...”

Encapsulation

Encapsulation is the principle of hiding unnecessary details from the rest of the world. This
may sound like polymorphism—there, too, you use an object without knowing its inner details.
The two concepts are similar because they are both principles of abstraction—they both help
you deal with the components of your program without caring about unnecessary detail, just
like functions do.

But encapsulation isn’t the same as polymorphism. Polymorphism enables you to call the
methods of an object without knowing its class (type of object). Encapsulation enables you to
use the object without worrying about how it’s constructed. Does it still sound similar? Let’s
construct an example with polymorphism, but without encapsulation. Assume that you have a
class called OpenObject (you learn how to create classes later in this chapter):

>>> 0 = OpenObject() # This is how we create objects...
>>> o.setName('Sir Lancelot')

>>> o.getName()

'Sir Lancelot'

You create an object (by calling the class as if it were a function) and bind the variable o to
it. You can then use the methods setName and getName (assuming that they are methods that are
supported by the class OpenObject). Everything seems to be working perfectly. However, let’s
assume that o stores its name in the global variable globalName:

>>> globalName

143

144

CHAPTER 7 MORE ABSTRACTION

'Sir Lancelot'

This means that you have to worry about the contents of globalName when you use instances
(objects) of the class OpenObject. In fact, you have to make sure that nobody changes it:

>>> globalName = 'Sir Gumby'
>>> o.getName()
'Sir Gumby'

Things get even more problematic if you try to create more than one OpenObject because
they will all be messing with the same variable:

>>> 01 = OpenObject()

>>> 02 = OpenObject()

>>> ol.setName('Robin Hood")
>>> 02.getName()

'Robin Hood'

As you can see, setting the name of one automatically sets the name of the other. Not
exactly what you want.

Basically, you want to treat objects as abstract. When you call a method you don’t want to
worry about anything else, such as not disturbing global variables. So how can you “encapsu-
late” the name within the object? No problem. You make it an attribute. Attributes are variables
that are a part of the object, just like methods; actually methods are almost like attributes
bound to functions. (You'll see an important difference between methods and functions in the
section “Attributes, Functions, and Methods,” later in this chapter.)

If you rewrite the class to use an attribute instead of a global variable, and you rename it
ClosedObject, it works like this:

>>> ¢ = ClosedObject()

>>> c.setName('Sir Lancelot")
>>> c.getName()

'Sir Lancelot'

So far, so good. But for all you know, this could still be stored in a global variable. Let’s
make another object:

>>> 1 = ClosedObject()

>>> r.setName('Sir Robin')
r.getName()

'Sir Robin'

Here we can see that the new object has its name set properly. Well, we expected that. But
what has happened to the first object now?

>>> c.getName()
'Sir Lancelot'

CHAPTER 7 MORE ABSTRACTION

The name is still there! What I have done is give the object its own state. The state of an
object is described by its attributes (like its name, for example). The methods of an object may
change these attributes. So it’s like lumping together a bunch of functions (the methods) and
giving them access to some variables (the attributes) where they can keep values stored
between function calls.

In Private

But that’s not all. In fact, you can access the attributes of an object from the “outside,” too:

>>> c.name

'Sir Lancelot’

>>> c.name = 'Sir Gumby'
>>> c.getName()

'Sir Gumby'

Some programmers are okay with this, but some (like the creators of SmallTalk, a language
where attributes of an object are only accessible to the methods of the same object) feel that it
breaks with the principle of encapsulation. They believe that the state of the object should be
completely hidden (inaccessible) to the outside world. You might wonder why they take such
an extreme stand. Isn’t it enough that each object manages its own attributes? Why should you
hide them from the world? After all, if you just used the name attribute directly in ClosedObject,
you wouldn’t have to make the setName and getName methods.

The point is that other programmers may not know (and perhaps shouldn’t know) what'’s
going on inside your object. For example, ClosedObject may send an email to some adminis-
trator every time an object changes its name. This could be part of the setName method. But
what happens when you set c.name directly? Nothing. No email is sent. To avoid this sort of
thing, you have private attributes, attributes that are not accessible outside the object but only
through accessor methods such as getName and setName.

Note In Chapter 9, you learn about properties, a powerful alternative to accessors.

Python doesn’t support privacy directly, but relies on the programmer to know when it is
safe to modify an attribute from the outside. After all, you ought to know how to use an object
before using it. It is, however, possible to achieve something like private attributes with a little
trickery.

To make a method or attribute private (inaccessible from the outside), simply start its
name with two underscores:

class Secretive:
def _inaccessible(self):
print "Bet you can't see me..."
def accessible(self):
print "The secret message is:"
self. inaccessible()

145

146

CHAPTER 7 MORE ABSTRACTION

Now __inaccessible is inaccessible to the outside world, while it can still be used inside
the class (for example, from accessible):

>>> s = Secretive()
>>> s.__inaccessible()
Traceback (most recent call last):
File "<pyshell#112>", line 1, in ?

s.__inaccessible()
AttributeError: Secretive instance has no attribute ' inaccessible’
>>> s.accessible()
The secret message is:
Bet you can't see me...

Although the double underscores are a bit strange, this seems like a standard private
method, as found in other languages. What'’s not so standard is what actually happens. Inside
a class definition, all names beginning with a double underscore are “translated” by adding a
single underscore and the class name to the beginning:

>>> Secretive. Secretive inaccessible
<unbound method Secretive. inaccessible>

If you know how this works behind the scenes, it is still possible to access private methods
outside the class, even though you're not supposed to:

>>> s. Secretive inaccessible()
Bet you can't see me...

So, in short, you can’t be sure that others won'’t access the methods and attributes of your
objects, but this sort of name-mangling is a pretty strong signal that they shouldn’t.

If you don’t want the name-mangling effect, but you still want to send a signal for other
objects to stay away, you can use a single initial underscore. This is mostly just a convention,
but has some practical effects. For example, names with an initial underscore aren’t imported
with starred imports (from module import *).

Note Some languages support several degrees of privacy for its member variables (attributes). Java, for
example, has four different levels. Python doesn’t really have an equivalent privacy support, although single
and double initial underscores do to some extent give you two levels of privacy.

Inheritance

Inheritance is another way of dealing with laziness (in the positive sense). Programmers want
to avoid typing the same code more than once. We avoided that earlier by making functions,
but now I will address a more subtle problem. What if you have a class already, and you want

CHAPTER 7 MORE ABSTRACTION

to make one that is very similar? Perhaps one that adds only a few methods? When making this
new class, you don’t want to have to copy all the code from the old one over to the new one. You
may already have a class called Shape, which knows how to draw itself on the screen.

Now you want to make a class called Rectangle, which also knows how to draw itself on the
screen, but which can, in addition, calculate its own area. You wouldn’t want to do all the work
of making a new draw method when Shape has one that works just fine. So what do you do? You
let Rectangle inherit the methods from Shape. You can do this in such a way that when draw is
called on a Rectangle object, the method from the Shape class is called automatically. I go into
the details of this a bit later in this chapter.

Classes and Types

By now, you're getting a feeling for what classes are—or you may be getting impatient for me
to tell you how to make the darn things. Before jumping into the technicalities, let’s have a look
at what a class is, and how it is different from (or similar to) a type.

What Is a Class, Exactly?

I've been throwing around the word “class” a lot, using it more or less synonymously with words
such as “kind” or “type.” In many ways that’s exactly what a class is—a kind of object. All objects
belong to one class and are said to be instances of that class.

So, for example, if you look outside your window and see a bird, that bird is an instance of
the class “birds.” This is a very general (abstract) class that has several subclasses: your bird
might belong to the subclass “larches.” You can think of the class “birds” as the set of all birds,
while the class “larches” is just a subset of that. When the objects belonging to one class form a
subset of the objects belonging to another class, the first is called a subclass of the second. Thus,
“larches” is a subclass of “birds.” Conversely, “birds” is a superclass of “larches.”

Note In everyday speech, we denote classes of objects with plural nouns such as “birds” or “larches.”
In Python, it is customary to use singular, capitalized nouns such as Bird and Laxch.

When stated like this, subclasses and superclasses are easy to understand. But in object-
oriented programming, the subclass relation has important implications because a class is
defined by what methods it supports. All the instances of a class have these methods, so all the
instances of all subclasses must also have them. Defining subclasses is then only a matter of
defining more methods (or, perhaps, overriding some of the existing ones).

For example, Bird might supply the method fly while Penguin (a subclass of Bird) might
add the method eatFish. When making a penguin class, you would probably also want to over-
ride a method of the superclass, namely the fly method. In a Penguin instance, this method
should either do nothing, or possibly raise an exception (see Chapter 8), given that penguins
can’t fly.

147

148

CHAPTER 7 MORE ABSTRACTION

TYPES AND CLASSES THEN AND NOW

In older versions of Python, there was a sharp distinction between types and classes. Built-in objects had
types, your custom objects had classes. You could create classes, but not types. In recent versions of Python,
things are starting to change. The division between basic types and classes is blurring. You can now make
subclasses (or subtypes) of the built-in types, and the types are behaving more like classes. Chances are you
won'’t notice this change much until you become more familiar with the language. If you're interested, you can
find more information on the topic in Chapter 9.

Making Your Own Classes

Finally! You get to make your own classes! Okay, enough enthusiasm. Let’s get down to it—
here is a simple class:

class Person:
def setName(self, name):
self.name = name
def getName(self):
return self.name
def greet(self):
print "Hello, world! I'm %s.

% self.name

This example contains three method definitions, which are like function definitions
except that they are written inside a class statement. Person is, of course, the name of the class.
The class statement creates its own namespace where the functions are defined. (See the
section “The Class Namespace” later in this chapter.) All this seems fine, but you may wonder
what this self parameter is. It refers to the object itself. And what object is that? Let’s make a
couple of instances and see:

>>> foo = Person()

>>> bar = Person()

>>> foo.setName('Luke Skywalker')
>>> bar.setName('Anakin Skywalker')
>>> foo.greet()

Hello, world! I'm Luke Skywalker.
>>> bar.greet()

Hello, world! I'm Anakin Skywalker.

Okay, so this example may be a bit obvious, but perhaps it clarifies what self is. When I
call setName and greet on foo, foo itself is automatically passed as the first parameter in each
case—the parameter that I have so fittingly called self. You may, in fact, call it whatever you
like, but because it is always the object itself, it is almost always called self, by convention.

It should be obvious why self is useful, and even necessary here. Without it, none of the
methods would have access to the object itself, the object whose attributes they are supposed
to manipulate.

CHAPTER 7 MORE ABSTRACTION

As before, the attributes are also accessible from the outside:

>>> foo.name

"Luke Skywalker'

>>> bar.name = 'Yoda'
>>> bar.greet()

Hello, world! I'm Yoda.

Attributes, Functions, and Methods

The self parameter (mentioned in the previous section) is, in fact, what distinguishes methods
from functions. Methods (or, more technically, bound methods) have their first parameter
bound to the instance they belong to: you don’t have to supply it. So while you can certainly
bind an attribute to a plain function, it won’t have that special self parameter:

>>> class Class:
def method(self):
print 'I have a self!’

>>> def function():
print "I don't..."

>>> instance = Class()

>>> instance.method()

I have a self!

>>> instance.method = function
>>> instance.method()

I don't...

Note that the self parameter is not dependent on calling the method the way I've done

until now, as instance.method. You're free to use another variable that refers to the same method:

>>> class Bird:
song = 'Squaawk!’
def sing(self):
print self.song

>>> bird = Bird()

>>> bird.sing()

Squaawk!

>>> birdsong = bird.sing
>>> birdsong()

Squaawk!

Even though the last method call looks exactly like a function call, the variable birdsong

refers to the bound method bird. sing, which means that it still has access to the self parameter.

149

150

CHAPTER 7 MORE ABSTRACTION

Note In Chapter 9, you see how classes can call methods in their superclasses (more specifically, the
constructors of their superclasses). Those methods are called directly on the class; they haven’t bound their
self parameter to anything and are therefore called unbound methods.

Throwing Methods Around

In the previous section, I showed how you could use a bound method just like a function
without losing the self parameter. That means that you can use methods in many of the fancy
ways that I've used functions previously, with handy tools such as map, filter, and reduce (see
the section “Throwing Functions Around” in Chapter 6). In this section, I provide some examples
of these capabilities. They should all be fairly self-explanatory.

Let’s start by creating a class:

class FoodExpert:

def init(self):
self.goodFood = []

def addGoodFood(self, food):
self.goodFood.append(food)

def likes(self, x):
return x in self.goodFood

def prefers(self, x, y):
x_rating = self.goodFood.index(x)
y rating = self.goodFood.index(y)
if x_rating > y_rating:
return y
else:
return x

This class has more code than earlier examples, but it is still pretty simple. It is meant to
represent some sort of food expert (as the name implies) who likes only some types of food, and
likes some more than others.

The init method simply initializes the objects by giving them an attribute called goodFood
containing an empty list. The addGoodFood method adds a type of food to the list, where the first
food type added is the expert’s favorite, the next one is the second choice, and so on. The likes
method simply checks whether the expert likes a certain type of food (whether it has been
added to goodFood), and finally the prefers method is given two food types (both of which must
be liked) and returns the preferred one (based on their position in goodFood).

Now, let’s play. In the following example, a FoodExpert is created and its taste buds
initialized:

CHAPTER 7 MORE ABSTRACTION

>>> f = FoodExpert()

>>> f.init()

>>> map(f.addGoodFood, ['SPAM', 'Eggs', 'Bacon', 'Rat', 'Spring Surprise'])
[None, None, None, None, None]

The first two lines instantiate FoodExpert and initialize the instance, which is assigned to f.
The map call simply uses the method addGoodFood with its self parameter bound to f. Because
this method doesn’t return anything, the result is a list filled with None. However, a side effect is
that f has been updated:

>>> f.goodFood
['SPAM', 'Eggs', 'Bacon', 'Rat', 'Spring Surprise']

Let’s use this expert to give us a list of recommendations:

>>> menu = ['Filet Mignon', 'Pasta’', 'Pizza', 'Eggs', 'Bacon', 'Tomato', 'SPAM']
>>> rec = filter(f.likes, menu)

>>> rec

['Eggs', 'Bacon', 'SPAM']

What I did here was simply apply . likes as a filter to a menu; the dishes the expert didn’t
like were simply discarded. But what if you want to find out which of these dishes the expert
would prefer? I once again turn to the trusty (if rarely used) reduce:

>>> reduce(f.prefers, rec)
'SPAM'

This basically works just like the example using reduce with max in Chapter 6 (in the section
“reduce”).

If I had used a different expert, initialized with different preferences, of course, I'd get
completely different results, even though the method definitions would be exactly the same. This
is the primary difference between standard functional programming and this quasi-functional
programming using bound methods; the methods have access to a state that can be used to
“customize” them.

Note You can pass state along with a function like this by using nested scopes as well, as discussed in
the previous chapter.

The Class Namespace

The following two statements are (more or less) equivalent:

def foo(x): return x*x
foo = lambda x: x*x

151

152

CHAPTER 7 MORE ABSTRACTION

Both create a function that returns the square of its argument, and both bind the variable
foo to that function. The name foo may be defined in the global (module) scope, or it may be
local to some function or method. The same thing happens when you define a class; all the
code in the class statement is executed in a special namespace—the class namespace. This
namespace is accessible later by all members of the class. Not all Python programmers know
that class definitions are simply code sections that are executed, but it can be useful information.
For example, you aren’t restricted to def statements:

>>> class C:
print 'Class C being defined...'

Class C being defined...
>>>

Okay, that was a bit silly. But consider the following:

class MemberCounter:
members = 0
def init(self):
MemberCounter.members += 1

>>> ml = MemberCounter()
>>> mi.init()
>>> MemberCounter.members

>>> m2 = MemberCounter()
>>> m2.init()
>>> MemberCounter.members

In the preceding code, a variable is defined in the class scope, which can be accessed by all
the members (instances), in this case to count the number of class members. Note the use of
init to initialize all the instances: I'll automate that in Chapter 9.

This class scope variable is accessible from every instance as well, just as methods are:

>>> mi.members
2
>>> m2.members
2

What happens when you rebind the members attribute in an instance?

>>> ml.members = 'Two'
>>> ml.members

‘Two'

>>> m2.members

2

The new members value has been written into an attribute in m1, shadowing the classwide
variable. This mirrors the behavior of local and global variables.

CHAPTER 7 MORE ABSTRACTION

Specifying a Superclass

AsIdiscussed earlier in the chapter, subclasses expand on the definitions in their superclasses.
You indicate the superclass in a class statement by writing it in parentheses after the class name:

class Filter:
def init(self):
self.blocked = []
def filter(self, sequence):
return [x for x in sequence if x not in self.blocked]

class SPAMFilter(Filter): # SPAMFilter is a subclass of Filter
def init(self): # Overrides init method from Filter superclass
self.blocked = ['SPAM']

Filter is a general class for filtering sequences. Actually it doesn’t filter out anything:

>>> f = Filter()

>>> f.init()

>>> f.filter([1, 2, 3])
[1, 2, 3]

The usefulness of the Filter classis that it can be used as a base class (superclass) for other
classes, such as SPAMFilter, which filters out 'SPAM' from sequences:

>>> s = SPAMFilter()
>>> s.init()
>>> s.filter(['SPAM", 'SPAM', 'SPAM', 'SPAM', 'eggs', 'bacon', 'SPAM'])
['eggs', 'bacon']
Note two important points in the definition of SPAMFilter:
* I override the definition of init from Filter by simply providing a new definition.

¢ The definition of the filter method carries over (is inherited) from Filter, so you don’t
have to write the definition again.

The second point demonstrates why inheritance is useful: I can now make a number of
different filter classes, all subclassing Filter, and for each one I can simply use the filter
method I have already implemented. Talk about useful laziness...

Investigating Inheritance

If you want to find out whether a class is a subclass of another, you can use the built-in method
issubclass:

>>> issubclass(SPAMFilter, Filter)
True
>>> issubclass(Filter, SPAMFilter)
False

153

154

CHAPTER 7 MORE ABSTRACTION

If you have a class and want to know its base classes, you can access its special attribute
bases__:

>>> SPAMFilter. bases
(<class _main_ .Filter at 0x171e40>,)
>>> Filter. bases

0

In a similar manner, you can check whether an object is an instance of a class by using
isinstance:

>>> s = SPAMFilter()

>>> isinstance(s, SPAMFilter)
True

>>> isinstance(s, Filter)
True

>>> isinstance(s, str)

False

Tip As mentioned before, isinstance is best left unused most of the time. Relying on polymorphism is
almost always better.

As you can see, s is a (direct) member of the class SPAMFilter, but it is also an indirect
member of Filter because SPAMFilter is a subclass of Filter. Another way of putting it is that
all SPAMFilters are Filters. As you can see in the last example, isinstance also works with types,
such as the string type (str).

If you just want to find out which class an object belongs to, you can use the _class
attribute:

>>> s._ class__
<class __main__.SPAMFilter at 0x1707c0>

Multiple Superclasses

I'm sure you noticed a small detail in the previous section that may have seemed odd: the
pluralformin __bases__.Isaid youcould use it to find the base classes of a class, which implies
that it may have more than one. This is, in fact, the case. To show how it works, let’s create a few
classes:

class Calculator:
def calculate(self, expression):
self.value = eval(expression)

class Talker:
def talk(self):
print 'Hi, my value is', self.value

CHAPTER 7 MORE ABSTRACTION

class TalkingCalculator(Calculator, Talker):
pass

The subclass (TalkingCalculator) does nothing by itself; it inherits all its behavior from its
superclasses. The point is that it inherits both calculate from Calculator and talk from Talker,
making it a talking calculator:

>>> tc = TalkingCalculator()
>>> tc.calculate('1+2%3")
>>> tc.talk()

Hi, my value is 7

This is called multiple inheritance, and can be a very powerful tool.

Note When using multiple inheritance, there is one thing you should look out for. If a method is imple-
mented differently by two or more of the superclasses, you must be careful about the order of these superclasses
(in the class statement): The methods in the earlier classes override the methods in the later ones. So if
the Calculator class in the preceding example had a method called talk, it would override (and make
inaccessible) the talk method of the Talkexr. Reversing their order, like this:

class TalkingCalculator(Talker, Calculator): pass

would have made the talk method of the Talker accessible. The normal way of handling multiple inheritance
is to have one “substantial” base class, and to add so-called mix-in classes that implement a few methods,
“modifying” the inheritance. If the mix-ins are to override something in the base class, they must be put first,
and, by convention, they usually are anyway—ijust in case. If the superclasses share a common superclass,
the order in which the superclasses are visited while looking for a given attribute or method is called the
method resolution order (MRO), and follows a rather complicated algorithm. Luckily, it works very well, so you
probably needn’t worry about it.

Interfaces and Introspection

The “interface” concept is related to polymorphism. When you handle a polymorphic object,
you only care about its interface (or “protocol”)—the methods and attributes known to the
world. In Python, you don’t explicitly specify which methods an object needs to have to be
acceptable as a parameter. For example, you don’t write interfaces explicitly (as you do in Java);
you just assume that an object can do what you ask it to. If it can’t, the program will fail.

Note There is some talk of adding explicit interface functionality to Python. For more information,
take a look at Python Enhancement Proposal number 245 (http://www.python.org/peps/
pep-0245.html).

Usually, you simply require that objects conform to a certain interface (in other words,
implement certain methods), but if you want to, you can be quite flexible in your demands.

155

156

CHAPTER 7 MORE ABSTRACTION

Instead of just calling the methods and hoping for the best, you can check whether the required
methods are present—and if not, perhaps do something else:

>>> hasattr(tc, 'talk")
True
>>> hasattr(tc, 'fnord')
False

In the preceding code, you find that tc (a TalkingCalculator, as described earlier in this
chapter) has the attribute talk (which contains a method), but not the attribute fnord. If you
wanted to, you could even check whether the talk attribute was callable:

>>> callable(getattr(tc, 'talk', None))
True
>>> callable(getattr(tc, 'fnord', None))
False

Note that instead of using hasattr in an if statement and accessing the attribute directly,
I'm using getattr, which allows me to supply a default value (in this case None) that will be used
if the attribute is not present. I then use callable on the returned object.

Note The inverse of getattr is setattr, which can be used to set the attributes of an object:

>>> setattr(tc, 'name', 'Mr. Gumby')
>>> tc.name
'Mr. Gumby'

If you want to see all the values stored in an object, you can examineits __dict _attribute.
And if you really want to find out what an object is made of, you should take a look at the inspect
module. It is meant for fairly advanced users who want to make object browsers (programs that
enable you to browse Python objects in a graphical manner) and other similar programs that
require such functionality. For more information on exploring objects and modules, see the
section “Exploring Modules” in Chapter 10.

Some Thoughts on Object-Oriented Design

Many books have been written about object-oriented program design, and although that’s not
the focus of this book, I'll give you some pointers:

* Gather what belongs together. If a function manipulates a global variable, the two of
them might be better off in a class, as an attribute and a method.

* Don'tlet objects become too intimate. Methods should mainly be concerned with the
attributes of their own instance. Let other instances manage their own state.

¢ Keep it simple. Keep your methods small. As a rule of thumb, it should be possible to
read (and understand) each of your methods in 30 seconds.

CHAPTER 7 MORE ABSTRACTION

When determining which classes you need and what methods they should have, you may
try something like this:

1. Write down a description of your problem (what should the program do?). Underline all
the nouns, verbs, and adjectives.

2. Go through the nouns, looking for potential classes.
3. Go through the verbs, looking for potential methods.
4. Go through the adjectives, looking for potential attributes.

5. Allocate methods and attributes to your classes.

Now you have a first sketch of an object-oriented model. You may also want to think about
what relationships (such as inheritance) the classes and objects will have. To refine your model,
you can do the following:

6. Write down (or dream up) a set of use cases—scenarios of how your program may be
used. Try to cover all the functionality.

7. Think through every use case step by step, making sure that everything you need is
covered by your model. If something is missing, add it. If something isn't quite right,
change it. Continue until you are satisfied.

When you have a model you think will work, you can start hacking away. Chances are
you’ll have to revise your model—or revise parts of your program. Luckily, that’s easy in Python,
so don’t worry about it. Just dive in. (If you’d like some more guidance in the ways of object-
oriented programming, check out the list of suggested books in Chapter 19.)

A Quick Summary

This chapter has given you more than just information about the Python language; it has
introduced you to several concepts that may have been completely foreign to you. Let me try
to summarize them for you:

Objects. An object consists of attributes and methods. An attribute is merely a variable
that is part of an object, and a method is more or less a function that is stored in an
attribute. One difference between (bound) methods and other functions is that methods
always receive the object they are part of as their first argument, usually called self.

Classes. A class represents a set (or kind) of objects, and every object (instance) has a class.
The class’s main task is to define the methods its instances will have.

Polymorphism. Polymorphism is the characteristic of being able to treat objects of different
types and classes alike—you don’t have to know which class an object belongs to in order
to call one of its methods.

Encapsulation. Objects may hide (or encapsulate) their internal state. In some languages
this means that their state (their attributes) is only available through their methods. In

157

158

CHAPTER 7 MORE ABSTRACTION

Python, all attributes are publicly available, but programmers should still be careful about
accessing an object’s state directly, since they might unwittingly make the state inconsis-
tent in some way.

Inheritance. One class may be the subclass of one or more other classes. The subclass then
inherits all the methods of the superclasses. You can use more than one superclass, and

this feature can be used to compose orthogonal pieces of functionality. A common way of
implementing this is using a core superclass along with one or more mix-in superclasses.

Interfaces and introspection. In general, you don’t want to prod an object too deeply. You
rely on polymorphism, and call the methods you need. However, if you want to find out
what methods or attributes an object has, there are functions that will do the job for you.

Object-oriented design. There are many opinions about how (or whether!) to do object-
oriented design. No matter where you stand on the issue, it's important to understand
your problem thoroughly, and to create a design that is easy to understand.

New Functions in This Chapter

Function Description
callable(object) Determines if the object is callable (such as a function
or a method)
getattr(object, name[, default]) Gets the value of an attribute, optionally providing
a default
hasattr(object, name) Determines if the object has the given attribute
isinstance(object, class) Determines if the object is an instance of the class
issubclass(A, B) Determines if A is a subclass of B
random.choice(sequence) Chooses a random element from a non-empty sequence
setattr(object, name, value) Sets the given attribute of the object to value
type(object) Returns the type of the object
What Now?

You've learned a lot about creating your own objects and how useful that can be. Before diving
headlong into the magic of Python’s special methods (Chapter 9), let’s take a breather with a
little chapter about exception handling.

CHAPTER 8

Exceptions

When writing computer programes, it is usually possible to discern between a normal course
of events and something that’s exceptional (out of the ordinary). Such exceptional events might be
errors (such as trying to divide a number by zero), or simply something you might not expect
to happen very often. To handle such exceptional events, you might use conditionals every-
where the events might occur (for example, have your program check whether the denominator is
zero for every division). However, this would not only be inefficient and inflexible, but would
also make the programs illegible. You might be tempted to ignore these exceptions and just
hope they won'’t occur, but Python offers a powerful alternative.

What Is an Exception?

To represent exceptional conditions, Python uses exception objects. If such an exception object
is not handled in any way, the program terminates with a so-called traceback (an error message):

>>> 1/0
Traceback (most recent call last):
File "<stdin»", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

If such error messages were all you could use exceptions for, exceptions wouldn’t be very
interesting. The fact is, however, that each exception is an instance of some class (in this case
ZeroDivisionError), and these instances may be raised and caught in various ways, allowing
you to trap the error and do something about it instead of allowing the entire program to fail.

In the next section, you learn how to create and raise your own exceptions. In the following
sections, you learn about handling exceptions in various ways.

