theForger's Win32 API Tutorial

[contents | #winprog |

Welcome to Version 2.0 of theForger's Win32 API

Tutorial

Thistutorial attempts to get you started devel oping with the Win32 API ﬁ@

as quickly and clearly as possible. It ismeant to beread asawhole, :mmm -

so please read it from beginning to end before asking questions... most m“__ g

of them will probably be answered. Each section builds on the sections e — | o
beforeit. | have also added some solutions to common errorsin | '
Appendix A. If you ask me a question that is answered on this page,

you will look very silly.

. Download the complete example Source Code which is refered to throughout this
document.
. Or Download the entire tutorial (source included) for browsing in the convenience of your

own harddrive. This file may not include minor changes such as spelling corrections that
are present on the website.

If you are viewing thislocally or on another website, visit the #winprog website for the current
official copy.

. Fedling generous?
. Need more help?

Contents

. Basics

Getting Started

A Simple Window

Handling M essages
Understanding The Message L oop
Using Resources

Menus and |cons

Dialogs, GUI coders best friend
Modeless Dialogs

© N Ok WDNPRE

file:///C|/dona/forgers-win32-tutorial/tutorial/index.html (1 of 3) [7/8/2003 4:34:43 PM]

http://www.winprog.org/
http://pocketirc.com/
file:///C|/dona/forgers-win32-tutorial/tutorial/files/source.zip
http://winprog.org/tutorial/files/forgers-win32-tutorial.zip
http://winprog.org/tutorial/
http://winprog.org/tutorial/

theForger's Win32 API Tutorial

9. Standard Controls. Button, Edit, List Box, Static
10. But what about... (Dialog FAQ)
. Creating asimple application
1. App Part 1: Creating controls at runtime
2. App Part 2: Using files and the common dialogs
3. App Part 3: Tool and Status bars
4. App Part 4: Multiple Document Interface

. Graphics Device Interface
1. Bitmaps, Device Contexts and BitBlt

2. Transparent Bitmaps
3. Timers and Animation
4. Text, Fonts and Colours

. Tools and Documentation
1. Recommended Books and References

2. FreeVisual C++ Command Line Tools
3. Free Borland C++ Command Line Tools

. Appendices
o Appendix A: Solutionsto Common Errors

o Appendix B: Why you should learn the APl before MFC
o Appendix C: Resource file notes

I've had reports that the source code presented in the documents itself doesn't display line breaks
properly in very old versions of Netscape, if you encounter this problem please refer to the code in
the source files included in the zip download.

Feeling generous?

Y ou may use thistutorial for absolutely no charge, however there are costs
conATe | associated with hosting it on the web. If you found it to be of use to you and want to
give something back, | would be grateful for donations of any amount to help pay for this website.
This page gets approximately 15,000 hits amonth, and it adds up after awhile:)

Once again, there is absolutely no obligation to pay, and you won't get anything in addition to
what's already here, but if you want to help out, that would be great... just click the PayPal image.

Enjoy the tutorial,
Brook

file:///IC|/dona/forgers-win32-tutorial/tutorial/index.html (2 of 3) [7/8/2003 4:34:43 PM]

https://www.paypal.com/xclick/business=forger%40winprog.org&item_name=theForger%27s+Win32+API+Programming+Tutorial&no_shipping=1

theForger's Win32 API Tutorial

| would like to thank the following for the contributions they've made: Yih Horng, Todd Troxell, T
Frank Zvovushe, Suzanne Lorrin, Seth McCarus, Crispina Chong, John Crutchfield, Scott
Johnstone, Patrick Sears, Juan Demerutis, Richard Anthony, Alex Fox, Bob Rudis, Eric
Wadsworth, Chris Blume. As well as those who have simply written to say they've found the
tutorial useful. It's much appreciated!

Need more help?

In general | will freely answer any questions that | receive by email, or point you in the direction
of aresource that may be of assistance.

At the moment | am busy with a couple of large ongoing projects and don't have the time to work
on custom examples or small software projects. | would however be willing to entertain job offers

)

Feedl free to contact me.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/index.html (3 of 3) [7/8/2003 4:34:43 PM]

mailto:forger(nospam)winprog.org
mailto:forger(nospam)winprog.org

Tutorial: Getting Started

[contents | #winprog |

Getting Started

What this tutorial is all about

Thistutorial isintended to present to you the basics (and common extras) of writing programs
using the Win32 API. The language used is C, most C++ compilerswill compileit aswell. Asa
matter of fact, most of the information is applicable to any language that can access the API,
inlcuding Java, Assembly and Visual Basic. | will not however present any code relating to these
languages and you're on your own in that regard, but several people have previously used this
document in said languages with quite a bit of success.

Thistutorial will not teach you the C language, nor will it tell you how to run your perticular
compiler (Borland C++, Visual C++, LCC-Win32, etc...) | will however take afew momentsin
the appendix to provide some notes on using the compilers | have knowledge of.

If you don't know what a macro or atypedef are, or how aswi t ch() statement works, then turn
back now and read a good book or tutorial on the C language first.

Important notes

Sometimes throughout the text | will indicate certain things are IMPORANT to read. Because
they screw up so many people, if you don't read it, you'll likely get caught too. Thefirst oneis
this:

The source provided in the example ZI P fileisnot optional! | don't include all the codein the
text itself, only that which is relevant to whatever I'm currently discussing. In order to see how
this code fits in with the rest of the program, you must take alook at the source provided in the
ZIPfile.

And here's the second one;

Read the whole thing! If you have a question during one section of the tutorial just have alittle
patience and it might just be answered later on. If you just can't stand the thought of not knowing,
at least skim or search (yes computers can do that) the rest of the document before asking the nice
folks on IRC or by email.

file:///C|/dona/forgers-win32-tutorial/tutorial/start.html (1 of 4) [7/8/2003 4:34:43 PM]

http://www.winprog.org/

Tutorial: Getting Started

Another thing to remember is that a question you might have about subject A might end up being
answered in adiscussion of B or C, or maybe L. So just look around alittle.

Ok | think that's al the ranting | have to do for the moment, lets try some actual code.

The simplest Win32 program

If you are a complete beginner lets make sure you are capable of compiling a basic windows
application. Slap the following code into your compiler and if al goes well you should get one of
the lamest programs ever written.

Remember to compile thisas C, not C++. It probably doesn't matter, but since all the code hereis
C only, it makes sense to start off on the right track. In most cases, al thisrequiresif you add your
codetoa. c fileinstead of a. cpp file. If al of this hurtsyour head, just call thefilet est . c
and be done with it.

#i ncl ude <wi ndows. h>

i nt WNAPI W nMai n(H NSTANCE hl nst ance, HI NSTANCE hPrevl nst ance,
LPSTR | pCrdLi ne, i nt nChrdShow)

{
MessageBox(NULL, " Goodbye, cruel world!", "Note", M3 CK);
return O,

}

If that doesn't work, your first step isto read whatever errors you get and if you don't understand
them, look them up in the help or whatever documents accompany your compiler. Make sure you
have specified a Win32 GUI (NOT " Console") project/makefile/tar get, whatever appliesto
your compiler. Unfortunately | can't help much with this part either, as errors and how to fix
them vary from compiler to compiler (and person to person).

Y ou may get some warnings about you not using the parameters supplied to W nMai n() . Thisis

OK. Now that we've established you can in fact compile a program, lets go through that little bit
of code....

i nt W NAPI W nMai n(HE NSTANCE hl nst ance, HI NSTANCE hPrevl nst ance,
LPSTR | pCndLi ne, int nChrdShow)

file:///C|/dona/forgers-win32-tutorial/tutorial/start.html (2 of 4) [7/8/2003 4:34:43 PM]

Tutorial: Getting Started

W nMai n() iswindows equivalent of mai n() from DOS or UNIX. Thisiswhere your program
starts execution. The parameters are as follows:

HI NSTANCE hl nst ance
Handle to the programs executable module (the .exe file in memory)
HI NSTANCE hPrevl nst ance
Always NULL for Win32 programs.
LPSTR | pCndLi ne
The command line arguments as a single string. NOT including the program name.
I nt nCndShow
An integer value which may be passed to ShowwW ndow() . We'll get to this later.

hl nst ance isused for things like loading resources and any other task which is performed on a
per-module basis. A moduleis either the EXE or aDLL loaded into your program. For most (if
not all) of thistutorial, there will only be one module to worry about, the EXE.

hPr evl nst ance used to be the handle to the previously run instance of your program (if any)
in Winl6. This no longer applies. In Win32 you ignore this parameter.

Calling Conventions

W NAPI specifies the calling convention and isdefined as_ st dcal | . If you don't know what
this means, don't worry about it asit will not really affect us for the scope of this tutorial. Just
remember that it's needed here.

Win32 Data Types

Y ou will find that many of the normal keywaords or types have windows specific definitions,

Ul NT for unsi gned i nt, LPSTRfor char * etc... Which you choose isreally up to you. If
you are more comfortable using char * instead of LPSTR, fedl free to do so. Just make sure that
you know what atype is before you substitute something else.

Just remember afew things and they will be easy to interpret. An LP prefix stands for Long
Pointer. In Win32 the Long part is obsolete so don't worry about it. And if you don't know what a
pointer is, you can either 1) Go find a book or tutorial on C, or 2) just go ahead anyway and screw
up alot. I'd really recommend #1, but most people go with #2 (I would :). But don't say | didn't
warn you.

Next thing isaCfollowing aLP indicatesaconst pointer. LPCSTR indicates a pointer to a

file:///C|/dona/forgers-win32-tutorial/tutorial/start.html (3 of 4) [7/8/2003 4:34:43 PM]

Tutorial: Getting Started

const string, one that can not or will not be modified. LPSTR on the other hand isnot const and
may be changed.

You might also seea T mixed in there. Don't worry about this for now, unless you are
intentionally working with Unicode, it means nothing.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/start.html (4 of 4) [7/8/2003 4:34:43 PM]

mailto:forger(nospam)winprog.org

Tutoria: A Simple Window

[contents | #winprog]

A Simple Window

Example: ssmple_window

Sometimes people come on IRC and ask "How do | make a [The title of my w I]]
window?'...Wedll it's not entirely that ssmple I'm afraid. It's not difficult '
once you know what you're doing but there are quite afew things you
need to do to get a window to show up; And they're more than can be
simply explained over a chat room, or a quick note.

| always liked to do things first and learn them later...so here isthe
code to a simple window which will be explained shortly.

#i ncl ude <wi ndows. h>
const char g szC assNane[] = "nyW ndowCl ass"”;

/| Step 4. the Wndow Procedure
LRESULT CALLBACK WhdProc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM | Par an)

{

switch(nsg)

{
case WM CLOSE:
Dest r oyW ndow(hwnd) ;
br eak;
case WM DESTROY:
Post Qui t Message(0) ;
br eak;
def aul t:
return Def WndowPr oc(hwnd, nsg, wParam | Param;
}
return O;

int WNAPI W nMai n(HH NSTANCE hl nst ance, HI NSTANCE hPrevl nst ance,
LPSTR | pCndLi ne, int nCrdShow)

VWNDCLASSEX wc;
HWND hwnd;
MSG Msg;

//Step 1. Registering the Wndow C ass
wc. cbSi ze = si zeof (WNDCLASSEX) ;

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (1 of 8) [7/8/2003 4:34:44 PM]

http://www.winprog.org/

Tutoria: A Simple Window

i f(!Registerd asskEx(&wc))

{
MessageBox(NULL, "W ndow Regi stration Failed!",
MB_| CONEXCLAMATION | MB_(X) ;
return O;
}

/] Step 2: Creating the Wndow
hwnd = Creat eW ndowEx(
W5 EX CLI ENTEDGE,
g_szC assNane,
"The title of ny w ndow',
W5 _OVERLAPPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT, 240, 120,
NULL, NULL, hlnstance, NULL);

i f (hwnd == NULL)

{
MessageBox(NULL, "W ndow Creation Failed!",
MB_| CONEXCLAMATI ON | MB_(XK);
return O;
}

ShowW ndow(hwnd, nCndShow) ;
Updat eW ndow(hwnd) ;

/'l Step 3: The Message Loop
whi | e(Get Message(&Vsg, NULL, O, 0) > 0)
{
Tr ansl at eMessage(&\VsQ) ;
Di spat chMessage(&VsQ) ;
}
return Msg. wPar am

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (2 of 8) [7/8/2003 4:34:44 PM]

we. styl e = 0;

we. | pf nWhdPr oc = WhdPr oc;

wc. cbd sExtra = 0;

wc. cbWhdExt r a = 0;

wc. hl nst ance = hl nst ance;

wc. hl con = Loadl con(NULL, | DI _APPLI CATI ON);
wc. hCur sor = LoadCur sor (NULL, | DC _ARROW ;

wc. hbr Background = (HBRUSH) (COLOR_W NDOW1) ;

we. | pszMenuNane = NULL,;

we. | pszCl assNane = g_szC assNane;

wc. hl conSm = Loadl con(NULL, | DI _APPLI CATI ON);

"EBrror!",

"Error!",

Tutoria: A Simple Window

For most part this is the simplest windows program you can write that actually creates a functional window, a
mere 70 or so lines. If you got the first example to compile then this one should work with no problems.

Step 1. Registering the Window Class

A Window Class stores information about a type of window, including it's Window Procedure which controls
the window, the small and large icons for the window, and the background color. Thisway, you can register a
class once, and create as many windows as you want from it, without having to specify all those attributes over
and over. Most of the attributes you set in the window class can be changed on a per-window basisif desired.

A Window Class has NOTHING to do with C++ classes.
const char g _szd assNane[] = "nmyW ndowCl ass";

The variable above stores the name of our window class, we will use it shortly to register our window class with
the system.

VWNDCLASSEX wc;

wc. cbSi ze = si zeof (WNDCLASSEX) ;

wec. styl e = 0;

we. | pf nWhdPr oc = WhdPr oc;

wc. cbd sExtra = 0;

wc. cbWhdExtr a = 0;

we. hl nst ance = hl nst ance;

wc. hl con = Loadl con(NULL, | DI _APPLI CATI ON);
we. hCur sor = LoadCur sor (NULL, | DC_ARROW ;

wc. hbr Backgr ound = (HBRUSH) (COLOR_W NDOW1) ;

we. | pszMenuNane = NULL,;

we. | pszCl assNane = g_szC assNane;

we. hl conSm = Loadl con(NULL, | DI _APPLI CATI ON);

i f(!Registerd asskEx(&wc))

{
MessageBox(NULL, "W ndow Regi stration Failed!", "Error!",
MB_| CONEXCLAMATION | MB_(XK) ;
return O;
}

Thisisthe code we usein W nMai n() to register our window class. We fill out the members of a
VWNDCLASSEX structure and call Regi st er Cl assEx() .

The members of the struct affect the window class as follows:
chSi ze

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (3 of 8) [7/8/2003 4:34:44 PM]

Tutoria: A Simple Window

The size of the structure.
style
Class Styles (CS_*), not to be confused with Window Styles (W5_*) This can usually be set to 0.
| pf nWhdPr oc
Pointer to the window procedure for this window class.
cbd sExtra
Amount of extra data allocated for this classin memory. Usually 0.
cbWhdExtra
Amount of extra data allocated in memory per window of thistype. Usually 0.
hl nst ance
Handle to application instance (that we got in the first parameter of W nMai n()).
hl con
Large (usually 32x32) icon shown when the user presses Alt+Tab.
hCur sor
Cursor that will be displayed over our window.
hbr Backgr ound
Background Brush to set the color of our window.
| pszMenuNane
Name of a menu resource to use for the windows with this class.
| pszCl assNane
Name to identify the class with.
hl conSm
Small (usually 16x16) icon to show in the taskbar and in the top left corner of the window.

Don't worry if that doesn't make much sense to you yet, the various parts that count will be explained more
later. Another thing to remember isto not try and remember this stuff. | rarely (never) memorize structs, or
function parameters, thisis awaste of effort and, more importantly, time. If you know the functions you need to
call then it isamatter of secondsto look up the exact parametersin your help files. If you don't have help files,
get them. Y ou arelost without. Eventually you will come to know the parameters to the functions you use most.

Wethen call Regi st er G assEx() and check for failure, if it fails we pop up a message which says so and

abort the program by returning from the W nMai n() function.

Step 2: Creating the Window

Once the class is registered, we can create awindow with it. Y ou should look up the paramters for

Cr eat eW ndowEx () (asyou should ALWAY S do when using anew API call), but I'll explain them briefly

here.
HAD hwnd;
hwnd = Cr eat eW ndowEx(
W5 EX CLI ENTEDGE,

g_szC assNane,
"The title of ny w ndow',

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (4 of 8) [7/8/2003 4:34:44 PM]

Tutoria: A Simple Window

W5 OVERLAPPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT, 240, 120,
NULL, NULL, hlnstance, NULL);

Thefirst parameter (W5_EX_CLI ENTEDGE) is the extended windows style, inthiscase | have set it to giveit a
sunken inner border around the window. Set it to O if you'd like to see the difference. Also play with other
values to see what they do.

Next we have the class name (g_szCl assNane), thistells the system what kind of window to create. Since
we want to create a window from the class we just registered, we use the name of that class. After that we
specify our window name or title which is the text that will be displayed in the Caption, or Title Bar on our
window.

The parameter we have as W5 OVERL APPEDW NDOWis the Window Style parameter. There are quite afew of
these and you should look them up and experiment to find out what they do. These will be covered more later.

The next four parameters (CW USEDEFAULT, CW USEDEFAULT, 320, 240) aetheX andY co-
ordinates for the top left corner of your window, and the width and height of the window. I've set the X and Y
valuesto CW USEDEFAULT to let windows choose where on the screen to put the window. Remeber that the
left of the screenisan X value of zero and it increases to the right; The top of the screenisaY value of zero
which increases towards the bottom. The units are pixels, which is the smallest unit a screen can display at a
given resolution.

Next (NULL, NULL, g _hlnst, NULL)we havethe Parent Window handle, the menu handle, the
application instance handle, and a pointer to window creation data. In windows, the windows on your screen are
arranged in a heirarchy of parent and child windows. When you see a button on awindow, the button is the
Child and it is contained within the window that isit's Parent. In this example, the parent handle is NULL
because we have no parent, thisis our main or Top Level window. The menu is NULL for now since we don't
have one yet. The instance handle is set to the value that is passed in as the first parameter to W nVai n() . The
creation data (which | amost never use) that can be used to send additional datato the window that is being
created isalso NULL.

If you're wondering what this magic NULL is, it's simply defined as O (zero). Actualy, in C it's defined as
((voi d*) 0), sinceit'sintended for use with pointers. Therefore you will possibly get warnings if you use
NULL for integer values, depending on your compiler and the warning level settings. Y ou can choose to ignore
the warnings, or just use O instead.

Number one cause of people not knowing what the heck iswrong with their programsis probably that they
didn't check the return values of their callsto seeif they failed or not. Cr eat eW ndow() will fail at some
point even if you're an experianced coder, simply because there are lots of mistakes that are easy to make. Untill
you learn how to quickly identify those mistakes, at least give yourself the chance of figuring out where things
go wrong, and Always check return values!

i f (hwnd == NULL)
{

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (5 of 8) [7/8/2003 4:34:44 PM]

Tutoria: A Simple Window

MessageBox(NULL, "W ndow Creation Failed!", "Error!",
MB_| CONEXCLAMATI ON | MB_(K);
return O;

}

After we've created the window and checked to make sure we have a valid handle we show the window, using
the last parameter in W nMai n() and then update it to ensure that it has properly redrawn itself on the screen.

ShowW ndow(hwnd, nCndShow) ;
Updat eW ndow(hwnd) ;

The nCnd Show parameter is optional, you could ssimply passin SW SHOANORVAL all the time and be done
with it. However using the parameter passed into W nMai n() giveswhoever isrunning your program to
specify whether or not they want your window to start off visible, maximized, minimized, etc... Y ou will find
options for these in the properties of windows shortcuts, and this parameter is how the choice is carried out.

Step 3: The Message Loop

Thisisthe heart of the whole program, pretty much everything that your program does passes through this point
of control.

whi | e(Get Message(&Vsg, NULL, O, 0) > 0)
{

Transl at eMessage(&\VsQ) ;

Di spat chMessage(&VsQ) ;

}
return Msg. wPar am

Get Message() getsamessage from your application's message queue. Any time the user moves the mouse,
types on the keyboard, clicks on your window's menu, or does any number of other things, messages are
generated by the system and entered into your program's message queue. By calling Get Message() you are
requesting the next available message to be removed from the queue and returned to you for processing. If there
iIsno message, Get Message() Blocks. If you are unfamiliar with the term, it means that it waits untill thereis
amessage, and then returnsit to you.

Transl at eMessage() does some additional processing on keyboard events like generating WM CHAR
messages to go along with WM_KEYDOWN messages. Finally Di spat chMessage() sendsthe message out to
the window that the message was sent to. This could be our main window or it could be another one, or a
control, and in some cases awindow that was created behind the scenes by the sytem or another program. This
isn't something you need to worry about because all we are concerned with is that we get the message and send
it out, the system takes care of the rest making sure it gets to the proper window.

Step 4. the Window Procedure

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (6 of 8) [7/8/2003 4:34:44 PM]

Tutoria: A Simple Window

If the message loop is the heart of the program, the window procedure isthe brain. Thisis where all the
messages that are sent to our window get processed.

LRESULT CALLBACK WhdProc(HWND hwnd, U NT nmsg, WPARAM wParam LPARAM | Par am
{

sw tch(nsqQ)

{
case WM CLOSE:
Dest r oyW ndow(hwnd) ;
br eak;
case WM DESTROY:
Post Qui t Message(0) ;
br eak;
def aul t:
return Def WndowPr oc(hwnd, nsg, wParam | Param;
}
return O;

}

The window procedure is called for each message, the HAND parameter is the handle of your window, the one
that the message appliesto. Thisisimportant since you might have two or more windows of the same class and
they will use the same window procedure (WAdPr oc()). The difference is that the parameter hwnd will be
different depending on which window it is. For example when we get the WM CL OSE message we destroy the
window. Since we use the window handle that we received as the first paramter, any other windows will not be
affected, only the one that the message was intended for.

WM CLOSE is sent when the user presses the Close Button X1 or types Alt-F4. Thiswill cause the window to be
destroyed by default, but | like to handle it explicitly, since thisis the perfect spot to do cleanup checks, or ask
the user to save files etc. before exiting the program.

When we call Dest r oyW ndow() the system sends the WM DESTROY message to the window getting
destroyed, in this case it's our window, and then destroys any remaining child windows before finally removing
our window from the system. Since thisisthe only window in our program, we are all done and we want the
program to exit, so we call Post Qui t Message() . Thispoststhe WM _QUI T message to the message loop.
We never receive this message, because it causes Get Message() to return FALSE, and asyou'll seein our
message |oop code, when that happens we stop processing messages and return the final result code, the

wPar amof VW _QUI T which happens to be the value we passed into Post Qui t Message() . Thereturn
valueisonly really useful if your program is designed to be called by another program and you want to return a
specific value.

Step 5: Thereis no Step 5

Phew. Well that'sit! If | haven't explained stuff clearly enough yet, just hang in there and hopefully things will
become more clear as we get into more usefull programs.

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (7 of 8) [7/8/2003 4:34:44 PM]

Tutoria: A Simple Window

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/simple_window.html (8 of 8) [7/8/2003 4:34:44 PM]

mailto:forger(nospam)winprog.org

Tutorial: Handling M essages

[contents | #winprog]

Handling Messages

Example: window_click

Alright, we've got awindow, but it doesn't do i The _ (o] x|
anything except what Def W ndowPr oc() alows

it to, like be sized, maximised, etc... Not really al x|

that exciting.

@ CCodettutarialhwindaw_clickiDebugiwindow_click, exe

In the next section | am going to show you how to
modify what you already have to do somehting —_—
new. Thisway | can just tell you "Handle this

message, and do thisinit..." and you will know
what | mean and be able to do so without seeing an entire example. That's the hope anyway, so pay attention :P

Okay for starters take the example code for the last window we worked on and make sure it compiles and runs as
expected. Then you can either keep working on it for the next little bit or copy it to a new project to modify.

WEe're going to add the capability to show the user what the name of our program is when they click on our
window. Not very exciting, it's basically to get the hang of handling messages. Lets look at what we have in our
WhdPr oc():

LRESULT CALLBACK WhdProc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM | Par am
{

swi tch(nsg)

{
case WM CLOSE:
Dest r oyW ndow(hwnd) ;
br eak;
case WM DESTROY:
Post Qui t Message(0) ;
br eak;
defaul t:
return Def WndowPr oc(hwnd, nsg, wParam | Paran;
}
return O,

}

If we want to handle mouse clicks, we need to add a VWM LBUT TONDOWN handler (or WV RBUT TONDOVN,
VWM MBUTTONDOW, for right and middle clicks respectively).

If | or someone else refers to handling a message they mean to add it into the WhdPr oc () of your window class
asfollows:

file:///C|/dona/forgers-win32-tutorial/tutorial/window_click.html (1 of 5) [7/8/2003 4:34:45 PM]

http://www.winprog.org/

Tutorial: Handling M essages

LRESULT CALLBACK wWhdProc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM | Par am
{
swi tch(nsg)
{
case VW LBUTTONDOWN: /] <-
Il <- we just added this stuff
br eak; I <-
case WM CLCSE:
Dest r oyW ndow(hwnd) ;
br eak;
case WM DESTROY:
Post Qui t Message(0) ;
br eak;
defaul t:
return Def WndowProc(hwnd, nsg, wParam | Param;
}

return O;

}

The order in which you handle your messages rarely matters. Just make sure you've got your br eak; after each
one. Asyou can see we added another case intoour swi t ch() . Now we want something to happen when we
get to this part of our program.

First I will present the code we want to add (that will show the user the filename of our program) and then | will
integrate it into our program. Later on | will probably just show you the code and let you integrate it into your
program. Thisis of course better for me as | don't have to type as much and it's better for you because you will be
able to add the code into ANY program and not just the ones | present. If you aren't sure how to doit, look at
the example zip fileincluded with the section.

Get Modul eFi | eNanme(hl nst ance, szFil eName, MAX PATH);
MessageBox(hwnd, szFileNane, "This programis:", MB OK | MB_| CONI NFORMVATI ON) ;

Now this code does not stand on it'sown, it can't just be slapped into our code any old place. We specifically want
it to run when the user clicks the mouse button so thisis how | would merge this small bit of code into our skeleton
program:

LRESULT CALLBACK wWhdProc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM | Par am
{

swi tch(nsg)

{
case WM LBUTTONDOM:
/1 BEG N NEW CODE
{
char szFi | eNane[MAX PATH] ;
HI NSTANCE hl nst ance = Get Modul eHandl e(NULL) ;

file:///C|/dona/forgers-win32-tutorial/tutorial/window_click.html (2 of 5) [7/8/2003 4:34:45 PM]

Tutorial: Handling M essages

Get Mbdul eFi | eNanme(hl nst ance, szFil eName, MAX_PATH);
MessageBox(hwnd, szFileNane, "This programis:", M3 (K |
VB_| CONI NFORMATI ON) ;
}
/1 END NEW CODE
br eak;
case WM CLOSE:
Dest r oyW ndow(hwnd) ;
br eak;
case WM DESTROY:
Post Qui t Message(0) ;

br eak;
defaul t:
return Def WndowPr oc(hwnd, nsg, wParam | Paran;
}
return O;

}

Note the new set of curly braces{} . These are required when declaring variablesinsideaswi t ch() statement.
This should be basic C knowledge but | thought | should point it out anyway for those of you doing things the hard

way.

So if you've added in that code, compileit now. If it works, click on the window and you should see a box with the
name of the .exe pop up.

Y ou'll notice we've added two variables, hl nst ance andszFi | eNane. Look up Get Modul eFi | eNane()
and you will see that the first parameter isa Hl NSTANCE refering to the executable module (our program, the .exe
file). Where do we get such athing? Get Modul eHandl| e() isthe answer. The referencesfor

CGet Modul eHandl e() indicate that passing in NULL will return us "a handle to the file used to create the
calling process’, which is exactly what we need, the Hl NSTANCE just mentioned. Putting all thisinformation
together we end up with the following declaration:

HI NSTANCE hl nst ance = Get Modul eHandl e(NULL) ;

Now on to the second parameter, again turning to our trusty reference manual, we seethat it is" a pointer to a
buffer that receives the path and file name of the specified module" and the datatype isLPTSTR (or LPSTRif
your references are old). Since LPSTRis equivalent to char * we can declare an array of char 'slikethis:

char szFi |l eNane[MAX PATH] ;

MAX_PATH s ahandy macro included via<wi ndows. h> that is defined to the maximum length of a buffer
needed to store afilename under Win32. We also pass MAX_PATHto Get Modul eFi | eNanme() soit knowsthe
size of the buffer.

After Get Modul eFi | eNane() iscalled, the buffer szFi | eNane will be filled with anull terminated string
containing the name of our .exe file. We pass thisvalueto MessageBox() asan easy way of displaying it to the

user.

file:///C|/dona/forgers-win32-tutorial/tutorial/window_click.html (3 of 5) [7/8/2003 4:34:45 PM]

Tutorial: Handling M essages

So if you've added in that code, compile it now. If it works, click on the window and you should see a box with the
name of the .exe pop up.

If it doesn't work, here's the full code to the program. Compare it to what you have and see what, if any, mistakes
you made.

#i ncl ude <w ndows. h>
const char g_szd assNane[] = "nyW ndowCl ass";

LRESULT CALLBACK WhdProc(HWND hwnd, U NT nsg, WPARAM wPar am LPARAM | Par am
{ swi tch(nsg)
{ case VWM LBUTTONDOWN:
{ char szFi | eNane[MAX PATH] ;
HI NSTANCE hl nstance = Get Mbdul eHandl e(NULL) ;

Get Mbdul eFi | eName(hl nst ance, szFil eNanme, MAX_PATH);
MessageBox(hwnd, szFileNane, "This programis:", MB XK |
VB_| CONI NFORMATI ON) ;
}
br eak;
case WM CLOSE:
Dest r oyW ndow(hwnd) ;
br eak;
case VWM DESTROY:
Post Qui t Message(0) ;

br eak;
defaul t:
return Def WndowPr oc(hwnd, nsg, wParam | Paran;
}
return O;

i nt W NAPI W nMi n(Hl NSTANCE hl nst ance, H NSTANCE hPrevl nst ance,
LPSTR | pCrdLi ne, int nCndShow)

{
VWADCLASSEX wc;
HAND hwnd;
M5G Msg;
wc. cbSi ze = si zeof (WNDCLASSEX) ;
we. style = 0;
we. | pf nWhdPr oc = WhdPr oc;
we. cbd sExtra = 0;

file:///C|/dona/forgers-win32-tutorial/tutorial/window_click.html (4 of 5) [7/8/2003 4:34:45 PM]

Tutorial: Handling M essages

wc. cbWhdExtra = 0;

wc. hl nst ance = hl nst ance;

wc. hl con = Loadl con(NULL, | DI _APPLI CATI ON);
we. hCur sor = LoadCur sor (NULL, | DC _ARROW ;

wc. hbr Background = (HBRUSH) (COLOR_W NDOW1) ;

we. | pszMenuNanme = NULL;

we. | pszCl assNane = g szC assNane;

wc. hl conSm = Loadl con(NULL, | DI _APPLI CATI ON);

I f(!Regi sterC assEx(&wc))

{
MessageBox(NULL, "W ndow Registration Failed!", "Error!",
VB_| CONEXCLAMATI ON | MB_(XK);
return O;
}

hwnd = Creat eW ndowEx(
W5 EX CLI ENTEDGE,
g_szC assNane,
"The title of ny w ndow',
W5 OVERLAPPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT, 240, 120,
NULL, NULL, hlnstance, NULL);

i f (hwnd == NULL)

{
MessageBox(NULL, "Wndow Creation Failed!", "Error!",
MB_| CONEXCLAMATI ON | MB_CXK);
return O;
}

ShowW ndow(hwnd, nCndShow) ;
Updat eW ndow(hwnd) ;

whi | e(Get Message(&vsg, NULL, 0, 0) > 0)

{
Tr ansl at eMessage(&vsQ) ;

Di spat chMessage(&\VsQ) ;

}
return Msg. wPar am

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/window_click.html (5 of 5) [7/8/2003 4:34:45 PM]

mailto:forger(nospam)winprog.org

Tutorial: Understanding the Message Loop

[contents | #winprog]

Understanding the Message Loop

Understanding the message |oop and entire message sending structure of windows programsis
essential in order to write anything but the most trivial programs. Now that we've tried out message
handling alittle, we should look alittle deeper into the whole process, as things can get very confusing
later on if you don't understand why things happen the way they do.

What is a Message?

A messageis an integer value. If you look up in your header files (which is good and common practice
when investigating the workings of API's) you can find things like:

#define WM I NI TDI ALOG 0x0110
#defi ne WM_COVIVAND 0x0111
#defi ne VWM _LBUTTONDOMN 0x0201

...and so on. Messages are used to communicate pretty much everything in windows at |least on basic
levels. If you want awindow or control (which isjust a specialized window) to do something you send
it amessage. If another window wants you to do something it sends you a message. If an event
happens such as the user typing on the keyboard, moving the mouse, clicking a button, then messages
are sent by the system to the windows affected. If you are one of those windows, you handle the
message and act accordingly.

Each windows message may have up to two parameters, wPar amand | Par am Originally wPar am
was 16 bit and | Par amwas 32 bit, but in Win32 they are both 32 bit. Not every message uses these
parameters, and each message uses them differently. For example the WM CL OSE message doesn't use
either, and you should ignore them both. The WM COMVAND message uses both, wPar amcontains two
values, H WORD(wPar am) isthe notification message (if applicable) and LONORD(wPar am) isthe
control or menu id that sent the message. | Par amis the HAND (window handle) to the control which
sent the message or NULL if the messages isn't from a control.

HI WORD() and LONORD() are macros defined by windows that single out the two high bytes (High
Word) of a 32 bit value (Ox FFFFO000) and the low word (0OXxO000FFFF) respectively. In Win32 a
WORD is a 16hit value, making DWORD (or Double Word) a 32bit value.

To send amessage you can use Post Message() or SendMessage() . Post Message() putsthe
message into the Message Queue and returns immediatly. That means once the call to

file:///C|/dona/forgers-win32-tutorial/tutorial/message_loop.html (1 of 4) [7/8/2003 4:34:45 PM]

http://www.winprog.org/

Tutorial: Understanding the Message Loop

Post Message() isdonethe message may or may not have been processed yet. SendMessage()
sends the message directly to the window and does not return untill the window has finished
processing it. If we wanted to close awindow we could send it a\VWM_CL OSE message like this

Post Message(hwnd, WM CLOSE, 0, 0); whichwould have the same effect as clicking on
the %[button on the top of the window. Notice that wPar amand | Par amare both 0. Thisis because,
as mentioned, they aren't used for WM _CLOSE.

Dialogs

Once you begin to use dialog boxes, you will need to send messages to the controlsin order to
communicate with them. Y ou can do this either by using Get Dl gl t ent() first to get the handle to the
control using the ID and then use SendMessage() , OR you can use SendDl gl t emMVessage()
which combines the steps. Y ou give it awindow handle and a child ID and it will get the child handle,
and then send it the message. SendDl gl t emVessage() and similar APIslike

Get Dl gl t emText () will work on all windows, not just dialog boxes.

What is the Message Queue

L ets say you were busy handling the WM _PAI NT message and suddenly the user types a bunch of stuff
on the keyboard. What should happen? Should you be interrupted in your drawing to handle the keys
or should the keys just be discarded? Wrong! Obvioudly neither of these options is reasonable, so we
have the message queue, when messages are posted they are added to the message queue and when you
handle them they are removed. This ensure that you aren't going to miss messages, if you are handling
one, the others will be queued up untill you get to them.

What is a Message Loop

whi | e(Get Message(&Vsg, NULL, 0, 0) > 0)
{

Tr ansl at eMessage(&\VsQ) ;

Di spat chMessage(&\VsQ) ;

1. The message loop calls Get Message() , which looks in your message queue. If the message
queue is empty your program basically stops and waits for one (it Blocks).

2. When an event occures causing a message to be added to the queue (for example the system
registers amouse click) Get Messages() returnsa positive value indicating thereisa
message to be processed, and that it hasfilled in the members of the MSG structure we passed it.
It returns O if it hits\WWM_QUI T, and a negative valueif an error occured.

3. Wetake the message (in the Ms g variable) and passit to Tr ansl| at eMessage() , thisdoesa
bit of additional processing, translating virtual key messages into character messages. This step

file:///C|/dona/forgers-win32-tutorial/tutorial/message_loop.html (2 of 4) [7/8/2003 4:34:45 PM]

Tutorial: Understanding the Message Loop

is actually optional, but certain things won't work if it's not there.

4. Once that's done we pass the message to Di spat chMessage() . What
Di spat chMessage() doesis take the message, checks which window it isfor and then
looks up the Window Procedure for the window. It then calls that procedure, sending as
parameters the handle of the window, the message, and wPar amand | Par am

5. Inyour window procedure you check the message and it's parameters, and do whatever you
want with them! If you aren't handling the specific message, you amost always call
Def W ndowPr oc() which will perform the default actions for you (which often means it
does nothing).

6. Once you have finished processing the message, your windows procedure returns,
Di spat chMessage() returns, and we go back to the beginning of the loop.

Thisisavery important concept for windows programs. Y our window procedure is not magically
called by the system, in effect you call it yourself indirectly by caling Di spat chMessage() . If you
wanted, you could use Get W ndowL.ong() on the window handle that the message is destined for to
look up the window's procedure and call it directly!

whi | e(Get Message(&vsg, NULL, 0, 0) > 0)

{
VWNDPROC f WhdProc = (VWNDPROC) Get W ndowi.ong(Msg. hwnd, GAL_WNDPROC) ;
f WhidPr oc(Msg. hwnd, Msg. nessage, Msg. wParam Msg. | Param ;

}

| tried this with the previous example code, and it does work, however there are various issues such as
Unicode/ANSI trandlation, calling timer callbacks and so forth that this method will not account for,
and very likely will break all but trivial applications. So do it to try it, but don't doitin real code:)

Notice that we use Get W ndowL.ong() to retreive the window procedure associated with the
window. Why don't we just call our WadPr oc() directly? Well our message loop is responsible for
ALL of the windows in our program, this includes things like buttons and list boxes that have their
own window procedures, so we need to make sure that we call the right procedure for the window.
Since more than one window can use the same window procedure, the first parameter (the handle to
the window) is used to tell the window procedure which window the message is intended for.

Asyou can see, your application spends the mgjority of it's time spinning round and round in this
message loop, where you joyfully send out messages to the happy windows that will process them. But
what do you do when you want your program to exit? Since we'reusing awhi | e() loop, if

Get Message() wereto return FALSE (aka0), the loop would end and we would reach the end of
our W nMai n() thus exiting the program. Thisis exactly what Post Qui t Message()
accomplishes. It placesaWWM QUI T message into the queue, and instead of returning a positive value,
Get Message() fillsinthe Msg structure and returns 0. At this point, the wPar ammember of Msg
contains the value that you passed to Post Qui t Message() and you can either ignore it, or return it

file:///C|/dona/forgers-win32-tutorial/tutorial/message_loop.html (3 of 4) [7/8/2003 4:34:45 PM]

Tutorial: Understanding the Message Loop

from W nMai n() which will then be used as the exit code when the process terminates.

IMPORTANT: Get Message() will return- 1 if it encounters an error. Make sure you remember
this, or it will catch you out at some point... even though Get Message() isdefined asreturning a
BOOL, it can return values other than TRUE or FALSE, since BOCL isdefined as Ul NT (unsi gned

I nt). Thefollowing are examples of code that may seem to work, but will not process certian
conditions correctly:

whi | e(Get Message(&g, NULL, 0, 0))

whi | e(Get Message(&vsg, NULL, O, 0) !'= 0)

whi | e(Get Message(&vsg, NULL, 0, 0) == TRUE)
Theabove areall wrong! It may be of note that | used to use the first of these throughout the tutorial,
since as | just mentioned, it works fine aslong as Get Message() never fails, which when your code
Is correct it won't. However | failed to take into consideration that if you're reading this, your code
probably won't be correct alot of the time, and Get Message() will fail at some point :) I've gone
through and corrected this, but forgive meif 1've missed afew spots.

whi | e(Get Message(&vsg, NULL, 0, 0) > 0)
This, or code that has the same effect should always be used.

| hope you now have a better understanding of the windows message loop, if not, do not fear, things
will make more sense once you have been using them for awhile.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/message_loop.html (4 of 4) [7/8/2003 4:34:45 PM]

mailto:forger(nospam)winprog.org

Tutorial: Using Resources

[contents | #winprog]

Using Resources

Y ou may also want to refer to the Appendices at the end of this tutorial for more information on
resources with VC++ and BC++.

Before we get any deeper | will cover the topic of resources so that | won't have to re-write it for each
section.Y ou don't actually need to compilethe stuff in this section, it's as example only.

Resources are pre-defined bits of data stored in binary format inside your executable file. Y ou create
resources in aresources script, afile with an extension of ".rc". comercial compilers will have avisual
resource editor which allows you to create resources without manually editing this file but sometimes
editing it isthe only way to go, especially if your compiler has no visual editor, it sucks, or doesn't
support the exact feature you need.

Unfortunately different compiler suites handle resources differently. I will do the best | can to explain
the common features needed to work with resourcesin general.

The resource editor included with MSV C++ makes it very difficult to edit the resources manually,
since it enforces a proprietary format on them, and will totally mangle the file if you save one that you
had created by hand. In general you shouldn't bother with creating .rc files from scratch, but knowing
how to modify them manually can be very useful. Another annoyance is that MSV C++ will by default
name the resource header file "resource.h" even if you wanted to call it something else. | will go with
this for the sake of simplicity in this document, but will show you how to change this in the appendix
on compilers.

First lets take avery ssimple resource script, with asingle icon.

#i ncl ude "resource. h"

| DI _MYICON | CON "ny_icon.ico"

That'stheentirefile. | DI _ MYl CONistheidentifier of the resource, | CONisthe type and
"my_icon.ico" isthe name of the external file which contains it. This should work on any compiler.

Now what about this#i ncl ude "resour ce. h" ?Well your program needs away to identify the

icon, and the best way to do that isto assignit aunique ID (I DI _ MYl CON). We can do this by
creating the file "resource.h™ and including it in both our resource script, and our source file.

file:///C|/dona/forgers-win32-tutorial/tutorial/resources.html (1 of 3) [7/8/2003 4:34:45 PM]

http://www.winprog.org/

Tutorial: Using Resources

#define | DI _MYICON 101

Asyou can see, we've assigned | DI MYl CONthe value of 101. We could just forget about the
identifier and use 101 wherever we need to reference theicon, but | DI MYl CONisalot clearer asto
what you are refering too, and easier to remember when you have large number of resources.

Now lets say we add a MENU resource:

#i ncl ude "resource. h"
| DI _MYI CON | CON "ny_icon.ico"

| DR_MYMENU MENU

BEG N
POPUP " &Fi | e"
BEG N
MENUI TEM "E&xit", ID FILE EXIT
END
END

Again| DR_MYMENU is the name of the resource and MENU is the type. Now a fine point, see the

BEG N and END up there? Some resource editors or compilersuse{ in place of BEG Nand} in place
of END. If your compiler supports both feel free to pick which one you use. If it only supports one or
the other, you will need to make the necessary replacements to get it to work.

We've also added anew identifier, | D_FI LE_EXI T, so we need to add this to our resource header
file, resource.h, in order to use it in our program.

#define | DI _MYICON 101

#define ID FILE EXIT 4001
Generating and keeping track of all these ids can become areal chore with large projects, that's why
most people use a visual resource editor which takes care of al thisfor you. They still screw up from

time to time, and you could end up with multiple items with the same ID or asimilar problem, and it's
good to be able to go in and fix it yourself.

Now an example of how to use aresource in your program.
HI CON hMyl con = Loadl con(hl nstance, MAKEI NTRESOURCE(I DI _MYlI CON)) ;

Thefirst parameter of Loadl con() and many other resource using functions is the handle to the

file:///C|/dona/forgers-win32-tutorial/tutorial/resources.html (2 of 3) [7/8/2003 4:34:45 PM]

Tutorial: Using Resources

current instance (which we are given in W nVai n() and can aso beretreived by using
Get Modul eHandl e() asdemonstrated in previous sections). The second is the identifier of the
resource.

Y ou're probably wondering what's up with MAKEI NTRESOURCE() and possibly wondering why
Loadl con() takesaparameter of type LPCTSTR instead of say Ul NT when we're passing it an ID.
All MAKEI NTRESOURCE() doesis cast from an integer (what our ID is) to LPCTSTR, which

Loadl con() expects. This brings us to the second way of identifying resources, and that's with
strings. Almost nobody does this any more, so | won't go into details, but basically if you don't use
#define to assign an integer value to your resources then the name is interpreted as a string, and can be
referenced in your program like this:

H CON hMyl con = Loadl con(hl nstance, "Myl CON');

Loadl con() and other resource loading APIs can tell the difference between an integer passed in
and a pointer to a string passed in by checking the high word of the value. If it'sO (as would be the
case of any integer with avalue less than or equal to 65535) then it assumesitisaresource ID. This
effectively limits your resources to using 1Ds below 65535, which unless you have awhole lot of
resources, should not be a problem. If it'snot O then it assumes the value is a pointer, and looks up the
resource by name. Never rely on an API to do thisunlessit is explicitely stated in the documentation.

For example, this doesn't work for menu commandslikel D_FI LE _EXI T, since they can only be
integers.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/resources.html (3 of 3) [7/8/2003 4:34:45 PM]

mailto:forger(nospam)winprog.org

Tutorial: Menus and Icons

[contents | #winprog]

Menus and Icons

Example: menu_one

Thisisjust asmall section to show how to add basic menus to your window.
Usually you use a pre-made menu resource. Thiswill bein an .rcfileand
will be compiled and linked into your .exe. Thisis rather compiler specific,
commercial compilerswill have aresource editor that you can use to create
your menus, but for this example | will show the text of the .rc file so you
can add it in manually. I usually have an .h file aswell which isincluded in
both my .rc file and my .c source files. Thisfile contains the identifiers for

controls and menu items etc.

| G somewhere Else ﬂ

=0 x|

For this example you can start with the window code from simple_window and add this code into it as instructed.

First the .h file. Usually called "resource.h”

#define | DR_MYMENU 101
#define 1 DI _MYI CON 201

#define ID FILE EXIT 9001
#define | D STUFF_GO 9002

Not much there, but our menu will be pretty smple. The names and values here are up to you for the choosing. Now

we write our .rcfile.

#i ncl ude "resource. h"

| DR_MYMENU MENU

BEG N
POPUP " &Fi | e"
BEG N
MENUI TEM "E&xit", ID FILE EXIT
END
POPUP " &St uf f "
BEG N
MENUI TEM " &Go", | D _STUFF_GO
MENUI TEM " G&0 sonewhere el se",
END

END

| DI _Myl CON | CON "nenu_one. i co"

file:///C|/dona/forgers-win32-tutorial/tutorial/menus.html (1 of 6) [7/8/2003 4:34:46 PM]

0, GRAYED

http://www.winprog.org/

Tutorial: Menus and Icons

Y ou will want to add the .rc file to your project or makefile depending on what tools you are using.

You alsowant to#i ncl ude "resource. h" inyour sourcefile(.c) so that the menu command identifiers and the
menu resource id will be defined.

The easiest way to attach the menu and icon to your window is to specify them when you register the window class,
likethis:

we. | pszMenuName = MAKEI NTRESOURCE(| DR MYMENU) ;

wc. hl con = Loadl con(Get Modul eHandl e(NULL), MAKEI NTRESOURCE(| DI _MYI CON)) ;
we. hl conSm = (HI CON) Loadl mage(Get Modul eHandl e(NULL) ,
MAKEI NTRESOURCE(| DI _Myl CON), | MAGE | CON, 16, 16, 0);

Change that and see what happens. Y our window should now have a File and Stuff menu with the respective items
underneath. That is assuming your .rc file was properly compiled and linked into your program. (again, see compiler
notes)

Theicon in the top left of the window and on the task bar should now display the small custom icon that we specified.
If you hit Alt-Tab, the large version of the icon should be displayed in the application list.

I've used Loadl con() to load the large icon because it's ssmpler, however it will only load icons at the default
resolution of 32x32, so in order to load the smaller image, we need to use Loadl mage() . Be aware that icon files
and resources can contain multiple images, and in this case the ones I've supplied contain the two sizes that I'm
loading.