WARNINGS

Exceptions may be used to represent exceptional or illegal states in your program (such as trying to divide a
number by zero, or reading from a nonexistent file), and will, unless caught by you, terminate the program.
Warnings, on the other hand, are mild error messages; they notify you that something isn’t quite right, but your
program keeps running. For example, try to import the regex module:

Continued

159

160

CHAPTER 8 EXCEPTIONS

>>> import regex

__main_ :1: DeprecationWarning: the regex module is deprecated;
please use the re module

>>> regex

<module 'regex' (built-in)>

It's obvious that the interpreter didn’t like this; the regex module is old, and you should use the re module
instead. (You learn more about the re module in Chapter 10.) However, because a lot of code already uses the
regex module, it would be unreasonable to demand that re be used; that would simply break all the older
code. So instead, a warning is issued.

If, for some reason, you are stuck with the regex module, you can happily ignore the warning (although
you probably should rewrite your code). You can even filter it out (with the function filterwarnings), so it
isn’t printed:

>>> from warnings import filterwarnings
>>> filterwarnings('ignore")
>>> import regex

If you want to learn more about warnings, you can check out the warnings module in the standard
library documentation at http://www.python.org/doc/1ib.

Making Things Go Wrong . . . Your Way

As you've seen, exceptions are raised automatically when something is wrong. Before looking
at how to deal with those exceptions, let’s take a look at how you can raise exceptions yourself—
and even create your own kinds of exceptions.

The raise Statement

To raise an exception, you use the raise statement with an argument that is either a class or an
instance. When using a class, an instance is created automatically; you can optionally provide
astring argument after the class, separated by a comma. Here are some simple examples, using
the built-in exception class Exception:

>>> raise Exception
Traceback (most recent call last):
File "<stdin»", line 1, in ?
Exception
>>> raise Exception, 'hyperdrive overload'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
Exception: hyperdrive overload
>>> raise Exception('hyperdrive overload')
Traceback (most recent call last):
File "<stdin>", line 1, in ?
Exception: hyperdrive overload

CHAPTER 8 EXCEPTIONS

Note There are actually two other ways to use raise. The argument may be a string, or you can call
raise without any arguments. Using a string argument is considered obsolete; calling raise without argu-
ments is covered in the section “Look, Ma, No Arguments!” later in this chapter.

The first example (raise Exception) raises a generic exception with no information of
what went wrong. In the last two examples, I added the error message hyperdrive overload. As
you can see, the two forms raise class, message and raise class(message) are equivalent; both
raise an exception with the given error message.

There are many built-in classes available. You can find a description of all of them in the
Python Library Reference, in the section “Built-in Exceptions.” You can also explore them
yourself with the interactive interpreter; they are all found in the module exceptions, for your
convenience (as well as in the built-in namespace). To list the contents of a module, you can
use the dir function, which is described in Chapter 10:

>>> import exceptions
>>> dir(exceptions)
['ArithmeticError', 'AssertionkError', 'AttributeError', ...]

In your interpreter, this list will be quite a lot longer—I've deleted most of the names in the
interest of legibility. All of these exceptions can be used in your raise statements:

>>> raise ArithmeticError
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ArithmeticError

Table 8-1 describes some of the most important built-in exceptions.

Table 8-1. Some Built-in Exceptions

161

Class Name Description

Exception The root class for all exceptions

AttributeError Raised when attribute reference or assignment fails

IOError Raised when trying to open a nonexistent file (among other things)

IndexError Raised when using a nonexistent index on a sequence

KeyError Raised when using a nonexistent key on a mapping

NameError Raised when a name (variable) is not found

SyntaxError Raised when the code is ill-formed

TypeError Raised when a built-in operation or function is applied to an object of
the wrong type

ValueError Raised when a built-in operation or function is applied to an object
with correct type, but with an inappropriate value

ZeroDivisionError Raised when the second argument of a division or modulo operation

is zero

162

CHAPTER 8 EXCEPTIONS

Custom Exception Classes

Although the built-in exceptions cover a lot of ground and are sufficient for many purposes,
there are times when you might want to create your own. For example, in the hyperdrive
overload example, wouldn’t it be more natural to have a specific HyperDriveError class repre-
senting error conditions in the hyperdrive? It might seem that the error message is sufficient,
but as you will see in the next section (“Catching Exceptions”), you can selectively handle
certain types of exceptions based on their class. Thus, if you want to handle hyperdrive errors
with special error-handling code, you would need a separate class for the exceptions.

So, how do you create exception classes? Just like any other class—but be sure to subclass
Exception (either directly or indirectly, which means that subclassing any other built-in exception
is okay). Thus, writing a custom exception basically amounts to something like this:

class SomeCustomException(Exception): pass

Really not much work, is it?

Catching Exceptions

As mentioned earlier, the interesting thing about exceptions is that you can handle them (often
called trapping or catching the exceptions). You do this with the try/except statement. Let’s
say you have created a program that lets the user enter two numbers and then divides one by
the other, like this:

x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y

This would work nicely until the user enters zero as the second number:

Enter the first number: 10
Enter the second number: 0
Traceback (most recent call last):
File "exceptions.py", line 3, in ?
print x/y
ZeroDivisionError: integer division or modulo by zero

To catch the exception and perform some error handling (in this case simply printing a
more user-friendly error message), you could rewrite the program like this:

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ")
print x/y
except ZeroDivisionError:
print "The second number can't be zero!"

It might seem that a simple if statement checking the value of y would be easier to use,
and in this case it might indeed be a better solution. But if you added more divisions to your
program, you would need one if statement per division; by using try/except, you need only
one error handler.

CHAPTER 8 EXCEPTIONS 163

Look, Ma, No Arguments!

If you have caught an exception but you want to raise it again (pass it on, so to speak), you can
call raise without any arguments. (You can also supply the exception explicitly if you catch it,
as explained in the section “Catching the Object,” later in this chapter.)

As an example of how this might be useful, consider a calculator class that has the capa-
bility to “muffle” ZeroDivisionErrors. If this behavior is turned on, the calculator prints out an
error message instead of letting the exception propagate. This is useful if the calculator is used
in an interactive session with a user, but if it is used internally in a program, raising an excep-
tion would be better. Therefore the muffling can be turned off. Here is the code for such a class:

class MuffledCalculator:

muffled = 0
def calc(self, expr):
try:

return eval(expr)
except ZeroDivisionError:
if self.muffled:
print 'Division by zero is illegal’
else:
raise

Note If division by zero occurs and muffling is turned on, the calc method will (implicitly) return None.
In other words, if you turn on muffling, you should not rely on the return value.

The following is an example of how this class may be used, both with and without muffling:

>>> calculator = MuffledCalculator()

>>> calculator.calc('10/2")

5

>>> calculator.calc('10/0") # No muffling
Traceback (most recent call last):

File "<stdin»", line 1, in ?

File "MuffledCalculator.py", line 6, in calc

return eval(expr)

File "<string>", line 0, in ?
ZeroDivisionError: integer division or modulo by zero
>>> calculator.muffled = 1
>>> calculator.calc('10/0")

Division by zero is illegal

As you can see, when the calculator is not muffled, the ZeroDivisionError is caught but
passed on.

164

CHAPTER 8 EXCEPTIONS

More Than One except Clause

If you run the program from the previous section again and enter a nonnumeric value at the
prompt, another exception occurs:

Enter the first number: 10
Enter the second number: "Hello, world!"
Traceback (most recent call last):
File "exceptions.py", line 4, in ?
print x/y
TypeError: unsupported operand type(s) for /: 'int' and 'str

Because the except clause only looked for ZeroDivisionError exceptions, this one slipped
through and halted the program. To catch this as well, you can simply add another except
clause to the same try/except statement:

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y
except ZeroDivisionError:
print "The second number can't be zero!"
except TypeError:
print "That wasn't a number, was it?"

This time using an if statement would be more difficult. How do you check whether a
value can be used in division? There are a number of ways, but by far the best way is, in fact, to
simply divide the values to see if it works.

Also notice how the exception handling doesn’t clutter the original code; adding lots of
if statements to check for possible error conditions could easily have made the code quite
unreadable.

Catching Two Exceptions with One Block

If you want to catch more than one exception type with one block, you can specify them all in
a tuple, as follows:

try:
x = input('Enter the first number: ")
y = input('Enter the second number: ')
print x/y

except (ZeroDivisionError, TypeError):
print 'Your numbers were bogus...'

In the preceding code, if the user either enters a string or something other than a number,
or if the second number is zero, the same error message is printed. Simply printing an error
message isn’t very helpful, of course. An alternative could be to keep asking for numbers until
the division works. I show you how to do that in the section “When All Is Well,” later in this chapter.

CHAPTER 8 EXCEPTIONS 165

Note that the parentheses around the exceptions in the except clause are important; a
common error is to omit them, in which case you may end up with something other than what
you want. For an explanation, see the next section, “Catching the Object.”

Catching the Object

If you want access to the exception itself in an except clause, you can use two arguments instead
of one. (Note that even when you are catching multiple exceptions, you are only supplying
except with one argument—a tuple.) This can be useful (for example) if you want your program
to keep running, but you want to log the error somehow (perhaps just printing it out to the
user). The following is an example program that prints out the exception (if it occurs), but
keeps running:

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y

except (ZeroDivisionError, TypeError), e:
print e

The except clause in this little program again catches two types of exceptions, but because
you also explicitly catch the object itself, you can print it out so the user can see what happened.
(You see a more useful application of this later in this chapter, in the section “When All Is Well.”)

A Real Catchall

Even if the program handles several types of exceptions, some may still slip through. For
example, using the same division program, simply try to press Enter at the prompt, without
writing anything. You should get a stack trace somewhat like this:

Traceback (most recent call last):
File 'exceptions.py', line 3, in ?
x = input('Enter the first number: ')
File '<string>', line 0

N

SyntaxError: unexpected EOF while parsing

This exception got through the try/except statement—and rightly so. You hadn’t foreseen
that this could happen, and weren’t prepared for it. In these cases it is better that the program
crash immediately (so you can see what’s wrong) than that it simply hide the exception with a
try/except statement that isn’t meant to catch it.

However, if you do want to catch all exceptions in a piece of code, you can simply omit the
exception class from the except clause:

166

CHAPTER 8 EXCEPTIONS

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
print x/y

except:
print 'Something wrong happened...'

Now you can do practically whatever you want:

Enter the first number: "This" is *completely* illegal 123
Something wrong happened...

Gaution Catching all exceptions like this is risky business because it will hide errors you haven’t thought
of as well as those you're prepared for. It will also trap attempts by the user to terminate execution by Cirl-C,
attempts by functions you call to terminate by sys.exit, and so on. In most cases, it would be better to use
except Exception, e and perhaps do some checking on the exception object, e.

When All Is Well

In some cases, it can be useful to have a block of code that is executed unless something bad
happens; as with conditionals and loops, you can add an else clause:

try:

print 'A simple task’
except:

print 'What? Something went wrong?'
else:

print 'Ah...It went as planned.’

If you run this, you get the following output:

A simple task
Ah...It went as planned.

With this else clause, you can implement the loop hinted at in the section “Catching Two
Exceptions with One Block,” earlier in this chapter:

while 1:
try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
value = x/y
print 'x/y is', value
except:
print 'Invalid input. Please try again.'
else:

break

CHAPTER 8 EXCEPTIONS

Here the loop is only broken (by the break statement in the else clause) when no exception
is raised. In other words, as long as something wrong happens, the program keeps asking for
new input. The following is an example run:

Enter the first number: 1

Enter the second number: o0
Invalid input. Please try again.
Enter the first number: 'foo'
Enter the second number: 'bar'
Invalid input. Please try again.
Enter the first number: baz
Invalid input. Please try again.
Enter the first number: 10
Enter the second number: 2

x/y is 5

As mentioned previously, an alternative to using an empty except clause is to catch all
exceptions of the Exception class (which will catch all exceptions of any subclass as well). You
cannot be 100 percent certain that you'll catch everything then, because the code in your
try/except statement may be naughty and use the old-fashioned string exceptions, or perhaps
create a custom exception that doesn’t subclass Exception. However, if you go with the except
Exception version, you can use the technique from the section “Catching the Object,” earlier in
this chapter, to print out a more instructive error message in your little division program:

while 1:

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
value = x/y
print 'x/y is', value

except Exception, e:
print 'Invalid input:', e
print 'Please try again'

else:
break

The following is a sample run:

Enter the first number: 1

Enter the second number: 0

Invalid input: integer division or modulo by zero
Please try again

Enter the first number: 'x
Enter the second number: 'y'

Invalid input: unsupported operand type(s) for /: 'str' and
Please try again

Enter the first number: foo

str

167

168

CHAPTER 8 EXCEPTIONS

Invalid input: name 'foo' is not defined
Please try again

Enter the first number: 10

Enter the second number: 2

x/y is 5

And Finally . ..

Finally, there is the finally clause. You use it to do housekeeping after a possible exception. It
is combined with a try clause (but not an except clause):

x = None

try:
x = 1/0

finally:
print 'Cleaning up...'
del x

In the preceding, you are guaranteed that the finally clause will get executed, no matter
what exceptions occur in the try clause. (The reason for initializing x before the try clause is
that otherwise it would never get assigned a value because of the ZeroDivisionError. This would
lead to an exception when using del on it within the finally clause, which you wouldn’t catch.)

If you run this, the cleanup comes before the program crashes and burns:

Cleaning up...
Traceback (most recent call last):
File "C:\python\div.py", line 4, in ?
x = 1/0
ZeroDivisionError: integer division or modulo by zero

Exceptions and Functions

Exceptions and functions work together quite naturally. If an exception is raised inside a function,
and isn’t handled there, it propagates (bubbles up) to the place where the function was called.
Ifitisn’t handled there either, it continues propagating until it reaches the main program (the
global scope), and if there is no exception handler there, the program halts with an error message
and some information about what went wrong (a stack trace). Let’s take a look at an example:

>>> def faulty():
raise Exception('Something is wrong')

>>> def ignore exception():
faulty()

CHAPTER 8 EXCEPTIONS

>>> def handle_exception():
try:
faulty()
except:
print 'Exception handled’

>>> ignore_exception()
Traceback (most recent call last):
File '<stdin>', line 1, in ?
File '<stdin>', line 2, in ignore_exception
File '<stdin>', line 2, in faulty
Exception: Something is wrong
>>> handle_exception()
Exception handled

As you can see, the exception raised in faulty propagates through faulty and
ignore_exception, and finally causes a stack trace. Similarly, it propagates through to
handle_exception, but there it is handled with a try/except statement.

The Zen of Exceptions

Exception handling isn’t very complicated. If you know that some part of your code may cause
a certain kind of exception, and you don’t simply want your program to terminate with a stack
trace if and when that happens, then you add the necessary try/except or try/finally state-
ments to deal with it, as needed.

Sometimes, you can accomplish the same thing with conditional statements as you can
with exception handling, but the conditional statements will probably end up being less natural
and less readable. On the other hand, some things that might seem like natural applications of
if/else may in fact be implemented much better with try/except. Let’s take a look at a couple
of examples.

Let’s say you have a dictionary and you want to print the value stored under a specific
key—if it is there. If it isn’t there, you don’t want to do anything. The code might be something
like this:

def describePerson(person):
print 'Description of', person['name']
print 'Age:", person['age']
if 'occupation' in person:
print 'Occupation:', person['occupation']

If you supply this function with a dictionary containing the name Throatwobbler
Mangrove and the age 42 (but no occupation), you get the following output:

Description of Throatwobbler Mangrove
Age: 42

169

170

CHAPTER 8 EXCEPTIONS

If you add the occupation “camper,” you get the following output:

Description of Throatwobbler Mangrove
Age: 42
Occupation: camper

The code is intuitive, but a bit inefficient (although the main concern here is really code
simplicity). It has to look up the key 'occupation' twice—once to see whether the key exists (in
the condition) and once to get the value (to print it out). An alternative definition is

def describePerson(person):
print 'Description of', person['name’]
print 'Age:', person['age']
try: print 'Occupation:', person['occupation']
except KeyError: pass

Here the function simply assumes that the key 'occupation' is present. If you assume that it
normally is, this saves some effort: The value will be fetched and printed—no extra fetch to
check whether it is indeed there. If the key doesn’t exist, a KeyError exception is raised, which
is trapped by the except clause.

You may also find try/except useful when checking whether an object has a specific
attribute or not. Let’s say you want to check whether an object has a write attribute, for
example. Then you could use code like this:

try: obj.write
except AttributeError:

print 'The object is not writeable'
else:

print 'The object is writeable'

Here the try clause simply accesses the attribute without doing anything useful with it. If
an AttributeError is raised, the object doesn’t have the attribute; otherwise, it has the attribute.
This is a natural alternative to the getattr solution introduced in Chapter 7 (in the section
“Interfaces and Introspection”). Which one you prefer is largely a matter of taste. Indeed,
getattr is internally implemented in exactly this way: It tries to access the attribute and catches
the AttributeError that this attempt may raise.

Note that the gain in efficiency here isn’t great. (It’s more like really, really tiny.) In general
(unless your program is having performance problems), you shouldn’t worry about that sort of
optimization too much. The point is that using a try/except statement is in many cases much
more natural (more “Pythonic”) than if/else, and you should get into the habit of using it
where you can.

Note The preference for try/except in Python is often explained through Grace Hopper's words of
wisdom, “It’s easier to ask forgiveness than permission.” This strategy of simply trying to do something and
dealing with any errors rather than doing a lot of checking up front is called the Leap Before You Look idiom.

CHAPTER 8 EXCEPTIONS

A Quick Summary

The main topics covered in this chapter are as follows:

Exception objects. Exceptional situations (such as when an error has occurred) are repre-
sented by exception objects. These can be manipulated in several ways, but ifignored they
terminate your program.

Warnings. Warnings are similar to exceptions, but will (in general) just print out an
error message.

Raising exceptions. You can raise exceptions with the raise statement. It accepts either an
exception class or an exception instance as its argument. You can also supply two argu-
ments (an exception and an error message). If you call raise with no arguments in an
except clause, it “reraises” the exception caught by that clause.

Custom exception classes. You can create your own kinds of exceptions by subclassing
Exception.

Catching exceptions. You catch exceptions with the except clause of a try statement. If
you don'’t specify a class in the except clause, all exceptions are caught. You can specify
more than one class by putting them in a tuple. If you give two arguments to except, the
second is bound to the exception object. You can have several except clauses in the same
try/except statement, to react differently to different exceptions.

else clauses. You can use an else clause in addition to except. The else clause is executed
if no exceptions are raised in the main try block.

finally. You can use try/finally if you need to make sure that some code (for example,
cleanup code) is executed regardless of whether an exception is raised or not. This code
is then put in the finally clause. Note that you cannot have both except clauses and a
finally clause in the same try statement—but you can put one inside the other.

Exceptions and functions. When you raise an exception inside a function, it propagates to
the place where the function was called. (The same goes for methods.)

New Functions in This Chapter

Function Description
warnings.filterwarnings(action, ...) Used to filter out warnings
What Now?

While you might think that the material in this chapter was exceptional (pardon the pun), the
next chapter is truly magical. Well, almost magical.

17

CHAPTER 9

Magic Methods, Properties,
and lterators

In Python, some names are spelled in a peculiar manner, with two leading and two trailing
underscores. You have already encountered some of these (such as __future__, for example).
This spelling signals that the name has a special significance—you should never invent such
names for your own programs. One set of such names that is very prominent in the language is
the set of magic (or special) method names. If one of your objects implements one of these
methods, that method will be called under specific circumstances (exactly which will depend
on the name) by Python. There is rarely any need to call these methods directly. This chapter
deals with a few important magic methods (most notably the _init _method and some
methods dealing with item access, allowing you to create sequences or mappings of your own).
It also tackles two related topics: properties (previously dealt with through magic methods,
now handled by the property function), and iterators (which use the magic method __iter
to enable them to be used in for loops). You'll find a meaty example at the end of the chapter,
which uses some of the things you have learned so far to solve a fairly difficult problem.

Before We Begin. ..

In Python 2.2, the way Python objects work changed quite a bit. I mentioned this briefly in a
sidebar, “Types and Classes Then and Now,” in Chapter 7, and I discuss it again later in this
chapter (in the section “Subclassing list, dict, and str”). This change has several consequences,
most of which won’t be important to you as a beginning Python programmer.! One thing is
worth noting, though: Even if you're using a recent version of Python, some features (such as
properties and the super function) won’t work on “old-style” classes. To make your classes
“new-style,” you should (directly or indirectly) subclass the built-in class (or, actually, type)
object. Consider the following two classes:

1. For a thorough description of the differences between old-style and new-style classes, see Chapter 8 in
Alex Martelli’s Python in a Nutshell (O’Reilly & Associates, March 2003).

173

174

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

class NewStyle(object):
more_code here

class 0ldStyle:
more_code here

Of these two, NewStyle is a new-style class, while 01dStyle is an old-style class.

Note Rather than subclass a built-in type, you can make sure you're using the same metaclass as they
do. Metaclasses are the classes of other classes (or types)—a rather advanced topic. However, you can use
the built-in metaclass called type to create new-style classes rather easily. Either you put the following
assignment in the top-level scope of your module (close to the top), or in the class-scope of your class:

__metaclass__ = type

Putting it at the beginning of a module makes it easy to make all your classes new-style. For more information
on metaclasses, you can take a look at the (somewhat technical) article called “Unifying types and classes in
Python 2.2” by Guido van Rossum (http://python.org/2.2/descrintro.html), or you can do a Web
search for the term “python metaclasses.”

In this book, I have taken the conservative approach of subclassing object only where it is
needed (because object did not exist before version 2.2), but if you do not specifically have to
make your programs compatible with old versions of Python, I would advise you to make all
your classes new-style, and consistently use features such as the super function (described in
the section “Using the super Function,” later in this chapter).

Constructors

The first magic method we’ll take a look at is the constructor. In case you have never heard the
word “constructor” before, it’s basically a fancy name for the kind of initializing method I have
already used in some of the examples, under the name init. What separates constructors from
ordinary methods, however, is that the constructors are called automatically right after an object
has been created. Thus, instead of doing what I've been doing up until now:

>>> f = FooBar()
>>> f.init()

constructors make it possible to simply do this:
>>> f = FooBar()

Creating constructors in Python is really easy; simply change the init method’s name
from the plain old init to the magic version, _init_:

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

class FooBar:
def _init (self):
self.somevar = 42

>>> f = FooBar()
>>> f.somevar
42

Now, that’s pretty nice. But you may wonder what happens if you give the constructor
some parameters to work with. Consider the following:

class FooBar:
def _init (self, value=42):
self.somevar = value

How do you think you could use this? Because the parameter is optional, you certainly
could go on like nothing had happened. But what if you wanted to use it (or you hadn’t made
it optional)? I'm sure you've guessed it, but let me show you anyway:

>>> f = FooBar('This is a constructor argument')
>>> f.somevar
'This is a constructor argument’

Of all the magic methods in Python, __init__is quite certainly the one you'll be using
the most.

Note Python has a magic method called _del _, also known as the destructor. It is called just before
the object is destroyed (garbage collected), but because you cannot really know when (or if) this happens,
| would advise you to stay away from __del _if at all possible.

Overriding the Constructor

In Chapter 7, you learned about inheritance. Each class may have one or more superclasses,
from which they inherit behavior. If a method is called (or an attribute is accessed) on an
instance of class B and it is not found, its superclass A would be searched. Consider the following
two classes:

class A:
def hello(self):
print "Hello, I'm A."

class B(A):
pass

175

176

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

The class A defines a method called hello, which is inherited by B. Here is an example of
how these classes work:

>>> a = A()
>>> b = B()
>>> a.hello()
Hello, I'm A.
>>> b.hello()
Hello, I'm A.

Because B does not define a hello method of its own, the original message is printed when
b.hellois called. It is possible for B to override this method. Consider, for example, this modified
definition of B:

class B(A):
def hello(self):
print "Hello, I'm B."

Using this definition, b.hello() will give a different result:

>>> b = B()
>>> b.hello()
Hello, I'm B.

Overriding is an important aspect of the inheritance mechanism in general, but you will
most likely encounter one particular problem more often when dealing with constructors than
when overriding ordinary methods. If you override the constructor of a class, you need to call
the constructor of the superclass (the class you inherit from) or risk having an object thatisn’t
properly initialized.

Consider the following class, Bird:

class Bird:
def _init (self):
self.hungry = 1
def eat(self):
if self.hungry:
print 'Aaaah...’
self.hungry = 0
else:
print 'No, thanks!'

This class defines one of the most basic capabilities of all birds: eating. Here is an example
of how you might use it:

>>> b = Bird()
>>> b.eat()
Aaaah...

>>> b.eat()
No, thanks!

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

As you can see from this example, once the bird has eaten, it is no longer hungry. Now
consider the subclass SongBird, which adds singing to the repertoire of behaviors:

class SongBird(Bird):
def _init (self):
self.sound = 'Squawk!'
def sing(self):
print self.sound

The SongBird class is just as easy to use as Bird:

>>> sb = SongBird()
>>> sb.sing()
Squawk!

Because SongBird is a subclass of Bird, it inherits the eat method, but if you try to call it,
you'll discover a problem:

>>> sb.eat()
Traceback (most recent call last):
File "<stdin»", line 1, in ?
File "birds.py", line 6, in eat
if self.hungry:
AttributeError: SongBird instance has no attribute 'hungry'

The exception is quite clear about what’s wrong: the SongBird has no attribute called
"hungry'. Why should it? In SongBird the constructor is overridden, and the new constructor
doesn’t contain any initialization code dealing with the hungry attribute. To rectify the situation,
the SongBird constructor must call the constructor of its superclass, Bird, to make sure that the
basic initialization takes place. There are basically two ways of doing this: calling the unbound
version of the superclass’s constructor, and using the super function. In the next two sections
I explain both.

Note Although this discussion centers around overriding constructors, the techniques apply to all methods.

Calling the Unbound Superclass Constructor

If you find the title of this section a bit intimidating, relax. Calling the constructor of a super-
class is, in fact, very easy (and useful). I'll start by giving you the solution to the problem posed
at the end of the previous section:

class SongBird(Bird):
def _init (self):
Bird. init (self)
self.sound = 'Squawk!'
def sing(self):
print self.sound

177

178

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

Only one line has been added to the SongBird class, containing the code
Bird. init (self). Before I explain what this really means, let me just show you that this
really works:

>>> sb = SongBird()
>>> sb.sing()
Squawk!

>>> sb.eat()
Aaaah...

>>> sb.eat()

No, thanks!

But why does this work? When you retrieve a method from an instance, the self argument
of the method is automatically bound to the instance (a so-called bound method). You've seen
several examples of that. However, if you retrieve the method directly from the class (such as in
Bird. _init_), thereis no instance to bind to. Therefore, you are free to supply any self you
want to. Such a method is called unbound, which explains the title of this section.

By supplying the current instance as the self argument to the unbound method, the song-
bird gets the full treatment from its superclass’s constructor (which means that it has its hungry
attribute set).

This technique works well in most situations, and knowing how to use unbound methods
like this is important. However, if you are using new-style classes, you should use the other
alternative: the super function.

Using the super Function

The super function only works in new-style classes. It is called with the current class and instance
as its arguments, and any method you call on the returned object will be fetched from the super-
class rather than the current class. So, instead of using Bird in the SongBird constructor, you
can use super(SongBird, self).Also,the init method can be called in a normal (bound)
fashion.

The following is an updated version of the bird example. Note that Bird now subclasses
object to make the classes new-style:

class Bird(object):
def _init (self):
self.hungry = 1
def eat(self):
if self.hungry:
print 'Aaaah...'
self.hungry = 0
else:
print 'No, thanks!'

class SongBird(Bird):
def _init (self):
super(SongBird, self). init ()
self.sound = 'Squawk!’
def sing(self):
print self.sound

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

This new-style version works just like the old-style one:

>>> sb = SongBird()
>>> sb.sing()
Squawk!