Example: menu_two

An aternative to using a menu resource is to create one on the fly (or when your program runs). Thisis abit more
work programming wise, but adds flexibility and is sometimes necessary.

Y ou can also use icons that aren't stored as resources, you could choose to store your icon as a seperate file and load it
at runtime. Thiswould also give you the option of alowing the user to select an icon of their choice with the common
dialogs discussed later, or something to that effect.

Start again from ssmple_window without the .h or .rc added. Now we will handle the WM CREATE message and add a
menu to our window.

#define ID FILE EXIT 9001
#define | D STUFF_GO 9002

Put these two id's at the top of your .c file this time, underneath your #i ncl udes. Next we add the following code
into our WM _CREATE handler.

case WM CREATE:

{
HVENU hMenu, hSubMenu:;

H CON hl con, hl conSm

file:///C|/dona/forgers-win32-tutorial/tutorial/menus.html (2 of 6) [7/8/2003 4:34:46 PM]

Tutorial: Menus and Icons

hMenu = Creat eMenu();

hSubMenu = Creat ePopupMenu();
AppendMenu(hSubMenu, M= STRING |ID FILE EXIT, "E&it");
AppendMenu(hMenu, MF_STRING | M-_POPUP, (Ul NT)hSubMenu, "&File");

hSubMenu = Cr eat ePopupMenu();
AppendMenu(hSubMenu, MF_STRING |D STUFF GO, "&&0");
AppendMenu(hMenu, MF_STRING | M-_POPUP, (Ul NT)hSubMenu, "&Stuff");

Set Menu(hwnd, hMenu) ;

hl con = Loadl nage(NULL, "nenu_two.ico", | MAGE | CON, 32, 32,
LR LOADFROVFI LE) ;

i f(hlcon)
SendMessage(hwnd, VWM SETI CON, | CON Bl G (LPARAM hlcon);
el se
MessageBox(hwnd, "Could not |load large icon!", "Error", MB OK |

MB_| CONERROR) ;

hl conSm = Loadl nage(NULL, "menu_two.ico", | MAGE | CON, 16, 16,
LR _LOADFROVFI LE) ;

i f(hl conSm
SendMessage(hwnd, VWM SETI CON, | CON_SMALL, (LPARAM hlconSm ;
el se
MessageBox(hwnd, "Could not |load small icon!", "Error", MB OK |
MB_| CONERRCR) ;
}
br eak;

This creates a menu amost the same as the one we had in the resource and attaches it to our window. A menu that is
assigned to awindow is automatically removed when the program terminates, so we don't need to worry about getting
rid of it later. If we did though, we could use Get Menu() and Dest r oyMenu() .

The code for theicons is pretty ssmple, we call Loadl nage() twice, to load theicon as both a16x16 size and a
32x32 size. We can't use Loadl con() at al because it will only load resources, not files. We specify NULL for the
instance handle parameter because we aren't loading a resource from our module, and instead of aresource ID we
pass in the name of the icon file we want to load. Finally, we passin the LR_LOADFROVFI LE flag to indicate that
we want the function to treat the string we give it as afilename and not a resource name.

If each call succeeds we assign the icon handle to our window with WM _SETI CON, and if it failswe pop up a
message box letting us know something went wrong.

NOTE: that the Loadl nage() callswill fail if theicon fileisn't in the current working directory of the program. If
you are using VC++ and you run the program from the IDE, the current working directory will be the one the project
fileisin. However if you run the program from the Debug or Release directories from explorer or the command shell,
then you'll need to copy theicon fileinto that directory in order for the program to find it. If all else fails, specify the

file:///C|/dona/forgers-win32-tutorial/tutorial/menus.html (3 of 6) [7/8/2003 4:34:46 PM]

Tutorial: Menus and Icons

full pathtotheicon,” C.:\\ Pat h\\ To\\ |l con. i co".

Okay now that we have our menu, we need to make it do something. Thisis pretty simple, all we need to do is handle
the WM_COVMAND message. Also we'll need to check which command we are getting and act accordingly. Now our
WhdPr oc() should look something like this.

LRESULT CALLBACK WhdProc(HWND hwnd, Ul NT Message, WPARAM wParam LPARAM | Par am
{
swi t ch(Message)

{
case WV CREATE:

{
HVENU hMenu, hSubMenu:;

hMenu = Creat eMenu();

hSubMenu = Creat ePopupMenu();
AppendMenu(hSubMenu, M- STRING |ID FILE EXIT, "E&it");
AppendMenu(hMenu, MF_STRING | M- _PCOPUP, (Ul NT)hSubMenu, "&File");

hSubMenu = Creat ePopupMenu() ;

AppendMenu(hSubMenu, MF_STRING | D STUFF_GO, "&&0");

AppendMenu(hMenu, MF_STRING | MF_POPUP, (Ul NT)hSubMenu, "&Stuff");
Set Menu(hwnd, hMenu) ;

hl con = Loadl nage(NULL, "nmenu_two.ico", | MAGE | CON, 32, 32,
LR _LOADFROVFI LE) ;

i f(hlcon)
SendMessage(hwnd, WM SETI CON, | CON Bl G (LPARAM hl con);
el se
MessageBox(hwnd, "Could not load large icon!", "Error", MB OK |

MB_| CONERROR) ;

hl conSm = Loadl mage(NULL, "nmenu_two.ico", |MAGE | CON, 16, 16,
LR _LOADFROWFI LE) ;

i f(hl conSm
SendMessage(hwnd, VWM SETI CON, | CON_SMALL, (LPARAM hlconSm ;
el se
MessageBox(hwnd, "Could not |oad small icon!", "Error", MB X |
MB_| CONERRCR) ;
}
br eak;

case W COMVAND:
swi t ch(LONORD(wPar an))
{
case |D FILE EXIT:

br eak;

file:///C|/dona/forgers-win32-tutorial/tutorial/menus.html (4 of 6) [7/8/2003 4:34:46 PM]

Tutorial: Menus and Icons

case | D _STUFF_GO

br eak;

}
br eak;
case WM CLOSE

Dest r oyW ndow(hwnd) ;
br eak;
case VW DESTROY:

Post Qui t Message(0) ;

br eak;
defaul t:
return Def WndowProc(hwnd, Message, wParam | Paran;
}
return O;

}

Asyou can see we've got our W COMVAND all set up, and it even has another swi t ch() init. Thisswi tch()'s
on the value of the low word of wPar am which in the case of WM COMMAND contains the control or menu id that

sent the message.

We obviously want the Exit menu item to close the program. So in the WM _COVIVAND, | D_FI LE_EXI T handler you
can use the following code to do just that.

Post Message(hwnd, WM CLOSE, 0, 0);
Your WM_COMMAND handler should now look like this:

case VWM COMIVAND:
swi t ch(LOADRD(wPar amj)

{

case |ID FILE EXIT:
Post Message(hwnd, WM CLOSE, 0, 0);

br eak;
case | D STUFF_ GO
br eak;

}

br eak;

| leave it up to you to make the other menu command | D_STUFF_ GO do something.

The program file icon

Y ou may have noticed that the menu_one. exe file now shows up as the custom icon we added as a resource,
whereas the menu_t wo. exe file does not, since we are loading an external file. Windows Explorer smply displays
the first icon (numerically by ID) in the program files resources, so since we only have oneicon, that'swhat it is
displaying. If you want to be sure that a certain icon is displayed with your program file, smply add it as a resource

file:///C|/dona/forgers-win32-tutorial/tutorial/menus.html (5 of 6) [7/8/2003 4:34:46 PM]

Tutorial: Menus and Icons

and assignitavery low ID... like 1. You don't even need to refer to the file in your program, and you can load
completely different icons for your windows if you choose.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/menus.html (6 of 6) [7/8/2003 4:34:46 PM]

mailto:forger(nospam)winprog.org

Tutorial: Dialogs, GUI coders best friend

[contents | #winprog |

Dialogs, GUI coders best friend

Example: dlg_one

There's hardly awindows program out there i The _|Ol x|
that doesn't use dialog boxes. Just go File ->
Open in any text editor or any other kind of

editor for that matter and voila, you are X

presented with a dialog box, one that

File Help

probably allows you to select afile to be About this progiam. . _
ed & example program showing how o uze
opened. — Dlialog Boxes
Cancel
Dialogs aren't limited to the standard open by theForger

file ones, they can look like and do
whatever you choose. The attractive point of
dialogsisthat they provide a quick way to arrange and create a GUI (Graphic User Interface) and even some
default processing, cutting down on the amount of code you must write.

One thing to remember is that dialogs ar e just windows. The difference between adialog and a"normal™
window is that the system does some additional default processing for dialogs, such as creating and initialising
controls, and handling tab order. Nearly all APIsthat are applicable to "normal" windows will work just as
well on dialogs, and vice versal

Thefirst step isto create the dialog resource. As with any resource how you do thiswill depend on your
compiler/IDE. Here | will show you the plain text of the dilaog in the .rc file and let you incorporate it into
your project.

| DD_ABOUT DI ALOG DI SCARDABLE 0, 0, 239, 66

STYLE DS_MODALFRAME | W5 POPUP | W5 CAPTION | W5_SYSMENU
CAPTI ON "My About Box"

FONT 8, "MS Sans Serif"

BEG N
DEFPUSHBUTTON " &K', | DOK, 174, 18, 50, 14
PUSHBUTTON " &Cancel ", | DCANCEL, 174, 35, 50, 14
GROUPBOX “About this program..",|DC STATIC, 7,7, 225,52
CTEXT "An exanpl e program show ng how to use D al og

Boxes\r\ n\r\ nby theForger",
| DC_STATI C, 16, 18, 144, 33
END

Onthisfirst line, | DD_ABOUTDLGistheid of the resource. DI ALOG s the resource type, and the four

file:///C|/dona/forgers-win32-tutorial/tutorial/dialogs.html (1 of 5) [7/8/2003 4:34:46 PM]

http://www.winprog.org/

Tutorial: Dialogs, GUI coders best friend

number are the Left, Top, Width and Height co-ordinates. These ARE NOT PIXELS, they are in Dialog Units,
which are based on the size of the font used by the system (and chosen by the user). If you have alarge font
selected, the dialog will belarge, if you use asmaller font, the dialog will be that much smaller. Thisis
important as it makes sure that all of the controls are the proper size to display their text in the current font.

Y ou can convert dialog unitsto pixels at runtime using MapDi al ogRect () . DI SCARDABLE tellsthe
system it may swap the resource memory to disk when it's not being used in order to conserve system
resources (essentially pointless).

The second line starts with STYLE and follows with the window styles that will be used to create the dialog.
These should be explained under Cr eat eW ndow() inyour help files. In order to use the predefined
constants you may need to add #i ncl ude "w ndows. h" toyour .rcfile, or in the case of VC++,

wi nres. horaf xres. hwill do. If you use the resource editor these fileswill certainly be included
automatically if needed.

The CAPTI ON line should be self explanitory.

The FONT line specifies the size and name of the font you wish to use for this dialog box. This might not end
up exactly the same on each computer as different people will have different fonts and may have specified
different font sizes. Y ou usually don't need to worry about that though.

Now we have the list of controlsto create on the dialog
DEFPUSHBUTTON " &K', | DOK, 174, 18, 50, 14

Here'sthe line for the OK button. The & in this case like with menus underlines the next letter "O", so that by
pressing Alt+O the user can activate this control (part of the default processing | mentioned). | DOK isthe
control identifier. | DOK is pre-defined so we don't need to #def i ne it ourselves. The four numbers at the
end are the left, top, width and height, all in dialog units.

This information should be purely academic, as you amost always use a resource editor to create dialogs, but
knowing how to do it from text is sometimes necessary, expecialy if you have no visual editor.

Two of the controls have an ID of | DC_STATI C(whichis-1), thisis used to indicate we never need to
access them, so they have no need of an identifier. However it doesn't hurt to give them an ID and your
resource editor might do so automatically.

The"\r\ n" inthetext of the static control isa CR-LF pair, the way windows represents a new line.

So! Having added that to your .rc file we need to write a Dialog Procedure to process message for this box.
Don't worry thisis nothing new, it's practicly the same as our main Window Procedure (but not exactly).

BOOL CALLBACK About Dl gProc(HW\AND hwnd, Ul NT Message, WPARAM wPar am LPARAM
| Par am

{
swi t ch(Message)

file:///C|/dona/forgers-win32-tutorial/tutorial/dialogs.html (2 of 5) [7/8/2003 4:34:46 PM]

Tutorial: Dialogs, GUI coders best friend

{
case WM I NI TDI ALOG:

return TRUE;
case WM COMVAND:
swi t ch(LONORD(wPar am))
{
case | DCXK:
EndD al og(hwnd, | DCK) ;
br eak;
case | DCANCEL:
EndDi al og(hwnd, | DCANCEL) ;
br eak;
}
br eak;
def aul t:
return FALSE;

}
return TRUE;

}

There are afew important differences between a dialog procedure and window procedure. Oneisthat you DO
NOT call Def W ndowPr oc() for message you don't handle. With dialogs this is done automatically for you
(and will really screw things up if you do it).

Secondly, in general you return FAL SE for messages you don't process, and TRUE for messages you do
process, UNL ESS the message specifies you return something else. Note that thisis what we do above, the
default is to do nothing and return FAL SE, while messages we do handle break theswi t ch() and return
TRUE.

Thirdy, You do not call Dest r oyW ndow() to close adialog, you call EndDi al og() . The second
paramter is the value that is returned to whatever code called Di al ogBox() .

Finally, instead of handling WM CREATE, you handle WM | NI TDI ALOGto do any processing that needs to
be done before the dialog appears, and then return TRUE to have the keyboard focus set to the default control.
(You can actually handle WM_CREATE as well, but it is sent BEFORE any of the controls have been created,
S0 you can't accessthem. In VWM | NI TDI ALOGthe controls have already been created).

Enough chit-chat, lets create it....

case WM COMVAND:
swi t ch(LONORD(wPar an))

{
case | D HELP_ABQUT:

{

file:///C|/dona/forgers-win32-tutorial/tutorial/dialogs.html (3 of 5) [7/8/2003 4:34:46 PM]

Tutorial: Dialogs, GUI coders best friend

int ret = D al ogBox(Get Modul eHandl e(NULL) ,
MAKEI NTRESOQURCE(| DD_ABQUT), hwnd, About Dl gProc);

if(ret == 1 D) {
MessageBox(hwnd, "Dialog exited with IDOK. ", "Notice",
MB_OK | MB_I CONI NFORMATI ON) ;
}
el se if(ret == | DCANCEL) {
MessageBox(hwnd, "Dialog exited with | DCANCEL.", "Notice",
MB_OK | MB_I CONI NFORMATI ON) ;
}
else if(ret == -1){
MessageBox(hwnd, "Dialog failed!", "Error",
MB_OK | MB_I CONI NFORMATI ON) ;
}
}
br eak;
/'l O her nmenu conmands. .
}
br eak;

Thisisthe code | used to create my about box, you can probably guess that thisisto be merged into your
VWM COMVAND handler, if you aren't clear on this aspect, you might want to review the section on menus.
| D HELP_ABQUT istheidentifier of my Help -> About menu item.

Since we want the menu on our main window to create the dialog, we obviously want to put this code in the
WhdPr oc() of our main window, not the dialog proc.

Now | stored the return value from the call to Di al ogBox() , thisisjust so you can observe the effects of
pressing the two buttons, hitting Esc, Enter etc... from inside the dialog. It also illustrates how to use the return
value from a dialog box to check for success, failure, a users choice, or whatever other information you choose
to send back to the caller from the Dialog Procedure.

Di al ogBox(Get Modul eHandl e(NULL) , MAKEI NTRESOURCE(| DD_ABQUT), hwnd,
About Dl gProc) ;

Thisisthe only important part, and you can choose to put it wherever in your code that you want the dialog to
come up. | DD_ABQUT istheid of the dialog resource. hwnd is the handle to the parent window of the dialog.
About Dl gPr oc() isof coursethe dialog procedure to use to control the dialog.

That'sit! Sit IDD_UBU, sit.
A perticularly astute reader might eventually wonder, if Di al ogBox () doesn't return untill the dialog closes
we can't process messages while it's up, so how does it work? Well the nifty thing about Di al ogBox () is

that it has it's own message loop, so while the dialog is displayed, our message loop is out of the picture and
the default loop is handled by windows. This loop also takes care of fun things like moving the keyboard focus

file:///C|/dona/forgers-win32-tutorial/tutorial/dialogs.html (4 of 5) [7/8/2003 4:34:46 PM]

Tutorial: Dialogs, GUI coders best friend

from control to control when you press Tab.

Another effect of using DialogBox is that your main window is disabled untill the dialog is dismissed.
Sometimes thisis what we want, and sometimes it isn't, such as when we want to use adialog as a floating
toolbar. In this case we want to be able to interact with both out dialog and our main window, and this will be
the focus of the next section.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/dialogs.html (5 of 5) [7/8/2003 4:34:46 PM]

mailto:forger(nospam)winprog.org

Tutorial: Modeless Dialogs

[contents | #winprog]

Modeless Dialogs

Example: dig_two

Now we take alook at Cr eat eDi al og(), Di al ogBox() 'ssister EThet,HEDfm,_m (=TS
function. The differenceisthat while Di al ogBox() implementsit's File | Dislog.

own message |loop and does not return untill the dialog is closed, Show

Creat eDi al og() actsmore like awindow created with Hide |

Cr eat eW ndowEx() inthat it returnsimmediately and depends on
your message loop to pump the messages as it does for your main
window. Thisistermed Modeless, whereas Di al ogBox () creates
Modal dialogs.

Prezs Thiz Button

Or This One

Y ou can create the dialog resource just like you did for the last dialog example, you might also want to set the "Tool
window" extended styleto giveit'stitle bar the typical smaller caption of toolbars. The dialog resource | created
follows:

| DD_TOOLBAR DI ALOGEX 0, 0, 98, 52

STYLE DS _MODALFRAME | W5 _POPUP | WS_CAPTI ON
EXSTYLE WS _EX_ TOOLW NDOW

CAPTION "Wy Di al og Tool bar™

FONT 8, "MS Sans Serif"

BEG N
PUSHBUTTON "&Press This Button",|DC _PRESS, 7,7, 84, 14
PUSHBUTTON "& O This One", | DC_OTHER, 7, 31, 84, 14

END

Y ou may notice that the resource editor has replaced DI ALOGwith DI ALOGEX indicating we want to set an
EXSTYLE on our dialog.

Next we want to create the dialog when our program runs, | want the dialog visible right away so we do thisin

VWM CREATE. We also want to declare aglobal variable to hold the window handle returned from Cr eat eDi al og()
so that we can useit later. Di al ogBox() didn't return ahandle to us since when Di al ogBox() returns the window
has been destroyed.

HWND g hTool bar = NULL;

case WM CREATE:
g_hTool bar = Creat eD al og(Get Modul eHandl e(NULL) ,
MAKEI NTRESOURCE(| DD_TOOLBAR) ,
hwnd, Tool DI gProc);
I f(g_hTool bar != NULL)

{
}

ShowwW ndow(g_hTool bar, SW SHOW ;

file:///C|/dona/forgers-win32-tutorial/tutorial/modeless_dialogs.html (1 of 4) [7/8/2003 4:34:47 PM]

http://www.winprog.org/

Tutorial: Modeless Dialogs

el se

{
MessageBox(hwnd, "CreateDi al og returned NULL", "Warning!",

MB_OK | MB_| CONI NFORMATI ON) ;
}

br eak;

We check the return value, which is ALWAY S agood idea, and if it'svalid (not NULL) we show the window with
ShowW ndow() , with Di al ogBox() thisisn't necessary since the system calls ShowW ndow() for us.

Now we need a dialog procedure for our toolbar.

BOOL CALLBACK Tool Dl gProc(HMWAD hwnd, Ul NT Message, WPARAM wPar am LPARAM | Par am
{
swi t ch(Message)

{
case W COMVAND:
swi t ch(LONORD(wPar an))
{
case | DC_PRESS:
MessageBox(hwnd, "Hi!", "This is a nessage",
MB_COK | MB_I CONEXCLANATI ON) ;
br eak;
case | DC_OTHER:
MessageBox(hwnd, "Bye!", "This is al so a nmessage",
MB_COK | MB_I CONEXCLANATI ON) ;
br eak;
}
br eak;
def aul t:
return FALSE;
}

return TRUE;
}

Most of the same message handling rules apply to dialogs created with Cr eat eDi al og() aswith Di al ogBox(),
don't call Def W ndowPr oc() , return FALSE for messages you don't handle and TRUE for those you do.

One change isthat we don't call EndDi al og() for modeless dialogs, we can use Dest r oyW ndow() just like for

regular windows. In this case | destroy the dialog when the main window is destroyed. In the main window's
WhdPr oc() ...

case WM DESTROY:
Dest r oyW ndow(g _hTool bar) ;
Post Qui t Message(0) ;

br eak;

Last but not least, we want to be able to display and hide our toolbar whenever we choose so I've added two commands
to my menu to do this, and handled them so:

file:///C|/dona/forgers-win32-tutorial/tutorial/modeless_dialogs.html (2 of 4) [7/8/2003 4:34:47 PM]

Tutorial: Modeless Dialogs

case W COMIVAND:
swi t ch(LOAORD(wPar am))

{
case | D _DI ALOG_SHOW
ShowwW ndow(g_hTool bar, SW SHOW ;
br eak;
case | D_DI ALOG HI DE:
ShowwW ndow(g_hTool bar, SW HI DE);
br eak;
[/... other command handl ers
}
br eak;

Y ou should be able to create your own menu using the resource editor or manually, but if not (as aways) take alook at
the example project dig_two provided with the tutorial.

Now when you run the program, you should be able to access both the dialog window, and main window at the same
time.

If you've run the program at this point and tried tabbing between the two buttons, you have probably noticed it doesn't
work, neither does hitting Alt-P or Alt-O to activate the buttons. Why not? Whereas Di al ogBox () implementsit's
own message loop and handles these events by default, Cr eat eDi al og() does not. We can do it ourselves though,
by caling | sDi al ogMessage() inour message loop which will do the default processing for us.

whi | e(Get Message(&vsg, NULL, 0, 0))

{
i f(!lsD al ogMessage(g_hTool bar, &MVsq))
{
Tr ans| at eMessage(&\VsQ) ;
Di spat chMessage(&VsQ) ;
}
}

Here wefirst passthe messageto | sDi al ogMessage() , if the message is destined for our toolbar (indicated by the
window handle we passin) the system will perform the default processing and return TRUE. Is this case the message
has already been handled so we don't want to call Tr ansl at eMessage() or Di spat chMessage() . If the
message is for another window we process as usual.

It'salso worth noting that | sDi al ogMessage() can also be used with windows that aren't dialogs in order to to
give them dialog-like behaviour. Remember, adialog is awindow, and most (if not all) dialog APIswill work on any
window.

And that is pretty much all there isto modeless dialogs! One issue that may arise isif you have more than one toolbar...
what do you do? Well one possible solution isto have alist (either an array, an STL st d: : | i st, or ssimilar) and loop
through it in your message loop passing each handleto | sDi al ogMessage() until theright oneisfound, and if
none, do the regular processing. Thisis a generic programming problem, not one that is Win32 related, and is left as an
excersize to the reader.

file:///C|/dona/forgers-win32-tutorial/tutorial/modeless_dialogs.html (3 of 4) [7/8/2003 4:34:47 PM]

Tutorial: Modeless Dialogs

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/modeless_dialogs.html (4 of 4) [7/8/2003 4:34:47 PM]

mailto:forger(nospam)winprog.org

Standard Controls: Button, Edit, List Box, Static

[contents | #winprog]

Standard Controls: Button, Edit, List Box

Example: ctl_one

| realize I've aready used buttons in previous examples, so you x|

should already be more or less familiar with them, however |
figured that since | was using them in this example | might as Add |This is a sting 5 fimes.
well add it to the title for the sake of being complete.

Thiz iz a ztring
| This iz a string Add
Controls : Remave
Thiz 1z a zting
One thing to remember about controls s that they arejust Llear
windows. Like any other window they have a window
procedure, awindow class etc... that is registered by the system.
Anything you can do with a normal window you can do with a
control.
Mess ages Thiz iterm waz added a] bimes

Asyou may remember from our earlier discussion of the message loop, windows communicate using messages, you
send them to get a control to do something, and when an event occurs on the control it will send you a notification
message back. For the standard controls this notification will be a\WM_COMVAND message as we've already seen with
buttons and menus. For the Common Controls which | may get to later, it will be WM _NOTI FY.

The messages you send are widely varied between each control, and each control hasit's own set of messages. Once
in awhile the same message will be used for more than one kind of control, but in general they will only work on the
control they are intended for. Thisis especially annoying with the listbox and combobox messages (LB_* and CB_*)
which although they perform nearly identical tasks, are NOT interchangeable, and | accidently get them mixed up
more than I'd like to admit :)

On the other hand, generic messages like WM _SETTEXT are supported by aimost all controls. A control isjust a
window after all.

Y ou can send messages using the SendMessage() API,anduseGet DI gl t en{) to retreive the handle to the
control, or you can use SendDl gl t emVessage() which does both steps for you, the results of both methods are
identical.

Edits

One of the most commonly used controls in the windows environment, the EDIT control, is used to allow the user to
enter, modify, copy, etc... text. Windows Notepad is little more than a plain old window with a big edit control inside
it.

file:///C|/dona/forgers-win32-tutorial/tutorial/controls.html (1 of 5) [7/8/2003 4:34:47 PM]

http://www.winprog.org/

Standard Controls: Button, Edit, List Box, Static

Here isthe code used to interface with the edit control in this example:
Set Dl gl t emText (hwnd, | DC TEXT, "This is a string");

That's all it takes to change the text contained in the control (this can be used for pretty much any control that has a
text value associated with it, STATICs, BUTTONSs and so on).

Retreiving the text from the control is easy as well, although slightly more work than setting it...

int len = Get WndowText Lengt h(Get Dl gl tem(hwnd, | DC_TEXT));

if(len > 0)
{
int i;
char* buf;
buf = (char*)d obal All oc(GPTR, len + 1);
Get Dl gl t emText (hwnd, | DC TEXT, buf, len + 1);
[l... do stuff with text
A obal Free((HANDLE) buf) ;
}

First of al, we need to allocate some memory to store the string in, it won't just return us a pointer to the string
already in memory. In order to do this, we first need to know how much memory to allocate. Thereisn't a

Get Dl gl t emText Lengt h(), but thereisaGet W ndowText Lengt h() , so all we need to do it get the handle
to the control yourself using Get DI gl t enq() .

Now that we have the length, we can allocate some memory. Here I've added a check to seeif thereis any text to
begin with, since most likely you don't want to be working with an empty string... sometimes you might, but that's up
to you. Assuming that there is something there to work with, we call G obal Al | oc() to alocate some memory.

G obal Al l oc() asl'veused it hereisequivalenttocal | oc(), if you're used to DOS/UNIX coding. It allocates
some memory, initializes it's contents to O and returns a pointer to that memory. There are different flags you can pass
asthefirst paramter to make it behave differently for different purposes, but thisisthe only way | will beusingitin
this tutorial.

Note that | added 1 to the length in two places, what's up with that? Well, Get W ndowText Lengt h() returnsthe
number of characters of text the control contains NOT INCLUDING the null terminator. This means that if we were
to allocate a string without adding 1, the text would fit, but the null terminator would overflow the memory block,
possibly corrupting other data, causing an access violation, or any number of other bad things. Y ou must be careful
when dealing with string sizes in windows, some APIs and messages expect text lengths to include the null and others
don't, aways read the docs thoroughly.

If I lost you talking about null terminators, please refer to a basic C book or tutorial which discusses strings.
Finally we can call Get Dl gl t emText () to retrieve the contents of the control into the memory buffer that we've

just allocated. This call expects the size of the buffer INCLUDING the null terminator. The return value, which we
ignored here, is the number of characters copied, NOT including the null terminator.... fun eh?:)

file:///C|/dona/forgers-win32-tutorial/tutorial/controls.html (2 of 5) [7/8/2003 4:34:47 PM]

Standard Controls: Button, Edit, List Box, Static

After we're al done using the text (which we'll get to in a moment), we need to free up the memory that we allocated
so that it doesn't leak out and drip down onto the CPU and short circuit your computer. To accomplish this, we simply
call @ obal Free() and passin our pointer.

Y ou may be or become aware of a second set of APIsnamed Local Al | oc(), Local Free(), etc... which are
legacy APIsfrom 16-bit windows. In Win32, the Local * and G obal * memory functions are identical.

Edits with Numbers

Entering text isal well and fine, but what if you want the user to enter in anumber? Thisis a pretty common task,
and fortunately there is an API to make this ssmpler, which takes care of all the memory allocation, aswell as
converting the string to an integer value.

BOOL bSuccess;
int nTimes = GetDigltem nt (hwnd, | DC NUMBER, &bSuccess, FALSE);

Get Dl gltem nt () worksmuch likeGet DI gl t emText (), except that instead of copying the string to a buffer,
it convertsit internally into an integer and returns the value to you. The third parameter is optional, and takes a
pointer to a BOOL. Since the function returns O on failure, there is no way to tell just from that whether or not the
function failed or the user just entered 0. If you are fine with avalue of 0 in the event of an error, then feel freeto
ignore this parameter.

Another useful feature isthe ES _NUMBER style for edit controls, which allows only the characters 0 through 9 to be

entered. Thisisvery handy if you only want positive integers, otherwise it's not much good, since you can't enter any
other characters, including - (minus) . (decimel) or , (comma).

List Boxes

Another handy control isthe list box. Thisisthe last standard control that I'm going to cover for now, cause frankly
they aren't that interesting, and if you aren't bored yet well, | am:)

Adding Items
The first thing you'll want to do with alistbox isadd items to it.

i nt index = SendDl gltemvessage(hwnd, |IDC LIST, LB ADDSTRI NG 0, (LPARAM "Hi
t here!");

Asyou can see, thisis a pretty simple task. If the listbox hasthe LBS SORT style, the new item will be added in
alphabetical order, otherwise it will just be added to the end of the list.

This message returns the index of the new item either way, and we can use this to perform other tasks on the item,
such as associating some data with it. Usually thiswill be things like a pointer to a struct containing more
information, or maybe an ID that you will use to identify the item, it's up to you.

SendDl gl t emvessage(hwnd, |1 DC LI ST, LB _SETI TEVMDATA, (WPARAM i ndex,

file:///C|/dona/forgers-win32-tutorial/tutorial/controls.html (3 of 5) [7/8/2003 4:34:47 PM]

Standard Controls: Button, Edit, List Box, Static

(LPARAM nTi nes) ;
Notifications

The whole purpose of listboxesisto alow the user to select things from a list. Now sometimes we don't care when
exactly they do this, for example with our Remove button, we don't need to know when the selection changes right
away, we just check when the user activates the button.

However, sometimes you want to be able to do something right away, perhaps display different or updated
information based on what items are selected. In order to do this we need to handle the notification messages that the
listbox passesto us. In this case, we are interested in LBN_SEL CHANGE, which tells us that the selection has been
modified by the user. LBN_SEL CHANGE is sent via \VWM_COMVAND but unlike handling the WW_COVIVAND from
buttons or menu's, which are usually only in response to aclick, alist box sends VW COMVIAND for various reasons,
and we need a second check to find out what it's telling us. The Notification Code is passed as the H WORD of

wPar am the other half of the parameter that gave us the control ID in thefirst place.

case VWM COMIVAND:
swi t ch(LOADRD(wPar am))

{
case | DC LI ST:
[/ 1t's our listbox, check the notification code
swi t ch(H WORD(wPar an))
{
case LBN_ SELCHANGE
/'l Sel ection changed, do stuff here.
br eak;
}
br eak;
/[l ... other controls
}
br eak;

Getting Data from the ListBox

Now that we know the selection has changed, or at the request of the user, we need to get the selection from the
listbox and do something useful with it.

In this example I've used a multiselection list box, so getting the list of selected itemsisalittletrickier. If it were a
single selection listbox, than you could smply send LB_GETCURSEL to retrieve the item index.

First we need to get the number of selected items, so that we can allocate a buffer to save the indexesin.

HWAND hLi st = GetDi gltem(hwnd, |DC LIST);
i nt count = SendMessage(hLi st, LB GETSELCOUNT, 0, 0);

Then we allocate a buffer based on the number of items, and send LB_GETSELI TEMS to fill in the array.

file:///C|/dona/forgers-win32-tutorial/tutorial/controls.html (4 of 5) [7/8/2003 4:34:47 PM]

Standard Controls: Button, Edit, List Box, Static

int *buf = d obal All oc(GPTR, sizeof (int) * count);
SendMessage(hLi st, LB GETSELI TEMS, (WPARAM count, (LPARAM buf);

[l ... Do stuff with indexes
A obal Free(buf);

In this example, buf [0] isthefirstindex, and soonuptobuf [count - 1].

One of the things you would likely want to do with thislist of indexes, is retreive the data associated with each item,
and do some processing with it. Thisisjust as ssmple as setting the data was originally, we just send another message.

int data = SendMessage(hLi st, LB GETI TEMDATA, (WPARAM i ndex, 0);

If the data was some other type of value (anything that is 32-bits) you could simply cast to the appropriate type. For
exampleif you stored HBI TMAPs instead of i nt s...

HBI TMAP hData = (HBI TMAP) SendMessage(hLi st, LB _GETI TEMDATA, (WPARAM i ndex,
0);

Statics

Like buttons, static controls are largely trivial, but for the sake or being complete | include them here. Static controls
are usually just that, static, meaning they don't change or really do anything else very specia, they're largely for
displaying text to the user. However you can make them dlightly more useful by assigning them aunique ID (VC++
assignsadefault ID of | DC_STATI C, whichis- 1 and effectively means "No ID") and then setting the text at
runtime to present dynamic data to the user.

In the example code, | use one to display the data of the item selected in the list box, assuming one and only oneis
selected.

Set Dl gltem nt (hwnd, | DC_ SHOAMCOUNT, data, FALSE);

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/controls.html (5 of 5) [7/8/2003 4:34:47 PM]

mailto:forger(nospam)winprog.org

Tutoria: Dialog FAQ

[contents | #winprog |

Dialog FAQ

Example: dig_three

Now don't get me wrong, thisisa Tutorial, not a i Dialog tricks
Reference, but some questions people ask SO often
that | figured | might as well include them here.

Hi there.

Changing Colours

In general, the only reason you'd want to do thisisto simulate an link on adialog box or some similar
task, because otherwise you're probably just making your program ugly and hard on the eyesif you
go adding a bunch of colorsto the dialogs, but that doesn't stop people from doing it, and there are
actually afew valid reasons, so here you go :)

Windows sends a variety of messages related to colours to your dialog procedure, and by handling
these messages you can change what colour certain things are displayed in. For example, to change
the color of the dialog box itself, you can handle WM_CTLCOLORDLG, to change the colors for a
static control you handle WM CTLCOLORSTATI Cand so on.

First you can create a brush to use to paint the background and store it for later. the

VWM CTLCOLORDL Gand related messages will get called often during the course of your program,
and if you created a new brush every time, eventually you would use up agreat deal of RAM with
dead brushes. This way we have more control, and we can delete it when the dialog is destroyed and
we know we won't need it any more.

HBRUSH g hbr Background = CreateSol i dBrush(RG(0, 0, 0));

case VWM CTLCOLORDLG
return (LONG g_hbr Background;
case WM CTLCOLORSTATI C.

{
HDC hdcStati c = (HDC) wPar am
Set Text Col or (hdcStati c, RGB(255, 255, 255));
Set BkMbde(hdcSt ati c, TRANSPARENT) ;
return (LONG) g _hbr Backgr ound;
}

file:///C|/dona/forgers-win32-tutorial/tutorial/dlgfag.html (1 of 3) [7/8/2003 4:34:47 PM]

http://www.winprog.org/

Tutoria: Dialog FAQ

br eak:

Notice the line that sets the background mode to transparent... if you leave thisline off the
background will be filled in with the brush you specify, but when the control draws the text it will get
written over with the default background color! Setting the text drawing mode to transparent fixes
this problem. The other option would be to Set BkCol or () to the same color as our background
brush, but | like this solution better.

Changing the colors on pretty much any other standard control works the same way, just look up the
VWM CTLCOLOR* messagesin your Win32 reference. Note that an edit control will send a
VWM CTLCCOLORSTATI Cifitisread only, and WM CTLCOLOREDI T if it isn't.

If you have more than one static (or other) control that you want to be different colours, then you'll
need to check the ID of the control you are getting the message from and change your colours based
on that. Y ou are passed the HAND of the control in | Par am and you can get the ID of the control
fromthisusing Get Dl gCt | r I D() . Note that static controls are all given adefault ID of

| DC_STATI C(-1) by the resource editor, so if you want to be able to tell them apart you'll need to
assign them new IDs.

Giving the Dialog an Icon

A fairly ssimple task, you just need to send WM_SETI CON to your dialog. Since windows uses two
icons however, you need to call it twice, once for the small icon displayed in the corner of the
window, and once for the large one displayed when you hit Alt-Tab. Y ou can just send the same
handle both times unless you have multi-sized icons.

To just set the default application icon, you can use the following code:

SendMessage(hwnd, WM SETI CON, | CON_SMALL, (LPARAM Loadl con(NULL,
MAKEI NTRESOURCE(| DI _APPLI CATI ON))) ;

SendMessage(hwnd, WM SETI CON, | CON BI G (LPARAM Loadl con(NULL,
MAKEI NTRESOURCE(| DI _APPLI CATI ON))) ;
When you substitute your own icon resource for the default, remember to change the HI NSTANCE

parameter of Loadl con() to your applications instance (you can get it by calling
Get Modul eHandl e(NULL) if you don't have it stored from W nMai n()).

Why Doesn't my Combo Box Work?

An all-too-common problem is people adding a combo box to their dialog and they can't figure out

file:///C|/dona/forgers-win32-tutorial/tutorial/dlgfag.html (2 of 3) [7/8/2003 4:34:47 PM]

Tutoria: Dialog FAQ

why the list doesn't show up when they run their program and click the little arrow. Thisis
understandable, since the solution is not very intuitive.

When you create a combo box and specify it's height, you are actually specifying the entire height,
drop-down list included, NOT the height of the control when it is collapsed which is determined by
the system based on the size of the font used.

For example, giving the control a height of 100 pixels, the system sizes the control itself to the
default (lets say 30 in this case), and when you click on the arrow, the drop down list would be 70
pixels high, for atotal of 100 pixels.

If you use the VC++ resource editor to place the combo on your dialog, you will notice you can't size
it vertically. Unless you click on the arrow in the editor, and it will then change the focus rectangle to
indicate you are sizing the dropdown list, and you can set the height to whatever you want.

What about all the other controls!

WEell | could give examples of all of the other controals, but that's what MSDN and Petzold are for ;) If
you can't figure out how to use them, you probably need to re-read some parts of thistutorial, or get a
book which will explain things more thouroughly.

I'd like to give you alink to a useful page on MSDN, but Microsoft seems to be determined to
prevent me from doing so aslinksto individual MSDN pages either change rapidly or don't work
period. Therefor you'll probably have to figure out how to get around yourself, look around for
sections like User Interface Services, and Windows Controls, sometimes under a Platform SDK
section.

MSDN - Windows Controls

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/dlgfag.html (3 of 3) [7/8/2003 4:34:47 PM]

http://msdn.microsoft.com/library/?url=/library/en-us/shellcc/platform/commctls/indivcontrol.asp
mailto:forger(nospam)winprog.org

App Part 1. Creating controls at runtime

[contents | #winprog]

App Part 1: Creating controls at runtime

Example: app_one

| thought that since an example on creating controls on the fly, although Ol x|
usefull, would be quite pointless unless the application actually did whales have calves, "
something, so in thisentry | will start the workings of atext editor and Cats have kittens, —
build upon it untill we reach anearly useful program that supports Bears have cubs,
opening, editing and saving text documents. E:"J;‘HT,‘;’;'?;“;’;“;;M

Seals hafe puppies, _ _
The first step, which this particular page covers will be smply creating the |Fut 9uppies iust have little guppiss.

window and the EDIT control that will serve as the center of our program. ||

Starting with the skeleton code from the Simple Window application we <] f

add a#def i ne asour control ID and the following two message handlers into our window procedure:
#define IDC MAIN EDIT 101

case WM CREATE:

{
HFONT hf Def aul t ;
HWND hEdi t ;

hEdit = Creat eW ndowex(W5_EX CLI ENTEDGE, "ED T*, "",
W5 CHI LD | W6 VISIBLE | W5 VSCROLL | W5 HSCROLL | ES _MULTI LI NE |
ES AUTOVSCROLL | ES_AUTOHSCROLL,
0, 0, 100, 100, hwnd, (HMENU)IDC MAIN EDI T, GCet Modul eHandl e(NULL),
NULL) ;
i f(hEdit == NULL)
MessageBox(hwnd, "Could not create edit box.", "Error", MB OK |
MB_| CONERROR) ;

hf Default = Get St ockObj ect (DEFAULT_GUI _FONT) ;
SendMessage(hEdi t, VWM SETFONT, (WPARAM hf Def ault, MAKELPARAM FALSE, 0));
}
br eak;
case WM SI ZE:
{
HWND hEdi t;
RECT rcdient;

Getd i entRect (hwnd, & cCient);

hEdit = GetDli glten(hwnd, |1 DC_MAIN EDIT);
Set W ndowPos(hEdit, NULL, O, O, rcCient.right, rcCient.bottom

file:///C|/dona/forgers-win32-tutorial/tutorial/app_one.html (1 of 3) [7/8/2003 4:34:48 PM]

http://www.winprog.org/

App Part 1. Creating controls at runtime

SWP_NCZORDER) ;
}

br eak;

Creating controls

Creating controls, like creating any other window, is done through the Cr eat eW ndowex () APl. Wepassin pre-
registered class that we want, in this case the "EDIT" control class, and we get a standard edit control window. When
using dialogs to create our controls, we are basically writing alist of controlsto create so that then you call

Di al ogBox() or Creat eDi al og() the system reads through the list of controlsin the dialog resource and calls
Cr eat eW ndowEx () for each one with the position and styles that were defined in the resource.

hEdit = Creat eW ndowex(Ws_EX CLI ENTEDGE, "ED T, "",
W5 CH LD | Ws VISIBLE | W5 VSCROLL | W5_HSCROLL | ES_MJLTI LI NE |
ES AUTOVSCROLL | ES_AUTOHSCROLL,
0, 0, 100, 100, hwnd, (HMENU)IDC MAI N EDI T, GCet Modul eHandl e(NULL),
NULL) ;
i f(hEdit == NULL)
MessageBox(hwnd, "Could not create edit box.", "Error", MB K |
MB_| CONERROR) ;

Y ou can see that this call to Cr eat eW ndowEx () specifies quite afew styles, and it's not uncommon to have many
more, especially for the Common Controls which have a hearty list of options. Thefirst 4 W5 _ styles should be fairly
obvious, we are creating the control as a child of our window, we want it to be visible, and have vertical and horizontal
scroll bars.

The 3 styles that are specific to EDIT controls (ES_MULTI LI NE | ES_AUTOVSCROLL | ES_AUTOHSCROLL)
specify that the EDIT control should contain multiple lines of text, and scroll automatically as you type beyond the
bottom and right hand side of the control respectively.

The regular window styles (Ws_*) are listed here. And the extended windows styles (W6_EX_*) are explained under
the Cr eat eW ndowEx () referencein MSDN, where you can also find links to the styles that are specific to each
control (ES_* in our case of the edit control).

We have specified our window handle as the parent of the control, and assigned it an ID of | DC_MAI N_EDI T which
we'll use later on to refer to the control just as you would if the control had been created on adialog. The position and
size parameters don't mean too much at the moment since we will be resizing the control dynamically in the WM _SI ZE
message so that it will always fit our window.

Sizing of dynamically created controls

Generally if your window is sizeable you'll want some code to resize or reposition the controls you created within it so
that they are always layed out properly.

Getd i entRect (hwnd, & cCient);

hEdit = GetDl glten(hwnd, |1 DC_MAIN EDIT);
Set W ndowPos(hEdit, NULL, 0, 0, rcCient.right, rcdient.bottom

file:///C|/dona/forgers-win32-tutorial/tutorial/app_one.html (2 of 3) [7/8/2003 4:34:48 PM]

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/windows_2v90.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/windows_1w6w.asp

App Part 1. Creating controls at runtime

SWP_NCZORDER) ;

Since we only have one control for now, the task isrelatively simple. Weuse Get Cl i ent Rect () to get the
dimentions of the Client Area of the window, the big (up untill now) blank areathat does not include the borders, menu
or caption. Thiswill fill in our RECT structure with the value, thel ef t andt op valueswill always be 0, so you can
usually just ignore them. Ther i ght and bot t omvalueswill give you the width and the hight of the client area.

Next we smply get a handle to our edit control using Get DI gl t en{) which worksjust as well on regular windows
asit doeson dialogs, and the call Set W ndowPos () to move and sizeit to fill the entire client area. Y ou can of
course change the values you pass into Set W ndowPos () to do something like only fill half of the window's height,
leaving the bottom free to place other controls.

Creating other controls at runtime

I'm not going to give examples of dynamically creating the other controlslike LISTBOX, BUTTON, etc... becauseiit's
basically the same and it gets kinda boring after awhile:) If you follow the linksinto MSDN above, or look in your
local Win32 API reference you will be ableto find all of the information needed to create any of the other standard
controls.

WE'I be doing more of this with the common controls in the next couple of sections so you'll get more practice
eventually.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/app_one.html (3 of 3) [7/8/2003 4:34:48 PM]

mailto:forger(nospam)winprog.org

App Part 2: Using files and the common dialogs

[contents | #winprog]

App Part 2: Using files and the common
dialogs

Example: app_two

The Common File Dialogs CTr e
T LT
o Rl

Thefirst step to opening or saving filesis finding out the
filename to use... of course you could always hard code
the name of the file into your program, but honestly that
doesn't make for very useful programs most of the time.

Since thisis such a common task, there are predefined
system dialogs that you can use to allow the user to select
afile name. The most common open and save file dialogs
are accessed through Get OpenFi | eNane() and

CGet SaveFi | eName() respectively, both of whichtake | .
an OPENFI LENANE struct. N

3]
.
€8
R
Deuments
=
Ny

OPENFI LENAME of n;
char szFil eName[MAX_PATH = "";

Zer oMenor y(&of n, sizeof (ofn));

of n.l1 StructSi ze = sizeof(ofn); // SEE NOTE BELOW

of n. hwhdOwner = hwnd,

ofn.lpstrFilter = "Text Files (*.txt)\O*.txt\QAIl Files (*.*)\0*.*\0";
ofn.lpstrFile = szFi |l eNang;

of n. nMaxFi | e = MAX PATH,

of n. Fl ags = OFN_EXPLORER | OFN_FI LEMUSTEXI ST | OFN_HI DEREADONLY;

of n. I pstrDef Ext = "txt";

I T (Get OpenFi | eNanme(&of n))
{

}

/1 Do sonmething usefull with the filenane stored in szFil eNane

Note that we call Zer oMenor y() onthestruct in order to initialiseitto 0. Thisis generaly awise practice, as
some APIs are very picky about members that you don't use being set to NULL. Thisway you don't need to
explicitely set each member that you don't use.

file://IC|/dona/forgers-win32-tutorial/tutorial/app_two.html (1 of 5) [7/8/2003 4:34:48 PM]

http://www.winprog.org/

App Part 2: Using files and the common dialogs

Y ou can easily find out the meanings of the various members by looking them up in your documentation. The

| pstrFilter vauepointstoadouble-NULL terminated string, and you can see from the example that there
areseveral "\ 0" throughout it, including one at the end... the compiler will add the second one at the end as it
always does with string constants (that's what you generally don't need to put them in yourself). The NULLs in
this string break it up into filters, each one istwo parts. The first filter has the description " Text Fi | es
(*.txt)",thewildcardisn't required herel just put it in because | felt like it. The next part is the actual
wildcard for thefirst filter, " * . t xt " . We do the same thing with the second filter except that thisisageneric
filter for all files. Y ou can add as many different filters as you'd like.

Thel pstr Fi | e pointsto the buffer we have allocated to store the name of the file, since filenames can't be
larger than MAX_PATH thisis the value that |'ve chosen for the buffer size.

The flags indicate that the dialog should only allow the user to enter filenames that already exist (since we want
to open them, not create them) and to hide the option to open the file in readonly mode, which we aren't going
to support. Finally we provide a default extention, so if the user typesin" f oo" and thefileis not found, it will
trytoopen" f 0o. t xt " beforefinaly giving up.