>>> sb.eat()
Aaaah...

>>> sb.eat()

No, thanks!

WHAT’S SO SUPER ABOUT super?

In my opinion, the super function is more intuitive than calling unbound methods on the superclass directly,
but that is not its only strength. The super function is actually quite smart, so even if you have multiple super-
classes, you only need to use super once (provided that all the superclass constructors also use super). Also,
some obscure situations that are tricky when using old-style classes (for example, when two of your superclasses
share a superclass) are automatically dealt with by new-style classes and super. You don’t have to understand
exactly how it works internally, but you should be aware that, in most cases, it is clearly superior to calling the
unbound constructors (or other methods) of your superclasses.

So—what does super return, really? Normally, you don’t have to worry about it, and just pretend it returns
the superclass you need. What it actually does is return a super object, which will take care of method resolution for
you. When you access an attribute on it, it will look through all your superclasses (and supersuperclasses, and
so forth) until it finds the attribute (or raises an AttributeError).

Item Access

Although init _is by far the most important special method you’ll encounter, there are
many others that enable you to achieve quite alot of cool things. One useful set of magic methods

described in this section enables you to create objects that behave like sequences or mappings.

The basic sequence and mapping protocol is pretty simple. However, to implement all the
functionality of sequences and mappings, there are many magic functions to implement. Luckily,
there are some shortcuts, but I'll get to that.

Note The word protocol is often used in Python to describe the rules governing some form of behavior.
This is somewhat similar to the notion of interfaces mentioned earlier. The protocol says something about
which methods you should implement and what those methods should do. Because polymorphism in Python
is only based on the object’s behavior (and not on its ancestry, for example, its class or superclass, and so
forth), this is an important concept: Where other languages might require an object to belong to a certain
class, or to implement a certain interface, Python often simply requires it to follow some given protocol. So,
to be a sequence, all you have to do is follow the sequence protocol.

179

180

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

The Basic Sequence and Mapping Protocol

Sequences and mappings are basically collections of items. To implement their basic behavior
(protocol), you need two magic methods if your objects are immutable, four if they are mutable:

def

__len__(self):This method should return the number of items contained in the collection.
For a sequence, this would simply be the number of elements; for a mapping, it would be
the number ofkey-value pairs.If _len__returnszero (and youdon’timplement _nonzero ,
which overrides this behavior), the object is treated as false in a Boolean context (as with
empty lists, tuples, strings, and dictionaries).

__getitem__(self, key):Thisshould return the value corresponding to the given key. For
asequence, the key should be an integer from zero to -1 (or, it could be negative, as noted
later), where n is the length of the sequence; for a mapping, you could really have any kind
of keys.

__setitem (self, key, value): This should store value in a manner associated with key,
so it can later be retrieved with __getitem . Of course, you define this method only for
mutable objects.

__delitem__(self, key):Thisis called when someone uses the del statement on a part of
the object, and should delete the element associated with key. Again, only mutable objects
(and not all of them—only those for which you want to let items be removed) should define
this method.

Some extra requirements are imposed on these methods:

¢ For a sequence, if the key is a negative integer, it should be used to count from the end.
In other words, treat x[-n] the same as x[len(x)-n].

* Ifthe key is of an inappropriate type (such as a string key used on a sequence) a TypeError
may be raised.

¢ Iftheindex of a sequence is of the right type, but outside the allowed range, an IndexError
should be raised.

Let’s have a go at it—let’s see if we can create an infinite sequence:

checkIndex(key):

non

Is the given key an acceptable index?

To be acceptable, the key should be a non-negative integer. If it
is not an integer, a TypeError is raised; if it is negative, an
IndexError is raised (since the sequence is of infinite length).
if not isinstance(key, (int, long)): raise TypeError

if key<0: raise IndexError

class ArithmeticSequence:

def _init (self, start=0, step=1):

non

def

def

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

Initialize the arithmetic sequence.

start - the first value in the sequence
step - the difference between two adjacent values
changed - a dictionary of values that have been modified by

the user
self.start = start # Store the start value
self.step = step # Store the step value
self.changed = {} # No items have been modified

__getitem (self, key):

Get an item from the arithmetic sequence.

checkIndex(key)
try: return self.changed[key] # Modified?
except KeyError: # otherwise...
return self.start + key*self.step # ...calculate the value

__setitem (self, key, value):

Change an item in the arithmetic sequence.

checkIndex(key)

self.changed[key] = value # Store the changed value

This implements an arithmetic sequence, a sequence of numbers in which each is greater
than the previous one by a constant amount. The first value is given by the constructor parameter
start (defaulting to zero), while the step between the values is given by step (defaulting to one).
You allow the user to change some of the elements by storing the exceptions to the general rule in
adictionary called changed. If the element hasn’t been changed, it is calculated as start+key*step.
Here is an example of how you can use this class:

S =

ArithmeticSequence(1, 2)

Note that it is illegal to delete items, which is why I haven’t implemented __del

181

182 CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

>>> del s[4]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AttributeError: ArithmeticSequence instance has no attribute

__delitem_ '

Also, the classhasno __len_ method because it is of infinite length.

If an illegal type of index is used, a TypeError is raised, and if the index is the correct type
but out of range (negative in the last of the following two examples), an IndexError is raised:

>>> s["four"]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "arithseq.py", line 31, in _ getitem
checkIndex(key)
File "arithseq.py", line 10, in checkIndex
if not isinstance(key, int): raise TypeError
TypeError
>>> s[-42]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "arithseq.py", line 31, in _ getitem
checkIndex(key)
File "arithseq.py", line 11, in checkIndex
if key<0: raise IndexError
IndexError

The index checking is taken care of by a utility function I've written for the purpose,
checkIndex.

BUT ISN’T THAT TYPE CHECKING?

One thing that might surprise you about the checkIndex function is the use of isinstance (which you
should rarely use because type or class checking goes against the grain of Python’s polymorphism). I've used
it because the language reference explicitly states that the index should be an integer (this includes long integers).
And complying with standards is one of the (very few) valid reasons for using type checking.

Note You can simulate slicing, too, if you like. When slicing an instance that supports __getitem
a slice object is supplied as the key. (Slice objects are described in the Python Library Reference [http://
python.org/doc/1ib] in Section 2.1, “Built-in Functions,” under the s1ice function.)

Subclassing list, dict, and str

While the four methods of the basic sequence/mapping protocol will get you far, the official
language reference also recommends that several other magic and ordinary methods be

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

implemented (see the section “Emulating Container Types” in the Python Reference Manual,
http://www.python.org/doc/ref/sequence-types.html), including the _iter method, which
I describe in the section “Iterators,” later in this chapter. Implementing all these methods (to
make your objects fully polymorphically equivalent to lists or dictionaries) is a lot of work and hard
to get right. If you want custom behavior in only one of the operations, it makes no sense that
you should have to reimplement all of the others. It’s just programmer laziness (also called
common sense).

So what should you do? The magic word is “inheritance.” Why reimplement all of these
things when you can inherit them? The standard library comes with three ready-to-use imple-
mentations of the sequence and mapping protocols (see the sidebar “UserList, UserString, and
UserDict”), and in newer versions of Python, you can subclass the built-in types themselves.
(Note that this is mainly useful if your class’s behavior is close to the default. If you have to reim-
plement most of the methods, it might be just as easy to write a new class.)

USERLIST, USERSTRING, AND USERDICT

The standard library contains three modules called UserList, UserString, and UserDict, each containing a
class with the same name as the module. These classes satisfy all the requirements of the sequence and
mapping protocols. UserList and UserString are custom sequences that behave just like ordinary lists and
strings, while UserDict is a custom mapping that behaves just like ordinary dictionaries. Until Python 2.2, these
were the best option as superclasses when creating your own mappings and sequences. In Python 2.2, the capa-
bility to subclass built-in types was added, making these less useful.

So, if you want to implement a sequence type that behaves similarly to the built-in lists, you
can simply subclass 1ist.

Note When you subclass a built-in type such as 1ist, you are indirectly subclassing object. Therefore your
class is automatically new-style, which means that such features as the super function are available.

Let’s just do a quick example—a list with an access counter:

class Counterlist(list):
def _init (self, *args):
super(Counterlist, self). init (*args)
self.counter = 0
def getitem (self, index):
self.counter += 1
return super(Counterlist, self). getitem (index)

The CounterlList class relies heavily on the behavior of its subclass (1ist). Any methods not
overridden by CounterlList (such as append, extend, index, and so on) may be used directly. In the
two methods that are overridden, super is used to call the superclass version of the method, only

183

184

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

adding the necessary behavior of initializing the counter attribute (in __init) and updating
the counter attribute (in __getitem).

Note Overriding _getitem _is nota bullet-proof way of trapping user access because there are other
ways of accessing the list contents, such as through the pop method.

Here is an example of how CounterList may be used:

>>> ¢l = Counterlist(range(10))
>>> cl

[O) 1, 2, 3, 4,5, 6, 7, 8, 9]
>>> cl.reverse()

>»>> cl

[9) 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> del c1[3:6]

>>> cl

9, 8, 7,3, 2,1, 0]

>>> cl.counter

>>> cl[4] + cl[2]

>>> cl.counter

Asyou can see, CounterList works just like 1ist in most respects. However, it has a counter
attribute (initially zero), which is incremented each time you access a list element. After performing
the addition c1[4] + c1[2], the counter has been incremented twice, to the value 2.

More Magic

There are special (magic) names for many purposes—what I've shown you so far is just a small
taste of what is possible. Most of the magic methods available are meant for fairly advanced
use, so I won’t go into detail here. However, if you are interested, it is possible to emulate numbers,
make objects that can be called as if they were functions, influence how objects are compared,
and much more. For more information on which magic methods are available, see the section
“Special Method Names” in the Python Reference Manual (http://www.python.org/doc/ref/
specialnames.html).

Properties

In Chapter 7, I mentioned accessor methods. Accessors are simply methods with names such
as getHeight and setHeight and are used to retrieve or rebind some attribute (which may be

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

private to the class—see the section “In Private” in Chapter 7). Encapsulating state variables
(attributes) like this can be important if certain actions must be taken when accessing the given
attribute. For example, consider the following Rectangle class:

class Rectangle:
def _init (self):
self.width = 0
self.height = 0
def setSize(self, size):
self.width, self.height = size
def getSize(self):
return self.width, self.height

Here is an example of how you can use the class:

>>> r = Rectangle()

>>> r.width = 10

>>> r.height = 5

>>> r.getSize()

(10, 5)

>>> r.setSize((150, 100))
>>> r.width

150

The getSize and setSize methods are accessors for a fictitious attribute called size—
which is simply the tuple consisting of width and height. This code isn’t directly wrong, but it
is flawed. The programmer using this class shouldn’t have to worry about how it is implemented
(encapsulation). If you some day wanted to change the implementation so that size was a real
attribute and width and height were calculated on the fly, you would have to wrap them in
accessors, and any programs using the class would also have to be rewritten. The client code
(the code using your code) should be able to treat all your attributes in the same manner.

So what is the solution? To wrap all your attributes in accessors? That is a possibility, of
course. However, it would be impractical (and kind of silly) if you had lots of simple attributes;
you would have to write many accessors that did nothing but retrieve or set these attributes,
with no useful action taken. This smells of copy-paste programming, or cookie-cutter code, which
is clearly a bad thing (although quite common for this specific problem in certain languages).
Luckily, Python can hide your accessors for you, making all of your attributes look alike. Those
attributes that are defined through their accessors are often called properties.

There are, in fact, two mechanisms for creating properties in Python. I'll focus on the most
recent one, the property function, which only works on new-style classes. Then, I'll give you a
short description of how to implement properties with magic methods.

The property Function

Using the property function is delightfully simple. If you have already written a class such as
Rectangle from the previous section, you only have to add a single line of code (in addition to
subclassing object):

185

186 CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

class Rectangle(object):
def _init (self):
self.width = 0
self.height = 0
def setSize(self, size):
self.width, self.height = size
def getSize(self):
return self.width, self.height
size = property(getSize, setSize)

In this new version of Rectangle, a property is created with the property function with the
accessor functions as arguments (the getter first, then the setter), and this property is stored
under the name size. After this, you no longer have to worry about how things are implemented,
but can treat width, height, and size the same way:

>>> T = Rectangle()
>>> r.width = 10

>>> r.height = 5

>>> r.size

(10, 5)

>>> r.size = 150, 100
>>> r.width

150

Asyou can see, the size attribute is still subject to the calculations in getSize and setSize,
but it looks just like a normal attribute.

Tip If your properties are behaving oddly, make sure your class subclasses object (either directly or
indirectly—or by setting the metaclass directly). If it doesn’t, the getter part of the property will still work, but
the setter part won’t. This can be a bit confusing.

In fact, the property function may be called with zero, one, three, or four arguments as well.
If called with no arguments, the resulting property is neither readable nor writable. If called with
only one argument (a getter method), the property is readable only. The third (optional) argument
is amethod used to delete the attribute (it takes no arguments). The fourth (optional) argument
isa documentation string. The parameters are called fget, fset, fdel, and doc—you can use them
as keyword arguments if you want a property that, say, is only writable and has a docstring.

Although this section has been short (a testament to the simplicity of the property func-
tion), it is very important. The moral is this: With new-style classes, you should use property
rather than accessors.

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

BUT HOW DOES IT WORK?

In case you’re curious about how property does its magic, I'll give you an explanation here. If you don’t care,
just skip ahead.

The fact is that propexrty isn’t really a function—it's a class whose instances have some magic methods
that do all the work. The methods in questionare _get , set ,and _delete . Together, these
three define the so-called descriptor protocol. An object implementing any of these three methods is a descriptor.
The special thing about descriptors is how they are accessed. For example, when reading an attribute, if the
returned object implements __get _, this method will be called (and the resulting value returned) instead of
simply returning the object. This is, in fact, the mechanism underlying properties, bound methods, static and
class methods (see the following section for more information), and super. A brief description of the descriptor
protocol may be found in the Python language reference (http://python.org/doc/ref/
descriptors.html). A more thorough source of information is Raymond Hettinger’s How-To Guide for
Descriptors (http://users.xrcn.com/python/download/Descriptor.htm).

Static Methods and Class Methods

Before discussing the old way of implementing properties, let’s take a slight detour, and take a
look at another couple of features that are implemented in a similar manner to the new-style
properties. Static methods and class methods are created by wrapping methods in objects of
the staticmethod and classmethod types, respectively. Static methods are defined without self
arguments, and can be called directly on the class itself. Class methods are defined with a
self-like parameter normally called cls. You can call class methods directly on the class object
too, but the cls parameter then automatically is bound to the class. Here is a simple example
(note the use of new-style classes, by setting _metaclass_):

__metaclass__ = type
class MyClass:

def smeth():
print 'This is a static method'
smeth = staticmethod(smeth)

def cmeth(cls):
print 'This is a class method of', cls
cmeth = classmethod(cmeth)

The technique of wrapping and replacing the methods manually like this is a bit tedious.
In Python 2.4, a new syntax was introduced for wrapping methods like this, called decorators.
(They actually work with any callable objects as wrappers, and can be used on both methods
and functions.) You specify one or more decorators (which are applied in reverse order) by
listing them above the method (or function), using the @ operator:

187

188 CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

__metaclass__ = type
class MyClass:

@staticmethod
def smeth():
print 'This is a static method'

@classmethod
def cmeth(cls):
print 'This is a class method of', cls

Once you've defined these methods, they can be used like this (that is, without instantiating
the class):

>>> MyClass. smeth()

This is a static method

>>> MyClass.cmeth()

This is a class method of <class

' main__.MyClass'>

Static methods and class methods haven'’t historically been important in Python, mainly
because you could always use functions or bound methods instead, in some way, but also because
the support hasn’t really been there in earlier versions. So even though you may not see them
used much in current code, they do have their uses (such as factory functions, if you’ve heard
of those), and you may well think of some new ones.

__getattr__, __setattr__, and Friends

It is possible to implement properties with old-style classes, too, but you have to use magic
methods rather than the property function. The following four methods provide all the function-
ality you need (in old-style classes, you only use the last three):

__getattribute_ (self, name): Automatically called when the attribute name is accessed.
(Works correctly on new-style classes only.)

__getattr__(self, name): Automatically called when the attribute name is accessed and
the object has no such attribute.

__setattr_(self, name, value): Automatically called when an attempt is made to bind
the attribute name to value.

__delattr__(self, name): Automatically called when an attempt is made to delete the
attribute name.

Although a bit trickier (and less efficient) to use than property, these magic methods are
quite powerful because you can write code in one of these methods that deals with several
properties. (If you have a choice, though, stick with property.)

Here is the Rectangle example again, this time with magic methods:

CHAPTER 9

class Rectangle:
def _init (self):
self.width = 0
self.height = 0
def _ setattr (self, name, value):
if name == 'size':
self.width, self.height = value
else:
self. dict_[name] = value
def _getattr (self, name):
if name == 'size':
return self.width, self.height
else:
raise AttributeError

MAGIC METHODS, PROPERTIES, AND ITERATORS

As you can see, this version of the class needs to take care of additional administrative

details. When considering this code example, it’

s important to note the following:

e The setattr methodis called even if the attribute in question is not size. Therefore,
the method must take both cases into consideration: If the attribute is size, the same
operation is performed as before; otherwise, the magic attribute _dict _isused.It

contains a dictionary with all the instances

attributes. Itis used instead of ordinary attribute

assignment to avoid having __setattr__ called again (which would cause the program

to loop endlessly).

e The getattr method is called only if

a normal attribute is not found, which means

that if the given name is not size, the attribute does not exist, and the method raises an
AttributeError. This is important if you want the class to work correctly with built-in

functions such as hasattr and getattr. If
previous implementation is used.

the name is size, the expression found in the

ANOTHER TRAP

Just as there is an “endless loop” trap associated with __setattr , there is a trap associated with
__getattribute _aswell. Because it intercepts all attribute accesses (in new-style classes), it will intercept

accessesto _dict__ aswell! The only safe way to ac

cess attributes on self inside getattribute

istouse the getattribute method of the superclass (using super).

Iterators

In this section, I cover only one magic method, _iter , which is the basis of the iterator

protocol.

189

190

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

The Iterator Protocol

To iterate means to repeat something several times—what you do with loops. Until now I have
only iterated over sequences and dictionaries in for loops, but the truth is that you can iterate
over other objects, too: objects that implement the _iter method.

The _iter _method returns an iterator, which is any object with a method called next,
which is callable without any arguments. When you call the next method, the iterator should
return its “next value.” If the method is called, and the iterator has no more values to return, it
should raise a StopIteration exception.

What's the point, you say? Why not just use a list? Because it may often be overkill. If you
have a function that can compute values one by one, you may need them only one by one—not
all at once, stored in a list. If the number of values is large, the list may take up too much memory.
But there are other reasons: using iterators is more general, simpler, and more elegant. Let’s
take a look at an example you couldn’t do with a list, simply because the list would have to be
of infinite length!

Our “list” is the sequence of Fibonacci numbers. An iterator for these could be the following:

class Fibs:
def _init (self):
self.a =0
self.b = 1

def next(self):
self.a, self.b = self.b, self.a+self.b
return self.a

def iter (self):
return self

Note that the iterator implements the _iter method, which will, in fact, return the iterator
itself. In many cases, you’d putthe _iter method in another object, which you would use in
the for loop. That would then return your iterator. It is recommended that iterators implement
an__iter _method of their own in addition (returning self, just as I did here), so they them-
selves can be used directly in for loops.

Note In formal terms, an object that implements the __iter _ method is iterable, while the object
implementing next is the iterator.

First, make a Fibs object:
>>> fibs = Fibs()

You can then use it in a for loop—for example, to find the smallest Fibonacci number that
is greater than 1,000:

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

>>> for f in fibs:
if £ > 1000:
print f

break

1597

Here the loop stops because I issue a break inside it; if I didn’t, the for loop would never end.

Tip The built-in function iter can be used to get an iterator from an iterable object.

Making Sequences from Iterators

In addition to iterating over the iterators (which is what you normally do), you can convert
them to sequences. In most contexts in which you can use a sequence (except in operations
such as indexing or slicing), you can use an iterator instead. One useful example of this is
explicitly converting an iterator to a list using the list constructor:

>>> class TestIterator:

value = 0

def next(self):
self.value += 1
if self.value > 10: raise StopIteration
return self.value

def iter (self):
return self

>>> ti = TestIterator()
>>> list(ti)
[1) 2) 3) 4) 5) 6) 7) 8) 9) 10]

Generators

Generators (also called “simple generators” for historical reasons) are relatively new to Python,
and are (along with iterators) perhaps one of the most powerful features to come along for
years. Generators are a kind of iterators that are defined with normal function syntax. Exactly
how they work is best shown through example. Let’s first have a look at how you make them
and use them, and then take a peek under the hood afterward.

Making a Generator

Making a generator is simple; it’s just like making a function. I'm sure you are starting to tire of
the good old Fibonacci sequence by now, so let me do something else. I'll make a function that
flattens nested lists. The argument is a list that may look something like this:

nested = [[1) 2]) [3) 4]; [5]]

191

192

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

In other words, alist of lists. My function should then give me the numbers in order. Here’s
asolution:

def flatten(nested):
for sublist in nested:
for element in sublist:
yield element

Most of this function is pretty simple. First it iterates over all the sublists of the supplied
nested list; then it iterates over the elements of each sublist in order. If the last line had been
print element, for example, the function would have been easy to understand, right?

So what’s new here is the yield statement. Any function that contains a yield statement is
called a generator. And it’s not just a matter of naming; it will behave quite differently from
ordinary functions. The difference is that instead of returning one value, as you do with return,
you can yield several values, one at a time. Each time a value is yielded (with yield), the function
freezes: That is, it stops its execution at exactly that point and waits to be reawakened. When it
is, it resumes its execution at the point where it stopped.

I can make use of all the values by iterating over the generator:

>>> nested = [[1, 2], [3, 4], [5]]
>>> for num in flatten(nested):
print num

U B W N .

or

>>> list(flatten(nested))
[1, 2, 3, 4, 5]

A Recursive Generator

The generator I designed in the previous section could only deal with lists nested two levels
deep, and to do that it used two for loops. What if you have a set of lists nested arbitrarily deeply?
Perhaps you use them to represent some tree structure, for example. (You can also do that with
specific tree classes, but the strategy is the same.) You need a for loop for each level of nesting,
but because you don’t know how many levels there are, you have to change your solution to be
more flexible. It’s time to turn to the magic of recursion:

def flatten(nested):
try:
for sublist in nested:
for element in flatten(sublist):
yield element
except TypeError:
yield nested

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

When flatten is called, you have two possibilities (as is always the case when dealing with
recursion): the base case and the recursive case. In the base case, the function is told to flatten
asingle element (for example, a number), in which case the for loop raises a TypeError (because
you're trying to iterate over a number), and the generator simply yields the element.

If you are told to flatten a list (or any iterable), however, you have to do some work. You go
through all the sublists (some of which may not really be lists) and call flatten on them. Then
you yield all the elements of the flattened sublists by using another for loop. It may seem slightly
magical, but it works:

>>> list(flatten([[[1],2],3,4,[5,(6,71],8]))
[1) 2) 3) 4) 5) 6) 7) 8]

Making It Safer

There is one problem with this, however. If nested is a string-like object (string, Unicode,
UserString, and so on), it is a sequence and will not raise TypeError, yet you do not want to
iterate over it.

Note There are two main reasons why you shouldn’t iterate over string-like objects in the f1atten function.
First, you want to treat string-like objects as atomic values, not as sequences that should be flattened. Second,
iterating over them would actually lead to infinite recursion because the first element of a string is another
string of length one, and the first element of that string is the string itself(!).

To deal with this, you must add a test at the beginning of the generator. Trying to concat-
enate the object with a string and seeing if a TypeError results is the simplest and fastest way to
check whether an object is string-like.2 Here is the generator with the added test:

def flatten(nested):
try:
Don't iterate over string-like objects:
try: nested + "'
except TypeError: pass
else: raise TypeError
for sublist in nested:
for element in flatten(sublist):
yield element
except TypeError:
yield nested

As you can see, if the expression nested + '' raises a TypeError, it is ignored; however, if
the expression does not raise a TypeError, the else clause of the inner try statement raises a
TypeError of its own. This causes the string-like object to be yielded as is (in the outer except
clause). Got it?

2. Thanks to Alex Martelli for pointing out this idiom and the importance of using it here.

193

194 CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

Here is an example to demonstrate that this version works with strings as well:

>>> list(flatten(['foo', ['bar', ['baz']]]))
['foo', 'bar', 'baz']

Note that there is no type checking going on here. I don’t test whether nested is a string
(which I could do by using isinstance), only whether it behaves like one (that is, it can be
concatenated with a string).

Generators in General

If you followed the examples so far, you know how to use generators, more or less. Let me just
give you a general description: A generator is a function that contains the keyword yield. When
itis called, the code in the function body is not executed. Instead, an iterator is returned. Each
time a value is requested, the code in the generator is executed until a yield or a return is
encountered. A yield means that a value should be yielded. A return means that the generator
should stop executing (without yielding anything more; return can only be called without
arguments when used inside a generator).

In other words, generators consist of two separate components: the generator-function
and the generator-iterator. The generator-function is what is defined by the def statement
containing a yield; the generator-iterator is what this function returns. In less precise terms,
these two entities are often treated as one, and collectively called a generator.

>>> def simple_generator():

yield 1

>>> simple generator

<function simple_generator at 153b44>
>>> simple_generator()

<generator object at 1510b0>

The iterator returned by the generator-function can be used just like any other iterator.

Avoiding Generators

If you have to use an older version of Python, generators aren’t available. What follows is a
simple recipe for simulating them with normal functions.

Starting with the code for the generator, begin by inserting the following line at the begin-
ning of the function body:

result = []

If the code already uses the name result, you should come up with another. (Using a more
descriptive name may be a good idea anyway.) Then, replace all lines of the form

yield some_expression
with

result.append(some_expression)

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

Finally, at the end of the function, add
return result

Although this may not work with all generators, it works with most. (For example, it fails
with infinite generators, which of course can’t stuff their values into a list.)
Here is the flatten generator rewritten as a plain function:

def flatten(nested):
result = []
try:
Don't iterate over string-like objects:
try: nested + "'
except TypeError: pass
else: raise TypeError
for sublist in nested:
for element in flatten(sublist):
result.append(element)
except TypeError:
result.append(nested)
return result

The Eight Queens

Now that you've learned about all this magic, it’s time to put it to work. In this section, you see
how to use generators to solve a classic programming problem.

Generators are ideal for complex recursive algorithms that gradually build a result. Without
generators, these algorithms usually require you to pass a half-built solution around as an extra
parameter so that the recursive calls can build on it. With generators, all the recursive calls
have to dois yield their part. That is what I did with the preceding recursive version of flatten,
and you can use the exact same strategy to traverse graphs and tree structures.

GRAPHS AND TREES

If you have never heard of graphs and trees before, you ought to learn about them as soon as possible; they

are very important concepts in programming and computer science. To find out more, you should probably get
a book about computer science, discrete mathematics, data structures, or algorithms. For some concise definitions,
you can check out the following Web pages:

e http://mathworld.wolfram.com/Graph.html
o http://mathworld.wolfram.com/Tree.html

e http://www.nist.gov/dads/HTML/tree.html
e http://www.nist.gov/dads/HTML/graph.html

A quick Web search ought to turn up a lot of material.