To select afilefor saving instead of opening, the code is nearly the same, except for calling
Cet SaveFi | eNanme() we need only change the flags member to options more suitable for saving.

of n. Fl ags = OFN_EXPLORER | OFN_PATHMUSTEXI ST | OFN_H DEREADONLY |
OFN_OVERWRI TEPROVPT;

In this case we no longer want to require the file exist, but we do want the directory to exist since we aren't
going to try and createit first. We'll also prompt the user if they select an existing file to make sure they want to
overwrite it.

NOTE: MSDN States the following for thel St r uct Si ze member:

IStructSize
Specifies the length, in bytes, of the structure.

Windows NT 4.0: In an application that is compiled with WINVER and _WIN32_WINNT >= 0x0500,
use OPENFILENAME_SIZE VERSION_400 for this member.

Windows 2000/XP: Use sizeof (OPENFILENAME) for this parameter.
Basically what this meansis that as of Windows 2000 they added some membersto this struct, and so it's size
changed. If the code above doesn't work for you it's possibly because the size that your compiler used and the
size that your operating system (ie. Windows 98, Windows NT4) expected were different and so the call failed.

If this happens, try using OPENFI LENAME_SI ZE_VERSI ON_400 instead of si zeof (of n) . Thanksto
people that pointed this out to me.

Reading and Writing Files

file:///C|/dona/forgers-win32-tutorial/tutorial/app_two.html (2 of 5) [7/8/2003 4:34:48 PM]

App Part 2: Using files and the common dialogs

In windows you have afew options as to how you want to accessfiles. You can usetheoldi 0. h
open()/read()/mrite(),youcanusestdi o. hfopen()/fread()/fwite(),andif youareinC++
use can use iostreams,

However in windows all of these method ultimately call the Win32 API functions, which are what | will use
here. If you are already comfortable using file 10 with another method it should be fairly easy to pick up, or if
you want simply use your method of choice to accessfiles.

To openfiles, you can use OpenFi | e() or Creat eFi | e() . MSrecommendsusing only Cr eat eFi | e()
asQpenFi | e() isnow "obsolete". Cr eat eFi | e() isamuch more versatile function and provides a great
deal of control over the way you open files.

Reading
Say for example you have alowed the user to select afile using GetOpenFileName()...

BOOL LoadText Fil eToEdit (HWND hEdit, LPCTSTR pszFi | eNane)
{

HANDLE hFi | e;

BOOL bSuccess = FALSE;

hFile = CreateFil e(pszFil eNanme, GENERI C_READ, FILE_SHARE READ, NULL,
OPEN_EXI STI NG, 0, NULL);
if(hFile !'= I NVALI D_HANDLE VALUE)

{
DWORD dwFi | eSi ze;

dwki | eSize = GetFil eSize(hFile, NULL);
i f(dwFil eSi ze ! = OXFFFFFFFF)

{
LPSTR pszFi | eText;
pszFi |l eText = d obal AIl oc(GPTR, dwFil eSi ze + 1);
| f(pszFil eText != NULL)
{
DWORD dwRead,;
| f(ReadFil e(hFile, pszFileText, dwFileSize, &JIwRead, NULL))
{
pszFi | eText[dwFi |l eSize] = 0; // Add null term nator
I f (Set WndowText (hEdit, pszFileText))
bSuccess = TRUE;, // It worked!
}
G obal Free(pszFil eText);
}
}

file:///C|/dona/forgers-win32-tutorial/tutorial/app_two.html (3 of 5) [7/8/2003 4:34:48 PM]

App Part 2: Using files and the common dialogs

Cl oseHandl e(hFi |l e);
}

return bSuccess;

}

Thereis acomplete function to read atext file into an edit control. It takes as paramters the handle to the edit
control and the name of the fileto read in. This perticular function has afair bit of error checking, file 1O is one
place where alot of things can go wrong, and so you need to be on the lookout for errors.

Note the variable dwRead. We don't use it except as a paramter in ReadFi | e() . This parameter MUST be
provided, the call will fail without it.

Inthecall to Cr eat eFi | e() GENERI C_READ means we only want read access. FI LE_ SHARE READ
means it's okay if other programs open the file at the same time we do, but ONLY if they want to read as well,
we don't want them writing to the file while we are reading it. And OPEN_EXI STI NG means only open thefile
if it already exists, don't create it, and don't overwrite it.

Once we've opened the file and chacked to seethat Cr eat eFi | e() succeeded, we check the size of the file so
we'll know how much memory we need to allocate in order to read the entire thing. We then allocate the
memory, check to make sure the allocation succeeded, and then call ReadFi | e() toload the contents from
disk into our memory buffer. The API file functions have no concept of Text Files so they won't do things like
read asingle line of text, or add NULL terminators to the end of our strings. Thisis why we've allocated an extra
byte and after we read in the file we add the NUL L ourselves so that we can then pass the memory buffer asa
string to Set W ndowText () .

Once all that has succeeded we set out success variable to TRUE, and clean up as we reach the end of the
function, freeing the memory buffer and closing the file handle before finally returning to the caller.

Writing

BOOL SaveTextFi |l eFronEdi t (HWND hEdit, LPCTSTR pszFi |l eNane)
{

HANDLE hFi | e;

BOOL bSuccess = FALSE;

hFile = CreateFil e(pszFi|l eNane, GENERI C WRI TE, 0, NULL,
CREATE_ALVAYS, FILE ATTRI BUTE_NORMAL, NULL);
if(hFile !'= 1 NVALI D_ HANDLE VALUE)

{
DWORD dwText Lengt h;

dwText Lengt h = Get W ndowText Lengt h(hEdi t) ;
/1 No need to bother if there's no text.
i f (dwText Length > 0)

{
LPSTR pszText;

file:///C|/dona/forgers-win32-tutorial/tutorial/app_two.html (4 of 5) [7/8/2003 4:34:48 PM]

App Part 2: Using files and the common dialogs

DWORD dwBuf fer Si ze = dwlextLength + 1;

pszText = d obal All oc(GPTR, dwBufferSi ze);

I f(pszText !'= NULL)
{
I f (Get WndowText (hEdit, pszText, dwBufferSi ze))
{
DWORD dwW i tten;
If(WiteFile(hFile, pszText, dwTlextLength, &IwWWitten,
NULL))
bSuccess = TRUE;
}
G obal Free(pszText);
}
}
Cl oseHandl e(hFil e);
}

return bSuccess;

}

Very similar to reading files, the function to write files has a few changes. First of al when we call
Creat eFi | e() we specify that we want Read access, that the file should always be created new (and if it
existsit will be erased asit's opened) and that if it doesn't exist, it will be created with the normal file attributes.

Next we get the length of the memory buffer needed from the edit control, since thisis the source of the data.
Once we've allocated the memory, we request the string from the edit control using Get W ndowText () and
then writeit to thefilewithWi t eFi | e() . Agan, likewith ReadFi | e() the parameter that returns how
much was actually written is required, even though we don't useit.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/app_two.html (5 of 5) [7/8/2003 4:34:48 PM]

mailto:forger(nospam)winprog.org

App Part 3: Tool and Status bars

[contents | #winprog]

App Part 3: Tool and Status bars

Example: app_three

An IMPORTANT Word on Common Controls -0 x|
Eile

Aswith al common controls, you must call o

I ni t CoomonContr ol s() BEFORE you try and use them. Qlilﬂl -
; ; ; Thiz docurment defines the Client Protocol, and assumes b &

Youwill needto#i ncl ude <comnctrl. h>inordertouse | oyt e i o R Architecture IFCARCH]. —

this function and to get the functions and declarations necessary

for use of the Common Controls. You will also need to add Table of Contents

conct| 32. 1'i btoyour linker settingsif itisnot already there. | | o 3

Notethat | ni t ConmonCont r ol s() isanolder API, and for 11 SEIVEIS oo 3 .

more control you can use | ni t CormonCont r ol sEx() (aka |4 I _,|_I

InitCommonControl Sex()) which is also required for the most
recent common controls. However since I'm not using any of the
advanced features, | ni t CormonCont r ol s() isadequate and simpler.

|Save-:|. o |C:'|,Tmp'l,rfc2812.txt 4

Toolbars

Y ou can create atoolbar using Cr eat eTool bar Ex() but I'm not going to, so there. First thing you need to do is
actually create the toolbar...

hTool = CreateW ndowkx(0, TOOLBARCLASSNAME, NULL, WS CHI LD | W5 VI SIBLE, O,
0, 0, O,
hwnd, (HVENU)I DC_MAI N TOOL, Cet Mbdul eHandl e(NULL), NULL);

That's ssmple enough, TOOLBARCLASSNAME is a constant defined by the common control headers. hwnd isthe
parent window, the one you want to put the toolbar in. | DC_MAI N_TOOL isan identifier that you can use later to get
the HWAD of the toolbar using Get DI gl t en() , if you so desire.

/1 Send the TB BUTTONSTRUCTSI ZE nessage, which is required for

/'l backward conpatibility.

SendMessage(hTool, TB BUTTONSTRUCTSI ZE, (WPARAM si zeof (TBBUTTON), O0);
This messageisrequired to let the system figure out which version of the common controls library you are using.
Since new versions add new stuff to the structure, by giving it the size it can figure out what behaviour you are
expecting.

Toolbar buttons

Button bitmaps on basic toolbars come in two varieties, standard buttons that are provided by comctl 32, and user
defined buttons that you create yourself. NOTE: Buttons and bitmaps are added to toolbars seperately... first you add

file:///C|/dona/forgers-win32-tutorial/tutorial/app_three.html (1 of 4) [7/8/2003 4:34:49 PM]

http://www.winprog.org/

App Part 3: Tool and Status bars

alist of imagesto use, and THEN you add alist of buttons, and telling it which button uses which image.

Adding Standard Buttons

Now that we have atoolbar created, we need to add some buttons to it. The most common bitmaps are available in the
common control library itself, so we don't need to recreate them or add them to every exe that uses them.

First we declare a TBBUTTON and TBADDBI TVAP

TBBUTTON t bb[3] ;
TBADDBI TMAP t bab;

And then we add the standard bitmaps to the toolbar, using the imagelist predefined in the common control library...

t bab. hl nst = H NST_COWCTRL,;
tbab.nID = I DB_STD SMALL_ COLOR;
SendMessage(hTool , TB _ADDBI TMAP, 0, (LPARAM &t bab);

Now that we have our images |oaded up, we can add some buttons that use them...

Zer oMenory(tbb, sizeof(tbb));
tbb[0].iBitmap = STD_FI LENEW
tbb[0].fsState = TBSTATE_ENABLED,
tbb[0].fsStyle = TBSTYLE BUTTON;
t bb[0] . i dCommand = | D_FI LE_NEW

tbb[1] . i Bi t map
tbb[1].fsState = TBSTATE_ENABLED;
tbb[1].fsStyl e = TBSTYLE BUTTON;
tbb[1] . i dCommand = | D_FI LE_OPEN;

STD_FI LEGPEN;

tbb[2].i Bi tmap
tbb[2].fsState = TBSTATE_ENABLED,
tbb[2].fsStyle TBSTYLE_BUTTON,

t bb[2] . i dCommand = | D_FI LE_SAVEAS;

STD_FI LESAVE;

SendMessage(hTool , TB_ADDBUTTONS, sizeof (tbb)/sizeof (TBBUTTON),
(LPARAM &t bb) ;

Here we've added a New, Open and Save As button using the standard images, which is always a good idea since
people are used to seeing them and they know what they mean.

The indexes of each image in the imagelist are defined in the common control headers and are listed in MSDN.
We have assigned each button an ID (I D_FI LE_NEWEetc...) which isidentical to the IDs of the equivalent menu
items. These buttons will generate WM COVIMAND messages identical to the menu, so no extra processing is required!

If we were adding a button for acommand that didn't already have a menu item, we would ssimply pick anew ID for it
and add a handler to WM_COMVAND.

file:///C|/dona/forgers-win32-tutorial/tutorial/app_three.html (2 of 4) [7/8/2003 4:34:49 PM]

App Part 3: Tool and Status bars

If you're wondering what's up with the funky wPar aml passed to TB_ ADDBUTTONS it's doing a calculation of the
number of buttons in the array tbb so that we don't need to hardcode avalue. If | put in 3 instead it would still be
correct, but as soon as | added another button I'd have to change it to 4 and in programming that's bad... you want one
change to cause as few other changes as possible. For exampleif the si zeof (TBBUTTON) was 16 bytes (I made
that up, it actually varies by platform) then since we have 3 buttonsthe si zeof ('t bb) would be 16 * 3 or 48.
Therefor 48/16 gives us the number of buttons, 3.

Status bars

Something often found in apps with toolbars are status bars, the little things at the bottom of the window that display
information. They're pretty smpleto use, just create...

hSt at us = Creat eW ndowex(0, STATUSCLASSNAME, NULL,
W5 CHLD | Ws VISIBLE | SBARS SIZEGRIP, 0, 0, 0, O,
hwnd, (HVENU)I DC_MAI N _STATUS, Get Modul eHandl e(NULL), NULL);

And then (optionally) set the number of sections that you want. If you don't set any, it will simply have one section
using the entire width of the bar, and you can set and retreive the text with Set W ndowText () aswith many other
controls. For more than one part, you need to give the widths of each section, and then use SB_ SETTEXT to set the
text of each one.

To define the widths, we declare an array of i nt s, where each value is the width in pixels of a section. If you want
one section to use up any remaining space, set it'swidthto - 1.

int statwidths[] = {100, -1};

SendMessage(hSt at us, SB_SETPARTS, sizeof (statw dths)/sizeof (int),
(LPARAM st at wi dt hs) ;
SendMessage(hStatus, SB _SETTEXT, 0O, (LPARAM"H there :)");

The wParam again is our calculation of how many elements are in the array. Once we're done adding sections, we set
the first one (index 0) to seeit in action.

Proper Sizing

Unlike menus, tool and status bars are seperate controls that live inside the parent window's client area. Therefor if we
just leave our WM _SI ZE code from before, they are going to overlap with the edit control we added in the previous
examples. Thisis asimple matter to correct... in WM_SI ZE, we move the tool and status bars into position, and then
subtract their heights and positions from the client area so that we can move our edit control to fill the remaining
space...

HAD hTool ;
RECT rcTool ;
i nt i Tool Hei ght ;

HW\D hSt at us;

file:///C|/dona/forgers-win32-tutorial/tutorial/app_three.html (3 of 4) [7/8/2003 4:34:49 PM]

App Part 3: Tool and Status bars

RECT rcSt at us;
i nt i StatusHei ght;

HWND hEdi t;

I nt i EditHeight;

RECT rcdient;

/'l Size tool bar and get hei ght

hTool = GetDiglten(hwnd, 1DC MAIN TOQL);
SendMessage(hTool , TB_AUTCSI ZE, 0, 0);

Get W ndowRect (hTool , & cTool);
I Tool Hei ght = rcTool . bottom - rcTool . top;

/'l Size status bar and get hei ght

hStatus = GetD gltenm(hwnd, | DC MAI N STATLUS) ;
SendMessage(hStatus, WM SI ZE, 0, 0);

Get W ndowRect (hSt at us, & cStatus);
I StatusHei ght = rcStatus. bottom - rcStatus.top;

/1l Cal culate remai ning height and size edit

Getdient Rect (hwnd, & cCient);

| Edi t Hei ght = rcCient.bottom - i Tool Hei ght - i StatusHei ght;
hEdit = GetDiglten(hwnd, 1DC MAIN EDIT);

Set W ndowPos(hEdi t, NULL, O, iTool Height, rcCient.right, iEditHeight,
SWP_NOZORDER) ;

Unfortunately it's a somewhat long code snippet, but it's quite simple... toolbars will auto position themselves when
sent the TB_ AUTOSI ZE message, and status bars will do the same if you send them VWM _SI ZE (the common control
libraries are not known for consistancy).

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/app_three.html (4 of 4) [7/8/2003 4:34:49 PM]

mailto:forger(nospam)winprog.org

App Part 4: Multiple Document Interface

[contents | #winprog]

App Part 4: Multiple Document Interface

Example: app_four

MDI Overview ~10lx|
Fil= Edit | Window

First abit of background... Every window has aClient Area, thisiswhere [| E’.‘:| - 'E

most programs draw images, place controls etc... the Client Areais not DE

seperate from the window itself, it is simply a smaller specialised region 1 [Untitled]
of it. Sometimes a window can be all client area, and nothing else, I:E v 2 C:\Tmp\foo.txt
sometimes the client areais smaller to make room for menus, titles, Vendar™ 1073
scrollbars, etc... Device: 000D
1
In MDI terms, your main window is called the Frame, thisis probably the . | 4

only window you would have in a SDI (Single Document Interface)
program. In MDI thereis an additional window, called the MDI Client
Window which is achild of your Frame window. Unlike the Client Area it is a complete and seperate window all on it's
own, it hasaclient area of it's own and probably afew pixelsfor aborder. Y ou never directly handle messages for the
MDI Client, it is done by the pre-defined windows class " MDI CLI ENT" . Y ou can communicate with and manipulate
the MDI Client and the windows it contains through messages.

Saved... |C:\Tmp'foo. bt A

When it comes to the windows which actually display your document or whatever your program displays, you send a
message to the MDI Client to tell it to create a new window of the type you've specified. The new window is created as
achild of the MDI Client, not of your Frame window. This new window isan MDI Child. The MDI Child isa child of
the MDI Client, which in turn isachild of the MDI Frame (Getting dizzy yet?). To make matters worse, the MDI Child
will probably have child windows of its own, for instance the edit control in the example program for this section.

Y ou are responsable for writing two (or more) Window Procedures. One, just like always, for your main window(the
Frame). And one more for the MDI Child. Y ou may also have more than one type of Child, in which case, you'll want a
seperate window procedure for each type.

If I've thoroughly confused you now talking about MDI Clients and things, this diagram may clear things up alittle
better:

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (1 of 9) [7/8/2003 4:34:50 PM]

http://www.winprog.org/

App Part 4: Multiple Document Interface

TR TTIE | Fa Wl U _ O] x| <- MDI Frame Window
File Edit Window

il the_Sorger's MY Sxample [l[u] E3

Client AREA File Edit incow

Complete MDI window *
The client ABEA is covered up by the MDI
Client WINDOW

Eile Edit ‘Window - MDI FRAME Window

| I MDI CLIENT Window

T+-- MDI CHILD Window

Getting Started with MDI

MDI requires afew subtle changes throughout a program, so please read through this section carefully... chances are
that if your MDI program doesn't work or has strange behaviour it's because you missed one of the alterations from a
regular program.

MDI Client Window
Before we create our MDI window we need to make a change to the default message processing that goes on in our
Window Procedure... since we're creating a Frame window that will host an MDI Client, we need to change the

Def W ndowPr oc() call to Def Fr amePr oc() which adds specialized message handling for Frame Windows,

defaul t:
return Def FraneProc(hwnd, g hMDICient, nsg, wParam | Param;

The next step isto create the MDI Client window itself, as achild of our frame window. We do thisin WM_CREATE as
usual...

CLI ENTCREATESTRUCT ccs;

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (2 of 9) [7/8/2003 4:34:50 PM]

App Part 4: Multiple Document Interface

ccs. hW ndowivenu
ccs.idFirstChild

CGet SubMenu(Get Menu(hwnd), 2);
| D_MDI _FI RSTCHI LD;

g hMDIdient = CreateW ndowex(W5 _EX CLI ENTEDGE, "ndiclient", NULL,
W5 CHILD | W5 CLIPCHI LDREN | W5 VSCROLL | W5 HSCROLL | W5 VI SI BLE,
CW USEDEFAULT, CW USEDEFAULT, CW USEDEFAULT, CW USEDEFAULT,
hwnd, (HMENU)I DC MAI N MDI, Get Modul eHandl e(NULL), (LPVA D)é&ccs);

The menu handle is the handle to the popup menu that the MDI client will add items to representing each window that
is created, allowing the user to select the window they want to activate from the menu, we'll add functionality shortly to
handle this case. In this exampleit's the 3rd popup (index 2) since I've added Edit and Window to the menu after File.

ccs. i dFi rst Chi | d isanumber to use asthefirst ID for the items the Client adds to the Window menu... you want
thisto be easily distinguishable from your own menu identifiers so you can handle your menu commands and pass the
Window menu commands to Def Fr anePr oc() for processing. In the example | specify an identifier defined as
50000, high enough that I know none of my menu command id's will be aboveit.

Now to get this menu to work properly we need to add some special handling to our WM COMVAND handler:

case WW_COMVAND:
swi t ch(LOAORD(wPar am))

{
case | D FILE_EXIT:
Post Message(hwnd, WM CLCSE, 0, 0);
br eak;
/1 ... handle other regular IDs ...
// Handl e MDI W ndow comrands
def aul t:
{
i f (LOMORD(wWParam) >= | D MDI _FI RSTCHI LD)
{
Def FraneProc(hwnd, g hMDIClient, nmsg, wParam | Paran);
}
el se
{
HWAD hChild = (HWND) SendMessage(g_hMDI O i ent,
VWM MDI GETACTI VE, 0, 0) ;
i f(hChild)
{
SendMessage(hChil d, W COVWAND, wParam | Param ;
}
}
}
}
br eak;

I've added adef aul t : case which will catch all commands that | didn't process directly and do a check to seeif the

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (3 of 9) [7/8/2003 4:34:50 PM]

App Part 4: Multiple Document Interface

valueisgreater than or equal tol D_MDI _FI RSTCHI LD. If it is, then the user has clicked on one of the Window menu
items and we send the message on to Def Fr anePr oc() for processing.

If it isn't one of the Window IDs then | get the handle to the active child window and forward the message to it for
processing. This allows you to delegate responsibility to the Child windows for performing certain actions, and allows
different child windows to handle commands in different ways if so desired. In the example | only handle commands
that are global to the program in the Frame window procedure, and send the commands which affect a certain
document or child window on to the child window itself for processsing.

Since we're building on the last example, the code to size the MDI client is the same as the code to resize the edit
control in the last example, that takes into account the size and position of the tool and status bars so they don't overlap
the MDI client window.

We also need to modify our message loop alittle...

whi | e(Get Message(&Vsg, NULL, 0, 0))

{
if (!Transl ateMDl SysAccel (g _hMDI Client, &VsQ))
{
Tr ansl at eMessage(&\VsQ) ;
Di spat chMessage(&\VsQ) ;
}
}

We've added an extrastep (Tr ansl at eVDI SysAccel ()), that checks for the pre-defined accelerator keys, Ctrl+F6
which swtiches to the next window, Ctrl+F4 which closes the Child and so on. If you don't add in this check you will
annoy your users by not providing the standard behaviour they've gotten used to, or you'll have to implement it
manually.

Child Window Class

In addition to the main window of the program (the Frame window) we need to create new window classes for each
type of child window we want. For example you might have one to display text, and one to display a picture or graph.
In this example we'll only be creating one child type, which will be just like the editor program in the previous
examples.

BOOL Set UpMDI Chi | dW ndowCl ass(H NSTANCE hl nst ance)

{
WNDCLASSEX wc;

wc. cbSi ze = si zeof (VWNDCLASSEX) ;

we. styl e = CS_HREDRAW | CS_VREDRAW

we. | pf nWhdPr oc = MDI Chi | dWhdPr oc;

we. cbCl sExtra = 0;

wc. cbWhdExt r a = 0;

we. hl nst ance = hl nst ance;

we. hl con = Loadl con(NULL, | DI _APPLI CATI ON);
we. hCur sor = LoadCursor (NULL, | DC_ARROW ;

wc. hbr Backgr ound = (HBRUSH) (COLOR_3DFACE+1) ;

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (4 of 9) [7/8/2003 4:34:50 PM]

App Part 4: Multiple Document Interface

we. | pszMenuNane
we. | pszd assNane
wc. hl conSm

NULL;
g_szChi | dCl assNane;
Loadl con(NULL, | DI _APPLI CATI ON);

I f(!RegisterC assEx(&wc))

{
MessageBox(0, "Could Not Register Child Wndow', "Ch Oh...",
MB_| CONEXCLAMATION | MB_(K);
return FALSE;
}
el se

return TRUE;
}

Thisisbasicaly identical to registering our regular frame window, there are no particularly specia flags here for use
with MDI. We've set the menu as NULL, and the window procedure to point to the child window procedure which we
will write next.