195

196

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

Backtracking

In some applications, however, you don’t get the answer right away; you have to try several
alternatives. And not only do you have to try several alternatives on onelevel, but on every level
in your recursion. To draw a parallel from real life, imagine that you have an important meeting
to go to. You're not sure where it is, but you have two doors in front of you, and the meeting
room has to be behind one of them. You choose the left, and step through. There you face
another two doors. You choose the left, but it turns out to be wrong. So you backtrack, and
choose the right door, which also turns out to be wrong (excuse the pun). So, you backtrack
again, to the point where you started, ready to try the right door there.

This strategy of backtracking is useful for solving problems that require you try every
combination until you find a solution. Such problems are solved like this:

Pseudocode
for each possibility at level 1:
for each possibility at level 2:

for each possibility at level n:
is it viable?

To implement this directly with for loops, you have to know how many levels you'll
encounter. If that is not possible, you use recursion.

The Problem

This is a much loved computer science puzzle: You have a chessboard, and eight queen pieces
to place onit. The only requirement is that none of the queens threatens any of the others; that
is, you must place them so that no two queens can capture each other. How do you do this?
Where should the queens be placed?

This is a typical backtracking problem: you try one position for the first queen (in the first
row), advance to the second, and so on. If you find that you are unable to place a queen, you
backtrack to the previous one and try another position. Finally, you either exhaust all possibilities,
or find a solution.

In the problem as stated, you are provided with information that there will be only eight
queens, but let’s assume that there can be any number of queens. (This is more similar to real-
world backtracking problems.) How do you solve that? If you want to try to solve it yourself, you
should stop reading now because I'm about to give you the solution.

Note There are, in fact, much more efficient solutions available for this problem. If you want more details,
a Web search should turn up a wealth of information. A brief history of various solutions may be found at
http://www.cit.gu.edu.au/~sosic/nqueens.html.

State Representation

To represent a possible solution (or part of it), you can simply use a tuple (or a list, for that
matter). Each element of the tuple indicates the position (that is, column) of the queen of the

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

corresponding row. So if state[0] == 3, you know that the queen in row one is positioned in
column four (we are counting from zero, remember?). When working at one level of recursion
(one specific row), you know only what positions the queens above have, so you may have a
state tuple whose length is less than eight (or whatever the number of queens is).

Note | could well have used a list instead of a tuple to represent the state. It's mostly a matter of taste in
this case. In general, if the sequence is small and static, tuples are a good choice.

Finding Conflicts

Let’s start by doing some simple abstraction. To find a configuration in which there are no
conflicts (where no queen may capture another), you first have to define what a conflict is. And
why not define it as a function while you're at it?

The conflict function is given the positions of the queens so far (in the form of a state tuple)
and determines if a position for the next queen generates any new conflicts:

def conflict(state, nextX):
nextY = len(state)
for 1 in range(nextY):
if abs(state[i]-nextX) in (0, nextY-i):
return True
return False

The nextX parameter is the suggested horizontal position (x coordinate, or column) of the
next queen, and nextY is the vertical position (y coordinate, or row) of the next queen. This
function does a simple check for each of the previous queens. If the next queen has the same x
coordinate, or is on the same diagonal as (nextX, nextY), a conflict has occurred, and True is
returned. If no such conflicts arise, False is returned. The tricky part is the following expression:

abs(state[i]-nextX) in (0, nextY-i)

Itis simply true if the horizontal distance between the next queen and the previous one under
consideration is either zero (same column) or equal to the vertical distance (on a diagonal)—and
false otherwise.

The Base Case

The Eight Queens problem can be a bit tricky to implement, but with generators it isn’t so bad.
If you aren’t used to recursion, I wouldn’t expect you to come up with this solution by yourself,
though. Note also that this solution isn’t particularly efficient, so with a very large number of
queens, it might be a bit slow.

Let’s begin with the base case: the last queen. What would you want her to do? Let’s say
you want to find all possible solutions; in that case you would expect her to produce (generate)
all the positions she could occupy (possibly none) given the positions of the others. You can
sketch this out directly:

197

198

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

def queens(num, state):
if len(state) == num-1:
for pos in range(num):
if not conflict(state, pos):
yield pos

In human-speak this means the following: If all but one queen have been placed, go through
all possible positions for the last one, and return the ones that don'’t give rise to any conflicts.
The num parameter is the number of queens in total, and the state parameter is the tuple of
positions for the previous queens. For example, let’s say you have four queens, and that the
first three have been given the positions 1, 3, and 0, respectively, as shown in Figure 9-1. (Pay
no attention to the white queen at this point.)

//////

7,
A

Figure 9-1. Placing four queens on a 4x4 board

As you can see in the figure, each queen gets a (horizontal) row, and their positions are
numbered across the top (beginning with zero, as is normal in Python):

>>> list(queens(4, (1,3,0)))
(2]

It works like a charm. Using 1ist simply forces the generator to yield all of its values. In this
case, only one position qualifies. The white queen has been put in this position in Figure 9-1.
(Note that color has no special significance and is not part of the program.)

The Recursive Case

Now, let’s turn to the recursive part of the solution. When you have your base case covered, the
recursive case may correctly assume (by induction) that all results from lower levels (the queens
with higher numbers) are correct. So what you have to do is add an else clause to the if state-
ment in the previous implementation of the queens function.

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS 199

What results do you expect from the recursive call? You want the positions of all the lower
queens, right? Let’s say they are returned as a tuple. In that case you probably have to change
your base case to return a tuple as well (of length one)—but I get to that later.

So, you're supplied with one tuple of positions from “above,” and for each legal position of
the current queen, you are supplied with a tuple of positions from “below.” All you have to do
to keep things flowing is to yield the result from below with your own position added to the front:

else:
for pos in range(num):
if not conflict(state, pos):
for result in queens(num, state + (pos,)):
yield (pos,) + result

The for pos and if not conflict parts of this are identical to what you had before so you
can rewrite this a bit to simplify the code. Let’s add some default arguments as well:

def queens(num=8, state=()):
for pos in range(num):
if not conflict(state, pos):
if len(state) == num-1:
yield (pos,)
else:
for result in queens(num, state + (pos,)):
yield (pos,) + result

If you find the code hard to understand, you might find it helpful to formulate what it does
in your own words. (And, you do remember that the comma in (pos,) is necessary to make it a
tuple, and not simply a parenthesized value?)

The queens generator gives you all the solutions (that is, all the legal ways of placing
the queens):

>>> list(queens(3))

[]

>>> list(queens(4))

[(1, 3, 0, 2), (2, 0, 3, 1)]

>>> for solution in queens(8):
print solution

(0, 4, 7, 5, 2,6, 1, 3)
(0, 5,7, 2,6, 3,1, 4)

[y

3)
, 4)

(7, 2: O) 5) 1) 4)
(7, 3, 0, 2, 5,
>>>

[N

-

[ex o))
-

If you run queens with eight queens, you see a lot of solutions flashing by. Let’s find out
how many:

200

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

>>> len(list(queens(8)))
92

Wrapping It Up

Before leaving the queens, let’s make the output a bit more understandable. Clear output is
always a good thing because it makes it easier to spot bugs, among other things.

def prettyprint(solution):
def line(pos, length=len(solution)):
return '. " * (pos) + 'X "+ ".
for pos in solution:
print line(pos)

" * (length-pos-1)

Note that I've made a little helper function inside prettyprint. I putit there because I assumed
I'wouldn’t need it anywhere outside. In the following, I print out a random solution to satisfy
myself that it is correct:

>>> import random
>>> prettyprint(random.choice(list(queens(8))))

,,,,,,,

Figure 9-2. One of many possible solutions to the Eight Queens problem

CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS 201

A Quick Summary

Alot of magic here. Let’s take stock:

New-style classes. The way classes work in Python is changing. In Python 2.2, new-style
classes were introduced, and they provide several new features (for example, they work
with super and property, while old-style classes do not). To create a new-style class you
must subclass object, either directly or indirectly, or set the _metaclass__ property.

Magic methods. Several special methods (with names beginning and ending with double
underscores) exist in Python. These methods differ quite a bit in function, but most of them
are called automatically by Python under certain circumstances. (For example, _init
is called after object creation.)

Constructors. These are common to many object-oriented languages, and you'll probably
implement one for almost every class you write. Constructors arenamed __init _andare
automatically called right after an object is created.

Overriding. A class can override methods (or any other attributes) defined in its superclasses
simply by implementing the methods. If the new method needs to call the overridden
version, it can either call the unbound version from the superclass directly (old-style
classes) or use the super function (new-style classes).

Sequences and mappings. Creating a sequence or mapping of your own requires imple-
menting all the methods of the sequence and mapping protocols, including such magic
methodsas __getitem and _setitem_ .Bysubclassinglist (orUser List) and dict
(or UserDict) you can save a lot of work.

Iterators. An iterator is simply an object that has a next method. Iterators can be used to
iterate over a set of values. When there are no more values, the next method should raise
a StopIteration exception. Iferable objects have an _iter method, which returns an
iterator, and can be used in for loops, just like sequences. Often, an iterator is also iterable,
thatis,ithasan __iter method returning the iterator itself.

Generators. A generator function (or method) is a function (or method) that contains the
keyword yield. When called, the generator function returns a generator, which is a special
type of iterator.

Eight Queens. The Eight Queens problem is well known in computer science and lends itself
easily to implementation with generators. The goal is to position eight queens on a chess
board so that none of the queens is in a position from which she can attack any of the others.

202 CHAPTER 9 MAGIC METHODS, PROPERTIES, AND ITERATORS

New Functions in This Chapter

Function Description

iter(obj) Extracts an iterator from an iterable object.
property(fget, fset, fdel, doc) Returns a property. All arguments are optional.
super(class, obj) Returns a bound instance of class’s superclass.

Note that iter and super may be called with other parameters than those described here.
For more information, see the standard Python documentation (http://python.org/doc).

What Now?

Now you know most of the Python language. So why are there still so many chapters left, you
ask? Oh, there is still a lof to learn, much of it about how Python can connect to the external
world in various ways. And then you have the projects . . . So we’re not done yet. Not by far.

CHAPTER 10

Batteries Included

You now know most of the basic Python language. While the core language is powerful in
itself, Python gives you more tools to play with. A standard installation includes a set of modules
called the standard library. You have already seen some of them (math and cmath, containing
mathematical functions for real and complex numbers, for example), but there are many more.
This chapter shows you a bit about how modules work, and how to explore them and learn
what they have to offer. Then the chapter offers an overview of the standard library focusing on
a few selected useful modules.

Modules

You already know about making your own programs (or scripts) and executing them. You have

also seen how you can fetch functions into your programs from external modules using import:

>>> import math
>>> math.sin(0)
0.0

Let’s take a look at how you can write your own modules.

Modules Are Programs

Any Python program can be imported as a module. Let’s say you have written the program in
Listing 10-1 and stored it in a file called hello.py (the name is important).

Listing 10-1. A Simple Module

hello.py
print "Hello, world!"

Where you save it is also important; in the next section you learn more about that, but for
now let’s say you save it in the directory C: \python (Windows) or ~/python (UNIX). Then you
can tell your interpreter where to look for the module by executing the following (using the
Windows directory):

>>> import sys
>>> sys.path.append('c:/python")

203

204

CHAPTER 10 BATTERIES INCLUDED

Note In the path of the preceding directory | used forward slashes, while on Windows, backslashes
are the norm. Both are legal, but because backslashes are used to write certain special characters (such
as newlines), the forward slashes are safer. If you use backslashes, you can use either a raw string
(r'c:\python') or escape the backslash (' c:\\python").

What I did here was simply to tell the interpreter that it should look for modules in the
directory c: \python in addition to the places it would normally look. After having done this,
your can import your module (which is stored in the file c: \python\hello.py, remember?):

>>> import hello
Hello, world!

Note When you import a module, you may notice that a new file appears—in this case c: \python\
hello.pyc. The file with the . pyc extension is a processed (“compiled”) Python file that has been translated
to a format that Python can handle more efficiently. If you import the same module later, Python will import
the . pyc file rather than the . py file, unless the . py file has changed; in that case, a new . pyc file is gener-
ated. Deleting the . pyc file does no harm (as long as there is an equivalent . py file available)—a new one is
created when needed.

Asyou can see, the code in the module is executed when you import it. However, if you try
to import it again, nothing happens:

>>> import hello
>>>

Why doesn’t it work this time? Because modules aren’t really meant to do things (such as
printing text) when they’re imported. They are mostly meant to define things, such as variables,
functions, classes, and so on. And because you only need to define things once, importing a
module several times has the same effect as importing it once.

WHY ONLY ONCE?

The import-only-once behavior is a substantial optimization in most cases, and it can be very important in one
special case: if two modules import each other.

In many cases, you may write two modules that need to access functions and classes from each other to
function properly. For example, you may have created two modules—clientdb and billing—containing
code for a client database and a billing system, respectively. Your client database may contain calls to your
billing system (for example, automatically sending a bill to a client every month), while the billing system probably
needs to access functionality from your client database to do the billing correctly.

CHAPTER 10 BATTERIES INCLUDED

If each module could be imported several times, you would end up with a problem here. The module
clientdb would import billing, which again imports clientdb, which . .. you get the picture. You get an
endless loop of imports (endless recursion, remember?). However, because nothing happens the second time
you import the module, the loop is broken.

If you insist on reloading your module, you can use the built-in function reload. It takes a single argu-
ment (the module you want to reload) and returns the reloaded module. This may be useful if you have made
changes to your module and want those changes reflected in your program while it is running. To reload the
simple hello module (containing only a print statement), you would use the following:

>>> hello = reload(hello)
Hello, world!

Here | assume that hello has already been imported (once). By assigning the result of reload to hello,
| have replaced the previous version with the reloaded one. As you can see from the printed greeting, | am
really importing the module here.

Note that if you’ve created an object using a given module and you then reload that module, your object
will not be re-created. If you want your object to be based on the reloaded module, you will have to create it anew.

Modules Are Used to Define Things

So modules are executed the first time they are imported into your program. That seems sort of
useful—but not very. What makes them worthwhile is that they (just like classes) keep their
scope around afterward. That means that any class or function you define, and any variable
you assign a value to, become attributes of the module. This may seem complicated, but in
practice it is very simple. Let’s say you have written a module like the one in Listing 10-2 and
stored it in a file called hello2.py. Also assume that you've put it in a place where the Python
interpreter can find it, either using the sys.path trick from the previous section, or the more
conventional methods from the section “Making Your Modules Available,” which follows.

Listing 10-2. A Simple Module Containing a Function

hello2.py
def hello():
print "Hello, world!"

You can then import it like this:
>>> import hello2

The module is then executed, which means that the function hello is defined in the scope
of the module, which means that you can access the function like this:

>>> hello2.hello()
Hello, world!

Any name defined in the global scope of the module will be available in the same manner.

205

206

CHAPTER 10 BATTERIES INCLUDED

WHY BOTHER?

Why would you want to do this, you may wonder. Why not just define everything in your main program? The
primary reason is code reuse. If you put your code in a module, you can use it in more than one of your programs,
which means that if you write a good client database and put it in a module called clientdb, you can use it
both when billing, when sending out spam (though | hope you won’t), and in any program that needs access
to your client data. If you hadn’t put this in a separate module, you would have to rewrite the code in each one
of these programs. So, remember: To make your code reusable, make it modular! (And, yes, this is definitely
related to abstraction.)

if _name__=='_main__'

Modules are used to define things such as functions and classes, but every once in a while
(quite often, actually), it is useful to add some test code to a module that checks whether things
work as they should. For example, if you wanted to make sure that the hello function worked,
you might rewrite the module hello2 into a new one, hello3, defined in Listing 10-3.

Listing 10-3. A Simple Module with Some Problematic Test Code

hello3.py
def hello():
print "Hello, world!"

A test:
hello()

This seems reasonable—if you run this as a normal program, you will see that it works.
However, if you import it as a module, to use the hello function in another program, the test
code is executed, as in the first hello module in this chapter:

>>> import hello3
Hello, world!
>>> hello3.hello()
Hello, world!

This is not what you want. The key to avoiding it is “telling” the module whether it’s being
run as a program on its own, or being imported into another program. To do that, you need the
variable __name_ :

>>> __hame__
'_main__
>>> hello3. name
"hello3’

Asyou can see, in the “main program” (including the interactive prompt of the interpreter),
the variable __name__ has thevalue '__main__', while in an imported module, it is set to the
name of that module. Therefore, you can make your module’s test code more well behaved by
putting in an if statement, as shown in Listing 10-4.

CHAPTER 10 BATTERIES INCLUDED

Listing 10-4. A Module with Conditional Test Code
hello4.py

def hello():
print "Hello, world!"

def test():
hello()

if _name_ == "'_main_': test()

If you run this as a program, the hello function is executed, whereas if you import it, it
behaves like a normal module:

>>> import hello4
>>> hello4.hello()
Hello, world!

Asyou can see, I've wrapped up the test code in a function called test. I could have put the
code directly into the if statement; however, by putting it in a separate test function, you can
test the module even if you have imported it into another program:

>>> hello4.test()
Hello, world!

Note If you write more thorough test code, it might be a good idea to put it in a separate program. See
Chapter 16 for more on writing tests.

Making Your Modules Available

In the previous examples, I have altered sys.path, which contains a list of directories (as strings)
in which the interpreter should look for modules. However, you don’t want to do this in general.
The ideal case would be for sys.path to contain the right directory (the one containing your
module) to begin with. There are two ways of doing this:

Solution 1: Putting Your Module in the Right Place

Putting your module in the right place (or, rather a right place, because there may be several
possibilities) is quite easy. It’s just a matter of finding out where the Python interpreter looks
for modules and then putting your file there.

Note I the Python interpreter on the machine you’re working on has been installed by an administrator
and you do not have administrator permissions, you may not be able to save your module in any of the directories
used by Python. You will then have to skip ahead to solution number 2.

207

208

CHAPTER 10 BATTERIES INCLUDED

As you may remember, the list of directories (the so-called search path) can be found in
the path variable in the sys module:

>>> import sys, pprint

>>> pprint.pprint(sys.path)

['C:\\Python24\\Lib\\idlelib",
"C:\\WINDOWS\\system32\\python24.zip",
"C:\\Python24"',

:\\Python24\\DLLs",

:\\Python24\\1ib",

:\\Python24\\1ib\\plat-win',

:\\Python24\\1ib\\1ib-tk",

:\\Python24\\1ib\\site-packages"]

C
C
C
C
C
C

Tip If you have a data structure that is too big to fit on one line, you can use the pprint function from the
pprint module instead of the normal print statement. pprint is a pretty-printing function, which makes
a more intelligent printout.

This is a relatively standard path for a Python 2.4 installation on Windows. You may not get
the exact same result. The point is that each of these strings provides a place to put modules if
you want your interpreter to find them. Even though all these will work, the site-packages
directory is the best choice because it’s meant for this sort of thing. Look through your sys.path
and find your site-packages directory, and save the module from Listing 10-4 in it, but give it
another name, such as another_hello.py. Then try the following:

>>> import another_hello
>>> another_hello.hello()
Hello, world!

As long as your module is located in a place like site-packages, all your programs will be

able to import it.

Solution 2: Telling the Interpreter Where to Look

Solution 1 might not be the right for you for a number of reasons:
* You don’t want to clutter the Python interpreter’s directories with your own modules.
* You don’t have permission to save files in the Python interpreter’s directories.
* You would like to keep your modules somewhere else.

The bottom line is that if you place your modules somewhere else, you have to tell the
interpreter where to look. As you saw earlier, one way of doing this is to edit sys.path, but that
is not a common way to do it. The standard method is to include your module directory (or
directories) in the environment variable PYTHONPATH.

CHAPTER 10 BATTERIES INCLUDED

ENVIRONMENT VARIABLES

Environment variables are not part of the Python interpreter—they’re part of your operating system. Basically,
they are like Python variables, but they are set outside the Python interpreter. To find out how to set them you
should consult your system documentation, but here are a few pointers:

In UNIX, you will probably set environment variables in some shell file that is executed every time you log
in. If you use a shell such as bash, the file is . bashrc, found in your home directory. Add the following to that
file to add the directory ~/python to your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:~/python

Note that multiple directories are separated by colons. Other shells may have a different syntax for this
s0 you should consult the relevant documentation.

In Windows, you may be able to edit environment variables from your Control Panel (in reasonably
advanced versions of Windows, such as Windows XP, 2000, and NT; on older versions such as Windows 98,
this does not work, and you would have to edit your autoexec.bat file instead, as covered in the next para-
graph). From the Start menu, select Start » Settings » Control Panel. In the Control Panel, double-click the
System icon. In the dialog box that opens, select the Advanced tab and click the Environment Variables button. That
brings up another dialog box with two tables: one with your user variables and one with system variables. You
are interested in the user variables. If you see PYTHONPATH there already, select it and click Edit, and edit it.
Otherwise, click New and use PYTHONPATH as the name; enter your directory as the value. Note that multiple
directories are separated by semicolons.

If the previous tactic doesn’t work, you can edit the file autoexec.bat, which you can find (assuming
that you have a relatively standard setup) in the top directory of the C drive. Open the file in Notepad (or the
IDLE text editor, for that matter) and add a line setting the PYTHONPATH. If you want to add the directory
C:\python you type the following:

set PYTHONPATH=%PYTHONPATH%;C: \python

For information on setting up Python in Mac 0S, see the MacPython pages at http://cwi.nl/~jack/
macpython.

Depending on which operating system you are using, the contents of PYTHONPATH varies
(see the sidebar “Environment Variables”), but basically it’s just like sys . path—a list of directories.

Tip You don’t have to change the sys.path by using PYTHONPATH. Path configuration files provide a
useful shortcut to make Python do it for you. A path configuration file is a file with the file name extension
.pth that contains directories that should be added to sys . path; empty lines and lines beginning with # are
ignored. Files beginning with import are executed.

For a path configuration file to be executed, it must be placed in a directory where it can be found. For
Windows, use the directory named by sys.prefix (probably something like C: \Python22), and in UNIX,
use the site-packages directory. (For more information, look up the site module in the Python Library
Reference. This module is automatically imported during initialization of the Python interpreter.)

209

210

CHAPTER 10 BATTERIES INCLUDED

Naming Your Module

As you may have noticed, the file that contains the code of a module must be given the same
name as the module—with an additional . py file name extension. In Windows, you can use the
file name extension .pyw instead. You learn more about what that file name extension means
in Chapter 12.

Packages

To structure your modules, you can group them into packages. A package is basically just another
type of module. The interesting thing about them is that they can contain other modules. While
amodule is stored in a file (with the file name extension . py), a package is a directory. To make
Python treat it as a package, it must contain a file (module) named __init__.py. The contents
of this file will be the contents of the package, if you import it as if it were a plain module. For
example, if you have a package named constants, and the file constants/__init__.py contains
the statement PI = 3.14, you would be able to do the following:

import constants
print constants.PI

To put modules inside a package, simply put the module files inside the package directory.

For example, if you wanted a package called drawing, which contained one module called
shapes and one called colors, you would need the files and directories (UNIX pathnames)
shown in Table 10-1.

Table 10-1. A Simple Package Layout

File/Directory Description

~/python/ Directory in PYTHONPATH
~/python/drawing/ Package directory (drawing package)
~/python/drawing/__init_ .py Package code (“drawing module”)
~/python/drawing/colors.py colors module
~/python/drawing/shapes.py shapes module

In Table 10-1, it is assumed that you have placed the directory ~/python in your PYTHONPATH. In
Windows, simply replace ~/python with c: \python and reverse the direction of the slashes (to
backslashes).

With this setup, the following statements are all legal:

import drawing # (1) Imports the drawing package
import drawing.colors # (2) Imports the colors module
from drawing import shapes # (3) Imports the shapes module

CHAPTER 10 BATTERIES INCLUDED

After the first statement (1), the contents of the __init module in drawing would be
available; the drawing and colors modules, however, would not be. After the second statement
(2), the colors module would be available, but only under its full name, drawing.colors. After
the third statement (3), the shapes module would be available, under its short name (that is,
simply shapes). Note that these statements are just examples. There is no need, for example, to
import the package itself before importing one of its modules as I have done here. The second
statement could very well be executed on its own, as could the third. You may nest packages
inside each other.

Exploring Modules

Before I tackle some of the standard library modules, I'll show you how to explore modules on
your own. This is a valuable skill because you will encounter lots of useful modules in your
career as a Python programmer, and I couldn’t possibly cover all of them here. The current
standard library is large enough to warrant books all by itself (and such books have been
written)—and it’s growing. New modules are added with each release, and often some of the
modules undergo slight changes and improvements. Also, you will most certainly find several
useful modules on the Web, and being able to grok them quickly and easily will make your
programming much more enjoyable.!

What’s in a Module?

The most direct way of probing a module is to investigate it in the Python interpreter. The first
thing you need to do is to import it, of course. Let’s say you've heard rumors about a standard
module called copy:

>>> import copy

No exceptions are raised—so it exists. But what does it do? And what does it contain?

Using dir

To find out what a module contains, you can use the dir function, which lists all the attributes
of an object (and therefore all functions, classes, variables, and so on of a module). If you try to
printoutdir(copy), you get alonglist of names. (Go ahead, tryit.) Several of these names begin
with an underscore—a hint (by convention) that they aren’t meant to be used outside the module.
So let’s filter them out with alittle list comprehension (check the section on list comprehension
in Chapter 5 if you don’t remember how this works):

>>> [name for name in dir(copy) if name[0] != ' ']
['Error', 'PyStringMap', 'copy', 'deepcopy', 'error']

The list comprehension is the list consisting of all the names from dir(copy) that don’t
have an underscore as their first letter. This list is much less confusing than the full listing.

1. The term “grok” is hackerspeak, meaning “to understand fully,” taken from Robert A. Heinlein’s novel
Stranger in a Strange Land (Ace Books, reissue 1995).

211

212

CHAPTER 10 BATTERIES INCLUDED

Tip If you like tab completion, you might want to check out the modules readline and rlcompleter in
the library reference. They can be useful when exploring modules as discussed in this section

The __all__ Variable

What I did with the little list comprehension in the previous section was to make a guess about
what I was supposed to see in the copy module. However, you can get the correct answer directly
from the module itself. In the full dir(copy) list, you may have noticed the name __all . This
is a variable containing a list similar to the one I created with list comprehension—except that
this list has been set in the module itself. Let’s see what it contains:

>>> copy. all
['Error', 'error', 'copy', 'deepcopy']

My guess wasn’t so bad after all. I got only one extra name (PyStringMap) that wasn’t
intended for my use. But where did this __all _list come from, and why is it really there? The
first question is easy to answer. It was set in the copy module, like this (copied directly from

copy..py):
_all = ["Error", "error", "copy", "deepcopy"]

So why is it there? It defines the public interface of the module. More specifically, it tells the
interpreter what it means to import all the names from this module. So if you use

from copy import *

you get only the four functions listed in the __all _ variable. To import PyStringMap, for example,
you would have to be explicit, either importing copy and using copy.PyStringMap, or using

from copy import PyStringMap

Setting all _ like thisis actually a useful technique when writing modules too. Because
you may have lots of variables, functions, and classes in your module that other programs
might not need or want, it is only polite to filter them out. If you don’tset __all _, the names
exported in a starred import defaults to all global names in the module that don’t begin with an
underscore.

Getting Help with help

Until now, you've been using your ingenuity and knowledge of various Python functions and
special attributes to explore the copy module. The interactive interpreter is a very powerful tool
for this sort of exploration because your mastery of the language is the only limit to how deeply
you can probe a module. However, there is one standard function that gives you all the infor-
mation you would normally need. That function is called help; let’s try it on the copy function:

CHAPTER 10 BATTERIES INCLUDED

>>> help(copy.copy)
Help on function copy in module copy:

copy(x)
Shallow copy operation on arbitrary Python objects.