MDI Child Procedure

The window procecure for an MDI child is much like any other with afew small exceptions. First of al, default
messages are passed to Def MDI Chi | dPr oc() instead of Def W ndowPr oc() .

In this particular case, we also want to disable the Edit and Window menu's when they aren't needed (just becauseit's a
nice thing to do), so we handle WM DI ACTI VEATE and enable or disable them depending on if our window is
getting activated or not. If you have multiple types of child window, thisiswhere you could put code to completely
change the menu or toolbar or make alterations to other aspects of the program to reflect the actions and commands that
are specific to the type of window being activated.

To be even more compl ete, we can disable the Close and Save File menu items as well, since they aren't going to be
any good with no windows to act on. I've disabled all these items by default in the resource so that | don't need to add
extra code to do it when the application first starts up.

LRESULT CALLBACK MDI Chi | dwhdPr oc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM
| Par am
{
swi tch(nsg)
{
case WM CREATE:
{
HFONT hf Def aul t ;
HWND hEdi t ;

/] Create Edit Control

hEdit = CreateW ndowEx(Ws_EX_CLI ENTEDGE, "EDI T", "",
WS CHI LD | WS _VISIBLE | WS_VSCROLL | WS _HSCROLL | ES MULTILI NE |
ES_AUTOVSCROLL | ES AUTOHSCROLL,
0, 0, 100, 100, hwnd, (HMVENU)IDC CHI LD EDIT,

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (5 of 9) [7/8/2003 4:34:50 PM]

App Part 4: Multiple Document Interface

Get Modul eHandl e(NULL), NULL);
i f(hEdit == NULL)
MessageBox(hwnd, "Could not create edit box.", "Error", MB K |
MB_| CONERROR) ;

hf Default = Get St ockObj ect (DEFAULT _GUI _FONT) ;
SendMessage(hEdi t, WM SETFONT, (WPARAM hf Def aul t, MAKELPARAM FALSE,

0));
}
br eak;
case WM MDI ACTI VATE:
{
HVENU hMenu, hFil eMenu;
U NT Enabl eFl ag;
hMenu = Get Menu(g_hMai nW ndow) ;
i f(hwnd == (HWAD) | Par am)
{ /I bei ng activated, enable the nmenus
Enabl eFl ag = MF_ENABLED,
}
el se
{ /I bei ng de-activated, gray the nenus
Enabl eFl ag = MF_GRAYED;
}
Enabl eMenul t em(hMenu, 1, M-_BYPOSI TI ON | Enabl eFl ag) ;
Enabl eMenul t em(hMenu, 2, M-_BYPOSI TI ON | Enabl eFl ag) ;
hFi | eMenu = Get SubMenu(hMenu, O0);
Enabl eMenul t en(hFi | eMenu, | D _FI LE_SAVEAS, M-_BYCOVNVAND |
Enabl eFl ag) ;
Enabl eMenul t en(hFi | eMenu, | D FILE CLOSE, MF_BYCOMVAND | Enabl eFl ag);
Enabl eMenul t en(hFi | eMenu, | D _FILE CLOSEALL, M-_BYCOVVAND |
Enabl eFl ag) ;
Dr awMenuBar (g_hMai nW ndow) ;
}
br eak;

case WM COMVAND:
swi t ch(LOAORD(wPar am))
{
case | D FI LE OPEN:
DoFi | eOpen(hwnd) ;
br eak;
case | D_FlI LE_SAVEAS:
DoFi | eSave(hwnd) ;
br eak;
case | D EDI T_CUT:
SendDl gl t emVessage(hwnd, I1DC CH LD EDIT, WM CUT, 0, 0);

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (6 of 9) [7/8/2003 4:34:50 PM]

App Part 4: Multiple Document Interface

br eak;
case | D EDI T_COPY:
SendDl gl t emVessage(hwnd, 1DC CH LD EDI T, WM COPY, 0, 0);
br eak;
case | D EDI T_PASTE:
SendDl gl t emVessage(hwnd, I DC CH LD EDI T, WM PASTE, 0, 0);
br eak;
}
br eak;
case WM SI ZE:
{
HW\D hEdi t;
RECT rcd ient;

/1 Cal cul ate remai ni ng hei ght and size edit
Getd i ent Rect (hwnd, & cdient);

hEdit = GetDl glten(hwnd, |1 DC CH LD EDI T);
Set W ndowPos(hEdit, NULL, 0, 0, rcCient.right, rcdient.bottom
SWP_NOZORDER) ;

}
return Def MDI Chi |l dProc(hwnd, nsg, wParam | Paranj;
def aul t:
return Def MDI Chi |l dProc(hwnd, nsg, wParam | Paranj;
}
return O;

}

I've implemented the File Open and Save as commands, the DoFi | eQpen() and DoFi | eSave() arenearly the
same as in previous examples with the ID of the edit control changed, and additionally setting the title of the MDI
Child to the filename.

The Edit commands are easy, because the edit control has built in support for them, we just tell it what to do.
Remember | mentioned that there are little things you need to remember or your application will behave strangely?
Note that I've called Def MDI Chi | dPr oc() at theend of WM _SI ZE, thisisimportant otherwise the system wont'

have a chance to do it's own processing on the message. Y ou can look up Def VDI Chi | dProc() in MSDN for alist
of the messages that it processes, and always be sure to pass them to it.

Creating and Destroying Windows

MDI Child windows are not created directly, isntead we send a VWM MDI CREATE message to the client window telling
it what kind of window we want by setting the members of an MDI CREATESTRUCT. Y ou can look up the various
members of this struct in your documentation, they are fairly straight forward. The return value from the

VWM _MDI CREATE message is the handle to the newly created window.

HWND Cr eat eNewiVDI Chi | d(HWND hMVDI Cl i ent)

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (7 of 9) [7/8/2003 4:34:50 PM]

App Part 4: Multiple Document Interface

MDI CREATESTRUCT nts;
HWAD hChi | d;

ncs.szTitle “[Untitled]";

nts. szC ass g_szChi | dCl assNane;
ncs. hOaner Get Mbdul eHandl e(NULL) ;
ncs. X = nts. cx = CW USEDEFAULT,;
ncs.y = nts.cy = CW USEDEFAULT,;

ncs.style = MDI'S_ALLCHI LDSTYLES;

hChild = (HAWND) SendMessage(hVMDI i ent, WM MDI CREATE, 0, (LONG) &nts);
i f(!hChild)
{
MessageBox(hMDIClient, "MDI Child creation failed.", "Ch Ch...",
MB_| CONEXCLAMVATION | MB_XK) ;
}
return hChil d;

}

One member of MDI CREATESTRUCT that | didn't use that can be quite usefull isthel Par ammember. This can be
used to send any 32bit value (like a pointer) to the child you are creating in order to provide it with any custom
information you choose. In the WM CREATE handler for your child window, the| Par amvalue for the WM CREATE
message will point to a CREATESTRUCT. thel pCr eat ePar ans member of that structure will point to the

VDI CREATESTRUCT you sent along with WM NMDI CREATE. So in order to accessthel Par amvalue from the Child
window you need to do something like thisin the child window procedure...

case WM CREATE:

{
CREATESTRUCT* pCreateStruct;

VDI CREATESTRUCT* pMDI Creat eStruct

pCreateStruct = (CREATESTRUCT*) | Par am
pMDI Creat eStruct = (MDI CREATESTRUCT*) pCr eat eSt r uct - >| pCr eat ePar ans;

/*
pMDI Creat eStruct now points to the same MDI CREATESTRUCT that you
sent along with the WM MDI CREATE nessage and you can use it
to access the | Param
*/
}

br eak;

If you don't want to bother with those two extra pointers you can access the |Param in one step with
((MDI CREATESTRUCT*) ((CREATESTRUCT™*) | Par am) - > pCr eat ePar ans) - >| Par am

Now we can implement the File commands on our menu in our Frame window procedure:

case | D FI LE_NEW

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (8 of 9) [7/8/2003 4:34:50 PM]

App Part 4: Multiple Document Interface

Cr eat eNewDI Chi | d(g_hMDI C i ent);
br eak;
case | D _FI LE_OPEN:
{
HWND hChild = Creat eNewVDI Chil d(g_hMDI Cient);
i f(hChild)
{

}

DoFi | eCpen(hChi | d);

}

br eak;

case | D FI LE CLOSE:

{
HWND hChild = (HWND) SendMessage(g_hMDI i ent, WM MDI GETACTI VE, 0, 0) ;
i f(hChild)
{

}

SendMessage(hChild, WM CLOSE, 0, 0);

}

br eak;

We can aso provide some default MDI processing of window arrangment for our Window menu, since MDI supports
thisitsalf it's not much work.

case | D W NDOW TI LE:
SendMessage(g_hMDI Cient, WM MDITILE, O, 0);
br eak;
case | D W NDOW CASCADE:
SendMessage(g_hMDI C i ent, WM MDI CASCADE, 0, O0);
br eak;

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/app_four.html (9 of 9) [7/8/2003 4:34:50 PM]

mailto:forger(nospam)winprog.org

Bitmaps, Device Contexts and BitBIt

[contents | #winprog |

Bitmaps, Device Contexts and BitBlt

Example: bmp_one

GDlI

Theredlly great thing about MS Windows is that unlike DOS, you don't need
to know anything about what video hardware you are using to display
graphics. Instead, windows provides an API called the Graphics Device
Interface, or GDI. The GDI uses a set of generic graphics objects that can be
used to draw to the screen, to memory, or even to printers.

Device Contexts

The GDI revolves around an object called the Device Context (DC), represented by the data type HDC (Handle
to Device Context). An HDC is basically a handle to something you can draw on; it can represent the entire
screen, an entire window, the client area of awindow, a bitmap stored in memory, or aprinter. The nice part is
that you don't even need to know which one it refersto, you can use it basically the same way, which is
especially handy for writing custom drawing functions which you can then use on any of these devices
without changing it for each one.

An HDC like most GDI objects is opaque, meaning that you can't accessit's data directly... but you can passit
to various GDI functions that will operate on it, either to draw something, get information about it, or change
the object in some way.

For example, if you wanted to draw on awindow, first you would retreive an HDC representing the window
with Get DC() , then you could use any of the GDI functions that take an HDC like Bi t Bl t () for drawing
images, Text Qut () for drawing text, Li neTo() for linesand so on.

Bitmaps

Bitmaps can be loaded much like iconsin earlier examples, thereisLoadBi t map() for the most basic
functionality of simply loading a bitmap resource, and Loadl nage() can be used to load bitmaps from a
* bnp filejust asit can for icons.

One of the quirks of GDI isthat you can't draw to bitmap objects (HBI TMAP type) directly. Remember that
drawing operations are abstracted by Device Contexts, so in order to use these drawing functions on a bitmap,
you need to create aMemory DC, and then select the HBI TMAP into it with Sel ect Obj ect () . The effect
isthat the "device" that the HDC refersto is the bitmap in memory, and when you operate on the HDC, the
resulting graphic operations are applied to the bitmap. As | mentioned, thisis actually a very conveiniant way

file:///C|/dona/forgers-win32-tutorial/tutorial/bitmaps.html (1 of 5) [7/8/2003 4:34:50 PM]

http://www.winprog.org/

Bitmaps, Device Contexts and BitBIt

of doing things, as you can write code that draws to an HDC and you can use it on a Window DC or a Memory
DC without any checks or changes.

Y ou do have the option of manipulating the bitmap data in memory yourself. Y ou can do this with Device
Independant Bitmaps (DIB), and you can even combine GDI and manual operations on the DIB. However for
the time being, thisis beyond the scope of the basic tutorial and for now we're just cover the ssmpler GDI
operations on their own.

GDI Leaks

Once you're finished with an HDC, it's very important to release it (just how you do that depends on how you
got it, which well talk about in abit). GDI objects are limited in number. In versions of windows prior to
Windows 95, they were not only incredably limited but also shared system wide, so that if one program used
up too many, none of the rest would be able to draw anything! Fortunately thisisn't the case any longer, and
you could get away with using up quite alot of resources in Windows 2000 or XP before anything too bad
happened... but it's easy to forget to free GDI objects and they can quickly run your program out of GDI
resources under Windows 9x. Theorehtically you shouldn't be able to drain the system of GDI resourcesin NT
systems (NT/2K/XP) but it still happens in extreme cases, or if you hit the right bug on the nose.

If your program runs fine for afew minutes and then starts drawing strangely or not at all, it'sa good sign that
you're leaking GDI resources. HDCs aren't the only GDI objects you need to be careful about releasing, but
generally it's ok to keep things like bitmaps and fonts around for the entire lifetime of your program, sinceiit's
much more efficiant than reloading them each time you need them.

Also, an HDC can only contain one of each type of object (bitmap, font, pen...) at atime, and when you select
anew onein it will return the last one. It's very important that you deal with this object properly. If you ignore
it completely, it will be lost and they will pile up in memory causing GDI leaks. When an HDC is created, it's
also created with some default objects selected into it... it's a good ideato store these when they are returned to
you, and then when you are completed drawing with the HDC select them back into it. Thiswill not only
remove any of your own objects from the HDC (which is a good thing) but it will aso cause the default objects
to be properly disposed of when you release or destroy the HDC (aVERY good thing).

Important Update: Not al objects have defaults selected into HDCs, and you can refer to MSDN for the few
that don't. Because of this| was previously uncertain as to wether HBI TMAPS were one of them, since there
doesn't seem to be any definitive documentation on it, and examples (even those by Microsoft) often ignored
the default bitmap. Since the writing of the original tutorial severa years ago, it was confirmed to me that
there was in fact a default bitmap that needs releasing. This information is courtesy of Shaun Ivory, a software
engineer for MS and afriend of mine from #winprog.

Apparently there was abug in a screensaver written at MS, and it turns out it was because the default bitmap
wasn't getting replaced or destroyed, and it eventually ran out of GDI resources. Be warned! It's an easy
mistake to make.

Displaying Bitmaps

file:///C|/dona/forgers-win32-tutorial/tutorial/bitmaps.html (2 of 5) [7/8/2003 4:34:50 PM]

Bitmaps, Device Contexts and BitBIt

Ok, down to business. The simplest drawing operations on a window occure by handling WM _PAI NT. When
your window isfirst displayed, restored from being minimised, or uncovered from having another window on
top of it, Windows sends the WM _PAI NT message to the window to let it know that it needsto redraw it's
contents. When you draw something on the screen it is NOT permanent, it's only there untill something else
draws over it, and at that point you need to draw it again when the time comes.

HBI TMAP g_hbnBal I = NULL;

case WM CREATE:
g_hbnmBal| = LoadBit map(Get Modul eHandl e(NULL),
MAKEI NTRESOURCE(| DB_BALL)) ;
i f(g_hbmBall == NULL)
MessageBox(hwnd, "Could not load IDB BALL!'", "Error", MB K |
VB_| CONEXCLANATI ON) ;
br eak;

Thefirst step is of course loading the bitmap, thisis quite ssmple with a bitmap resource, there are no
significant differences from loading other resource types. Then we can get down to drawing...

case VW _PAI NT:

{
Bl TMAP bm
PAI NTSTRUCT ps;
HDC hdc = Begi nPai nt (hwnd, &ps);
HDC hdcMem = Cr eat eConpat i bl eDC(hdc) ;
HBI TMAP hbnO d = Sel ect Obj ect (hdcMem g_hbnBal l);
Get bj ect (g_hbnBal |, sizeof (bm, &om;
BitBlt(hdc, 0, 0, bmbnmWdth, bm bnHei ght, hdcMem 0, 0, SRCCOPY);
Sel ect Obj ect (hdcMem hbnmQ d) ;
Del et eDC(hdcMem) ;
EndPai nt (hwnd, &ps);
}
br eak;

Getting the Window DC

To start off we declare a couple of variables we need. Notice that the first oneisa Bl TMAP, not an HBI TVAP.
Bl TMAP is astruct that holds information about an HBI TMAP which is the actual GDI object. We need away
to get the height and width of the HBI TMAP so we use Get Obj ect () which contrary to it's name doesn't

file:///C|/dona/forgers-win32-tutorial/tutorial/bitmaps.html (3 of 5) [7/8/2003 4:34:50 PM]

Bitmaps, Device Contexts and BitBIt

really get an object, but rather information about an existing one. " GetObjectinfo”" would have been amore
appropriate label. Get Obj ect () worksfor various GDI object types which it can distinguish based on the
value of the second parameter, the size of the structure.

The PAI NTSTRUCT is a structure that contains information about the window being painted and what exactly
IS going on with the paint message. For most simple tasks, you can simply ignore the information it contains,
but it's required for the call to Begi nPai nt () . Begi nPai nt () asit's name suggests is designed
specifically for handling the WM_PAI NT message. When not handling a VWM PAI NT message you would use
Get DC() which we will see in the timer animation examplesin awhile... but in WM _PAI NT, it'simportant to
use Begi nPai nt () and EndPai nt () .

Begi nPai nt () returns usan HDC that represents the HAND that we pass to it, the one that WM _PAI NT is
being handled for. Any drawing operation we perform on this HDC will immediately display on the screen.

Setting up a Memory DC for the Bitmap

As | mention above, in order to draw on or with bitmaps, we need to create a DC in memory... the easiest way
to do that hereisto Cr eat eConpat i bl eDC() with the one we already have. This givesusaMemory DC
that is compatible with the color depth and display properties of the HDC for the window.

Now we call Sel ect Qbj ect () to select the bitmap into the DC being careful to store the default bitmap so
that we can replace it later on and not leak GDI objects.

Drawing

Once we've gotten the dimentions of the bitmap filled into the Bl TMAP struct, wecan call Bi t Bl t () to copy
the image from our Memory DC to the Window DC, thus displaying on the screen. As aways, you can look
up each parameter in MSDN, but in short they are: The destination, the position and size, the source and
source position, and finally the Raster Operation (ROP code), which specifies how to do the copy. In this case,
we want a simple exact copy of the source made, no fancy stuff.

Bi t Bl t () isprobably the all time happiest function in all of the Win32 API and is the staple diet of anyone

learning to write games or other graphics applications in windows. It was probably the first API that |
memorised all the parametersto.

Cleanup

At this point the bitmap should be on the screen, and we need to clean up after ourselves. The first thing to do
Is restore the Memory DC to the state it was when we got it, which means replacing our bitmap with the
default one that we saved. Next we can delete it altogether with Del et eDC() .

Finally we release the Window DC we got from Begi nPai nt () using EndPai nt () .

Destroying an HDC is alittle confusing sometimes because there are at least 3 ways to do it depending on how

file:///C|/dona/forgers-win32-tutorial/tutorial/bitmaps.html (4 of 5) [7/8/2003 4:34:50 PM]

Bitmaps, Device Contexts and BitBIt

you got it in the first place. Here's alist of the common methods of gaining an HDC, and how to release it
when you're done.

. GetDC() - ReleaseDC()
. BeginPaint() - EndPaint()
« CreateCompatibleDC() - DeleteDC()

And finaly, at the termination of our program, we want to free any resources that we allocated. Technically
speaking thisisn't absolutely required, since modern Windows platforms are pretty good at freeing everything
when your program exists, but it's aways a good idea to keep track of your own objects because if get lazy
and don't delete them they have a habit of getting loose. And no doubt, there are still bugs in windows
especially older versions that won't clean up all of your GDI objectsif you don't do athorough job.

case WM DESTROY:
Del et eoj ect (g_hbnBal |) ;
Post Qui t Message(0) ;

br eak;

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/bitmaps.html (5 of 5) [7/8/2003 4:34:50 PM]

mailto:forger(nospam)winprog.org

Transparent Bitmaps

[contents | #winprog]

Transparent Bitmaps

Example: bmp_two

Transparency =10l]

Giving bitmaps the appearance of having transparent sectionsis quite
simple, and involves the use of ablack and white Mask imagein
addition to the colour image that we want to ook transparent. o

The following conditions need to be met for the effect to work correctly:
First off, the colour image must be black in all areasthat we want to

display astransparent. And second, the mask image must be whitein
the areas we want transpar ent, and black elsewhere. The colour and mask images are displayed as the two | eft
most images in the example picture on this page.

BitBlt operations

How does this get us transparency? First we Bi t Bl t () the mask image using the SRCAND operation as the last
parameter, and then on top of that we Bi t Bl t () the colour image using the SRCPAI NT operation. Theresult is
that the areas we wanted transparent don't change on the destination HDC while the rest of the image is drawn as
usual.

Sel ect Obj ect (hdcMem g _hbnmivask) ;
BitBlt(hdc, 0, O, bmbnmWdth, bm brmHei ght, hdcMem 0, 0, SRCAND);

Sel ect Obj ect (hdcMem g_hbnBal |);
BitBlt(hdc, 0, bm bnHei ght, bm bmWdth, bm bnHei ght, hdcMem 0, O,
SRCPAI NT) ;

Pretty simple eh? Fortunately it is, but one question remains... where does the mask come from? There are
basically two ways to get the mask...

. Makeit yourself in whatever graphics program you made the colour bitmap in, and thisis a reasonable
solution if you are using alimited number of graphicsin your program. Thisway you can just add the
mask resource to your program and load it with LoadBi t nap() .

. Generate it when your program runs, by selecting one colour in your original image to be your
"transparent” colour, and create a mask that is white everywhere that colour exists, and black everywhere
else

Since thefirst one is nothing new, you should be able to do things that way yourself if you want to. The second

file:///C|/dona/forgers-win32-tutorial/tutorial/transparency.html (1 of 5) [7/8/2003 4:34:51 PM]

http://www.winprog.org/

Transparent Bitmaps

way involvesfrom Bi t Bl t () trickery, and so | will show one way of accomplishing this.
Mask Creation

The simplest way to do it, would be to loop through every pixel on the colour image, check it's value and then set
the corresponding pixel on the mask to black or white... Set Pi xel () isavery slow way to draw images
however, and it's not really practical.

A much more efficient way involvesusing theway Bi t Bl t () converts from colour images to black and white.
If youBi t Bl t () (using SRCCOPY) from an HDC holding a colour image into an HDC holding a black and white
image, it will check what colour is set as the Background Colour on the colour image, and set all of those pixels
to White, any pixel that is not the background colour will end up Black.

Thisworks perfectly to our advantage, since all we need to do is set the background colour to the colour we want
transparent, and Bi t Bl t () from the colour image to the mask image. Note that this only workswith a mask
bitmap that is monochrome (black and white)... that is bitmaps with a bit depth of 1 bit per pixel. If you try it
with a colour image that only has black and white pixels, but the bitmap itself is greater than 1 bit (say 16 or 24
bit) then it won't work.

Remember the first condition for succesful masking above? It was that the colour image needs to be black
everywhere we want transparent. Since the bitmap | used in this example already meets that condition it doesn't
really need anything special done, but if you're going to use this code for another image that has a different colour
that you want transparent (hot pink is a common choice) then we need to take a second step, and that is use the
mask we just created to alter the original image, so that everywhere we want transparent is black. It's ok if other
places are black too, because they aren't white on the mask, they won't end up transparent. We can accomplish
thisby Bi t Bl t () ing from the new mask to the original colour image, using the SRCI NVERT operation, which
sets all the areas that are white in the mask to black in the colour image.

Thisisall abit of acomplex process, and so it's nice to have a handy utility function that doesthisall for us, and
hereitis:

HBI TMAP Cr eat eBi t mapMask(HBI TMAP hbntCol our, COLORREF cr Transparent)

{
HDC hdcMem hdcMen®;

HBI TMAP hbmVask;
Bl TVMAP bm

/'l Create nonochrone (1 bit) mask bitnmap.

Get bj ect (hbntCol our, sizeof (Bl TMAP), &bn);
hbmvask = CreateBi t map(bm bmN dt h, bm bnHei ght, 1, 1, NULL);

/|l Get sonme HDCs that are conpatible with the display driver

hdcMem = Cr eat eConpati bl eDC(0) ;
hdcMen2 = Creat eConpati bl eDC(0);

file:///C|/dona/forgers-win32-tutorial/tutorial/transparency.html (2 of 5) [7/8/2003 4:34:51 PM]

Transparent Bitmaps

Sel ect Bi t map(hdcMem hbntCol our) ;
Sel ect Bi t map(hdcMen2, hbmvask) ;

/| Set the background col our of the colour image to the col our
/'l you want to be transparent.
Set BkCol or (hdcMem cr Transparent);

/'l Copy the bits fromthe colour inmage to the B+Wnask... everything
/1 with the background col our ends up white while everythig el se ends up
/'l black...Just what we want ed.

Bit Bl t (hdcMen2, 0, O, bm bmWdth, bm brHei ght, hdcMem 0, 0, SRCCOPY):

/| Take our new mask and use it to turn the transparent colour in our

/1 original colour inmage to black so the transparency effect wll

/1 work right.

BitBlt(hdcMem O, 0, bm bnWdth, bm bmHei ght, hdcMen®2, 0, 0, SRCI NVERT);

/1 C ean up.

Del et eDC(hdcMem ;
Del et eDC(hdcMen?) ;

return hbnmvask;
}

NOTE: Thisfunction call Sel ect Obj ect () totemporarily select the colour bitmap we passit into an HDC. A
bitmap can't be selected into more than one HDC at atime, so make sure the bitmap isn't selected in to another
HDC when you call this function or it will fail. Now that we have our handy dandy function, we can create a mask
from the original picture as soon as we load it:

case WM CREATE:

g_hbnBal | = LoadBi t map(Get Modul eHandl e(NULL) ,
MAKEI NTRESOURCE(| DB_BALL)) ;
i f(g_hbnmBall == NULL)
MessageBox(hwnd, "Could not load IDB BALL!", "Error", MB K |

MB_| CONEXCLAMATI ON) ;

g_hbmvask = CreateBi t napMask(g_hbnBal |, RGB(0, 0, 0));
i f(g_hbmvask == NULL)
MessageBox(hwnd, "Could not create mask!", "Error", MB_(K |
VB_| CONEXCLANATI ON) ;
br eak;

The second parameter is of course the colour from the original image that we want to be transparent, in this case
black.

file:///C|/dona/forgers-win32-tutorial/tutorial/transparency.html (3 of 5) [7/8/2003 4:34:51 PM]

Transparent Bitmaps

How does all this work?

.. you may be asking. Well hopefully your experience with C or C++ means that you understand binary
operations such as OR, XOR, AND, NOT and so on. I'm not going to explain this process completely, but | will
try to show how | used it for this example. If my explanation isn't clear enough (which it's bound to not be),
reading up on binary operations should help you understand it. Understanding it isn't critical for using it right
now, and you can just get away with trusting that it works if you want.

SRCAND

The SRCAND raster operation, or ROP codefor Bi t Bl t () meansto combine the bits using AND. That is: only
bits that are set both in the source AND the destination get set in the final result. We use this with our mask to set
to black al the pixelsthat will eventually have colour on them from the colour image. The mask image has black
(which in binary isal 0's) where we want colour, and white (all 1's) where we want transparency. Any value
combined with 0 using AND is 0, and therefor all the pixels that are black in the mask are set to O in the result
and end up black aswell. Any value that is combined with 1 using AND is left unaffected, so if it was 1 to begin
with it stays 1, and if it was O to begin with it stays O... therefor all the pixels that are white in our mask, are
completely unaffected after the Bi t Bl t () call. Theresult isthe top right image in the example picture.

SRCPAINT

SRCPAI NT uses the OR operation, so if either (or both) of the bits are set, then they will be set in the result. We
use this on the colour image. When the black (transparent) part of our colour image is combined with the data on
the destination using OR, the result is that the data is untouched, because any value combined with 0 using the
OR operation is left unaffected.

However, the rest of our colour image isn't black, and if the destination also isn't black, then we get a
combination of the source and destination colours, the result you can see in the second ball on the second row in
the example picture. Thisis the whole reason for using the mask to set the pixels we want to colour to black first,
so that when we use OR with the colour image, the coloured pixels don't get mixed up with whatever is
underneath them.

SRCINVERT

Thisisthe XOR operation used to set the transparent colour in our original image to black (if it isn't black
already). Combining a black pixel from the mask with a non-background colour pixel in the destination leaves it
untouched, while combining a white pixel from the mask (which remember we generated by setting a particular
colour as the "background") with the background colour pixel on the destination cancelsit out, and setsit to
black.

Thisisall alittle GDI mojo that depends on it's colour vs. monochrome handling, and it hurts my head to think
about it too much, but it really makes sense... honest.

Example

file:///C|/dona/forgers-win32-tutorial/tutorial/transparency.html (4 of 5) [7/8/2003 4:34:51 PM]

Transparent Bitmaps

The example code in the project bmp_two that goes along with this section contains the code for the example
picture on this page. It consists of first drawing the mask and the colour image exactly as they are using
SRCCOPY, then using each one alone with the SRCAND and SRCPAI NT operations respectively, and finally
combining them to produce the final product.

The background in this example is set to gray to make the transparency more obvious, as using these operations
on awhite or black background makesit hard to tell if they're actually working or not.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/transparency.html (5 of 5) [7/8/2003 4:34:51 PM]

mailto:forger(nospam)winprog.org

Timers and Animation

[contents | #winprog]

Timers and Animation

Example: anim_one

Setting up -10)]

Before we get things animated, we need to set up a structure to store the

position of the ball between updates. This struct will store the current o

position and size of the ball, as well as the delta values, how much we want
it to move each frame.

Once we have the structure type declared, we also declare a global instance
of the struct. Thisis ok since we only have one ball, if were were going to

animate a bunch of them, you'd probably want to use an array or other container (such asalinked list in C++) to
store them in a more convenient way.

const int BALL MOVE DELTA = 2;

t ypedef
{ .
i nt
I nt
I nt
I nt

i nt
i nt

struct _BALLI NFO

W dt h;
hei ght ;
X,
Yy,

dx;
dy;

} BALLI NFG,

BALLI NFO g_bal | I nf o;

We've also defined a constant BALL _MOVE_DELTA which is how far we want the ball to move on each update.
The reason we store deltas in the BALLI NFO structure as well is that we want to be able to move the ball left or
right and up and down independantly, BALL_MOVE_DELTA isjust a handy name to give the value so we can
changeit later if we want.

Now we need to initialize this structure after we load our bitmaps:

Bl TMAP bm

Get Qbj ect (g_hbnBal |, sizeof(bm, &om;

ZeroMenory(&g_ball I nfo, sizeof(g_balllnfo));

file:///C|/dona/forgers-win32-tutorial/tutorial/animation.html (1 of 5) [7/8/2003 4:34:51 PM]

http://www.winprog.org/

Timers and Animation

g_balllnfo.width = bm bmA dt h;
g_bal | I nfo. hei ght = bm bnHei ght ;

g_bal | I nfo. dx
g_bal I I nfo. dy

BALL MOVE DELTA;
BALL_MOVE_DELTA;

The ball starts off in the top left corner, moving to the right and down according to the dx and dy members of
BALLI NFQO.

Setting the Timer

The easiest way to add a simple timer into awindow program iswith Set Ti rrer () , it's not the best, and it's not
recommended for real multimedia or full games, however it's good enough for simple animations like this. When
you need something better takealook at t i meSet Event () in MSDN; it's more accurate.

const int IDTIMR = 1;

ret = SetTinmer(hwnd, 1D TlIMER, 50, NULL);
if(ret == 0)
MessageBox(hwnd, "Could not SetTinmer()!", "Error", MB K |
MB_| CONEXCLANMATI ON) ;

Here we've declared atimer id so that we can refer to it later (to kill it) and then set the timer in the WM CREATE
handler of our main window. Each time the timer elapses, it will send aVWWM Tl MER message to the window, and
pass us back the ID in wPar am Since we only have one timer we don't need the ID, but it's useful if you set more
than one timer and need to tell them apart.

WEe've set the timer to elapse every 50 milliseconds, which results in approximately 20 frames per second.
Approximately because like | said, Set Ti nmer () isalittle inaccurate, but thisisn't critical code, and afew
milliseconds here or there won't kill us.

Animating in WM_TIMER

Now when we get WM _TI MER we want to calculate the new position for the ball and draw it's updated position.

case WM Tl MER:

{
RECT rcdient;
HDC hdc = Get DC(hwnd) ;
GetdientRect (hwnd, & cCient);

UpdateBal | (& cCient);
DrawBal | (hdc, & cCient);

Rel easeDC(hwnd, hdc);

file:///C|/dona/forgers-win32-tutorial/tutorial/animation.html (2 of 5) [7/8/2003 4:34:51 PM]

Timers and Animation

}

br eak;

I've put the code for updating and drawing the ball in their own functions. Thisis good practice, and it lets us draw
the ball from either WM_TI1 MER or WM _PAI NT without duplicating code, note that the method we use to get the
HDC in each case is different, so it's best to |eave this code in the message handlers and pass the result into the
DrawBal | () function.

voi d Updat eBal | (RECT* prc)

{
g_balllnfo.x += g _balllnfo. dx;
g_balllnfo.y += g _balllnfo.dy;
if(g_balllnfo.x < 0)
{
g_balllnfo.x = 0
g_bal I I nfo.dx = BALL_MOVE_DELTA,;
}
else if(g balllnfo.x + g balllnfo.width > prc->right)
{
g_balllnfo.x = prc->right - g balllnfo.wdth;
g_ballI nfo.dx = -BALL_MOVE DELTA;
}
i f(g_balllnfo.y < 0)
{
g_balllnfo.y = 0;
g_ballI nfo.dy = BALL_MOVE_DELTA,
}
else if(g_balllnfo.y + g balllnfo.height > prc->bottom
{
g_balllnfo.y = prc->bottom- g_balllnfo. hei ght;
g_balllnfo.dy = -BALL_MOVE DELTA,
}
}

All this does is some basic math, we add the delta value to the x position to move the ball. If the ball goes outside
the client area, move it back in range and change the delta value to the opposite direction so that the ball "bounces®
off the sides.

voi d DrawBal | (HDC hdc, RECT* prc)

{
HDC hdcBuf fer = CreateConpati bl eDC(hdc);

HBI TMAP hbnBuffer = CreateConpati bl eBi t map(hdc, prc->right, prc->botton);
HBI TMAP hbrmO dBuf fer = Sel ect Obj ect (hdcBuffer, hbnBuffer);

HDC hdcMem = Creat eConpat i bl eDC(hdc) ;

file:///C|/dona/forgers-win32-tutorial/tutorial/animation.html (3 of 5) [7/8/2003 4:34:51 PM]

Timers and Animation

HBI TMAP hbrmO d = Sel ect Qbj ect (hdcMem g _hbmvask) ;
Fill Rect (hdcBuffer, prc, GetStockObject(VWH TE BRUSH)) ;

BitBlt(hdcBuffer, g_balllnfo.x, g_balllnfo.y, g _balllnfo.w dth,
g_bal I I nfo. hei ght, hdcMem 0, 0, SRCAND);

Sel ect Obj ect (hdcMem g_hbnBal |) ;
BitBlt(hdcBuffer, g balllInfo.x, g balllnfo.y, g balllnfo.w dth,
g_bal I I nfo. hei ght, hdcMem 0, 0, SRCPAI NT);

BitBlt(hdc, 0, 0, prc->right, prc->bottom hdcBuffer, 0, 0, SRCCOPY);

Sel ect Obj ect (hdcMem hbnQ d) ;
Del et eDC(hdcMem) ;

Sel ect Qbj ect (hdcBuf fer, hbnQ dBuffer);
Del et eDC(hdcBuffer);
Del et eQoj ect (hbnBuf fer);

}

Thisis essentially the same drawing code as the past few examples, with the exception that it gets the position and
dimentions of the ball from the BALLI NFOstructure. There is however one important difference...

Double Buffering

When doing your drawing directly to the HDC of the window, it's entirely possible that the screen will get updated
before you're done... for example after you draw the mask and before you draw the colour image over top, the user
might see aflicker of the back background before your program has a chance to draw over it in colour. The slower
your computer and the more drawing operations that you do, the more flicker will be apparent and eventually it
will look like abig jumbled mess.

Thisisterribly distracting, and we can solve it smply by doing al the drawing in memory first, and then copying
the completed masterpiece to the screeninasingle Bi t Bl t () so that the screen is updated directly from the old
image, to the complete new image with none of the individual operations visible.

To do this, we create atemporary HBI TMAP in memory that is the exact size of the area we are going to draw to
on the screen. We also need an HDC so that we can Bi t Bl t () to the bitmap.

HDC hdcBuffer = CreateConpati bl eDC(hdc);
HBI TMAP hbnBuffer = CreateConpati bl eBi t map(hdc, prc->right, prc->botton);
HBI TMAP hbmQd dBuf fer = Sel ect Obj ect (hdcBuffer, hbnBuffer);

Now that we have a place to draw to in memory, all of the drawing operations use hdcBuf f er instead of hdc
(the window) and the results are stored on the bitmap in memory untill we are complete. We can now copy the
whole thing over to the window in one shot.

file:///C|/dona/forgers-win32-tutorial/tutorial/animation.html (4 of 5) [7/8/2003 4:34:51 PM]

Timers and Animation

BitBlt(hdc, O, 0, prc->right, prc->bottom hdcBuffer, 0, 0, SRCCOPY);

That'sit, and we clean up our HDCs and HBI TMAPSs as usual.

Faster Double Buffering

In this example | am creating and destroying the bitmap used for double buffering each frame, | did this basically
because | wanted to be able to size the window so it's easier to just always create a new buffer than to track when
the window position changes and resize the buffer. It would be more efficient to create a global double buffer
bitmap and either not allow the window to resize or only resize the bitmap when the window resized, instead of
creating it and destroying it al the time. It's up to you to implement thisif you want to optimize the drawing for a
game or something.

Killing the Timer

When our window is destroyed, it's agood ideato release all resources we used, and in this case that includes the
timer we set. To stop it, wesimply call Ki | | Ti mer () and passinthe ID that we used when we created it.

Ki || Ti mer (hwnd, |D_TIMER);

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/animation.html (5 of 5) [7/8/2003 4:34:51 PM]

mailto:forger(nospam)winprog.org

Text and Fonts

[contents | #winprog]

Text and Fonts

Example: font_one

Loading Fonts =10l x|
Eile Format

The Win32 GDI has some remarkable capabilites for dealing with vastly These are the dimensions of your

different typefaces, styles, languages and characters sets. One of the client area:

drawbacks of thisisthat dealing with fonts can look rather intimidating to the {0, 0, 225, 96}

newcomer. Cr eat eFont (), the primary APl when it comesto fonts, has

14 parameters for specifying height, style, weight, family, and various other

attributes.

Fortunately, it's not really has hard as it might appear, and alarge portion of the work involved is taken care of my
sensible default values. All but 2 of the parametersto Cr eat eFont () can besetto 0 or NULL, and the system will
simply use a default value giving you a plain ordinary font.

Cr eat eFont () createsan HFONT, ahandleto a Logical Font in memory. The data held by this handle can be
retreived into a LOGFONT structure using Get Cbj ect () just asa Bl TMAP struct can be filled from an HBI TVAP.

The members of the LOG-ONT are identical to the parametersto Cr eat eFont () and for convenience you can
create afont directly from an existing LOGFONT structure using Cr eat eFont | ndi r ect () . Thisisvery handy,
since it makes it simple to create a new font from an existing font handle when you only want to alter certain aspects
of it. Use Get Obj ect () tofill aLOGFONT, alter the members that you wish, and create a new font with
CreateFontindirect().

HFONT hf ;
HDC hdc;
| ong | f Hei ght ;

hdc = Get DC(NULL) ;
| f Hei ght = -Mul Di v(12, GetDevi ceCaps(hdc, LOGPI XELSY), 72);
Rel easeDC(NULL, hdc);

hf = CreateFont(lfHeight, 0, 0, 0, O, TRUE, 0, O, O, O, O, 0O, O, "Tinmes New
Roman") ;

i f(hf)

{
Del et ebj ect (g_hf Font) ;
g_hf Font = hf;

}

el se

{

file:///C|/dona/forgers-win32-tutorial/tutorial/fonts.html (1 of 6) [7/8/2003 4:34:52 PM]

http://www.winprog.org/

Text and Fonts

MessageBox(hwnd, "Font creation failed!", "Error"”, M3 K |
MB_| CONEXCLANMATI ON) ;

}

Thisisthe code used to create the font in the example image. Thisis Times New Roman at 12 Point with the Italics
style set. Theitalicsflag isthe 6th parameter to Cr eat eFont () which you can see we have set to TRUE. The name
of the font we want to use is the last parameter.

The one bit of trickery in this codeis the value used for the size of the font, thel f Hei ght parameter to

Cr eat eFont () . Usually people are used to working with Point sizes, Size 10, Size 12, etc... when dealing with
fonts. Cr eat eFont () however doesn't accept point sizes, it wantsLogi cal Uni t s which are different on your
screen than they are on your Printer, and even between Printers and screens.

The reason this situation exists is because the resolution of different devicesis so vastly different... Printers can easily
display 600 to 1200 pixels per inch, while a screen is lucky to get 200... if you used the same sized font on a printer as
on ascreen, you likely wouldn't even be able to see individual letters.

All we have to do is convert from the point size we want, into the appropriate logical size for the device. In this case
the device is the screen, so we get the HDC to the screen, and get the number of logical pixels per inch using

Get Devi ceCaps() and dap thisinto the formula so generously provided in MSDN which usesMul Di v() to
convert from our pointsize of 12 to the correct logical sizethat Cr eat eFont () expects. We storethisin

| f Hei ght and passit asthe first parameter to Cr eat eFont () .

Default Fonts

When you first call Get DC() to get the HDC to your window, the default font that is selected into it is System, which
to be honest isn't all that attractive. The simplest way to get a reasonable looking font to work with (without going
through the Cr eat eFont () hassle) isto call Get St ockQbj ect () and ask for the DEFAULT_GUI _FONT.

Thisisasystem object and you can get it as many times as you want without leaking memory, and you can call
Del et eObj ect () onit which won't do anything, which is good because now you don't need to keep track of
whether your font is one from Cr eat eFont () or Get St ockQbj ect () beforetrying to freeit.

Drawing Text

Now that we have a handy-dandy font, how do we get some text on the screen? This is assuming that we don't just
want to use an Edit or Static control.

Your basic options are Text Qut () and Dr awText (). Text Qut () issimpler, but has less options and doesn't do
word wrapping or aignment for you.

char szSi ze[100] ;
char szTitle[] = "These are the di nensions of your client area:";
HFONT hfd d = Sel ect Obj ect (hdc, hf);

Set BkCol or (hdc, g _rgbBackground);
Set Text Col or (hdc, g_rgbText);

file:///C|/dona/forgers-win32-tutorial/tutorial/fonts.html (2 of 6) [7/8/2003 4:34:52 PM]

Text and Fonts

i f (g_bOpaque)

{
Set BkMode(hdc, OPAQUE) ;
}
el se
{
Set BkMode(hdc, TRANSPARENT) ;
}

Dr awText (hdc, szTitle, -1, prc, DI_WORDBREAK);

wsprintf(szSize, "{%l, %, %, %}", prc->left, prc->top, prc->right, prc-
>pot t on) ;
Dr awText (hdc, szSize, -1, prc, DT_SINGLELINE | DT_CENTER | DT_VCENTER);

Sel ect bj ect (hdc, hfd d);

First thing we do isuse Sel ect Qbj ect () to get the font we want to use into our HDC and ready for drawing. All
future text operations will use this font untill another oneis selected in.

Next we set the Text and Background colours. Setting the background colour doesn't actually make the whole
background this colour, it only affects certain operations (text being one of them) that use the background colour to
draw with. Thisis also dependant on the current Background Mode. If it is set to OPAQUE (the default) then any text
drawn isfilled in behing with the background colour. If it is set to TRANSPARENT then text is drawn without a
background and whatever is behind will show through and in this case the background colour has no effect.

Now we actually draw the text using Dr awText () , we passin the HDC to use and the string to draw. The 3rd
parameter is the length of the string, but we've passed -1 because Dr awText () issmart enough that it will figure out
how long the text isitself. In the 4th parameter we passin pr ¢, the pointer to the client RECT. Dr awText () will
draw inside this rectangle based on the other flags that you giveit.

In the first call, we specify DT_WORDBREAK, which defaults to aligned to the top left, and will wrap the text it draws
automatically at the edge of the rectangle... very useful.

For the second call, we're only printing a single line without wrapping, and we want it to be centered horizontally as
well asvertically (which Dr awText () will do only when drawing asingleline).

Client Redraw
Just a note about the example program... when the WNDCLASS isregistered | have set the CS_ VREDRAWand
CS_HREDRAWClass styles. This causes the entire client areato be redrawn if the window is resized, whereas the

default isto only redraw the parts that have changed. That looks really bad since the centered text moves around when
you resize and it doesn't update like you'd expect.

Choosing Fonts

In general, any program that deals with fonts will want to let the user choose their own font, as well as the colour and

file:///C|/dona/forgers-win32-tutorial/tutorial/fonts.html (3 of 6) [7/8/2003 4:34:52 PM]

Text and Fonts

style attribute to use when displaying it.

Like the common dialogs for getting open and save file names, there is acommon dialog for choosing afont. Thisis,
oddly enough, called ChooseFont () and it workswith the CHOOSEFONT structure for you to set the defaults it
should start with as well as returning the final result of the users selection.

HFONT g_hf Font = Get St ockQbj ect (DEFAULT_GUI _FONT) ;
COLORREF g _rgbText = RGB(0, 0, 0);

voi d DoSel ect Font (HWND hwnd)

{
CHOOSEFONT cf = {si zeof (CHOOSEFONT) };
LOGFONT | f;
Get Qoj ect (g_hf Font, sizeof (LOG-FONT), &l f);
cf.Flags = CF_EFFECTS | CF_I NI TTOLOGFONTSTRUCT | CF_SCREENFONTS;
cf. hwhdOmer = hwnd;
cf. | pLogFont = &l f;
cf.rgbColors = g_rgbText;
I f (ChooseFont (&cf))
{
HFONT hf = CreateFontindirect (& f);
i f(hf)
{
g_hf Font = hf;
}
el se
{
MessageBox(hwnd, "Font creation failed!", "Error", MB K |
MB_| CONEXCLANATI ON) ;
}
g_rgbText = cf.rgbCol ors;
}
}

The hwnd inthis call is ssmply the window you want to use as the parent for the font dialog.

The easiest way to use thisdialog isin conjunction with an existing LOGFONT structure, which is most likely from
whichever HFONT you are currently using. We set thel pLogFont member of the structure to point to the LOG-ONT
that we just filled with our current information and also added the CF_| NI TTOLOGFONTSTRUCT flag so that
ChooseFont () knowsto usethismember. The flag CF_EFFECTS tells ChooseFont () to alow the user to
select a colour, aswell as Underline and Strikeout attributes.

Oddly enough, the Bold and Italics styles don't count as effects, they are considered part of the font itself and in fact
some fonts only comein Bold or Italics. If you want to check or prevent the user from selecting a bold or italic font
you can check thel f Wei ght and | f 1t al i ¢ members of the LOGFONT respectively, after the user has made their

file:///C|/dona/forgers-win32-tutorial/tutorial/fonts.html (4 of 6) [7/8/2003 4:34:52 PM]

Text and Fonts

selection. Y ou can then prompt the user to make another selection or something change the members before calling
CreateFontIndirect().

The colour of afont is not associated with an HFONT, and therefor must be stored seperately, ther gbCol or s
member of the CHOOSEFONT struct is used both to passin theinitial colour and retreive the new colour afterward.

CF_SCREENFONTS indicates that we want fonts designed to work on the screen, as opposed to fonts that are
designed for printers. Some support both, some only one or the other. Depending on what you're going to be using the
font for, this and many other flags can be found in MSDN to limit exactly which fonts you want the user to be able to
select.

Choosing Colours

In order to alow the user to change just the colour of the font, or to let them pick anew colour for anything at al,
thereisthe ChooseCol or () common dialog. Thisisthe code used to allow the user to select the background
colour in the example program.

COLORREF g rgbBackground RGB(255, 255, 255);

COLORREF g _rgbCuston 16] {0};
voi d DoSel ect Col our (HWND hwnd)
{
CHOOSECOLOR cc = {si zeof (CHOOSECOLOR) } ;
cc.Flags = CC RGBINT | CC FULLOPEN | CC_ANYCOLOR;
cc. hwvhdOmer = hwnd;
cc.rgbResult = g_rgbBackground;
cc. | pCust Col ors = g_rgbCust om
I f (ChooseCol or (&cc))
{
g_rgbBackground = cc.rgbResul t;
}
}

Thisisfairly straightforward, again we're using the hwnd parameter as the parent to the dialog. The CC_RGBI NI T
parameter says to start off with the colour we passin through ther gbResul t member, which is also where we get
the colour the user selected when the dialog closes.