See the module's doc__ string for more info.

This is interesting: it tells you that copy takes a single argument x, and that it is a “shallow
copy operation.” But it also mentions the module’s __doc__ string. What'’s that? You may
remember that I mentioned docstrings in Chapter 6. A docstring is simply a string you write at
the beginning of a function to document it. That string is then stored in the function attribute
__doc__.Asyoumay understand from the preceding help text, modules may also have docstrings
(they are written at the beginning of the module), as may classes (they are written at the beginning
of the class).

Actually, the preceding help text was extracted from the copy function’s docstring:

>>> print copy.copy. doc__
Shallow copy operation on arbitrary Python objects.

See the module's doc__ string for more info.

The advantage of using help over just examining the docstring directly like this is that you
get more info, such as the function signature (that is, what arguments it takes). Try to call
help(copy) (on the module itself) and see what you get. It prints out a lot of information, including
a thorough discussion of the difference between copy and deepcopy (essentially that deepcopy (x)
makes copies of the values stored in x as attributes and so on, while copy(x) just copies x, binding
the attributes of the copy to the same values as those of x).

Documentation

Anatural source for information about a module is, of course, its documentation. I've postponed
the discussion of documentation because it’s often much quicker to just examine the module
a bit yourself first. For example, you may wonder, “What were the arguments to range again?”
Instead of searching through a Python book or the standard Python documentation for a
description of range, you can just check it directly:

>>> print range. doc__
range([start,] stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2,..., j-1]; start (!) defaults to O.
When step is given, it specifies the increment (or decrement).

For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

213

214

CHAPTER 10 BATTERIES INCLUDED

You now have a precise description of the range function, and because you probably had
the Python interpreter running already (wondering about functions like this usually happens
while you are programming), accessing this information took just a couple of seconds.

However, not every module and every function has a good docstring (although it should),
and sometimes you may need a more thorough description of how things work. Most modules
you download from the Web have some associated documentation. In my opinion, some of the
most useful documentation for learning to program in Python is the Python Library Reference,
which describes all of the modules in the standard library. If I want to look up some fact about
Python, nine times out of ten, I find it there. The library reference is available for online browsing
(athttp://python.org/doc/1ib) or for download, as are several other standard documents
(such as the Python Tutorial, or the Python Language Reference). All of the documentation is
available from the Python Web site, at http://python.org/doc.

Use the Source

The exploration techniques I've discussed so far will probably be enough for most cases. But
those of you who wish to truly understand the Python language may want to know things about
amodule that can’t be answered without actually reading the source code. Reading source
code is in fact one of the best ways to learn Python—besides coding yourself.

Doing the actual reading shouldn’t be much of a problem, but where is the source? Let’s
say you wanted to read the source code for the standard module copy. Where would you find it?
One solution would be to examine sys.path again, and actually look for it yourself, just like the
interpreter does. A faster way is to examine the module’s __file _ property:

>>> print copy. file
C:\Python24\1ib\copy.py

Note If the file name ends with . pyc, just use the corresponding file whose name ends with . py.

There it is! You can open the copy.py file in your code editor (for example, IDLE) and start
examining how it works.

Gaution When opening a standard library file in a text editor like this, you run the risk of accidentally
modifying it. Doing so might break it, so when you close the file, make sure that you don’t save any changes
you might have made.

Note that some modules don’t have any Python source you can read. They may be built
into the interpreter (such as the sys module) or they may be written in the C programming
language. (The C source code is also available, but that’s beyond the scope of this book. See
Chapter 17 for more information on extending Python using C.)

CHAPTER 10 BATTERIES INCLUDED

The Standard Library: A Few Favorites

Chances are that you're beginning to wonder what the title of this chapter means. The phrase
was originally coined by Frank Stajano and refers to Python’s copious standard library. When
you install Python, you get lots of useful modules (the batteries) for “free.” Because there are so
many ways of getting more information about these modules (as explained in the first part of
this chapter), I won’t include a full reference here (which would take up far too much space
anyway), but I'll describe a few of my favorite standard modules to whet your appetite for
exploration. You'll encounter more standard modules in the project chapters (Chapter 20 and
later). The module descriptions are not complete but highlight some of the interesting features
of each module.

Sys
This module gives you access to variables and functions that are closely linked to the Python
interpreter. Some of these are shown in Table 10-2.

Table 10-2. Some Important Functions and Variables in the sys Module

Function/Variable Description

argv The command-line arguments, including the script name

exit([arg]) Exits the current program, optionally with a given return value or
error message

modules A dictionary mapping module names to loaded modules

path A list of directory names where modules can be found

platform Contains a platform identifier such as sunos5 or win32

stdin Standard input stream—a file-like object

stdout Standard output stream—a file-like object

stderr Standard error stream—a file-like object

The variable sys.argv contains the arguments passed to the Python interpreter, including
the script name.

The function sys.exit exits the current program. (If called within a try/finally block, the
finally clause is executed.) You can supply an integer to indicate whether the program succeeded
or not—a UNIX convention. You'll probably be fine in most cases if you rely on the default
(which is zero, indicating success). Alternatively, you can supply a string, which is used as an
error message and can be very useful for a user trying to figure out why the program halted;
then, the program exits with that error message and a code indicating failure.

The mapping sys.modules maps module names to actual modules. It only applies to currently
imported modules.

The module variable sys.path was discussed earlier in this chapter. It’s a list of strings, in
which each string is the name of a directory where the interpreter will look for modules when
an import statement is executed.

215

216

CHAPTER 10 BATTERIES INCLUDED

The module variable sys.platform (a string) is simply the name of the “platform” the
interpreter is running on. This may be either a name indicating an operating system (such as
sunos5 or win32) or it may indicate some other kind of platform, such as a Java virtual machine
(for example, javai.4.0) if you're running Jython.

The module variables sys.stdin, sys.stdout, and sys.stderr are file-like stream objects.
They represent the standard UNIX concepts of standard input, standard output, and standard
error. To put it simply, sys.stdin is where Python gets its input (used in the functions input
and raw_input, for example), and sys.stdout is where it prints to. You learn more about files
(and these three streams) in Chapter 11.

Printing the arguments in reverse order. When you call a Python script from the command line, you may add
some arguments after it—the so-called command-line arguments. These will then be placed in the list sys.argv,
with the name of the Python script as sys.argv([0]. Printing these out in reverse order is pretty simple, as you can
see in Listing 10-5.

Listing 10-5. Reversing and Printing Command-Line Arguments

reverseargs.py
import sys

args = sys.argv[1:]
args.reverse()
print ' '.join(args)

As you can see, | make a copy of sys.argv. You can modify the original, but in general it's safer not to because
other parts of the program may also rely on sys . argv containing the original arguments. Notice also that | skip the
first element of sys.argv—the name of the script. | reverse the list with args . reverse(), but | can’t print the
result of that operation. It is an in-place modification that returns None. Finally, to make the output prettier, | use the
join string method. Let’s try the result (assuming a UNIX shell here, but it will work equally well at an MS-DOS
prompt, for example):

$ python reverseargs.py this is a test
test a is this

oS

The os module gives you access to several operating system services. The os module is extensive,
and only a few of the most useful functions and variables are described in Table 10-3. In addition to
these, os and its submodule os . path contain several functions to examine, construct, and remove
directories and files. For more information about this functionality, see the standard library
documentation.

CHAPTER 10 BATTERIES INCLUDED

Table 10-3. Some Important Functions and Variables in the os Module

Function/Variable Description

environ Mapping with environment variables

system(command) Executes an OS command in a subshell

sep Separator used in paths

pathsep Separator to separate paths

linesep Line separator ('\n', '\r', or ‘\r\n")

urandom(n) Returns n bytes of cryptographically strong random data

Tip A useful function for traversing directories is os.walk. Check it out in the Python Library Reference.

The mappingos.environ contains environment variables described earlier in this chapter.
For example, to access the environment variable PYTHONPATH, you would use the expression
os.environ['PYTHONPATH']. This mapping can also be used to change environment variables,
although not all platforms support this.

The function os. system is used to run external programs. There are other functions for
executing external programs, including execv, which exits the Python interpreter, yielding
control to the executed program, and popen, which creates a file-like connection to the program.
For more information about these functions, consult the standard library documentation.

Tip The subprocess module is a recent addition to Python, which collects the functionality of the
os.system, execv, and popen functions.

The module variable os. sep is a separator used in pathnames. The standard separator in
UNIXis '/', the standard in Windows is '\\" (the Python syntax for a single backslash), and in
Mac OS, itis ':"'. (On some platforms, os.altsep contains an alternate path separator, such as
'/" in Windows.)

You use os. pathsep when grouping several paths, as in PYTHONPATH. The pathsep is used to
separate the pathnames: ': ' in UNIX, '; ' in Windows, and ':: ' in Mac OS.

The module variable os.1linesep is the line separator string used in text files. In UNIX this
is a single newline character (' \n'), in Mac OS it’s a single carriage return character ('\r'), and
in Windows it’s the combination of a carriage return and a newline (' \r\n").

The urandom function uses a system-dependent source of “real” (or, at least, cryptographically
strong) randomness. If your platform doesn’t support it, you'll get a NotImplementedError.

217

218

CHAPTER 10 BATTERIES INCLUDED

Starting a Web browser. The system command can be used to execute any external program, which is very useful
in environments such as UNIX where you can execute programs (or commands) from the command line to list the
contents of a directory, send e-mail, and so on. But it can be useful for starting programs with graphical user inter-
faces, too—such as a Web browser. In UNIX, you can do the following (provided that you have a browser at /usr/
bin/firefox):

os.system('/usr/bin/firefox")
A Windows version would be (again use the path of a browser you have installed)
os.system(r'c:\"Program Files"\"Mozilla Firefox"\firefox.exe')

Note that I've been careful about enclosing Program Files andMozilla Firefox in quotes; otherwise DOS
(which handles the command) balks at the whitespace. (This may be important for directories in your PYTHONPATH
as well.) Note also that you have to use backslashes here because DOS gets confused by forward slashes. If you run
this, you will notice that the browser tries to open a Web site named Files"\Mozilla. . .—the part of the command
after the whitespace. Also, if you try to run this from IDLE, a DOS window appears, but the browser doesn’t start until
you close that DOS window. All in all, not exactly ideal behavior.

Another function that suits the job better is the Windows-specific function os.startfile:
os.startfile(r' c:\Program Files\Mozilla Firefox\firefox.exe')

As you can see, os.startfile accepts a plain path, even if it contains whitespace. (That is, don’t enclose
“Program Files” in quotes as in the os.system example.)

Note that in Windows, your Python program keeps on running after the external program has been started by
os.system (or os.startfile), whereas in UNIX, your Python program waits for the os . system command
to finish.

A BETTER SOLUTION: WEBBROWSER

The os. system function is useful for a lot of things, but for the specific task of launching a Web browser
there’s an even better solution: the webbrowser module. It contains a function called open that lets you auto-
matically launch a Web browser to open the given URL. For example, if you want your program to open the
Python Web site in a Web browser (either starting a new browser or using one that is already running), you
simply use

import webbrowser
webbrowser.open(" http://www.python.org")

and the page should pop up. Pretty nifty, huh?

CHAPTER 10 BATTERIES INCLUDED

fileinput

You learn a lot about reading from and writing to files in Chapter 11, but here is a sneak preview.
The fileinput module enables you to easily iterate over all the lines in a series of text files. If
you call your script like this (assuming a UNIX command line):

$ python some script.py filel.txt file2.txt file3.txt

you will be able to iterate over the lines of filel.txt through file3.txt in turn. You can also
iterate over lines supplied to standard input (sys.stdin, remember?), for example, in a UNIX
pipe (using the standard UNIX command cat):

$ cat file.txt | python some script.py

If you use fileinput, this way of calling your script (with cat in a UNIX pipe) works just as
well as the previous one (supplying the file names as command-line arguments to your script).
The most important functions of the fileinput module are described in Table 10-4.

Table 10-4. Some Important Functions in the fileinput Module

Function Description

input([files[, inplace[, backup]]) Facilitates iteration over lines in multiple input
streams

filename() Returns name of current file

lineno() Returns current (cumulative) line number

filelineno() Returns line number within current file

isfirstline() Checks whether current line is first in file

isstdin() Checks whether last line was from sys.stdin

nextfile() Closes current file and moves to the next

close() Closes the sequence

The function fileinput.input is the most important of the functions. It returns an object
that you can iterate over in a for loop. If you don’t want the default behavior (in which fileinput
finds out which files to iterate over), you can supply one or more file names to this function
(asasequence). You can also set the inplace parameter to a true value (inplace=True) to enable
in-place processing. For each line you access, you'll have to print out a replacement, which will
be put back into the current input file. The optional backup argument gives a file name extension to
a backup file created from the original file when you do in-place processing.

The function fileinput.filename returns the file name of the file you are currently in (that
is, the file that contains the line you are currently processing).

The function fileinput.lineno returns the number of the current line. This count is
cumulative so that when you are finished with one file and begin processing the next, the line
number is not reset but starts at one more than the last line number in the previous file.

219

220

CHAPTER 10 BATTERIES INCLUDED

The function fileinput.filelineno returns the number of the current line within the current
file. Each time you are finished with one file and begin processing the next, the file line number
is reset, and restarts at 1.

The function fileinput.isfirstline returns a true value if the current line is the first line
of the current file—and a false value otherwise.

The function fileinput.isstdin returns a true value if the current file is sys.stdin and
false otherwise.

The function fileinput.nextfile closes the current file and skips to the next one. The
lines you skip do not count against the line count. This can be useful if you know that you are
finished with the current file—for example, if each file contains words in sorted order, and you
are looking for a specific word. If you have passed the word’s position in the sorted order, you
can safely skip to the next file.

The function fileinput.close closes the entire chain of files and finishes the iteration.

Numbering the lines of a Python script. Let’s say you have written a Python script and you want to number the
lines. Because you want the program to keep working after you’ve done this, you have to add the line numbers in
comments to the right of each line. To line them up, you can use string formatting. Let’s allow each program line to
get 40 characters maximum and add the comment after that. The program in Listing 10-6 shows a simple way of
doing this with fileinput and the inplace parameter.

Listing 10-6. Adding Line Numbers to a Python Script

numberlines.py
import fileinput

for line in fileinput.input(inplace=True):
line = line.rstrip()
num = fileinput.lineno()
print '%-40s # %2i' % (line, num)

If you run this program on itself, like this:
$ python numberlines.py numberlines.py

you end up with the program in Listing 10-7. Note that the program itself has been modified, and that if you run it
like this several times, you end up with multiple numbers on each line. Recall that rstrip is a string method that
returns a copy of a string, where all the whitespace on the right has been removed (see the section “String
Methods” in Chapter 3 and Table B-6 in Appendix B).

CHAPTER 10 BATTERIES INCLUDED

Listing 10-7. The Line Numbering Program with Line Numbers Added

numberlines.py #1
#2

import fileinput #3
4

for line in fileinput.input(inplace=1): # 5
line = line.rstrip() #6

num = fileinput.lineno() #t7
print '%-40s # %2i' % (line, num) # 8

Caution Be careful about using the inplace parameter—it’s an easy way to ruin a file. You should test
your program carefully without setting inplace (this will simply print out the result), making sure the program
works before you let it modify your files.

For another example using fileinput, see the section about the random module, later in this chapter.

Sets, Heaps, and Deques

There are many useful data structures around, and Python supports some of the more common
ones. Some of these, such as dictionaries (or hash tables) and lists (or dynamic arrays), are integral
to the language. Others, although somewhat more peripheral, can still come in handy sometimes.

Sets

Sets were introduced in Python 2.3, through the Set class in the sets module. Although you
may come upon Set instances in existing code, there is really very little reason to use them
yourself unless you want to be backward compatible; in Python 2.3 sets were made part of the
language, through the set type. So, there’s no longer any need to import the sets module—you
can just create sets directly:

>>> set(range(10))
set([o, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Sets are constructed from a sequence (or some other iterable object). Their main use lies
in checking membership, and thus duplicates are ignored:

>>> set([o, 1, 2, 3, 0, 1, 2, 3, 4, 5])
set([o, 1, 2, 3, 4, 5])

221

222

CHAPTER 10 BATTERIES INCLUDED

Just as with dictionaries, the ordering of set elements is quite arbitrary, and shouldn’t be
relied on:

>>> set(['fee', 'fie', 'foe'])
set(['foe', 'fee', 'fie'])

In addition to checking for membership, you can perform various standard set operations
(which you may know from mathematics) such as union and intersection, either by using methods
or by using the same operations as you would for bit operations on integers (see Appendix B).
For example, you can find the union of two sets using either the union method of one of them
or the bitwise OR operator, |:

>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])
>>> a.union(b)

set([1, 2, 3, 4])
>>>a | b
set([1, 2, 3, 4])

Here are some other methods and their corresponding operators; the names should make
it clear what they mean:

>»>c=a&b

>>> c.issubset(a)
True

>> C<=a

True

>>> c.issuperset(a)
False

>> C>=a

False

>>> a.intersection(b)
set([2, 3])

>»>a &b

set([2, 3])

>>> a.difference(b)
set([1])

>»>a-b

set([1])

>>> a.symmetric_difference(b)
set([1, 4])
>»>a"b

set([1, 4])

>>> a.copy()
set([1, 2, 3])

>>> a.copy() is a
False

CHAPTER 10 BATTERIES INCLUDED

There are various in-place operations as well, with corresponding methods, as well as the
basic methods add and remove. For more information, see the Python Library Reference, in the
section about set types (http://python.org/doc/1ib/types-set.html).

Tip If you need a function for finding, say, the union of two sets, you can simply use the unbound version
of the union method, from the set type. This could be useful, for example, in concert with reduce:

>>> mySets = []
>>> for i in range(10):
mySets.append(set(range(i,i+5)))

>>> reduce(set.union, mySets)
set([o) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13])

Sets are mutable, and may therefore not be used, for example, as keys in dictionaries.
Another problem is that sets themselves may only contain immutable (hashable) values, and
thus may not contain other sets. Because sets of sets often occur in practice, this is something
ofaproblem... Luckily, there is the frozenset type, which represents immutable (and, therefore,
hashable) sets:

>>> a = set()

>>> b = set()

>>> a.add(b)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: set objects are unhashable

>>> a.add(frozenset(b))

The frozenset constructor creates a copy of the given set, and is useful whenever you want
to use a set either as a member of another set or as the key to a dictionary.

Heaps

Another well-known data structure is the heap, a kind of priority queue. A priority queue lets
you add objects in an arbitrary order and at any time (possibly in-between the adding) find
(and possibly remove) the smallest element. It does so much more efficiently than, say, using
min on a list.

In fact, there is no separate heap type in Python—only a module with some heap-
manipulating functions. The module is called heapq (with the q standing for queue), and it
contains six functions, the first four of which are directly related to heap manipulation. You
must use a list as the heap object itself.

The heappush function is used to add an item to a heap. Note that you shouldn’t use it on
any old list—only one that has been built through the use of the various heap functions. The
reason for this is that the order of the elements is important (even though it may look a bit
haphazard; the elements aren’t exactly sorted).

223

224 CHAPTER 10 BATTERIES INCLUDED

>>> from heapq import *

>>> from random import shuffle
>>> data = range(10)

>>> shuffle(data)

>>> heap = []

>>> for n in data:

cee heappush(heap, n)

>>> heap
[0, 1, 3, 6, 2, 8, 4,7, 9, 5]

>>> heappush(heap, 0.5)

>>> heap

[o, 0.5, 3, 6, 1, 8, 4, 7, 9, 5, 2]

Note The order of the elements isn’t as arbitrary as it seems. They aren’t in strictly sorted order, but there
is one guarantee made: the element at position i is always greater than the one in position i // 2 (or,
conversely, it's smaller than the elements at positions 2*i and 2*i + 1). This is the basis for the underlying
heap algorithm. This is called the heap property.

The heappop function pops off the smallest element, which is always found at index 0, and
makes sure that the smallest of the remaining element takes over this position (while preserving
the heap property mentioned in the previous note). Even though popping the first element of a
list isn’t efficient in general, it’s not a problem here, because heappop does some nifty shuffling
behind the scenes:

>>> heappop(heap)

0

>>> heappop (heap)

0.5

>>> heappop (heap)

1

>>> heap

[2, 5,3, 6,9, 8, 4, 7]

The heapify function takes an arbitrary list and makes it alegal heap (that is, itimposes the
heap property mentioned in the previous note) through the least possible amount of shuffling.
If you don’t build your heap from scratch with heappush, this is the function to use before starting
to use heappush and heappop:

>>> heap = [5, 8, 0, 3, 6, 7, 9, 1, 4, 2]
>>> heapify(heap)

>>> heap

[o, 1, 5,3, 2, 7, 9, 8, 4, 6]

CHAPTER 10 BATTERIES INCLUDED

The heapreplace function is not quite as commonly used as the others. It pops the smallest
element off the heap and then pushes a new element onto it. This is more efficient than a
heappop followed by a heappush:

>>> heapreplace(heap, 0.5)

0

>>> heap

(0.5, 1, 5, 3, 2, 7, 9, 8, 4, 6]
>>> heapreplace(heap, 10)

0.5

>>> heap

(1, 2, 5,3, 6, 7, 9, 8, 4, 10]

The remaining two functions of the heapq module, nlargest(n, iter) and
nsmallest(n, iter), are used to find the nlargest or smallest elements, respectively, of any
iterable object iter. You could do this by using sorting (for example, using the sorted function)
and slicing, but the heap algorithm is faster and more memory-efficient (and, not to mention,
easier to use).

Deques (and Other Collections)

Double-ended queues, or deques, can be useful when you need to remove elements in the
order in which they were added. In Python 2.4, the collections module was added, which
contains the deque type.

Note As of Python 2.4, the collections module only contains the deque type. Possible future additions
are B-trees and Fibonacci heaps.

A deque is created from an iterable object (just like sets) and has several useful methods:

>>> from collections import deque
>>> q = deque(range(5))

>>> q.append(5)

>>> q.appendleft(6)

>>> g

deque([6, 0, 1, 2, 3, 4, 5])
>>> q.pop()

5

>>> q.popleft()

6

>>> g.rotate(3)

>>> g

deque([2, 3, 4, 0, 1])

>>> q.rotate(-1)

>>> g

deque([3, 4, 0, 1, 2])

225

226

CHAPTER 10 BATTERIES INCLUDED

The reason for the usefulness of the deque is that it allows appending and popping efficiently
at the beginning (to the left), as opposed to lists. As a nice side effect, you can also rotate the
elements (that is, shift them to the right or left, wrapping around the ends) efficiently. Deque
objects also have extend and extendleft methods, with extend working like the corresponding
list method, and extendleft working analogously to appendleft. Note that the elements in the
iterable used in extendleft will appear in the deque in reverse order.

time

The time module contains functions for, among other things, getting the current time, manip-
ulating times and dates, and reading dates from strings and formatting dates as strings. Dates
can be represented as either a real number (the seconds since 0 hours, January 1 in the “epoch,”
a platform-dependent year; for UNIX, it's 1970), or a tuple containing nine integers. These integers
are explained in Table 10-5. For example, the tuple

(2002, 1, 21, 12, 2, 56, 0, 21, 0)

represents January 21, 2002, at 12:02:56, which is a Monday, and the 21st day of the year.
(No daylight savings.)

Table 10-5. The Fields of Python Date Tuples

Index Field Value

0 Year For example, 2000, 2001, and so on
1 Month In the range 1-12

2 Day In the range 1-31

3 Hour In the range 0-23

4 Minute In the range 0-59

5 Second In the range 0-61

6 Weekday In the range 0-6, where Monday is 0
7 Julian day In the range 1-366

8 Daylight Savings 0,1,or-1

Some of these values need some explaining: The range for seconds is 0-61 to account for
leap seconds and double leap seconds. The Daylight Savings number is a Boolean value (true
or false), but if you use -1, mktime (a function that converts such a tuple to a timestamp measured
in seconds since the epoch) will probably get it right. Some of the most important functions in
the time module are described in Table 10-6.

CHAPTER 10 BATTERIES INCLUDED

Table 10-6. Some Important Functions in the time Module

Function Description

asctime([tuple]) Converts time tuple to a string
localtime([secs]) Converts seconds to a date tuple, local time
mktime(tuple) Converts time tuple to local time
sleep(secs) Sleeps (does nothing) for secs seconds
strptime(string[, format]) Parses a string into a time tuple

time() Current time (seconds since the epoch, UTC)

The function time.asctime formats the current time as a string, such as

>>> time.asctime()
"Fri Dec 21 05:41:27 2001'

You can also supply a date tuple (such as those created by localtime) if you don’t want the
current time. (For more elaborate formatting, see the strftime function, described in the standard
documentation.)

The function time.localtime converts a real number (seconds since epoch) to a date tuple,
local time. If you want universal time, use gmtime instead.

The function time.mktime converts a date tuple to the time since epoch in seconds; it is the
inverse of localtime.

The function time.sleep makes the interpreter wait for a given number of seconds.

The function time.strptime converts a string of the format returned by asctime to a date
tuple. (The optional format argument follows the same rules as those for strftime. See the
standard documentation.)

The function time.time returns the current (universal) time as seconds since the epoch.
Even though the epoch may vary from platform to platform, you can reliably time something
by storing the result of time before and after the event (such as a function call) and then computing
the difference. For an example of these functions, see the next section, which covers the random
module.

OTHER TIME FUNCTIONS

The functions shown in Table 10-6 are just a selection of those available from the time module. Most of the
functions in that module perform tasks similar to or related to those described in this section. If you need
something not covered by the functions described here, you should take a look at the section about the time
module in the standard library reference (http://python.org/doc/1ib/module-time.html); chances
are you may find exactly what you are looking for.

There are also some more recent time-related modules available: datetime and timeit. You can find
more information about both in the library reference, and timeit is also discussed briefly in Chapter 16.

227

228

CHAPTER 10 BATTERIES INCLUDED

random

The random module contains functions that return random numbers, which can be useful for
simulations or any program that generates random output.

Note Actually, the numbers generated are pseudo-random. That means that while they appear completely
random, there is a predictable system that underlies them. However, because the module is so good at
pretending to be random, you probably won’t ever have to worry about this (unless you want to use these
numbers for strong-cryptography purposes, in which case they may not be “strong” enough to withstand
determined attack—but if you’re into strong cryptography, you surely don’t need me to explain such elementary
issues). If you need realrandomness, you should check out the urandom function of the os module. The class
SystemRandom in the random module is based on the same kind of functionality, and gives you data that is
close to real randomness.

Some important functions in this module are shown in Table 10-7.

Table 10-7. Some Important Functions in the random Module

Function Description

random() Returns a random real number n such that0<n<1

getrandbits(n) Returns n random bits, in the form of a long integer

uniform(a, b) Returns a random real number 7 such thata<n<b

randrange([start], stop, [step]) Returns a random number from range(start, stop,
step)

choice(seq) Returns a random element from the sequence seq

shuffle(seq[, random]) Shuffles the sequence seq in place

sample(seq, n) Chooses n random, unique elements from the

sequence seq

The function random.random is one of the most basic random functions; it simply returns
a pseudo-random number 7 such that 0 < n < 1. Unless this is exactly what you need, you
should probably use one of the other functions, which offer extra functionality. The function
random.getrandbits returns a given number of bits (binary digits), in the form of a long integer.
This is probably mostly useful if you're really into random stuff (for example, working with
cryptography).

The function random.uniform, when supplied with two numerical parameters a and b,
returns a random (uniformly distributed) real number n such that a < n < b. So, for example,
if you want a random angle, you could use uniform(0,360).

The function random. randrange is the standard function for generating a random integer
in the range you would get by calling range with the same arguments. For example, to get a

CHAPTER 10 BATTERIES INCLUDED 229

random number in the range from 1 to 10 (inclusive), you would use randrange(1,11) (or, alter-
natively, randrange(10)+1), and if you want a random odd positive integer lower than 20, you
would use randrange(1,20,2).

The function random. choice chooses (uniformly) a random element from a given sequence.

The function random. shuffle shuffles the elements of a (mutable) sequence randomly,
such that every possible ordering is equally likely.

The function random. sample chooses (uniformly) a given number of elements from a given
sequence, making sure that they're all different.

Note For the statistically inclined, there are other functions similar to uniform that return random numbers
sampled according to various other distributions, such as betavariate, exponential, Gaussian, and several others.

Generating a random date in a given range. In the following examples, | use several of the functions from the
time module described previously. First, let’s get the real numbers representing the limits of the time interval (the
year 2005). You do that by expressing the date as a time tuple (using -1 for day of the week, day of the year, and
daylight savings, making Python calculate that for itself) and calling mktime on these tuples:

from random import *

from time import *

date1 = (2005, 1, 1, 0, 0, O, -1, -1, -1)
time1l = mktime(date1)

date2 = (2006, 1, 1, 0, 0, 0, -1, -1, -1)
time2 = mktime(date2)

Then you generate a random number uniformly in this range (the upper limit excluded):
>>> random_time = uniform(time1, time2)
Then, you simply convert this number back to a legible date:

>>> print asctime(localtime(random time))
Mon Jun 24 21:35:19 2005

Creating an electronic die-throwing machine. For this example, let’s ask the user how many dice to throw, and
how many sides each one should have. The die-throwing mechanism is implemented with randrange and a for
loop:

from random import randrange

num = input('How many dice? ')
sides = input('How many sides per die? ')
sum = 0

for i in range(num): sum += randrange(sides) + 1
print 'The result is', sum

230

CHAPTER 10 BATTERIES INCLUDED

If you put this in a script file and run it, you get an interaction something like the following:

How many dice? 3
How many sides per die? 6
The result is 10

Creating a fortune cookie program. Assume that you have made a text file in which each line of text contains a
fortune. Then you can use the fileinput module described earlier to put the fortunes in a list, and then select one
randomly:

fortune.py

import fileinput, random

fortunes = list(fileinput.input())
print random.choice(fortunes)

In UNIX, you could test this on the standard dictionary file /usr/dict/words to get a random word:

$ python fortune.py /usr/dict/words
dodge

Creating an electronic deck of cards. You want your program to deal you cards, one at a time, each time you
press Enter on your keyboard. Also, you want to make sure that you don’t get the same card more than once. First,
you make a “deck of cards”—a list of strings:

>>> values = range(1, 11) + 'Jack Queen King'.split()
>>> suits = 'diamonds clubs hearts spades'.split()
>>> deck = ['%s of %s' % (v, s) for v in values for s in suits]

The deck you just created isn’t very suitable for a game of cards. Let’s just peek at some of the cards:

>>> from pprint import pprint
>>> pprint(deck[:12])
['1 of diamonds',

'1 of clubs',
'1 of hearts’',
'1 of spades’,
'2 of diamonds',
'2 of clubs',
'2 of hearts’',
'2 of spades’,
'3 of diamonds',
'3 of clubs',
'3 of hearts’,
'3 of spades']

A bit too ordered, isn’t it? That's easy to fix:

CHAPTER 10 BATTERIES INCLUDED 231

>>> from random import shuffle
>>> shuffle(deck)
>>> pprint(deck[:12])
['3 of spades’,

'2 of diamonds',
5 of diamonds',
6 of spades’,
'8 of diamonds',
1 of clubs',

5 of hearts',
"Queen of diamonds',
"Queen of hearts',
'King of hearts',
'Jack of diamonds',
"Queen of clubs']

Note that I've just printed the 12 first cards here, to save some space. Feel free to take a look at the whole deck
yourself.

Finally, to get Python to deal you a card each time you press Enter on your keyboard, until there are no more cards,
you simply create a little while loop. Assuming that you put the code needed to create the deck into a program file,
you could simply add the following at the end:

while deck: raw_input(deck.pop())

Note If you try the while loop shown here in the interactive interpreter, you’ll notice that an empty string
gets printed out every time you press Enter because raw_input returns what you write (which is nothing),
and that will get printed. In a normal program, this return value from raw_input is simply ignored. To have
it “ignored” interactively, too, just assign the result of raw_input to some variable you won’t look at again
and name it something like ignore.

shelve

In the next chapter, you learn how to store data in files, but if you want a really simple storage
solution, the shelve module can do most of the work for you. All you have to do is supply it with
a file name. The only function of interest in shelve is open. When called (with a file name) it
returns a Shelf object, which you can use to store things. Just treat it as a normal dictionary
(except that the keys must be strings), and when you’re done (and want things saved to disk)
you call its close method.

A Potential Trap

Itisimportant to realize that the object returned by shelve.openis not an ordinary mapping, as
the following example demonstrates:

232 CHAPTER 10 BATTERIES INCLUDED

>>> import shelve

>>> s = shelve.open('test.dat")
>>> s['x"] = ['a", 'b", 'c']
>>> s['x"'].append('d")

>>> s['x"]

['a’, "6, 'c']

Where did the 'd" go?

The explanation is simple: When you look up an element in a shelf object, the object is
reconstructed from its stored version; and when you assign an element to a key, it is stored.
What happened in the preceding example was the following:

1. Thelist['a', 'b', 'c']wasstored in s under the key 'x".

2. The stored representation was retrieved, a new list was constructed from it, and 'd"' was
appended to the copy. This modified version was not stored!

3. Finally, the original is retrieved again—without the 'd".

To correctly modify an object that is stored using the shelve module, you must bind a
temporary variable to the retrieved copy, and then store the copy again after it has been modified:

>>> temp = s['x"']
>>> temp.append('d")
>>> s['x'] = temp
>>> s['x']

['a’, "6, 'c', d']

Thanks to Luther Blissett for pointing this out.

From Python 2.4 onward, there is another way around this problem: Setting the writeback
parameter of the open function to true. If you do, all of the data structures that you read from or
assign to the shelf will be kept around in memory (cached) and only written back to disk when
you close the shelf. If you're not working with huge data, and you don’t want to worry about

these things, settingwriteback to true (and making sure you close your shelf at the end) may be
a good idea.

Listing 10-8 shows a simple database application that uses the shelve module.

Listing 10-8. A Simple Database Application

database.py
import sys, shelve

def store person(db):

Query user for data and store it in the shelf object

nun

CHAPTER 10 BATTERIES INCLUDED 233

pid = raw_input('Enter unique ID number: ')

person = {}

person['name'] = raw_input('Enter name: ')
person['age'] = raw input('Enter age: ')

person['phone'] = raw_input('Enter phone number: ')

db[pid] = person

def lookup person(db):
Query user for ID and desired field, and fetch the corresponding data from
the shelf object
pid = raw_input('Enter ID number: ')
field = raw_input('What would you like to know? (name, age, phone) ')
field = field.strip().lower()
print field.capitalize() + ":', \
db[pid][field]

def print_help():
print 'The available commands are:'
print 'store : Stores information about a person’
print 'lookup : Looks up a person from ID number'
print 'quit : Save changes and exit'
print '? : Prints this message'

def enter_command():
cmd = raw_input('Enter command (? for help): ')
cmd = cmd.strip().lower()
return cmd

def main():
database = shelve.open('C:\\database.dat")
try:
while True:
cmd = enter_command()
if cmd == 'store':
store_person(database)
elif cmd == 'lookup':
lookup_person(database)
elif ecmd == '?":
print_help()
elif cmd == 'quit':
return
finally:
database.close()

if _name_ == "'_main_': main()

234

CHAPTER 10 BATTERIES INCLUDED

Gaution As you can see, the program specifies the file name C: \database.dat. If you, by any chance,
have a database by that name that the shelve module can use, it will—and that database will be modified.
So make sure that you use a file name for your database that isn’t in use already. After running this program,
the proper file appears.

The program shown in Listing 10-8 has several interesting features:

¢ | have wrapped everything in functions to make the program more structured. (A possible improvement
is to group those functions as the methods of a class.)

e | have put the main program in the main function, whichis called onlyif __name__ == ' main__
That means you can import this as a module and then call the main function from another program.

e | open a database (shelfj in the main function, and then pass it as a parameter to the other functions
that need it. | could have used a global variable, too, because this program is so small, but it’s better to
avoid global variables in most cases, unless you have a reason to use them.

e After reading in some values, | make a modified version by calling strip and lower on them because
if a supplied key is to match one stored in the database, the two must be exactly alike. If you always use
strip and lower on what the user enters, you can allow him or her to be sloppy about using uppercase
or lowercase letters and additional whitespace. Also, note that I've used capitalize when printing the
field name.

e | have used try and finally to ensure that the database is closed properly. You never know when
something might go wrong (and you get an exception), and if the program terminates without closing
the database properly, you may end up with a corrupt database file that is essentially useless. By using
try and finally, you avoid that.

So, let’s take this database out for a spin. Here is the interaction between the program and me:

Enter command (? for help): ?

The available commands are:

store : Stores information about a person
lookup : Looks up a person from ID number
quit : Save changes and exit

? : Prints this message

Enter command (? for help): store

Enter unique ID number: 001

Enter name: Mr. Gumby

Enter age: 42

Enter phone number: 555-1234

Enter command (? for help): lookup

Enter ID number: 001

What would you like to know? (name, age, phone) phone
Phone: 555-1234

Enter command (? for help): quit

CHAPTER 10 BATTERIES INCLUDED

This interaction isn’t terribly interesting. | could have done exactly the same thing with an ordinary dictionary instead
of the shelf object. But now that I've quit the program, let’s see what happens when | restart it—perhaps the
following day?

Enter command (? for help): lookup

Enter ID number: 001

What would you like to know? (name, age, phone) name
Name: Mr. Gumby

Enter command (? for help): quit

As you can see, the program reads in the file | created the first time, and Mr. Gumby is still there!

Feel free to experiment with this program, and see if you can extend its functionality and improve its user-friendliness.
Perhaps you can think of a version that you have use for yourself? How about a database of your record collection?
Or a database to help you keep track of which friends have borrowed which of your books? (I know | could use that
last one.)

re

Some people, when confronted with a problem, think “I know, I'll use regular
expressions.” Now they have two problems.

—Jamie Zawinski

The re module contains support for regular expressions. If you've heard about regular expres-
sions before, you probably know how powerful they are; if you haven’t, prepare to be amazed.

You should note, however, that mastering regular expressions may be a bit tricky at first.
(Okay, very tricky, actually.) The key is to learn about them a little bit at a time—just look up (in
the documentation) the parts you need for a specific task. There is no point in memorizing it all
up front. This section describes the main features of the re module and regular expressions,
and enables you to get started.

Tip In addition to the standard documentation, Andrew Kuchling’s “Regular Expression HOWTOQ”
(http://amk.ca/python/howto/regex/) is a useful source of information on regular expressions
in Python.

What Is a Regular Expression?

A regular expression (also called a regex or regexp) is a pattern that can match a piece of text.
The simplest form of regular expression is just a plain string, which matches itself. In other
words, the regular expression 'python' matches the string 'python'. You can use this matching
behavior for such things as searching for patterns in a text, for replacing certain patterns with
some computed values, or for splitting a text into pieces.

235

236

CHAPTER 10 BATTERIES INCLUDED

The Wildcard

A regexp can match more than one string, and you create such a pattern by using some special
characters. For example, the period character (dot) matches any character (except a newline),
so the regular expression '.ython' would match both the string 'python' and the string
'jython'.It would also match strings such as 'qython', '+ython', or ' ython' (in which the first
letter is a single space), but not strings such as 'cpython' or 'ython' because the period matches
asingle letter, and neither two nor zero.

Because it matches “anything” (any single character except a newline), the period is called
a wildcard.

Escaping Special Characters

When you use special characters such as this, it’s important to know that you may run into
problems if you try to use them as normal characters. For example, imagine you want to match
the string 'python.org'. Do you simply use the pattern 'python.org'? You could, but that would
also match 'pythonzorg’, for example, which you probably wouldn’t want. (The dot matches
any character except newline, remember?) To make a special character behave like a normal
one, you escape it, just as I demonstrated how to escape quotes in strings in Chapter 1. You
place a backslash in front of it. Thus, in this example, you would use 'python\\.org"', which
would match 'python.org', and nothing else.

Note To get a single backslash, which is required here by the re module, you need to write two back-
slashes in the string—to escape it from the interpreter. Thus you have two levels of escaping here: (1) from
the interpreter, and (2) from the re module. (Actually, in some cases you can get away with using a single
backslash and have the interpreter escape it for you automatically, but don’t rely on it.) If you are tired of
doubling up backslashes, use a raw string, such as r ' python\.org".

Character Sets

Matching any character can be useful, but sometimes you want more control. You can create a
so-called character set by enclosing a substring in brackets. Such a character set will match any
of the characters it contains, so ' [pj]ython’ would match both 'python' and ' jython’, but nothing
else. You can also use ranges, such as '[a-z] ' to match any character from a to z (alphabeti-
cally), and you can combine such ranges by putting one after another, such as '[a-zA-Z0-9]"
to match uppercase and lowercase letters and digits. (Note that the character set will match
only one such character, though.)

To invert the character set, put the character * first, asin '[*abc] ' to match any character
excepta, b, or c.

CHAPTER 10 BATTERIES INCLUDED

SPECIAL CHARACTERS IN CHARACTER SETS

In general, special characters such as dots, asterisks, and question marks have to be escaped with a backslash
if you want them to appear as literal characters in the pattern, rather than function as regexp operators. Inside
character sets, escaping these characters is generally not necessary (although perfectly legal). You should,
however, keep in mind the following rules:

You do have to escape the caret (*) if it appears at the beginning of the character set unless you want it
to function as a negation operator. (In other words, don’t place it at the beginning unless you mean it.)

Similarly, the right bracket (]) and the dash (-) must be put either at the beginning of the character set
or escaped with a backslash. (Actually, the dash may also be put at the end, if you wish.)

Alternatives and Subpatterns

Character sets are nice when you let each letter vary independently, but what if you want to
match only the strings 'python' and 'perl'? You can’t specify such a specific pattern with
character sets or wildcards. Instead, you use the special character for alternatives: the “pipe”
character (|). So, your pattern would be 'python|perl'.

However, sometimes you don’t want to use the choice operator on the entire pattern—just
apart of it. To do that, you enclose the part, or subpattern, in parentheses. The previous example
could be rewritten as 'p(ython|erl)'. (Note that the term subpattern can also be used about a
single character.)

Optional and Repeated Subpatterns

By adding a question mark after a subpattern, you make it optional. It may appear in the matched
string, but it isn’t strictly required. So, for example, the (slightly unreadable) pattern

r' (http://)? (www\.)?python\.org'
would match all of the following strings (and nothing else):

"http://www.python.org'
"http://python.org’
"www.python.org'
"python.org’

A few things are worth noting here:

* I've escaped the dots, to prevent them from functioning as wildcards.
* I've used a raw string to reduce the number of backslashes needed.

¢ Each optional subpattern is enclosed in parentheses.

* The optional subpatterns may appear or not, independently of each other.

237

238

CHAPTER 10 BATTERIES INCLUDED

The question mark means that the subpattern can appear once or not at all. There are a
few other operators that allow you to repeat a subpattern more than once:

(pattern)* pattern is repeated zero or more times
(pattern)+ pattern is repeated one or more times
(pattern){m,n} pattern is repeated from m to n times

So, for example, r'w*\.python\.org"' matches 'www.python.org', butalso '.python.org",
"ww.python.org', and 'wwwwwww.python.org'. Similarly, r'w+\.python\.org"' matches
'w.python.org' but not '.python.org’, and r'w{3,4}\.python\.org" matches only
"www.python.org' and 'wwww.python.org'.

Note The term matchis used loosely here to mean that the pattern matches the entire string. The match
function, described in the text that follows, requires only that the pattern matches the beginning of the string.

The Beginning and End of a String

Until now, you've only been looking at a pattern matching an entire string, but you can also
try to find a substring that matches the patterns, such as the substring 'www' of the string
"www.python.org' matching the pattern 'w+'. When you're searching for substrings like this,
it can sometimes be useful to anchor this substring either at the beginning or the end of the
full string. For example, you might want to match "ht+p"' at the beginning of a string, but
not anywhere else. Then you use a caret (‘') to mark the beginning: ' *ht+p' would match
"http://python.org’ (and 'htttttp://python.org’, for that matter) but not 'www.http.org'.
Similarly, the end of a string may be indicated by the dollar sign ('$").

Note For a complete listing of regexp operators, see the standard library reference, in the section “Regular
Expression Syntax” (http://python.org/doc/1lib/re-syntax.html).

Contents of the re Module

Knowing how to write regular expressions isn’t much good if you can’t use them for anything.
The re module contains several useful functions for working with regular expressions. Some of
the most important ones are described in Table 10-8.

CHAPTER 10 BATTERIES INCLUDED

Table 10-8. Some Important Functions in the re Module

Function Description

compile(pattern[, flags]) Creates a pattern object from a string with
aregexp

search(pattern, string[, flags]) Searches for pattern in string

match(pattern, string[, flags]) Matches pattern at the beginning of string

split(pattern, string[, maxsplit=0]) Splits a string by occurrences of pattern

findall(pattern, string) Returns a list of all occurrences of pattern
instring

sub(pat, repl, string[, count=0]) Substitutes occurrences of pat in string with repl

escape(string) Escapes all special regexp characters in string

The function re. compile transforms a regular expression (written as a string) to a pattern
object, which can be used for more efficient matching. If you use regular expressions represented
as strings when you call functions such as search or match, they have to be transformed into
regular expression objects internally anyway. By doing this once, with the compile function,
this step is no longer necessary each time you use the pattern. The pattern objects have the
searching/matching functions as methods, so re.search(pat, string) (where pat is a regexp
written as a string) is equivalent to pat.search(string) (where pat is a pattern object created
with compile). Compiled regexp objects can also be used in the normal re functions.

The function re. search searches a given string to find the first substring, if any, that matches
the given regular expression. If one is found, a MatchObject (evaluating to true) is returned;
otherwise None (evaluating to false) is returned. Due to the nature of the return values, the function
can be used in conditional statements, such as

if re.search(pat, string):
print 'Found it!'

However, if you need more information about the matched substring, you can examine
the returned MatchObject. (More about MatchObjects in the next section.)

The function re.match tries to match a regular expression at the beginning of a given string.
Somatch('p', 'python') returns true, whilematch('p', 'www.python.org") returns false. (The
return values are the same as those for search.)

Note The match function will report a match if the pattern matches the beginning of a string; the
pattern is not required to match the entire string. If you want to do that, you have to add a dollar sign to the
end of your pattern; the dollar sign will match the end of the string and thereby “stretch out” the match.

239

240

CHAPTER 10 BATTERIES INCLUDED

The function re.split splits a string by the occurrences of a pattern. This is similar to the
string method split, except that you allow full regular expressions instead of only a fixed sepa-
rator string. For example, with the string method split you could split a string by the occurrences
ofthestring ', ' butwithre.splityou can split on any sequence of space characters and commas:

>>> some_text = 'alpha, beta,,,,gamma delta’
>>> re.split('[,]+', some_text)
['alpha', 'beta', 'gamma', 'delta']

Note If the pattern contains parentheses, the parenthesized groups are interspersed between the
split substrings.

As you can see from this example, the return value is a list of substrings. The maxsplit
argument indicates the maximum number of splits allowed:

>>> re.split('[,]+', some text, maxsplit=2)
['alpha', 'beta', 'gamma delta']
>>> re.split('[,]+', some text, maxsplit=1)
['alpha', 'beta,,,,gamma delta']

The function re. findall returns a list of all occurrences of the given pattern. For example,
to find all words in a string, you could do the following:

>>> pat = '[a-zA-Z]+'

>>> text = ""Hm... Err -- are you sure?" he said, sounding insecure.'
>>> re.findall(pat, text)

['Hm', "Err', 'are', 'you', 'sure', 'he', 'said', 'sounding', 'insecure']

Or, you could find the punctuation:

>>> pat = r'[.2\-",]+’
>>> re.findall(pat, text)

[Illl, I..'I, I__l, I?lll) I,l, |'|:|

Note that the dash (-) has been escaped so Python won'’t interpret it as part of a character
range (such as a-z).

The function re. sub is used to substitute the leftmost, nonoverlapping occurrences of a
pattern with a given replacement. Consider the following example:

>>> pat = "{name}’

>>> text = 'Dear {name}...'

>>> re.sub(pat, 'Mr. Gumby', text)
'Dear Mr. Gumby...'

See the section “Using Group Numbers and Functions in Substitutions” later in this chapter
for information on how to use this function more effectively.

CHAPTER 10 BATTERIES INCLUDED

The function re. escape is a utility function used to escape all the characters in a string that
might be interpreted as a regexp operator. Use this if you have a long string with lots of these
special characters and you want to avoid typing a lot of backslashes, or if you get a string from
a user (for example, through the raw_input function) and want to use it as a part of a regexp.
Here is an example of how it works:

>>> re.escape('www.python.org')
"www\\.python\\.org'

>>> re.escape('But where is the ambiguity?')
"But\\ where\\ is\\ the\\ ambiguity\\?'

Note In Table 10-8 you’ll notice that some of the functions have an optional parameter called flags. This
parameter can be used to change how the regular expressions are interpreted. For more information about
this, see the standard library reference, in the section about the re module at http://python.org/doc/
lib/module-re.html. The flags are described in the subsection “Module Contents.”

Match Objects and Groups

The re functions that try to match a pattern against a section of a string all return MatchObjects
when a match is found. These objects contain information about the substring that matched
the pattern. They also contain information about which parts of the pattern matched which
parts of the substring—and these “parts” are called groups.

A group is simply a subpattern that has been enclosed in parentheses. The groups are
numbered by their left parenthesis. Group zero is the entire pattern. So, in the pattern

'There (was a (wee) (cooper)) who (lived in Fyfe)'
the groups are as follows:

There was a wee cooper who lived in Fyfe
Was a wee Cooper

wee

cooper

lived in Fyfe

A W N R O

Typically, the groups contain special characters such as wildcards or repetition operators,
and thus you may be interested in knowing what a given group has matched. For example, in
the pattern

T www\ . (.+)\.com$’

group 0 would contain the entire string, and group 1 would contain everything between 'www. '
and '.com'. By creating patterns like this, you can extract the parts of a string that interest you.
Some of the more important methods of re match objects are described in Table 10-9.

241

242

CHAPTER 10 BATTERIES INCLUDED

Table 10-9. Some Important Methods of re Match Objects

Method Description

group([group1, ...]) Retrieves the occurrences of the given subpatterns (groups)
start([group]) Returns the starting position of the occurrence of a given group
end([group]) Returns the ending position (an exclusive limit, as in slices) of

the occurrence of a given group

span([group]) Returns both the beginning and ending positions of a group

The method group returns the (sub)string that was matched by a given group in the pattern.
If no group number is given, group 0 is assumed. If only a single group number is given (or you
just use the default, 0), a single string is returned. Otherwise, a tuple of strings corresponding
to the given group numbers is returned.

Note In addition to the entire match (group 0), you can have only 99 groups, with numbers in the
range 1-99.

The method start returns the starting index of the occurrence of the given group (which
defaults to 0, the whole pattern).

The method end is similar to start, but returns the ending index plus one.

The method span returns the tuple (start, end) with the starting and ending indices of a
given group (which defaults to 0, the whole pattern).

Consider the following example:

>>> m = re.match(r'www\.(.*)\..{3}", 'www.python.org")
>>> m.group(1)

"python’

>>> m.start(1)

4

>>> m.end(1)

10

>>> m.span(1)

(4, 10)

Using Group Numbers and Functions in Substitutions

In the first example using re. sub, I simply replaced one substring with another—something

I could easily have done with the replace string method (described in the section “String Methods”
in Chapter 3). Of course, regular expressions are useful because they allow you to search in a more
flexible manner, but they also allow you to perform more powerful substitutions.

CHAPTER 10 BATTERIES INCLUDED 243

The easiest way to harness the power of re. sub is to use group numbers in the substitution
string. Any escape sequences of the form '"\\n' in the replacement string are replaced by the
string matched by group n in the pattern. For example, let’s say you want to replace words of
the form '*something*' with 'something"', where the former is a normal way of
expressing emphasis in plain text documents (such as e-mail), and the latter is the corresponding
HTML code (as used in Web pages). Let’s first construct the regexp:

>>> emphasis pattern = r'\¥(["*¥]+)*'

Note that regular expressions can easily become hard to read, so using meaningful variable
names (and possibly a comment or two) is important if anyone (including you!) is going to be
able to read the code.

Tip One way to make your regular expressions more readable is to use the VERBOSE flag in the re func-
tions. This allows you to add whitespace (space characters, tabs, newlines, and so on) to your pattern, which
will be ignored by re—except when you put it in a character class or escape it with a backslash. You can also
put comments in such verbose regexps. The following is a pattern object that is equivalent to the emphasis
pattern, but which uses the VERBOSE flag:

>>> emphasis pattern = re.compile(r

* # Beginning emphasis tag -- an asterisk
(# Begin group for capturing phrase
[**]+ # Capture anything except asterisks

) # End group

* # Ending emphasis tag

"'', re.VERBOSE)

Now that I have my pattern, I can use re.sub to make my substitution:

>>> re.sub(emphasis pattern, r'\1', 'Hello, *world*!"')
'Hello, world!"

As you can see, I have successfully translated the text from plain text to HTML.

But you can make your substitutions even more powerful by using a function as the
replacement. This function will be supplied with the MatchObject as its only parameter, and
the string it returns will be used as the replacement. In other words, you can do whatever you
want to the matched substring, and do elaborate processing to generate its replacement. What
possible use could you have for such power, you ask? Once you start experimenting with regular
expressions, you will surely find countless uses for this mechanism. For one application, see
the “Examples” section that follows.

244 CHAPTER 10 BATTERIES INCLUDED

GREEDY AND NONGREEDY PATTERNS

The repetition operators are by default greedy; that means that they will match as much as possible. For
example, let’s say | rewrote the emphasis program to use the following pattern:

>>> emphasis pattern = r'*(.+)*'

This matches an asterisk, followed by one or more letters, and then another asterisk. Sounds perfect,
doesn’t it? But it isn’t:

>>> re.sub(emphasis pattern, r'\1', '¥This* is *it*!')
'This* is *it!'

As you can see, the pattern matched everything from the first asterisk to the last—including the two
asterisks between! This is what it means to be greedy: Take everything you can.

In this case, you clearly don’t want this overly greedy behavior. The solution presented in the preceding
text (using a character set matching anything except an asterisk) is fine when you know that one specific letter
is illegal. But let’s consider another scenario: What if you used the form ' **something**" to signify emphasis?
Now it shouldn’t be a problem to include single asterisks inside the emphasized phrase. But how do you avoid
being too greedy?

Actually, it’s quite easy; you just use a nongreedy version of the repetition operator. All the repetition
operators can be made nongreedy by putting a question mark after them:

>>> emphasis pattern = r'\¥\¥(.+2)\k*'
>>> re.sub(emphasis pattern, r'\1', '**This** is *kjtrk|')
'This is it!"

Here I've used the operator +? instead of +, which means that the pattern will match one or more occur-
rences of the wildcard, as before. However, it will match as few as it can, because it is now nongreedy; it will
match only the minimum needed to reach the next occurrence of ' **", which is the end of the pattern. As
you can see, it works nicely.

Finding out who an e-mail is from. Have you ever saved an e-mail as a text file? If you have, you may have seen
that it contains a lot of essentially unreadable text at the top, similar to that shown in Listing 10-9.