Theg_r gbCust omarray of 16 COLORREFs s required to store any values the user decides to put into the custom
colour table on the dialog. Y ou could potentially store these values somewhere like the registry, otherwise they will
simply be lost when your program is closed. This parameter is not optional.

Control Fonts

Something else you might want to do at some point is change the font on the controls on your dialog or window. This
isusually the case when using Cr eat eW ndow() to create controls as we've done in previous examples. Controls

file:///C|/dona/forgers-win32-tutorial/tutorial/fonts.html (5 of 6) [7/8/2003 4:34:52 PM]

Text and Fonts

like windows use System by default, so we used WM_SETFONT to set a new font handle (from
Get St ockOnj ect ()) for the control to use. Y ou can use this method with fonts you create from Cr eat eFont ()
aswell. Simply pass the font handle aswPar amand set | Par amto TRUE to make the control redraw.

I've done thisin previous examples, but it makes sense to mention it here because it's relevant and very short:

SendDl gl t emMvessage(hwnd, | DC_OF _YOUR_CONTROL, WM SETFONT, (WPARAM hf Font,
TRUE) ;

Where hf Font isof course the HFONT you want to use, and | DC_OF_ YOUR_CONTROL isthe ID of whichever
control you want to change the font of.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/fonts.html (6 of 6) [7/8/2003 4:34:52 PM]

mailto:forger(nospam)winprog.org

Win32 Tutorial - Recommended Books and References

[contents | #winprog |

Recommended Books and References

Books

If you expect anyone online to treat you with respect while you are learning, you NEED to get a
good book to learn from. We're here to provide direction and explain things that need explaining,
not to be your librarian or teach you step by step.

Y ou can find more recommended books and links to buy at the #Winprog Store.

Programming Windows
by Charles Petzold. The book to get on Win32 API. If you want to write programs using
just the API (which iswhat this tutorial covers), you need this book.

Programming Windows with MFC
by Jeff Prosise. If you want to venture into MFC (AFTER becoming fully accustomed to
using the Win32 API), thisisthe book for you. If you don't like MFC but intend on getting
ajob doing windows devel opement, get this anyway, it's better to know than not.

Programming Applications for Windows
by Jeffrey Richter. Not for newbies, if you want to be up on managing processes and
threads, dlls, windows memory management, exception handling, and hooking into the
system, then thisis the book for you.

Visua C++ Windows Shell Programming
by Dino Esposito. For anyone interested in the visual and user-friendly aspects of
windows, this book covers writing extentions to the windows shell, working efficiently
with files and drag and drop, customizing the taskbar and windows explorer, and numerous
other tricks. Well worthwhile for anyone writing GUI apps in windows.

Network Programming for Microsoft Windows
Up to date information on network programming, including NetBlOS, mailslots and pipes,
and of course the ever important windows sockets, complete with winsock2 and raw
sockets. Also contains specific information on the various windows platforms including
2000 and CE.

Links

file:///C|/dona/forgers-win32-tutorial/tutorial/references.html (1 of 2) [7/8/2003 4:34:52 PM]

http://www.winprog.org/
http://winprog.org/shop/
http://www.amazon.com/exec/obidos/ASIN/157231995X/winprognet-20
http://www.amazon.com/exec/obidos/ASIN/1572316950/winprognet-20
http://www.amazon.com/exec/obidos/ASIN/1572319968/winprognet-20
http://www.amazon.com/exec/obidos/ASIN/1861001843/winprognet-20
http://www.amazon.com/exec/obidos/ASIN/0735615799/winprognet-20

Win32 Tutorial - Recommended Books and References

MSDN Online

This site has references for al imaginable Microsoft technologies, including full Win32
APl and MFC documentation. If this didn't come with your compiler (ie. VC++) then the
completely free online site will provide you with the required information. People will get

really pissed off if you ask questions you could answer by doing a simple search on
MSDN.

#winprog homepage
See FAQ and Store

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/references.html (2 of 2) [7/8/2003 4:34:52 PM]

http://msdn.microsoft.com/library/
http://www.winprog.org/
mailto:forger(nospam)winprog.org

file:///C|/donalforgers-win32-tutorial /tutorial/msvc.html

[contents | #winprog |

Free Visual C++ Command Line Tools

Getting Them

Microsoft has quietly released it's command line compiler and linker tools as part of the NET
Framework SDK. The Framework SDK comes with everything you need to for .NET
development (C# compiler etc...) including the command line compiler cl . exe which, whileit's
intended for use with the .NET framework, is the same compiler that comes with Visual C++
Standard.

NET Framework SDK

Sincethisisthe .NET SDK, it doesn't come with the headers and libraries required for Win32 API
development, as these are part of the Platform SDK. Lo and behold, the Platform SDK isfree as
well. Y ou only need the Core SDK, but feel free to download the other components as you desire.

Platform SDK

Asabonus, if you download the Platform SDK documentation (which | highly recommend) you
will have a complete local and up to date Win32 reference which is MUCH easier to use than
MSDN online.

Remember to check the optionsto Register Environment Variablesin both SDK's, otherwise

you'll need to set up the PATH and other variables yourself before the tools will work from the
command line.

Using Them

Since comprehensive documentation is provided, and also accessable at MSDN online, you'll need
to RTFM yourself to learn about the VC++ compiler and tools. To get you started, here are the
most basic ways to build a program...

To build a simple console application:

file:///C|/dona/forgers-win32-tutorial/tutorial/msve.html (1 of 2) [7/8/2003 4:34:52 PM]

http://www.winprog.org/
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-files/027/000/976/msdncompositedoc.xml&frame=true
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

file:///C|/donalforgers-win32-tutorial /tutorial/msvc.html

cl foo.c

To build a simple windows application such as the examples on this tutorial:

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/msve.html (2 of 2) [7/8/2003 4:34:52 PM]

mailto:forger(nospam)winprog.org

Win32 Tutorial - Free Borland C++ Command Line Tools

[contents | #winprog |

Free Borland C++ Command Line Tools

Getting Them

Fortunately for anyone that wants to get into windows developement, Borland has offered its
command line tools to the general public for FREE. Isn't that nice of them? Thereis no pretty IDE
or resource editor, but beggers can't be choosers, and I'd have to say the compiler itself is of far
better quality than either LCC-Win32 (which doesn't even do C++) or the various ports of other
tools, gcc, mingw, cygwin, djgpp etc...

Read thereadmeto get your self set up.

Borland C++ 5.5

What's extra spiffy isit even comes with a debugger! | don't use this, so | can't offer much help on
it, but it's better than nothing. And if you're used to Turbo C++ from the DOS days, then this
should be right up your ally.

For some reason Internet Explorer seemsto have a problem with downloading thisfile, soif it
clicking the link doesn't work, right click and Copy Shortcut, and then use your favourite FTP
client to get it.

Turbo Debugger

L ast but not least, awindows help file with full Win32 API reference. It'safew years old but
still entirely accurate and much more convenient than MSDN online unless you need access to the
most recent additions to the API (which if you're on this page, you don't). | useit regularly.

Win32 APl Reference

Using Them

Basic commands

file:///C|/dona/forgers-win32-tutorial/tutorial/bcpp.html (1 of 4) [7/8/2003 4:34:53 PM]

http://www.winprog.org/
ftp://ftpd.inprise.com/download/bcppbuilder/freecommandLinetools.exe
ftp://ftpd.inprise.com/download/bcppbuilder/TurboDebugger.exe
http://www.borland.com/devsupport/borlandcpp/patches/BC52HLP1.ZIP

Win32 Tutorial - Free Borland C++ Command Line Tools

If you want to compile asingle file program (ssmple_window.c for example), then you can use the
following command:

bce32 -tW simple_window.c

The -tW switch specifies aWin32 GUI application, instead of the default console application.
Y ou can compile multiple filesinto a single .exe by adding the other files to the end of this
command.

Linking in Resources

Thisisavery frustrating issue for many users of the command line tools, and no wonder, since it
seems borland tried to make it as hard as possible to link resources into your applications, the
resource compiler br c32 no longer behaves asit did in earlier versions of the program where it
would link the compiled resource into the .exe itself. When you run brc32 with no option to get
the usage help, it still lists an option to turn .exe linking OFF, there simply appears to be no way
to turn it ON.

| tried various combinations of command and options, but couldn't find any way to add a .resfile
to an .exe build with the above method. Which really sucks, causetheway | foundtodoitisalot
more complicated.

Thereisan easier way however ...

BC++ now has an alternative method of including resourcesin a program by use of a#pr agnma
(anon-standard preprocessor directive that compilers will ignore if they don't recogniseit).

#pragnma resource "app_nane.res"

Placing this code in your main .c or .cpp file will cause the compiler to automatically link in the
resfilethat is generated from your .rc (.resislike an .obj file for resources).

Using the #pragma will alow you to compile programs nearly as simply as above, but you still
need to compilethe .rc filefirst using brc32. If you still want to use command line options as | did
in the tutorial makefiles, read on...

Thehard way...

These are the commands to use to compile the dlg_one example, including the resource.

file:///C|/dona/forgers-win32-tutorial/tutorial/bcpp.html (2 of 4) [7/8/2003 4:34:53 PM]

Win32 Tutorial - Free Borland C++ Command Line Tools

bcc32 -¢ -tW dig_one.c

1link32 -aa -c -x -Gn dlg_one.obj cOw32.0bj,dlg_one.exe,,import32.lib cw32.lib,,dlg_one.res

Nice eh? The -c option to bcc32 means compile only, don't link into an .exe. The -x -Gn options
get rid of some extrafiles the linker creates that you probably don't need.

Thereal bugger with thisis that since we are manually specifying the linker command, we need to
include the default libraries and objs that the compiler would normally do for us. Asyou can see
above, |'ve specified the appropriate files for a regular windows application.

To make things easier on yourself, it's best to do al thisin a makefile. I've prepared a generic one
that should work with all of the examplesin the tutorial, and you should be able to adapt it to any
of your own programs.

APP = dl g_one

EXEFI LE = $(APP). exe

OBJFI LES = $(APP) . obj

RESFI LES = $(APP).res

LI BFI LES =

DEFFI LE =

. AUTODEPEND

BCC32 = bcc32

| LINK32 = ilink32

BRC32 = brc32

CFLAGS = -c¢c -tWM -w -wpar -winl -W-al -d
LFLAGS = -aa -V4.0 -c -x -O
RFLAGS = -X -R

STDOBJS = cOw32. obj

STDLIBS = inport32.1ib cw3d2.1ib

$(EXEFI LE) : $(OBJFILES) $(RESFI LES)
$(1LI NK32) $(LFLAGS) $(OBJFILES) $(STDOBJS), $(EXEFILE), , \
$(LI BFI LES) $(STDLIBS), $(DEFFILE), $(RESFILES)

cl ean:
del *.o0bj *.res *.tds *.map

Y ou only need to modify the first 6 lines with the appropriate information.

file:///C|/dona/forgers-win32-tutorial/tutorial/bcpp.html (3 of 4) [7/8/2003 4:34:53 PM]

Win32 Tutorial - Free Borland C++ Command Line Tools

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/bcpp.html (4 of 4) [7/8/2003 4:34:53 PM]

mailto:forger(nospam)winprog.org

Win32 Tutorial - Solutions to Common Errors

[contents | #winprog]

Solutions to Common Errors

. Error LNK2001: unresolved external symbol main

« Error C2440: cannot convert from 'void*' to 'HICON __ *' (or similar)
. Fatal error RC1015: cannot open include file ‘afxres.h’

. Error LNK2001: unresolved external symbol InitCommonControls

. Diaog does not display when certain controls are added

Error LNK2001: unresolved external symbol main

An unresolved external occurs when some code has a call to afunction in another module and the linker can't
find that function in any of the modules or libraries that you are currently linking to.

In this specific case, it means one of two things. Either you are trying to write a Win32 GUI application (or non-
console application) and accidently compiled it as a Console application... or you really are trying to compile a
console application and didn't write or properly compile in amain() function.

Generally thefirst is the most common, if you specify Win32 Console as the project type in VC++ when you
create your project you will get thiserror. You will also likely get it if you try to compile from the command
line using BC++ but you neglect to specify the correct parameters to tell it to make aWin32 GUI application
instead of a console app which is the default.

Fixing
If you're using VC++ re-create your project and select the Win32 Application project type (NOT "Console").

If you're using BC++ command line compiler, use -tW to specify a windows application.

Error C2440: cannot convert from 'void* to 'HICON__ *' (or
similar)

If you're compiling the code from this tutorial, it means that you are trying to compile it as C++ code. The code
iswritten for the bcc32 and VC++ C compilers, and as such may not compile exactly the same under C++ since
C++ has much stricter rules about converting types. C will just let it happen, C++ wants to you to make it
explicit.

V C++ (and most compilers) will automatically compile afile with a.cpp extension as C++ code, and afile with

a.c extension as C code. If you have added the tutorial code to a.cpp file, thisisthe most likely reason of
getting this error.

file:///IC|/dona/forgers-win32-tutorial/tutorial/errors.html (1 of 3) [7/8/2003 4:34:53 PM]

http://www.winprog.org/

Win32 Tutorial - Solutions to Common Errors

If you're compiling code not from thistutorial, | can't guarantee that it's correct and therefor it may actually be
an error that needs resolving. You'll have to use your own judgement to determine if it's safe to cast the value
and remove the error, or if you are actually trying to make a variable be something it's not.

Fixing

If you want to use C, ssimply rename your file from .cpp to .c. Otherwise, ssimply add a cast, all of the codein
the tutorial will work without any other changes when compiled as C++.

For example, in C thiswill work:

HBI TMAP hbnQ dBuf f er

Sel ect Qbj ect (hdcBuffer, hbnBuffer);
But in C++ requires a cast:

HBI TMAP hbnO dBuf f er

(HBI TMAP) Sel ect Qbj ect (hdcBuffer, hbnBuffer);

Fatal error RC1015: cannot open include file 'afxres.h'.

Oddly enough, VC++ adds af xr es. h to resource files even when you aren't using an MFC project, and yet
the file may only beinstalled if you install MFC. This perticular fileisn't actually required, so to fix the error
you can edit the .rc file in notepad and replace both occurances of " af xr es. h" with"w nres. h" (note
that there should be two of them, and you need to change both).

Error LNK2001: unresolved external symbol
InitCommonControls

Y ou aren't linking to comctl32.1ib which this API isdefined in. Thislibrary is not included by default so you
will either need to add it to the libraries on your command line, or add it in your V C++ project settings on the
Link tab.

Dialog does not display when certain controls are added

Controls such asthe ListView, TreeView, Hotkey, Progress Bar, and others are classified as Common Controls,
as they were added to windows in comctl32.dIl and were not available prior to Windows 95. Controls such as
BUTTON, EDIT, LISTBOX, etc... while no doubt being common, are not *Common Controls" and | generally
refer to them as " Standard Controls".

If you add a Common Control to adialog and it fails to display, you most likely failed to call

I ni t CoomonContr ol s() beforerunning your dialog, or perhaps at al. The best place to cal it isfirst thing
inW nMai n() . Calingitin WM I NI TDI ALOGistoo late, since the dialog will fail before it reaches this point
and it will never get called.

file:///C|/dona/forgers-win32-tutorial/tutorial/errors.html (2 of 3) [7/8/2003 4:34:53 PM]

Win32 Tutorial - Solutions to Common Errors

Some people and documentation may tell you that | ni t CommonCont r ol s() isdeprecated and you should
usel ni t ConmonCont r ol sEx() . Fedl freeto do thisif you want, | ni t CommonCont r ol s() isjust
simpler and there's nothing wrong with using it.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/errors.html (3 of 3) [7/8/2003 4:34:53 PM]

mailto:forger(nospam)winprog.org

file:///CJ/dona/forgers-win32-tutorial /tutorial /apivsmfc.html

[contents | #winprog |

Why you should learn the API before
MFC

The Controversy

Too many people come on to IRC and ask "What is better, MFC or API?" and too many people
arewilling to say "MFC sucks' or "API sucks" either because of traumatic events involving one
or the other in early childhood, or because everyone elseis saying it.

The standard arguments are:

. APl istoo hard

. MFCistoo confusing

« API istoo much code

. MFCisbloated

. API doesn't have wizards
. MFC isbadly designed

. APl isn't Object Oriented
. MFC kicked my dog

. APl stole my girlfriend

And so on...

My Answer

My opinion, athough by no means the only one, is that you should use the right framework for
the right job.

First of al aclarification on what the APl and MFC are. API is a generic term meaning
Application Programming Interface, however in the context of Windows programming, it means
specifically the Windows API, which is the lowest level of interaction between applications and
the windows operating system. Drivers of course have even lower levels, and different sets of
function calls to work with, but for the vast majority of windows development thisis not an issue.
MFC isaClass Library, it'sabunch of C++ classes that have been written to reduce the amount

file:///C|/dona/forgers-win32-tutorial/tutorial/apivsmfc.html (1 of 3) [7/8/2003 4:34:53 PM]

http://www.winprog.org/

file:///CJ/dona/forgers-win32-tutorial /tutorial /apivsmfc.html

of work it takes to do certain things with the API. It also introduces an (arguably) Object Oriented
framework into the application that you can either take advantage of or ignore, which is what most
beginners do since the framework isn't really aimed at writing MP3 players, IRC clients or games.

Every program, whether it is written with MFC, Delphi, Visual Basic, perl, or any other wacked
out language or framework you can think of, is eventually built upon the API. In many cases this
interaction is hidden, so you don't deal directly with the API, the runtime and support libraries do
it for you. Some people ask, "MFC can do Blah Blah Blah, can the API?' The answer isthat MFC
can only do what the API can do, because it's built on top of it. However doing things yourself
with the APl may take considerably more code than using the pre-written MFC classes.

So what is the right framework? For starters, for people that are just learning to program, |
strongly believe that you should work with the API untill you are comfortable with the way
windows applications work and you understand all of the basic mechanics behind things like the
message loop, GDI, controls, and maybe even multithreading and sockets. Thisway you will
understand the fundamental building blocks of all windows applications, and can apply this
common knowledge to MFC, Visual Basic, or whatever other framework you choose to work with
later. It's also important because these other frameworks don't support everything that the AP
does, simply because it does awhole lot and they can't necessarily support all of the arcane little
things that most people won't use. So when you finally do need to use them you need to add it
yourself, you can't rely on the framework to do it for you and if you don't understand the API this
could be quite the chore.

But isn't MFC easier? In a certain senseit's easier in that many common tasks are done for you,
thus reducing the amount of code that you need to actually type. However, less code does not
mean "easier" when you don't understand the code you DO need to write, or how all of the code
that is there to support you actually works. Generally beginners who use the wizards to start there
applications have no idea what most of the generated code does, and spend a great deal of time
trying to figure out where to add things, or what changes to make to acheive a certain result. If
you start your programs from scratch, either in the API or with MFC, then you know where
everything is because you put it there, and you will only use features that you understand.

Another important factor is that most people that are learing the Win32 API for the first time don't
already have a strong base in C++. To try and comprehend windows programming with MFC and

learn C++ at the same time can be a monumental task. Although it's not impossible, it will take
you considerably longer to become productive than if you already knew either C++ or the API.

So basically...

file:///C|/dona/forgers-win32-tutorial/tutorial/apivsmfc.html (2 of 3) [7/8/2003 4:34:53 PM]

file:///C|/donalforgers-win32-tutorial/tutorial /apivsmfc.html

What it comes down to isthat | think you should learn the API untill you feel comfortable with it,
and then try out MFC. If it seemslike it's making sense to you and saving you time, then by all
means use it.

However, and thisisimportant... if you work with MFC without understanding the API and
then ask for help with something, and the answer you get is stated using the api (such as"Use the
HDC provided inthe WM _CTLCOLORSTATIC message") and you say "huh?"' because you
don't know how to translate an API subject into MFC on your own, then you are in trouble and
people will get frustrated with you for not learning what you need to know before you try and use
MFC.

| personally prefer to work with the AP, it just suits me better, but if | were to write a database
frontend, or ahost for a set of ActiveX controls | would seriously consider using MFC, as it
would eliminate alot of code that | would need to reinvent otherwise.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///IC|/dona/forgers-win32-tutorial/tutorial/apivsmfc.html (3 of 3) [7/8/2003 4:34:53 PM]

mailto:forger(nospam)winprog.org

Win32 Tutorial - Resource file notes

[contents | #winprog |

Resource file notes
Argh!

The onething | really hated when | switched my primary development environment from Borland
C++to MSVisual C++ was the way V C++ handles resource scripts (.rc files).

In BC++ was free to control the layout and content of the .rc files, and when using the resource
editor, only the things that | specifically changed in the editor got changed in the resourcefile.
Much to my dismay, the V C++ resource editor will completely rewrite your .rc file, and possibly
destroy or ignore any changes that you personally make.

Thiswasterribly frustrating at first, but | basically learned to deal with it and it's not SO bad after
awhile, sincein general | don't write any amount of my resources by hand, but reserve that for
minor changes that perhaps | can't quite accomplish in the editor.

Compatibility

One small challange for this tutorial was to make the resource files compile properly under VC++
and BC++ without changes. In the original tutorial | used the Borland naming convention for the
resource header, which was pr oj ect _nane. r h. However by default in VC++ this header is
ALWAYScaledr esour ce. h, sofor simplicity I've adopted this for the current tutorial
revision, as it doesn't impact BC++ at all.

For the curious, it is possible to change the name of the resource that V C++ uses by editing the .rc
file manually and changing the name in two places, once whereit is#i ncl uded, and second
whereit is contained in a TEXTI NCLUDE resource.

The next problem isthat by default VC++ requiresthefileaf xr es. h to beincluded init's.rc
files, whereas BC++ has all the necessary preprocessor macros defined automatically and requires
no such include. Another dumb thing about thisisthat af xr es. h isonly installed when you
insall MFC which not everyone does, even when you are creating an APl application which only
requireswi nr es. h which isawaysinstalled.

Since | work in VC++ and use it's resource editor I've solved this problem by dlightly altering

file:///C|/dona/forgers-win32-tutorial/tutorial/resnotes.html (1 of 2) [7/8/2003 4:34:53 PM]

http://www.winprog.org/

Win32 Tutorial - Resource file notes

each .rc file that is generated to include the following:

#i fndef _ BORLANDC
#i ncl ude "w nres. h"
#endi f

Which under default circumstances would usually read:
#i ncl ude "af xres. h"

For those of you that are using VC++ you can find the option to change this text within the IDE
under "View > Resource Includes'. Thereis generally no need to ever use thisin normal practice,
it'ssimply away | used to work around the problem of making things work with BC++ and
VC++,

To those of you using BC++, I'm sorry about the extra mess in the .rc files that are generate by the
V C++ editor, but it shouldn't interfere with anything.

Compiling resources under BC++

Try as| might | couldn't find a simple way to compile a program with BC++ that included RC
files, and ultimately had to settle on the non-optimal configuration that you will find in the
makefiles included with the source for this tutorial. Y ou can find the notes for the BC++ compiler
in Free Borland C++ Command Line Tools.

Copyright © 1998-2003, Brook Miles (theForger). All rights reserved.

file:///C|/dona/forgers-win32-tutorial/tutorial/resnotes.html (2 of 2) [7/8/2003 4:34:53 PM]

mailto:forger(nospam)winprog.org

	Tutorial File
	theForger's Win32 API Tutorial

	Basics
	Tutorial: Getting Started
	Tutorial: A Simple Window
	Tutorial: Handling Messages
	Tutorial: Understanding the Message Loop
	Tutorial: Using Resources
	Tutorial: Menus and Icons
	Tutorial: Dialogs, GUI coders best friend
	Tutorial: Modeless Dialogs
	Standard Controls: Button, Edit, List Box, Static
	Tutorial: Dialog FAQ

	Creating a simple application
	App Part 1: Creating controls at runtime
	App Part 2: Using files and the common dialogs
	App Part 3: Tool and Status bars
	App Part 4: Multiple Document Interface

	Graphics device interface
	Bitmaps, Device Contexts and BitBlt
	Transparent Bitmaps
	Timers and Animation
	Text and Fonts

	Tools and Documentation
	Win32 Tutorial - Recommended Books and References
	Free Visual C++ Command Line Tools
	Win32 Tutorial - Free Borland C++ Command Line Tools

	Appendices
	Win32 Tutorial - Solutions to Common Errors
	Why you should learn the API before MFC
	Win32 Tutorial - Resource file notes