Listing 10-9. A Set of (Fictitious) E-mail Headers

From foo@bar.baz Thu Dec 20 01:22:50 2004
Return-Path: <foo@bar.baz>
Received: from xyzzy42.bar.com (xyzzy.bar.baz [123.456.789.42])
by frozz.bozz.floop (8.9.3/8.9.3) with ESMTP id BAA25436
for <magnus@bozz.floop>; Thu, 20 Dec 2004 01:22:50 +0100 (MET)
Received: from [43.253.124.23] by bar.baz
(InterMail vM.4.01.03.27 201-229-121-127-20010626) with ESMTP
id <20041220002242.ADASD123.bar.baz@[43.253.124.23]>;
Thu, 20 Dec 2004 00:22:42 +0000

CHAPTER 10 BATTERIES INCLUDED

User-Agent: Microsoft-Outlook-Express-Macintosh-Edition/5.02.2022
Date: Wed, 19 Dec 2004 17:22:42 -0700

Subject: Re: Spam

From: Foo Fie <foo@bar.baz>

To: Magnus Lie Hetland <magnus@bozz.floop>

CC: <Mr.Gumby@bar.baz>

Message-ID: <B8467D62.84F%foo@baz.com>
In-Reply-To: <20041219013308.A2655@bozz.floop>
Mime-version: 1.0

Content-type: text/plain; charset="US-ASCII"
Content-transfer-encoding: 7bit

Status: RO
Content-Length: 55
Lines: 6

So long, and thanks for all the spam!

Yours,

Foo Fie

Let’s try to find out who this e-mail is from. If you examine the text, I'm sure you can figure it out in this case (especially
if you look at the message itself, at the bottom, of course). But can you see a general pattern? How do you extract
the name of the sender, without the e-mail address? Or, how can you list all the e-mail addresses mentioned in the
headers? Let’s handle the first task first.

The line containing the sender begins with the string ' From: ' and ends with an e-mail address enclosed in angle
brackets (< and >). You want the text found between those. If you use the fileinput module, this ought to be an
easy task. A program solving the problem is shown in Listing 10-10.

Note You could solve this problem without using regular expressions if you wanted. You could also use
the email module.

Listing 10-10. A Program for Finding the Sender of an E-mail

find_sender.py
import fileinput, re
pat = re.compile('From: (.*?) <.*>$")
for line in fileinput.input():
m = pat.match(line)
if m: print m.group(1)

You can then run the program like this (assuming that the e-mail message is in the text file message. eml):

245

246

CHAPTER 10 BATTERIES INCLUDED

$ python find_sender.py message.eml
Foo Fie

You should note the following about this program:

e | compile the regular expression to make the processing more efficient.

| enclose the subpattern | want to extract in parentheses, making it a group.

e | use a nongreedy pattern to match the name because | want to stop matching when | reach the first left
angle bracket (or, rather, the space preceding it).

e | use a dollar sign to indicate that | want the pattern to match the entire line, all the way to the end.

e |use an if statement to make sure that | did in fact match something before | try to extract the match
of a specific group.

To list all the e-mail addresses mentioned in the headers, you need to construct a regular expression that matches
an e-mail address but nothing else. You can then use the method findall to find all the occurrences in each line.
To avoid duplicates, you keep the addresses in a set (described earlier in this chapter). Finally, you extract the keys,
sort them, and print them out:

import fileinput, re
pat = re.compile(r'[a-z\-\.]+@[a-z\-\.]+", re.IGNORECASE)
addresses = set()
for line in fileinput.input():
for address in pat.findall(line):
addresses.add(address)
for address in sorted(addresses):
print address

The resulting output when running this program (with the preceding e-mail message as input) is as follows:

Mr.Gumby@bar.baz
foo@bar.baz
foo@baz.com
magnus@bozz.floop

Note that when sorting, uppercase letters come before lowercase letters.

Note | haven’t adhered strictly to the problem specification here. The problem was to find the addresses
in the header, but in this case the program finds all the addresses in the entire file. To avoid that, you can
call fileinput.close() if you find an empty line because the header can’t contain empty lines, and you
would be finished. Alternatively, you can use fileinput.nextfile() to start processing the next file, if
there is more than one.

CHAPTER 10 BATTERIES INCLUDED

Making a template system. A template is a file you can put specific values into to get a finished text of some kind.
For example, you may have a mail template requiring only the insertion of a recipient name. Python already has an
advanced template mechanism: string formatting. However, with regular expressions you can make the system
even more advanced. Let’s say you want to replace all occurrences of ' [something]" (the “fields”) with the result
of evaluating something as an expression in Python. Thus, the string

"The sum of 7 and 9 is [7 + 9]."
should be translated to
'The sum of 7 and 9 is 16.'
Also, you want to be able to perform assignments in these fields, so that the string
'[name="Mr. Gumby"]Hello, [name]’
should be translated to
'Hello, Mr. Gumby'
This may sound like a complex task, but let’s review the available tools:
e You can use a regular expression to match the fields and extract their contents.

e You can evaluate the expression strings with eval, supplying the dictionary containing the scope. You
do this in a try/except statement; if a SyntaxExrror is raised, you probably have a statement (such
as an assignment) on your hands and should use exec instead.

¢ You can execute the assignment strings (and other statements) with exec, storing the template’s scope
in a dictionary.

e You can use re.sub to substitute the result of the evaluation into the string being processed.

Suddenly it doesn’t look so intimidating, does it?

Tip If a task seems daunting, it almost always helps to break it down into smaller pieces. Also, take stock
of the tools at your disposal for ideas on how to solve your problem.

See Listing 10-11 for a sample implementation.

Listing 10-11. A Template System

templates.py
import fileinput, re

Matches fields enclosed in square brackets:
field pat = re.compile(xr'\[(.+?)\]")

247

248

CHAPTER 10 BATTERIES INCLUDED

We'll collect variables in this:
scope = {}

This is used in re.sub:
def replacement(match):
code = match.group(1)
try:
If the field can be evaluated, return it:
return str(eval(code, scope))
except SyntaxError:
Otherwise, execute the assignment in the same scope...
exec code in scope
...and return an empty string:
return "'

Get all the text as a single string:
(There are other ways of doing this; see Chapter 11)
lines = []
for line in fileinput.input():
lines.append(line)
text = ''.join(lines)

Substitute all the occurrences of the field pattern:
print field pat.sub(replacement, text)
Simply put, this program does the following:
1. Defines a pattern for matching fields
2. Creates a dictionary to act as a scope for the template
3. Defines a replacement function that does the following:
a. Grabs group 1 from the match and puts it in code.

b. Tries to evaluate code with the scope dictionary as namespace, converts the result to a string, and
returns it. If this succeeds, the field was an expression and everything is fine. Otherwise (i.e., a
SyntaxError is raised), go to Step 3c.

c. Executes the field in the same namespace (the scope dictionary) used for evaluating expressions,
and then returns an empty string (because the assignment doesn’t evaluate to anything).

4, Uses fileinput to read in all available lines, puts them in a list, and joins them into one big string

5. Replaces all occurrences of field pat using the replacement function in re. sub, and prints the result

CHAPTER 10 BATTERIES INCLUDED

Note Itis much more efficient to put the lines into a list and then join them at the end than to do something
like this:

Don't do this:

text = "'

for line in fileinput.input():
text += line

Although this looks elegant, each assignment has to create a new string, which is the old string with the new
one appended. This leads to a terrible waste of resources and makes your program slow. Don’t do this. If you
want a more elegant way to read in all the text of a file, take a peek at Chapter 11.

So, I have just created a really powerful template system in only 15 lines of code (not counting whitespace and comments).
I hope you’re starting to see how powerful Python becomes when you use the standard libraries. Let’s finish this
example by testing the template system. Try running it on the simple file shown in Listing 10-12.

Listing 10-12. A Simple Template Example

[x = 2]

[y = 3]
The sum of [x] and [y] is [x + y].

You should see this:

The sum of 2 and 3 is 5.

Note It may not be obvious, but there are three empty lines in the preceding output—two above and one
below the text. Although the first two fields have been replaced by empty strings, the newlines following them
are still there. Also, the print statement adds a newline, which accounts for the empty line at the end.

But wait, it gets better! Because | have used fileinput, | can process several files in turn. That means that | can
use one file to define values for some variables, and then another file as a template where these values are inserted.
For example, | might have one file with definitions as in Listing 10-13, named magnus . txt, and a template file as
in Listing 10-14, named template.txt.

249

250

CHAPTER 10 BATTERIES INCLUDED

Listing 10-13. Some Template Definitions

[name = 'Magnus Lie Hetland']
[email = 'magnus@foo.bar’]
[language = 'python’]

Listing 10-14. A Template

[import time]
Dear [name],

I would like to learn how to program. I hear you use
the [language] language a lot -- is it something I

should consider?

And, by the way, is [email] your correct email address?

Fooville, [time.asctime()]

Oscar Frozzbozz

The import time isn’tan assignment (which is the statement type | set out to handle), but because I'm not being
picky and just use a simple try/except statement, my program supports any statement or expression that works
with eval or exec. You can run the program like this (assuming a UNIX command line)

$ python templates.py magnus.txt template.txt

You should get some output similar to that in Listing 10-15.

Listing 10-15. Sample Output from the Template System

Dear Magnus Lie Hetland,
I would like to learn how to program. I hear you use
the python language a lot -- is it something I

should consider?

And, by the way, is magnus@foo.bar your correct email address?

Fooville, Wed Apr 24 20:34:29 2004

Oscar Frozzbozz

CHAPTER 10 BATTERIES INCLUDED

Even though this template system is capable of some quite powerful substitutions, it still has some flaws. For
example, it would be nice if you could write the definition file in a more flexible manner. If it were executed with
execfile, you could simply use normal Python syntax. That would also fix the problem of getting lots of blank lines
at the top of the output.

Can you think of other ways of improving it? Can you think of other uses for the concepts used in this program? The
best way (in my opinion) to become really proficient in any programming language is to play with it—test its limitations
and discover its strengths. See if you can rewrite this program so it works better and suits your needs.

Note Thereis, in fact, a perfectly good template system available in the standard libraries, in the string
module. Just take a look at the Template class, for example.

Other Interesting Standard Modules

Even though this chapter has covered a lot of material, I have barely scratched the surface of
the standard libraries. To tempt you to dive in, I'll quickly mention a few more cool libraries:

difflib. This library enables you to compute how similar two sequences are. It also enables
you to find the sequences (from a list of possibilities) that are “most similar” to an original
sequence you provide. difflib could be used to create a simple searching program, for
example.

md5 and sha. These modules can compute small “signatures” (numbers) from strings;
and if you compute the signatures for two different strings, you can be almost certain that
the two signatures will be different. You can use this on large text files. These modules have
several uses in cryptography and security.

csv. CSVis short for comma-separated values, a simple format used by many applications
(for example, many spreadsheets and database programs) to store tabular data. It is mainly
used when exchanging data between different programs. The csv module lets you read
and write CSV files easily, and it handles some of the more tricky parts of the format quite
transparently.

timeit, profile, and trace. The timeit module (with its accompanying command-line
script) is a tool for measuring the time a piece of code takes to run. It has some tricks up its
sleeve, and you probably ought to use it rather than the time module for performance
measurements. The profile module (along with its companion module, pstats) can be
used for a more comprehensive analysis of the efficiency of a piece of code. The trace
module (and program) can give you a coverage analysis (that is, which parts of your code
are executed and which are not). This can be useful when writing test code, for example.

datetime. If the time module isn’t enough for your time-tracking needs, it’s quite possible
that datetime will be. It has support for special date and time objects, and allows you to
construct and combine these in various ways. The interface is in many ways a bit more
intuitive than that of the time module.

251

252

CHAPTER 10 BATTERIES INCLUDED

itertools. Here you have lots of tools for creating and combining iterators (or other iterable
objects). There are functions for chaining iterables, for creating iterators that return consec-
utive integers forever (similar to range, but without an upper limit), to cycle through an iterable
repeatedly, and several other useful stuff.

logging. Simply using print statements to figure out what’s going on in your program can
be useful. If you want to keep track of things even without having lots of debugging output,
you might write this information to alog file. This module gives you a standard set of tools
for managing one or more central logs, with several levels of priority for your log messages,
among other things.

getopt and optparse. In UNIX, command-line programs are often run with various options
or switches. (The Python interpreter is a typical example.) These will all be found in sys . argyv,
but handling these correctly yourself is far from easy. The getopt library is a tried and true
solution to this problem, while optparse is newer, more powerful, and much easier to use.

cmd. This module enables you to write a command-line interpreter, somewhat like the
Python interactive interpreter. You can define your own commands that the user can
execute at the prompt. Perhaps you could use this as the user interface to one of your
programs?

A Quick Summary

In this chapter, you've learned about modules: how to create them, how to explore them, and
how to use some of those included in the standard Python libraries.

Modules. A module is basically a subprogram whose main function is to define things,
such as functions, classes, and variables. If a module contains any test code, it should be
placed in an if statement that checks whether _name_ =='_main__'.Modules can be
imported if they are in the PYTHONPATH. You import a module stored in the file foo.py with
the statement import foo.

Packages. A package is just a module that contains other modules. Packages are implemented
as directories that contain a file named __init .py.

Exploring modules. After you have imported a module into the interactive interpreter, you
can explore it in many ways. Among them are using dir, examining the all variable,
and using the help function. The documentation and the source code can also be excellent
sources of information and insight.

The standard library. Python comes with several modules included, collectively called the
standard library. Some of these were reviewed in this chapter:

¢ sys: A module that gives you access to several variables and functions that are tightly
linked with the Python interpreter.

¢ 0s: A module that gives you access to several variables and functions that are tightly
linked with the operating system.

¢ fileinput: A module that makes it easy to iterate over the lines of several files or streams.

CHAPTER 10 BATTERIES INCLUDED

* sets, heapg, deque: Three modules giving you three useful data structures. Sets are also
available in the form of the built-in type set.

* time: A module for getting the current time, and for manipulating and formatting
times and dates.

* random: A module with functions for generating random numbers, choosing random
elements from a sequence, or shuffling the elements of a list.

* shelve: A module for creating a persistent mapping, which stores its contents in a
database with a given file name.

e re: A module with support for regular expressions.

If you are curious to find out more, I again urge you to browse the Python Library Reference
(http://python.org/doc/1ib). It’s really interesting reading.

New Functions in This Chapter

Function Description

dir(obj) Returns an alphabetized list of attribute names

help([obj]) Provides interactive help or help about a specific object
reload(module) Returns a reloaded version of a module that has already been imported
What Now?

If you have grasped at least a few of the concepts in this chapter, your Python prowess has
probably taken a great leap forward. With the standard libraries at your fingertips, Python
changes from powerful to extremely powerful. With what you have learned so far, you can write
programs to tackle a wide range of problems. In the next chapter, you learn more about using
Python to interact with the outside world of files and networks, and thereby tackle problems of
greater scope.

253

CHAPTER 11

Files and Stuff

So far we’ve mainly been working with data structures that reside in the interpreter itself.
What little interaction our programs have had with the outside world has been through input,
raw_input, and print. In this chapter, we go one step further and let our programs catch a
glimpse of a larger world: the world of files and streams. The functions and objects described
in this chapter will enable you to store data between program invocations and to process data
from other programs.

FILE-LIKE OBJECTS

You will probably run into the term “file-like” repeatedly in your Python career (I've used it a few times already).
A file-like object is simply one supporting a few of the same methods as a file, most notably either read or
write or both. The objects returned by urllib.urlopen (see Chapter 14) are a good example of this. They
support methods such as read, readline, and readlines, but not (at the time of writing) methods such as
fileno or isatty, for example.

Opening Files
You can open files with the open function, which has the following syntax:
open(name[, mode[, buffering]])

The open function takes a file name as its only mandatory argument, and returns a file
object. The mode and buffering arguments are both optional and will be explained in the
material that follows.

Note In earlier versions of Python, open was a separate function, but from version 2.2 onwards, open is
the same as file, the file type. So when you call it as a function, you are actually using the file constructor
to create a file object.

255

256

CHAPTER 11 FILES AND STUFF

So, assuming that you have a text file (created with your text editor, perhaps) called
somefile.txt stored in the directory C: \text (or something like ~/text in UNIX), you can
open it like this:

>>> f = open(r'C:\text\somefile.txt")
If the file doesn’t exist, you may see an exception traceback like this:

Traceback (most recent call last):
File "<pyshell#0>", line 1, in ?
IOError: [Errno 2] No such file or directory: "C:\\text\\somefile.txt"

You'll see what you can do with such file objects in a little while, but first, let’s take a look
at the other two arguments of the open function.

The Mode Argument

If you use open with only a file name as a parameter, you get a file object you can read from. If
you want to write to the file, you have to state that explicitly, supplying a mode. (Be patient—
I get to the actual reading and writing in a little while.) The mode argument to the open function
can have several values, as summarized in Table 11-1.

Table 11-1. Possible Values for the Mode Argument of the open Function

Value Description

'r' Read mode

W' Write mode

'a' Append mode

'b’ Binary mode (added to other mode)

"+ Read/write mode (added to other mode)

Explicitly specifying read mode has the same effect as not supplying a mode string at all.
The write mode enables you to write to the file.

The '+' can be added to any of the other modes to indicate that both reading and writing
is allowed. So, for example, 'r+' can be used when opening a text file for reading and writing.
(For this to be useful, you will probably want to use seek as well; see the sidebar “Random
Access” later in this chapter.)

The 'b' mode changes the way the file is handled. Generally, Python assumes that you are
dealing with text files (containing characters). Typically, this is not a problem. But if you are
processing some other kind of file (called a binary file) such as a sound clip or an image, you
should add a 'b' to your mode: for example, 'rb' to read a binary file.

CHAPTER 11 FILES AND STUFF

WHY USE BINARY MODE?

If you use binary mode when you read (or write) a file, things won’t be much different. You are still able to read
a number of bytes (basically the same as characters), and perform other operations associated with text files.
The main point is that when you use binary mode, Python gives you exactly the contents found in the file—
and in text mode it won’t necessarily do that.

If you find it shocking that Python manipulates your text files, don’t worry. The only “trick” it employs is
to standardize your line endings. Generally, in Python, you end your lines with a newline character (\n), as is
the norm in UNIX systems. This is not standard in Windows, however. In Windows, a line ending is marked with
\r\n. To hide this from your program (so it can work seamlessly across different platforms), Python does
some automatic conversion here: When you read text from a file in text mode in Windows, it converts \r\n to
\n. Conversely, when you write text to a file in text mode in Windows, it converts \n to \r\n. (The Macintosh
version does the same thing, but converts between \n and \r.)

The problem occurs when you work with a binary file, such as a sound clip. It may contain bytes that can
be interpreted as the line-ending characters mentioned in the previous paragraph, and if you are using text
mode, Python performs its automatic conversion. However, that will probably destroy your binary data. So, to
avoid that, you simply use binary mode, and no conversions are made.

Note that this distinction is not important on platforms (such as UNIX) where the newline character is the
standard line terminator because no conversion is performed there anyway.

Note Files can be opened in universal newline support mode, using the mode character U together with,
for example, r. In this mode, all line-ending characters/strings (\r\n, \r, or \n) are then converted to
newline characters (\n), regardless of which convention is followed on the current platform.

Buffering

The open function takes a third (optional) parameter, which controls the buffering of the file. If
the parameter is 0 (or False), I/O (input/output) is unbuffered (all reads and writes go directly
from/to the disk); if it is 1 (or True), I/O is buffered (meaning that Python may use memory
instead of disk space to make things go faster, and only update when you use flush or close—
see the section “Closing Your Files,” later in this chapter). Larger numbers indicate the buffer
size (in bytes), while 1 (or any negative number) sets the buffer size to the default.

The Basic File Methods

Now you know how to open files; the next step is to do something useful with them. In this
section, you learn about some basic methods that file objects (and some other “file-like”
objects, sometimes called streams) have.

257

258

CHAPTER 11 FILES AND STUFF

THREE STANDARD STREAMS

In Chapter 10, in the section about the sys module, | mentioned three standard streams. These are actually
files (or “file-like” objects): you can apply most of what you learn about files to them.

A standard source of data input is sys.stdin. When a program reads from standard input, you can
either supply text by typing it, or you can link it with the standard output of another program, using a pipe. (This
is a standard UNIX concept—there is an example later in this section.)

The text you give to print appears in sys.stdout. The prompts for input and raw_input also go
there. Data written to sys . stdout typically appears on your screen, but can be linked to the standard input
of another program with a pipe, as mentioned.

Error messages (such as stack traces) are written to sys. stderr. In many ways it is similar to
sys.stdout.

Reading and Writing

The most important capabilities of files (or streams) are supplying and receiving data. If you
have a file-like object named f, you can write data (in the form of a string) with the method
f.write, and read data (also as a string) with the method f.read.

Each time you call f.write(string), the string you supply is written to the file after those
you have written previously:

>>> f = open('somefile.txt', 'w")
>>> f.write('Hello, ")

>>> f.write('World!")

>>> f.close()

Notice that I call the close method when I'm finished with the file. You learn more about
it in the section “Closing Your Files” later in this chapter.

Reading is just as simple. Just remember to tell the stream how many characters (bytes)
you want to read.

Example (continuing where I left off):

>>> f = open('somefile.txt', 'r")
>>> f.read(4)

"Hell'

>>> f.read()

‘o, World!"'

First, I specify how many characters to read (4), and then I simply read the rest of the file
(by not supplying a number). Note that I could have dropped the mode specification from the
call to open because 'r' is the default.

In a UNIX shell (such as GNU bash), you can write several commands after one another, linked together with pipes,
as in this example (assuming GNU bash):

CHAPTER 11 FILES AND STUFF

$ cat somefile.txt | python somescript.py | sort

Note GNU bash is also available in Windows. For more information, take a look at http: //www. cygwin. org.

This pipeline consists of three commands:

e cat somefile.txt simply writes the contents of the file somefile.txt to standard output
(sys.stdout).

* python somescript.py executes the Python script somescript. The script presumably
reads from its standard input and writes the result to standard output.

» sortreadsall the text from standard input (sys. stdin), sorts thelines alphabetically, and
writes the result to standard output.

But what is the point of these pipe characters (), and what does somescript.py do?

The pipes link up the standard output of one command with the standard input of the next. Clever, eh? So you can
safely guess that somescript.py reads data from its sys.stdin (which is what cat somefile.txt writes)
and writes some result to its sys. stdout (which is where sort gets its data).

A simple script (somescript.py) that uses sys.stdin is shown in Listing 11-1. The contents of the file
somefile.txt are shown in Listing 11-2.

$ cat somefile.txt | python somescript.py

Listing 11-1. Simple Script That Counts the Words in sys. stdin

somescript.py

import sys

text = sys.stdin.read()

words = text.split()
wordcount = len(words)

print 'Wordcount:', wordcount

Listing 11-2. A File Containing Some Nonsensical Text

Your mother was a hamster and your
father smelled of elderberries.

Here are the results of cat somefile.txt | python somescript.py:

Wordcount: 11

259

260 CHAPTER 11 FILES AND STUFF

RANDOM ACCESS

In this chapter, | treat files only as streams—you can read data only from start to finish, strictly in order. In
fact, you can also move around a file, accessing only the parts you are interested in (called random access) by
using the two file-object methods seek and tell:

seek(offset[, whence]): This method moves the “current position” (where reading or writing is
performed) to the position described by offset and whence. offset is a byte (character) count. whence
defaults to 0, which means that the offset is from the beginning of the file (the offset must be nonnegative);
whence may also be setto 1 (move relative to current position: the offset may be negative), or 2 (move relative
to the end of the file).

Consider this example:

>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.write('01234567890123456789")

>>> f.seek(5)

>>> f.write('Hello, World!")

>>> f.close()

>>> f = open(r'c:\text\somefile.txt")

>>> f.read()

'01234Hello, World!89'

tell(): This method returns the current file position as in the following example:

>>> f = open(r'c:\text\somefile.txt")
>>> f.read(3)

'012"

>>> f.read(2)

1300

>>> f.tell()

5L

Note that the number returned from . tell in this case was a long integer. That may not always be the case.

Reading and Writing Lines

Actually, what I've been doing until now is a bit impractical. Usually, I could just as well be
reading in the lines of a stream as reading letter by letter. You can read a single line (text from
where you have come so far, up to and including the first line separator you encounter) with
the method file.readline. You can either use it without any arguments (in which case aline is
simply read and returned) or with a nonnegative integer, which is then the maximum number
of characters (or bytes) that readline is allowed to read. So if someFile.readline() returns
'Hello, World!\n', someFile.readline(5) returns 'Hello'. To read all the lines of a file and
have them returned as a list, use the readlines method.

CHAPTER 11 FILES AND STUFF

Note An alternative to readlines that can be useful when iterating is xreadlines. For more information,
see the section “lterating Over File Contents,” later in this chapter.

The method writelines is the opposite of readlines: Give it a list (or, in fact, any sequence
or iterable object) of strings, and it writes all the strings to the file (or stream). Note that newlines
are not added: you have to add those yourself. Also, there is no writeline method because you
can just use write.

Note On platforms that use other line separators, substitute “carriage return” (Mac) or “carriage return
and newline” (Windows) for “newline.”

Closing Your Files

You should remember to close your files by calling their close method. Usually, a file object is
closed automatically when you quit your program (and possibly before that), and not closing
files you have been reading from isn’t really that important (although it can’t hurt, and might
help to avoid keeping the file uselessly “locked” against modification in some operating systems
and settings). But you should always close a file you have written to because Python may buffer
(keep stored temporarily somewhere, for efficiency reasons) the data you have written, and if
your program crashes for some reason, the data might not be written to the file at all. The safe
thingis to close your files after you're finished with them. If you want to be certain that your file
is closed, you should use a try/finally statement with the call to close in the finally clause:

Open your file here
try:

Write data to your file
finally:

file.close()

Tip After writing something to a file, you usually want the changes to appear in that file, so other programs
reading the same file can see the changes. Well, isn’t that what happens, you say. Not necessarily. As mentioned,
the data may be buffered (stored temporarily somewhere in memory), and not written until you close the file.
If you want to keep working with the file (and not close it) but still want to make sure the file on disk is updated
to reflect your changes, call the file object’s f1ush method. (Note, however, that f1ush might not allow other
programs running at the same time to access the file, due to locking considerations that depend on your operating
system and settings. Whenever you can conveniently close the file, that is preferable.)

261

262 CHAPTER 11 FILES AND STUFF

Assume that somefile.txt contains the text in Listing 11-3. What can you do with it?

Listing 11-3. A Simple Text File

Welcome to this file
There is nothing here except
This stupid haiku

Let’s try the methods you know:

read(n):

>>> f = open(r'c:\text\somefile.txt")
>>> f.read(7)

'Welcome'

>>> f.read(4)

Do

>>> f.close()

read():

>>> f = open(r'c:\text\somefile.txt")
>>> print f.read()

Welcome to this file

There is nothing here except

This stupid haiku

>>> f.close()

readline():

>>> f = open(r'c:\text\somefile.txt")

>>> for i in range(3):
print str(i) +

0: Welcome to this file

1: There is nothing here except

2: This stupid haiku

>>> f.close()

+ f.readline(),

readlines():

>>> import pprint

>>> pprint.pprint(open(r'c:\text\somefile.txt"').readlines())
['Welcome to this file\n',

'There is nothing here except\n',

'This stupid haiku']

Note that | relied on the file object being closed automatically in this example.

write(string):

>>> f = open(r'c:\text\somefile.txt"', 'w')
>>> f.write('this\nis no\nhaiku"')
>>> f.close()

After running this, the file contains the text in Listing 11-4.

Listing 11-4. The Modified Text File

this
is no
haiku

writelines(list):

>>> f = open(r'c:\text\somefile.txt")

>>> lines = f.readlines()

>>> f.close()

>>> lines[1] = "isn't a\n"

>>> f = open(r'c:\text\somefile.txt', 'w')
>>> f.writelines(lines)

>>> f.close()

After running this, the file contains the text in Listing 11-5.

Listing 11-5. The Text File, Modified Again
this

isn't a

haiku

CHAPTER 11

FILES AND STUFF

Iterating Over File Contents

Now you've seen some of the methods file objects present to us, and you've learned how to
acquire such file objects. One of the common operations on files is to iterate over their contents,
repeatedly performing some action as you go. There are many ways of doing this, and although
you can find your favorite and stick to that, others may have done it differently, and to under-
stand their programs, you should know all the basic techniques. Some of these techniques are
just applications of the methods you've already seen (read, readline, and readlines), while
some are new in this chapter (for example, xreadlines and file iterators).
In all the examples in this section, [use a fictitious function called process to represent the
processing of each character or line. Feel free to implement it in any way you like. One simple

example would be the following:

def process(string):
print 'Processing: ', string

263

264

CHAPTER 11 FILES AND STUFF

More useful implementations could do such things as storing data in a data structure,
computing a sum, replacing patterns with the re module, or perhaps adding line numbers.

Also, to try out the examples, you should set the variable filename to the name of some
actual file.

Doing It Byte by Byte

One of the most basic (but probably least common) ways of iterating over file contents is to use
the read method in a while loop. For example, you might want to loop over every character
(byte) in the file. You could do that as shown in Listing 11-6.

Listing 11-6. Looping Over Characters with read

f = open(filename)

char = f.read(1)

while char:
process(char)
char = f.read(1)

This program works because when you have reached the end of the file, the read method
returns an empty string, but until then, the string always contains one character (and thus has
the Boolean value true). So as long as char is true, you know that you aren’t finished yet.

As you can see, I have repeated the assignment char = f.read(1), and code repetition is
generally considered a bad thing. (Laziness is a virtue, remember?) To avoid that, I can use the
while True/break technique you first encountered in Chapter 5. The resulting code is shown in
Listing 11-7.

Listing 11-7. Writing the Loop Differently

f = open(filename)
while True:
char = f.read(1)
if not char: break
process(char)

As mentioned in Chapter 5, you shouldn’t use the break statement too often (because it
tends to make the code more difficult to follow); even so, the approach shown in Listing 11-7 is
usually preferred to that in Listing 11-6, precisely because you avoid duplicated code.

One Line at a Time

When dealing with text files, you are often interested in iterating over the lines in the file, not
each individual character. You can do this easily in the same way as we did with characters,
using the readline method (described earlier, in the section “Reading and Writing Lines”), as
shown in Listing 11-8.

CHAPTER 11 FILES AND STUFF 265

Listing 11-8. Using readline in awhile Loop

f = open(filename)
while True:
line = f.readline()
if not line: break
process(line)

Reading Everything

If the file isn’t too large, you can just read the whole file in one go, using the read method with
no parameters (to read the entire file as a string), or the readlines method (to read the file into
a list of strings, in which each string is a line). Listings 11-9 and 11-10 show how easy it is to
iterate over characters and lines when you read the file like this. Note that reading the contents
of afile into a string or alist like this can be useful for other things besides iteration. For example,
you might apply a regular expression to the string, or you might store the list of lines in some
data structure for further use.

Listing 11-9. Iterating Over Characters with read

f = open(filename)
for char in f.read():
process(char)

Listing 11-10. I[terating Over Lines with readlines

f = open(filename)
for line in f.readlines():
process(line)

Lazy Line Iteration with fileinput and xreadlines

Sometimes you have to iterate over the lines in a very large file, and readlines would use too
much memory. You could use awhile loop with readline, of course, but in Python for loops
are preferable when they are available. It just so happens that they are in this case. You can use
amethod called lazy line iteration: lazy because it only reads the parts of the file actually needed
(more or less).

You have already encountered fileinput in Chapter 10; see Listing 11-11 for an example
using it. Note that the fileinput module takes care of opening the file. You just have to give it
a file name.

Listing 11-11. Iterating Over Lines with fileinput

import fileinput
for line in fileinput.input(filename):
process(line)

You can also perform lazy line iteration by using the xreadlines method. It works almost
like readlines except thatit doesn’t read all the lines into a list. Instead it creates an xreadlines

266

CHAPTER 11 FILES AND STUFF

object. Note that xreadlines is somewhat “old-fashioned,” and you should instead use file iterators
(explained next) in your own code.

The New Kids on the Block: File Iterators

It’s time for the coolest technique of all. If Python had had this since the beginning, I suspect
that several of the other methods (at least xreadlines) would never have appeared. So what is
this cool technique? In recent versions of Python (from version 2.2), files are iterable, which
means that you can use them directly in for loops to iterate over their lines. See Listing 11-12
for an example. Pretty elegant, isn’t it?

Listing 11-12. [terating Over a File

f = open(filename)
for line in f:
process(line)

In these iteration examples, I've been pretty casual about closing my files. Although I probably
should have closed them, it’s not critical, as long as I don’t write to the file. If you are willing to
let Python take care of the closing (as I have done so far), you could simplify the example even
further, as shown in Listing 11-13. Here I don’t assign the opened file to a variable (like the
variable f I've used in the other examples), and therefore I have no way of explicitly closing it.

Listing 11-13. Iterating Over a File Without Storing the File Object in a Variable

for line in open(filename):
process(line)

Note that sys.stdinis iterable, just like other files, so if you want to iterate over all the lines
in standard input, you can use

import sys
for line in sys.stdin:
process(line)

Also, you can do all the things you can do with iterators in general, such as converting
them into lists of strings (by using 1ist(open(filename))), which would simply be equivalent
to using readlines.

Consider the following example:

>>> f = open('somefile.txt', 'w')

>>> print >> f, 'This is the first line'

>>> print >> f, 'This is the second line'

>>> print >> f, 'This is the third line'

>>> f.close()

>>> first, second, third = open('somefile.txt")
>>> first

'This is the first line\n'

>>> second

'This is the second line\n'

CHAPTER 11 FILES AND STUFF

>>> third
'This is the third line\n'

Note The syntax print >> file, text prints the text to the given file object.

In this example, it’s important to note the following:

* I've used print to write to the file; this automatically adds newlines after the strings
I'supply.

* Tuse sequence unpacking on the opened file, putting each line in a separate variable.
(This isn’t exactly common practice because you usually won’t know the number oflines
in your file, but it demonstrates the “iteratorness” of the file object.)

* Iclose the file after having written to it, to ensure that the data is flushed to disk. (As you
can see, haven'’t closed it after reading from it. Sloppy, perhaps, but not critical.)

A Quick Summary

In this chapter, you've seen how to interact with the environment through files and file-like
objects, one of the most important techniques for I/O (input/output) in Python. Here are some
of the highlights from the chapter:

File-like objects. A file-like object is (informally) an object that supports a set of methods
such as read and readline (and possibly write and writelines).

Opening and closing files. You open a file with the open function (in newer versions of
Python, actually just an alias for file), by supplying a file name.

Modes and file types. When opening a file, you can also supply a mode, such as 'r' for read
mode or 'w' for write mode. By appending 'b"' to your mode, you can open files as binary
files. (This is necessary only on platforms where Python performs line-ending conversion,
such as Windows.)

Standard streams. The three standard files (stdin, stdout, and stderr, found in the sys
module) are file-like objects that implement the UNIX standard I/O mechanism (also
available in Windows).

Reading and writing. You read from a file or file-like object using the method read. You
write with the method write.

Reading and writing lines. You can read lines from a file using readline, readlines, and
(for efficient iteration) xreadlines. You can write files with writelines.

Iterating over file contents. There are many ways of iterating over file contents. It is most
common to iterate over the lines of a text file, and you can do this by simply iterating over
the file itself. There are other methods too, such as readlines and xreadlines, that are
compatible with older versions of Python.

267

268

CHAPTER 11 FILES AND STUFF

New Functions in This Chapter

Function Description

file(name[, mode[, buffering]]) Opens a file and returns a file object

open(name[, mode[, buffering]]) Alias for file; use open rather than file when
opening files

What Now?

So now you know how to interact with the environment through files; but what about interacting
with the user? So far we’ve used only input, raw_input, and print, and unless the user writes
something in a file that your program can read, you don’t really have any other tools for creating
user interfaces. That changes in the next chapter, when I cover graphical user interfaces, with
windows, buttons, and so on.

CHAPTER 12

Graphical User Interfaces

I n this chapter, you learn how to make graphical user interfaces (GUISs) for your Python programs:
you know, windows with buttons and text fields and stuff like that. Pretty cool, huh?

There are plenty of so-called “GUI toolkits” available for Python, but none of them is
recognized as the standard GUI toolkit. This has its advantages (greater freedom of choice) and
drawbacks (others can’t use your programs unless they have the same GUI toolkit installed;
fortunately, there is no conflict between the various GUI toolkits available for Python, so you
can install as many different GUI toolkits as you want). This chapter focuses on one of the most
mature cross-platform GUI toolkits for Python, called wxPython.

An Example GUI Application

To make things easier to follow, I use a running example throughout this chapter. Your task is
to write a basic program that enables you to edit text files. Writing a full-fledged text editor is
beyond the scope of this chapter—we’ll stick to the essentials. After all, the goal is to demon-
strate the basic mechanisms of GUI programming in Python.

The requirements for this minimal text editor are as follows:

* It must allow you to open text files, given their file names.
e It must allow you to edit the text files.

* It must allow you to save the text files.

e It must allow you to quit.

When writing a GUI program, it’s often useful to draw a sketch of how you want it to look.
Figure 12-1 shows a simple layout that satisfies the requirements.

269

270 CHAPTER 12 GRAPHICAL USER INTERFACES

<Enter filename here> ‘ ‘ Open ‘ ‘ Save

<Edit text here>

Figure 12-1. A sketch of the text editor

The elements of the interface can be used as follows:

1. Type a file name in the text field to the left of the buttons and click Open to open a file.
The text contained in the file is put in the text field at the bottom.

2. You can edit the text to your heart’s content in the large text field.

3. Ifand when you want to save your changes, click the Save button, which again uses the text
field containing the file name—and writes the contents of the large text field to the file.

4. There is no Quit button—if the user closes the window, the program quits.

In some languages, writing a program like this is a daunting task, but with Python and the
right GUI toolkit, it’s really a piece of cake. (You may not agree with me right now, but by the
end of this chapter I hope you will.)

A Plethora of Platforms

Before writing a GUI program in Python, you have to decide which GUI platform you want to
use. Simply put, a platform is one specific set of graphical components, accessible through a
given Python module, called a GUI toolkit. There are many such toolkits available for Python.
Some of the most popular ones are listed in Table 12-1. For an even more detailed list, you
could search the Vaults of Parnassus (see Appendix C) for the keyword “GUI.” Cameron Laird

CHAPTER 12 GRAPHICAL USER INTERFACES

also maintains a Web page with an extensive list of GUI toolkits for Python (http://phaseit.net/
claird/comp.lang.python/python GUI.html).

Table 12-1. Some Popular GUI Toolkits Available for Python

Package Description

Tkinter Uses the Tk platform. Readily available. Semistandard.
wxPython Based on wxWindows. Increasingly popular.
PythonWin Windows only. Uses native Windows GUI capabilities.
Java Swing Jython only. Uses native Java GUI capabilities.

PyGTK Uses the GTK platform. Especially popular on Linux.
PyQt Uses the Qt platform. Especially popular on Linux.

Information about Tkinter and Jython with Swing can be found in the section “But I'd
Rather Use . ..” later in this chapter. For information about PythonWin, PyGTK, and PyQT,
check out the project home pages (see Appendix C).

Asyou can see, there are plenty of packages to choose from. So which toolkit should you
use? It is largely a matter of taste, although each toolkit has its advantages and drawbacks.
Tkinter is sort of a de facto standard because it has been used in most “official” Python GUI
programs, and it is included as a part of the Windows binary distribution. On UNIX, however,
you have to compile and install it yourself.

Another toolkit that is gaining in popularity is wxPython. This is a mature and feature-rich
toolkit, which also happens to be the favorite of Python’s creator, Guido van Rossum.

Downloading and Installing wxPython

To download wxPython, simply visit the download page, http://wxpython.org/download.php.
This page gives you detailed instructions about which version to download, as well as what
prerequisites the various versions have. If you're running Windows, you probably want a prebuilt
binary. You can choose between one version with Unicode support and one without; unless
you know you need Unicode, it probably won’t make much of a difference which one you choose.
Make sure you choose the binary that corresponds to your version of Python. A version of
wxPython compiled for Python 2.3 won’t work with Python 2.4, for example.

For Mac OS X, you should again choose the wxPython version that agrees with your Python
version; you might also need to take the OS version into consideration. Again, you may need
to choose between a version with Unicode support and one without; just take your pick. The

download links and associated explanations should make it perfectly clear which version you need.

There are also RPM packages for various Linux distributions. If you're running a Linux
distribution with RPM, you should at least download the wxPython common and runtime pack-
ages; you probably won’t need the devel package. Again, choose the version corresponding to
your Python version and Linux distribution.

27

272

CHAPTER 12 GRAPHICAL USER INTERFACES

Note If you're using a package system with automatic downloads, such as those found in Debian Linux
and Gentoo Linux, for example, you may very well be able to get wxPython directly through that system.

If none of the binaries fit your hardware or operating system (or Python version, for that
matter), you can always download the source distribution. Getting this to compile might require
downloading further source packages for various prerequisites, and is beyond the scope of this
chapter. There are fairly detailed explanations on the wxPython download page, though.

Once you've got wxPython itself, I would strongly suggest that you download the demo
distribution, which contains documentation, sample programs, and one very thorough (and
instructive) demo program. This demo program exercises most of the wxPython features, and
lets you see the source code for each portion in a very user-friendly manner—definitely worth
alook if you want to keep learning about wxPython on your own.

Installation should be fairly automatic and painless. To install Windows binaries, simply
run the downloaded executables (.exe files); in OS X, the downloaded file should appear as if it
were a CD-ROM that you can open, with a . pkg you can double-click; to install using RPM, consult
your RPM documentation (or take a look at the brief discussion in Chapter 1). Both the Windows
and OS X versions will start an install wizard, which ought to be simple to follow. Simply accept
all default settings and keep clicking “Continue” and finally “Finish.”

Getting Started

To see whether your installation works, you could try out the wxPython demo (which must be
installed separately). In Windows, It should be available in your Start menu; when installing it
in OS X, you could simply drag the wxPython Demo file to Applications, and then run it from
there later. Once you've finished playing with the demo (for now, anyway), you can get started
writing your own program, which is, of course, much more fun.

To get started, import the wx module:

import wx

There are several ways of writing wxPython programs, but one thing you can’t escape is
creating an application object. The basic application class is called wx.App, and it takes care of
all kinds of initialization behind the scenes. The simplest wxPython program would be some-
thing like this:

import wx

app = wx.App()
app.MainLoop()

Note If you're having trouble getting wx . App to work, you may want to try to replace it with wx . PySimpleApp.

CHAPTER 12 GRAPHICAL USER INTERFACES

Because there are no windows the user can interact with, the program exits immediately.

Note As you can see from this example, the methods in the wx package are all capitalized, contrary to
common practice in Python. The reason for this is that the method names mirror method names from the
underlying C++ package, wxWidgets. Even though there is no formal rule against capitalized method or function
names, the norm is to reserve such names for classes.

Creating Windows and Components

Windows, also known as frames, are simply instances of the wx. Frame class. Widgets in the wx
framework are created with their parent as the first argument to their constructor. If you're
creating an individual window, there will be no parent to consider, so simply use None, as
you see in Listing 12-1. Also, make sure you call the window’s Show method before you call
app.MainLoop—otherwise it will remain hidden. (You could also call win. Show in an event
handler; I discuss events a bit later.)

Listing 12-1. Creating and Showing a Frame

import wx

app = wx.App()

win = wx.Frame(None)
win.Show()
app.MainLoop()

If you run this program, you should see a single window appear, similar to that in
Figure 12-2.

Figure 12-2. A GUI program with only one window

Adding a button to this frame is about as simple as it can be—simply instantiate wx.Button,
using win as the parent argument (see Listing 12-2).

273

274

CHAPTER 12 GRAPHICAL USER INTERFACES

Listing 12-2. Adding a Button to a Frame

import wx

app = wx.App()

win = wx.Frame(None)
btn = wx.Button(win)
win. Show()
app.MainLoop()

This will give you a window with a single button, as shown in Figure 12-3.

- BEX]

Figure 12-3. The program after adding a button

There are certainly a few rough corners still; the window has no title, the button has no
label, and you probably don’t want the button to cover the entire window in this way . . .

Labels and Positions

You can set the labels of widgets when you create them, by using the label argument of the
constructor. Similarly, you can set the title of frames by using the title argument. I find it most
practical to use keyword arguments with the wx constructors, so I don’t have to remember their
order. You can see an example of this in Listing 12-3.

Listing 12-3. Adding Labels and Titles with Keyword Arguments

import wx
app = wx.App()
win = wx.Frame(None, title="Simple Editor")

loadButton = wx.Button(win, label='Open')

saveButton = wx.Button(win, label='Save')
win. Show()

app.MainLoop()

CHAPTER 12 GRAPHICAL USER INTERFACES

The result of running the previous program should be something like what you see in
Figure 12-4.

Figure 12-4. A window with layout problems

As you can see, something isn’t quite right about this version of the program; one button
seems to be missing! Actually, it’s not missing—it’s just hiding. By placing the buttons more
carefully, you should be able to uncover the hidden button. A very basic (and not very practical)
method is to simply set positions and size by using the pos and size arguments to the constructors,
as in the code presented in Listing 12-4.

Listing 12-4. Setting Button Positions

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))

win. Show()
loadButton = wx.Button(win, label='Open',

pos=(225, 5), size=(80, 25))
saveButton = wx.Button(win, label='Save',

pos=(315, 5), size=(80, 25))
filename = wx.TextCtrl(win, pos=(5, 5), size=(210, 25))

contents = wx.TextCtrl(win, pos=(5, 35), size=(390, 260),
style=wx.TE_MULTILINE | wx.HSCROLL)

app-MainLoop()

As you can see, both position and size are pairs of numbers. The position is a pair of x and
y coordinates, while the size consists of width and height.

There are another couple of new things in this piece of code: I've created a couple of text
controls (wx.TextCtrl objects), and given one of them a custom style. The default text control is
a text field, with a single line of editable text, and no scroll bar. In order to create a text area, you

275

276

CHAPTER 12 GRAPHICAL USER INTERFACES

can simply tweak the style with the style parameter. The style is actually a single integer, but
you don’t have to specify it directly. Instead, you use bitwise OR (the pipe) to combine various
style facets that are available under special names from the wx module. In this case, I've combined
wx.TE_MULTILINE, to get a multiline text area (which, by default, has a vertical scroll bar),
and wx.HSCROLL, to get a horizontal scroll bar. The result of running this program is shown in
Figure 12-5.

_1Simple Editor 9 [=] <

Figure 12-5. Properly positioned components

More Intelligent Layout

Although specifying the geometry of each component is easy to understand, it can be a bit
tedious. Doodling a bit on graph paper may help in getting the coordinates right, but there are
more serious drawbacks to this approach than having to play around with numbers. If you run
the program and try to resize the window, you'll notice that the geometries of the components
don’t change. This is no disaster, but it does look a bit odd. When you resize a window, you
assume that its contents will be resized and relocated as well.

If you consider how I did the layout, this behavior shouldn’t really come as a surprise. I
explicitly set the position and size of each component, but didn’t say anything about how they
should behave when the window was resized. There are many ways of specifying this. One of
the easiest ways of doing layout in wx is using sizers, and the easiest one to use is wx.BoxSizer.

A sizer manages the size of contents; you simply add widgets to a sizer, together with a
few layout parameters, and then give this sizer the job of managing the layout of their parent
component. In our case, we’ll add a background component (a wx.Panel), create some nested
wx.BoxSizers and then set the sizer of the panel with its SetSizer method, as shown in Listing 12-5.

Listing 12-5. Using a Sizer

import wx

app = wx.App()
win = wx.Frame(None, title="Simple Editor", size=(410, 335))

CHAPTER 12 GRAPHICAL USER INTERFACES

bkg = wx.Panel(win)

loadButton = wx.Button(bkg, label='Open')

saveButton = wx.Button(bkg, label='Save')

filename = wx.TextCtrl(bkg)

contents = wx.TextCtrl(bkg, style=wx.TE _MULTILINE | wx.HSCROLL)

hbox = wx.BoxSizer()

hbox.Add(filename, proportion=1, flag=wx.EXPAND)
hbox.Add(loadButton, proportion=0, flag=wx.LEFT, border=5)
hbox.Add(saveButton, proportion=0, flag=wx.LEFT, border=5)

vbox = wx.BoxSizer(wx.VERTICAL)
vbox.Add(hbox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
vbox.Add(contents, proportion=1,

flag=wx.EXPAND | wx.LEFT | wx.LEFT | wx.LEFT, border=5)

bkg.SetSizer(vbox)
win.Show()

app.MainLoop()

This code gives the same result as the previous program, but instead of using lots of absolute
coordinates, I am now placing things in relation to one another.

The constructor of the wx.BoxSizer takes an argument determining whether it’s horizontal
or vertical (wx.HORIZONTAL or wx.VERTICAL), with horizontal being the default. The Add method
takes several arguments. The proportion argument sets the proportions according to which
space is allocated when the window is resized. For example, in the horizontal box sizer (the first
one), the filename widget gets all of the extra space when resizing. If each of the three had had
their proportion set to 1, each would have gotten an equal share. You can set the proportion to
any number.

The flag argument is similar to the style argument of the constructor; you construct it by
using bitwise OR between symbolic constants (integers that have special names). The wx.EXPAND
flag makes sure the component will expand into the allotted space. The wx.LEFT, wx.RIGHT,
wx.TOP, wx.BOTTOM, and wx.ALL flags determine on which sides the border argument applies,
and the border arguments gives the width of the border (spacing).

And that’s it. I've got the layout I wanted. One crucial thing is lacking, however. If you click
the buttons, nothing happens.

Tip For more information on sizers, or anything else related to wxPython, check out the wxPython demo.
It has sample code for anything you might want to know about, and then some. If that seems daunting, check
out the wxPython Web site, http://wxpython.org.

277

278

CHAPTER 12 GRAPHICAL USER INTERFACES

Event Handling

In GUI lingo, the actions performed by the user (such as clicking a button) are called events.
You need to make your program notice these events somehow, and then react to them. You
accomplish this by binding a function to the widget where the event in question might occur.
When the event does occur (if ever), that function will then be called. You link the event
handler to a given event with a widget method called Bind.

Let’s assume that you have written a function responsible for opening a file, and you've
called it load. Then you can use that as an event handler for loadButton as follows:

loadButton.Bind(wx.EVT BUTTON, load)

This is pretty intuitive, isn’t it? I've linked a function to the button—when the button is
clicked, the function is called. The symbolic constant wx.EVT _BUTTON signifies a button event.
The wx framework has such event constants for all kinds of events, from mouse motion to
keyboard presses and more.

WHAT’S THIS LOAD STUFF ABOUT?

There is nothing magical about my choice to use loadButton and load as the button and handler names—
even though the button text says “Open.” It’s just that if | had called the button openButton, open would
have been the natural name for the handler, and that would have made the built-in file-opening function open
unavailable. While there are ways of dealing with this, | found it easier to use a different name.

The Finished Program

Let’s fill in the remaining blanks. All you need now are the two event handlers, load and save.
When an event handler is called, it receives a single event object, which holds information
about what happened, but let’s ignore that here because you're only interested in the fact that
a click occurred.

Even though the event handlers are the meat of the program, they are surprisingly simple.
Let’s take a look at the load function first. It looks like this:

def load(event):
file = open(filename.GetValue())
contents.SetValue(file.read())
file.close()

The file opening/reading part ought to be familiar from Chapter 11. As you can see, the file
name is found by using filename’s GetValue method (where filename is the small text field,
remember?). Similarly, to put the text into the text area, you simply use contents.SetValue.

The save function is just as simple: It’s the exact same as load—except thatithasa 'w' and
awrite for the file-handling part, and GetValue for the text area:

def

CHAPTER 12 GRAPHICAL USER INTERFACES

save(event):

file = open(filename.GetValue(), 'w')
file.write(contents.GetValue())
file.close()

And that’s it. Now I simply bind these to their respective buttons, and the program is ready

to run. See Listing 12-6 for the final program.

Listing 12-6. The Final GUI Program

impo
def

def

app
win

bkg

load
load

save
save

file
cont

hbox
hbox
hbox
hbox

vbox

vbox
vbox

bkg.
win.

app.

rt wx

load(event):

file = open(filename.CGetValue())
contents.SetValue(file.read())
file.close()

save(event):

file = open(filename.GetValue(), 'w')
file.write(contents.GetValue())
file.close()

wx. App()
wx.Frame(None, title="Simple Editor", size=(410, 335))

wx.Panel(win)

Button = wx.Button(bkg, label='Open')
Button.Bind(wx.EVT BUTTON, load)

Button = wx.Button(bkg, label='Save')
Button.Bind(wx.EVT BUTTON, save)

name = wx.TextCtrl(bkg)
ents = wx.TextCtrl(bkg, style=wx.TE MULTILINE | wx.HSCROLL)

= wx.BoxSizer()

.Add(filename, proportion=1, flag=wx.EXPAND)
.Add(loadButton, proportion=0, flag=wx.LEFT, border=5)
.Add(saveButton, proportion=0, flag=wx.LEFT, border=5)

= wx.BoxSizer(wx.VERTICAL)
.Add(hbox, proportion=0, flag=wx.EXPAND | wx.ALL, border=5)
.Add(contents, proportion=1,

flag=wx.EXPAND | wx.LEFT | wx.BOTTOM | wx.RIGHT, border=5)

SetSizer(vbox)
Show()

MainLoop()

279

280 CHAPTER 12 GRAPHICAL USER INTERFACES

You can try out the editor using the following steps:

1. Run the program. You should get a window like the one in the previous runs.
2. Type something in the large text area (for example, “Hello, world!”).

3. Type afile name in the small text field (for example, hello.txt). Make sure that this file
does not already exist or it will be overwritten.

Click the Save button.

Close the editor window (just for fun).
Restart the program.

Type the same file name in the little text field.

Click the Open button. The text of the file should reappear in the large text area.

© o N o a

Edit the file to your heart’s content, and save it again.

Now you can keep opening, editing, and saving until you grow tired of that—then you can
start thinking of improvements. (How about allowing your program to download files with
urllib, for example?)

HEY! WHAT ABOUT PYW?

In Chapter 1, | asked you to give your file the . pyw ending and double-click it (in Windows). Nothing happened,
and | promised to explain it later. In Chapter 10, | mentioned it again, and said I'd explain it in this chapter. So
| will.

It's no big deal, really. It’s just that when you double-click an ordinary Python script in Windows, a DOS
window appears with a Python prompt in it. That's fine if you use print and raw_input as the basis of your
interface, but now that you know how to make graphical user interfaces, this DOS window will only be in your
way. The truth behind the . pyw window is that it will run Python without the DOS window—uwhich is just
perfect for GUI programs.

But I’d Rather Use ...

There are so many GUI toolkits for Python thatI can’t possibly show you how to use all of them;
I will, however, give you some examples from a couple of the more popular ones (Tkinter and
Jython/Swing).

CHAPTER 12 GRAPHICAL USER INTERFACES

To illustrate the various packages, I've created a simple example—simpler, even, than the editor example used
earlier in the cha